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ABSTRACT 

 

DISCRETE EVENT CONTROLLER: APPLICATION USING 

DYNAMIC RESOURCE ALLOCATION 

 

Publication No. ______ 

 

Abhishek Chaitanya Trivedi, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Dr. Frank Lewis  

This work consists of developing a Discrete Event Controller with Dynamic 

Resource Allocation, simulating it and then applying it on a test-bed using robots and 

static sensor nodes.  These are the contributions made: 

1. Interfacing the Garcia robot with Mica2/Cricket Sensor. 

2. Implementing Obstacle Avoidance and Path planning on Garcia Robot for 

navigational purposes. 

3. Localizing the Garcia Robot with the help of Cricket sensor and controlling it 

from the Base Station to perform assigned tasks.  



 

 

 

v 

4. Simulating a Discrete Event Controller which dynamically coordinates 

multiple missions and simultaneously performing dynamic resource 

assignment and solving any shared resource conflicts. 

5. Implementing the aforementioned Discrete Event Controller on a test-bed 

containing the Garcia robots and Mica2 sensors.  The navigational techniques 

mentioned above are used for mobility of Garcia in the test-bed while the Base 

station runs the Controller managing missions, assigning robots to sensors and 

resolving the conflicts to prevent a deadlock. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Wireless Sensor Networks are a trend of the past few years and the only way to 

monitor the real world adequately is to use a network of devices.  This means deploying 

a number of small sensor nodes capable of far more complex tasks in hostile 

environments or over large geographical areas instead of centralized, expensive, single-

node platform [50].  When these stationary wireless sensor nodes collaborate with 

mobile autonomous robots, they form a powerful system with flexible network 

architecture.  This system is responsible for adaptation and self-configuration since 

networks consist of numerous unreliable nodes, communication links and changing 

environment conditions [4, 30].  The mobile sensor nodes stand out for the network as 

they can adapt and self-configure using their mobility and additionally providing 

increase in network coverage, better routing performance and better connectivity [48]. 

A Discrete Event Controller is needed for the coordination of cooperating 

heterogeneous wireless sensor networks (WSN) containing both static ground sensors 

and mobile sensor robots.  A Discrete Event System is a system whose behavior is 

characterized and governed by events occurring at unknown irregular moments of time.  

The events can be controlled (i.e. retrieving data from a sensor at particular time) or 

uncontrolled (i.e. the sensor data getting higher or lower than the set levels) [46].  The 
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next tread of the system is to control the execution of a set of tasks to be performed by a 

set of resources, arrange coordination of events, resource contention management, 

performance monitoring and optimization.  Discrete-Event Systems (DES) control 

theory [46] has been used to control several different problems including manufacturing 

and assembly tasks, the coordination of mobile robots [8], a hybrid discrete event 

systems approach for robot control [26] and different environmental sensing 

applications. 

A Discrete Event Control (DEC) system has to make the best choice from 

among set of given alternatives to perform the task.  The controller’s objective is to 

allocate a finite number of discrete resources to a set of tasks so as to achieve optimal 

system performance without any deadlocks.  In a mobile sensor network, dynamic 

coordination of multiple robots [21] is required to execute different tasks along with 

multiple competing missions, network topology changes and addition/removal of nodes.  

This can be satisfied by implementing dynamic resource allocation algorithms in the 

DEC. 

 

1.2 Objective 

The objective of this thesis is to study and implement an efficient matrix-based 

Discrete Event Controller (DEC) [44] with Dynamic Resource Allocation on Mobile 

Wireless Sensor Network test bed at Automation and Robotics Research Institute.  In 

this thesis the robots from Acroname Inc. called Garcia along with sensors from 

Crossbow called Mica2/Cricket are used for the implementation.  Different techniques 
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such as obstacle avoidance, localization and path planning used for the robots 

navigation and which is subsequently used in DEC and dynamic assignments are 

presented in this thesis. 

The underlying principle in interaction between the static sensors and robots is: 

the sensors serves as the communication, sensing and computation medium for the 

robots, whereas the robots provide actuation (mobility), which is used among other 

things for sensor deployment, repair, reacting to the events of the environment and other 

tasks [43].  Each sensor is equipped with some limited memory, processing capabilities, 

multiple sensing modules and communication capabilities.  But the use of mobile 

sensors helps in saving power of the static sensors as they can transmit the data 

collected, at low power to the robots when they arrive near to it.   

The use of mobile robots in sensor networks requires positioning themselves 

strategically to enhance global performance.  For this the robot needs autonomous 

navigational capabilities [29].  This can be obtained by obstacle avoidance using which 

the robot can travel around in the environment and relaying or gathering data to or from 

the static sensor nodes.  Localization can be used to send the robots at particular 

positions and perform the tasks assigned, while Path planning can be used to program 

the robots with the predefined paths and send them in hostile or toxic regions to deploy 

sensors or collect data from them.   

Centralized and Decentralized techniques are available for task assignment and 

resource dispatching in mobile wireless sensor networks.  In decentralized technique the 

robots or sensors control themselves and have no information about the network except 
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their neighbors while in the centralized technique the supervisor or the base station 

controls the coordination of the robots and sensors.  The centralized control technique 

[24] is used as it can reschedule mission planning and allocate tasks in response to 

uncontrollable events with appropriate resources.   

DEC was first used in manufacturing systems [32] in order to sequence the most 

suitable tasks for each agent according to the current perception of the environment.  

The matrix formulation allows fast, direct design and reconfiguration of discrete event 

controllers.  It provides a better dynamical description, high-level interface and efficient 

handling of missions along with the popular tools as Petri-Nets. 

Task Allocation is required for assigning available resources to tasks.  There are 

two major subdivisions: offline and online.  Offline Task Allocation is the problem of 

assigning resources to tasks if certain information (e.g. the distribution of task arrival 

times, relative task priority) is known a priori.  In online Task Allocation, all 

information about the tasks becomes available only upon task arrival [43].  The 

assignment of resources to tasks must be computed in real time and greedy algorithms 

must provide good approximate solutions to it.  If it fails, the system could result into a 

deadlock which could mean disaster in some scenarios.  So a MAXWIP deadlock 

avoidance policy using [28] is implemented which checks the system after every new 

resource assignment whether it is regular and free from any deadlocks.  The MAXWIP 

policy is a greedy algorithm implemented by on-line updating of the resource 

requirements matrix [31].  If the assignment does not result into a deadlock, the DEC 

[44] is implemented to assign the subsequent tasks to be performed. 
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 1.2.1 Software’s and Languages used 

In this thesis Labview, NesC and Matlab are used extensively for designing and 

implementing various algorithms and applications required for Dynamic DEC.  

Labview which is a powerful graphical programming language with integrated I/O 

capabilities is used for retrieving and processing sensor data, developing Matrices and 

Petri-nets intuitively for further usage in DEC and dynamic allocation of resources.  It 

gives ease of use, better interaction and user friendly applications, while getting the 

developer free of the low level architectures of I/O and complexity of implementing 

graphics in a text based programming language.  NesC a C-like modular programming 

language makes it easy to control Garcia, get data from different sensors and 

simultaneously communicate and exchange data with the base station using Mica2s and 

Crickets.  Matlab is used for simulating the Discrete Event Controller with Dynamic 

Allocation of Resources and gives the perception of the system before implementing it 

on the Robots using different sensors. 

 

1.3 Applications 

WSNs are finding applications in different fields and are spreading 

progressively as new research is done.  WSNs are deployed on a global scale for 

environmental monitoring and habitat study, on a battle field for military surveillance 

and reconnaissance, in emergent environments for search and rescue, in factories for 

condition based maintenance, in buildings for infrastructure health monitoring, in 

homes to realize smart homes, or even in bodies for patient monitoring [51]. 
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CHAPTER 2 

ROBOT AND SENSOR PLATFORM 

2.1 Garcia Robot Introduction 

  Garcia is the perfect robot if one wants to focus their efforts on 

developing the software and algorithms to enable the robot to interact with the 

environment, other robots and sensors.  That is true because the mechanical and 

electrical challenges of robotics are already solved.  Garcia solves these problems and 

can be directly used to run different applications.  It comprises the most flexible 

materials, concise design, and seamless integration of software with hardware [2].  

Garcia offers the platform for robotics.  It is a rock-solid collection of low-level 

I/O processing, mechanics, and electronics that allows the designers and researchers to 

use precious time figuring out the big challenges in robotics.  Challenges relate with 

mapping, localization and collaborative behavior in robots.  

 

2.2 Garcia Features 

2.2.1. Processors and Memory 

Two separate 40MHz processors handle the robot's functions.  A BrainStem 

Moto 1.0 processor handles the motion control and several sensor inputs.  A BrainStem 

GP 2.0 processor provides a serial interface, IR communication capability, and 
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additional IO.  The GP and Moto processors are PIC 18C252, which is an 8 bit high 

performance microcontroller chip and has a 32K EEPROM for code storage [2]. 

2.2.2. Battery 

The robot is powered by a standard 6-cell 7.2V 3000mAH NiMH battery pack.   

2.2.3. Serial Port 

External computers may communicate with the Garcia through a TTL-level 

serial port.  Different host applications can be used or developed to communicate with 

the Brainstem board using serial port to get various sensor data from Garcia or control 

its motion.  Most of the communication with Cricket/Mica2 is done using this port. 

2.2.4. Range Finders 

Garcia has six IR range finders.  These are Sharp GP2D12 IR sensors.  They 

provide valid distance measurements in a range of 4 to 18 inches.  These sensors enable 

the robot to wall-follow or detect obstacles while maneuvering.  When not in use, the 

sensors can be disabled to save battery power.  The 6 sensors are connected to the 

analog pins on the Brainstem board. Two sensors (rear left and rear right) are connected 

to the GP board and 4 sensors (side and front) to the Moto board.  

2.2.5. Ledge Detectors 

Under the front end, there are left and right floor proximity detectors.  These 

sensors can tell the robot if it is about to roll over a ledge.  If the robot is moving slowly 

toward a ledge, it can stop its wheels and skid to a stop before plummeting.   

 

 



 

 

 

8 

2.2.6. Motors and Extras 

 Garcia comes equipped with two Maxon A-max motors.  The motors can be 

used normally or in PID Encoder mode for controlling the motion.  Commands can be 

sent to Garcia for turning, or moving reverse and forward.  The Garcia drive train 

produces 3648 encoder pulses per wheel revolution.  In the PID Encoder mode, 

Garcia’s movements can be defined using encoder ticks.   For example, it takes 3504 

ticks for each motor to move Garcia by one foot and 18 ticks for turning Garcia by one 

degree totaling to 6501 ticks for a full 360 degree turn [6].    

The other features [2] which Garcia includes are 4 free I2C connections, an 

extra serial port, and 4 servo outputs.  It also has an IR transceiver, thus the robot can be 

controlled by an IR remote and also can transmit codes through the IR transmitter. 

 

2.3 Garcia Commands 

Garcia is a customized robot and it can manage IO, do precise motion controls 

and run simple level programs using the processors on board.  But for accessing the real 

power of it, there are primitives which can be used to provide great functionalities [1].  

The Brainstem board on it has got memory which stores various pieces of codes in it,  

these codes are a sequence of simple tasks which are also known as the Primitives.  

Primitives are the building blocks of behaviors when programming a Garcia robot.  

Garcia can store over a dozen primitives.  They are stored in EEPROM so they can be 

updated or changed when necessary.  These primitives interact with the monitor to 

make sure that the robot acts appropriately when encountering special conditions. 
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The commands to run the primitives can be sent to Garcia using the serial port 

in it.  There are two serial ports on the Brainstem board, GP serial and Moto serial.  Any 

one of these can be used to communicate with a host.  The host can be anything from a 

computer to a PDA, a Linux board like STARGATE or Cricket/Mica2 modules and it 

can be connected remotely using a wireless card or can ride with Garcia by connecting 

locally using the serial cable.  The baud rate used for communication is 38400.  One can 

use the COM ports on the computer to connect to Garcia serially and test various 

commands through the Brainstem Console.  These commands can then be used in 

conjunction for motion control, obstacle avoidance and other functionalities. 

The commands given to Garcia are small hex codes and the structure format is: 

 Byte 1 - the IIC address of the module that shall receive the packet.   

Byte 2 - the length of the packet. 

Byte 3 to n - the data in the packet. 

 The limit to the packet byte is 8 bytes with 1 command byte and 7 data bytes.  

The address byte plays an important part in forming the command.  The address for the 

two processors on the Brainstem board is: GP processor is 2 and Moto processor is 4.  

The physical hardware on the Brainstem architecture is called module.  These are Servo 

outputs, A/D channels, Digital I/O pins, GP2D02 driver etc. which are connected to 

either the GP or the Moto processor and they communicate with the host using the two 

wire IIC protocol.  These modules can be accessed using the unique address given to it, 

but the router address is the same for all.  When the router receives a command, it 

checks the destination address and if it matches its own, it executes the command.  If it 
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does not match, it transmits the command via the IIC bus to another module.  A 

command can be sent addressed to the module and the data can be identified as to which 

module has responded to it using the address in it.  Thus the command byte is formed of 

the address of the processor, address of the module for which command is intended, the 

command, and data to be passed on to the module if required by it.   

 The most important of all commands is the Heartbeat.  The Heartbeat is 

originated by the modules to indicate the link health status.  A Labview interface was 

developed to find out the response from Garcia through which the heartbeat code was 

found subsequently.  The heartbeat code is 0202 0000H and 0202 0001H.  These 

commands continue to run and they alternate between 0 and 1.  Garcia has two LEDs 

for depicting the heartbeats.  These indicators offer great assistance in trying to debug 

the status and operation of the link. 

 Some other commands which were found using the Labview interface are: 

USER LED: 0403 267C 01 – ON 

  0403 267C 00 – OFF 

INFRARED: 0204 4705 XXXX (xxxx refers to data to be transmitted.  For example: 

0101 if 01 is to be transmitted). 

ENCODER ODOMETER: 0402 4202 (4 66 2) is used to access the 32-bit encoder 

odometer.  The motors can be configured in PID encoder mode or used without any 

mode.  In PID mode, the PID routine adds the distance traveled during the last iteration 

to a 32-bit encoder accumulator.  In general, each step leads to the increments or 

decrements of the 32-bit odometers depending on the motor’s forward or reverse 
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motion.  When Garcia gets the command, the reply would be in this format: 0404 4202 

001F AB00 1FE0, where 4202 is echo for the command, the next 3 bytes contain 32-bit 

odometer value for right wheel (0x001FAB) and the last 3 bytes contain 32-bit 

odometer value for left wheel (0x001FE0).  These values can be converted into decimal 

and used to find distance Garcia has traveled.   

MOTOR CONFIGURATION: 4 63 0 0 5 0/4 63 1 0 0 5 0, these commands put the 

right and left motor into PID encoder mode.  4 63 0 5 13 xxxx/4 63 1 5 13 xxxx sets the 

PWM output limit i.e. the motors would stop after xxxx ticks (xxxx can be any decimal 

number).  There are various other commands which are useful for motor configuration.  

These are setting the P, I, and D parameters for error correction, setting the period, 

latency, and frequency values, but are not mentioned as they are not used in this thesis.  

After configuring the motors the new settings can be saved to the EEPROM using the 4 

64 (0404 40) command. 

 The most useful commands for running the motors and getting the ranger values 

are: 

MOTOR DIRECTION AND SPEED: 

LEFT:      0404 3E01 0001 (0001 is the speed of motor in forward direction). 

      0404 3E01 FFFF (FFFF is the speed of motor in reverse direction). 

      0404 3E01 0064 (Maximum speed of 100 in forward) 

      0404 3E01 FF9C (Maximum speed of 100 in reverse) 

RIGHT:    0404 3E00 0001  

      0404 3E00 FFFF 
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STOP: 0404 3E00 0000 (RIGHT) 

 0404 3E01 0000 (LEFT) 

Thus, the command has code 00 for RIGHT motor and 01 for LEFT motor.  

Both left and right commands can be given in sequence with the same speed in either 

direction to move Garcia straight in forward or reverse direction.  Similarly for turning 

Garcia in left or right direction requires the speed value of one motor in positive and the 

other motors value to be one’s complement of the positive value.  As an example, for 

turning left with ‘05’ speed the command would be 0404 3E01 0005 0404 3E00 FFFB 

and for turning right with ‘03’ speed the command would be 0404 3E01 0003 0404 

3E00 FFFD. 

RANGER/SENSOR: 

 The sensors on Garcia are usually turned off to save battery power usage.  So to 

turn on the sensors before polling it, 0204 1B01 00 command should be given.    

The table depicts all the commands for polling Garcia sensors.  

Table 2.1 Garcia Sensor Commands 

Ranger Command 

Front Left 4 25 128 0402 1980 

Front Right 4 25 129 0402 1981 

Left 4 25 130 0402 1982 

Right 4 25 131 0402 1983 

Back Left 2 25 128 0202 1980 

Back Right 2 25 129 0202 1981 
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These commands are used to poll the Garcia rangers and find out the ranger 

distance values from the obstacles when it is moving.  The response to these commands 

is in the form 0404 04SS xxxx/0204 04SS xxxx.  ‘04’ at the start of the response 

suggests the front rangers and ‘02’ suggests the back rangers.  SS represents the sensor 

id.  00 for the left and 01 for the right, and xxxx is the data depending on the distance 

from the obstacle.  If there is no obstacle the output is 0000.  The output varies from 

0000-8000 approximately, 8000 means that the obstacle is at an alarming distance.  

These data values can be used to detect the obstacles and stop or maneuver Garcia 

according to the distance from the obstacle.   

 

2.4 CRICKET/MICA2 Description 

Mica2, Mica2Dot, Cricket are radio/processor boards commonly known as 

motes [15].  Generally a mote has memory, a power unit, a transceiver and UART unit, 

an ADC/DAC unit and a processor with addition of an ultrasonic transceiver for the 

Cricket mote.  A sensor unit comprises of light sensor/photocell, acoustic sensor, tone 

detector, 2-axis accelerometer, 2-axis magnetometer which can be added to the mote 

unit.  These motes with the sensors attached can be distributed over a wide area and 

they can transmit the data back wirelessly to the base station which can be another mote 

connected to the computer.  The computer can display and check the data 

simultaneously and send a command, if needed, to the motes accordingly.  The 

processor on the motes runs a scaled down version of UNIX operating system called 

TinyOS [45].  TinyOS is an event driven operating system which can handle several 
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data flows simultaneously, coheres hardware and application specific components with 

little processing and storage overhead, gives robustness to sensor networks and manages 

network interfaces transparent to users, radio transmission and power utilization [16].  

TinyOS employs a powerful modular programming language for this called NesC [35] 

which is a subset of C.  NesC is basically a graph of components consisting of 

command handlers, event handlers, frames and bundle of simple threads composed into 

one modular application configuration.  Thus, the programmer can use whichever 

module he wants and wire them together in whatever configuration he wants to form an 

end program.  The motes have other advantages such that, they can form an adhoc 

network in which they determine their roles and form the most efficient networks by 

themselves.  The network also supports multi-hopping.  So, if a mote is out of range or 

far away from the base station, it can send the data from mote to mote and hence find 

the best route for the data packet to reach the base station through multiple hops in the 

network.  Thus, the motes are very useful for various applications: in Wireless Sensor 

Networks, security, surveillance, environmental monitoring, distributed computing 

platform etc. 

2.4.1. Mica2 Sensor 

Mica2 is Crossbow’s third generation of sensor mote and boasts of some 

advantages over other sensors of the same as well as previous generations: 

i. 433, 868/916, or 310 MHz Multi-Channel Radio Transceiver. 

ii. 128 Kb program flash memory, 512 Kb serial flash. 

iii. Wireless communication with every Node as Router Capability. 
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The major characteristics that stand out in these are the overall small size and 

weight of the device coupled with its small power source.  Due to limited power supply, 

the memory and processing computations on Mica2 should be kept low and be done by 

the base station.  This improves the sensing durability of Mica2.  The Mica2 can be 

programmed using the MIB510 Programmer and Serial Interface board.  The Mica2 

sensor is connected to the Programming board via the 52 pin connector and the serial 

port out on the Programming board is connected to the host machine through a standard 

serial cable.  There are no embedded sensors on the Mica2 since a complete sensor 

board has been designed individually that can connect to Mica2.  Thus, the sensor board 

improves energy conservation for Mica2 and is used whenever a sensing application is 

required.  The MTS300 sensor board is usually used with Mica2 as it has the most 

common sensors used in industries namely light sensor, acoustic sensor, air temperature 

sensor, magnetometer, accelerometer etc.  The Figure 2.1 shows the Mica2, the MIB510 

programming board and the sensor board. 

 

Figure 2.1: Mica2, MIB510 Programming Board and MTS300 sensor board. 
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2.4.2. Cricket Sensor 

The Cricket Mote [14] is a location aware version of the Mica2. The Cricket 

Mote includes all of the standard Mica2 hardware and an ultrasound transmitter and 

receiver. This device uses the combination of RF and ultrasound technologies to 

establish differential time of arrival and hence linear range estimates.  Cricket provides 

very precise location information for space identification, position coordinates, and 

orientation to applications running on handhelds, laptops, robots, and sensor nodes.  It 

can provide distance ranging and positioning precision between 1 cm and 3 cm.   

The Cricket mote sends an RF signal concurrently with the beacon which 

transmits an ultrasonic pulse.  Listeners attached to devices, base stations and mobiles 

listen for RF signals, and upon receipt of the first few bits, listen for the corresponding 

ultrasonic pulse.  When this pulse arrives, the listener obtains a distance estimate for the 

corresponding beacon by taking advantage of the difference in propagation speeds 

between RF (speed of light) and ultrasound (speed of sound).  The listener runs 

algorithms that correlate RF and ultrasound samples and picks the best correlation.  A 

Cricket attaches to the host device using an RS232 serial connection.  Cricket can 

function as a Beacon, Listener or mix of both depending on the software program and a 

sensor board as MTS300 can be attached to the 51-pin connector alike Mica2. 

Various applications that can be developed using the Cricket’s location 

awareness are resource discovery, human/robot navigation, physical/virtual computer 

games, location-aware sensing, and hospital/medical applications like equipment and 

patient tracking/monitoring. 
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The Figure 2.2 shows the hardware layout of Cricket mote [14]. 

 

Figure 2.2: Hardware layout and Components on Cricket Mote. 

 

The Cricket has different commands for setting up Beacon or Listener mode or 

to get the current configuration.  For giving commands the Cricket is required to be 

connected to the base station through the serial port and can have an access using the 

HyperTerminal.  For getting the current configuration of Cricket ‘G CF’ command is 

given, which would give the current mode, space id, distance from beacon, time of 

travel of pulse etc.  For setting up the Cricket in Beacon mode the command is ‘P MD 

1’ while for the Listener mode it is ‘P MD 2’.  For setting up space id the command is 

‘P SP “data”’.  To save it to the flash memory the command is ‘P SV’.   
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2.5 Interfacing Sensors to Garcia 

The Mica2 and Cricket are the two motes used extensively with Garcia in this 

thesis.  The motes are connected to Garcia through the serial port.  Garcia has a unique 

connector which connects to the serial port pins on Brainstem GP or Moto board.  Thus, 

the connection between two serial ports of Garcia and Mote is done using a user made 

connector.  The interface of Cricket mote with Garcia is shown in Figure 2.3. 

 

Figure 2.3: Interfacing Garcia with Cricket Mote. 

 

The mote monitors and processes the data received by Garcia and sends 

appropriate commands to it.  The motes are also able to communicate with the Base 

station which uses a similar mote.  Thus, it can send the data from Garcia to the base 

station which can be used by the user or processed by the application running on it.  The 

Serial 

Interface 
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base station can send commands to Garcia through the motes and control it according 

to the application needs.   

The communication between Garcia and Mica2/Cricket is done using the 

UART/Serial interface of TinyOS.  The ByteComm event is called whenever data is 

available or to be sent to Garcia.  The data bytes available from Garcia trigger an event 

ByteComm; in this event the data can be stored in an array which can be further 

processed on mote itself or sent directly through the radio to the base station.   

Whenever a command is to be sent to Garcia the ByteComm is called to send the hex 

bytes sequentially.  The wireless communication from the mote on Garcia to the base 

station is done using different Radio interfaces on mica which are Radioreceive and 

RadioSend.  The Radioreceive interface is used to receive data or commands from the 

base station.  The interface decrypts the complete packet and picks out the data sent.  

This data\command can then be used to call a function or pass on the data to Garcia.  

The RadioSend interface is used to send data back to the base station.  A packet needs 

to be formed consisting of data before sending it to the base station.  The base station 

mote consists of TOSBase code which can send and receive data from the PC, PDA 

while the mote connected to Garcia needs a code developed by the user. 

Thus, the interfacing of Mica2/Cricket with Garcia can be utilized in developing 

many useful applications.  The processing power on motes can be used with Garcia’s IR 

rangers for obstacle avoidance, path planning etc., while the ability to communicate 

wirelessly with a base station and simultaneously controlling Garcia can be used in for 

map building, localization, and other DEC related applications.   
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CHAPTER 3 

LOCALIZATION AND PATH PLANNING  

3.1 Introduction 

The most vital aspect of a mobile robot is Navigation planning.  Navigation 

requires success of four building blocks working together.  These blocks are: 

Perception, Localization, Cognition and Motor Control [40].  Perception means to 

extract data from the sensors and interpret it according to the use.  Localization is that 

the robot should know or be informed where, in the environment, it is located.  

Cognition is the intelligence of robot where it should decide what steps it should take to 

fulfill its goal.  These include finding obstacle ridden paths and then optimize that path 

for that particular environment.  Motor Control is to move the motors according to the 

steps decided in the cognition block.   

The environmental navigation and map planning is comprised of two behaviors 

which are exploration and path planning [11].  Thus, the robot has to explore through 

various obstacles and find a free path to reach the assigned target.  Normally, a map of 

the environment is available with arbitrarily placed obstacles in it and the user can 

program the mobile robot to reach the goal using the free paths in it.  But in unknown 

and constantly changing environments this technique cannot be used and the obstacle 

avoidance strategy must be developed to provide the robots with both the flexibility and 

the autonomy needed to cope with navigation.   
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3.2 Obstacle Avoidance 

Obstacle avoidance technology gives mobile machines and robots life-like 

reflexes and allows them to navigate intelligently [40].  Obstacle avoidance is done by 

taking measurements from various sensors and the subsequent reaction taken from 

extracting meaningful information from the measurements is handled by motion 

planning. These two make up necessary components for any robotic task.  Obstacle 

avoidance means planning collision-free trajectories for robotic systems using the 

decision making power of the processor/controller on the system while Motion planning 

refers to planning smooth motions for the system which is also handled by the 

processor/controller by giving appropriate commands to the motors. 

Autonomous mobile robot like Garcia is an intelligent machine that is capable 

of navigating in an obstacle-cluttered environment without collision and without human 

intervention.  Garcia uses information provided by its infrared sensors to find the 

distance to the obstacle.  The obstacle avoidance code stored on the unused memory of 

Brainstem board generates a sequence of speed and steering commands for the two 

front wheels separately driven using two DC motors.  Garcia has a built-in demo code 

using which it can wander around in the surroundings.  It goes straight until it detects 

some obstacle; it will turn away from the obstacle and starts going straight again.  It 

continuously checks the front sensors for detecting an obstacle and while turning it 

checks both the front and the rear sensors so that it does not collide with another 

obstacle.  Thus, instead of using this wandering demo mode, it was simulated using a 

NesC code on the Cricket/Mica2 so that the Garcia can move around avoiding obstacles 
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and also be controlled from the Base station.  Garcia can transmit back the path 

information to the Base station, which generates an optimal path for the next run or for 

other robots. 

3.2.1. GP2D12 IR Rangers 

As described in the second chapter, Garcia has six GP2D12 IR rangers [3] for 

detecting obstacles in the range of 4(10 cm) to 30(80 cm) inches.  These rangers are 

confined in a very small package with very little current consumption and provide an 

analog output voltage inversely proportional to the distance.  Thus these rangers are 

eyes to Garcia and are used in developing the obstacle avoidance application for it.  The 

rangers have 3 pin connectors: power, ground and the output voltage.  This sensor use 

triangulation and a small linear CCD array to compute the distance and presence of 

objects in the field of view.  The operation is as follows: The emitter emits a small beam 

of IR pulse which travels straight and does not return if there is no object in its path, 

producing no reading at the output pin.  Now, if the light reflects off an object, it returns 

to the detector and creates a triangle among the point of reflection, the emitter, and the 

detector.  The CCD array detector is offset by about ¾ inch from the emitter.  The 

angles in this triangle vary, based on the distance to the object, and from those angles, 

the distance to the object can be calculated.  This method of ranging is almost immune 

to interference from ambient light and offers indifference to the color of object being 

detected.  The Figure 3.1 shows the variation in angles for different distances and the 

principle that is used for the triangulation method. 
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The receiver portion of these sensors is actually a precision lens that transmits 

the reflected light onto various portions of the enclosed linear CCD array based on the 

angle of the triangle described above.  The CCD array can then determine what angle 

the reflected light came back and can calculate the distance to the object. 

  

Figure 3.1 Different Angles with Different Distances and Principle of 1D IR 

triangulation. 

 

The receiver here measures the position of the reflection along a single axis as 

shown in the figure, thus making the sensor an optical triangulation sensor in 1 

dimension.  The geometry of distance D is given by a formula: 

x

L
fD =                                                   (3.1) 

The distance is proportional to 1/x and the frequency (f) is calculated using the 

formula: c/λ.  λ is the wavelength of the infrared light emitted.  The output of the 

rangers is non linear (logarithmic as shown in Figure 3.2 [36]) with respect to the 

distance due to this kind of trigonometry, but in fact it is very accurately inversely 

proportional to the distance.  The analog value reading can easily be converted to linear 

distance by dividing it into a constant i.e.  Distance = Constant / (Analog reading).  This 
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method works very well down to a distance of about 4 inches, but below this value, the 

sensor is unusable as it outputs voltage levels that make the results ambiguous.  Similar 

thing happens at larger distances too. 

 

Figure 3.2 GP2D12 Output Voltage to Distance Curve. 

 

3.2.2. Obstacle Avoidance Code Explanation 

The obstacle avoidance code is developed on the basis of the distance obtained 

from the GP2D12 sensors.  The rule based behaviors similar to fuzzy behaviors are used 

in building the obstacle avoidance code.  The different behaviors are: Free-run, Obstacle 

Avoidance, Stop and Back-up.  All these behaviors have control rules: For the Free-run 

behavior, if the Garcia senses no obstacle in its path, increase the speed gradually and 

move straight.  For Obstacle Avoidance behavior, if there is an obstacle on the left side 

turn to the right side and proceed and vice versa.  For Stop and Back up behavior, if the 

obstacle is too near to the Garcia, stop immediately and move backwards for a certain 

distance and then run the obstacle avoidance behavior.  Thus the fuzzy logic keeps the 

code simple and gives the robot maximum safety and flexibility to recover from 

unexpected obstacles. 



 25 

As stated in the 2
nd

 chapter, the Garcia has different commands to poll 

individual sensors.  The six sensors are connected to the Brainstem GP and Moto GP 

and have unique addresses.  As the Garcia mostly moves forward, the front rangers are 

constantly polled using the commands 0402 1980 (4 25 128) and 0402 1981 (4 25 129) 

for the left and right rangers respectively.  Thus, the wandering mode is started using an 

‘S’ Start command through the radio.  The NesC code on the Mica2/Cricket which is 

connected to Garcia starts a timer which constantly gives a forward command 0404 

3E01 0005 and 0404 3E00 0005 to the left and right motors respectively.  Another 

timer, which has already been started as the code initializes polls the front rangers 

continuously.  The response from the Garcia is constantly checked in the code, which 

looks for 0404 04SS xxxx.  The SS to be 00 or 01 depending on the sensor id response 

and the data value xxxx can be 0000 to 8000, where 0000 equals to no obstacle and 

8000 meaning obstacle is too close.  The code checks for the distance value to the 

obstacle and if it is greater than 3500 it calls a function which gives commands to the 

motors to turn away from it, i.e. if the obstacle is on right, then turn left and vice versa.  

The code also has provision for unexpected obstacles, in which the Garcia backs off a 

small distance and then turns away from the obstacle.  Here a data value greater than 

7000 is watched in the response.  The code also transmits ‘L’ or ‘R’ whenever it turns 

Left or Right, which would be further used in path planning.  The important functions 

used in the code are shown in Appendix A. 

Thus instead of using the demo wandering code in which the Garcia cannot be 

controlled, an obstacle avoidance code is developed using the control rules, in which the 
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Garcia can be controlled by using the Mica2/Cricket making it autonomous, giving it 

capability to move around in obstacle cluttered environment with maximum security 

and simultaneously sending information about its movements to the base station. 

 

3.3 Localization 

Localization is the most important thing for a mobile robot, as it provides 

information about its exact position and orientation.  This information can be further 

used for autonomously navigating and performing different tasks assigned to it.  The 

localization problem would be solved if one can attach a GPS sensor to the robot which 

would inform the robot about its whereabouts.  But GPS cannot be used for a robot as 

its accuracy is limited to few meters, which is too large for small robots and moreover 

GPS cannot function in indoor or obstructed environments.  Thus a GPS kind of system 

is developed using Beacons and Listeners and the robot is localized from the base 

station using simple triangulation formulas.   

There are two methods of localization: Absolute localization and Relative 

localization [7].  Absolute localization uses different approaches which are heading 

sensors, beacons and map matching.  Relative localization has a main technique called 

the Dead Reckoning, in which the encoder connected to the individual wheel is used for 

localizing.  The encoder counts of both the wheels are used for calculating the distance 

and angle of the robot in it.  Extended Kalman filtering is also one of the modern 

methods used in localization.  There are basically two ways of tracking a moving device 

in an indoor location: Active Mobile and Passive Mobile Architecture [42].  In the 
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Active Mobile architecture the receivers are at known locations and they estimate 

distances to a mobile device based on an active transmission from the device.  In 

Passive Mobile architecture there are active beacons that periodically transmit signals to 

a passively listening mobile device, which in turn estimates distances to the beacons.  

As the active mobile architecture receives simultaneous distance estimates at multiple 

receivers from the mobile device, it performs better localization than the passive mobile 

system in which the device obtains only one distance estimate at a time and might have 

moved between successive estimates.  Hence the active mobile architecture which is 

similar to Positioning Beacon System Localization is used in this thesis.   

3.3.1. Active Mobile Architecture for Garcia using Cricket 

Active Mobile architecture can be considered similar to GPS.  But instead of 

receiving signals it sends the signal to the receiver which would eventually compute the 

distance.  The active Transmitter on each robot broadcasts a RF message coupled with 

the ultrasonic pulse periodically on a wireless channel.  The Receivers connected to the 

base station listen to such broadcasts and estimate the distance to the mobile.  Actually, 

the receiver propagates this distance information to the base station which then updates 

the location of each mobile device.  This system can be used with multiple robots as the 

transmitter can send its identification with the transmitted beacon pulse to the receivers.  

The figure 3.3 shows such an arrangement for multiple robots.  This system mainly 

depends on geometric principles for localizing and tracking the robot.  The Crickets 

described in the second chapter are used over here as they have ultrasonic beacon and 

listener capabilities along with transmitting/receiving a RF signal. 
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Figure 3.3 Different robots using the Active mobile architecture for localization. 

 

The Cricket is connected to Garcia serially and the obstacle avoidance code along 

with a function for beacon transmission is developed.  The obstacle avoidance code 

(Appendix A) gives the control to the beacon function for few hundred milliseconds 

when the cricket transmits the beacon pulse with a RF signal.  The test bed is setup 

similar to the figure shown above.  The receivers run a demo cricket code in the 

‘Listener’ mode and are connected to the computer serially.  Whenever the receivers 

receive the data packet, they route it to the computer.  The computer runs a Labview 

application which takes the useful distance and ID information from the packet and uses 

it to localize and identify the robot.  The front panel of the application is showed in 

Figure 3.4.  The Labview application uses different modules for the steps involved in 

localizing the robot.  The first module is used for initializing the Cricket receivers at 

38400 baud rate as the Garcia Crickets run at the same baud rate.  The second module is 

used for Deciphering the Message and ID which is received by the receiver from the 

robot.  The Figure 3.5 shows the graphical code for the module.    
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Figure 3.4 Front Panel for Localization and Path Planning Application. 

 

3.3.1.1 Deciphering Data Packet Module     

The beacon message which is received at the receiver is in the format: 

VR=2.0,ID=01:dd:be:be:09:00:00:95,SP=11111111,DB=224,DR=6479,TM=6789,TS=4

55424.  The Space ID is shown as SP which can be modified for the robots as 11111111, 

22222222 etc.  Thus all the robots can be programmed to have a unique space id.  The 

DB represents the distance to the beacon which is denoted in centimeters.  These two 

values the SPID and the DB are useful for localizing and are stripped out from the 

message using the module showed in Figure 3.5.  The triangulation method is used in 

this application, thus two such deciphering modules (shown in Figure 3.6) are used for 

the two receivers making the beacon/transmitter the third point of the triangle.  The 

position is calculated when both the receivers receive the message from the same robot.  

This is because, there are many beacon messages from the multiple robots 
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simultaneously and if the IDs are not checked and matched; it may result in a wrong 

position calculation.  These ID and Distance readings from both the receiver modules are 

stored and transferred to the next module which calculates the coordinates of the robot.    

 
Figure 3.5 Labview code for Deciphering the Message and ID of the robot. 

 

 

Figure 3.6 Labview code for two receivers which gives the respective IDs and Distance 

from beacons in List 1 and List 2. 
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3.3.1.2 Coordinates Calculation Module     

The coordinates of the robot are calculated using the triangulation method.  The 

setup of the test bed is shown in Figure 3.7.  Here the calculation is done only in the 

positive quadrant.  Thus, the listeners are assumed to be situated at coordinates (0,0) 

and (x,0) where x represents the distance between the two listeners in centimeters.  The 

distance d1 and d2 are the distance from the beacon on the robot for both the receivers 

respectively.  These distance values are obtained from the decipher module as explained 

above.  Thus the coordinates can be found out using the distances from equation 3.2. 
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Thus ( )tt yx ,  forms the current coordinates of the robot.  

 

Figure 3.7 Test bed setup for the coordinates calculation of multiple robots. 

 

 The module calculates the coordinate’s only if the ID from both the receivers 

matches, thus making the distances valid.  In this way multiple robots with unique IDs 
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can be localized using the same module.  The module gives out coordinates for all the 

robots respectively.  The Figure 3.8 shows the module ‘Cricket X, Y’ that takes in the 

distance values with the IDs and gives out the coordinates for the robots respectively.  

The module is placed in a while loop that executes every 50 ms, thus updating the 

coordinates of the robots continuously. 

 
Figure 3.8 Module Cricket that calculates the coordinates of multiple robots. 

 

3.3.2. Blimp Localization 

 Blimp is an indoor helium balloon which can be used for overhead surveillance, 

communication relay and many other applications.  The controlling of Blimp wirelessly 

without using the remote has already been done using the Mica2 at ARRI DIAL lab.  
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The localization of Blimp is also an important process as it can be used for controlling 

and directing Blimp to do different tasks without human intervention.  The same 

principle which is used for Garcia robot is used for localization of the Blimp. 

 The Blimp is localized using the same active mobile architecture and the same 

modules with a slight difference in the calculation of the coordinates.  Here the two 

receivers are rested on a ground at a distance ‘x’ centimeters where the first receiver is 

at (0,0) coordinate while the second at (x,0) coordinate, thus localizing it in the positive 

quadrant only.  The Blimp can be localized using a single Cricket Beacon as used for 

Garcia, but it consists of 2 Crickets instead.  This is required because the orientation of 

Blimp cannot be determined and controlled using a single cricket.  The orientation plays 

an important role in controlling the Blimp since without knowing the direction in which 

it is headed the base station cannot give a turning or a movement command to it.  The 

two crickets on the Blimp are placed in a straight line and this line forms an angle with 

the X-axis depicting the orientation of the Blimp.  The two crickets are localized and the 

midpoint of the coordinates is the location of the Blimp.  It is assumed that the Blimp 

maintains a constant height (h).  The formula to calculate the coordinates of the two 

crickets is the same as equation (3.2) with the only difference that the distance (d1, d2) 

is calculated by projecting the points on the surface using the Pythagoras theorem. 
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 Thus, ( )11 , yx  gives the coordinates for the first cricket on Blimp.  Similarly 

( )22 , yx  is calculated for the second cricket.  The midpoint ( )mm yx ,  of these 

coordinates gives us the exact location of the Blimp. 
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 Thus, the localization of Garcia robots and Blimp is done using the Labview 

application.  Though the coordinates are calculated only in the positive quadrant it 

covers a lot of area as the ultrasonic pulses can travel long distances if there are no high 

obstacles.  This localization is further used for Path planning, for controlling and 

sending the Garcia’s to a particular position in Discrete Event Controller for doing a 

particular task.   

 

3.4 Path Planning 

Path planning generates an optimal robot path using which the robot can move 

freely without fearing to sense any obstacles or crash into any of them [40].  Thus, if the 

environment remains unchanged and as expected, instead of using obstacle avoidance 

the robot can be programmed to follow the path or be sent the path from the base 

station.  This has the advantage of saving power, because the sensors are not used and in 

addition, because the robot follows the path instead of wandering around and wasting 

power. 

Here the path planning is short and kept simple with no use of sophisticated 

algorithms.  As explained in obstacle avoidance, the Garcia sends a left or right 
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command to the base station whenever it turns left or right.  This data is stored at the 

base station with the time stamp from the start to the end.  Simultaneously the Garcia is 

localized and the localization points are plotted on a graph every second using a 

Labview code.  This code module is showed in Figure 3.9.   

In this code the robots are identified using the IDs from the ‘Decipher’ module.  

The calculated coordinates from the localization module are transferred to the plotting 

module.  The coordinates of the respective robots are selected and are plotted on to a 

picture file.  The plotting is differentiated using different color pens for different robots.  

The path of the robot is determined by connecting the lines between the two point 

coordinates of the same robot.      

 

Figure 3.9 Labview code for plotting the localized points on the graph. 

 

Thus using the data sent to the base station from the obstacle avoidance code, 

the coordinates found using localization and the plot formed from the coordinates an 

optimal path is determined.  The optimal path in this case is a set of commands that the 

Garcia robot is given to follow.  The commands dispatched are generally to go straight 

for a particular distance and turn left or right for a particular angle.  The distances and 

angles are converted into time as the Cricket or Mica2 connected to the Garcia can give 
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a command to it and run a timer with that particular time before stopping.  Garcia’s 

forward and turning speed is kept constant according to which the path times are 

calculated.  Thus after reaching the end goal from the starting position using the 

obstacle avoidance code and localization, the base station calculates and stores the path 

information and sends it to the same robot if the task is to be implemented again or to 

other robots if they require following the same path.   

This kind of path planning is used in discrete event controller in case a robot 

comes into an environment and requires a path from the entry to exit.  A robot already 

having the path information would travel to the intruder robot and verify if it is allowed 

an entry into its environment.  If the verification is done the robot would send the 

complete path information for traversing from or to move into the environment.  Also 

by using heat, light or chemical determining sensors and path planning, a robot path can 

be formed which would avoid the heat, dark or dangerous chemicals.  These paths then 

can be used by the robot for human guidance in industries or buildings where caution is 

required against such types of hazards. 
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CHAPTER 4 

TASK PLANNING AND DYNAMIC RESOURCE ALLOCATION 

4.1 Introduction 

 Mobile sensing robots (Garcia) when used in conjunction with stationary 

sensing nodes (Cricket/Mica2) can greatly extend the application domains of static 

sensor networks [10, 39, 41].  In particular the ability to automatically adapt the 

topology of the network to the new operating conditions can be used to perform optimal 

node deployment, adaptive sampling, network repair and event detection [17].  In this 

perspective a mobile sensor network can be considered as a multi-robot system with 

heterogeneous resources.  The coordination of a multi-robot system for the execution of 

cooperative tasks is a very active research field [9, 13, 21].  In particular, the related 

literature has extensively tackled the problem of dynamic resource assignment, to on-

line allocate a resource to a task according to predefined criteria.  However in most 

cases the robot team is in charge of executing one mission at a time so that no shared 

resource conflicts arise.  If multiple missions are executed simultaneously, then system 

deadlock or conflicts might arise if the resource assignment is not properly made [18, 

34]. 

The main objective of this chapter is to implement dynamic coordination of a 

mobile sensor network in presence of multiple missions. Therefore it is necessary to 
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develop a control strategy in charge of simultaneously performing dynamic resource 

assignment and solving on-line shared resource conflicts.  

In [22, 23], a matrix-based Discrete Event Controller (DEC) [44] has been used 

for sequencing multiple missions in simple mobile sensor networks (MSN) (which can 

be considered as a particular multi-robot system).  However, since the peculiarities of 

MSN require multiple competing missions and network topology changes, including 

mobility and addition/removal of nodes, dynamic resource assignment algorithms 

should be included in the framework of the DEC. 

In this chapter, a novel approach is presented to implement on-line deadlock-

free resource assignment for multi-robot systems with multiple missions.  At each event 

occurrence, when resource changes are required, a greedy algorithm is first 

implemented by on-line updating of the resource requirements matrix [28].  The new 

resource assignment is accepted if it is compatible with a certain MAXWIP deadlock 

avoidance policy specified herein.  Specifically, the discrete event system representing 

the new mission plan has to satisfy two conditions:  After the implementation of the 

new resource assignment, it is necessary to guarantee that (1) the system is not already 

in deadlock and (2) the new system is regular in a sense described herein. In order to 

check the latter condition the regularity test [25] is launched every time a new resource 

assignment is proposed.  Having produced an allowable assignment of resources, the 

Discrete Event Controller (DEC) is implemented to assign the next tasks in the multiple 

missions based on priority assignment policies. 
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4.2 Resource Assignment and Deadlock Avoidance: Matrix Formulation 

The matrix approach in the discrete event controller [31, 44] provides a 

rigorous, yet an intuitive mathematical framework to represent the dynamic evolution of 

DE systems according to linguistic if-then rules: 

Rule i: If <conditions
i
 hold > then <consequences

i
> 

For a mobile sensor network, mission planning can be done as follows: 

Rule i: If <robotic sensor 1 has completed task 3 of mission 5 and robotic 

sensor 2 is available> then <robotic sensor 2 starts task 4 of mission 5 and robotic 

sensor 1 starts task 3 of mission 2>. 

The DEC describes if-then rules using two different sets of logical equations.  

One for checking the conditions for the activation of rule i (matrix controller state 

equation), and one for defining the consequences of the activation of rule i (matrix 

controller output equation).  All the matrix operations in this case are defined to be in 

or/and algebra, where + denotes logical ‘or’ and ‘times’ denotes logical ‘and’, the over-

bar denotes logical negation. The matrix controller state equation is: 

dudurv uFuFrFvFx +++=              (4.1) 

where vF  is the task sequencing matrix, rF  is the resource requirements matrix, 

uF  is the input matrix, udF  is the conflict resolution matrix and du  is the conflict 

resolution vector.  The current status of the DE system includes the rule vector x, whose 

entries of ‘1’ represent rule currently activated, task vector v, whose entries of ‘1’ 

represent ‘completed task’, resource vector r, whose entries of ‘1’ represent ‘resource 

currently available’, and the input vector u, whose entries of 1 represent the occurrence 
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of a certain predefined event which triggers the corresponding mission.  The over-bar in 

equation (4.1) denotes logical negation so that tasks completed or resources released are 

represented by ‘0’ entries. 

The activated rules determine the commands to the multi-robot system that the 

DEC has to sequence in the next iteration, according to the matrix controller output 

equations: 

xSv v=          (4.2) 

xSr r=          (4.3) 

xSy y=          (4.4) 

Sv is the task start matrix, Sr is the resource release matrix and Sy is the output 

matrix, y is the vector of outputs (completed missions).  The task start equation (4.2) 

computes which tasks are activated and may be started, the resource release equation 

(4.3) computes which resources should be released (due to completed tasks) and the 

mission completion equation (4.4) computes which missions have been successfully 

completed.  The complexity (size and operability) of the DEC is dependent on the 

number of nodes and tasks.  The dimension of the matrix involved in the DEC is linear 

in the number of nodes and quadratic in the number of jobs. 

The implementation of dynamic resource assignment algorithms is equivalent to 

updating matrices Fr and Sr [22, 23] to have ‘1’s in the entries corresponding to the 

selected task-resource assignment which selects the most efficient resource to perform 

each task. Then, the DEC equations (4.1)-(4.4) are computed to determine which tasks 

are to be started and which resources are to be reset. 
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4.2.1. Complete Dynamical Description 

To provide a complete dynamical description of the DE system, we define the 

following quantities (equivalent to the marking vector), the output incidence matrix and 

input incidence matrix of a PN, [ ]')'(,)'(,)'(,)'()( tutrtvtutm d= , 

[ ]'',',',',' yurvu SSSSSS
d

= , [ ]'',',',',' yurvu FFFFFF
d

=  

where t represents time.  Then, in order to take into account the time durations 

of the tasks and the time required for resource releases, we can split m(t) into two 

vectors, one representing available resources and current finished tasks ( )(tma ) and the 

other representing the tasks in progress and busy resources ( )(tmp ) 

)()()( tmtmtm pa +=         (4.5) 

As a consequence, considering equations 4.1-4.4 which represent the rule-base 

of our DE supervisory controller, we have 

)()()1( txFtmtm aa ⋅′−=+        (4.6) 

)()()1( txStmtm pp ⋅+=+        (4.7) 

When a rule is activated (equation 4.1) some tasks end and some resources 

become available (equation 4.6), whereas some other tasks start and some other 

resources become busy (equation 4.7).  When a transition fires, a token is moved from 

mp(t) to ma(t) where it may be used to fire subsequent transitions.  Splitting the marking 

vector m(t) into ma(t) and mp(t) holds the key to dynamic resource assignment.  

Equations (4.1), (4.6) and (4.7) represent a complete description of the dynamical 
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behavior of the discrete event system and can be implemented for the purposes of 

computer simulations using any programming language (e.g. MATLAB® or C).  

4.2.2. One Step Look-Ahead Deadlock Avoidance Policy 

The presented matrix constructions can be efficiently used to implement 

deadlock avoidance policies for discrete event multi-robot systems.  The following 

assumptions are generally made: 

1. No resource fails during a mission. 

2. A resource always completes its current task before starting a new one. 

3. Every resource performs one task at a time. 

4. After the task is completed, the resource is immediately available for a new           

task. 

5. Each task requires one resource to be executed. 

6. The system is regular. 

For any two resources ri and rj, ri is said to wait for rj, denoted ri�rj, if the 

availability of rj is an immediate requirements for the release of ri.  Circular waits (CW) 

among resources are a set of resources ra, rb,…, rw whose wait relationship among them 

are ra�rb�…�rw and rw�ra. The simple circular waits (sCW) are primitive CWs 

which do not contain other CWs.  For a complete analysis of the deadlock structures, 

not only the sCWs but all the CWs need to be identified.  

In order to avoid deadlocks, we have to monitor those tasks of the MSN whose 

completion activate rules which consume resources in a CW.  The task set of a CW C, 

J(C), is the set of tasks which need at least one of the resources of C to be started. 
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Under the assumptions previously presented, a deadlock condition occurs if and only if 

there is an empty circular wait [31, 47].  For these systems, an empty CW can only be 

caused by activation of tasks of the corresponding critical subsystem.  Using the matrix 

formulation of (4.1)–(4.4) and some matrix manipulations, we can come up with a 

compact matrix representation of critical subsystems Jo as follows [25]: 

)()()()( vd

T

vdvdvdo FCSCFCCFJ ∧=∧=      (4.8) 

where each entry of ‘1’ in position (i, j) means that task j is included in the 

critical subsystem of CW i.  dC and Cd are called the input and output rules of a CW and 

have ‘1’ entry in position (i, j) if the j
th

 rule increases or reduces the number of available 

resources in the i
th

 CW respectively. 

A simple deadlock avoidance strategy consists in not allowing the number of 

activated tasks of the critical subsystem to become equal to or greater than the number 

of available resources in the i
th 

CW Ci (MAXWIP policy [31, 33]). 

)())(( ioio CmCJm <         (4.9) 

Therefore, we can conveniently update the conflict resolution input ud to inhibit 

rules which, if activated, would violate condition (4.9) and lead to deadlock conditions. 

Our dispatching policy follows three main steps:  

(i). Based on the structure of the system defined by matrices F and S, we 

calculate the CWs, their corresponding critical subsystems and the number of available 

resources )( io Cm  in the i
th

 CW Ci. 

(ii). For every DE-iteration, we calculate from the current marking vector, 

mcurrent, the corresponding possible successor-marking vector, mpossible.  Equation (4.6) 
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provides this possible successor ma(t+1)=mpossible; ma(t)=mcurrent; mpossible is readjusted 

keeping into account the possible shared resource conflicts (on-line computation).  

(iii). If the selected mpossible does not satisfy condition (4.9), then it is necessary 

to eliminate the task that is attempting to cause a deadlock, inhibiting the corresponding 

rule.  This is done by conveniently updating vector ud.  Then the algorithm restarts from 

step 2 (on-line computation). 

 

4.3 Deadlock-Free Dynamic Resource Assignments  

The concept of dynamic resource assignment is highly substantial in multi-robot 

systems to adapt to unstructured and dynamic environments [21].  In other words, to 

improve the coordination of a mobile sensor network, it is necessary to continuously 

update the set of matrices defined in the DEC based on new environmental conditions.  

To cast the dynamic selection of resources most appropriate for a task into the DEC 

format, one may use the Greedy activity/resource selector algorithm [12] to on-line 

modify the resource assignment matrix Fr as follows. 

For each task that has a choice of resources to use, a Dynamic Priority 

Assignment Matrix (DPAM) is defined according to the example: 

 3.2.1. resresres  

1

5.0

7.0

0

0

1

2.0

1

0

3

2

1

task

task

task

Dc =

 

 

which indicates that task 1 may be efficiently performed by resource 2, or less 

efficiently by resource 3.   The numerical entry in position (i, j) is between ‘0’ and ‘1’, 
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and it indicates the efficiency with which resource j performs task i, with ‘0’ indicating 

that resource j cannot perform task i, and ‘1’ indicating that resource j performs task i 

with maximum efficiency.  Note that this matrix indicates that task 1 may be performed 

with either resource 2 or resource 3, in contrast to the matrix Fr, where multiple entries 

of ‘1’ in a row indicate that all those resources are required for that task.  

According to greedy dispatching policies [21], one selects the resource to 

perform a given task according to the immediate 1-step look ahead maximum payoff.  

The algorithm looks for an ideal resource for a particular task.  If it does not find a 

resource, it waits for a resource that is most suitable and available for that particular 

task. The task is not started till the resource is found.  Therefore, depending on the 

DPAM, at each event step, for the free-choice tasks, the resource matrix Fr is modified 

to have 1’s in the entries corresponding to the maximum values of the DPAM in each 

row.  This effectively selects the current most efficient resource to perform each task.  

Then, the DEC equations (4.1)-(4.4) are computed to determine which tasks need to be 

started and which resources need to be reset. 

After the tasks have been performed, the DPAM is dynamically updated based 

on the evaluation information from the task on how well the assigned resource had 

performed.  Thus, the resources that perform well would be assigned next time to that 

task.  The implementation of this resource assignment policy optimizes the single 

association resource/task without taking into account the global effect of all the 

associations.  In multi-mission systems this way of proceeding may lead to the shared 

resource conflicts and deadlocks. 
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In [22], the implementation of the deadlock avoidance policy assumed a fixed 

structure of the matrices F and S.  However the MAXWIP deadlock avoidance policy 

presented in Section 4.2 is based only on the current status of the system, i.e. on the 

current configuration of matrices F and S.  Therefore it is possible after every iteration, 

to update the resource requirement matrices of the DEC using the DPAM and then 

check if the resource assignment conflicts with the MAXWIP deadlock avoidance 

policy.  If a conflict arises, then a new resource assignment is presented until the 

requirements of the MAXWIP policy are met.  Figure 4.1 shows a flowchart 

representing the procedure to update the DEC to adapt to the changing operating 

conditions while guaranteeing a deadlock free dispatching. 

 

Resource reallocation, 

priority changes 

New missions start 

Update F and S 

Calculate CW and Jo 

Deadlock avoidace 

policy (MAXWIP) 

DEC transition 

System regular 

and no deadlock 

present? 

N 

Y 

Input u 

 

Figure 4.1 Flow chart representation of the deadlock-free dynamic resource assignment 

algorithm. 
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The procedure is as follows: 

 1) After a new transition of the DEC, if a resource reallocation or a 

priority change is needed, the mission plans can be accordingly updated by redefining 

matrices Fr, Sr and Fud through a human operator or an automatic decision making 

algorithm (DPAM).  The only constraint to be observed is that it is not possible to 

reassign the resource to a task currently in progress.  

 2) The new set of circular waits CW and the new sets of critical 

subsystem Jo are calculated.  At this point, before applying the MAXWIP policy, two 

conditions must be met.  

First of all, Gurel’s regularity test [25] is applied, in order to be sure that no key 

resources [33] are present in the system after applying the new resource assignment.  

The output of the Gurel’s algorithm is a matrix Rescw which is a matrix of critical 

resources.   There is a certain pathological case that requires extreme care in the process 

of deadlock avoidance and dispatching.  This situation is called second level deadlock 

(SLD) [19, 20].  SLD is not a circular wait even if it necessarily evolves into a deadlock 

in the near future.  SLD exists on the presence of critical resources known as 

bottlenecks and key resources.  Bottleneck resources are identified by analyzing 

interconnectivities in circular wait relationships.   

Secondly, it has to be ensured that the system is not already in a deadlock 

situation. 

If at least one of these two conditions is not satisfied then another resource 

assignment attempt is made and algorithm restarts from step 1.  
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Thirdly, if the system is regular and not currently in deadlock, the new resource 

assignment is actually implemented.  The MAXWIP policy is compatible with the new 

system. 

This procedure can be seen as a constrained optimization in resource 

assignment.  It ensures that all the tasks are performed using the best resources available 

which do not cause the occurrences of deadlocks. 
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CHAPTER 5 

SIMULATION AND IMPLEMENTATION 

5.1 Controlling the Localized multiple Garcia Robots 

   Chapter 3 discussed the method to use Crickets for localizing multiple 

Garcia robots from the Base station.  Here, in this chapter, these Garcia’s are controlled 

and directed from the Base station to reach a particular position and do various tasks.  

The Crickets used as Beacons for localization are used for receiving the commands 

from the base station.  These commands are then given to Garcia to execute.   

The Garcia robots need to be controlled in order to perform various tasks at 

different positions.  The current coordinates and the desired or target coordinates need 

to be known for performing a task at that particular position.  The current location of the 

robots can be known using the ‘Cricket Coordinates’ module discussed in the Chapter 3.  

The target coordinates where a task has to be executed can be entered by the user 

beforehand or can be known dynamically by the application through the same 

‘Beacon/Listener’ principle using the ‘Cricket Coordinates’ module.  Here, the Labview 

application uses another code module which calculates the distance and angle from the 

current position to the target position.  The module uses the distance formula (Equation 

5.1) to calculate the distance between the two coordinates and the angle is calculated by 

implementing the code shown in Appendix B in Labview.  This module is named 

‘Distance and Angle’.  
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|)()(| 22

tt yyxxd −+−=        (5.1) 

Where‘d’ is the distance between current coordinates (x,y) and target 

coordinates (xt, yt). 

5.1.1. Garcia Control Module 

The ‘Distance and Angle’ module is called in another module ‘Garcia Control’ 

which sends maneuvering commands to Garcia robots according to the calculations of 

distance and angle.  The code used in the module is showed in Figure 5.1.  The module 

functions as: The target coordinates for all the robots are identified before running the 

module.  The ID is checked and the current coordinate of that robot with the specified 

target coordinate for that robot is passed in the module.  This helps in using the same 

module for multiple numbers of robots.  The module first checks whether the current 

and the target coordinates are within 10 centimeters of each other.  If it is so, then no 

maneuvering commands need to be sent and only a Beacon command in format ‘ID B’ 

is broadcast.  The ID number cycles for all the robots.  Now, at the Garcia end, the 

Cricket code has a provision for the Beacon command.  The robot with the matching ID 

number executes the command and transmits the Beacon pulse which eventually is used 

to calculate its current coordinates.  Thus a continuous check is kept on current 

coordinates of all the robots. 

If the current and target coordinates are not in the 10 centimeter range, the 

‘Distance and Angle’ code module is called to calculate the exact distance and the angle 

between the two coordinates.  The straight line speed and the turning speed are kept 



 

 

 

51 

constant at ’07’ and ‘03’ respectively for all Garcia robots.  This helps in finding a 

constant which would convert the distance and angle numbers into corresponding time. 

 

Figure 5.1 Garcia Control module which gives maneuvering commands to the 

robot to reach the target coordinates. 

 

As discussed in the Chapter 3, the Cricket/Mica2 runs timers for giving the 

maneuvering commands to Garcia.  Thus, for this reason the distance and angle output 

numbers need to be converted into time.  The constant numbers are ‘0.13’ for ‘07’ 

straight line speed and ‘0.05’ for ‘03’ turning speed.  These constants are obtained by 

calculating the time Garcia takes to reach 50, 100, 200 and 250 centimeters distance at 

the given speed and 90, 180, 270 and 360 degrees rotation at the turning speed.  So, the 

distance and angle numbers are converted into the time it would take for Garcia robot to 

reach the target from the current position.   

The calculated times are embedded into commands to be sent to the Garcia.  

Firstly, the turning command is sent which is in the format: ‘ID L/R:Time’.  The ID is 

for the robot which has to execute the command.  ‘L/R’ specifies whether the robot has 
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to turn Left or Right depending on the current orientation and ‘Time’ specifies the time 

calculated to turn for the calculated angle.  The angle calculated from the code is from 

right to left, so instead of using only the ‘right’ command the ‘left’ command is 

generated if the angle is greater than 180 degrees (18 seconds).  After the turning 

command the ‘Straight’ command is given to the Garcia robot.  The format of this 

command is: ‘ID S:Time’, where ID is for the specific robot, ‘S:Time’ for going straight 

for specified time to reach the target.  The commands formed are embedded into a 

packet which is suitable for transmission.  The packet is formed using the ‘Packet 

Builder’ module which takes care of the header bytes, payload (command) and CRC 

calculation required for communication between Crickets or Mica2s.  The required 

information for building a packet suitable for communication is given in Appendix C.  

The Base station transmits these commands repeatedly for every robot through a Cricket 

which is used as a transmitter until the robot reaches the specified destination. 

At the Garcia end, the Cricket connected to it receives the command and 

processes it.  If the ID specified in the command matches to its own, it identifies the 

turning command and calls the particular function for it.  The Garcia starts turning and 

simultaneously the timer starts for the particular time sent in the command from the 

base station.  As the timer expires the stop command is sent to Garcia, thus leaving the 

Garcia pointing in the direction of the target coordinate.  Next, on receiving the move 

straight command the same procedure as explained above is followed with a straight 

command instead of the turning command.  After reaching the destination the Garcia 

turns back to its original orientation by using the same time used for turning, before 
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performing the task it is meant to do and receiving other commands from the base 

station.  The orientation has to be maintained as the Beacons and Listeners work on line 

of sight principle.  The receive function of the code is shown in Appendix D. 

Thus, the controlling of Garcia from the Base station using Crickets is designed 

for the Discrete Event Controller which is explained further in the chapter.  The 

Dynamic Allocation of Resources is also done using the current robot coordinates and 

the nearby target coordinates.  The controlling can also be used for independent 

applications where a user can specify the location to do certain task as retrieving data 

from a remote sensor or getting a visual with a camera installed on the robot for security 

purpose. 

 

5.2 Simulation Results for Dynamic Resource Allocation 

 Matlab simulation results are shown here to illustrate the proposed 

control approach in Chapter 4.  Two missions have been implemented for a sensor 

network composed of 7 mobile robotic sensors.  The two missions encompass a 

sequence of 4 and 7 tasks respectively.  The proposed algorithm can be easily extended 

to networks with several resources.  

5.2.1. Resource Assignment – Attempt 1 

Consider Figure 5.2.  Suppose that at a certain instant of time, a new resource 

assignment is performed and the resource requirement matrix is accordingly updated.  

Also, suppose that the resources R1, R2, R3 and R4 are currently busy, i.e. the resource 

vector is r = [0 0 0 0 1 1 1]. 
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R2 

 R1            R3                                                   R6                     R7 

       R4                                                                          R5 

x6                x7                      x8                      x9                     x10                 x11                x12               x13 

x1                    x2                 x3                       x4                    x5 

u1 
y1 

u2 y2 

 

Figure 5.2 Petri net representation of the system after attempt 1. 

 

The new resource matrix Fr would then be: 
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Using the equation presented in previous chapter one can calculate the matrices 

of circular waits, critical subsystems and critical resources respectively corresponding 

to the new resource assignment: 
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oJ

   







=

0   0   0   0   0   0   0

0   0   0   0   0   0   0
Re cws  

Analyzing vector r and matrix CW, it results that resources R1, R3, and R4, 

which compose the first circular wait (first row of matrix CW), are all busy. If this 

resource assignment was accepted, the circular wait would be empty and the system 
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would be in a deadlock (Figure 5.3).   For the sake of clarity Figure 5.2 reports the Petri 

Net corresponding to this first candidate resource assignment highlighting the empty 

circular wait. 

 

Figure 5.3 Event time trace resource assignment attempt 1: system is in deadlock. 

 

5.2.2. Resource Assignment – Attempt 2 

The greedy algorithm makes a second attempt for a new resource assignment. 

The resource requirement matrix, the circular waits, critical subsystems and critical 

resources become: 
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Figure 5.4 Petri net after second attempt of resource assignment: System is not 

regular. 

 

Analyzing vector r and matrix CW, it is possible to note that this assignment 

would result in a deadlock (comparing with the corresponding Petri Net in Figure 5.4 

for tasks 1 and 2).  Also, by applying the Gurel’s test for regularity to calculate the 

matrix of critical resources Rescw for the new candidate system, it results that R4 is a 

critical resource. 
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The system is therefore irregular and a second order deadlock is present: the 

MAXWIP policy cannot be applied.  

5.2.3. Resource Assignment – Attempt 3 

Therefore the proposed resource assignment is discarded and the greedy 

algorithm comes up with a new assignment (Figure 5.5). 

 

                                                                          x9                x10                                         x12                x13 

x1                       x2             x3                           x4                x5 

       R4                                                                                    R5                        R7 

 R1             R3                                                       R6             

R2 

u1 y1 

u2 y2 x7 x8 x11 x6 

 
Figure 5.5 Resource assignment attempt 3: all requirements are met, the new 

configuration is accepted. 
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The circular waits, critical subsystems and critical resources in this case are: 
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Re cws  

The obtained system is regular (Rescw matrix) and does not present empty 

circular waits (compare vector r and matrix Cw).  This configuration is accepted and a 

successful implementation of the tasks with the new resource assignment can finally 

take place (Figure 5.6). 

A good application for this technique is monitoring of a warehouse using 

ground sensors and mobile robots.  Appropriate allocation of resources is critical in 

such applications. 

 

Figure 5.6 Event time trace resource assignment attempt 3: deadlock free dynamic 

resource assignment. 
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5.3 Matrix Formulation and Petri-Nets in Labview 

 The Matrix formulation as described in Chapter 4 is a novel approach for 

implementing a Discrete Event Controller for sequencing the jobs and assigning 

resources.  The important features of matrix formulation are that it uses logical algebra 

and it can describe resource requirements and task sequencing.  These can be modified 

if there are changes in task requirements and resource availability. This makes matrix 

formulations flexible and reconfigurable.  A Petri net is a graphical and mathematical 

modeling tool which can be used as a supervisory control [27].  It consists of tasks, 

transitions, and arcs that connect both.  Input arcs connect the tasks with transitions, 

while output arcs start at a transition and end at a task.  Thus, using the matrices and the 

Petri nets, one can describe a complete Discrete Event System [20, 34, 38]. 

The matrix formulation and drawing a PN diagram is an arduous task and can 

contain human error in it.  To avoid this, a toolkit is developed using the Labview 

software that would formulate the required matrices and draw a corresponding Petri-net 

for the complete system.  The toolkit designed is capable of formulating the matrices for 

the MRF (Multi Reentrant Flow line Systems) [5, 18, 31, 41, 49] and FMRF (Free-

choice MRF) systems.  The MRF systems are capable of using shared resources for 

multiple tasks but do not have a decision to make, while the FMRF [37] systems have 

multiple choices of resources for that particular task and have to decide on a resource or 

multiple resources that can be used to perform the task.  The matrices formulated for the 

system use Equations (4.1-4.4) and are: vF - the task sequencing matrix, rF - the 

resource requirements matrix, Sv - the task start matrix, Sr - the resource release matrix 
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and udF  - the conflict resolution matrix.  The input matrix uF  and the output matrix Sy 

form the complete F and S matrix vector which are further used in Discrete Event 

Controller.   

The Figure 5.7 shows the front panel of the Matrix formulation code for MRF 

systems.  It shows the inputs required and the matrix outputs’ formed using it.  The user 

has to input: The number of missions, number of tasks per missions, number of 

resources and resources assigned for each task.  The F and S matrices are also formed 

using the input and output matrices, but are not showed in the figure. 

 

Figure 5.7 Front Panel: Matrix Formulation Toolkit. 

 

The FMRF system’s front panel is similar to Figure 5.7 with additional inputs 

required for decision at various tasks and the resources used for those tasks.  The code 
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required for developing the matrices is shown in Figure 5.8.  Here the code has 

provision for calculating the total tasks, transitions, conflicts in the system and the 

matrix size along with the matrix formation.   

 

Figure 5.8: Matrix Formulation Code for the MRF system. 

 

The FMRF Matrix formulation code and the Petri-Net formation code are too 

long and complicated to be discussed and displayed in this thesis.  The Petri-nets 

formed for the MRF and FMRF systems are showed in Figure 5.9.  The Petri-net toolkit 

uses the same inputs as used for matrix formulation and draws the graphical 

representation of the system.  It shows various missions and the tasks for that mission 

respectively, the resource allocation and release for the tasks, the inputs-outputs and 

transition numbering according to the system.   
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The toolkit thus developed makes it easy for a user to design various discrete 

event systems to find out the respective matrices and conflicts for the system without 

writing and drawing it and use it further wherever it is needed.   

 

 

Figure 5.9: Petri-Nets for the MRF and FMRF systems. 

 

5.4 Dynamic Discrete Event Controller 

This section discusses the implementation of Discrete Event Controller and 

Dynamic Allocation of the Resources.  The theory for Discrete Event Controller with 

deadlock avoidance and dynamic allocation of resources was explained in Chapter 4 

and the simulation of DEC with dynamic allocation of resources using Matlab was 
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explained in Section 5.2.  Here a simple example is implemented where if an event is 

triggered; the Garcia robots move to a specified location of a sensor and retrieve the 

data from it.  The example works as follows: There are six ground sensors and three 

resources in the system; the setup is shown in the Figure 5.10.  The sensors are placed 

as shown in the figure and thus forming two missions with three tasks each. 

 

Figure 5.10 Test bed setup for Dynamic DEC implementation. 

 

The resources used are Garcia Robots which can be localized and controlled 

using the Labview application discussed in Section 5.1.  The position of ground sensors 

is assumed to be known beforehand.  The allocation of the mobile resources is done by 

checking the coordinates of the ground sensors and the robot closest to it.  One such 

allocation is showed for each task and the corresponding Matrix formulation and Petri-

net diagram formed by the Labview code is shown in the Figure 5.11. 
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Figure 5.11 Matrices and Petri-Net Diagram for the given setup. 

 

 A possible deadlock situation that can occur in this system is shown in Figure 

5.12.  If Mission 1 and Mission 2 are triggered simultaneously executing task 1 and task 

4, the tokens would be at positions shown in the Figure.   As in their respective missions 

‘Task 1’ is using resource ‘R0’ and ‘Task 4’ uses resource ‘R1’.  Now, for the token to 

move forward from ‘Task 1’ to ‘Task 2’ it requires the release of resource ‘R1’ to use it 

for execution of ‘Task 2’, and simultaneously, for token to move from ‘Task 4’ to ‘Task 

5’ it requires the resource ‘R0’ to execute that task.  As no resources are released and 
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made available for the subsequent tasks to use, the system results into a deadlock. 

 

Figure 5.12 Possible Deadlock situation in the implementation. 

 

 But this deadlock can be avoided as the Equation 4.9 states that the number of 

activated tasks cannot be equal to or greater than number of resources in a circular wait.  

The activated tasks in this situation are equal to number of resources in the circular wait 

shown in the figure; this kind of situation is prevented from occurring.  In the 

implementation it is taken care of by using the ‘Conflict Resolution’ module.  If the 

missions are triggered simultaneously only one mission is allowed to use the shared 

resource and the task execution of other mission is blocked until the resource is released 

and made available for further use.  These conflicts for resources are calculated from the 

matrices developed for the system and the conflict resolution code module uses it to 

resolve it and prevent the deadlocks.  The code module is explained later in this section. 

The implementation starts from the Sensor data module which constantly 

receives and checks the Light sensor data from the Ground sensors.  Whenever the light 

gets less than a threshold value (1700) on a sensor, the corresponding mission gets 
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triggered and an input matrix is formed and sent to the Discrete Event controller 

application.  The sensor checking and input matrix formation module is shown in Figure 

5.13.  The ‘BasicserialRW’ module is used to receive the sensor readings and ‘Matrix 

formulation’ module is used to generate the input matrix. 

 

Figure 5.13 Mission Triggering: Light Sensor Detection and Input Matrix 

formulation. 

 

   The input matrix and the matrices F and S formed from the toolkit (Figure 

5.11) are sent to the ‘DEC’ module.  The Discrete Event Controller implements the 

Matlab simulation code explained in Section 5.2 with conflict resolution.  The front 

panel of the module is shown in Figure 5.14.  The tasks are shown as ‘1’ when running 

and the Mission complete LED glows whenever the mission gets completed.  

 

Figure 5.14 Discrete Event Controller: Front Panel. 
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The Discrete Event controller gets triggered when there is an input from the 

Sensor module discussed above.  The module checks the input matrix and the F and S 

matrices for determining the mission triggered.  The code showed in Figure 5.15 starts 

executing the tasks of the corresponding mission that is triggered.  Suppose that, 

Mission 1 is triggered through an input.  Then tasks 1, 2 and 3 are executed and 

similarly for Mission 2, tasks 4, 5 and 6 are executed.  The execution of tasks means the 

Garcia robot moves to the assigned sensor and retrieves the data from it.  The tasks 

implement sequentially i.e. only one task at a time.  Thus depending on the number of 

tasks and the goal assigned the robots move to the ground sensors retrieves the data and 

completes the mission.   

 

Figure 5.15 Discrete Event Controller and Task execution code. 
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Now if both the missions are triggered simultaneously or triggered in a way 

where two tasks from different missions require the same resource at the same time, 

conflicts would arise which would result in a deadlock because of the shared resources.  

But to prevent this, a ‘Conflict Resolution’ module is developed which resolves the 

conflicts and avoids any deadlock to occur.  The concept of conflict resolution is to 

allow one task to run while blocking the other task that uses the same resource.  The 

Labview code for conflict resolution is showed in Figure 5.16.  All the conflict 

conditions are taken into consideration so that a deadlock cannot occur in the system. 

 

Figure 5.16 Labview code for Conflict Resolution Module. 

 

 Thus the Discrete Event Controller implemented here has many applications in 

real world [51] where limited resources are available and dynamic allocation is required 

for performing every task.  The controller is completely autonomous and all the 

conflicts that could arise are avoided, thus making it reliable.  The system can be 

triggered at particular times or using any kind of sensor data making it useful for data 

collection, security, monitoring and manufacturing purposes. 
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CHAPTER 6 

CONCLUSION 

The goal of this thesis was to implement a Discrete Event Controller (DEC) 

with the use of Dynamic Resource Allocation.  For this, Garcia robots were used with 

powerful wireless sensors like Mica2 and Crickets.  The Garcia robot and the wireless 

sensors used are completely off the shelf systems with no modifications done for tasks 

used for implementing the Dynamic DEC: Obstacle avoidance, Localization, Path 

planning and Controlling of Garcia.   

Obstacle Avoidance allows the Garcia robot to navigate in any kind of 

environment without collision and is used in DEC for preventing the robots from 

colliding with each other.  Localization provides information about the robots’ current 

positions and for dynamic allocations when used as resources to perform tasks at 

positions that are in close proximity to it.  Path planning is advantageous for robots that 

navigate in a static environment and do not have sensors to implement obstacle 

avoidance or for saving battery power instead of using it on obstacle avoidance.  Path 

planning can also be used in DEC when localization is not possible or not required for 

performing missions or tasks.  One such security application of DEC was discussed in 

Chapter 3 path planning section.  Thus the most important concepts of robotics are 

implemented for use in Discrete Event Controller and various tool kits are designed that 

can be used for different robots or for stand alone applications. 
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Mobile Sensor Networks comprising mobile and static sensor nodes require 

multiple missions running simultaneously and network topology changes.  A matrix 

based Discrete Event Controller with capability of dynamic resource allocation is 

implemented to tackle the shared resource conflicts and deadlocks occurring due to it.  

The implementation of dynamic resource assignment algorithms is complicated by the 

presence of shared resource conflicts and therefore on-line optimization of the task-

resource assignments by using a combination of a greedy algorithm and a MAXWIP 

deadlock avoidance policy is done to guarantee deadlock-free dispatching.  The 

implemented coordination control strategy is intuitive, effective and prone to be used, 

according to the application, with different dynamic resource assignment algorithms. 

The application discussed in Section 5.4 backs the theory and the simulation 

discussed in Chapter 4 and Section 5.2 respectively.  With the use of Garcia (mobile) 

nodes and Cricket/Mica2 (static) nodes a simple DEC is implemented where the mobile 

nodes have to collect data from the static nodes, as an event triggers the mission.  The 

matrix formulation for DEC along with the deadlock free dynamic allocation of mobile 

nodes to the sensor nodes is done online and the commands are dispatched to perform 

the tasks of the mission.  Thus the implementation completely justifies the theory 

proposed. 

 

6.1 Future Work 

In this thesis it is shown that, all the implementations are handled by the base 

station.  The calculations for localization and path planning are done by the base station.  
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For the future work the Encoder values from the Garcia wheels can be used for 

localizing the Garcia.   The controlling of Garcia using the wheel encoder values has 

already been done and the localization using it would allow the Garcia to venture far 

away from the base station to perform different tasks with no orientation and line of 

sight issues.  The next important work is to implement the Matrix based DEC on the 

Garcia itself instead of depending on the base station to do the computations and 

dispatching commands.  Here all the robots can form a swarm by communicating with 

each other and maneuver around in an environment.  The Dynamic allocation in 

conjunction with DEC allows the robots to assume leader and follower positions in the 

swarm and change according to the interactions to the environment and to other robots. 
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APPENDIX A 

 

 

OBSTACLE AVOIDANCE CODE WITH LOCALIZATION 
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Initialize the Beacon message and the Transmission Buffer 

 

for(i=0;i<8;i++) 

{CricketConfig.spaceid[i] = '1'; 

    beacondata->Space[i] = CricketConfig.spaceid[i];} 

    beaconmsg.length = 23; 

    beaconmsg.type = SYN1; 

    beaconmsg.addr = TOS_BCAST_ADDR;   

    beacondata->x = 0; 

    beacondata->y = 0; 

    beacondata->z = 0; 

    beacondata->temp = 0; 

    beacondata->tb = FALSE; 

     

    mTxBuffer.length = 5; 

    mTxBuffer.type = SYN3; 

    mTxBuffer.addr = TOS_BCAST_ADDR; 

    pTxBuffer = &mTxBuffer; 

  

 

Start with Mode Beacon or Mode Radio depending on the application 

 

command result_t StdControl.start()  

{ 

   if (CricketConfig.run_mode == MODE_BEACON) 

    { 

 call BeaconTimer.start(TIMER_ONE_SHOT, 1000); 

 call Timer2.start(TIMER_ONE_SHOT, 50);  

    } 

  

    if (CricketConfig.run_mode == MODE_RADIO) 

    { 

  call RadioControl.start(); 

    } 

  

    call UARTControl.start(); 

  

    call Leds.yellowOff(); 

    call Leds.greenOff(); 

    call Leds.redOff(); 

    return SUCCESS; 

} 
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Beacon Code used for Localization 

 

 event result_t BeaconTimer.fired() 

  { 

    int result = 0; 

    int count = 0; 

     

    uint8_t i,z; 

    x2 = 0; 

    call Timer1.stop(); 

    call Timer2.stop(); 

    call RadioControl.start(); 

    TOSH_uwait(2000); 

 

    if (CricketConfig.run_mode == MODE_BEACON) { 

    

 while ( count < CricketConfig.max_beacon_number - 1) 

   { 

  atomic 

    { 

                   ReadyToSend = 0; 

    } 

          // Add desync to help with hidden terminal 

          DesyncDelay = call Random.rand(); 

          DesyncDelay = DesyncDelay % DESYNC_DELAY; 

 

          // Listen for MAX_US_TRAVEL_TIME ms + extra time 

   

 z = (CricketConfig.max_us_travel_time + DesyncDelay) / 5000; 

   for (i = 0; i < z; i++)  

   { 

              TOSH_uwait(5000); 

   } 

 TOSH_uwait(CricketConfig.max_us_travel_time + DesyncDelay - (5000 * z)); 

 

          if (ReadyToSend == 0) 

           { 

            // Send the location 

   if (CricketConfig.use_temp_sensor)  

    beacondata->temp = CricketConfig.local_temp; 

    

    beacondata->tb = readTestSwitch(); 

    result = call RadioSend.send(&beaconmsg); 

     if (result == SUCCESS) 
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     { 

      call Leds.redToggle(); 

                        break; 

     } 

            } 

           

         count++; 

  } 

 

      // reschedule for next beacon 

       

      DesyncDelay = call Random.rand(); 

      DesyncDelay = DesyncDelay %  CricketConfig.delta_beacon_interval_time; 

       

    // call BeaconTimer.start(TIMER_ONE_SHOT, 

CricketConfig.min_beacon_interval_time + DesyncDelay); 

        

                

        if (xx == 2) //xx =0 for autonomous mode in timer1 fired, else xx=0 in beac() 

        {  

   

 call RadioControl.stop(); 

call BeaconTimer.stop(); 

 CricketConfig.run_mode = MODE_RADIO; 

 TOSH_SET_US_IN_EN_PIN(); 

 TOSH_CLR_BAT_MON_PIN(); 

 TOSH_uwait(500); 

 TOSH_CLR_US_IN_EN_PIN(); 

 TOSH_SET_BAT_MON_PIN(); 

 call RadioControl.start(); 

 call Timer3.start(TIMER_ONE_SHOT, 50); 

       

        } 

        else  

        { 

 call BeaconTimer.start(TIMER_ONE_SHOT, 300); 

 call Leds.redOff(); 

        } 

 xx++; 

      

   }  
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Heartbeat, Motion and Sensing Commands 

task void initHB() 

 { 

      

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00);  

   TOSH_uwait(1000); 

   //0202 0000 

    

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x1B); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x01);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00);  

   TOSH_uwait(1000); 

 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x07); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 
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   call ByteComm.txByte(0x01); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x07); 

   TOSH_uwait(1000); 

    

   call Timer3.start(TIMER_ONE_SHOT, 50); 

 } 

  

 task void sensl() 

 {      

   call Timer3.stop();   

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02);  

   TOSH_uwait(1000);   

       

   call ByteComm.txByte(0x02);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x19);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x82); 

   TOSH_uwait(1000);  

     call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x19); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x80); 

   TOSH_uwait(1000); 

   call Leds.yellowToggle(); 

   call Timer4.start(TIMER_ONE_SHOT, 100); 

 } 

  

 task void sensr() 

 { 
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   call Timer4.stop(); 

           call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02);  

   TOSH_uwait(1000);   

       

   call ByteComm.txByte(0x02);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x19);  

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x82); 

   TOSH_uwait(1000);  

          call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x02); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x19); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x81); 

   TOSH_uwait(1000); 

   x2++; 

   call Leds.yellowToggle(); 

   if (x2 == 10) 

   { 

   CricketConfig.run_mode = MODE_BEACON; 

   call BeaconTimer.start(TIMER_ONE_SHOT, 100); 

   } 

   else 

   { 

   call Timer1.start(TIMER_ONE_SHOT, 100); 

   } 

 } 

  

 task void right() 

 {   

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 
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   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFF); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFD); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x01); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x03); 

   TOSH_uwait(1000); 

   

   call Timer1.stop(); 

   call Timer3.stop(); 

   call Timer4.stop(); 

   call Timer5.start(TIMER_ONE_SHOT, 1000); 

 } 

  

 task void left() 

 {   

   

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x03); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 
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   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x01); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFF); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFD); 

   TOSH_uwait(1000); 

   

   call Timer1.stop(); 

   call Timer3.stop(); 

   call Timer4.stop(); 

   call Timer5.start(TIMER_ONE_SHOT, 1000); 

 } 

 

 task void reverse1() 

 {   

   

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFF); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFA); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x01); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFF); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0xFA); 
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   TOSH_uwait(1000); 

   

   call Timer1.stop(); 

   call Timer3.stop(); 

   call Timer4.stop(); 

   call Timer5.start(TIMER_ONE_SHOT, 1000); 

 } 

 

 

Receive Commands from the Radio 

 

 task void beac() 

 {       

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x01); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000);  

   if (xx > 2) 

    {xx=0;} 

    

  call BeaconsControl.stop(); 

  TOSH_SET_US_IN_EN_PIN(); 

  TOSH_CLR_BAT_MON_PIN(); 

  TOSH_uwait(500); 
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  TOSH_CLR_US_IN_EN_PIN(); 

  TOSH_SET_BAT_MON_PIN(); 

  CricketConfig.run_mode = MODE_BEACON; 

   

  call Timer1.stop(); 

  call Timer2.stop(); 

  call Timer3.stop(); 

  call Timer4.stop(); 

  call Timer5.stop(); 

  call BeaconTimer.start(TIMER_ONE_SHOT, 1000); 

   

 } 

   

 task void gcstart() 

 { 

  call BeaconsControl.stop(); 

  CricketConfig.run_mode = MODE_RADIO; 

  TOSH_SET_US_IN_EN_PIN(); 

  TOSH_CLR_BAT_MON_PIN(); 

  TOSH_uwait(500); 

  TOSH_CLR_US_IN_EN_PIN(); 

  TOSH_SET_BAT_MON_PIN(); 

  call RadioControl.start(); 

  call BeaconTimer.stop(); 

   

  call Timer1.start(TIMER_ONE_SHOT, 100); 

  call Timer2.start(TIMER_ONE_SHOT, 50); 

 } 

  

  event TOS_MsgPtr RadioReceive.receive(TOS_MsgPtr data) 

  { 

             

    if (!data->crc) 

        return data; 

        /* TODO: check CRC -- if it fails, no beacons will be trusted 

           for a while and we will not be clear to send our own */ 

  { 

 TOS_MsgPtr pBuf; 

 IntGarciaMsg *message = (IntGarciaMsg *)data->data;  

   

if (message->id == TOS_LOCAL_ADDRESS && message->cmdGType == 0x42)

  //Beacon 

  {       
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  CricketConfig.run_mode = MODE_BEACON; 

  flag = 0; 

  call Timer1.stop(); 

  call Timer2.stop(); 

  call Timer3.stop(); 

  call Timer4.stop(); 

  call Timer5.stop(); 

  post beac(); 

  pBuf = data; 

  call Leds.greenToggle(); 

    

  } 

if (message->id == TOS_LOCAL_ADDRESS && message->cmdGType == 0x53 && 

flag == 0)  //Start 

  {  

   flag = 1; 

      call BeaconTimer.stop(); 

   post gcstart(); 

   pBuf = data; 

   call Leds.greenOn(); 

  } 

  else 

  { 

   pBuf = NULL; 

  } 

   

  return pBuf; 

   

 } 

  

    return data; 

  } 
 

 

Obstacle Avoidance Function 

 

  task void taskInterpretSerial() 

 { 

     

  IntGarciaIRMsg2 *message2 = (IntGarciaIRMsg2 *) pTxBuffer->data; 

  int i = 0; 

  int k = 0; 

  int m = 0; 

  while(i <= lengthb) 
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  { 

   if (buffer2[i] == 0x04) 

   { 

   if (buffer2[i+1] == 0x04)  

   { 

   if (buffer2[i+2] == 0x04)  

   { 

    atomic { 

      pTxBuffer->length = 3; 

      message2->bytes[0] = buffer2[i+3]; 

      message2->bytes[1] = buffer2[i+4]; 

      message2->bytes[2] = buffer2[i+5]; 

      call Leds.greenToggle(); 

     } 

        

   call RadioSend.send(&mTxBuffer); 

     

   TOSH_uwait(100); 

   if (buffer2[i+3] == 0x01) 

   { 

    if(buffer2[i+4] > 0x25 && buffer2[i+4] < 0x65) 

     {post left();} 

    else if (buffer2[i+4] > 0x65) 

     {post reverse1();} 

   } 

   else if (buffer2[i+3] == 0x00) 

   { 

    if (buffer2[i+4] > 0x27 && buffer2[i+4] < 0x65) 

     {post right();} 

    else if (buffer2[i+4] > 0x65) 

     {post reverse1();} 

   } 

        

   for (m = i; m <= i+5; m++) 

   {buffer2[m] = 0;} 

   i = i + 5; 

   } 

   } 

   } 

   i++; 

  } 

  for(k = 0; k <= lengthb; k++) 

   buffer2[k] = 0; 

   lengthb = 0; 
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  call Timer2.start(TIMER_REPEAT, 50); 

 } 

   

 event result_t Timer1.fired()  

 { if (CricketConfig.run_mode == MODE_RADIO) 

 { 

  call Timer1.stop(); 

  xx =0;     

  post initHB(); //sends bytes to the UART 

  call Leds.redOn(); 

  return SUCCESS; 

  } 

 } 

   

 event result_t Timer3.fired()  

 { if (CricketConfig.run_mode == MODE_RADIO) { 

  post sensl(); 

  return SUCCESS; 

  } 

 } 

 event result_t Timer4.fired()  

 { 

  if (CricketConfig.run_mode == MODE_RADIO){ 

  post sensr(); 

  return SUCCESS; 

  } 

 } 

 event result_t Timer5.fired()  

 { if (CricketConfig.run_mode == MODE_RADIO) { 

  call Timer5.stop(); 

  

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 
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   TOSH_uwait(1000); 

   call ByteComm.txByte(0x04); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x3E); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x01); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000); 

   call ByteComm.txByte(0x00); 

   TOSH_uwait(1000);    

  

 call Timer3.start(TIMER_ONE_SHOT, 100); 

  return SUCCESS; 

  } 

 } 

  

  

 /* Store received bytes in a buffer */ 

async event result_t ByteComm.rxByteReady(uint8_t data, bool error, uint16_t 

strength)  

 { 

  atomic 

  { 

  

   buffer1[countd] = data; 

   countd++; 

  } 

     

  return SUCCESS; 

 } 

 

 /* Save received bytes in buffer2 every second for interpretation */ 

 event result_t Timer2.fired() 

 { 

  int i = 0; 

    

  atomic 

  { 

   for (i = 0; i < length_buffer3; i++) 

    buffer2[i] = buffer3[i]; 

   for (i = length_buffer3; i <= countd+length_buffer3; i++) 

    buffer2[i] = buffer1[i]; 

   lengthb = countd + length_buffer3; 
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   countd = 0; 

  } 

   

  post taskInterpretSerial(); 

   

  return SUCCESS; 

 } 

} 
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ANGLE CALCULATION CODE FOR ‘DISTANCE AND ANGLE’ MODULE
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public static double calcAngle(float x1, float y1, float x2, float y2) 

    { 

        float dx = x2-x1; 

        float dy = y2-y1; 

        double angle=0.0d; 

   // Calculate angle 

        if (dx == 0.0) 

        { 

            if (dy == 0.0) 

                angle = 0.0; 

            else if (dy > 0.0) 

                angle = Math.PI / 2.0; 

            else 

                angle = Math.PI * 3.0 / 2.0; 

        } 

        else if (dy == 0.0) 

        { 

            if  (dx > 0.0) 

                angle = 0.0; 

            else 

                angle = Math.PI; 

        } 
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        else 

        { 

            if  (dx < 0.0) 

                angle = Math.atan(dy/dx) + Math.PI; 

            else if (dy < 0.0) 

                angle = Math.atan(dy/dx) + (2*Math.PI); 

            else 

                angle = Math.atan(dy/dx); 

        } 

         // Convert to degrees 

        angle = angle * 180 / Math.PI; 

         // Return 

        return angle; 

    } 

} 
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BUILDING TINYOS SERIAL PACKETS 

[OCTAVE TECHNOLOGY]
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Some points that are critical to understanding the makeup of the serial data packet are 

listed below. 

• A TinyOS data packet has a maximum length of 255 bytes. 

• The raw data packet is wrapped on both ends by a frame synchronization byte of 

0x7E. This is used to detect the start and end of a packet from the stream. 

• The raw data packet uses an escape byte of 0x7D.  This is needed in case a byte of 

payload data is the same as a reserved byte code, such as the frame synch byte 0x7E.  

In such a case, the payload data will be preceded by the escape byte and the payload 

data itself will be exclusively OR’ed with 0x20.  For example, a payload data byte of 

0x7E would appear in the data packet as 0x7D 0x5E. 

 

 

Raw Data Packet 

The following diagram and table describes the raw data packet 
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The TOS_Msg data packet is described in the following diagram and table: 
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RECEIVE FUNCTION FOR GARCIA CONTROL 
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  event TOS_MsgPtr RadioReceive.receive(TOS_MsgPtr data) 

  { 

 uint8_t i,k=0; 

 uint8_t d=0,u=0,ph,pl; 

  

    if (!data->crc) 

        return data; 

        

 { 

 TOS_MsgPtr pBuf; 

 IntGarciaMsg *message = (IntGarciaMsg *)data->data;  

 

if (message->id == '3' && message->cmdGType == 'L' && flag == 0 && t == 0 && re 

== 0) //L = Left Turn 

{  

   call BeaconTimer.stop(); 

    

   flag = 0x4C; 

    

   if(message->dbytes[0] == ':'); 

   { 

 

    for(i=1;i<11;i++) 

    { 

     if(message->dbytes[i] == '.') 

      {k=i;} 

    } 

    call Leds.greenOn(); 

    if(k == 3) 

    {d = (message->dbytes[1]); 

    u = (message->dbytes[2]); 

    ph = (message->dbytes[4]); 

    pl = (message->dbytes[5]); 

    d = d - 48; 

    u = u - 48; 

    ph = ph - 48; 

    pl = pl - 48; 

    ti1 = (d*10) + u + (ph*0.1) + (pl*0.01);} 

    else if(k == 2) 

    { 

    

    u = (message->dbytes[1]); 

    ph = (message->dbytes[3]); 

    pl = (message->dbytes[4]); 
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    u = u - 48; 

    ph = ph - 48; 

    pl = pl - 48; 

    ti1 = u + (ph*0.1) + (pl*0.01);} 

    else 

    {ti1 = 0;} 

     

    }  

    

   ti1 = ti1 * 1000; 

   post target(); 

   call Leds.redOn(); 

   pBuf = data; 

 

} 

else if (message->id == '3' && message->cmdGType == 'R' && flag == 0 && t == 0 

&& re == 0) //R = Right Turn 

  {  

   call BeaconTimer.stop(); 

    

   flag = 0x52; 

    

   if(message->dbytes[0] == ':'); 

   { 

 

    for(i=1;i<11;i++) 

    { 

     if(message->dbytes[i] == '.') 

      {k=i;} 

    } 

   call Leds.greenOn(); 

    if(k == 3) 

    {d = (message->dbytes[1]); 

    u = (message->dbytes[2]); 

    ph = (message->dbytes[4]); 

    pl = (message->dbytes[5]); 

    d = d - 48; 

    u = u - 48; 

    ph = ph - 48; 

    pl = pl - 48; 

    ti1 = (d*10) + u + (ph*0.1) + (pl*0.01);} 

    else if(k == 2) 

    { 
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    u = (message->dbytes[1]); 

    ph = (message->dbytes[3]); 

    pl = (message->dbytes[4]); 

    u = u - 48; 

    ph = ph - 48; 

    pl = pl - 48; 

    ti1 = u + (ph*0.1) + (pl*0.01);} 

    else 

    {ti1 = 0;} 

     

    }  

    

   ti1 = ti1 * 1000; 

   post target(); 

   call Leds.redOn(); 

   pBuf = data; 

 

} 

else if (message->id == '3' && message->cmdGType == 'S' && flag == 0 && t == 1)

 //S = Straight 

{  

   call BeaconTimer.stop(); 

    

   flag = 0x53; 

    

   if(message->dbytes[0] == ':'); 

   { 

 

    for(i=1;i<11;i++) 

    { 

     if(message->dbytes[i] == '.') 

      {k=i;} 

    } 

 

    if(k == 3) 

    {d = (message->dbytes[1]); 

    u = (message->dbytes[2]); 

    ph = (message->dbytes[4]); 

    pl = (message->dbytes[5]); 

    d = d - 48; 

    u = u - 48; 

    ph = ph - 48; 

    pl = pl - 48; 

    ti2 = (d*10) + u + (ph*0.1) + (pl*0.01);} 
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    else if(k == 2) 

    { 

    u = (message->dbytes[1]); 

    ph = (message->dbytes[3]); 

    pl = (message->dbytes[4]); 

    u = u - 48; 

    ph = ph - 48; 

    pl = pl - 48; 

    ti2 = u + (ph*0.1) + (pl*0.01);} 

    else 

    {ti2 = 0;} 

    }  

    

   ti2 = ti2 * 1000;  

   post target(); 

   call Leds.redOn(); 

   pBuf = data; 

 

} 

else if (message->id == '3' && message->cmdGType == 0x42 && flag == 0)

 //Beacon 

{  

   call BeaconTimer.stop(); 

    

   flag = 0x42; 

   post beac(); 

   pBuf = data; 

   call Leds.redOn(); 

} 

else 

{ 

  pBuf = NULL; 

} 

   

  return pBuf; 

   

} 

  

    return data; 

} 
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