
DEVELOPMENT OF QUALITY-AWARE VIDEO SYSTEMS

AND NMR SPECTRUM REGISTRATION

by

BASAVARAJ HIREMATH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Electrical Engineering

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2007



ACKNOWLEDGEMENTS

It gives me immense pleasure to acknowledge few people who have been with me

during my work and have been a constant source of inspiration. I would like to thank

Dr. Zhou Wang, my supervisor, instructor, and my mentor at The University of Texas

at Arlington for his immense support, constant guidance and resourceful inspiration. I

am obliged to him for his belief in me to carry over the work he initiated. I would like

to thank Dr. Seoung Bum Kim for his guidance and support during the implementation

of our work. His inputs and feedbacks have been very critical in this work.

I would like to thank Dr. K R Rao for his interest in the research work and being

part of the thesis committee. I would like to take this opportunity to thank Qiang Li for

his support in implementing my work.

I am grateful to all my teachers, family members and friends for being part of my

life and supporting me throughout.

Lastly, I would like to thank my parents for being my source of inspiration, for

their love and support, and for the freedom they have provided me during my course of

study.

June 18, 2007

ii



ABSTRACT

DEVELOPMENT OF QUALITY-AWARE VIDEO SYSTEMS

AND NMR SPECTRUM REGISTRATION

Publication No.

BASAVARAJ HIREMATH, M. S

The University of Texas at Arlington, 2007

Supervising Professor: Zhou Wang

The work introduces a novel concept of Quality-Aware Video (QAV) System and

demonstrates its successful implementation. During the course, it develops algorithms

for reduced reference video quality assessment and for data hiding. The idea here is to

extract quality defining features of the video sequence and embed them in the original

video without causing any perceptual changes to obtain QAV. Such a QAV can then be

exposed to distortions and adverse attacks that affect the perceptual quality of the video.

At the receiving end, the algorithm extracts the quality features of the distorted video,

decode the original video quality features, and estimates the current quality. The beauty

of QAV is that they carry the original quality features along with them and hence their

quality can be assessed anywhere on the fly. The algorithm developed does not assume

any prior information about the attacks which means that the quality assessment is

independent of the attack and shows that the algorithm has the potentials to generalize

for various attacks. Our second work extends the existing idea of Bayesian estimation

for registration to higher magnitude differences. This is achieved by employing pyramid

(multi-resolution) approach to the existing algorithm. The advantage of pyramids is at

the reduced scale we have better alignment of prominent features (peaks) of the spectrum
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and as we move to higher levels, the finer details are taken care of. The results have

demonstrated an improvement in the existing algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Quality-Aware Video Systems

“Quality in a product or service is not what the supplier puts in. It is

what the customer gets out and is willing to pay for....Customers pay only

for what is of use to them and gives them value....”

- Peter F Drucker

Consider a simple video broadcasting system as shown in figure 1.1. It shows an

original video frame that is being broadcasted along with the video frames that are being

received at different destinations. We can see that the quality of the videos received

Figure 1.1. Illustration of broadcasting system.

is not same for all. The quality varies. Now consider pay-per-view system attached to

1
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this broadcasting system. Since the same video for the same duration is being viewed by

all viewers, all the destinations are billed with the same amount. However it is obvious

that the quality of the video received is not the same and thus it is unfair to be billed by

the same amount. Therefore there needs to be a system that considers the quality of the

video being received by the viewer and bills accordingly. Such a system should be able to

assess the quality of the video on the fly , i.e. the system should be dynamic. The system

needs to have the knowledge of the video being transmitted from the service station and

assess the quality of the received video accordingly. It is useful to have the knowledge

of the original video because in cases where the original video is itself degraded due to

various reasons, the viewers should not expect high quality video.

The example discussed above is one of the applications of the work to be presented

“Quality-Aware Videos”. With the latest developments in technology, visual communi-

cation has grown and is more easily accessible. It has also become important to know the

quality of data being transmitted and received. This has triggered a need for a system

that is part of the communication system and dynamically monitor the quality. Quality-

Aware video is one such way implementing the system that can serve the purpose.

1.2 NMR Spectrum Registration

“Another yet the same.”

- Alexander Pope

The need for signal registration or signal alignment can be simply explained as “the

comparison of two quantities is valid only if they are raised to the same platform and

similar physical conditions...”. Variations in physical conditions are inevitable either they

are human or machine born. It is important to have a buffering system that compensates

for these unwanted differences and provides a platform for comparison. Our work on

high resolution Nuclear Magnetic Resonance (NMR) spectrum alignment is an attempt

to provide solutions to such a system. Automatic diagnosis or computerized diagnosis

has been an area of interest for many researchers now. It is gaining importance with the
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advancements in the technology and growth in demand of efficient and faster diagnosis.

NMR spectral analysis has recently become one of the major means for detection and

recognition of metabolic changes of disease state, physiological alteration, and natural

biological variation [1]. Since NMR data is exposed to human and machine born varying

conditions, for better analysis of the spectra, there is a need for alignment or registration

methods that buffers these varying conditions.

In the next chapter we will discuss the general quality assessment techniques and

then advance to more complex methods, elements and development of Quality-Aware

Video systems and illustrate the implementation with some experimental results of the

QAV system. In chapter 3 we will discuss pyrmaid based NMR spectrum registration.



CHAPTER 2

QUALITY-AWARE VIDEO

2.1 Background

In any visual communication, along with the need to ensure successful exchange

of data, it is necessary to monitor the quality of the content being exchanged. Quality

monitoring also becomes necessary to analyze the performance of the communication

techniques, channels, modes, and communication standards being used. In some cases

(pay-per-view), quality needs to be monitored to have a better and proper estimate of the

content being viewed by the customers. These factors have triggered a major research

area of visual quality assessment. With the developments in the quality assessment

techniques, the applications have been growing. Thus, the need for quality assessment

and the techniques for the same have become complimentary to each other. Development

in one triggers the other.

Quality is subjective and purposeful. These have made quality assessment an inter-

esting and challenging task. Subjective quality assessment has been studied for years and

interesting models have been developed. But the need for an objective quality assessment

technique has been emphasized every now and then. This section will first look at the

growth of quality assessment techniques in the simple and basic form of visual content,

the images. Then extend the concept to more complex form, the videos. Our work is an

effort to contribute to the latter part, quality assessment of videos.

2.1.1 Image Quality Assessment

One of the widely used objective quality assessment is Mean Square Error (MSE).

MSE =
1

M ×N

∑
i,j

(Xi,j −X i,j)
2 (2.1)

4
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where X (Original image) and X (distorted image) are assumed to be of size M x N . Its

straight-forward and simple implementation made it widely accepted and has found many

application [2], [3], [4]. However, MSE gives a numeric estimation of the differences in the

images without considering the visual perceptive quality of the images [5]. Moreover, it

highlights the need of the original image, which leads to another classification of quality

assessment techniques that will be discussed later.

Another frequently used measure is Peak Signal-to-Noise Ratio (PSNR) given by

PSNR = 10log10
L2

MSE
(2.2)

where L is the range of allowable pixel intensities of an image. For 8bits/pixel grey scale

image, L = 28 − 1 = 255.

Occasionally both of the above measures fail to correlate with the perceived quality

of the images. This failure motivated the development of new quality assessment methods

proposed in [5], [6], and [7]. In these proposed methods, Structural Similarity (SSIM) [7]

has proved to be consistent and reliable.

The SSIM was based on the fact that natural images are highly structured. Their

pixels exhibit strong dependencies, especially when they are spatially proximate, and

these dependencies carry important information about the structures of the objects in

the visual scene [7]. The SSIM index is defined as,

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2.3)

where C1 and C2 are small constants to avoid instability, x and y are two local image

patches, µx and µy are the mean intensities of x and y respectively, σx and σy are the

standard deviations of x and y respectively, and σxy is the correlation coefficient between

x and y [7].

If we look at the formulation of the methods discussed above, they require access

to the original image source for the computation of the measure. This allows us to

classify quality assessment methods based on the need of reference (original) image. All
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the methods discussed above can be classified as full reference (FR) quality assessment

methods. The advantage of having access to the original image can be used to built a

better and more reliable quality metric. The metric can be made to be consistent with

the subjective quality evaluations. But the need of access to the original image limits its

applications only to test rooms, making it impractical for real time scenarios.

No reference (NR) quality assessment also called blind quality assessment methods

require absolutely no access to the original source. Such a method is an ideal one for any

system, but zero access to original source makes it difficult to implement such algorithms.

There are several NR based methods in the literature that are based on the following

constraints [8], [9], [10], [11], [12] and [13]; (1) they are limited to specific kinds of

distortions, (2) prior information of distortion is assumed. These constraints limit their

usage and a generalized solution is difficult to achieve. Moreover, in real time scenarios

the knowledge of distortions is not available unless a specific system is always dealt with.

The non-applicability of FR methods in real time and failure of NR methods to

generalize inspires us to look at the solutions that would lie in between these two methods,

that is a reduced reference (RR) quality assessment method. RR methods provide a

tradeoff between FR and NR methods. As the name suggests, the method does not

require full access to the original image but requires some features of the original image

to assess the quality, which can be made available by various means. So these methods

would rely on methods to extract quality features of the original image and methods

to make them available to the quality assessing system. Such methods make quality

assessment easier compared to NR methods but bring in an extra load of quality features

to be transferred.

The standard deployment of a RR method requires the side information to be sent

through an ancillary data channel [14]. The need of an additional channel restricts their

applications.
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2.2 Quality-Aware Images

A novel concept of quality-aware images(QAI) was introduced in [14]. The idea was

simple and straight-forward. The whole idea was to sent the extracted quality features

as hidden messages. The method was based on three algorithms; (1) an algorithm to

extract quality features of the original image, (2) a data embedding algorithm to hide

these features in the original image, (3) a quality measuring algorithm that would give a

quality score based on the extracted original quality features and the quality features of

distorted image.

The advantages of this approach are: [14]

• It uses an RR method that makes the image quality assessment task feasible(as

compared to FR and NR methods).

• It does not affect the conventional usage of the image data because the data hiding

process causes only invisible changes to the images.

• It does not require a separate data channel to transmit the side information.

• It allows the image data to be stored, converted and distributed using any existing

or user-defined formats without losing the functionality of “quality awareness”,

provided the hidden messages are not corrupted during the lossy format conversion.

• It provides the users with a chance to partially “repair” the received distorted

images by making use of the embedded features.

Since the purpose of the embedding algorithm is not to provide data security, the above

said application broadens the non-security applications of data embedding algorithms.

The work on QAI [14] discusses several applications and advantages of the method.

2.3 Quality-Aware Videos

The concept of QAI can be extended to videos. The idea here is to develop an

algorithm that can extract reduced reference quality features of the host video, develop

an algorithm that can embed these features into the video and decode them at the

receiving end along with the method that can access the quality based on these features
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and the features of the distorted video. Videos have the advantage of huge data as

compared to images which can be well explored for the development of data hiding and

decoding algorithms. However, the increase in the amount of data means the increase in

the number of quality features which results in more data to embed and decode. Videos

bring in several additional features along with them that allows flexibilities to experiment

with several data hiding techniques. The data hiding algorithm should not affect the

visual quality of the video, as the very purpose of QAV would be hampered. The other

important algorithm in any QAV system is the extraction of the quality features of the

original video for the implementation Reduced Reference Video Quality Assessment (RR

VQA). Extracting features of a video that are sensitive to most of the natural attacks

is a challenging task. Literature survey shows that RR VQA [15] is a less explored area

and very few attempts have been made to implement RR VQA.

Our current work on Quality-Aware Videos is an extension of the work on QAI. The

successful implementation of QAI and its various applications motivated us to experiment

the concept on videos. Assuming a video sequence to be a set of pictures arranged

sequentially, the concept of QAI can undoubtedly be extended to videos. Our work

demonstrates the successful extension and implementation of the concept to videos.

2.4 Reduced Reference Video Quality Assessment

Here we briefly review the RR VQA method for quality assessment (for details see

[16]). The RR VQA is based on a statistical model of temporal motion smoothness in the

complex wavelet transform domain [16]. Here, for simplicity we consider 1D data which

can later be extended to higher dimensions. Ideally a time varying image sequence (video)

can be created from the static image f(x) with rigid motion and constant variations of

contrast and average intensity:

h(x, t) = a(t)f [x + u(t)] + b(t) . (2.4)
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where u(t) indicates how the image positions move spatially as a function of time, a(t)

and b(t) are both real and account for the time-varying contrast and luminance changes,

respectively. Applying a continuous complex wavelet transform of the form on equation

2.4

F (s, p) =

∫ ∞

−∞
f(x) w∗

s,p(x) dx . (2.5)

we get,

H(s, p, t) ≈ F (s, p)a(t) ej(ωc/s)u(t) . (2.6)

Here b(t) is eliminated because of the bandpass nature of the wavelet filters. The ap-

proximation is valid when the movement u(t) is small compared to the width of the

slowly varying window g(x). Observing H(s, p, t) at consecutive time steps t0 + n∆t for

n = 0, 1, ..., N , it can be found that the following temporal correlation function is useful

to test the (N -1)-th order temporal motion smoothness:

LN(s, p) =
N∑

n=0

(−1)n

(
N

n

)
log H(s, p, t + n∆t) . (2.7)

It can be shown that when the motion is (N -1)-th order smooth, the imaginary part of

LN(s, p) is zero. Real natural images are expected to depart from these assumptions.

However, by looking at the statistics of the imaginary part of LN(s, p), it is possible

quantify such departure and use it as an indication of the strength of temporal motion

smoothness.

Given a video sequence, it is divided into groups of pictures (GOPs) and each image

frame is decomposed independently into subbands using the complex version [17] of the

steerable pyramid decomposition [18]. ÃL2(s, p) is computed for all coefficients within the

subbands. A histogram of the imaginary part of ÃL2(s, p) is obtained and is shown in

Fig. 2.1. The top row shows the histogram for a GOP of a original video sequence,

and the second and the third rows represent the corresponding video GOPs distorted by

Gaussian noise and Gaussian blur respectively. As we can see, for the distorted video

there is departure in distribution. A high peak at zero is observed, demonstrating a
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-4 -2 0 2 4

-4 -2 0 2 4

-4 -2 0 2 4

Figure 2.1. RR video features: demonstration.

strong prior of temporal motion smoothness. The histogram of each GOP, can be well

fitted with a four-parameter function [16]:

P (θ) =
1

Z

{
exp

[
−

( | sin[(θ − θ0)/2]|
α

)β
]

+ C

}
, (2.8)

where θ ∈ [−π, π], Z is a normalization constant, and the four parameters θ0, α, β

and C controls the center position, width, peakedness and the baseline of the function,

respectively. The fitting process is optimized to minimize the Kullback-Leibler distance

(KLD) [19] between the model and the observed distributions (denoted as pm and p,

respectively). The KLD between the model and the distorted video distributions, d(pm ‖
q) at the receiving end is estimated by

d̂(p ‖ q) = d(pm ‖ q)− d(pm ‖ p) , (2.9)

which can be easily shown to be a close approximation of d(p ‖ q). The four fitting

parameters θ0, α, β and C, together with the KLD between the fitting model and the true



11

distribution [denoted as d(pm ‖ p)], are included as RR features. These four parameters

give us 16 scalar features for each GOP.

2.4.1 Fitting Models

(a) (b) (c)

Figure 2.2. Original video attacked by Gaussian blur.

-4 -3 -2 -1 0 1 2 3 4-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

(a) (b) (c)
fitting model distorted histogram

Figure 2.3. Curve fitting for the video in figure2.2.

Here we demonstrate the departure of the histogram from the fitting model. Figures

2.2 and 2.3 show the distorted videos and the histograms for the Gaussian blur. Figures

2.4 and 2.5 show the distorted videos and the histograms for the Gaussian noise.

From all the four figures above, we can see that the histogram departs away from the

original model as the strength of attack increases. Moreover, we can see from Figures 2.3

and 2.5 that the departures are different for the different kind of distortions.
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(a) (b) (c)

Figure 2.4. Original video attacked by Gaussian noise.

fitting model distorted histogram

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

(a) (b) (c)

Figure 2.5. Curve fitting for the video in figure2.4.

2.5 Information Embedding

Data embeding and data decoding are two important processes in the implemen-

tation of QAV system. The successful implementation of QAV system depends on the

efficiency of the algorithm to embed data without making perceptual changes to original

video and decode the embedded data from distorted video. Two general requirements of

an ideal data hiding algorithm are:

• It should be robust enough to sustain all natural distortions.

• It should not introduce any perceptual changes in the original video.

Any perceptual distortions introduced by the data hiding algorithm will hamper the

purpose of the QAV system. It is expected that the quality score of the original video

and the quality aware video to be similar. The data hiding algorithm employed in the
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development of QAV system is based on 3D Discrete Cosine Transform (3D DCT) and

Quantization Index Modulation (QIM).

2.5.1 Discrete Cosine Transform

Discrete Cosine Transform is an orthogonal transform and over the years DCT has

found many applications in signal and image processing. The 1D DCT is given by,

X(k) = ω(k)
∑

n

x(n) cos
π(2n− 1)(k − 1)

2N
(2.10)

ω(k) =





1√
N

k = 1

√
2
N

2 ≤ k ≤ N

where x(n) is the original sequence, X(k) is the DCT of x(n) and k = 0, 1, 2...N . The

2D DCT is given by

X(p, q) = αpαq

∑
m

∑
n

x(m,n) cos
π(2m + 1)p

2M
cos

π(2n + 1)q

2N
(2.11)

αp =





1√
M

p = 0

√
2
M

1 ≤ p ≤ M-1

αq =





1√
N

q = 0

√
2
N

q ≤ q ≤ N-1

2.5.1.1 Energy Compaction

One of the important properties of DCT explored in our data hiding algorithm

is its energy compaction. DCT transform has been proved to have very good energy

compaction property. The transform forces the energy to be concentrated at the lower

frequencies. The coefficients at the lower frequencies have higher magnitude as compared

to those at mid and higher frequency ranges. This property has been well explored in

compression techniques [20], [21], [22]. It is important to note here that the uncorrelated
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data has its energy spread out, whereas the energy of the correlated data is packed into

the low frequency region. DCT renders excellent energy compaction for correlated data.

It is safe to assume here that the natural video frames are highly correlated and since we

deal with 3D DCT, we will have a better energy compaction.

2.5.1.2 Separability

1D DCT
rows

1D DCT
columns

1D DCT
temporal

Figure 2.6. Implementation of 3D DCT.

The DCT in equation 2.11 can be expressed as in equation 2.12 using separability

property of DCT,

X(p, q) = αpαq

∑
m

x(m,n) cos
π(2m + 1)p

2M

∑
n

cos
π(2n + 1)q

2N
(2.12)

This property becomes important as 3D DCT can be implemented by implementing 1D

DCT operation on rows, columns and then temporally on a group frames. The idea is

illustrated in figure. 2.6

Figure 2.7 shows few layers of the 3D DCT. As we can see that due to energy

compaction, layer 1 has higher magnitude coefficients close to zero. As we move to

the subsequent layers (layer1: top left, layer2: top right,...,layer8: bottom right), the

magnitude reduces and the energy moves away from the zero point. After statistically

analyzing the 3D DCT transforms, a group of DCT coefficients close to lower frequencies

is selected in different layers of 3D DCT and then a key generated as the positions

of these coefficients. These locations are used to embed data using the Quantization

Index Modulation (QIM) method [23]. Coefficients close to lower frequencies are selected
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Figure 2.7. 3D DCT layers.

because of their high magnitude so that quantization of these values does not affect the

perceptual quality of the video.

2.5.2 Quantization Index Modulation

Quantization Index Modulation (QIM) was introduced in [23] for digital water-

marking. QIM involves embedding information by first modulating an index or a se-

quence of indices with the embedded information and then quantizing the host signal

with the associated quantizer or a sequence of quantizers. QIM methods allow for blind

decoding (decoding does not require the access to the reference image) of the embedded

information.
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A single bit of information (m ∈ 0, 1) can be embedded into a selected coefficient

by the rule,

cq = Q(c + d(m))− d(m) ≡ Qm(c). (2.13)

where cq is the marked coefficient, Q(·) is the base quantization operator with step size

4, and d(m) is a dithering operator given by

d(m) =




−∆/4, if m = 0

∆/4, if m = 1
(2.14)

Figure 2.8 illustrates the process of embedding a single bit in the coefficient. The

bit 0 bit 1

2/ 2/

Figure 2.8. QIM for a single bit..

value of 4 can be tuned such that there is a tradeoff between the robustness of the data

hiding algorithm, data embedding rate and imperceptibility. Figure 2.9 shows the

DCT coefficients before QIM

DCT coefficients after QIM

141490 6563 11513 188 3263 -2138 -2588 -1163
18938 -8813 -4688 -863 -2888 3465 596 -821

9488 6338 -7763 -2813 -4238 -3234 783 1329
2213 6263 -5888 -2288 7688 -2943 -1447 104
3113 -8663 -3938 -1388 5663 6583 -249 1959

-1838 1013 -1388 1763 -2658 934 273 955
-1913 1088 3413 -238 -1545 -812 -189 -3087

-354 1838 5058 -997 -349 -2137 -1527 1025
-2126 1211 17 722 -3292 1555 -647

50 -2387 -159 -2008 -364 183 1820

141490 6625 11575 170 3269 -2113 -2485 -1216
18922 -8920 -4659 -890 -2810 3465 596 -821

9504 6235 -7869 -2851 -4151 -3234 783 1329
2206 6327 -5820 -2313 7631 -2943 -1447 104
3091 -8772 -3842 -1319 5653 6583 -249 1959

-1795 1114 -1367 1740 -2658 934 273 955
-1946 1061 3477 -238 -1545 -812 -189 -3087

-354 1859 5058 -997 -349 -2137 -1527 1025
-2126 1211 17 722 -3292 1555 -647

50 -2387 -159 -2008 -364 183 1820

Figure 2.9. DCT coefficients before and after QIM.
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9 34 197 255 247 254 254 254
9 32 196 255 247 254 254 254
8 29 201 255 165 132 137 133
8 31 208 239 121 168 255 254
9 35 210 234 130 137 132 168
9 37 196 255 247 172 132 128
9 38 201 255 243 255 223 124
9 34 209 235 130 133 144 124
8 41 203 255 247 254 254 254

15 36 106 167 197 208 214 218

pixel values before QIM

9.421 34.45 197.5 255.6 247.7 254.9 255 255.2
9.406 32.44 196.5 255.6 247.7 254.9 255 255.2
8.374 29.41 201.5 255.6 165.7 132.8 138 134.2
8.328 31.36 208.4 239.5 121.6 168.8 255.9 255.1
9.267 35.3 210.4 234.5 130.6 137.7 132.9 169
9.192 37.22 196.3 255.4 247.5 172.6 132.8 129
9.104 38.14 201.2 255.3 243.4 255.6 223.7 124.9
9.004 34.04 209.1 235.2 130.3 133.5 144.6 124.8
7.892 40.93 203 255.1 247.2 254.3 254.5 254.7
14.77 35.8 105.9 167 197.1 208.2 214.4 218.5

pixel values after QIM

Figure 2.10. pixel values before and after QIM.

DCT coefficients before and after the QIM and Figure 2.10 shows the pixel values before

and after the QIM. We can see that there is no much difference between the original

pixel values and the quantized pixel values. Thus QIM has the advantage of embedding

data without making significant visible changes in the host and hence well suited for our

application.

Once embedded, the data can be easily retrieved from the same but distorted

coefficients using the minimum distance criterion,

m̂(cd) = arg min
m∈{0,1}

‖cd −Qm(cd)‖ . (2.15)

where m̂(cd) is the decoded data bit, cd is the distorted coefficient. The simplicity and

robustness of QIM algorithm made it a favorable method in our application.
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2.6 Quality-Aware Video System

Similar to quality assessment of images, the algorithms for the quality assessment

in videos can also be classified into full reference (FR), no reference (NR) and reduced

reference (RR) methods. The limitations of FR and NR exposed in images are visible in

videos too. Literature survey shows several FR and NR implementations.

FR metrics are expected to provide more accurate quality measurements as they

have access to the complete source. It is also expected that they give better results to all

kinds of distortions and provide better generalization. As discussed in the section 2.1.1

of chapter 2 the existing NR methods, which do not assume any knowledge about the

reference video require a prior knowledge of the distortion under consideration. They

are limited to specific types of distortions [8], [9], [24], [25], [26], [27], [28], [29], [30], e.g.,

blocking artifacts created in block-based video compression. As it is true to images, in

real time scenario the knowledge of distortion is not available to the quality assessment

systems which limits the applications of NR methods. [25], [31], [10] and [13] proposed

NR quality assessment methods based on digital watermarking. A pseudo random bit

sequence or a watermark image is hidden inside the original video. The bit error rate or

the degradation of the watermark image measured at the receiver side is then used as

an indication of the quality degradation of the original video. Strictly speaking, these

methods are not VQA methods because no extracted features about either the reference

or the distorted video are actually used in the quality evaluation process. In essence,

they do not assess the quality of the video but the quality degradation of the watermark

embedded in the video.

2.6.1 Basic Structure of QAV Systems

Similar to a communication system, a basic QAV system will have a transmitter end

and a receiver end. The transmitting end will extract the quality features and embed

them. The receiving end will decode the original quality features, extract the quality



19

features of the distorted video and pass them to the quality assessing system, which in

turn gives a quality measure.

The original video is passed through a transmitting block shown in Figure 2.11. It

consists of a RR based quality feature extraction algorithm, and an encoder algorithm

that will embed the extracted features into the original video. The data embedding is a

key based algorithm which is shared with the receiving end.

RR based Feature
Extraction

Information
Embedding

Original
video

Quality Aware
Video

Figure 2.11. Transmitting end of QAV system.

The block diagram of the receiving end is as shown in figure.2.12. It receives a

distorted QAV and gives a quality measure of the video. It consists of a RR based

quality feature extraction algorithm similar to the one at the receiving end, a decoding

algorithm that decodes the original video quality features from the distorted video, and

a quality assessment algorithm which analyzes the quality features of both the videos

and gives a quality score. Combining the methods discussed in previous sections, the

RR based Feature
Extraction

Information
Decoding

Distorted Quality
Aware Video

Quality
Measure

RR Quality
Assessment

Figure 2.12. Receiving end of QAV system.
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functionality of the QAV system can be summarized as follows. At the encoder end,

• Use RR VQA to extract quality features of the original video.

• Perform 3D DCT on the original video.

• Use QIM method to embed the extracted quality features in transform domain.

• Perform inverse 3D DCT to obtain QAV.

At the decoder end,

• Use RR VQA to extract quality features of the distorted QAV.

• Perform 3D DCT on the distorted QAV.

• Use QIM decoding algorithm (minimum distance criterion) to decode the original

quality features.

• Use Quality Assessment algorithm to analyze the features of the original and the

current video and compute a quality score.

To improve the robustness of the data embedding algorithm, error correcting codes can

be used. We have employed BCH (15, 2, 7) [32] code, which can correct up to 2 errors

in every 7 bits decoded.

2.6.2 Implementing QAV System

The original video is divided into groups of pictures (GOPs) with 8 frames in each.

The 16 scalar features obtained in section 2.4 are then encoded using a 7 bit binary

representation to obtain a total of 112 (16 x 7) bits of information. Now these 112 bits

are to be embedded in the first 8 frames of the video. To improve the robustness, we

introduce BCH error correcting codes as in [14]. The BCH used here is (15, 2, 7) that can

correct 2 bits for every 7 bits and the encoded bit length is 15. After BCH coding, the

total length of bits to be embedded is 240 (16 x 15). To embed 240 bits in a GOP, we need

to select 240 DCT coefficients. It is important to select higher magnitude coefficients as

we do not want to make any perceptible changes in the original video.

3D DCT is performed using the separability property of DCT. First a 2D DCT is

performed on all the 8 frames (in a GOP) individually. Then 1D DCT is implemented
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temporally by selecting the 8 corresponding elements one from each layer of 2D DCT

to obtain 3D DCT. By doing this we obtain 8 layers of 3D DCT with the coefficients

in the first layer closer to the origin representing lower frequency components and have

higher magnitude (due to energy compaction as shown in figure 2.7). This is true because

natural videos are highly correlated both spatially and temporally. As we move down

the layers, the energy (higher magnitude coefficients) shifts away from the origin along

with the considerable drop in the energy. This is similar to the phenomenon observed

in 2D DCT of the images. Understanding of this makes it easy to select coefficients to

embed data bits. Since 240 bits are to be implemented, and we do not want to make

any perceptible changes to the video, we distribute the selection of coefficients into first

few layers. This location of bits is the key to be used both in the encoding and decoding

algorithms. As expected, the position of the selected coefficients shifts away from the

origin as we move down the subsequent layers.

Once the key is determined, we use QIM to embed a single data bit in a single

coefficient using Equation 2.13. The value of stepsize 4 is selected such that it does not

make considerable change in coefficient so that the original video is altered but small

enough to sustain distortions on the video. Once all the bits are embedded, we perform

inverse 3D DCT first by performing inverse 1D DCT temporally and then inverse 2D

DCT on the individual layers to obtain the QAV frames. This process is repeated to

all the GOPs of the video to obtain QAV. The process is illustrated in Figure 2.13. As

seen in the figure, we have implemented error correcting code (BCH code) to improve

the robustness of the data hiding algorithm.

At the receiving end, we again use RR VQA to obtain the quality features of each

GOP of the received distorted QAV. We perform 3D DCT and extract the embedded

240 bits from each GOP. After performing BCH decoding we are left with 112 bits of the

original video quality features which are converted into 16 scalar RR features of the GOP.

This is illustrated in Figure 2.14. These two sets of 16 scalar RR features are then

passed to a quality assessment algorithm that analyzes the features and gives a distortion
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BCH Coding

3D DCT

Quantization
Index Modulation

Inverse 3D DCT

Extracted
Features

Original
Video

Quality Aware
Video

Figure 2.13. Illustration of data hiding algorithm.

3D DCT Minimum Distance
Criterion

BCH Decoding

Original Video
Quality Features

Distorted Quality
Aware Video

Figure 2.14. Illustration of data decoding algorithm.

measure. With the help of the original RR features, a fitting model is obtained. Then

Kullback-Leibler distance (KLD) is computed between the model and the distorted QAV

distributions. The distortion score is then obtained using the method discussed in the

section 2.4.

2.7 Simulation Results

The algorithms were implemented on MATLAB using signal and image processing

toolboxes. The results are analyzed under the following sections; Effect of data hiding

on original video; Robustness of the data hiding algorithm; and Distortion measures for

distortions. In all the sections we have considered two kinds of distortions;

• Additive White Gaussian Noise(AWGN)

• Gaussian Blur

2.7.1 Effect of Data Hiding

As a general requirement of any data hiding algorithm, it is important that it does

not affect the perceptual quality of the host; otherwise the very purpose of the QAV

system is hampered. Therefore it is important to analyze the effect of the data hiding

algorithms and tune them to have a desirable effect. In our work, due to the selection
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Figure 2.15. The original and the QAV frames.

of QIM to embed data, tuning is obtained by simply varying the step size of 4 in the

QIM equation. It is important to note that the same step size should be used even

during decoding the bits. The effect of data hiding is studied by comparing the quality

scores of the original video and the QAV. We desire that the distortion measure for the

videos should be similar. If so, then we can safely state that the data hiding introduces

negligible perceptual change to the original video.

Figure 2.15 shows few frames of the original video and the corresponding QAV

frames. The top row represents the original video and the bottom row represents the

QAV. The frames are selected such that they represent different frames in a GOP (frame1,

frame4 and frame8). We do not see any perceptual differences in the frames. After

analyzing the results we can say that our data hiding algorithm does not introduce

visible perceptual changes in the original video and is appropriate for QAV systems.
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Figure 2.16. Bit error rate for Gaussian blur.

2.7.2 Robustness of Data Hiding Algorithm

(a) (b) (c)

Figure 2.17. Video frames for Gaussian blur.

One more important feature of any data hiding algorithm is its ability to sustain

different attacks. The robustness of the data hiding algorithm influences the applicability

of the QAV system. We have studied the robustness of our algorithm and the results are

shown in Figures 2.16, and 2.18. The corresponding distorted video frames are shown
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in Figures 2.17[(a):σ=0.5, (b):σ=1.0, and (c):σ=1.5], and 2.19 [(a):var=20, (b):var=80,

and (c):var=140]. The robustness of the algorithm is improved by employing BCH
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Figure 2.18. Bit error rate for Gaussian noise.

codes. The robustness can also be improved by increasing the step size 4 in the QIM.

We select a appropriate value for 4 and then use BCH code as error correcting code to

improve the robustness. By introducing BCH coding the number of bits to be embedded

increases but this is not a critical issue as we are dealing with 3D DCT which operates on

a GOP, which gives a large number of DCT coefficients with high magnitudes for QIM

embedding. If a small perceptual change is allowed in the video, then the robustness can

be improved by increasing the 4 value in QIM.

2.7.3 Distortion Measure

The purpose of implementing QAV system is to assess the quality of the video on

the fly, so it becomes important to analyze the distortion measures of distorted videos.

We expect that the distortion measure be monotonically increasing with the perceptual



26

(a) (b) (c)

Figure 2.19. Video frames for Gaussian noise.

(a) blur std = 0.6, D = 0.011 (c) blur std = 1.5, D =0.787(b) blur std = 1.0, D = 0.226

Figure 2.20. QAV frames with Gaussian blur.

0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
w/o QAV
w/ QAV

di
st

or
tio

n 
m

ea
su

re


blur filter standard deviation

Figure 2.21. Distortion measure for Gaussian Blur distorted video.
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(a) noise var = 10, D = 0.101 (c) noise var = 140, D = 0.805(b) noise var = 70, D = 0.519

Figure 2.22. QAV frames with Gaussian noise.

distortion in the video and monotonically decreasing with the perceptual quality of the

video. We also expect that distortion measures for different attacks follow the same trend.

This makes sure that the increase in the strength of attacks increases the distortion

measure and we see a trend in the reduction of the quality of the video. Figure 2.20

shows the QAV frames for the Gaussian blur and the distortion measure plot is shown

in Figure 2.21.

The QAV frames for the Gaussian noise are shown in Figure 2.22 and Figure 2.23

shows distortion measure plot. The plots show two curves, one for the QAV and the

other for the original video. The similarity suggests that there is negligible perceptual

difference between the QAV and the original video. This is an important factor in deciding

a data hiding algorithm. Distortion measures in both the attacks follow a same trend,

suggesting that the distortion measure is dependent on strength of the attack. We can

see the reduction in perceptual quality of the video with the increases in the distortion

measure indicating the higher the distortion measure the lesser the quality.
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Figure 2.23. Distortion measure for AWGN distorted video.



CHAPTER 3

NMR SPECTRUM REGISTRATION

This work is an extension of the Bayesian spectrum alignment work in [1], which

propelled us to extend the work. In the current work we apply a multi-scale or pyramid

based approach to the existing Bayesian approach. In the next section, we look at the

previous work and in the subsequent sections we introduce multi-scale approach and its

application to the existing method.

3.1 Background

In [1], a new approach that simultaneously estimates the spectral shift and the

baseline variations was introduced. It was based on Bayesian Least Square Estimation.

The idea was to formulate the problem of registration in a Bayesian statistical frame-

work with consideration of the effect of noise. A closed form solution obtained can be

summarized as (see [1] for details):

Let X(w) and Y (w) be two spectral signals to be aligned, where w is the fre-

quency index. If the two signals represent the same spectral structure but are shifted (in

frequency and intensity) versions then we can write

y(w) = x(w +4w) +4a, (3.1)

where 4w and 4a are spectral and intensity variations respectively. Applying a Taylor

series expansion and ignoring the higher order terms, we can write Equation 3.1 as

y = x +4x′ +4a1. (3.2)

29
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where x = [x(w1), x(w2), ..., x(wN)]T , y = [y(w1), y(w2), ..., y(wN)]T ,

x′ = [ dx
dw
|((w1)),

dx
dw
|((w2)), ...,

dx
dw
|((wN))]T , and 1 is an N-dimensional column vector of

ones. In matrix format,

Ac = 4x. (3.3)

where A = [x’ 1], 4x = y - x, and c = [4w 4 a]T is a column vector containing the

parameters we would like to estimate. The least square solution is then given by

ĉLS = (ATA)−1AT 4 x. (3.4)

In certain cases, the matrix (ATA) might be close to singular and inverting the matrix

may be unstable.

The above problem was solved in [1] by introducing the noise effect in the formu-

lation as,

g = Ac−4x. (3.5)

where g is modeled as a zero-mean Gaussian random vector. After certain mathematical

assumptions and calculations, based on Bayes’ rule

p(c|g) ∝ p(g|c)p(c). (3.6)

The Bayes least square (BLS) as well as the Bayes maximum a posterior (MAP) solution

is given as,

ĉBLS = ĉMAP = (ATA + ΛnΛ−1
p )−1AT 4 x. (3.7)

where Λn is the noise variance and Λp is the covariance matrix.

The advantages of this approach are; the noise effect is considered; prior knowledge

of the quantities being estimated can be included; and the addition of noise makes sure

that the matrix (ATA) is non-singular.

Since the algorithm discussed above is differentiation based, it works only if the

variations in the source and the target are small. The algorithm breaks if the difference is

large. For this approach to work, the obvious approach would be to reduce the differences
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and then apply the Bayesian approach. By having multi-resolution or pyramids of the

source and the target, the differences can be reduced considerably. Then by applying the

Bayesian approach at different scales, a well registered signal can be obtained.

3.2 Pyramid based signal processing

The pyramid method for image processing was introduced in [33]. The idea is to

have several copies of the image at increasing scale. The processing starts at the lowest

scale, and is updated at subsequent scales until the original scale is reached. Their work

discusses several applications of pyramid based processing. One application of interest is

image registration. Here we try to explore the concepts and apply them to our problem

of NMR spectrum registration.

3.2.1 Pyramids for signals

Consider a signal X of length N , the idea of the pyramid construction is to have

multi resolution copies of X. The is illustrated in figure 3.1. The construction of the

pyramids can be summarized as:

• Smooth the spectrum with a low pass filter.

• Reduce the size of spectrum such that x′(n) = x(2n), i.e,, downsample the signal

by a factor of 2.

• Repeat the above steps until a maximal allowed number of levels or minimal allowed

spectrum length is reached.

The pyramid constructed for two NMR spectra during simulation is as shown in Figure

3.1. The advantages of the pyramid approach are easily visible. As we move up the

pyramid, the data gets shorted and smoother. We can see that the coarsest level has

only the prominent features of the spectrum. The finer details are lost which makes

alignment process more efficient. Moreover, the reduction in the spectral difference is

also visible which is attributed to downsampling.
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Figure 3.1. Pyramids for the source and target spectra.

3.3 Pyramid based Bayesian approach

The pyramid based Bayesian approach is shown in Figure 3.2 and it combines the

Bayesian estimation discussed in section 3.1 of chapter 3. Let the two spectra under

consideration be called the source and the target, where the source is the spectrum to

be aligned to the target. The first step is to have the source and the target pyramids

constructed to the required coarsest level. Let n be the number of levels in the pyramid

with n being the coarsest level. Starting from n (coarsest level), alignment parameters

are estimated. The estimated parameters are upsampled and the alignment is done at

the n−1 level. Once the spectra is aligned, the spectra of the target at this level and the

aligned spectra are used to estimate the new parameters. This process is repeated until

we reach the finest level. Once the finest level is reached, we obtain the final alignment

result.
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Figure 3.2. Illustration of pyramid based Bayesian approach.
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Target

Figure 3.3. Section of the misaligned original source and target spectra.
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Source
Target

Figure 3.4. Section of the misaligned original source and target spectra.

3.4 Simulation Results

Figures 3.3 and 3.4 show the sections of the original source and target spectra

which are misaligned. A pyramid structure similar to Figure 3.1 was constructed for

both the spectra. The Bayesian estimation of parameters was done at the coarsest level

and alignment at one upper level as explained before in the section 3.3. Figure 3.5 shows

some of the intermediate results of the alignment. We can see that the peaks get aligned

at the coarsest levels and it becomes easier to align the finer details as we move to the

higher resolutions. Figures 3.6 and 3.7 show the alignment results of our algorithm.

We can see the alignment in both the spectral and intensity variations.
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Figure 3.5. Intermediate results of pyramid based registration.
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Figure 3.6. Aligned source with original source and target of figure 3.3.
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Figure 3.7. Aligned source with original source and target of figure 3.4.



CHAPTER 4

CONCLUSION

We have introduced a novel concept of Quality-Aware Video systems and demon-

strated its implementation. The scope of the areas covered under this work is vast. It

contributes in several directions: First, it introduces a novel concept of QAV system

and provides a blueprint for its implementation. The concept can be well explored and

different methods of implementing such a system can be developed. Contributions from

areas of vision, perceptually quality and communications can enhance the efficiency of

the system. Secondly, it develops a simple concept of extracting features of the original

video. It emphasizes on the fact that knowing the quality of the original video is impor-

tant to make any judgement on its distorted versions. The RR based extraction of the

quality features is simple and straight-forward which at its core has a statistical model

of temporal motion smoothness in the complex wavelet transform domain. Thirdly, it

develops an algorithm to encode and decode data in the videos. With QIM at its core, the

algorithm is able to operate without damaging the perceptual quality of the host video.

The development of this algorithm widens the existing area of non-security applications

of watermarking. With a key made available to all, the quality assessment can be done

anywhere. And lastly, it talks about the dynamic system of quality assessment. As dis-

cussed in the chapter 1, the need for a dynamic system of quality assessment is fulfilled

with QAV. The beauty of these RR based features is that they do not assume any prior

knowledge of the distortion which means the quality of a QAV attacked by any natural

distortion is assessable. This gives a hint of the potentials of the system to generalize to

various attacks where many algorithms have failed to deliver. To the existing list, the

advantages of the QIM can be added. The ability to provide varied tradeoffs between

36
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the embedding rate, the perceptual quality and the robustness by the QIM can be well

explored depending on the need and requirement of the system.

The proposed system also initiates some future work, in the development of ro-

bust data hiding techniques. The algorithm developed is sensitive to heavy compression

algorithms which puts the hold on QAV system. With the developing technology, as

more efficient and better compression algorithms are being built, it becomes necessary to

develop a data hiding algorithm that overcomes these attacks. With such an algorithm,

the scope of the QAV systems will widen. Alternatives for the method to extract RR

features can also be studied. More RR based assessment methods could be tried and

tested for better efficiency of the QAV systems. Applications of the QAV systems to

error concealment, design of algorithms to partially repair the distorted QAV cannot be

ruled out. The concept of “intelligent videos” wherein the videos not only carry the

quality features but they sustain any attack on the communication network and correct

itself during the course of transmission can be developed. This can be possible if the

video knows its original quality and constantly monitor its quality on the fly. A small

departure in the quality should trigger a correction algorithm before the error grows big.

The proposed NMR spectrum registration method overcomes the limitations of

the existing differentiation based Bayesian estimation. It demonstrated that the existing

Bayesian estimation approach implemented for small variations can be extended to larger

differences. By involving the pyramid approach, it was possible to reduce the spectral

differences which is critical in the application of the Bayesian estimation. The alignment

of peaks at the low resolution makes it easier for Bayesian approach to work on the

finer details at the higher resolutions. Moreover, it is shown that a reliable registration

algorithm can be built even in the presence of the noise.

The existence of too many spikes in the spectrum limits the application scope of

the algorithm. Presence of several “back-forth” differences in the spectra also affects the

performance of the algorithm. In future, these can be overcome by employing prepro-

cessing of the source and target spectra. A localized window method to globally estimate



38

the spectral and intensity shifts can be used as the part of preprocessing. Several options

like, matching intensity difference at the coarsest level, splitting the spectrum in several

bands before registering, knowledge of spiky areas in the spectrum can come handy and

improve the performance of the system. In future, we propose to work on improving its

performance and carry the concept forward to multi-dimensional data sets.
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