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ABSTRACT 

 

MONITOREXPLORER: A STATE-SPACE EXPLORATION  

BASED TOOL TO TEST JAVA MONITORS 

IMPLEMENTATIONS 

 

Publication No. ______ 
 

Vidur Gupta, M.S. 
 

The University of Texas at Arlington, 2006 
 

Supervising Professor:  Dr. Jeff Lei  

A monitor is a concurrency construct that encapsulates data and functionality 

for allocating and releasing shared resources [1]. Java associates a lock with every 

object. When a block of code is guarded by the ‘synchronized’ keyword then the thread 

has to get lock on objects inside the block. This block is a Java Monitor which 

guarantees mutual exclusion and the thread needs to get the locks before it can enter the 

monitor. The locks are released when the thread exits the guarded block. If the thread is 

not able to get all the locks it waits for the conditions to be right. 
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There are many application classes which are written using the Java Monitors 

and these are difficult to test due to the inherent complexities of the concurrent 

programs. The key challenge is to be able to trace all possible execution paths and then 

able to reproduce them for regression testing. Our work explores the state-space of the 

monitor application. The state space is explored in the depth first fashion. At each state 

the possible transitions are calculated pushed on a stack. The transition on the top of the 

stack is executed. This process is repeated till a duplicate or invalid state is detected. 

The key features of the approach are data abstraction which helps reduce the 

number of states to be explored and introduction of threads on the fly to execute the 

selected transition that simulate the race conditions. We have developed 

‘MonitorExplorer’, a tool that can used to test monitor applications. This tool has been 

used to test various applications and their mutants. The experimental results show that 

the tool is effective in detecting synchronization bugs.  
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CHAPTER 1 

INTRODUCTION 

Traditionally multithreaded programs were used in operating systems but now 

many application programs are also multithreaded. Some examples of multithreaded 

applications used commonly are Web Servers, Database Management Systems, PC 

Games and many more. The key issue is access to shared resources between various 

threads. The problem becomes worrisome when more than one of the threads wants to 

write in the shared space. Another issue is that of non-determinism, which is due to the 

fact that the programmer has no control on when and how long will a thread be assigned 

the CPU time. This makes it very difficult to reliably test and reproduce an error during 

debugging. A multithreaded program which is executed with the same inputs a number 

of times might yield different results on each trial. This problem does not exist in a 

sequential program. The following example illustrates this: - 

 

Figure 1.1 Test result for sequential program 
 

Assume three data elements, x, y and z, initialized to 0. 
 
Thread 1: x = y + z; 
 y = 1;

z = 2;

The possible result is: - x = 0. 
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The following example illustrates the non-determinism in a very simple 

application which adds values of two variables and stores them in a third variable [2]: - 

 
Figure 1.2 Possible interleaving and results for multithreaded program 

 
Our work focuses on testing Monitors which are a special synchronization 

construct. The testing of monitors is not trivial because of the interleaving. Also, it 

difficult to determine how many threads we need to reliably test the monitor. 

We now take a look at a generic monitor and then at a Java Monitor. Also, we 

would see how these two are different and what makes testing them a difficult problem. 

 

Assume three data elements, x, y and z, initialized to 0. 
 
Thread 1: x = y + z; 
Thread 2: y = 1;  
 z = 2;

The above high language constructs are converted into the following machine 
code: - 

Thread 1:  
 load r1, y;   -   (1) 
 add r1, z;    -   (2) 
 store r1, x;  -   (3) 
Thread 2:  
 assign y, 1; -   (4) 
 assign z, 2; -   (5) 
 
The possible interleaving are: - 

• (1), (2), (3), (4), (5) and x = 0. 
• (1), (2), (4), (5), (3) and x = 0. 
• (1), (2), (4), (3), (5) and x = 0. 
• (1), (4), (5), (2), (3) and x = 2. 
• (4), (1), (2), (3), (5) and x = 1. 
• (4), (5), (1), (2), (3) and x = 3. 
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1.1 Monitor

Monitor is a high-level synchronization construct that supports data 

encapsulation and information hiding. It encapsulates shared data, operations on data 

and the required synchronization for accessing the data [2]. Monitors guarantees mutual 

exclusion. Figure 1.3 illustrates the run-time structure of a monitor. 

 

Figure 1.3 Graphic view of a monitor 
 

A monitor has the following parts: - 

• Critical Section: - This section guards the shared data elements. A thread 

needs to enter this section to be able to access the shared data element and 

execute synchronized operations. There can only be one thread in the critical 

section at any point of time. 

• Entry Queue: - All threads wait here for the entry into the critical section. 

This is a FIFO queue and the thread at the head of queue is allowed to enter 

the critical section when it is empty. 

Critical Section 

Entry Queue 

Condition Variable 1

Condition Variable 2 
…
Condition Variable N-1 

Condition Variable N 
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• Condition Queues: - Each condition queue has a condition variable. A thread 

waiting for a condition variable to be true waits in the related condition 

queue. Traditionally condition queues are FIFO in nature.  

A thread enters the condition queue when it executes the wait() operation on the 

related conditional variable. It is either placed back in the entry queue or in a special re-

entry queue depending on the signaling discipline when the signal() method on the 

condition variable is executed by the thread in the critical section. We will discuss one 

of the signaling disciplines in the next section. 

1.2 Java Monitor

A Java Monitor is a Java class which provides synchronized data access. The 

synchronization is implemented using the keyword ‘synchronized’ to classify a method. 

It guarantees mutual exclusion with respect to the access to the shared data elements.   

 

Figure 1.4 Graphic view of a Java monitor 

Figure 1.4 shows the graphical view of a Java Monitor at run-time. One 

noticeable difference between the structure of a Java Monitor and a general monitor is 

that in the general monitor there a condition queue associated with each condition 

Critical Section 
Entry Queue Condition Queue 
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variable whereas in the Java Monitor there is only one such queue for all condition 

variables. A Java monitor has the following parts: - 

• Critical Section: - The critical section in a Java Monitor is similar to the 

critical section of a traditional monitor. It guards the shared data elements. A 

thread needs to enter this section to be able to access the shared data element 

and execute synchronized operations. There can only be one thread in the 

critical section at any point of time. 

• Entry Queue: - Any thread which executes the ‘synchronized’ method waits 

in the entry queue. This queue is a FIFO queue like the traditional monitor.  

• Condition Queue: - This where the Java monitor differs from the traditional 

monitor. The first difference is that unlike the traditional monitor the Java 

monitor just has one queue where all threads wait no matter for which 

condition variable they are waiting for. The second difference is that this 

queue is not FIFO in nature. It is random for the signal() operation. Thus 

when a signal() operation is exerted then any thread in the condition queue 

is awakened. This also means that a thread which may be waiting for some 

other condition to be true might be awakened. 

The condition queue’s property requires that we have a mechanism which 

allows us to ensure that we do not end up in a situation where a thread is still waiting in 

the condition queue even when the condition is right for it to enter the critical section. 

Java has added the signalAll() method for this. It awakens all the threads in the 
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condition queue and puts them back in the entry queue. The signaling discipline 

explained will illustrate how this works. 

Another important aspect about monitors is the signaling discipline. This 

defines how a thread when in the condition queue will behave when awakened and also 

how the thread in the critical section can behave after executing a signal() operation. 

The signaling discipline for a Java monitor is the Signal-and-Continue. This means that 

the thread in the critical section can execute the signal() operation and then continue its 

work in the critical section. The signaled thread goes to the end of the entry queue and 

is treated like any other thread in the entry queue. 

Now we know the runtime structure and the behavior of Java Monitors, next we 

look in to what makes testing of such programs more challenging than traditional 

testing techniques. 

1.3 Java Monitor Testing

Testing a sequential program or a program with a single thread of execution is 

relatively easier as we saw in Figure 1 and Figure 2. This is because multiple threads 

are executing at any point of time in a concurrent system. As we have seen there can 

only be one thread in the critical section and multiple threads waiting in the entry queue 

and the condition queue. Thus, in order to reliably test the Java Monitor we need to 

create multiple threads. This leads to another problem. We have little control over 

neither the operating system’s scheduler nor the Java Runtime. Thus we cannot 

predictably execute threads in a given order. Thus we cannot ensure a degree of 



7

satisfaction i.e. we cannot say that we have tested 99% of possible paths, etc. The major 

issues are: - 

• Non-deterministic behavior: - As discussed earlier this is an issue with all 

concurrent programs. The challenge is how to reliably produce and 

reproduce a behavior during testing and regression. 

• Number of Threads: - Threads are an operating system resource. They 

consume memory, CPU cycles and other system resources. Thus it would 

not be prudent or possible to have unlimited number of threads. On the other 

hand we have seen that one thread is not enough. So, the challenge is how 

many threads we need. 

• Runtime Information of Java Monitor: - Java does not provide any control 

over the Java Monitor. It also provides no information about the number of 

threads in the queues or the thread in the critical section at run-time. Thus 

we need a mechanism which simulates the behavior of the Java Monitor yet 

gives us all this information.   

We have addressed the key challenges as listed above in our work. As we will 

illustrate, we are able to exercise well defined possible states the monitor can reach by 

exploring the state-space in a depth-first fashion. Chapter 2 discusses the MonitorTest 

Algorithm which explores the state-space. We also exercise all possible transitions that 

can be executed at each monitor state.  
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We have replicated the behavior of the Java Monitor using our Monitor Toolbox 

[3]. It simulated the FIFO nature of the entry queue, guarantees mutual exclusion for the 

critical section and provides for random waking of threads on the signal() operation.  

We also introduce threads on the fly and maintain a Thread Pool thus reducing 

the overhead of creating a thread each time we need one. This pool adjusts in size based 

on the need of threads thus reducing the load on the system. Chapter 3 would discuss 

the implementation of the MonitorExplorer tool and the key packages. 

We introduce the concept of abstraction later in the document. It allows us to 

focus on key states and ignore states where the monitor would exhibit similar behavior. 

The trade-off is between the level of abstraction and the size of the state-space to be 

explored. The finer the abstraction the more the state-space would be. This would 

increase the reliability of the tests but increase the computation time. On the other hand 

if the abstraction is too coarse we might miss out on some important states and 

transitions. This would however a small state-space thus a less execution time. 

We have conducted several experiments to show the effectiveness of our 

approach. We have used some of the classical monitor implementation and introduced 

the common synchronization errors. The effectiveness of the tool is measured by the 

percentage of mutants killed by the MonitorExplorer tool. We also track the time of 

execution to show that the tests are conducted in reasonable time such that it can be 

used in real-life scenarios. In Chapter 4 we present our experiments and results. 

Chapter 5 discusses related work. In Chapter 6 we present our conclusion and in 

Chapter 7 share the future work.  
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My main contribution to the MonitorExplorer is the MonitorTesting module.  It 

includes the Controller, ThreadPool and Utilities sub-packages. I implemented the 

MonitorTest algorithm and the getEnabledTransitions() method. I also implemented the 

logic for retrace, interaction between the user & the system and designed the data 

structures like Transition and AbstractState.  Another important component that I 

designed and implemented was the communcationMonitor() which enforces 

synchronization between the main thread and executing threads.   
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CHAPTER 2 

MONITORTEST: THE ALOGRITHM 

The MonitorTest Algorithm is a depth-first algorithm which traverses the state-

space of the Java Monitor. The algorithm is illustrated in Figure 2.1. As illustrated in 

the algorithm there are two key data structures that we maintain. One is the set of 

visited states. Thus data structure is used to keep track of the states we have visited. It 

usefulness will be illustrated shortly. The other data structure is called stack which is a 

stack of all possible transitions that can be executed. This stack is populated by the 

getTransitions() method.  

An important thing to mention here is that we do not store the actual monitor 

state but we store the abstract state which is derived from the actual state. This is a very 

powerful tool which allows us to reduce the state-space size. Another is that initial state 

of the monitor can be specified the user and we can start working from there. This 

allows the tester to exercise a more restrictive path he wants to explore while 

regression.  

In this chapter we would discuss the key components of the algorithm and then 

describe the flow of events. 
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Figure 2.1 MonitorTest Algorithm 
 

2.1 Abstract State

We would let you consider the following before we go on to discuss the concept 

and power of abstract state. A monitor with two synchronized methods and one data 

element with ten possible values can have at least three hundred and twenty possible 

actual states. The math being that thread waits to execute each of the method and waits 

the head of the entry queue. Now each of these methods will enter the critical section 

making it four possible combinations with one thread in the critical section while no 

thread waits in the entry queue, a thread waits to execute one of the methods or two 

Initialize: 
1. let stack be an empty stack 
2. let visited be an empty set 
3. create a instance m of M, and initialize m to state s0 
MonitorTest () { 
4.  AbstractState state = getAbstractState (); 
5.  add state into visited; 
6.  transitions = getEnabledTransitions (); 
7.  Explore (transitions); 
}
Explore (transitions: a set of transitions) { 
8.  for (each transition t in transitions) { 
9.   push t onto stack 
10.   execute t; 
11.  state = getAbstractState (); 
12.  if (state is valid or state is not in visited) { 
13.    add state into visited; 
14.    Explore (getEnabledTransitions ()); 
 }
15.   pop t out of stack; 
16.   undo t; 
 } 
}
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threads wait to execute each of the method. Now, multiplying four by the ten possible 

values for the data element we get forty. And then the same situation in the condition 

queue as there was in the entry queue makes a total of 320. We still have not considered 

possibility of having more than one thread with same method in the entry queue or the 

condition queue.  

This problem of exploding state-space increases the computation time required 

to test. Also, it exponentially increases the number of states and paths of explored thus 

required lots of memory space. Thus the challenge is to reduce the state-space such that 

all the key features of the state space are captured and at the same time we keep the use 

of the resources to the minimum. Also, we need to use this information to determine our 

next possible transitions based on the state, check for duplicate and invalid states. Our 

technique of state abstraction addresses exactly this issue. 

We would like to add a caveat here that abstraction is a powerful tool with a 

degree of give-n-take. The finer the granularity of abstraction the more reliable are the 

results but more time and resource are needed and converse is also true.  

As we have seen in the above example the key characteristics of the Java 

Monitor that we need to capture are: - 

• State of thread in the critical section. 

• The states of threads in the entry queue. 

• The states of threads in the condition queue. 

• The value of key data members 
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Now, to continue with our discussion on the abstract states for the Bounded 

Buffer (section 2.3) problem we would want to trap enough information so that we 

know what all transitions can be executed from the current state. To do this we must 

know what thread is at the head of the entry queue if any. This is the only significant 

thread in the entry queue as the rest cannot do much till this thread enters the critical 

section and then gives it up. Also, we really do not care about the thread id, all we really 

want to know which of the synchronized method this thread will execute. We might 

also want to know if this is the threads first attempt to enter the critical section or not. 

Similarly for the critical section and the condition queue what matters to us what 

methods these threads execute. 

The really interesting one is the data element. Let’s look at the Bounded Buffer 

example for clues. The element ‘capacity’ will remain constant over the execution so if 

know its value once we do not have to keep track of it. The ‘buffer’, ‘in’ and ‘out’ really 

do not affect the synchronization behavior which is of interest to us. So, we have 

narrowed down to ‘fullSlots’.  

Even for fullSlots not all values are significant to us. More specifically threads 

will exhibit similar behavior at a group of values. Let ‘capacity’ be ten, then from value 

1 to 9 the Bounded Buffer must have the same behavior. It must allow a producer to 

deposit and a consumer to consume. However when value is zero it must not allow 

consumption. Similarly when value is ten it must not allow production to continue. We 

also must ensure that value of ‘fullSlots’ does not go beyond ten and below zero. Thus 

we need to keep track of five types of values for only one data element.  
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The key elements for the queues that we need to track with the following: - 

• Entry Queue: - The method executed by the thread at front of the entry 

queue or empty if no thread in the entry queue. 

• Critical Section: - The method executed by the thread in the critical section 

or empty if no thread in the critical section. 

• Condition Queue: - One entry for each synchronized method if a thread 

executing that method is present in the condition queue or empty if no 

thread in the condition queue. 

2.2 Enabled Transitions

The second component that is required to explore the state-space is the set of 

enabled transitions. Let us first see what we mean by a transition. Simply it is a set of 

actions that must be executed atomically to move from state to another. The keyword is 

‘enabled’. It means that of all the transitions which when can be executed from a certain 

state.  

The set of enable transitions is built by the getEnabledTransitions() method 

which pushes them onto a stack. The Explorer() method requests for the method to add 

new transitions to the stack each time it gets a new valid state. It uses the transition at 

the top of the stack to proceed. Figure 2.2 illustrates the getEnabledTransitions() 

algorithm.  
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Figure 2.2 getEnabledTransitions() Algorithm 
 

The following is the set of transitions pushed on the stack by the 

getEnabledTransitions() in the given scenarios: - 

• When entry queue is not empty and the thread in CS is about to exit: - Only 

one transition is created. The next operation is exit executed by the thread in 

the CS which allows the thread at the head of entry queue. 

• When no thread in the entry queue and (the critical section or thread in CS 

about to exit): - An introduce transition is created for each synchronized 

Set getEnabledTransitions () { 
1.  let transitions be an empty set 
2.  if (entry queue is not empty and next operation of thread in the CS is 

exit){ 
3.  create an exit transition and let the thread at the entry queue entry  
 } 
4.  else if (no thread in entry queue or critical section){ 
5.  create an Introduce transition for each synchronized method 
 } 
6. else if (notify/notifyAll operation with thread in entry queue  
 but no thread in condition queue){ 
7.  create an transition for the thread to continue  
 } 
8. else if (notify operation) { 
9.  create an Introduce transition for each synchronized method  
 and notify for each synchronized method in the condition queue. 

}
10. else if (notifyAll operation) { 
11.  create an Introduce transition for each synchronized method  
 } 
12. add these transitions into transitions 
13. return transitions;
}
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method. Also, if the thread in critical section the exit operation is clubbed 

with each introduce. In this case introduce is executed before the exit. 

• When notify/notifyAll operation but no thread in the condition queue: - One 

transition is added which tells the thread in the critical section to continue. 

• When notifyAll with threads in condition queue: - A transition is added with 

notifyAll transition and no other action. Then a set of transitions is added 

with introduce operation for each synchronized method before the notifyAll 

operation. 

• When notify with threads in condition queue: - A set of transitions is added 

with notify transition for each of the synchronized method in the condition 

queue and no other action. Then a set of transitions is added with introduce 

operation for each synchronized method before the each of the notify 

operations. 

The last two sets simulate the race condition where a new thread might barge 

ahead of the threads awakened from the condition queue. The last set simulates the 

randomness of the Java Monitor where it may wake up any of the threads waiting in the 

condition queue on the notify operation. We would like to clarify that the introduce 

operation means that the thread enter the entry queue. It then waits for it to get to the 

head of the entry queue and for the critical section to get free before it can enter. 

2.3 Bounded Buffer Problem

The example of the classic Bounded Buffer problem will be used to explain the 

approach and implementation throughout the document. As shown in figure 2.2 there 
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are two synchronized methods in this problem namely, deposit() and withdraw(). A 

consumer should be able to withdraw when slots are not empty and a producer should 

be able to deposit when the slots are not full. 

 

Figure 2.3 Bounded Buffer Monitor 
 

class BoundedBuffer { 
private int fullSlots=0; 
private int capacity = 0; 
private int[] buffer = null; 
private int in = 0, out = 0; 
public BoundedBuffer(int bufferCapacity) { 
1.  capacity = bufferCapacity; 
2.  buffer = new int[capacity]; 
}
public synchronized void deposit (int value) { 
3.  while (fullSlots == capacity) { 
4.   try { wait(); } catch (InterruptedException ex) {} 
}
5.  buffer[in] = value; 
6.  in = (in + 1) % capacity; 
7.  if (fullSlots++ == 0) { 
8.   notifyAll(); 
}
}
public synchronized int withdraw () { 
9.  int value = 0; 
10.  while (fullSlots == 0) { 
11.  try { wait(); } catch (InterruptedException ex) {} 
}
12.  value = buffer[out]; 
13.  out = (out + 1) % capacity; 
14.  if (fullSlots-- == capacity) { 
15.   notifyAll(); 
}
16.  return value; 
}
}
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Now that we have the bounded buffer monitor let is examine the state 

abstraction for this monitor.  

We have already seen in the previous section that we would really like to just 

capture the values for fullSlots only. To summarize that discussion the abstract values 

for fullSlots will be: - 

• 0 when fullSlots == 0. 

• 0 – N when 0 < fullSlots < capacity 

• N when fullSlots == capacity 

• 0--  when fullSlots < 0 

• N++ when capacity < fullSlots 

The last two values would represent invalid state. We would consider the 

possible states for the entry queue. As discussed earlier we want only to capture the type 

of threads at the head of the entry queue, thus four possible abstractions are: - 

• deposit 

• withdraw 

• Redeposit 

• Rewithdraw 

The last two values represent threads which have been to the condition queue 

and are making an attempt after being signaled. In case of the critical section we again 

want to capture the type of thread in the critical section, thus possible abstractions are: - 

• deposit 

• withdraw 
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The final component in the abstract state is the state of the condition queue. This 

would be a set with size equal to the number of synchronized methods. Another issue 

we need to take care of is that there may be some distinction between one thread of a 

type waiting and multiple threads of the same type. Thus we have the following 

abstractions: - 

• When no thread in condition queue then (“”,””) 

• When deposit in condition queue only (“deposit”, “”) 

• When withdraw in condition queue only (“”, “withdraw”) 

• When one deposit and one withdraw in condition queue (“deposit”, 

“withdraw”) 

• When more than one deposit in condition queue only (“deposit++”, “”) 

• When more than one withdraw in condition queue only (“”, “withdraw++”) 

• When more than one deposit and more than one withdraw (“deposit++”, 

“withdraw++”) 

• (“deposit++”, “withdraw”) 

• (“deposit”, “withdraw++”) 

 Thus we have 360 possible states. All of these are not valid states and thus the 

exploration may yield a much smaller state-space. If abstraction is not used the number 

of possible states would increase exponentially. A simple example would be that we 

would detect all the eleven valid values of fullSlots and unknown number of illegal 

values of fullSlots. This alone would increase the number of states of a factor 2.5. If we 
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go on to consider the numerous possible combinations of thread in the entry queue and 

condition queue the number of states will explode. 
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CHAPTER 3 

MONITOREXPLORER: THE IMPLEMENTATION 

In this chapter we will take a look at the implementation of the MonitorExplorer 

tool. We would discuss the package structure and the key features of each package. We 

would also see the flow of control as the tool tests a package. 

3.1 Packages

There are four major packages our implementation. Figure 3.1 shows the 

packages implemented and their interaction.  

 

Figure 3.1 Package Diagram 
 

The Monitor package belongs to the user. This is where she defines the monitor 

to be tested, the abstraction and testing condition. The major components of this 

package are: - 

• Java Monitor: - This is the Java Monitor to be tested. We have to do some 

instrumentation so that it can be tested. At the beginning of each 

synchronized method we add enterMonitor() and at the end we have the 

exitMonitor() call. Also, wait() operation is replaced by suspend(), notify() 

by signal() and notifyAll() by signalAll(). 

Monitor Monitor
Testing

SemaphoreMonitor
Toolbox
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• UserExtension: - This is where the user defines the abstraction and 

evaluation conditions. We have provided user APIs which she can use to get 

the values for the state. Thus the user does not have to worry about the 

internal structures.  

The second component is the brain and brawn of the tool. Here we have the 

algorithm which builds the transitions and directs the exploration process and the 

execution module which manipulates the actual monitor, threads & executes the 

transitions. The major components of this package are: - 

• Controller: - Controller is the brain of the tool. It itself is a package with 

several components. The main part is Controller.java which has the 

implementation of the algorithm and as the name suggest controls the 

progress of the tool. It also does the book-keeping and initiates file I/O. It is 

also the access point for all user entities to interact with lower modules. The 

other key parts are: - 

o CommunicationMonitor: - This construct is used to synchronize 

operations between the tool thread and the threads performing 

operations on the Java Monitor. 

o Data Structures: - The abstract state and transition classes are also 

defined in this package. 

• Execution: - This is brawn of the tool. This package is the execution 

environment and performs the requests of the controller. The main 

components of this package are: - 
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o MonitorDriver: - This is go-through between the controller and the 

monitor toolbox. We have used the Reflection API provided by Java 

to extract runtime information of the Java Monitor. Thus we can use 

generic threads to execute the synchronized methods. This allows 

user to use the tool without any knowledge of the internal working.  

o MonitorToolBoxWrapper: - This is where we have our monitor 

operation defined. This part does book-keeping at the execution level 

and builds the information about the actual state of the monitor.  

o RunTimeHelper: - This class interacts with the threads executing the 

synchronized methods.  

• Evaluation: - This package provides the user API and the utilities to test the 

monitor. We would discuss this in greater detail later.   

• ThreadPool: - This is a pool of generic threads which adjusts in size as the 

demand varies. This allows us to reuse threads and reduce the load on the 

system. 

• Utilities: - This package has the file I/O files, commonly used definitions 

and other utilities.  

The third package is the MonitorToolBox. The need for this arises because the 

Java does not provide any insight into the data structures of its monitor. The data values 

can be retrieved using Java Reflection API but we also need information like the size 

and contents of the entry and condition queues. In addition to this we need to know 

which thread is executing inside the critical section and which method it is executing. 
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Thus we have tweaked the implementation of a generic monitor to behave like the 

internal java monitor. It implements the Signal and Continue signaling discipline. It 

implements the FIFO nature of entry queue. We have not simulated the randomness of 

the signal() operation. That is simulated by the controller; however we can specify 

which thread we want to signal. We also do the book-keeping regarding the queues and 

critical section in this package. 

The last package is the Semaphore package which has the semaphore 

implementations used by the MonitorToolBox to enforce synchronization. 

3.2 Evaluation

We earlier talked about the Evaluation module which is a part of the 

MonitorTesting package. This sub-package is an important component as this is where 

the checking of the Java Monitor is done. The current and previous states are verified 

against the conditions provided by the user. The conditions have to be specified by the 

user as each monitor has a different behavior. We have provided user API which hides 

the implementation details from the user and allows her to easily define the 

requirements. The main parts of this module are: - 

• Requirement: - In this class we define the requirement code, the description 

of the requirement and the category like functional or starvation. 

• Condition: - Condition is associated with the requirement code, a condition 

code, the description of the condition. The most important field is the 

condition type which can be WARNING or ERROR. In case of an error we 

terminate the execution the path where as in case for warning we continue 
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the execution. This is useful as in some cases the user may believe the 

current condition may lead to an error but currently we can proceed to 

explore further. 

• userAPI: We have mentioned this class a number of times. It provides easy 

access to the monitor state and transition information to the user without 

knowing the internal functioning. Here are a few examples are: - 

o public boolean threadTypeInConditionQueue(String threadType, 

AbstractState state): - This method allows the user to check if a 

thread type is in the condition queue or not. 

o public int getAttributeValue(int attributeNumber): - The user can get 

the actual value of a shared variable. 

• EvaluationRun: - This class stores all the errors and warning over an 

execution. The MonitorExplorer terminates the current path of execution 

when error is found and continues to explore the other paths. This class 

stores conditions over all paths. 

• MonitorEvaluation: - An abstract class provides abstract method which 

define how to associate requirements with conditions and evaluateMonitor() 

which takes the stack of visited states and stack of transitions on the path. 

These can be used by the user API for evaluation. 

 Another class which needs to be mentioned is the UserEvaluation. It is a part of 

UserExtension sub-package in the Monitor package. This is where the user defines 

the condition and requirements.  
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3.3 Sequence

Now that we are familiar with the packages and the static details of the Explorer, 

let us take a look at the run-time scenario. Figure 3.2 is the sequence diagram for 

execution of one transition.  

 

Figure 3.2 Sequence Diagram 
 

There are two major threads of execution: - 

• Main Thread: - This is MonitorExplorer thread with four major objects: - 

o Controller: - This is the first object created when execution starts. 

This creates the Driver and Evaluation object. The controller tells the 

Evaluation Controller Driver 
 

Thread 
Pool 

Monitor 
Wrapper 
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Driver what needs to be done and gets the actual monitor state. It 

extracts abstract state and sends it to the Evaluation. 

o Evaluation: - This get the state from the Controller, evaluates the 

state and returns if it error or not. 

o Driver: - It gets the transitions to execute from the Controller. It sets 

up the ThreadPool, gets a thread from it and executes the transition. 

It returns the actual Monitor state to the Controller. It sets up and 

interacts with the MonitorWrapper where the actual threads execute 

the monitor operations.  

o ThreadPool: - This pool of thread creates generic threads has hands 

one the Driver when required. 

• Monitor Threads: - This has the MonitorDriver object which interacts with 

Driver. There are multiple threads running here which execute the 

synchronized operations on the Java Monitor. 
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CHAPTER 4 

EXPERIMENTS 

In this chapter we look at several experimental results which confirm the 

effectiveness of MonitorExplorer in detecting synchronization mistakes. We also take a 

look at the steps required to setup the tool. 

4.1 Tool Setup

We need to first establish the requirements that the monitor must fulfill. This is 

line with traditional testing techniques and must be done independently of the 

implementation. 

In order to use toolbox we need to change the monitor code. The following 

changes are required for all synchronized methods: - 

• Remove the synchronized keyword. 

• Add enterMonitor() as the first line. 

• Add exitMonitor() as the last line. 

• Replace wait() with suspend(). 

• Replace notify()/notifyAll with suspend()/suspendAll(). 

We also provide an initialization method for the monitor. This allows the user to 

test the monitor with different starting conditions. In case of BoundedBuffer Monitor 

the initialization method allows to specify the size of the buffer and how many slots are 

filled. Figure 4.1 shows the implementation of eastEnter() method for the FairBridge 
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Monitor and figure 4.2 show the code for the method after instrumentation so it can be 

used for the MonitorExplorer tool.  

 
Figure 4.1 eastEnter() Method 

 
Notice that the synchronized keyword is missing in the instrumented method. 

Also, enterMonitor() and exitMonitor() methods have been added and wait() has been 

replaced by suspend(). 

 
Figure 4.2 Instrumented eastEnter() Method 

 
We then define the Abstract State. Actually the user only needs to define the 

abstract values for the data elements. The abstraction for the critical section and 

condition & entry queue is handled by the tool itself based on the names of the 

synchronized methods.  

1. public synchronized void eastEnter() throws InterruptedException { 
2.  ++eastCarsWait; 
3. while (westCars>0 || (westCarsWait > 0 && eastTurn == 0)) 
4.  wait(); 
5. --eastCarsWait; 
6. ++eastCars; 
}

1. public void eastEnter() { 
2.  enterMonitor(); 
3. ++eastCarsWait; 
4. while (westCars>0 || (westCarsWait > 0 && eastTurn == 0)) 
5.  suspend(); 
6. --eastCarsWait; 
7. ++eastCars; 
8. exitMonitor(); 
}
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We also need to define the evaluation function. We have provided the user API 

which allows the user to easily define this function. This is used to check if the current 

abstract state violates any of the requirements. The user can use the current abstract 

state, the last transition executed and any of the older states or transitions to verify the 

current state.  

The last bit is the input file which has the following format: - 

• The first line is the name of the monitor. 

• The second line is an integer which can be used to supply the argument for 

the monitor constructor. 

• The third line has the number of synchronized methods followed by two 

lines for each method. The first of these lines is the name of method and the 

second is the argument. Incase of no argument we pass the value as -1. 

• This block is followed by the number of data members to be tracked. Each 

data element is represented by two lined. First line has the name and the 

second has the initial value.  

4.2 Mutants

The main objective of conducting these experiments is to establish the 

effectiveness of our tool. To achieve this goal we introduce some errors, which are 

commonly found in monitor implementations, and track how many of these errors we 

can detect. Please note that the objective of our tool is to detect synchronization faults 

and thus are mutants are focused only common synchronization mistakes. The 

following guidelines are used to create mutants: - 
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• Replace while with if statement incase the block contains a suspend() 

operation.  

• Replace signal() with signalAll() and the other way round. 

• In case a conditional block contains a synchronization operation change the 

relational/Boolean operator or use negation of the Boolean variable at the 

branching point. 

• Remove the synchronization operations.  

The first mutant detects if the case where we want to recheck the condition when 

a thread re-enters the critical after it awakened by signal() or signalAll(). The second 

condition checks if one thread is awakened from the condition queue when we expect 

all of them to be awakened. The remaining conditions check for conditions where we 

expect to execute a synchronization operation but that does not happen and also the 

other way around.    

We exercise each mutant independent of other as two mutants may have a 

masking effect. 

4.3 Monitors Tested

We have tested the following monitors: - 

• BoundedBuffer: - This monitor solves the Producer/Consumer problem. 

When the buffer is full, the producer must wait for the consumer to withdraw 

an item. Similarly, when the buffer is empty the consumer should wait for 

the producer to produce an item. 
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• FairBridge: - A solution that prevents collisions in a single-lane bridge. The 

solution guarantees no starvation. That is, cars from both directions get a fair 

chance to access the bridge. 

• SimpleAllocator: - A solution used to allocate a pool of balls to the golf 

player. A player must wait if he requests more balls than available. 

The BoundedBuffer problem is from [6] and the rest are from [9]. The details of 

the instrumentation, mutants, requirements, abstraction and results, for each of the 

monitors, is provided in appendix. 

4.4 Experiment Results

Table 4.1 Experiment Results 
Monitor # of  

Require
ments 

# of  
Mutants  

# of  
Mutants  
Killed 

# of  
Paths  
Explored 

# of  
Transitions 
Executed 

# of  
States 
Explore 

Exploration 
Time 
(Seconds) 

Bounded 
Buffer 7 12 12 15 47 33 3.2 
Fair 
Bridge 10 22 20 160 386 227 45.4 
Simple 
Allocator 5 14 12 123 248 126 29.7 
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CHAPTER 5 

RELATED WORK 

There has been much work done in the area of testing in general but the 

problems of determining the number of threads and non-deterministic execution does 

not exist in sequential programs. Our work focuses on testing monitors, thus we review 

existing work on testing monitors and concurrent programs.  

The monitor was proposed by Brinch Hansen and Tony Hoare and Hansen was 

the first person to propose a solution to test monitors [4]. He suggested an approach to 

test Pascal monitors with the following steps: - 

• The tester identifies a set of preconditions that will cause each branch of 

operation to be executed at least once. 

• Then a single sequence of monitor calls is constructed. This sequence 

satisfies each identified precondition at least once.  

• A test driver is created with multiple threads to execute the monitor call 

sequence identified in the previous step. 

Each of the threads in the test driver executes one or more of the monitor call in 

the sequence. Also, the threads in the driver are synchronized during testing to ensure 

they execute in the specified order. 

The approach given above was extended to Java Monitors [5]. The work in [5] 

adds that we identify preconditions that cause each loop to be executed zero, one and 
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more than one times. This is required as the wait() operation in Java Monitors is often 

inside a loop.  

In [3] [6] Carver and Tai have generalized Hansen’s work for synchronizing 

threads during testing and they have demonstrated how to apply their technique to test 

monitors, semaphores, locks and message passing. These are the steps suggested by 

them in [6]: - 

• Derive a set of validity constraints from the specification of the program. 

• Then perform non-deterministic to determine the coverage and validity. 

• Generate additional test sequences for the paths that were not covered and 

perform deterministic testing for those test sequences. 

The works shown above are the only approaches to testing monitors in the 

literature. Even with tool supports for [3] [5] and [6] the first two steps are manual and 

error prone. On the other hand, our approach as shown is more systematic and highly 

automated. Also, we do not rely on loop and branch coverage as these approaches do. 

We explore the state space of the Java Monitor till we reach a duplicate or error state. 

The approaches suggested by Godefroid [7] and Havelund & PressBurger [8] 

use state space exploration to test concurrent programs. They either directly explore the 

state space of the concurrent program or extract an abstract model from the program and 

then explore the abstract model using a model checker.  

They problem with these approaches are they do not solve the problem of state 

explosion. Also, these approaches assume that the program in test is complete. This 

means that program can be executed in isolation. Thus before we use can test a Java 
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Monitor a program that uses the monitor under test must be constructed. The problem 

with this is that the program we construct may not trigger unexpected scenarios which 

are often the cause of failure. Our approach however is different as we introduce threads 

on fly, during state space exploration. Also, we impose no restriction on number or type 

of threads to be introduced. To best of our knowledge, only our work has such 

capability.  
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CHAPTER 6 

CONCLUSION 

This document shows that are approach to testing Java Monitors has 

successfully used the state exploration technique to test monitors. This undoubtedly will 

be an asset to developers of Java Monitors in unit testing. The key benefit is the 

automation of the process thus ensuring greater coverage which is guaranteed neither by 

current sequential program testing techniques nor by manually creating test sequences 

and executing them. Our approach also simplifies regression testing of Java Monitors. 

The main contribution of our work is introduction of threads on-the-fly. This 

allows us not to impose restrictions on number or type of threads we introduce. Thus we 

can generate and execute test sequences on the fly which create race conditions and thus 

are able to detect more errors. This allows us to detect conditions like starvation, 

violation of the critical section. An example of this is when the loop condition around 

the suspend() in FairBridge Monitor is changed to a branch condition, i.e. while is 

replace by if, we are able to detect violation of the critical section.  

The experiment results in chapter 4 show that our tool is able to kill a large 

percentage of mutants. One mutant that we are not able to kill is when the suspend() is 

removed from loop condition. However this error will be visible to the user in terms of 

the system entering a livelock. Another important achievement is that the entire state 
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space is explored in a small time. Thus the tool can be used for regression without much 

time penalty.  

Our tool also allows us to control the intercept synchronization operation with 

the help of the toolbox. This allows us to refresh the monitor state on every 

synchronization operation, thus enabling us to determine the possible transitions at each 

of these states and explore the state space. 

My main contribution to the MonitorExplorer is the MonitorTesting module.  It 

includes the Controller, ThreadPool and Utilities sub-packages. I implemented the 

MonitorTest algorithm and the getEnabledTransitions() method. I also implemented the 

logic for retrace, interaction between the user & the system and designed the data 

structures like Transition and AbstractState.  Another important component that I 

designed and implemented was the communcationMonitor() which enforces 

synchronization between the main thread and executing threads.   
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CHAPTER 7 

FUTURE WORK 

Our work has made significant contributions to testing of Java Monitors. 

However, we see some enhancements in this future which would make the tool easier to 

use. The following would be the future enhancements: - 

• Automatic instrumentation the Java Monitor code. This would allow the 

user to provide us with the Java Monitor and the tool would do all the 

required instrumentation like adding enterMonitor() and exitMonitor() 

methods. 

• A graphical user interface to input the files and setup the tool would be 

another task in the future. We would also like to present the state space 

being explored in a graphical form. 

• There are some monitors which have a protocol which defines in what order 

the methods can be executed. An example of this would the Allocator 

problem. The golfer should only be able to return the balls if he has been 

given any. The user should be allowed to specify such a protocol.  

We would also like to do a comparative study between the performance of the 

existing approaches and our work.  
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APPENDIX A 
 

BOUNDED BUFFER EXPERIMENT 
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Bounded Buffer Experiment 
 

1. Requirements 
 

Requirement # Requirements Description 
 

1 If buffer is full Producer cannot produce 
2 If buffer is empty Consumer cannot consume 
3 If buffer is not full Producer should be able to produce 
4 If buffer is not empty Consumer should be able to 

consume 
5 An item cannot be overridden 
6 An item cannot be consumed twice 
7 Consumers and Producers should not be waiting at the 

same time 

2. Abstract State  
 
Date Members Abstraction  
 

Variable Name: FullSlots 
Abstract Value Actual Value Valid 

0 fullSlots == 0 Y 
0-N 0 < fullSlots < N Y 
N fullSlots == N Y 

N++ fullSlots > N N 
0-- fullSlots < 0 N 

Entry Queue Abstraction: - {withdraw, deposit, rewithdraw, redeposit, “”} 
 
Critical Section Abstraction: - {withdraw, deposit, “”} 
 
Condition Queue Abstraction: - { {“”, “”}, {withdraw. “”}, {“”, deposit}, …, 
{withdraw++, “”}, {“”, deposit++}, {withdraw++, deposit++} } 
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3. Source Code 
 
package edu.uta.cse.Monitor; 
 
import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper; 
import java.lang.Integer; 
 
public class BoundedBuffer extends MonitorToolBoxWrapper { 

public int fullslots=0; 
private int capacity = 0; 
private Integer[] buffer = null; 
private int in = 0, out = 0; 
public BoundedBuffer() { 

this.buffer=new Integer[this.capacity]; 
}
public BoundedBuffer(int capacity, int fullSlots) { 

this.fullslots=fullSlots; 
this.capacity=capacity; 
this.buffer=new Integer[this.capacity]; 

}

public void deposit(Integer value) { 
enterMonitor(); 
while(fullslots == capacity) { 

suspend(); 
}
buffer[in]=value; 
in=(in +1)%capacity; 
if(this.fullslots++ == 0) { 

signalAll(); 
}
exitMonitor(); 

}

public Integer withdraw() { 
enterMonitor(); 
Integer value=new Integer(0); 
while (fullslots == 0){ 

suspend(); 
}
value = (Integer)buffer[out]; 
out = (out + 1) % capacity; 
if (fullslots-- == capacity){ 

signalAll(); 
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}
exitMonitor(); 
return value; 

}
}

4. Mutant 
Replace while with if in withdraw() method 
 

public Integer withdraw() { 
enterMonitor(); 
Integer value=new Integer(0); 
if (fullslots == 0){ =� Replaced while with if 

suspend(); 
}
value = (Integer)buffer[out]; 
out = (out + 1) % capacity; 
if (fullslots-- == capacity){ 

signalAll(); 
}
exitMonitor(); 
return value; 

}

5. Results 
 
BOUNDED BUFFER: Please enter the path of input file: 
c:\input.txt 
Path: 1 begins.... 
Path: 2 begins.... 
---- CONDITION FOUND!!! ---- 
Condition #: 02 Type: ERROR 
Category : lower_bound 
Description: Data value is lower than lower bound 
Requirement: 02 - If buffer is empty Consumer cannot consume 
ATTRIBUTES : 
Name : fullslots current value: -1 
PRINTINT STATES STACK IN THIS PATH... 
----------------Start of Abstract State---------------- 
State #: 1 
Entry Queue is Empty 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0 
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----------------Start of Abstract State---------------- 
State #: 2 
Thread at the head of the Entry Queue is withdraw 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 3 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is withdraw 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 4 
Thread at the head of the Entry Queue is withdraw 
Critical Section is Empty 
Thread in the Condition Queue is withdraw 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 5 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is withdraw+ 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 6 
Thread at the head of the Entry Queue is deposit 
Critical Section is Empty 
Thread in the Condition Queue is withdraw+ 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 7 
Entry Queue is Empty 
Thread in Critical Section is deposit 
Thread in the Condition Queue is withdraw+ 
The value of data element is 0-N 
----------------Start of Abstract State---------------- 
State #: 8 
Thread at the head of the Entry Queue is withdraw 
Thread in Critical Section is deposit 
Condition Queue is Empty 
The value of data element is 0-N 
----------------Start of Abstract State---------------- 
State #: 9 
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Thread at the head of the Entry Queue is Rewithdraw 
Thread in Critical Section is withdraw 
Condition Queue is Empty 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 10 
Thread at the head of the Entry Queue is Rewithdraw 
Thread in Critical Section is withdraw 
Condition Queue is Empty 
The value of data element is 0-- 
STATE NOT VALID!!!!!!!!!!! 
Path: 3 begins.... 
Path: 4 begins.... 
Path: 5 begins.... 
Path: 6 begins.... 
Path: 7 begins.... 
Path: 8 begins.... 
Path: 9 begins.... 
Exploration has ended... 
Total Paths explored: 9 
Unique Transitions executed are: 28 
Unique States explored: 20 
Total Exploration Time (in milliseconds): 890 
 



45

APPENDIX B 
 

SIMPLE ALLOCATOR EXPERIMENT
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Simple Allocator Experiment 
 

1. Requirements 
 

Requirement # Requirements Description 
 

1 If one or more than one ball available then pro should 
not be waiting. 

2 If two or more than two balls available then amatuer 
should not be waiting. 

3 If enough balls not available then the request should 
not be granted. 

4 Balls can only be returned by golfer who received 
them. 

5 Golfers should be allowed to return balls. 

2. Abstract State  
 
Date Members Abstraction  
 

Variable Name: Available 
Abstract Value Actual Value Valid 

0 available == 0 Y 
1 available == 1 Y 
2 available == 2 Y 

3 – (N -3) 3 <= available <= (N-3) Y 
N -2  available == N - 2 Y 
N -1  available == N – 1 Y 

N available == N  Y 
N++ available > N  N 
0-- available < 0 N 

Entry Queue Abstraction: - { get_pro, put_pro, get_am, put_am, reget_pro, reput_pro, 
reget_am, reput_am, “”} 
 
Critical Section Abstraction: - { get_pro, put_pro, get_am, put_am, “”} 
 
Condition Queue Abstraction: - { {“”, “”, “”, “”}, {get_pro,””,””, “”},{“”, put_pro, ””, 
“”}, …, { get_pro++, put_pro++, get_am++, put_am++ } } 
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3. Source Code 
 
package edu.uta.cse.Monitor; 
 
import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper; 
 
public class SimpleAllocator extends MonitorToolBoxWrapper { 
 

public int available = 0; 
 

public int max = 0; 
 

private int proIn = 0; 
 

private int amIn = 0; 
 

public SimpleAllocator(int max, int available, int proIn, int amIn) { 
 this.available = available; 
 this.max = max; 
 this.proIn = proIn; 
 this.amIn = amIn; 
 } 
 

public void get_pro() { 
 enterMonitor(); 
 int n = 1; 
 while (n > available)   
 suspend(); 
 available -= n; 
 proIn++; 
 exitMonitor(); 
 

}

public void put_pro() { 
 enterMonitor(); 
 if (proIn > 0) { 
 int n = 1; 
 available += n; 
 }
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exitMonitor(); 
 } 
 

public void get_am() { 
 enterMonitor(); 
 int n = 2;      
 while (n > available)  
 suspend(); 
 available -= n; 
 amIn++; 
 exitMonitor(); 
 

}

public void put_am() { 
 enterMonitor(); 
 if (amIn > 0) { 
 int n = 2; 
 available += n; 
 amIn--; 
 }

exitMonitor(); 
 } 
}

4. Mutant 
Replace signalAll() with signal() in put_pro() method 
 
public void put_pro() { 
 enterMonitor(); 
 if (proIn > 0) { 
 int n = 1; 
 available += n; 
 signal(); =� signalAll() replaced by signal() 
 proIn--; 
 }

exitMonitor(); 
 }  
 

5. Results 
 
Simple Allocator: Please enter the path of input file: 
c:\input.txt 
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…
…
Path: 48 begins.... 
Path: 49 begins.... 
 

---- CONDITION FOUND!!! ---- 
Condition #: 01 Type: ERROR 
Category   : starvation 
Description: Pro waiting when balls avialable 
Requirement: 01 - If one or more than one ball available then pro should not be waiting. 
ATTRIBUTES :  
Name       : available current value: 1 
Name       : max current value: 10 
 
PRINTINT STATES STACK IN THIS PATH... 
 
----------------Start of Abstract State---------------- 
State #: 1 
Entry Queue is Empty 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 2 
Thread at the head of the Entry Queue is get_pro 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 3 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is get_pro 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 4 
Thread at the head of the Entry Queue is get_pro 
Critical Section is Empty 
Thread in the Condition Queue is get_pro 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 5 
Entry Queue is Empty 
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Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 6 
Thread at the head of the Entry Queue is get_am 
Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 7 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 8 
Thread at the head of the Entry Queue is get_am 
Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 9 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am+ 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 10 
Thread at the head of the Entry Queue is put_pro 
Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am+ 
The value of data element is 0 
----------------Start of Abstract State---------------- 
State #: 11 
Entry Queue is Empty 
Thread in Critical Section is put_pro 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am+ 
The value of data element is 1 
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----------------Start of Abstract State---------------- 
State #: 12 
Thread at the head of the Entry Queue is get_am 
Thread in Critical Section is put_pro 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am 
The value of data element is 1 
----------------Start of Abstract State---------------- 
State #: 13 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is get_pro+ 
Thread in the Condition Queue is get_am+ 
The value of data element is 1 
STATE NOT VALID!!!!!!!!!!! 
Path: 50 begins.... 
Path: 51 begins.... 
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APPENDIX C 
 

FAIR BRIDGE EXPERIMENT
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Fair Bridge Experiment 
 

1. Requirements 
 

Requirement # Requirements Description 
 

1 Cars coming from different directions cannot access 
the bridge at the same time 

2 If no West cars in the bridge or waiting, East cars 
should be able to access 

3 If no East cars in the bridge or waiting, West cars 
should be able to access 

4 East or West cars can only exit once they have entered 
5 If at least one East car is in the bridge and no West Car 

waiting, all east cars should be able to access the 
bridge 

6 If at least one West car is in the bridge and no East Car 
waiting, all west cars should be able to access the 
bridge 

7 If east car waiting and east car turn then West car 
should not enter. 

8 If west car waiting and west car turn then East car 
should not enter. 

9 Only cars which are waiting or requesting to enter can 
do so. 

10 Cars that have entered should not be in the waiting 
queue. 

2. Abstract State  
 
Date Members Abstraction  
 

Variable Name: westCars and eastCars 
Abstract Value Actual Value Valid 

0;0 westCars == 0 &&  eastCars == 0 Y 
W;0 westCars => 1 &&  eastCars == 0 Y 
0;E westCars == 0 &&  eastCars => 1 Y 
W;E westCars => 0 &&  eastCars => 0 N 
-;- westCars  < 0 &&  eastCars < 0 N 
X;- westCars => 0 &&  eastCars < 0 N 
-;X westCars < 0 &&  eastCars => 0 N 
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Variable Name: westCarsWait and eastCarsWait 
Abstract Value Actual Value Valid 

0;0 westCarsWait == 0 &&  
eastCarsWait == 0 Y

WW;0 westCarsWait > 0 &&  
eastCarsWait == 0 Y

0;WE westCarsWait == 0 &&  
eastCarsWait > 0 Y

WW;WE westCarsWait > 0 &&  
eastCarsWait > 0 Y

-;- westCarsWait < 0 &&  
eastCarsWait < 0 N

X;- westCarsWait => 0 &&  
eastCarsWait < 0 N

-;X westCarsWait < 0 &&  
eastCarsWait => 0 N

Variable Name: eastTurn 
Abstract Value Actual Value Valid 

True 1 Y 
False 0 Y 

Entry Queue Abstraction: - {enterEast, enterWest, exitEast, exitWest, reenterEast, 
reenterWest, reexitEast, reexitWest, “”} 
 
Critical Section Abstraction: - {enterEast, enterWest, exitEast, exitWest,, “”} 
 
Condition Queue Abstraction: - {{“”, “”, “”, “”}, { enterEast,””,””, “”}, {“”, 
enterWest,””, “”}, …, { enterEast++, enterWest++, exitEast++, exitWest++} } 
 

3. Source Code 
 
package edu.uta.cse.Monitor; 
 
import edu.uta.cse.MonitorTesting.Execution.MonitorToolBoxWrapper; 
 
public class FairBridge extends MonitorToolBoxWrapper{ 
 

public int westCars = 0; 
 public int eastCars = 0; 
 public int westCarsWait = 0; 
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public int eastCarsWait = 0; 
 public int eastTurn = 1; 
 

public FairBridge(int eastCars, int westCars){ 
 this.eastCars = eastCars; 
 this.westCars = westCars; 
 } 
 

public void eastEnter() throws InterruptedException { 
 enterMonitor(); 
 ++eastCarsWait; 
 while (westCars>0 || (westCarsWait > 0 && eastTurn == 0)) 
 suspend(); 
 --eastCarsWait; 
 ++eastCars; 
 exitMonitor(); 
 } 
 

public void eastExit(){ 
 enterMonitor(); 
 if (this.eastCars >0){ 
 --eastCars; 
 if (eastCars==0){ 
 signalAll();  
 }

eastTurn = 0; 
 }

exitMonitor(); 
 } 
 

public void westEnter(){ 
 enterMonitor(); 
 ++westCarsWait; 
 while (eastCars>0 || (eastCarsWait > 0 && eastTurn == 1))  
 suspend(); 
 --westCarsWait; 
 ++westCars; 
 exitMonitor(); 
 } 
 

public void westExit(){ 
 enterMonitor(); 
 if (this.westCars >0){   
 --westCars; 
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if (westCars==0){ 
 signalAll();  
 }

eastTurn = 1; 
 }

exitMonitor(); 
 } 
}

4. Mutant 
Change the condition in the while statement in the enterEast() method 
 

public void eastEnter() { 
 enterMonitor(); 
 ++eastCarsWait; 
 while (westCars<0 || (westCarsWait > 0 && eastTurn == 0)) 
 =� Changed westCars > 0 to westCars < 0 
 suspend(); 
 --eastCarsWait; 
 ++eastCars; 
 exitMonitor(); 
 } 
 
5. Results 
 
…
…
Path: 9 begins.... 
Path: 10 begins.... 
 

---- CONDITION FOUND!!! ---- 
Condition #: 01 Type: ERROR 
Category   : collision 
Description: West and East Cars are in the bridge 
Requirement: 01 - Cars coming from different directions cannot access the bridge at the 
same time 
ATTRIBUTES :  
Name       : westCars current value: 2 
Name       : eastCars current value: 1 
Name       : westCarsWait current value: 0 
Name       : eastCarsWait current value: 1 
Name       : eastTurn current value: 0 
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PRINTINT STATES STACK IN THIS PATH... 
 
----------------Start of Abstract State---------------- 
State #: 1 
Entry Queue is Empty 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0;0 
The value of data element is 0;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 2 
Thread at the head of the Entry Queue is eastEnter 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0;0 
The value of data element is 0;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 3 
Entry Queue is Empty 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0;E 
The value of data element is 0;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 4 
Thread at the head of the Entry Queue is westEnter 
Critical Section is Empty 
Condition Queue is Empty 
The value of data element is 0;E 
The value of data element is 0;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 5 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is westEnter 
The value of data element is 0;E 
The value of data element is WW;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
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State #: 6 
Thread at the head of the Entry Queue is westEnter 
Critical Section is Empty 
Thread in the Condition Queue is westEnter 
The value of data element is 0;E 
The value of data element is WW;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 7 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is westEnter+ 
The value of data element is 0;E 
The value of data element is WW;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 8 
Thread at the head of the Entry Queue is eastExit 
Critical Section is Empty 
Thread in the Condition Queue is westEnter+ 
The value of data element is 0;E 
The value of data element is WW;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 9 
Entry Queue is Empty 
Thread in Critical Section is eastExit 
Thread in the Condition Queue is westEnter+ 
The value of data element is 0;0 
The value of data element is WW;0 
The value of data element is true 
----------------Start of Abstract State---------------- 
State #: 10 
Thread at the head of the Entry Queue is eastEnter 
Thread in Critical Section is eastExit 
Condition Queue is Empty 
The value of data element is 0;0 
The value of data element is WW;0 
The value of data element is false 
----------------Start of Abstract State---------------- 
State #: 11 
Thread at the head of the Entry Queue is RewestEnter 
Thread in Critical Section is westEnter 
Thread in the Condition Queue is eastEnter 
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The value of data element is W;0 
The value of data element is WW;WE 
The value of data element is false 
----------------Start of Abstract State---------------- 
State #: 12 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is eastEnter 
The value of data element is W;0 
The value of data element is 0;WE 
The value of data element is false 
----------------Start of Abstract State---------------- 
State #: 13 
Thread at the head of the Entry Queue is eastEnter 
Critical Section is Empty 
Thread in the Condition Queue is eastEnter 
The value of data element is W;0 
The value of data element is 0;WE 
The value of data element is false 
----------------Start of Abstract State---------------- 
State #: 14 
Entry Queue is Empty 
Critical Section is Empty 
Thread in the Condition Queue is eastEnter 
The value of data element is W;E 
The value of data element is 0;WE 
The value of data element is false 
STATE NOT VALID!!!!!!!!!!! 
Path: 11 begins.... 
Path: 12 begins.... 
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