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ABSTRACT

WIRELESS SENSOR NETWORK LIFETIME ANALYSIS

AND ENERGY EFFICIENT TECHNIQUES

Publication No.

Haining Shu, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Qilian Liang

Wireless microsensor networks is one of the most important technologies for the

21st century. In distributed sensor networks energy-aware techniques are used to reduce

energy consumption. Various sensor network applications have taken energy efficiency

into consideration.

This thesis report focuses on a new approach based on fuzzy logic systems to an-

alyze the lifetime of a wireless sensor network. It demonstrates that a type-2 fuzzy

membership function(MF), i.e., a Gaussian MF with uncertain standard deviation (std)

is most appropriate to model a single node lifetime in wireless sensor networks. This re-

search studies two basic sensor placement schemes: square-grid and hex-grid. Two fuzzy

logic systems(FLSs): a singleton type-1 FLS and an interval type-2 FLS are designed

to perform lifetime estimation of the sensor network. Simulation results show that the

FLS offers a feasible method to analyze and estimate the sensor network lifetime and

the interval type-2 FLS in which the antecedent membership functions are modeled as

Gaussian with uncertain std outperforms the singleton type-1 FLS.
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In the later chapters, two energy efficient techniques in wireless sensor networks are

presented: fuzzy optimization for distributed sensor deployment and spectrum efficient

coding scheme for correlated non-binary sources in wirless sensor networks.

For the sensor deployment topic, it is shown that given a finite number of sensors,

optimizing the sensor deployment will provide sufficient sensor coverage and ameliorate

the quality of communications. We apply fuzzy logic systems to optimize the sensor

placement after an initial random deployment. We use the outage probability due to co-

channel interference to evaluate the communication quality. Fenton-Wilkinson method

is applied to approximate the sum of log-normal random variables. Our algorithm is

compared against the existing distributed self-spreading algorithm. Simulation results

show that our approach achieves faster and stabler deployment and maximizes the sen-

sor coverage with minimum energy consumption. Outage probability, as a measure of

communication quality gets effectively decreased in our algorithm but it was not taken

into consideration in the distributed self-spreading algorithm.

In the case of correlated binary sources, distributed source coding has been lit-

erally studied in information theory. However, data sources from real sensor networks

are normally non-binary. We proposed a spectrum efficient coding scheme for correlated

non-binary sources in sensor networks. Our approach constructs the codeword cosets for

the interested source, taking advantage of statistical characters of the distinct observa-

tions from sensor nodes. The coset leaders are then transmitted via the channel and

decoding is performed with the available side information. Simulations are carried out

over independent and identically distributed (i.i.d) Gaussian sources and data collected

from Xbow wireless sensor network test bed. Simulation results show that the proposed

scheme performs at 0.5 - 1.5 dB from the Wyner-Ziv distortion bound.
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The wireless sensor technology can be applied to many real world applications. In

this dissertation report, we present two applications when the sensor technology is used

in the multi-target data fusion and underwater target positioning.

For the multi-target data fusion, we consider the decision fusion of Rayleigh fluctu-

ating targets in multi-radar sensor networks. Decision fusion and data fusion in Wireless

Sensor Networks (WSNs) has been widely studied in order to save energy. Radar sys-

tem as a special sensor network, when implemented for battlefield surveillance, faces

bandwidth constraint in real-time applications instead of energy restriction. A reliable

detection of multiple targets in clutter is perhaps the most important objective in such

an echo-location system. In this work, we study the decision fusion rules of multiple

fluctuating targets in multi-radar (MT-MR) sensor networks. The MT-MR decision fu-

sion problem is modeled as a multi-input multi-output (MIMO) system. We assume that

each radar makes binary decision for each target from the observation, i.e. if the target is

present or not. We derive our MIMO fusion rules based on the target fluctuation model

and compare against the optimal likelihood ratio method (LR), maximum ratio combiner

(MRC) and equal gain combiner (EGC). Simulation results show that the MIMO fusion

rules approach the optimal-LR and outperforms MRC and EGC at high signal to clutter

ratio (SCR).

In Chapter 6, we present a silent positioning scheme termed as UPS for underwater

acoustic sensor networks. UPS relies on the time-difference of arrivals measured locally

at a sensor to detect range differences from the sensor to four anchor nodes. These range

differences are averaged over multiple beacon intervals before they are combined to esti-

mate the 3D sensor location through trilateration. UPS requires no time-synchronization

and provides location privacy at underwater vehicles/sensors whose locations need to be

determined. To study the performance of UPS, we model the underwater acoustic chan-

nel as a modified Ultra Wide Band (UWB) S-V model: the arrival of each path cluster
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and paths within each cluster follow double Poisson distributions, and the multipath

channel gain follows a Rician distribution. Based on this channel model, we perform

both theoretical analysis and simulation study on the position error of UPS under acous-

tic fading channels. The obtained results indicate that UPS is an effective scheme for

underwater vehicle/sensor self-positioning.
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CHAPTER 1

INTRODUCTION

Research on sensor networks was originally motivated by military applications.

Starting around 1980, networked microsensors technology has been widely used in mil-

itary applications. One example of such applications is the Cooperative Engagement

Capability (CEC) developed by the U.S.Navy. This network-centric warfare consists of

multiple radars collecting data on air targets [1]. Other military sensor networks include

acoustic sensor arrays for antisubmarine warfare such as the Fixed Distributed System

(FDS) and the Advanced Deployable System (ADS), and unattended ground sensors

(UGS) such as the Remote Battlefield Sensor System (REMBASS) and the Tactical

Remote Sensor System (TRSS).

Although nowadays the majority of sensors are still wired, wireless sensors pro-

vide significant advantages over wired sensors. Two main problems within wired sensor

networks - cost and delays in deployment are tackled when low-cost sensors and commu-

nication networks become available.

Wireless sensor networks have recently come into research notability because they

developed many other non-military applications, from environment and habitat mon-

itoring, to industrial process control, to infrastructure security [2] and automation in

transportation. One networked sensing experiment on Great Duck Island [3] provides a

small lens into an expansive future of such applications. The experiment was conducted

by a team of computer engineers from the University of California, Berkeley. To date,

190 wireless sensors have been deployed on a small island 10 miles off the coast of Maine

1
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to study the nesting behaviors of petrels. Biologists are now monitoring the petrels on

the island from their offices, browsing data from sensors linked by satellite.

A wireless sensor network consists of a certain amount of small and energy con-

strained nodes. Basic components of a sensor node include a single or multiple sensor

modules, a wireless transmitter-receiver module, a computational module and a power

supply module. Such networks are normally deployed for data collection where human

intervention after deployment, to recharge or replace node batteries may not be feasi-

ble, resulting in limited network lifetime. Most applications have pre-specified lifetime

requirements. For instance the petrels monitoring application in [3] has a lifetime re-

quirement of at least 9 months. Thus estimation of lifetime of such networks prior to

deployment becomes a necessity. Prior work on evaluating lifetime have considered net-

works where sensor nodes are randomly deployed. [4] and [5] gives the upper bound

on lifetime that any network with the specified number of randomly deployed nodes,

source behavior and energy can reach while [6] discusses the upper bounds on lifetime

of networks with cooperative cell based strategies. Network lifetime of fixed deployment

schemes are recently studied in [7]. Jain and Liang observed that in wireless sensor net-

works, a single node lifetime behaves like a normal Gaussian distribution which brings

the first light of exploring the network lifetime behavior given the knowledge of nodes

lifetimes [7].

Research has been done to alleviate the energy consumption and extend network

lifetime in wireless sensor networks, from hardware design of individual sensor to routing

and topology construction of the whole network. Among which, one distinct technology

for energy-efficient wireless sensor networks is distributed source coding (DSC) [8,9]. DSC

was proposed to encode the correlated sensor readings separately, i.e. sensors encoding

the readings do not communicate with each other. After the distributed encoding, the

compressed data is sent to a central hub node for joint decoding. Further research on
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this topic demonstrated that convolutional codes [10], Turbo and LDPC codes [11, 12]

performed well in distributed compression for sensor networks. All these approaches are

based on binary distributed sources with refined correlation to each other. However,

in a practical sensor network or even in a lab test bed of wireless sensor network, the

distributed deployed sensors have very rough readings which can hardly be fitted into

the above binary compressing schemes.

Another challenging topic in energy-efficient wireless sensor networks is sensor de-

ployment. The deployment of sensors varies with different applications. A number of

applications require the placement of sensors at desired locations like data collection [13]

and infrastructure security [14], where critical area, buildings and facilities are monitored

by a network of sensors placed adequately. For such placement-friendly applications, suf-

ficient knowledge of the environment is assumed to be available before deployment is

carried out.

In other applications where prior knowledge of the environment can not be ob-

tained, sensors may have to be randomly air-dropped and human intervention after de-

ployment to recharge or replace node batteries may not be feasible. Mobile sensors are

practically desirable in this situation because they have the capability to move around

and re-adjust their positions for high quality communication and better coverage and

surveillance [15]. However mobile sensor deployment itself is an energy consuming pro-

cess because of the motion and communication between sensors. An efficient sensor

re-deployment scheme is a necessity to save energy resources and improve the quality of

communications.

Some prior research proposed sensor deployment strategies based on virtual forces

for target localization [16], [17], [18]. One example of the virtual force concept was

presented in [18]. The pair-wise interaction between sensor nodes is governed by two kinds

of virtual forces - one causes the nodes to repel each other to improve their coverage and



4

the other is an attractive force that prevents the nodes from losing connectivity. Later

Cheng et al. [19] formulated a constrained multivariable nonlinear programming problem

to determine both the locations of the sensor nodes and data transmission pattern. In [20]

and [21], Heo and Varshney developed a distributed self-spreading algorithm (DSSA)

and an intelligent deployment and clustering algorithm (IDCA) for sensor deployment.

Recently, a voronoi diagram (VD)-based deployment algorithm was included in [22]. All

the above algorithms have made lots of efforts to formulate the virtual forces, however

none of which can handle well the uncertainties with the random move and unpredictable

oscillation in sensor deployment. For the purpose of stability and convergence, various

parameters or constraints such as oscillation limit, stable status [20–22], and number of

neighbors [18] have to be imposed to avoid excessive sensor oscillation.

The concept of wireless sensor networking can be applied to the traditional radar

system. Radar as a powerful sensor system, has been employed for the detection and

location of reflecting objects such as aircraft, ships, vehicles, people and the natural

environment. By radiating energy into space and detecting the echo signal reflected from

an object or target, the radar system can determine the presence of a target. Furthermore,

by comparing the received echo signal with the transmitted signal, the location of a target

can be determined along with other target related information [23].

Conventional radar system operates as a pure independent entity. While in a

resource-constrained WSN, such detached operation may lead to deteriorated perfor-

mance and waste of limited resources. Collaborative signal and information processing

over the network is a very promising area of research and is related to distributed infor-

mation fusion [24]. Important technical issues include the degree of information sharing

between sensors and how sensors fuse the information from other sensors. Processing

data from more sensors generally results in better performance but also requires more

communication resources. Similarly, less information is lost when communicating infor-
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mation at a low level (e.g., raw data), but requires more bandwidth. Therefore, it is a

tradeoff between system performance and resource utilization in collaborative informa-

tion processing and data fusion.

A lot of prior research in data fusion are based on the assumption of lossless com-

munication, i.e., the information sent from local sensors is perfectly recovered at the

fusion center. For example, in [25] and [26], Vashney et. al investigated the optimum

fusion rules under the conditional independence assumption. Other papers [27, 28] ad-

dressed the problem of distributed detection with constrained system resources, most of

which provided the solutions to optimize sensor selection. However, this lossless commu-

nication assumption is not practical for many WSNs where the transmitted data suffers

from channel fading and multi-user interference. In another hand, decision fusion with

non-ideal communication channels are studied at both fusion center level [29, 30] and at

the sensor level [31,32]. In [30], Thomopoulos and Zhang derived the optimal thresholds

by assuming a simple binary symmetric channel between sensors and the fusion center.

Their method is quite simple but requires global knowledge of the entire system. In [29],

channel-aware decision fusion rules have been developed using a canonical distributed

detection system where binary decisions from multiple parallel sensors are transmitted

through fading channels to a fusion center. Later, Lin et. al [33] have extended the

channel aware decision fusion rules to more realistic WSN models that involve multi-hop

transmissions. The above results, however, are mostly obtained based on one target or

one event detection which is not applicable to multi-target situations. Furthermore, in a

radar sensor system, when clutter, the unwanted echoes from the natural environment is

much larger than the receiver noise, detection can be quite difficult from that when the

noise is dominant.

Recently, underwater acoustic sensor networks have attracted lots of attention. Un-

derWater Acoustic Sensor Networks (UWA-SNs) consists of a variable number of sensors
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and vehicles to perform collaborative monitoring tasks over a given area. The main mo-

tivation for UWA-SNs is their relative ease of deployment since they eliminate the need

for cables and they do not interfere with shipping activities. UWA-SNs are envisioned

to enable applications for environmental monitoring of physical and chemical/biological

indicators, tactical surveillance, disaster prevention, undersea exploration, assisted navi-

gation, etc.

Location discovery for underwater vehicles/sensors is nontrivial in the oceanic

medium. Propagation delays, motion-induced Doppler shift, phase and amplitude fluc-

tuations, multipath interference, etc., are all significant factors in location measurement.

The well-known Global Positioning System (GPS) receivers, which may be used in ter-

restrial systems to accurately estimate the geographical locations of sensor nodes, do not

work properly in underwater [34]. Some localization schemes based on received signal

strength (RSS), time of arrival (ToA), or angle of arrival (AoA), could be used. Never-

theless, the bandwidth constraint, sensor mobility, and unpredicted variation in channel

behavior make many of these approaches inaccurate or unapplicable [35].

This thesis is organized as follows. Chap 2 addresses the issue of lifetime analysis

and estimation for wireless sensor networks in which the sensor nodes are deployed at

desired locations. Our approach is entirely different from all prior research. In stead

of trying out various probability basis, we propose to apply an interval type-2 fuzzy

logic system (FLS) for lifetime analysis and estimation in a wireless sensor network. We

demonstrate that a type-2 fuzzy membership function(MF), i.e., a Gaussian MF with

uncertain variance is most appropriate to model a single node lifetime in wireless sensor

networks. Two FLSs: a singleton type-1 FLS and an interval type-2 FLS are constructed

for lifetime analysis and estimation. Simulations are implemented on two basic placement

schemes: square-grid and hex-grid. We believe that these two schemes can serve as basis
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for evaluating more complex schemes for their lifetime performance prior to deployment

and help justify the deployment costs.

Chap 3 applies type-1 fuzzy logic systems (FLSs) to handle these uncertainties in

distributed sensor deployment. Instead of attempting to formulate the virtual forces,

FLSs are proposed to re-deploy the sensors. Each individual mobile sensor uses a FLS

to self-adjust its location. For a single sensor node, neighboring nodes’ location is the

only information needed to make the movement decision. Therefore the deployment

scheme based on FLSs is a fully-distributed approach. After applying FLSs, exhaustive

move and unpredictable oscillation is efficiently avoided and fast deployment is achieved.

As a result, the entire sensor network survives for longer lifetime and the quality of

communication in terms of outage probability is

Chap 4 investigates the spectrum efficient coding scheme for correlated non-binary

sources in wireless sensor networks. Our approach attempts to provide a solution to

Chief Executive Officer (CEO) problem. The goal of the CEO problem is to recover as

much information as possible about the actual event from the noisy observations, while

minimizing the total information rate. We propose to exploit the statistical characters of

real sensor readings before constructing codeword cosets. From the approximate Gaussian

readings, Lloyd-Max quantization is applied to minimize the mean square distortion. To

save communication spectrum, a coset encoder is designed to reduce the transmitted bits

based on the probability distribution of quantized values. We show that source encoding

can be completed in a fully distributed way. Each sensor encodes its own readings without

knowing what the other sensors have measured. Our work differs from previous ones not

only in the non-binary sources but in proposing a practical coset encoding scheme for

real senor readings.

Chap 5 considers the decision fusion of Rayleigh fluctuating targets in multi-radar

sensor networks. Decision fusion and data fusion in Wireless Sensor Networks (WSNs) has
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been widely studied in order to save energy. Radar system as a special sensor network,

when implemented for battlefield surveillance, faces bandwidth constraint in real-time

applications instead of energy restriction. A reliable detection of multiple targets in

clutter is perhaps the most important objective in such an echo-location system. In this

work, we study the decision fusion rules of multiple fluctuating targets in multi-radar

(MT-MR) sensor networks. The MT-MR decision fusion problem is modeled as a multi-

input multi-output (MIMO) system. We assume that each radar makes binary decision

for each target from the observation, i.e. if the target is present or not. We derive

our MIMO fusion rules based on the target fluctuation model and compare against the

optimal likelihood ratio method (LR), maximum ratio combiner (MRC) and equal gain

combiner (EGC). Simulation results show that the MIMO fusion rules approach the

optimal-LR and outperforms MRC and EGC at high signal to clutter ratio (SCR).

Chap 6 introduces an application of underwater acoustic sensors. A silent position-

ing scheme termed as UPS is presented for underwater acoustic sensor networks. UPS

relies on the time-difference of arrivals measured locally at a sensor to detect range dif-

ferences from the sensor to four anchor nodes. These range differences are averaged over

multiple beacon intervals before they are combined to estimate the 3D sensor location

through trilateration. UPS requires no time-synchronization and provides location pri-

vacy at underwater vehicles/sensors whose locations need to be determined. To study

the performance of UPS, we model the underwater acoustic channel as a modified Ultra

Wide Band (UWB) S-V model: the arrival of each path cluster and paths within each

cluster follow double Poisson distributions, and the multipath channel gain follows a Ri-

cian distribution. Based on this channel model, both theoretical analysis are performed

and a simulation study on the position error of UPS under acoustic fading channels. The

obtained results indicate that UPS is an effective scheme for underwater vehicle/sensor

self-positioning.
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Simulation results are presented in each chapter respectively. Chap 7 summarizes

the main results of the research work and outlines the future research directions.



CHAPTER 2

WIRELESS SENSOR NETWORK LIFETIME ANALYSIS

2.1 Preliminaries

A sensor network is designed to perform high-level information processing tasks

such as target detection and tracking. Applications of sensor networks are wide ranging

and can vary significantly in modes of deployment, application requirements, sensing

models and quality of services (QoS). In this section, the key assumptions related to our

approach are discussed, then formally characterize the basic modes of sensor placement

in this study followed by the concept of coverage, connectivity and network lifetime.

2.1.1 Assumptions and Notations

The approach of network lifetime analysis developed in this paper is based on the

following assumptions about the wireless sensor networks:

• Sensor nodes are placed in a two-dimensional field. Nodes operate with very limited

energy resources which shape the aspects of the node performance. For instance

the node’s processing ability, sensing and communication range is limited. It is

assumed all sensor nodes originally deployed are identical in power configuration

and functionality.

• Sensing and communication between sensor nodes is done through radio links. An

assumption is made that the radio range for a node is a disk of radius r around the

node where r is taken as the same for all nodes. A sensor node can detect or sense

any target or event within its sensing range, denoted by Rs. A communication

range Rc is also defined which is the distance beyond which the transmitted signal

10
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is received with signal to noise ratio (SNR) below the acceptable threshold level.

In this paper, the communication range Rc is assumed to be equal to the sensing

range Rs.

• To be more energy efficient, direct communication between any pair of sensor nodes

is allowed only if the Euclidean distance r between them satisfies r ≤ Rc. Such

a pair of nodes are called neighboring nodes. Since communication within com-

munication range Rc is by broadcast, all immediate neighbors hear what a node

transmits. Communication between non-neighboring nodes is achieved via peer-to-

peer communication and may consist of several short hops to relay the transmitted

message.

• The maximum allowable distance between two sensor nodes who can communicate

directly, Rmax, is equal to the communication range Rc. In study it follows that

Rmax = Rc = Rs. A sensor network is said to be deployed with minimum density

when the Euclidean distance between all neighboring nodes is r = Rmax.

2.1.2 Basic Modes of Sensor Placement

Sensor placement directly affects power resource management and background data

processing which is carried out with various sensed data in distributed sensor networks.

An intelligent sensor placement enlarges the field coverage, facilitates the operation of

sensors (detecting, communication, data aggregation etc.) and reduces the excessive

communications in fulfilling a task.

The simplest placement modes involve uniform or regular placement of sensor nodes

such that each sensor node in the network has the same number of neighbors. A sen-

sor placement mode that regulates two neighbors per sensor node has been described

in [36]. According to [7], the Square-grid and Hex-grid placement modes are illustrated

in Fig. 2.1(a) and (b) respectively. Square-grid mode in Fig. 2.1(a) shows that each
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sensor node in the network has four neighbors and in the Hex-grid mode in Fig. 2.1(b),

the number of neighbors for every sensor node is three. It is believed that these three

elementary placement modes [7, 36] can serve as a basis for other placement schemes,

because a placement scheme of any complexity can be decomposed into two-neighbor,

three-neighbor and four-neighbor groups.

The distance r in Fig. 2.1(a) and (b) denotes the communication range. Sensor

nodes in both Square-grid and Hex-grid are equidistant from their respective neighbors.

According to the assumption, both grids are deployed with minimum density1.

2.1.3 Coverage and Connectivity

Coverage and connectivity are two important performance metrics of networks and

hence a discussion on them becomes imperative before the lifetime of the network can be

defined.

Coverage scales the adequacy with which the network covers the sensor field. A

sensor with sensing range Rs is said to cover or sense a circular region of radius Rs around

it. If every point in the sensor field is within distance Rs from at least one sensor node,

then the network is said to provide complete or 100% coverage.

Various levels of coverage are acceptable depending on the application. In critical

applications, complete coverage is required at all times. Any loss of coverage leads to a

sensing gap in the field. Such gaps cause breach of security in case of surveillance applica-

tions. Also, in applications which require data with high precision a sensing gap leads to

inaccuracies. For such networks any loss of coverage renders the network nonfunctional.

While in some other applications a small loss of coverage may be acceptable.

1The Hex-grid is observed to have lower density than the Square-grid. Rough calculation shows that

with 36 nodes deployed, the network with Square-grid covers an area of approximate 25r2, and the

Hex-grid covers an area of approximate 48r2, almost double that of the square grid.
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Figure 2.1. Two Placement Modes: (a) Square-Grid (b) Hex-Grid.

Connectivity scales the adequacy with which nodes are able to communicate with

their peers. One of the strengths of sensor networks arises from their ability to aggre-

gate data collected from different sensor nodes. This requires adequate communication

between sensor nodes. Any node should be able to communicate with any other node

for proper functioning of the network. If a large number of nodes fail due to lack of

energy, a part of the network may get completely disconnected from the rest. If a large

number of nodes fail due to lack of energy, a part of the network may get completely
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disconnected from the rest. In the study only 100% connectivity is acceptable and the

network fails with any loss of connectivity. An example of a sensor placement scheme

that concentrates mainly on coverage as its parameter of interest can be found in [37],

where a sensor placement algorithm for grid coverage has been proposed.

In the analysis it is required the network to provide complete coverage and connec-

tivity. Equal importance is given to both parameters and declare the network nonfunc-

tional if either of them falls below their desired levels.

2.1.4 Network Lifetime

The basic definition of lifetime, or more precisely the post-deployment active life-

time of a network is the cumulative active time measured from deployment until network

failure. Based on the levels of coverage and connectivity required to deem a network

functional, network failure can be interpreted in different ways. Since only complete

coverage and connectivity are acceptable to us, network failure corresponds to the first

loss of coverage or connectivity.

This paper concentrates on finding the minimum lifetime of a network, the worst

case scenario. To be able to evaluate this minimum lifetime, we need to know the lifetime

of a single sensor node, the minimum number of node failures that cause network failure,

and the positional relationship 2 between the failed nodes.

Consider the Square-grid and the Hex-grid networks deployed with minimum den-

sity. Both networks survive the failure of a single node without loss of either connectivity

or coverage implying that the minimum number of node failures that can lead to network

failure is greater than one. Now looking into the Square-grid network in Fig. 2.2(a), ap-

parently failure of nodes 20 and 21 causes loss of coverage. Similarly failure of nodes 20

2Positional relationship between two nodes can be that the two nodes are diagonal, adjacent or

completely unrelated.
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Figure 2.2. Loss of coverage examples: (a)Square-grid. (b)Hex-grid.

and 25 in the Hex-grid network brings the coverage down to less than 100%. It comes

to a conclusion that the failure of any two neighboring nodes causes loss of coverage and

hence network failure.

Thus the minimum number of node failures that cause network failure is two and

these two nodes must be adjacent to each other (neighbors). A network may undergo

multiple node failures and still be connected and covered if any of the failed nodes are not
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neighbors. But the absolute minimum number of node failures that can cause network

failure is two.

2.2 Introduction to Fuzzy Sets and Interval Type-2 Fuzzy Logic Systems

2.2.1 Introduction to Type-2 Fuzzy Sets

The concept of type-2 fuzzy sets was introduced by Zadeh [38] as an extension of

the concept of an ordinary fuzzy set, i.e., a type-1 fuzzy set. Type-2 fuzzy sets have

grades of membership that are themselves fuzzy [39]. A type-2 membership grade can

be any subset in [0, 1] – the primary membership; and, corresponding to each primary

membership, there is a secondary membership (which can also be in [0, 1]) that defines

the possibilities for the primary membership. A type-1 fuzzy set is a special case of a

type-2 fuzzy set; its secondary membership function is a subset with only one element,

unity. Type-2 fuzzy sets handle linguistic uncertainties, as typified by the adage “words

can mean different things to different people.” A fuzzy relation of higher type (e.g., type-

2) has been regarded as one way to increase the fuzziness of a relation, and, according

to Hisdal, “increased fuzziness in a description means increased ability to handle inexact

information in a logically correct manner [40]”.

Figure 2.3 shows an example of a type-2 set. The domain of the membership

grade corresponding to x = 4 is also shown. The membership grade for every point is a

Gaussian type-1 set contained in [0, 1], we call such a set a “Gaussian type-2 set”. When

the membership grade for every point is a crisp set, the domain of which is an interval

contained in [0, 1], such type-2 sets are called “interval type-2 sets” and their membership

grades “interval type-1 sets” [41]. Interval type-2 sets are very useful when we have no

other knowledge about secondary memberships.
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Figure 2.3. (a) Gaussian type-2 set. (b) The secondary memberships.

An interval type-2 fuzzy set can be represented by its upper and lower membership

functions (MFs) [42]. An upper MF and a lower MF are two type-1 MFs which are

bounds for the footprint of uncertainty (the union of all primary membership grades) of

an interval type-2 MF. The upper MF is a subset which has the maximum membership

grade of the footprint of uncertainty; and, the lower MF is a subset which has the

minimum membership grade of the footprint of uncertainty.

An overbar (underbar) is used to denote the upper (lower) MF. For example, let

F̃l
k(xk) denote the type-2 MF for the kth antecedent of the lth rule, then the upper and

lower MFs of μ
F̃

l
k
(xk) are μ

F̃
l
k
(xk) and μ

F̃
l
k
(xk), respectively, so that

μ
F̃

l
k
(xk) =

∫
ql∈[μ

F̃
l
k

(xk),μ
F̃

l
k

(xk)]

1/ql (2.1)

where
∫

denotes the union of individual points of each set in the continuum.
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Figure 2.4. Type-2 Gaussian MF with uncertain standard deviation.

Example 1: Gaussian Primary MF with Uncertain Standard Deviation

Consider the case of a Gaussian primary MF having a fixed mean, ml
k, and an

uncertain standard deviation that takes on values in [σl
k1, σ

l
k2], i.e.,

μl
k(xk) = exp

[
−1

2
(
xk −ml

k

σl
k

)2
]
, σl

k ∈ [σl
k1, σ

l
k2] (2.2)

where: k = 1, . . . , p; p is the number of antecedents; l = 1, . . . ,M ; and, M is the number

of rules. The upper MF, μl
k(xk), is (see Fig. 2.4)

μl
k(xk) = N (ml

k, σ
l
k2; xk), (2.3)

and the lower MF, μl
k
(xk), is (see Fig. 2.4)

μl

k
(xk) = N (ml

k, σ
l
k1; xk) (2.4)

�

This example illustrates how to define μ and μ, so that it is clear how to define

these membership functions for other situations (e.g., triangular, trapezoidal, bell MFs).
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2.2.2 Introduction to Type-2 Fuzzy Logic Systems: An Overview

Figure 2.5 shows the structure of a type-2 FLS [41]. It is very similar to the

structure of a type-1 FLS [43]. For a type-1 FLS, the output processing block only

contains the defuzzifier. We assume that the reader is familiar with type-1 FLSs, so that

here we focus only on the similarities and differences between the two FLSs.

FUZZIFIER

   RULES

 INFERENCE

TYPE-2 FUZZY  LOGIC  SYSTEM

CRISP

INPUT

FUZZY   INPUT
SETS

FUZZY  OUTPUT
SETS

x ε X

OUTPUT

PROCESSING

TYPE
REDUCED
SET
  

CRISP
OUTPUT
y = f(x) ε Y

TYPE - REDUCER

DEFUZZIFIER

Figure 2.5. The structure of a type-2 FLS..

The fuzzifier maps the crisp input into a fuzzy set. This fuzzy set can, in general,

be a type-2 set.

In the type-1 case, it generally has “IF-THEN” rules, where the lth rule has the

form “Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl”, where: xis are

inputs; Fl
is are antecedent sets (i = 1, . . . , p); y is the output; and Gls are consequent

sets. The distinction between type-1 and type-2 is associated with the nature of the

membership functions, which is not important while forming rules; hence, the structure

of the rules remains exactly the same in the type-2 case, the only difference being that

now some or all of the sets involved are of type-2; so, the lth rule in a type-2 FLS has

the form “Rl : IF x1 is F̃l
1 and x2 is F̃l

2 and · · · and xp is F̃l
p, THEN y is G̃l”.
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In the type-2 case, the inference process is very similar to that in type-1. The

inference engine combines rules and gives a mapping from input type-2 fuzzy sets to

output type-2 fuzzy sets. To do this, one needs to find unions and intersections of type-2

sets, as well as compositions of type-2 relations.

In a type-1 FLS, the defuzzifier produces a crisp output from the fuzzy set that

is the output of the inference engine, i.e., a type-0 (crisp) output is obtained from a

type-1 set. In the type-2 case, the output of the inference engine is a type-2 set; so,

“extended versions” (using Zadeh’s Extension Principle [38]) of type-1 defuzzification

methods was developed in [41]. This extended defuzzification gives a type-1 fuzzy set.

Since this operation takes us from the type-2 output sets of the FLS to a type-1 set, this

operation was called “type-reduction” and the type-reduced set so obtained was called a

“type-reduced set” [41]. To obtain a crisp output from a type-2 FLS, we can defuzzify

the type-reduced set.

General type-2 FLSs are computationally intensive, because type-reduction is very

intensive. Things simplify a lot when secondary membership functions (MFs) are interval

sets (in this case, the secondary memberships are either 0 or 1). When the secondary

MFs are interval sets, the type-2 FLSs were called “interval type-2 FLSs”. In [42], Liang

and Mendel proposed the theory and design of interval type-2 fuzzy logic systems (FLSs).

They proposed an efficient and simplified method to compute the input and antecedent

operations for interval type-2 FLSs, one that is based on a general inference formula for

them. They introduced the concept of upper and lower membership functions (MFs) and

illustrate their efficient inference method for the case of Gaussian primary MFs. They

also proposed a method for designing an interval type-2 FLS in which they tuned its

parameters.
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In an interval type-2 FLS with singleton fuzzification and meet under minimum

or product t-norm, the result of the input and antecedent operations, Fl, is an interval

type-1 set, i.e., F l = [f l, f
l
], where f l and f

l
simplify to

f l = μ
F̃

l
1
(x1) � . . . � μF̃

l
p
(xp) (2.5)

and

f
l
= μ

F̃
l
1
(x1) � . . . � μF̃

l
p
(xp) (2.6)

where xi (i = 1, . . . , p) denotes the location of the singleton.

In this paper, center-of-sets is used for type-reduction, which can be expressed as:

Ycos(Y
1, · · · , Y M , F 1, · · · , FM) = [yl, yr] =

∫
y1

· · ·
∫

yM

∫
f1

· · ·
∫

fM

1
/∑M

i=1 f
iyi∑M

i=1 f
i

(2.7)

where Ycos is an interval set determined by two end points, yl and yr; f
i ∈ F i = [f i, f

i
];

yi ∈ Y i = [yi
l , y

i
r], and Y i is the centroid of the type-2 interval consequent set G̃

i
; and,

i = 1, . . . ,M . Because Ycos is an interval set, we defuzzify it using the average of yl and

yr; hence, the defuzzified output of an interval type-2 FLS is

f(x) =
yl + yr

2
(2.8)

2.2.3 Applications of Interval Type-2 Fuzzy Logic Systems

Liang and Mendel have developed theory and design methods for the most useful

kind of type-2 fuzzy logic system (FLSs), interval type-2 FLSs [42], and have applied

them to a number of very important applications, such as

1. Fading channel equalization [44] and co-channel interference elimination [45]. The

channel states in a fading channel or channel with co-channel interferences are un-

certain, and they validated that an interval type-2 fuzzy set, Gaussian primary

membership function with uncertain mean, can be used to represent such uncer-

tainties.



22

2. Network video traffic modeling and classification [46]. MPEG variable bit rate

(VBR) traffic are very bursty. They validated that the I, P, and B frame sizes are

log-normal with fixed mean and uncertain variance, so an interval type-2 fuzzy sets

can be used to model the bursty video traffic and an interval type-2 fuzzy logic

system with such type-2 fuzzy set are demonstrated performing much better than

a Bayesian classifier.

3. Connection admission control for ATM network [47]. Connection admission control

is actually a decision making problem. Different factors such as incoming real-time

video/audio packet sizes, non-real time packet sizes, the buffer sizes are uncertain.

They applied an interval type-2 fuzzy logic to handle these uncertainties.

2.3 Modeling Node Lifetime with Gaussian Membership Functions

Though applications of sensor networks vary with task requirements, sensor nodes

retain the basic elements within any sensor network. Behavior of individual sensor in

a manner determines the network performance. As we have discussed in Section 2.1.3,

failure of sensor nodes due to lack of energy may render the network functioning im-

properly or the whole network completely breaking down. Thus it becomes significantly

important to characterize a single node behavior before going into the network layer. A

distinct identity of sensor nodes and wireless sensor network is its constrained energy

resources which is widely measured by the node and network lifetime. In this section, we

study the lifetime manner for single sensor node and explore its probability characters

from real network data.

Since wireless sensor nodes are severely energy constrained due to their compact

form, hardware design and protocol approaches for different layers must take energy effi-

ciency into account to increase the lifetime of sensor networks. However, a fundamental

question - “what is the nature of sensor network lifetime?” has not been answered yet.
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Because the lifetime of each individual node is not constant but random variables, it

follows that the network lifetime is also a random variable. Recently, Jain and Liang [7]

showed that in a wireless sensor network where the workloads are very well-balanced, a

single node lifetime behaves the nature of normal Gaussian distribution. Their observa-

tion was also justified by the knowledge of probability and random process in [7]. Fig 2.6

illustrates the real node lifetime distribution in a hex-grid sensor network.
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Figure 2.6. A single node lifetime distribution in a hex-grid sensor network.

In the study, the first interest is to set up a precise membership function (MF) for

the single node lifetime. From the original data of single node lifetime shown in Table 2.1,

we decomposed the whole data sets into seven segments, and computed the mean μi and

standard deviation σi of node lifetime for each segment, i = 1, 2, ...7. The mean μ and

standard deviation σ for the entire data set were also computed. We are also interested

to know which value - mean μi or standard deviation σi varies more. We first normalized

the mean μi and standard deviation σi of each segment using μi/μ and σi/σ. Then we
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Table 2.1. Mean and STD values for seven segments and the entire node lifetime

Node Lifetime Data Mean Std
Segment 1 1027.4 30.182
Segment 2 1028.9 29.819
Segment 3 1026.3 30.798
Segment 4 1028.7 30.917
Segment 5 1028 29.944
Segment 6 1027 29.975
Segment 7 1027.9 30.306

Entire Data Set 1027.7 30.292
Normalized STD 0.00082783 0.013105

computed the standard deviation of their normalized values σm and σstd. Results are

presented in the end of Table 2.1.

From the last row of Table 2.1, we see that σm << σstd which means standard

deviation σi varies much more than the mean value μi. Therefore we conclude that if

the single node lifetime follows normal Gaussian distribution, it is most appropriate to

be modeled as a Gaussian MF with uncertain standard deviation. This result justifies

the use of the Gaussian MFs to model single node lifetime in Section 2.4.

2.4 Sensor Network Lifetime Analysis Using Interval Type-2 FLSs

In Section 2.3, we came to a conclusion that in wireless sensor networks, the single

node lifetime can be well modeled by a type-2 Gaussian MF with uncertain variance.

This result offers a truly original approach to probe into the trait of network lifetime.

Referring to [4, 6, 7], prior research on sensor network lifetime are mostly heuristic or

application and protocol driven. In this paper, the fuzzy logic systems are proposed to

sensor network lifetime analysis, more specifically to evaluate or estimate network lifetime

using interval type-2 fuzzy logic systems (FLSs). The network lifetime evaluation system

is named as Type-2 Fuzzy Logic Lifetime Evaluator(FLLE2).
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From the overview of type-2 fuzzy logic systems (FLSs) in Section 2.2.2, we know

that in a type-2 FLS, when p inputs are applied to the system, the inference engine

computes the output set corresponding to each rule. After the unique type-reduction

operation, the defuzzifier computes a crisp output from these rule output sets. We next

expatiate the input-output parameters, type-2 antecedent and consequent MFs and fuzzy

rules precisely designed for evaluating sensor network lifetime.

2.4.1 Antecedent and Consequent Memebership Functions

Let N be the number of sensor nodes deployed in a sensor network. All sensor

nodes are initially configured with the same battery level. After a period of time during

which several tasks (detecting, target tracking and communication etc.) were carried

out by different sensors, the network is left with sensor nodes at various battery levels.

It is assumed the sensor network of interest at this point remains at complete coverage

and connectivity and all sensor nodes are still alive. The problem of evaluating network

lifetime is formulated like this:

Given a set of data representing the various battery levels of all N alive sensor

nodes, denoted by p(1),...,p(N), estimate the cumulative alive time T of the network

measured from the point of interest until network failure, where p(i) is the current battery

level of sensor node i.

The N × 1 values of battery levels, p(1),...,p(N) are taken as input to the type-2

fuzzy logic evaluator (FLLE2) and the alive time T of the network measured from the

point of interest until network failure is taken as the output of FLLE2.

One antecedent is depicted as “the remaining battery level of sensor node i” and

the consequent as “the cumulative network alive time from the point of interest until

network failure” The linguistic variables to represent the antecedent are divided into
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three levels: high, moderate and low and the consequent is divided into five levels: very

high, high, moderate, low and very low.

Antecedent and consequent membership functions are chosen based on the result

in Section 2.3. A type-2 Gaussian MF with uncertain standard deviation is illustrated

in Fig 2.4. In this study, all antecedents and consequents use the same type of MFs and

the MF parameters are initialized consistently.

2.4.2 Rules Design

We apply reliability theory from control system to design the fuzzy rules. In this

section, we first treat the basics of reliability theory then demonstrate how this knowledge

is extracted for rules design with two simple examples.

2.4.2.1 Basics of Reliability Theory

For the sensor network lifetime issue studied in this paper, reliability theory pro-

vides a feasible method to design fuzzy rules. To understand this, The reliability block

diagram (RBD) is introduced. RBD is a graphical representation of the components of

the system, and provides a visual representation of the way components are reliability-

wise connected. Thus the effect of the success or failure of a component on the system

performance can be evaluated.

Consider a system with two components. If this system is such that a single com-

ponent failure can render the system nonfunctional, then it is said that the components

are reliability-wise connected in series. If the system fails only when both its components

fail, then it is said that the components are reliability-wise connected in parallel. Note

that the physical connection between the component may or may not be different from

their reliability-wise connection. The RBD ’s for both cases are given in Fig. 2.7. Any



27

complex system can be realized in the form of a combination of blocks connected in series

and parallel.

Component 1

Component 2

(a)

Component 1 Component 2

(b)

Figure 2.7. (a)Parallel RBD (b)Serial RBD.

2.4.2.2 Rules Design Using Reliability Theory

In the analysis, the wireless sensor network is the system under consideration and

the sensor nodes are the components of the system. We detail below how to design rules

with the knowledge of reliability theory referring to the two basic RBDs in Fig. 2.7. It is

assumed that the workload among all components (sensor nodes) are very well-balanced.

Example 2: Set up Fuzzy Rules for the Parallel System in Fig. 2.7(a)

In the parallel system, crisp logic claims that the system (network) fails only when

both components (sensor nodes) fail. In fuzzy logic systems, the rules can be set up as

one example shown bellow:

IF the remaining battery level of component 1 (sensor node 1) is high and the

remaining battery level of component 2 (sensor node 2) is moderate, THEN the lifetime

of the system (network) is very high.

Example 3: Set up Fuzzy Rules for the Series system in Fig. 2.7(b)
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In the series system, crisp logic claims that the system (network) fails when either

component fails. In fuzzy logic systems, the rules can be set up as one example shown

bellow:

IF the remaining battery level of component 1 (sensor node 1) is low and the remaining

battery level of component 2 (sensor node 2) is moderate, THEN the lifetime of the

system (network) is low.

Note that the parallel and series systems are the essential ways to model two sensor

nodes. A wireless sensor network consisting of multiple sensor nodes can be hierarchically

represented in the reliability block diagram.

2.4.3 Case Studies: Rules Design

2.4.3.1 Square-Grid Sensor Network

As defined in Section 2.1.4, the minimum network lifetime is the time to failure of

any two neighboring nodes. We know that the failure of any single node does not cause

network failure. The failure of any node coupled with the failure of any of its neighbors

causes network failure. Using this definition the RBD is built for the square-grid as

shown in Fig 2.8.

Fig 2.8 shows the RBD block for a single node in the network. A node can be

modeled in two ways depending on its position in the sensor field. This distinction based

on its position is made due to a simple observation that nodes at the right edge of the

sensor field (region-2) do not have any right neighbor (node b) as opposed to nodes in

region-1. Also, nodes at the bottom edge of the sensor field (region-2) do not have a

bottom neighbor (node c) as opposed to the nodes in region-1. Note that as every node

in a square-grid, node a has four neighbors, but its relationship with only two neighbors is

modeled in its RBD block. This is because the relationship with the other two neighbors
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Figure 2.8. RBD of a single node in a square grid.

will be modeled when their RBD blocks are constructed. If this is not followed then the

relationship between every node-neighbor pair will be modeled twice.

We abstract three antecedents from the RBD of block-1 in Fig 2.8.

• Antecedent 1 - The remaining battery level of node a.

• Antecedent 2 - The minimum remaining battery level of node b and c.

• Antecedent 3 - The remaining battery level of node d.

The consequent is depicted as “minimum network lifetime”. The linguistic variables

to represent the antecedent are divided into three levels and the consequent is divided

into five levels as detailed in 2.4.1. Total 27 = 33 rules (3 antecedents and each has

3 fuzzy sub-sets) are set up for square-grid block-1. Table 2.2 gives the complete 27

designed rules.

Two antecedents are chosen based on the RBD of block-2 in Fig 2.8 and consequent

is defined the same as in block-1. Total 9 = 32 rules shown in Table 2.3 are constructed

in this scheme.

• Antecedent 1 - The remaining battery level of node x.

• Antecedent 2 - The remaining battery level of node y.
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Table 2.2. Complete 27 rules for square-grid block-1

Rule Number Antecedent 1 Antecedent 2 Antecedent 3 Consequent
1 Low Low Low Very Low
2 Moderate Low Low Very Low
3 High Low Low Low
4 Low Moderate Low Low
5 Moderate Moderate Low Moderate
6 High Moderate Low High
7 Low High Low Moderate
8 Moderate High Low High
9 High High Low Very High
10 Low Low Moderate Very Low
11 Moderate Low Moderate Low
12 High Low Moderate Moderate
13 Low Moderate Moderate Moderate
14 Moderate Moderate Moderate High
15 High Moderate Moderate Very High
16 Low High Moderate Moderate
17 Moderate High Moderate High
18 High High Moderate Very High
19 Low Low High Low
20 Moderate Low High Moderate
21 High Low High Moderate
22 Low Moderate High High
23 Moderate Moderate High Very High
24 High Moderate High Very High
25 Low High High High
26 Moderate High High Very High
27 High High High Very High

2.4.3.2 Hex-Grid Sensor Network

The analysis for the hex-grid is carried out on the same lines as that of the square-

grid. Fig 2.2 (b) shows that as in the case of a square grid, two neighboring node failures

cause network failure. The RBD block of a single node is shown in Fig. 2.9.
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Table 2.3. Complete 9 rules for square-grid block-2

Rule Number Antecedent 1 Antecedent 2 Consequent
1 Low Low Very Low
2 Moderate Low Low
3 High Low Moderate
4 Low Moderate Low
5 Moderate Moderate High
6 High Moderate Very High
7 Low High Moderate
8 Moderate High Very High
9 High High Very High

Block

cb

a

d
a

b

c d

Figure 2.9. RBD block for a single node in the Hex-grid.

Since the relation between a node and all of its neighbors is modeled by its corre-

sponding RBD block, the RBD block’s for the neighbors is not constructed as this causes

the relationship between the nodes to be considered twice. In the hex-grid network, things

simplify a lot when we abstract two antecedents from its hexagonal structure. The two

antecedents are listed below:

• Antecedent 1 - The remaining battery level of node a.

• Antecedent 2 - The minimum remaining battery level of node b, c and d.

Consequent definition, levels to represent antecedent and consequent are consistent

with Section 2.4.1. Total 9 = 32 rules constructed for hex-grid network are listed in

Table 2.3.
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Table 2.4. Complete 9 rules for Hex-grid network

Rule Number Antecedent 1 Antecedent 2 Consequent
1 Low Low Very Low
2 Moderate Low Low
3 High Low Moderate
4 Low Moderate Low
5 Moderate Moderate High
6 High Moderate Very High
7 Low High Moderate
8 Moderate High Very High
9 High High Very High

2.5 Simulation and Discussion

In the previous sections, it is theoretically addressed the approach to analyze wire-

less sensor network lifetime using interval type-2 fuzzy logic systems. Research on the

single node lifetime justified the use of Gaussian MFs with uncertain standard deviation

(std) to model node lifetime and type-2 fuzzy logic systems for the network lifetime like-

wise. We are now ready to validate the feasibility of our approach. In this section, we

will test our new Type-2 Fuzzy Logic Lifetime Evaluator(FLLE2) and train the design

parameters of FLLE2 with testing data. A singleton type-1 fuzzy logic system is devised

to compare the performance with FLLE2.

2.5.1 Energy Consumption Model and Test Data Generation

Simulation is implemented on two deployment modes: square-grid and hex-grid.

For both modes, the basic units in Fig 2.8 block-1 and Fig 2.9 are considered and deploy

the network with minimum density (referring to Section 2.1.1). All sensor nodes are

initialized with power level up to 10J(Joule). Note our simulation does not start from

the very beginning of deployment. Our explicit goal is to evaluate the remanent active

time of a network when some sensor nodes have consumed certain amount of energy in
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task performing. Thus we initialize the remaining power level of all sensor nodes by

random variables within [0, 10]J .

Radio energy consumption model has been well-studied in LEACH (Energy-Efficient

Communication Protocols for Wireless Microsensor Networks) [48] and ESO (Energy-

Efficient Self-Organization for Wireless Sensor Networks) [49]. Different applications

consume energy resources in different manners. According to the path loss model in

wireless communication, the energy E needed to transmit over distance d is proportion-

ate to dβ give by E ∼ dβ , where β is the path loss exponent depending on the specific

propagation environment. For example, β will have a larger value for long distance

transmission than for short distance transmission. In order to save energy resources and

decrease interference, power control is widely used in wireless communications such that

the radio could be adjusted for a certain range of output power level. The following

model is adopted from [48] where perfect power control is assumed.

To transmit l bits over distance d, the sender’s radio spends

ETX(l, d) = ETX−elec(l) + ETX−amp(l, d) =

⎧⎪⎪⎨
⎪⎪⎩
lEelec + lεfsd

2 d < d0

lEelec + lεmpd
4 d ≥ d0

(2.9)

and to receive this message, the receiver’s radio spends

ERX(l, d) = ERX−elec = lEelec. (2.10)

The electronics energy, Eelec, depends on factors such as the digital coding, modu-

lation, filtering, and spreading of the signal, whereas the amplifier energy, εfsd
2 in free-

space or εmpd
4 in multi-path environment, depends on the distance to the receiver and

the acceptable bit-error rate. For the simulations described in later sections, the commu-
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nication energy parameters are set as: d0=86.2m, the radio dissipates Eelec=50nJ per bit

to run the transmitter or receiver circuitry, εfs=10pJ/bit/m2 and εmp=0.0013pJ/bit/m4.

In the simulation, the formula in (2.9) under the circumstances d < d0 is used.

Sensor nodes take turns to transmit data to their immediate neighbors by broadcast

until network failure. It is assumed the transmission alternation is determined by the

remaining power level of individual sensor nodes at the beginning of each epoch. Sensor

node with the lowest power level gets to transmit with the least probability. We also

make the assumption that the transmitted data bits per turn is a constant such that

the energy dissipation varies only with the transmitting distance. Simulations are run

for square-grid and hex-grid wireless sensor networks using the OPNET platform set up

in [49]. The actual sensor network lifetime can be obtained for different sensor battery

level [0, 10]J settings.

Data sets of N = 600 are collected for square-grid and hex-grid networks respec-

tively. Each data set consists of battery levels of 4 nodes and actual network lifetime. In

the FLS network lifetime analysis, 300 data sets are used for training and the remaining

300 data sets were used for testing.

2.5.2 Simulation Results and Discussion

A type-2 Fuzzy Logic Lifetime Evaluator (FLLE2) and a type-1 Fuzzy Logic Life-

time Evaluator (FLLE1) are designed for a square-grid wireless sensor network. The

initial 27 rules were designed according to Table 2.2. The antecedent and consequent

MFs for FLLE1 and FLLE2 are plotted in Fig. 2.10. Then the parameters of FLLE1 and

FLLE2 are tuned using steepest-descent algorithm. We followed the training algorithm

proposed in [42] for FLLE2. 300 data sets were used for training. Both FLLE1 and

FLLE2 were trained for 6 epochs. After training, the parameters of FLLE1 and FLLE2

were fixed and the remaining 300 data sets were used for testing.
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Figure 2.10. (a)Antecedent MFs (b)Consequent MFs.

Fig. 2.11 summarized the root-mean-square-errors (RMSE) between the estimated

lifetime and the actual lifetime. Observe that the RMSEs of both FLLE1 and FLLE2

for the square-grid wireless sensor network decrease along with the tuning epoch and the

FLLE2 performs much better than the FLLE1. For example, FLLE1 takes down RMSE

from the initial 0.1472 to around 0.037 at the 6th epoch while FLLE2 reduces RMSE

from 0.104 to 0.006. FLLE2 achieves nearly 83.8% reduction in RMSE comparing to

FLLE1 at the 6th epoch.

Similarly, a FLLE1 and a FLLE2 are designed for hex-grid wireless sensor network.

The initial 9 rules were set according to Table 2.4. The same antecedent and consequent

MFs as in square-grid network were used. The FLLE1 and FLLE2 are then trained and

tested. Fig. 2.12 plotted the RMSE between the estimated lifetime and the actual lifetime.

Results show that the FLLE1 and the FLLE2 for a hex-grid sensor network decrease the

RMSE along with the tuning epoch, and the FLLE2 outperforms the FLLE1 likewise.

For example, FLLE1 reduces the RMSE from the initial 0.1734 to around 0.069 at the 6th

epoch while the FLLE2 reduces the RMSE from 0.1038 to 0.006. The FLLE2 achieves

nearly 91.3% reduction in RMSE comparing to FLLE1 at the 6th epoch.
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Figure 2.11. Square-Grid: RMSE of FLLE1 and FLLE2.
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Figure 2.12. Hex-Grid: RMSE of FLLE1 and FLLE2.

Up to the present, the basic units of square-grid and hex-grid wireless sensor net-

works are discussed. Now, let Nmin be the number of sensor nodes required to be deployed

with minimum density (referring to Section 2.1.1). For square-grid sensor network, the

network RBD in Fig. 2.8 consists of (
√
Nmin − 1)2 block-1’s and 2(

√
Nmin − 1) block-2’s

in series, the whole square grid network can actually be decomposed into multiple blocks
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serial connected together and the method of setting up rules can be applied likewise.

Similarly, in hex-grid sensor network, Nmin/2 RBD blocks in Fig. 2.9 connected in se-

ries represent the network which can be decomposed the same way as in the square-grid

sensor network.



CHAPTER 3

DISTRIBUTED SENSOR NETWORKS DEPLOYMENT

3.1 Overview of Type-1 Fuzzy Logic Systems

FUZZIFIER  DEFUZZIFIER

   RULES

 INFERENCE

  FUZZY  LOGIC  SYSTEM

CRISP

INPUT

CRISP

OUTPUT

FUZZY   INPUT
SETS

FUZZY  OUTPUT
SETS

x ε X y=f(x) ε Y

Figure 3.1. The structure of a fuzzy logic system.

Figure 3.1 shows the structure of a rule-based type-1 fuzzy logic system (FLS) [43].

It contains four components: fuzzifier, rules, inference engine and defuzzifier. When an

input is applied to a FLS, the inference engine computes the output set corresponding

to each rule. The defuzzifer then computes a crisp output from these rule output sets.

Rules are the heart of a FLS and may be provided by experts or can be extracted

from numerical data. In either case, the rules that we are interested in can be expressed

as a collection of IF-THEN statements, e.g. [50],

38
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IF the total average input rate of real-time voice and video traffic is a moderate

amount, and the total average input rate of the non-real-time data traffic is some,

THEN the confidence of accepting the telephone call is a large amount.

The IF-part of a rule is its antecedent and the THEN-part of a rule is its consequent.

The process of making a crisp input fuzzy is called fuzzification. The most widely

used fuzzification is the singleton fuzzification. All fuzziness for a particular fuzzy set

is essentially characterized by the membership functions. The shapes used to describe

the fuzziness have very few restrictions, but with the help of mathematical structure,

some standard terms related to the shape of membership functions have been developed

over the years [51]. The most common forms of membership functions are those that are

normal and convex.

Consider a type-1 FLS having p inputs and one output. Suppose that it has M

rules, where the lth rule has the form:

Rl : IF x1 is Fl
1 and x2 is Fl

2 and · · · and xp is Fl
p, THEN y is Gl. l = 1, ...,M

Assuming singleton fuzzification is used, when an input x′ = {x′1, . . . , x′p} is applied,

the degree of firing corresponding to the lth rule is computed as

μFl
1
(x′1) � μFl

2
(x′2) � · · · � μFl

p
(x′p) = T p

i=1μFl
i
(x′i) (3.1)

where � and T both indicate the chosen t-norm.

The last but not the least process in a FLS is called defuzzification. Defuzzification

is the conversion of fuzzy output sets to crisp output sets. There are many defuzzifi-

cation methods including maximum, mean-of-maxima, centroid, center-of-sums, height,

modified height and center-of-sets. This paper focuses for illustrative purposes, on the

center-of-sets defuzzifier [50]. It computes a crisp output for the FLS by first computing

the centroid, cGl, of every consequent set Gl, and, then computing a weighted average
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of these centroids. The weight corresponding to the lth rule consequent centroid is the

degree of firing associated with the lth rule, T p
i=1μFl

i
(x′i), so that

ycos(x
′) =

∑M
l=1 cGlT p

i=1μFl
i
(x′i)∑M

l=1 T
p

i=1μFl
i
(x′i)

(3.2)

where M is the number of rules in the FLS.

The next section will detail the design of the rule-based type-1 FLSs for distributed

sensor deployment issue.

3.2 Design of FLSs for Distributed Sensor Deployment

3.2.1 Assumptions and Notations

In this research, several assumptions are made:

• Sensor field is denoted by a two-dimensional grid. Sensing and communication is

modeled as a circle on this grid.

• Coverage discussed in this paper is grid coverage. A grid point is covered when at

least one sensor covers this point.

• A sensor can detect or sense any event within its sensing range, denoted by Rs.

Coverage is determined based on Rs.

• Two sensors within their communication range, denoted by Rc can communicate

with each other. Neighbors of a sensor are defined as nodes within its communica-

tion range.

• All sensor nodes are assumed peer to peer.

• Sensor nodes have certain mobility and are capable of computing, detection and

communication.

• Sensor node can obtain the knowledge of its location.

• Sensors are synchronized by coherence time. A one-time move is made within each

coherence period.
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3.2.2 FLSs Design for Distributed Sensor Deployment

Fuzzy logic system is well known to be able to handle uncertainty and ambiguity.

In practice not all uncertainty is random. Some forms of uncertainty are non-random

and hence not suited to treatment or modeling by probability theory. Fuzzy set the-

ory is a marvelous tool for modeling uncertainty associated with vagueness, or with a

lack of information regarding a particular element of the problem at hand. Concern-

ing the distributed sensor deployment, the moving distance and direction of each sensor

are distributed and full of uncertainty which can barely be described by some random

distribution. A fuzzy logic system is well known as model free. Their membership func-

tions are not based on statistical distributions. Therefore we propose to apply a fuzzy

logic system to the distributed sensor deployment problem. Each sensor makes a fully

distributed decision on its movement based on FLS.

The algorithm starts with random deployment. Assume a two-dimensional sensor

field is the target area of surveillance. In the initial condition, a given number of sensors

are randomly deployed. Because of the randomness in initial deployment, it is very

likely the sensor field will not be fully covered. Part of the sensor field might be over

crowded with sensors. Such unbalanced deployment brings difficulty in target detection

and tracking, and increases the interference during communications. Fig. 3.2 gives an

example of a randomly deployed field. As shown in Fig. 3.2, targets in the uncovered

area cannot be detected while in the over crowded area, communication between sensors

is corrupted by the interference from neighboring nodes.

The algorithm then intends to re-deploy the sensors such that maximum field cov-

erage and high quality communication could be achieved. Each individual sensor in the

network needs to fine-tune its location such that densely deployed sensors can be evenly

spreaded in the field. Two critical procedures are considered in the algorithm:

• Determine the next-step move distance for each sensor.
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Figure 3.2. An Example of Random Deployment.

• Determine the next-step move direction for each sensor.

The next-step move distance is hard to determine. If the move distance is too

small or too large, each step consumes more time and energy to get a stable deployment.

Excessive move and oscillation is unavoidable in previous work with no fuzzy system.

This paper designs a fuzzy logic system to determine the next-step move distance for

each sensor.

An ideal sensor deployment will have uniform distribution for better coverage. But

in random deployment, coverage uniformity is hard to achieve initially. In a sensor

network composed of mobile sensors, each sensor detects the number and location of

its neighbors and decides its neighborhood density. If the sensor has a high density of

neighboring nodes, it makes decision using FLSs to shift a certain distance away from

the high density area. If the neighborhood density is low, the sensor might stand still or

shift a little distance away from the current location.
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As illustrated in Fig. 3.2, the neighborhood density of a sensor node is determined

by two factors: the number of neighbors and the distance between a sensor node and its

neighbors. Based on this knowledge, two antecedents are chosen as follows:

Antecedent 1. Number of neighbors of each sensor.

Antecedent 2. Average Euclidean distance between sensor node and its neighbors

The linguistic variables to represent the number of neighbors for each sensor are

divided into three levels: high, moderate and low ; and those to represent the average the

Euclidean distance between sensor node and its neighbors are divided into three levels:

far, moderate and near. The consequent - the shift distance normalized by sensing range

Rs is divided into three levels: far, moderate and near. Table 1 summaries the rules and

consequents.

Table 3.1. Fuzzy Rules and Consequent

Antecedent 1 Antecedent 2 Consequent
Low Near Moderate
Low Moderate Near
Low Far Near

Moderate Near Far
Moderate Moderate Moderate
Moderate Far Near

High Near Far
High Moderate Moderate
High Far Moderate

One example of rules is as follows:

IF the number of neighbors of sensor i is high and average Euclidean distance between

sensor i and its neighbors is moderate, THEN the normalized shift distance of sensor i

should be high.



44

9 rules are set up for this FLS because every antecedent has 3 fuzzy sub-sets and

there are 2 antecedents. Trapezoidal membership functions (MFs) are used to represent

high, low, far and near and triangle MFs to represent moderate. Two antecedents are

normalized to the range [0, 10]. These membership functions are shown in Fig. 3.3.

near, low moderate far, high

0 2 4 6 8 10

0 .5

1

Figure 3.3. Antecedent Membership Functions.

Applying center-of-sets defuzzification [7], for every input (x1, x2), the output is

computed using

y(x1,x2) =

∑9
l=1 cGlμFl

1
(x1)μFl

2
(x2)∑9

l=1 μFl
1
(x1)μFl

2
(x2)

(3.3)

Repeating these calculations for ∀xi ∈ [0, 10],we obtain a decision surface y(x1, x2)

as shown in Fig. 3.4.

Generally, the decision surface is time-varying and nonlinear. From Fig. 3.4, al-

though the number of neighbors for a particular sensor is high, the move distance can

be smaller than some sensor with fewer ”crowded” neighbors, i.e. very close average
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Figure 3.4. Control Surface of Shift Distance.

Euclidean distance between the sensor and its neighbors. With the assist of the decision

surface, the next-step move distance can be determined.

Comparing to move distance, the next-step move direction is much easier to decide.

Coulomb’s law in physics becomes a useful tool to tackle the problem. For instance,

assume sensor i has 2 neighbors in its communication range as shown in Fig. 3.5.

The coordinate of sensor i is denoted as Ci = (Xi,Yi).

The next-step move direction of sensor i could be represented as follows:

�v =
2∑

j=1

�Cj − �Ci

| �Cj − �Ci|2
(3.4)

tan(α) =
Y(�v)

X(�v)

(3.5)

After getting distance and direction (angle α) , sensor i clearly knows the next-step

move information. In order to prolong the battery life of each individual sensor, a coher-

ence time is introduced as the duty cycle during which the changes of two antecedents
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Figure 3.5. Example of Next Step Move Direction.

can be ignored. Sensors are put into idle or sleep mode if within the coherence time, the

information of neighbors remains unchanged.

3.3 Simulation and Discussion

Simulation investigates various number of sensors deployed in a field of 10×10

square kilometers area. We assume each sensor is equipped with an omni-directional

antenna to carry out the task of detection and communication. Evaluation of our scheme

follows three criteria: field coverage, converging speed, mean travel distance per node

and outage probability. Results are averaged over 200 Monte Carlo simulations.

The performance of the proposed algorithm is compared with the Distributed Self

Spreading Algorithm (DSSA) proposed in [20]. DSSA is known as a good solution in the

self-deployment of mobile sensor nodes. The main idea of DSSA is to define a partial

force for the movement of sensors during the deployment process. The force a node

receives from a closer neighbor node is greater than that from a farther neighbor. For N
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sensor nodes deployed in a square field with area A, DSSA formulates the partial force

sensor node i receives from neighbor node j as:

f i,j
n =

D

μ2
(Rc −

∣∣pi
n − pj

n

∣∣) pi
n − pj

n∣∣pi
n − pj

n

∣∣ (3.6)

where Rc stands for communication range, μ = N ·π·R2
c

A
is called the expected density

while D is the local density, and pi
n stands for the location of node i at time step n. Each

node makes decision to move by adding up all partial forces from its neighboring nodes.

DSSA sets up two criteria: stable status limit (Slim) and oscillation limit (Olim) to stop

a sensor’s movement.

Fig. 3.6 shows at 2 kilometer sensing range (Rs=2km) and 4 kilometer commu-

nication range (Rc=4km), the coverage of the initial random deployment, the coverage

after DSSA is implemented and the coverage after using FLSs. 3 iterations are run for

all three schemes. When 20 sensors are deployed, the coverage after random deployment

was initially around 85% and the DSSA increased it to 93%. After FLSs were used, the

coverage reached approximate 98% after 3 iterations.

Fig. 3.7 gives the results when 10 iterations are completed for the three deployment

schemes. We observe that the performance of DSSA gets closer to our FLSs after 10

iterations. Both FLSs and DSSA can dramatically increase the network coverage in

the low density network. Fig. 3.6 and Fig. 3.7 also indicates that instead of deploying

large amount of sensors, the desired field coverage could be achieved with fewer sensors.

Comparing Fig. 3.6 and Fig. 3.7, the FLSs increases the network coverage faster than

the DSSA in terms of iteration times.

Fig. 3.8, Fig. 3.9 and Fig. 3.10 are the real pictures of 20 sensors from random

deployment, after implementing FLS and DSSA respectively. Both FLS and DSSA can
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Figure 3.6. Coverage vs. Number of Sensors, 3 iterations.

spread the densely deployed sensors but the deployment after using FLS demonstrates

more uniformity than the one using DSSA.

Next two cases are simulated when 30 sensor nodes and 60 sensor nodes are deployed

respectively. Network coverage according to these two cases are presented in Fig. 3.11

and Fig. 3.12.

It is fairly clear in Fig. 3.11 and Fig. 3.12 that the FLSs increase the network

coverage much faster than the DSSA. For instance, when 30 sensor nodes were deployed,

the FLSs boost the network coverage from the initial 93% to around 98.5% in only 1

iteration whereas the DSSA takes 6 iterations to reach the same coverage.

The average distance traveled by each sensor node is also important in the energy

saving problem. For energy constrained wireless sensor nodes, less travel distance leads to

less energy consumption. The goal is to adjust sensors’ positions appropriately such that

the maximum coverage is achieved with minimum energy dissipation in deployment. We

calculated the average distance traveled by each sensor node for the FLS and compared

it against the DSSA since both reach the same network coverage. Results in Fig. 3.13
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Figure 3.7. Coverage vs. Number of Sensors, 10 iterations.

indicate that for the FLS scheme, each sensor node travels less average distance than

that in the DSSA scheme. Furthermore, in FLS scheme, the average travel distance by

each node varies little when the number of sensors changes, which implies that the energy

consumed in deployment is nearly independent of network density.

In wireless sensor networks, the radio link performance is usually limited by interfer-

ence rather than noise, therefore, the probability of outage due to co-channel interference

is of primary concern. Measurements [52] have shown that at any value of di,j (the Eu-

clidean distance between sensor i and sensor j ), the path loss PL(di,j) is random and

distributed log-normally (normal in dB) about the mean distance dependent value. That

is:

PL(di,j)[dB] = PL(di,j) +Xσ = PL(d0) + 10nlog(
di,j

d0
) +Xσ (3.7)

and
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Figure 3.8. Random deployment with 20 sensors. (Rc=4,Rs=2, 10*10 area).

Pr(di,j)[dBm] = Pt[dBm] − PL(di,j)[dB] (3.8)

where Xσ is a zero-mean Gaussian distribution random variable (in dB) with stan-

dard deviation σ (also in dB).

The log-normal distribution describes the random shadowing effects on the prop-

agation path which implies that measured signal levels at a certain distance have a

Gaussian (normal) distribution about the distance-dependent mean and standard devi-

ation σ. Since PL(di,j) follows normal distribution, so is Pr(di,j), and the Q function

may be used to determine the probability that the received signal level will exceed (or

fall below) a particular level.

The probability that the received signal level will exceed a certain value γ can be

calculated from the cumulative density function as
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Figure 3.9. Deployment with 20 sensors after implementing FLS.

Pr[Pr(di,j) > γ] = Q

(
γ − Pr(di,j)

σ

)
(3.9)

For sensor i with N neighbors, if the sensor i acts as the destination node during

one communication message, the signal to interference ratio (SIR) is represented as:

SIR(i) =
Pr(di,j)∑N

k=1 Pr(di,k)
, k �= j (3.10)

The denominator denoting the effect of co-channel interference is a sum of N − 1

log-normal signals. Evaluating the outage probability requires the probability distribu-

tion of the interference power. There is no known exact expression for the probability

distribution for the sum of log-normal random variables, but various authors have de-

rived several approaches which approximate the sum of log-normal random variables by

another log-normal random variable.
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Figure 3.10. Deployment with 20 sensors after implementing DSSA.

This paper used Fenton-Wilkinson method [53]. The co-channel interference can

now be approximated by one log-normal random variable. SIR(in dB) as a result fol-

lows log-normal distribution as well. We expatiate the Fenton-Wilkinson method in the

Appendix. Results of outage probability are presented in Fig.3.14.

Observe in Fig. 3.14 that the FLSs scheme successfully reduced the outage proba-

bility by nearly 15% compared to the DSSA method when the number of sensors is 60.

This implies a higher probability that the received signal level will exceed the SIR thresh-

old using the FLSs scheme. The DSSA did not perform well in the outage probability

because it did not take the outage probability into performance evaluation [20].

It is introduced earlier that DSSA stops a sensor’s movement by two criteria: stable

status limit (Slim) and oscillation limit (Olim). Reference [20] shows that it takes more

than 10 times the iterations to termination. Then the fuzzy approach gains a distinct

advantage over DSSA by converging in around 3 iterations. Thus a stop criteria is not
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Figure 3.11. Coverage vs. Number of Iterations, 30 Nodes.

required in this fuzzy approach. These facts indicate that this FLS scheme is much faster

and simpler to implement comparing to the DSSA method and more significantly, the FLS

scheme maximizes the network coverage with less energy consumption in deployment.
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CHAPTER 4

SPECTRUM EFFICIENT CODING SCHEME

4.1 Prelimiaries

This section reviews the basic concepts of distributed source coding for correlated

information and introduce Slepian-Wolf coding for lossless source coding and Wyner-Ziv

coding for the lossy case.

Consider a distributed wireless sensor network consisting of individual sensors that

monitor the sensor field. These sensors transmit their highly correlated data to a central

hub node to reconstruct the observations. Transmission of redundant information can be

easily avoided if the sensors communicate with each other but such inter-node cooperation

requires higher bandwidth and consumes more energy in communication. Slepian and

Wolf in [54] proved that if there is no communication among the sensors, theoretically

there was no loss in performance under certain conditions. The Slepian-Wolf theorem has

been extended to the lossy coding of continuous-valued sources by Wyner and Ziv [54,55].

4.1.1 Slepian-Wolf Coding

Let X and Y be two correlated independent and identically distributed (i.i.d)

binary sources. For lossless compression with X́ = X and Y´= Y after decompression,

from Shannon’s source coding theory [56], a rate given by the joint entropy H(X, Y ) of

X and Y is sufficient if encoding them together.

Fig. 4.1 gives an example of joint encoding and distributed encoding of two binary

sources. In Fig. 4.1 (a), encoder X compress X into H(X) bits per sample and based on

the complete knowledge of X at both encoder and decoder, Y is then compressed into

56
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H(Y |X) bits per sample, while in Fig. 4.1 (b), encoder X and Y do not communicate

and perform separate encoding.

ENCODER X

ENCODER Y

CORRELAT ED
SOURCES DECODER

X

Y

X '

Y '

(a)

ENCODER X

ENCODER Y

CORRELAT ED
SOURCES DECODER

X

Y

X '

Y '

(b)

Figure 4.1. (a) Joint encoding. (b) Distributed encoding.

The Slepian-Wolf theorem [54] states that if X and Y are correlated according

to some arbitrary probability distribution p(x, y), then X can be compressed separately

(without access to Y ) without losing performance compared to the condition in Fig. 4.1

(a). It says that the achievable region of DSC for discrete sources X and Y is given by

RX ≥ H(X|Y ), RY ≥ H(Y |X) and RX +RY ≥ H(X, Y ), which is shown in Fig. 4.2.

For practical Slepian-Wolf coding, the first attemp is to approach the corner point

A in the Slepian-Wolf rate region of Fig. 4.2 with R1+R2 = H(X|Y )+H(Y ) = H(X, Y ).

This is actually a problem of source coding of X with side information Y at the decoder

as shown in Fig. 4.3. Similarly the other corner point B of the Slepian-Wolf rate region

can be approached by exchanging the roles of X and Y and all points between the two

corner points can be realized by time-sharing.
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Figure 4.2. The Slepian-Wolf region for two binary sources.
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Figure 4.3. Lossless source coding with side information at the decoder.

4.1.2 Wyner-Ziv Coding

The Slepian-Wolf scheme focused on lossless source coding of discrete sources with

side information at the decoder. However most sensor network applications deal with

continuous sources. The rate distortion with side information at the decoder thus be-

comes a big concern. The problem to solve in the lossy source coding is how many bits

are needed to encode X under the constraint that the average distortion between X and

X́ is E[d(X, X́)] ≤ D, assuming the side information Y is available only at the decoder.

Wyner and Ziv [55] first considered this problem and gave the rate-distortion func-

tion R∗
WZ(D) for both discrete and continuous cases and general distortion metrics d(.).

Fig. 4.4 is an illustration of Wyner-Ziv coding. In general, Wyner-Ziv coding set up the

Slepian-Wolf coding in that coding of X is with respect to a fidelity criterion rather than

lossless coding.



59

LOSSY SOURCE
ENCODER

JOINT SOURCE
DECODER

R>=RW Z
*(D)X X '

Y

Figure 4.4. Wyner-Ziv coding or lossy source coding with side information.

But the important thing about Wyner-Ziv coding is that it normally suffers rate

loss when compared to lossy coding of X as the side information Y is available at both

the encoder and decoder. One exception is when X and Y are jointly Gaussian which

is of special interest in practice since many image and video sources can be modeled as

jointly Gaussian.

Since distortion is introduced to the source with Wyner-Ziv coding, quantization is

needed in source coding. Usually there is still certain correlation in the quantized version

of X and the side information Y , thus Slepian-Wolf coding could be employed to reduce

the rate. In this case, the side information Y is used in jointly decoding and estimating

X́ at the decoder to help reduce the distortion d(X, X́) for non-binary sources. Fig 4.5

depicts the block diagram of a generic Wyner-Ziv coder.

SOURCE
ENCODER

SLEPIAN-W OLF
ENCODER

JOINT SOURCE-
CHA NNEL DECODING

EST IMAT ION
X SYNDROME X '

ENCODER DECODER

Figure 4.5. Block diagram of a generic Wyner-Ziv coder.

4.2 Intuition behind approch

The above section discussed lossless (Slepian-Wolf) and lossy (Wyner-Ziv) source

coding with side information available only at the decoder. Most of the work in DSC so

far has been focusing on the two problems. In wireless sensor network, employing current
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DSC schemes requires the sensor nodes transmitting correlated information to cooperate

in a small group so that one node provides side information and the others compress the

information down to the Slepian-Wolf or the Wyner-Ziv limit.

Tha major concern for practical application of DSC is the correlation model. The-

oretically, two correlated non-binary sources can be constructed easily. An example with

uniform distribution is shown as follows:

• Let X = X0X1... and Y = Y0Y1... be two correlated non-binary sequences taking

values in [L,R].

• Generate the i.i.d sequence X using the probability distribution P (Xk = i) =

1/(R− L) where i ∈ [L,R].

• Define the sequence Y from the sequence X using the conditional probability dis-

tribution P (Yk = j|Xk = i) = pij , where i, j ∈ [L,R]. The joint probability

distribution between sources will be denoted by P (Xk = i, Yi = j) = pij/(R− L).

Although significant effort has been put in DSC design for various correlation mod-

els, in real sensor networks there still exist many situations that are hard to determine

joint probability functions. For instance, the correlation statistics of the video surveil-

lance networks can be mainly a function of the sensors’ location. Fig 4.6 is another

example of the noisy versions of the acoustic signal strength collected using the Xbow

wireless sensor network professional developer’s kit MOTE-Kit.

This paper addresses the issue of lossy coding for correlated non-binary sources in

the Xbow wireless sensor networks. We are interested in the measurement noise in a

wireless sensor network, specifically in the Chief Executive Officer (CEO) problem [57].

In this particular application, the CEO of a company employs a number of agents to

observe an event and each of the agents provides the CEO with his/her noise version of

the event. The agents are not allowed to convene, and the goal of the CEO is to recover as

much information as possible about the actual event from the noisy observations received
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Figure 4.6. Four Noisy observations of acoustic signal strength.

from the agents, while minimizing the total information rate from the agents. The CEO

problem can then illuminate the measurement noise at the sensor node.

Preliminary practical code constructions for the CEO problem appeared in [58,59],

based on the Wyner-Ziv coding approaches, but they are only limited to special cases.

Fig 4.7 is a CEO example in a wireless sensor network where the central hub node is

responsible to recover the information from the noisy measurements.

��
�
�
���
��

�
� �Query/Data

Ac oustic  Event

Sensor Node

Central Hub Node

Figure 4.7. A CEO example of sensor network.
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4.3 Construct Codeword Cosets

For correlated binary sources X and Y , Y is a noise corrupted version of X as Y =

X + N , where N is an additive Gaussian noise. The correlation between the interested

outputX and the side information Y can be modeled with a ”virtual” correlation channel,

then a good channel code over this channel can provide us with a good Slepian-Wolf codes.

In a sense, the seemingly source coding problem of Slepian-Wolf coding can be considered

as a channel coding problem.

This section details our spectrum efficient coding scheme for correlated non-binary

sources in wireless sensor networks. For interested information X, the encoder side con-

sists of two parts: source encoder and coset encoder. We apply Lloyd-Max quantization

in souce encoder which conducts the design of the initial codebook. The non-binary

sources are then represented by the binary codewords according to the quantization lev-

els. A coset encoder is constructed to save transmitting bits over channels. A n-bit

codeword is transmitted by a m-bit (m < n) coset leader to achieve a compression ratio

of n : m after the coset encoder. Side information Y will be transmitted at full rate, i.e.

not through the coset encoder. The block diagram of our coding scheme is illustrated in

Fig 4.8.

LLOYD-M A X
QUA NTIZA TION

COSET
ENCODER

COSET
DECODER

EST IMAT ION
X X 'COSET  LEADER

LLOYD-M A X
QUA NTIZA TIONY

Figure 4.8. Block diagram of the asymmetric coding scheme.

We next give an example of constructing the coset encoder.

Example 4: Construct Codeword Cosets with Hamming Distance dH = 3
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For 8-level Lloyd-Max quantization, the input to the coset encoder is a 3-bit binary

codeword XQ ∈ [000, 001, 011, 010, 110, 111, 101, 100]. Assuming the Hamming distance

between XQ and the quantized binary side information YQ is dH(XQ, YQ) ≤ 1, the cosets

for XQ can be constructed using the parity-check matrix H

H =

⎡
⎢⎣ 1 1 0

1 0 1

⎤
⎥⎦ (4.1)

Four coset sets are constructed as C1 = [000, 111], C2 = [001, 110], C3 = [010, 101]

and C4 = [011, 100]. The transmitted coset leader XC is associated with the syndrome

s = XQH
T . Sending the 2-bit coset leader instead of the original 3-bit XQ achieves a

compression ratio of 3 : 2.

Now consider the noisy observation from sensor node 1 (see Fig 4.6 (a)) as the

interested information X. Results from 8-level Lloyd-Max quantization are presented in

Table 4.1.

Table 4.1. Results from 8-level Lloyd-Max Quantization

Codebook Occurring Probability Binary Codebook
498.09 0.4923 000
500.37 0.2809 001
503.06 0.1590 011
507.3 0.0457 010
511.31 0.0136 110
515.26 0.0051 111
523 0.0027 101
544 0.0008 100

From Table 4.1, the first codeword after quantization 498.09 occurs at a dominant

probability of 49.23%. The probability of occurence decreases dramatically along the
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initial codebook. The binary codewords are assigned such that along the probability

decreasing, every adjacent codeword differs in only 1 bit.

Suppose sensor node 3 (see Fig 4.6 (c)) is transmitting the side information Y for

decoding. Data from sensor node 3 is quantized separately using a Lloyd-Max quantizer.

Now we have XQ and YQ at 3-bit correlated binary codewords. Perfect coset encoder [8]

requires that XQ and YQ are correlated in the way that the Hamming distance between

XQ and YQ is no more than one. Then the cosets forXQ are constructed that the elements

within each coset have maximal Hamming distance dH = 3 as depicted in example 4.

In this work, the correlation between XQ and YQ is unknown or can hardly reach the

perfect correlation. But with the knowledge of the codewords probability distribution,

the coset construction could be done in a different way.

We propose to design the coset sets minimizing the overall cross ratio. The cross

ratio is defined as the ratio that within one coset, the codeword with less occuring

probability will cross the other. We intend to decrease the decoding failure by reducing

the cross ratio while keeping the Hamming distance within each coset as large as possible.

Table 4.2 gives the cross ratio of two different coset sets.

Table 4.2. Collision Ratio of Two Cosets Sets

Coset Set 1 Cross Ratio Coset Set 2 Cross Ratio
(000, 111) 0.01 (000, 110) 0.027
(001, 110) 0.046 (001, 111) 0.018
(011, 100) 0.01 (011, 101) 0.017
(010, 101) 0.056 (010, 100) 0.017
Overall 0.0305 Overall 0.01975

From Table 4.2, we see that coset set 2 has less cross ratio even though the Hamming

distance within each coset is dH = 2 but not 3.
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The parity-check matrix to construct the codeword coset 2 with Hamming distance

dH = 2 is shown as bellow:

H =

⎡
⎢⎣ 0 0 1

1 1 0

⎤
⎥⎦ (4.2)

At the decoder, we use the side information YQ to look for the most-likely codeword

from the coset represented by the transmitted coset leader. The decoder then get the

optimal estimation of X using all received information.

4.4 Simulation Results

Simulations are performed over the acoustic noisy observations from the Xbow

wireless sensor network professional developer’s kit MOTE-Kit. 8 sets of acoustic noisy

version are collected from 8 distributed deployed sensors in a lab. Information from

the sensor closest to the acoustic source is set as side information for decoding. All

others are encoded separately and reconstructed at the decoder with the side information.

The correlation-in-dB between the interested information and the side information is

presented in Table 4.3.

Table 4.3. Correlation-in-dB between X and Y

Sensor Node Correlation-in-dB
1 5.7988
2 5.0864
3 6.3903
4 4.2262
5 4.2343
6 4.1522
7 5.5238
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Due to the packet loss in data collecting at the central hub node, the correlation

between the interested information X and the side information Y from sensor node 8 is

pretty low. We choose two sensor nodes (node 1 and node3) with the highest correlation

to side information Y for our simulation.

For comparison, we generate two ideal i.i.d Gaussian sequences X and Y correlated

by Y = X+N , whereX has zero mean and unit variance andN is the zero mean Guassian

noise with variance σN . Y , the corrupted version of X is the side information used for

joint decoding.
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Figure 4.9. Probability of Error for R=2bits/sample.

We employ 8-level, 16-level and 32-level Lloyd-Max quantization. Each is parti-

tioned into two cosets, where each coset set contains 2, 4 and 8 codewords respectively.

The number of samples used for the Monte Carlo simulations is 107. Fig. 4.9 shows the

probability of decoding error for the above three schemes and normalized distortion with

correct decoding only is plotted versus correlation SNR for the same schemes in Fig. 4.10.

Observe that for a given correlation SNR, as the number of quantization levels increases,
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Figure 4.10. Normalized Distortion for R=2bits/sample.

the normalized distortion decreases and the probability of decoding error increases. Ide-

ally for a given transmission rate, we want to quantize with a large number of levels to

cut down distortion, but the tradeoff between the distortion and probability of decoding

errors put a constraint in this. As can be noted from Fig. 4.9 and 4.10, at 8-level quan-

tization, performance of sensor readings from node 1 and node 3 are approximately 0.5

dB from the one of ideal i.i.d Gaussian sources.

In coset encoding, we compare different coset construction methods. Fig. 4.11 gives

the result of coset set 1 and coset set 2 at 8-level quantization. The performance of coset

set 2 is slightly better than the one of coset set 1.

Last the coding scheme is employed to all 7 sensor nodes and compute the actual

transmitted data bits. We process the information observed in the common epoch and

discard the incomplete observations. Under the scheme of two coset sets, the real trans-

mitted data bits remain the same for 8-,16- and 32-level cases. Results are presented in

Table 4.4.
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Table 4.4. Compression Ratio of real transmitted data

Levels Original bits Transmitted bits Compression Ratio
8-level 78339 31815 2.46
16-level 104532 31815 3.29
32-level 130665 31815 4.11



CHAPTER 5

DATA FUSION IN A MULTI-TARGET RADAR SENSOR NETWORK

5.1 Introduction

Wireless sensor networks (WSN) have attracted growing interest in various appli-

cations, especially in the area of battlefield surveillance, health care and telemedicine,

environmental and habitat monitoring. Radar as a powerful sensor system, has been

employed for the detection and location of reflecting objects such as aircraft, ships, ve-

hicles, people and natural environment. By radiating energy into space and detecting

the echo signal reflected from an object or target, the radar system can determine the

presence of a target. Furthermore, by comparing the received echo signal with the trans-

mitted signal, the location of a target can be determined along with other target related

information [23].

Conventional radar system operates as a pure independent entity. While in a

resource-constrained WSN, such detached operation may lead to deteriorated perfor-

mance and waste of limited resources. Collaborative signal and information processing

over the network is a very promising area of research and is related to distributed infor-

mation fusion [24]. Important technical issues include the degree of information sharing

between sensors and how sensors fuse the information from other sensors. Processing

data from more sensors generally results in better performance but also requires more

communication resources. Similarly, less information is lost when communicating infor-

mation at a low level (e.g., raw data), but requires more bandwidth. Therefore, it is a

tradeoff between system performance and resource utilization in collaborative informa-

tion processing and data fusion.

69
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A lot of prior research in data fusion is based on the assumption of lossless commu-

nication, i.e., the information sent from local sensors is perfectly recovered at the fusion

center. For example, in [25] and [26], Vashney et. al investigated the optimum fusion

rules under the conditional independence assumption. Other papers [27, 28] addressed

the problem of distributed detection with constrained system resources, most of which

provided the solutions to optimize sensor selection. However, this lossless communica-

tion assumption is not practical for many WSNs where the transmitted data suffers from

channel fading and multi-user interference. On the other hand, decision fusion with non-

ideal communication channels are studied at both fusion center level [29, 30] and at the

sensor level [31, 32]. In [30], Thomopoulos and Zhang derived the optimal thresholds

by assuming a simple binary symmetric channel between sensors and the fusion center.

Their method is quite simple but requires global knowledge of the entire system. In [29],

channel-aware decision fusion rules have been developed using a canonical distributed

detection system where binary decisions from multiple parallel sensors are transmitted

through fading channels to a fusion center. Later, Lin et. al [33] have extended the

channel aware decision fusion rules to more realistic WSN models that involve multi-hop

transmissions. The above results, however, are mostly obtained based on one target or

one event detection which is not applicable to multi-target situations. Furthermore, in a

radar sensor system, when clutter, the unwanted echoes from the natural environment is

much larger than the receiver noise, detection can be quite difficult from that when the

noise is dominant.

The objective of this work is to derive the decision fusion rules of multiple fluc-

tuating targets in multi-radar (MT-MR) sensor networks. We focus on the detection

decision performance of fused data with the existence of clutter. The theoretical for-

mulation of the MIMO decision fusion problems is presented. It is assumed that the

multiple targets are stationary targets embedded in clutter. Rayleigh target fluctuation
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model and Gaussian clutter are used in the first stage study. Particularly, we assume

that the radar in our scenario, is a constant false alarm receiver (CFAR) when receiving.

CFAR automatically raises the threshold level to keep clutter echoes and external noise

from overloading, which performs as a good rejection of clutter.

The remainder of this paper is organized as follows. Next section introduces the

concept of clutter and target fluctuation model in radar sensor system. Section 5.3 briefly

overview the previous work on fusion rules designed for a canonical parallel distributed

detection system with single hop transmission between sensor nodes and fusion center.

Section 5.4 presents our MIMO decision fusion model for multi-target multi-radar sensor

networks. Simulation and performance analysis are presented in Section 5.5. Section 5.6

concludes this paper.

5.2 Target Detection in Radar Sensor System

T ransmitter

R eceiver

Antenna

R ange to  target

T arget d etec tio n and
info rmatio n extrac tio n

T ransmitted  s ignal

Echo  s ignal T arget

Figure 5.1. Basic Principle of Radar System.

The basic principle of radar [23] is illustrated in Fig. 5.1. An electromagnetic signal

is generated by the transmitter and is radiated into space by the antenna. A portion of

the transmitted energy is intercepted by the target and reradiated in various directions.
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The reradiation directed back towards the radar is collected by the radar antenna, which

delivers it to a receiver. There it is processed to detect the presence of the target and

determine its location. In active radar sensor networks, the received data usually consists

of three parts: white thermal noise, clutter scattered by the land environment, and if a

target is present, a reflected or reradiated version of the transmitted signal [60]. That is,

y(t) = α(t)s(t) + n(t) +ω(t), in which s(t) and y(t) are the transmitted and received signals,

respectively. The values α(t) is the target cross section or radar cross section (RCS). It is

assumed that n(t) is additive noise and ω(t) is the returned clutter, a distorted version of

the transmitted signal s(t). In the work presented here, it is assumed that the received

clutter is much larger than the white thermal noise, i.e. ω(t) >> n(t). Thus it becomes

y(t) ≈ α(t)s(t) + ω(t), when ω(t) >> n(t).

The classical radar equation uses the target cross section or radar cross section

(RCS) to determine the power density returned to the radar for a particular power

density incident on the target. Nevertheless, the scattering of electromagnetic energy

from a target is a rather complicated phenomenon, which depends on a number of factors

such as target geometry, size, shape, aspect, altitude with respect to the radar antenna

etc. Therefore, it has been advantageous to model the target RCSs as a random variable.

Some common fluctuation models are now available in the open literature, i.e. Swerling

chi , lognormal, Rayleigh, Weibull as a compound Rayleigh distribution, Shadowed Rice

target etc. This work treats the target fluctuation as Rayleigh distribution which has

the probability density function (pdf) as fν(ν) = ν
σ2

c
exp

(
− ν2

2σ2
c

)
, where 2σ2

c is the mean

square value of the envelope ν.

Clutter is the unwanted echoes from the natural environment such as land, sea,

rain, birds, insects etc. Clutter can be spatially distributed so that it is much larger

in physical size than the radar resolution cell. There are also point or discrete clutter

echoes that produce large backscatter. Because of the highly variable nature of clutter
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echoes it is often described by a probability density function. Some forms of clutter

have similar distributions as the target fluctuation model, e.g., Gaussian, Rayleigh, log-

Normal and Weibull. Nevertheless, other distributions have been proposed to describe

the special statistics of clutter including K-distribution, contaminated normal, gamma

and log-Weibull. For the first stage of this work, we set the returned clutter to follow

the Gaussian distribution with zero mean.

5.3 Review of Previous Decision Fusion Rules

In a single target, single hop sensor network, the typical parallel fusion structure

in a flat fading channel is depicted in Fig. 5.2. The received signal at the fusion center

from kth sensor is yk = hkuk + nk, where hk is the channel fading envelope and nk is the

zero-mean additive Gaussian noise with variance σ2. K sensors collect data generated

according to either H0 (there is no target present) or H1 (there is target present) and

transmit these decisions over fading and noisy channels to a fusion center. The fusion

center tries to decide which hypothesis is true based on the received data yk from all k.

Binary
Dec is io n
(T arget
p resent
o r no t)

S enso r 1

S enso r K

F us io n
C enter

..

.

Figure 5.2. Single-target, single-hop decision fusion model.

Assume that the kth local sensor makes a binary decision uk ∈ {+1,−1}, with

false alarm and detection probability Pfk and Pdk respectively. That is, we have Pfk =
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P [uk = 1|H0] and Pdk = P [uk = 1|H1]. Several decision fusion rules have been developed

based on the above model in [33]. Throughout this work, we use Λ(s) to denote the fusion

statistics for the single hop, single target transmission model.

• Optimal LR-based fusion statistic using complete prior knowledge. Assuming com-

plete channel knowledge, the optimal LR-based fusion statistic was derived as

Λ
(s)
1 =

K∏
k=1

Pdkψ
(+)
k + (1 − Pdk)ψ

(−)
k

Pfkψ
(+)
k + (1 − Pfk)ψ

(−)
k

(5.1)

where ψ
(+)
k = e−((yk−hk)2/2σ2) and ψ

(−)
k = e−((yk+hk)2/2σ2) and Y = [y1, ..., yk]

T is a

vector containing observations received from all K sensors.

• LR-based fusion rules using only fading statistics for Rayleigh fading channel. Im-

plementing the optimal LR test as in (5.1) requires that all a priori information,

including the instantaneous channel gains. Under the Rayleigh fading model, the

LR-based fusion statistic using only the fading parameter is summarized below

Λ
(s)
2 =

K∏
k=1

PdkΨ
(+)
k + (1 − Pdk)Ψ

(−)
k

PfkΨ
(+)
k + (1 − Pfk)Ψ

(−)
k

(5.2)

where Ψ
(+)
k = 1 +

√
2πγyke

(γ2y2
k/2)Q(−ykγ), Ψ

(−)
k = 1 −

√
2πγyke

(γ2y2
k/2)Q(ykγ) and

γ = (σc/σn

√
σ2

c + σ2
n) with 2σ2

c being the mean square value of the fading channel,

σ2
n is the noise variance, and Q(·) is the complementary distribution function of a

standard Gaussian random variable.

• A two-stage approximation using the Chair-Varshney fusion rule. A direct alterna-

tive to the above LR-based fusion rules is to consider the information transmission

and decision fusion as a two-stage process: first yk is used to infer about uk: then,

the estimation of uk are employed in the optimum fusion rule. Given the model

in Fig. 5.2, the maximum likelihood (ML) estimation for uk is ûk = sign(yk). Ap-
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plying the fusion rule derived in [33], the Chair-Varshney fusion rule is obtained

as

Λ
(s)
3 =

∑
yk<0

log

(
1 − Pdk

1 − Pfk

)
+
∑
yk>0

log

(
Pdk

Pfk

)
(5.3)

• Fusion statistics using a maximum ratio combiner (MRC). In the low SNR regime,

if the local sensors are identical, i.e., Pdk and Pfk are the same for all ks, then Λ
(s)
1

reduces to a form analogous to an MRC

Λ
(s)
4 =

1

K

K∑
k=1

hkyk (5.4)

• Fusion statistics using an equal gain combiner (EGC). In the low SNR regime, if

the local sensors are identical, i.e., Pdk and Pfk are the same for all ks, then Λ
(s)
2

reduces to a form analogous to an EGC

Λ
(s)
5 =

1

K

K∑
k=1

yk (5.5)

Among the above five fusion rules, Λ
(s)
1 requires complete channel knowledge and

provides uniformly the most powerful detection performance. At low SNR, the MRC

statistic provides the best performance among the three suboptimum fusion rules; while at

high SNR, the Chair-Varshney fusion rule outperforms the MRC and the EGC statistics.

The EGC statistic, however, provides better performance over a wide range of SNR than

the MRC statistic and the Chair-Varshney fusion rule and requires the least amount of

prior information.
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5.4 MIMO decision fusion model for multi-target sensor networks

In the scenario, it is assumed that there are multiple radar sensors and multiple

stationary targets in the field. A radar detects the presence of a target and generates

the decision data according to two hypothesis: H0 : there is no target present and H1 :

there is target present. Each decision data is transmitted to the fusion center, normally

a radar sensor as well. In a multi-hop radar sensor network, the decision data is relayed

via several radars to reach the fusion center. When there are multiple radar sensors and

multiple targets in the field, the data fusion problem can be roughly modeled as a Multi-

Input Multi-Output (MIMO) fusion problem. This paper assumes the radar sensors

are disparate, geographically dispersed in the field such that the radar observations or

decisions are spatially independent. Fig. 5.3 illustrates an example of single-hop decision

fusion problem.

F us io n
C enter

Figure 5.3. MIMO fusion model.
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Let M denote the number of radar sensors and N be the number of targets. The

received signal Y (t) at the fusion center at time t is a N ×M matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
(t)
11 · · · y

(t)
M1

· · · · ·

· · · · ·

· · · · ·

y
(t)
1N · · · y

(t)
MN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.6)

It is assumed that the radar sensors are geographically dispersed and detection

decisions are made at each separate local radar. The element y
(t)
ij of (5.6) is the decision

(target present or absent ) of the jth target from the ith radar sensor. The value, y
(t)
ij ,

can be represented as

y
(t)
ij = α

(t)
ij · sij

(t) + ω
(t)
ij (5.7)

Observe that in [33], the researchers assume that both the false alarm Pf and

probability of detection Pd are fixed and identical for all local sensors. Moreover there is

no correlation between the false alarm Pf and probability of detection Pd. In radar system

however, this assumption is very impractical especially in the heavy clutter situation.

One method to suppress the heavy clutter is to use a constant false alarm rate (CFAR)

receiver. The CFAR automatically raises the threshold level to keep clutter echoes and

external noise from overloading the automatic tracker with extraneous information. In

the study, we assume the receivers of all radar sensors are CFAR which implies that

though the false alarm rate is a constant, the probability of detection of each local radar

sensor varies. We use Pf as the fixed false alarm rate and Pdi to denote the distinct

probability of detection at radar sensor i throughout this work.
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We next derive the MIMO decision fusion rules for the multi-target radar sensor

networks starting from the single-hop radar sensor networks.

5.4.1 Decision fusion rule in single-hop radar sensor networks

• Assume we have complete knowledge of the target fluctuation coefficients, the op-

timal LR-based fusion rule to detect a single target for example, the jth target was

derived as

Λ
(1)
j =

M∏
i=1

Pdiψ
(+)
ij + (1 − Pdi)ψ

(−)
ij

Pfψ
(+)
ij + (1 − Pf)ψ

(−)
ij

j = 1, ..., N (5.8)

where

ψ(±)

i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−(yi1∓αi1)2/2σ2

e−(yi2∓αi2)2/2σ2

.

.

.

e−(yiN∓αiN )2/2σ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i = 1, ...,M (5.9)

From Eq.(5.1), the decision on a single target is the fusion result based on the

observations from all M radar sensors. A complete decision vector for N targets

are denoted as Λ(1) = [Λ1,Λ1, ...,ΛN ]T

• LR-based fusion rules using only target fluctuation statistics. Under the assumption

of Gaussian clutter model and Rayleigh target fluctuation model, the LR-based

fusion statistic using only the target fluctuation coefficients is summarized below

Λ
(2)
j =

M∏
i=1

PdiΨ
(+)
ij + (1 − Pdi)Ψ

(−)
ij

PfΨ
(+)
ij + (1 − Pf)Ψ

(−)
ij

j = 1, ..., N (5.10)
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where γ = (σ/σω

√
σ2 + σ2

ω) with 2σ2 being the mean square value of the target

fluctuation model, σ2
ω is the clutter variance.

Ψ
(±)
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ±
√

2πγyi1e
(γ2y2

i1/2)Q(∓yi1γ)

1 ±
√

2πγyi2e
(γ2y2

i2/2)Q(∓yi2γ)

.

.

.

1 ±
√

2πγyiNe
(γ2y2

iN/2)Q(∓yiNγ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i = 1, ...,M (5.11)

• Fusion statistics using a maximum ratio combiner (MRC). In the low SNR regime,

if the local radar sensors are identical,i.e., Pdi and Pfi are the same for all is, then

Λ(1) reduces to a form analogous to an MRC

Λ
(3)
j =

1

M

M∑
i=1

αijyij j = 1, ..., N (5.12)

• Fusion statistics using an equal gain combiner (EGC). At low SNR regime, if the

local radar sensors are identical, i.e., Pdi and Pfi are the same for all ks, then Λ(2)

reduces to a form analogous to an EGC

Λ
(4)
j =

1

M

M∑
i=1

yij j = 1, ..., N (5.13)

5.4.2 Decision fusion rule in multi-hop sensor networks

When considering a multi-hop radar sensor networks, decision fusion problem for

multiple targets could be quite complicate. For simplicity, we follow the assumption in

single-hop case and assume the relay radar sensors have no direct observation of all the

targets. Comparing Fig. 5.3 with Fig. 5.4, the above assumption assures that the MIMO
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fusion problem for multi-hop remains the same dimension as the one in the single-hop

case.

F us io n
C enter

R elay R ad ar

Figure 5.4. MIMO fusion model for multi-hop radar sensor networks.

We make the further assumption that each relay radar makes a simple hard decision

on the signal transmitted from its last hop radar. Therefore, given that the clutter is

Gaussian, we have

sk = sign(αk−1sk−1 + ωk−1) (5.14)

Hence, the ultimate received signals at the fusion center transmitted from all the

M last hop radars have the similar form as (5.6). We also assume that the Rayleigh RCS

has unit power, i.e., E[α2
ij ] = 1 and Gaussian clutter has variance σ2 to facilitate SCR

calculation later in the paper.

Implementing the decision rules for single target, multi-hop WSNs in [33] to our

multi-target, multi-hop radar sensor networks, we get the decision fusion rules as follows.
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• Optimal LR-based Fusion Rule

In multi-hop radar sensor network, we assume only the first hop radar sensors

are CFAR with false alarm P 0
f and probability of detection P 0

di. Let P c
di be the

probability of detection at the ith radar in the last relay, [33] has proved that for

one given target detection, P c
di ≈ P 0

di and P c
f = P 0

f at high signal to clutter ratio

(SCR). At low SCR, P c
di and P c

f can be approximated as

P c
di ≈

1

2
+

2Mi(
∏Mi−1

k=0 αik)

(
√

2πσ)Mi

(
P 0

di −
1

2

)
(5.15)

P c
f ≈ 1

2
+

2Mi(
∏Mi−1

k=0 αik)

(
√

2πσ)Mi

(
P 0

f − 1

2

)
(5.16)

Assume there are M radar sensors in the last hop, Mi is the number of hops at the

ith radar. αik is RCS value at the kth relay of radar i.

The optimum LR-based fusion rule for multi-target radar sensor networks can be

written as

Λ
(1)
j =

M∏
i=1

P c
di + (1 − P c

di) · φij

P c
f + (1 − P c

f ) · φij
j = 1, ..., N (5.17)

where

φ
i
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−(2yi1αi1)Mi/σ2

e−(2yi2αi2)Mi/σ2

.

.

.

e−(2yiN αiN )Mi/σ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i = 1, ...,M (5.18)
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• Denote Λ(2) as the LR rule that corresponds to the case when only the target RCS

statistics are known. Λ(2) can be derived for the multi-hop MT-MR sensor networks.

Λ
(2)
j =

M∏
i=1

1 + [P c
di −Q(γyij)]

√
2πγyije

(γyij )2/2

1 + [P c
f −Q(γyij)]

√
2πγyije(γyij )2/2

j = 1, ..., N (5.19)

where y
i
= [yi1, yi2, ...yiN ] is a vector containing all N decision data from radar i.

P c
di and P c

f are denoted as in (5.15) and (5.16).

• Decision fusion rules of Maximum ratio combiner (MRC) and equal gain combiner

(EGC) have the identical format as the single hop case because for both of them,

the decision fusion only depends on the last hop.

5.5 Simulation Results

This section simulates the performance of the decision fusion rules derived for multi-

target radar sensor networks. For ease of SCR calculation, we assume that all the target

RCSs have unit power, i.e, E[α2
ij ] = 1. Binary decisions are made at the local radar

sensors and the relay radars. The target RCS are generated using the Rayleigh model.

For multi-target, single-hop radar sensor network and multi-target, multi-hop radar

sensor network, we are interested to compare the four decision fusion rules:

• Optimal LR-based rule

• LR-based rule with target RCS statistics only

• MRC rule

• EGC rule

In all simulations, we assume the constant false alarm rate Pf = 0.01 (for multi-hop

case, Pf = 0.01 is the one at the first hop). Under hypothesis H0 when a target is detected

as absent, Pf = Q(Xt

σ
). We then know the detection threshold Xt = Q(Pf)

−1σ. When a

target is detected, i.e., hypothesis H1, the probability of detection Pdi = Q(Xt−αi

σ
).
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Figure 5.5. Single hop.

Fig.5.5 gives the probability of miss detection vs. the SCR for multi-target, single-

hop radar sensor network. There are a total of two stationary targets and three radar

sensors in the field. The optimal LR- based fusion rule provides the most powerful

detection performance but it requires complete target RCS knowledge. The LR-based

rule with target RCS statistics approaches the optimal LR-based rule in low SCR and

have about 1dB loss in higher SCR. MRC and EGC have similar performance. Both are

little worse than the LR-based rule with target RCS statistics.

Figs.5.6 and 5.7 are the performance for multi-target, multi-hop radar sensor net-

works. Fig.5.6 shows the probability of miss detection when each of the three radar

sensors reaches the fusion center in two hops. Fig.5.7 shows the performance when the

three radar sensors reach the fusion center in unequal hops. In the simulation, we assume
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Figure 5.6. Multi-hop, equal hops.

that one radar sensor reaches the fusion center in two hops while the others in a single

hop. As expected, the probability of detection for the single-hop case outperforms the

one for multi-hop.

5.6 Conclusions

In this chapter, we presented the MIMO decision fusion rules for multi-target,

multi-hop radar sensor networks under the assumption that the target RCS is Rayleigh

model and clutter echoes follow Gaussian. We derived the optimum LR-based fusion rule

and a sub-optimal LR-based fusion rule with the target RCS statistics only. Simulation

results show that the MIMO fusion rules approach the optimal-LR and outperforms

MRC and EGC at high signal to clutter ratio (SCR).



85

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

Signal to Clutter Ratio in dB

P
ro

ba
bi

lit
y 

of
 M

is
s 

D
et

ec
tio

n
LR
MRC
EGC
CHANNEL

Figure 5.7. Multi-hop, unequal hops.

In many cases, two or more local radars may share a common relay node on their

way to the fusion center. Under these circumstances, the independent assumption made

toward the target RCS may not be held. It is actually a very interesting space correlation

issue. As the radar observations always demonstrate time correlation, further research

will be focused on this space-time correlation of radar sensor networks.



CHAPTER 6

SILENT POSITIONING IN UNDERWATER SENSOR NETWORKS

6.1 Introduction

UnderWater Acoustic Sensor Networks (UWA-SNs) consists of a variable number

of sensors and vehicles to perform collaborative monitoring tasks over a given area. The

main motivation for UWA-SNs is their relative ease of deployment since they eliminate

the need for cables and they do not interfere with shipping activities. UWA-SNs are

envisioned to enable applications for environmental monitoring of physical and chemi-

cal/biological indicators, tactical surveillance, disaster prevention, undersea exploration,

assisted navigation, etc.

Location discovery for underwater vehicles/sensors is nontrivial in the oceanic

medium. Propagation delays, motion-induced Doppler shift, phase and amplitude fluc-

tuations, multipath interference, etc., are all significant factors in location measurement.

The well-known Global Positioning System (GPS) receivers, which may be used in ter-

restrial systems to accurately estimate the geographical locations of sensor nodes, do not

work properly in underwater [34]. Some localization schemes based on received signal

strength (RSS), time of arrival (ToA), or angle of arrival (AoA), could be used. Neverthe-

less, the bandwidth constraint, sensor mobility, and unpredictable variation in channel

behavior make many of these approaches inaccurate or unapplicable [35].

This section proposes UPS, a ToA-based silent Underwater Positioning Scheme, to

carefully address the concerns and challenges mentioned above. We investigate the prop-

agation delay and multipath channel. We found that in acoustic underwater networks

with large propagation delays, a multipath channel can be modelled as a modified Ultra

86
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Wide Band (UWB) Saleh-Valenzuela model (S-V): the arrival of each cluster and the

paths within each cluster follow double Poisson distributions and the multipath channel

gain follows a Rician distribution. We then analyze the theoretical performance of our

scheme in propulsion noise environments and identify the possible sources of errors with

measures to help mitigate them.

This section is organized as follows. Section 6.2 proposes UPS, a silent underwater

positioning scheme for UWA-SN. Underwater acoustic channel modeling and theoretic

performance analysis are given in Section 6.3. Simulation results are reported in Sec-

tion 6.4. The conclusion is in Section 6.5.

6.2 UPS: An Underwater Positioning Scheme

In this section, we propose UPS, a silent acoustic positioning scheme for underwater

vehicle/sensor localization. UPS is motivated by our previous work presented for 2D

terrestrial sensor networks [61–63], which rely on the ToA of RF signals from three anchor

nodes for location estimation. The propagation characteristics of RF signals in free space

and that of acoustic signals underwater are significantly different, which fundamentally

affect the performance of any position algorithm.

UPS consists of two steps. The first step detects the differences of signal arrival

times from four anchor nodes. These time differences are transformed into range dif-

ferences from the underwater vehicle/sensor to the anchor nodes. In the second step,

trilateration is performed to transform these range estimates into coordinates. In the

following, we first discuss the network model under our consideration.
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6.2.1 Network Model

We assume that an UWA-SN consists of mobile underwater vehicles (e.g. UUVs

or AUVs) and stationary sensors. UUVs and AUVs move about at a typical speed of

around 2 meters [64] within a confined space, which also covers all non-mobile sensors.

To ease our elaboration, from now on we use “sensor” to denote both a mobile vehicle or

a stationary sensor. There exist at least four non-cospace anchor nodes with long-range

beacons whose locations are known a priori. Each of them is equipped with an acoustic

transmitter that can cover the whole activity space. No three anchors are collinear. An

example layout of anchor nodes is illustrated in Fig. 6.1.

6.2.2 A Time-Based Location Detection Scheme

Given the locations (xa, ya, za), (xb, yb, zb), (xc, yc, zc), and (xd, yd, zd) of anchor

nodes A, B, C, and D, respectively, we are going to determine the location (x, y, z)

of sensor S, as shown in Fig. 6.1. Let dij be the distance between i and j, where

i, j ∈ {a, b, c, d, s}, representing the four anchor nodes and the sensor S. We have

dab =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2

dac =
√

(xa − xc)2 + (ya − yc)2 + (za − zc)2

dad =
√

(xa − xd)2 + (ya − yd)2 + (za − zd)2

The first step of UPS computes the range differences between dsa and dsb, dsc, dsd,

respectively.

Step 1: Range Difference Computation.

Let A be the master anchor node, which initiates a beacon signal every T seconds.

Each beacon interval begins when A transmits a beacon signal. Consider any beacon

interval i, at times ti1, t
i
b, t

i
c, and tid, sensor S, anchor nodes B, C, and D receive A’s

beacon signal, respectively. At time ti′b , which is ≥ tib, B replies to A with a beacon
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Figure 6.1. Sensor S will measure the arrival times.

signal conveying information ti′b − tib = Δtib. This signal reaches S at time ti2. After

receiving beacon signals from both A and B, at time ti′c , C replies to A with a beacon

signal conveying information ti′c − tic = Δtic. This signal reaches S at time ti3. After

receiving beacon signals from A, B, and C, at time ti′d , D replies to A with a beacon

signal conveying information ti′d − tid = Δtid. This signal reaches S at time ti4. Based on

triangle inequality, ti1 < ti2 < ti3 < ti4. Let Δti1 = ti2 − ti1, Δti2 = ti3 − ti1, and Δti3 = ti4 − ti1,

we obtain

dab + dsb − dsa + v · Δtib = v · Δti1, (6.1)

dac + dsc − dsa + v · Δtic = v · Δti2, (6.2)

dad + dsd − dsa + v · Δtid = v · Δti3, (6.3)
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which gives

dsb = dsa + v · Δti1 − dab − v · Δtib = dsa + ki
1, (6.4)

dsc = dsa + v · Δti2 − dac − v · Δtic = dsa + ki
2, (6.5)

dsd = dsa + v · Δti3 − dad − v · Δtid = dsa + ki
3, (6.6)

where dsa, dsb, dsc, and dsd are positive real numbers, v is the speed of the ultrasound,

and

ki
1 = v · Δti1 − v · Δtib − dab, (6.7)

ki
2 = v · Δti2 − v · Δtic − dac, (6.8)

ki
3 = v · Δti3 − v · Δtid − dad. (6.9)

Averaging ki
1, k

i
2, and ki

3 over I intervals gives

k1 =
v

I
[

I∑
i=1

(Δti1 − Δtib)] − dab, (6.10)

k2 =
v

I
[

I∑
i=1

(Δti2 − Δtic)] − dac, (6.11)

k3 =
v

I
[

I∑
i=1

(Δti3 − Δtid)] − dad. (6.12)

We are going to apply trilateration with k1, k2, and k3 to compute coordinates (x, y, z)

for sensor S in the next step.

Remarks: (i) All arrival times, including tij , where j = 1, 2, 3, 4, and ti′j , where j ∈

{b, c, d}, are based on the local timers of the anchor nodes and the sensor S. No time

synchronization is required. (ii) We require A to periodically initiate the beacon signal

transmission in order to decrease the measurement error and to facilitate navigation.

Step 2: Location Computation.
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From Eqs. (6.4), (6.5), (6.6), (6.10), (6.11), and (6.12), we have

dsb = dsa + k1, (6.13)

dsc = dsa + k2, (6.14)

dsd = dsa + k3. (6.15)

Based on trilateration, we obtain four equations with four unknowns x, y, z and dsa,

where dsa > 0.

(x− xa)
2 + (y − ya)

2 + (z − za)
2 = d2

sa, (6.16)

(x− xb)
2 + (y − yb)

2 + (z − zb)
2 = (dsa + k1)

2, (6.17)

(x− xc)
2 + (y − yc)

2 + (z − zc)
2 = (dsa + k2)

2, (6.18)

(x− xd)
2 + (y − yd)

2 + (z − zd)
2 = (dsa + k3)

2. (6.19)

Without loss of generality, we assume that the four anchor nodes are located at

(0, 0, 0), (xb, 0, 0), (xc, yc, 0), and (xd, yd, zd), respectively, where xb > 0, yc > 0, and

zd > 0. Note that we can always transform real positions to this coordinate system

through rotation and translation.

From Eqs. (6.16), (6.17), (6.18), and (6.19), we have

x2 + y2 + z2 = d2
sa, (6.20)

(x− xb)
2 + y2 + z2 = (dsa + k1)

2, (6.21)

(x− xc)
2 + (y − yc)

2 + z2 = (dsa + k2)
2, (6.22)

(x− xd)
2 + (y − yd)

2 + (z − zd)
2 = (dsa + k3)

2, (6.23)

Solving these equations we obtain

d(1)
sa =

−β −
√
β2 − 4αγ

2α
(6.24)

d(2)
sa =

−β +
√
β2 − 4αγ

2α
(6.25)
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x = Axdsa +By (6.26)

y = Aydsa +By (6.27)

z = Azdsa +Bz (6.28)

where

α = A2
x + A2

y + A2
z − 1 (6.29)

β = 2(AxBx + AyBy + AzBz) (6.30)

γ = B2
x +B2

y +B2
z (6.31)

Ax = −k1

xb

(6.32)

Bx =
x2

b − k2
1

2xb

(6.33)

Ay =
k1xc

xbyc

− k2

yc

(6.34)

By =
x2

c + y2
c − xbxc +

xck2
1

xb
− k2

2

2yc

(6.35)

Az =
k1xd

xbzd

− k3

zd

−
yd(

k1xc

xb
− k2)

yczd

(6.36)

Bz =
x2

d + y2
d + z2

d − xbxd +
xdk2

1

xb
− k2

3 −
ydx2

c

yc

2zd

+
−ycyd + xbxcyd

yc
− k2

1xcyd

xbyc
+

k2
2yd

yc

2zd
(6.37)

We have conducted extensive simulation to study the feasible space where dsa > 0

is unique. It is interesting to observe that when S is not close to any anchor node, and

when it is not behind any anchor node, Eq. (6.24) provides a unique feasible solution.

In addition, the correct position can be computed via Eq. (6.24) if a sensor resides in

the enclosed space by the four anchor nodes, even when it is close to an anchor node.

Figs. 6.2-6.4 report the three transections (z = 0, 5, 10) of the feasible space (the gray

area) when the four anchor nodes A, B, C, and D reside in (0, 0, 0), (10, 0, 0), (0, 10, 0),

and (0, 0, 10), respectively.
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Figure 6.2. The transection of the feasible space where z = 0.

6.3 Channel Modeling and Theoretical Performance Analysis

6.3.1 Channel Modeling for Underwater Sensor Networks

The underwater acoustic channel exhibits phenomena such as signal fading and

phase and amplitude fluctuation due to the interactions with the boundaries and the

scattering from inhomogeneities within the ocean medium. The speed of sound under-

water is approximately 1500 m/s, which leads to large propagation delays and motion-

induced Doppler effects. Phase and amplitude fluctuations may induce high bit-error

probability comparing to most radio channels. Multipath interference is another im-

portant phenomena in UWA networks, causing frequency selective fading in underwater

channels.

There has been a lot of effort to model the underwater acoustic fading channels and

estimate their performance. Early research [65] [66] assumes Rayleigh fading in nature
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C

Figure 6.3. The transection of the feasible space where z = 5.

but later it is observed in [67] that Rayleigh fading exhibits only in limited cases. Geng

and Zielinski [67] propose that in an underwater acoustic channel, there can be several

distinct paths (eigenpaths) over which a signal can propagate from transmitter to receiver

(eigenpath signals). Each eigenpath signal contains a dominant, stable component and

many smaller, randomly scattered components (sub-eigenpath or engenray components).

The envelope of the eigenpath signal can therefore be described using a Rice fading model.

Such an eigenpath or eigenray concept was first introduced in [68]. Eigenray arrival

angles as well as the amplitude and phase fluctuations are all modelled statistically and

are assumed independent from each other. The number of eigenrays reaching the receiver

is a Poisson distribution with a mean number calculated from the Ray Theory.

Enlightened by the prior research on underwater acoustic channel modeling, we

propose a modified UWB Saleh-Valenzuela (S-V) channel model for underwater acoustic
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Figure 6.4. The transection of the feasible space where z = 10.

networks, which can be validated in three considerations. First, UWB comes from the

UWB radar world and refers to the electromagnetic waveforms that are characterized

by an instantaneous fractional energy bandwidth greater than about 0.20 − 0.25. In an

underwater acoustic channel, the communication frequency range is inferior to 10 kHz.

In short range transmission, the carrier frequency is 550 Hz in shallow water and 2 kHz

in deep water. The carrier frequency for long range transmission is 1500 Hz. In all cases,

the fractional bandwidth (fH − fL)/((fH + fL)/2) is greater than 0.20− 0.25. Therefore,

the acoustic signal transmitted underwater can be classified as a UWB signal. Second,

Multipath channel can be modelled as a S-V model in UWB communications. The S-V

model is based on the observation that usually multipath contributions generated by

the same pulse arrive at the receiver grouped into clusters. Such a channel behavior is

analogous to the above eigenpath/sub-eigenpath concept in underwater networks. Third,
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Similar to [68], two Poisson models are employed in the modeling of the path arrivals in

UWB communications. The first Poisson model is for the first path of each path cluster

and the second Poisson model is for the paths or rays within each cluster.

Path Magnitude

TimeCluster 0

3rd path in
1st cluster

Figure 6.5. An illustration of the channel impulse response.

Applying the S-V model into underwater acoustic channels, the arrival of clusters is

modelled as a Poisson arrival process with a rate Λ, while within each cluster, subsequent

multipath contributions or rays also arrive according to a Poisson process with a rate λ

(see Fig. 6.5). We define:

• Tl = the arrival time of the first path of the l-th cluster;

• τk,l = the delay of the k-th path within the l-th cluster relative to the first path

arrival time Tl;

• Λ = the cluster arrival rate;

• λ = the ray arrival rate, i.e., the arrival rate of the paths within each cluster.
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Figure 6.6. An illustration of the double exponential decay.

By definition, we have τ0l = Tl. The distributions of the cluster arrival time and the ray

arrival time are given by

p(Tl|Tl−1) = Λexp (−Λ(Tl − Tl−1), l > 0

p(τk,l|τ(k−1),l) = λexp (−λ(τk,l − τ(k−1),l)), k > 0 (6.38)

In the UWB S-V model, the magnitude of the k-th path within the l-th cluster

is denoted by βkl. It follows a Rayleigh distribution. However in underwater acoustic

networks, the channel within the communication frequency range does not behave like a

Rayleigh channel. Based on the discussion in [67,68], it is rather appropriate to model the

multipath channel gain as a Rician distribution. Then in the underwater S-V model, the

gain of the k-th path within the l-th cluster is a complex random value with a modulus

βkl and a phase θkl. We assume that the βkl values in a underwater acoustic channel

are statistically independent and are Rician distributed positive random variables, while
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the θkl values are assumed to be statistically independent uniform random variables over

[0, 2π). We have

β2
kl = β2

00 exp (−Tl/Γ) exp (−τkl/γ) (6.39)

where the term β00 represents the average energy of the first path of the first cluster,

while Γ and γ are the power decay coefficients for clusters and multipath, respectively.

According to (6.39), the average Power Decay Profile (PDP) is characterized by an ex-

ponential decay of the amplitude of the clusters, and a different exponential decay for

the amplitude of the received pulses within each cluster, as shown in Fig. 6.6.

6.3.2 Theoretical Error Analysis

In this subsection, we study the position error of S resulting from the acoustic fading

channel, which has been modelled as a modified UWB S-V model in Subsection 6.3.1.

The trilateration equations (6.16)-(6.19) compute the coordinates (x, y, z) for the

sensor S based on the measured values k1, k2, and k3, which are determined by the time-

related measurements at the sensor (Δti1, Δti2 and Δti3) and anchor nodes B (Δtib), C

(Δtic), and D (Δtid) over beacon interval i (see Eqs. (6.10)-(6.12)). Therefore the errors

of x, y and z result from the measuring errors of Δti1, Δti2, Δti3, Δtib, Δtic, and Δtid.

Since the error of Δtib (Δtic, Δtid) plays the same role as that of Δti1 (Δti2, Δti3) in the

computation of k1 (k2, k3), and the anchor node B (C, D) can have more sophisticated

hardware to precisely estimate Δtib (Δtic, Δtid), we consider these errors of Δti1, Δti2 and

Δti3 only, which are computed from ti1, t
i
2, t

i
3, and ti4, the arrival times of the beacon

signals transmitted from anchor nodes A, B, C, and D at beacon internal i, respectively.

Assume the underwater sensor always listens to the first ray of the transmitted

signal and records the arrival times, which in this case are ti1, t
i
2, t

i
3 and ti4. Due to

the underwater multi-path effect as illustrated in Fig. 6.6, these arrival times contain
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an error with an exponential distribution. Let δt
i
1, δt

i
2, and δt

i
3 be the measuring errors

of Δti1, Δti2, and Δti3, respectively. It is reasonable to assume that δt
i
1, δt

i
2, and δt

i
3 are

independent to each other. Given ti1, the conditional probability density functions (pdf )

of δt
i
1, δt

i
2, and δt

i
3 are exponential with parameters λ1, λ2 and λ3, respectively:

Pe(δt
i
1|ti1) = λ1 exp(−λ1δt

i
1),

Pe(δt
i
2|ti1) = λ2 exp(−λ2δt

i
2), (6.40)

Pe(δt
i
3|ti1) = λ3 exp(−λ3δt

i
3).

To simplify the elaboration, we consider the case when anchor nodes A, B, C,

and D are located at (0, 0, 0), (R, 0, 0), (0, R, 0), and (0, 0, R), respectively. To further

simplify the analysis, we consider the case when S resides in a small area (with a diameter

� R) whose center is equidistant to all anchor nodes. The general case can be analyzed

similarly.

From Eqs. (6.10)-(6.12), k1, k2, and k3 are the averaged results over I beacon

intervals, and based on the Central Limit Theorem, k1, k2 and k3 are approximately

normally distributed when I is large. Therefore we may assume k1, k2, and k3 are

distributed according to N (μ1, σ
2
1), N (μ2, σ

2
2), and N (μ3, σ

2
3), respectively. Deducing

from Eqs. (6.10)-(6.12), we have

k1 : μ1 = v(
1

λ1
+ ν1) − R, σ2

1 =
v2

Iλ2
1

,

k2 : μ2 = v(
1

λ2

+ ν2) − R, σ2
2 =

v2

Iλ2
2

, (6.41)

k3 : μ3 = v(
1

λ3
+ ν3) − R, σ2

3 =
v3

Iλ2
3

.

where ν1, ν2 and ν3 are the mean of the accurate values for Δti1, Δti2 and Δti3, respectively.
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Based on the assumptions, we have μ1/R ≈ 0, μ2/R ≈ 0 and μ3/R ≈ 0. Plugging

xb = yc = zd = R and other zero coordinates into Eq. (6.24) and simplify its solution by

approximating k2
1/R

2, k2
2/R

2 and k2
3/R

2 with 0, we end up with

dsa ≈
√

3R2 + (k1 + k2 + k3)2 − (k1 + k2 + k3)

2
. (6.42)

Substituting the above into Eq. (6.26) yields

x ≈ R

2
− k2

1

2R
− k1

R

√
3R2 + (k1 + k2 + k3)2 − (k1 + k2 + k3)

2
. (6.43)

Now replacing k1k2

R2 = k1

R
k2

R
, k1k3

R2 = k1

R
k3

R
and k2k3

R2 = k2

R
k3

R
by 0, we obtain

x ≈ R

2
+
k1

2R
(k2 + k3) − k1

√
3

2
=
R

2
+ k1k

∗
2,3, (6.44)

where k∗2,3 = (k2 + k3)/2R−
√

3/2. Similarly, from Eq. (6.27) and (6.28) we have

y ≈ R

2
+
k2

2R
(k1 + k3) − k2

√
3

2
=
R

2
+ k2k

∗
1,3,

z ≈ R

2
+
k3

2R
(k1 + k2) − k3

√
3

2
=
R

2
+ k3k

∗
1,2. (6.45)

where k∗1,3 = (k1 + k3)/2R−
√

3/2, and k∗1,2 = (k1 + k2)/2R−
√

3/2.

Since (x, y, z) is used to estimate the location of S, the error in the estimation must

be addressed. There are several ways to do this. The following is a common practice,

where the variance of each variable is computed and the size of the variance or standard

deviation is used as a measure of the estimation error.

As k1 has a Gaussian distribution with mean μ1 and variance σ2
1, k2 has a Gaussian

distribution with mean μ2 and variance σ2
2 , and k3 has a Gaussian distribution with

mean μ3 and variance σ2
3 , the linear combination k∗1,3 has a Gaussian distribution with

mean (μ1 +μ3)/2R−
√

3/2 and variance (σ2
1 +σ2

3)/4R
2, k∗1,2 has a Gaussian distribution

with mean (μ1 + μ2)/2R −
√

3/2 and variance (σ2
1 + σ2

2)/4R
2, and k∗2,3 has a Gaussian
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distribution with mean (μ2+μ3)/2R−
√

3/2 and variance (σ2
2+σ

2
3)/4R

2. Denote by E(X)

and V (X) the mean and variance of a random variable X. We have, from Eq. (6.44),

V (x) ≈ V (k1k
∗
2,3)

= E(k1k
∗
2,3)

2 − [E(k1k
∗
2,3)]

2

= E(k2
1(k

∗
2,3)

2) − [E(k1k
∗
2,3)]

2. (6.46)

By the independence between k1, k2 and k3, we have

E(k1k
∗
2,3) = E(k1)E(k∗2,3) (6.47)

E(k2
1(k

∗
2,3)

2) = E(k2
1)E(k2,3∗2)

= [V (k1) + (E(k1))
2]

[V (k∗2,3) + (E(k∗2,3))
2]. (6.48)

Therefore substitution gives

V (x) ≈ V (k1)[E(k∗2,3)]
2 + V (k∗2,3)[E(k1)]

2

+V (k1)V (k∗2,3)

= σ2
1

(
μ2 + μ3

2R
−
√

3

2

)2

+
σ2

2 + σ2
3

4R2
μ2

1

+σ2
1

σ2
2 + σ2

3

4R2

=
σ2

1(μ2 + μ3)
2 + (σ2

2 + σ2
3)μ

2
1 + σ2

1(σ
2
2 + σ2

3)

4R2

+σ2
1

(
3

2
− μ2 + μ3

R

√
3

2

)
. (6.49)

Since μ1/R ≈ 0, μ2/R ≈ 0, plugging in Eq.(6.42), the above reduces to

V (x) ≈ σ2
1

2

(
3 +

σ2
2 + σ2

3

2R2

)

=
v2

2Iλ2
1

[
3 +

v2

2IR(λ2
2 + λ2

3)

]
. (6.50)
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Similarly, we have

V (y) ≈ V (k∗1,3)[E(k2)]
2 + V (k2)[E(k∗1,3)]

2

+V (k∗1,3)V (k2)

≈ σ2
2

2

(
3 +

σ2
1 + σ2

3

2R2

)

=
v2

2Iλ2
2

[
3 +

v2

2IR(λ2
1 + λ2

3)

]
. (6.51)

and

V (z) ≈ V (k∗1,2)[E(k3)]
2 + V (k3)[E(k∗1,2)]

2

+V (k∗1,2)V (k3)

≈ σ2
3

2

(
3 +

σ2
1 + σ2

2

2R2

)

=
v2

2Iλ2
3

[
3 +

v2

2IR(λ2
1 + λ2

2)

]
. (6.52)

From the above analysis, we have the following observations. First, the variances

of x, y and z depend on the ray arrival rates λ1, λ2 and λ3. Second, λ1 contributes more

to the variance of x than λ2 and λ3, λ2 contributes more to the variance of y than λ1 and

λ3, and λ3 contributes more to the variance of z than λ1 and λ2. Third, when R is large,

V (x) ≈ 3σ2
1/2 = 3v2/2Iλ2

1, V (y) ≈ 3σ2
2/2 = 3v2/2Iλ2

2, and V (z) ≈ 3σ2
3/2 = 3v2/2Iλ2

3,

showing that the variance of x is dependent on that of k1, the variance of y is dependent

on that of k2, and the variance of z is dependent on that of k3. Fourth, if λ1 = λ2 = λ3,

the variances of x, y and z can be treated the same in practice.

Note that the above analysis well-explain our simulation results, which indicate

position errors strongly depend on the arrival rates of double exponential distributions.
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6.3.3 Sources of Errors

There are three major sources of errors for time-based location detection schemes in

UWA-SNs: the receiver system delay, the underwater multipath fading, and the variable

acoustic speed underwater. The receiver system delay is the time duration from which

the signal hits the receiver antenna until the signal is decoded accurately by the receiver.

This time delay is determined by the receiver electronics. Usually it is constant or varies

in very small scale when the receiver and the channel are free from interference. This

system delay can be predetermined and be used to calibrate the measurements. For

example, anchor nodes B, C, and D can always eliminate the system delay from Δtib, Δtic

and Δtid before these values are conveyed to the sensors in their reply messages to A’s

beacon signal. Meanwhile, as Δti1, Δti2 and Δt23 are measured by one sensor, the effect

of receiver system delay may cancel out. Thus in our model, if anchor nodes B, C, and

D can provide precise a priori information on receiver system time delays, the effect of

these delays will be negligible.

The underwater multipath fading channel will greatly influence the location accu-

racy of any location detection system. Major factors influencing terrestrial multipath

fading [?] include multipath propagation, speed of the receiver, speed of the surrounding

objects, and the transmission signal bandwidth. In the underwater environment, other

important factors include water temperature and clarity, motion behavior of receiver and

underwater objects and transmission range. In our time-based location scheme, we as-

sume that the motion of the underwater vehicles is relatively small such that the motion-

induced Doppler effect can be ignored.

There are two important characteristics of multipath signals. First, the multiple

non-direct path signals will always arrive at the receiver antennae latter than the direct

path signal, as they must travel a longer distance. Second, in LOS transmission model,

non-direct multipath signals will normally be weaker than the direct path signal, as
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some signal power will be lost from scattering. If NLOS exists, the non-direct multipath

signal may be stronger, as the direct path is hindered in some way. Based on these

characteristics, scientists can always design more sensitive receivers to lock and track the

direct path signal. For example, multipath signals using a pseudo-random code arriving

at the receiver later than the direct path signal will have negligible effects on a high-

resolution DS-BPSK receiver [69]. Our location detection scheme mitigates the effect of

multipath fading by measuring TDoA over multiple beacon intervals and modeling the

multipath arrival times as the double exponential distribution. TDoA measurements have

been very effective in fading channels, as many detrimental effects caused by multipath

fading and processing delay can be cancelled [70].

Another source of position error is the variable speed of sound, which significantly

affects the precision of all localization systems that assume a constant acoustic speed.

The velocity of underwater acoustics depends on temperature, salinity, and depth [71].

As a future research, we will investigate the influence of the variable speed of sound on

our positioning scheme.

6.4 Simulation

In this section, we are going to study the performance of UPS in UWA-SN. We take

the same assumptions as those in Subsection 6.3.2, that for a given ti1, the measuring

errors of Δtii, Δti2 and Δti3 are independent exponential distributions with arrival rates

λ1, λ2 and λ3, respectively, and that the underwater vehicle/sensor measures the arrival

time of the first ray of the first cluster only in a multipath fading channel. We further

assume that the measuring errors of Δtib, Δtic and Δtid are negligible, as justified in

Subsection 6.3.3. Therefore λ1, λ2 and λ3 can be assumed to be equal, and this value

is denoted by λ. We will investigate the influence of λ upon position error. Another
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factor we will investigate is the number of beacon intervals I used to compute k1, k2, and

k3. Since we also consider the localization of mobile underwater vehicles, we choose to

average over a small number of beacon intervals.

We use Matlab to code UPS. This tool provides procedures to generate normally

distributed and uniformly distributed random numbers. Note that we do not use the

sqrt function in Matlab. Instead, we use Newton’s method [72]. We have found that 4

iterations generally yield good results. In addition, Eq. (6.24) will be adopted for position

estimation since in our simulation, sensors will be placed within the space enclosed by

four anchor nodes.

First we study the distribution of position errors over a 3D monitored space. In

this simulation scenario, the four anchor nodes are located at (0, 0, 0), (20, 0, 0), (0, 20, 0),

and (0, 0, 20) respectively. Sensors are placed at grid points (i + 0.5, j + 0.5, k + 0.5),

where i, j, k = 0, 1, · · · , 19. The errors of Δti1, Δti2 and Δti3 are exponentially distributed

with parameters λ1 = λ2 = λ3 = λ. We average the sensor location estimation over

1000 trials. For each trial, I = 16. In addition, we simulate different λ settings and

obtain similar results. Nevertheless, we report the cases of λ = 0.1 and λ = 2.5 only in

this paper. Fig. 6.7 and Fig. 6.8 illustrate the (x − y) plane position errors vs. the real

positions of the sensors for z = 5. Results from (x − z) and (y − z) planes are close to

those reported for the (x− y) plane.

We observe that a lower arrival rate gives a better estimation since a higher arrival

rate may bring motion-induced Doppler shift in the channel and cause jittering in the

measurement. We also observe that as the distances from a sensor to all four anchor nodes

become larger, the position errors will become larger correspondingly; when the sensor is

closer to any of the four anchor nodes, the errors become larger. Notice that in Fig. 6.7

the sensor at location (9.5, 9.5, 5.0), which is close to the intersection of the three angle

bisectors of ABC, has the smallest position error and the sensors at its neighboring
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area also demonstrate quite low position errors. Interestingly, Refs. [61, 73, 74] provide

similar results in their simulation study. Intuitively this is because the geometry of the

intersection of the range circles is poor when the sensors are far away from any anchor

node or when the sensors are close to any anchor node. From this analysis, we conclude

that the position error is related to the placement of anchor nodes. Careful studies

will be conducted in the future as the results can be applied to guide the deployment

of anchor nodes for better performance. For these reasons, in the following simulation,

we intentionally enforce an allowable shortest distance (1.0 unit) from any randomly

generated sensor to any anchor node. This means the four anchor nodes are placed some

distance away from the boundary of the monitored area.
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Figure 6.7. Position errors vs. real positions when λ = 0.1 in z = 5 plane .
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Figure 6.8. Position errors vs. real positions when λ = 2.5 in z = 10 plane.

Next we consider the scenario when sensors are randomly deployed in a cubic

space with lower-left corner (1, 1, 1) and upper-right corner (19, 19, 19). The four anchor

nodes are still located at (0, 0, 0), (20, 0, 0), (0, 20, 0) and (0, 0, 20), respectively. For

each λ value, we try 2000 random sensor positions. The averaged results are reported in

Fig. 6.9. Note that in this study, I is selected from {1, 2, 3, 4} in order to demonstrate

the effectiveness of UPS when applied to positioning mobile underwater vehicles.

We obtain three observations from Fig. 6.9. First, as I increases, position error

decreases. This is because averaging over larger number of beacon intervals to compute k1

k2 and k3 can better smooth out the effects of measuring errors in Δti1, Δti2 and Δti3, thus

produce improved result. A detailed theoretical explanation comes from Subsection 6.3.2.

As I increases, σ2
1 , σ

2
2 and σ2

3 will decrease, and thus V (x), V (y) and V (z) will decrease.

Then the errors from estimating the coordinates of sensors by x, y and z will decrease,
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implying that the position error will become smaller. Second, position error increases as

λ increases. This is reasonable in the underwater acoustic channel, in which a higher λ

comes from an even higher transmission rate when asymmetry commonly exists between

the transmitter and the receiver. Such characteristic of the underwater medium brings

significant multipath interference at the receiver and causes jittering as illustrated in

Fig. 6.8. Again, this can be well explained by Subsection 6.3.2. In fact, if λ increases

which means v increases at an even larger pace, v2/λ2 increases. As a result, V (x), V (y)

and V (z) increase so that the errors from estimating the coordinates of the sensor by

x and y and z increase. Thus the larger the arrival rate, the larger the position error.

Third, in the situation of small λ, for example λ ≈ 0.5 as shown in Fig. 6.9, the location

errors vary very little with the number of beacon intervals I. When λ is relatively high,

I plays a more important role. The higher the λ, the bigger the difference induced from

I. This observation is analogous to the terrestrial wireless communication channels, in

which coherenct time is introduced to depict a period of time where the channel behavior

or model can be considered as stationary. For underwater wireless communications, not

only temporal coherence but also spatial and frequency coherences [68] are significant

parameters for signal propagation through acoustic channels with multiple paths. Based

on the third observation, λ in underwater communications should not be neglected in

estimating the coherence parameters. Note that rotating the square-cube monitored

space within the open space formed by anchor nodes A, B, C and D, we obtain very

similar results.

In the following, we report the simulation results when ∠BAC ≤ 90◦. In this

simulation, the four anchor nodes are located at (0, 0, 0), (XB, YB, 0), (XC , YC, 0), and

(0, 0, ZD), respectively, where XB, YB, XC , YC and ZD are randomly drawn from [5, 20].

2000 sensors are randomly placed within the overlapping space formed by the anchor

nodes (A,B,C,D) and the cube space with corners (0, 0, 0) and (20, 20, 20). Fig. 6.10
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Figure 6.9. Position errors vs. λ where ∠BAC = 90◦ .

reports the position error vs. λ. Note that the observations from Fig. 6.10 is very similar

to those from Fig. 6.9. Nevertheless, for the same λ, the acute angle case performs slightly

better than the right angle one.

6.5 Conclusion

In this section, we propose UPS, a silent underwater positioning scheme for UWA-

SNs. UPS is superior to existing systems in many aspects such as synchronization-

free, low computation overhead, etc. To evaluate the performance of UPS, we model

the underwater acoustic channel with a modified UWB S-V model, and conduct both

theoretical analysis and simulation study. Our scheme is simple and effective.
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CHAPTER 7

CONCLUSIONS

This chapter concludes the dissertation. The chapter begins with a summary of the

dissertation work followed with a discussion of future research directions in the energy

efficient wireless sensor network technologies.

7.1 Summary of Research Work

In this dissertation report, we described a new method based on fuzzy logic systems

to analyze and estimate the network lifetime for wireless sensor networks. Our approach

is illuminated by the research that a single node lifetime behaves the nature of normal

Gaussian distribution. However,we showed that if the single node lifetime follows normal

Gaussian distribution, it is most appropriate to be modeled as a Gaussian MF with

uncertain standard deviation. We then set up the Fuzzy Logic Lifetime Evaluator (FLLE)

based on interval type-2 FLSs for lifetime estimation and test its performance using real

lifetime data. Simulation results convincingly justified the feasibility of applying type-

2 FLSs into wireless sensor network lifetime analysis. We believe that our approaches

opens up a new vision for research on wireless sensor network lifetime analysis. (Chap 2)

For the sensor deployment topic, we proposed a sensor deployment strategy based

on fuzzy logic system. Our approach has a great advantage to deal with the uncertainty

in distributed sensor deployment which is particularly useful when emergency rescue or

redeployment over hostile situation is needed. In an energy constrained wireless sensor

network, fast and efficient deployment strategy is a necessity to save energy and extend

network lifetime. Our FLSs scheme is capable to model all distributed sensor deployment

111
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with a fuzzy logic system. The network coverage and quality of communication in term

of outage probability are greatly improved as a result. Moreover, the FLSs scheme brings

the whole network to a stable and optimal deployment very soon which will significantly

reduce the energy consumption. (Chap 3)

In the case of distributed source coding, we have proposed a spectrum efficient

coding scheme for correlated non-binary sources in sensor networks. Instead of using

theoretically ideal data, our scheme is based on the statistic characters of the corre-

lated non-binary sources from real sensor network. The coset construction introduced

in this paper leverages the inherent correlations between sensor observations, but more

importantly by minimizing the cross ratio, decreases the probability of decoding error.

The proposed scheme performs at 0.5 - 1.5 dB from the Wyner-Ziv distortion bound.

Our approach provides a practical solution to distributedly compress the acoustic sensor

observations and can be extended to the CEO problem. (Chap 4)

we presented the MIMO decision fusion rules for multi-target, multi-hop radar

sensor networks under the assumption that the target RCS is Rayleigh model and clutter

echoes follow Gaussian. We derived the optimum LR-based fusion rule and a sub-optimal

LR-based fusion rule with the target RCS statistics only. Simulation results show that

the MIMO fusion rules approach the optimal-LR and outperforms MRC and EGC at

high signal to clutter ratio (SCR). (Chap 5)

Considering the underwater acoustic sensor application, we propose UPS, a silent

underwater positioning scheme for UWA-SNs. UPS is superior to existing systems in

many aspects such as synchronization-free, low computation overhead,etc. To evaluate

the performance of UPS, we model the underwater acoustic channel with a modified UWB

S-V model, and conduct both theoretical analysis and simulation study. Our scheme is

simple and effective. (Chap 6)
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7.2 Future Work

In previous chapters we have discussed a new approach to analyze the lifetime of

a wireless sensor network based on interval type-2 fuzzy logic systems and two energy

efficient techniques in wireless sensor networks: fuzzy optimization for distributed sen-

sor deployment, spectrum efficient coding scheme for correlated non-binary sources in

wireless sensor networks and two sensor applications: data fusion in a multi-target radar

sensor networks and silent positioning in underwater acoustic sensor networks. These

topics can be extended to more meaningful collaborative positioning and tracking with

multiple sensors.

A sensor network is designed to perform a set of high-level information processing

tasks such as detection, positioning tracking, or classification. Energy-constrained net-

worked sensing systems rely on collaborative signal and information processing (CSIP)

to dynamically allocate resources based on task requirements. Target positioning and

tracking is used as a canonical problem for studying CSIP issue. It is especially useful for

illustrating a central problem of CSIP: dynamically defining and forming sensor groups

based on task requirements and resource availability. In this section, I propose my future

works on target positioning and tracking in radar or underwater sensor systems.

When multiple sensors view a common area, there can be improved tracking, the

data rate can be greater than any of the sensors acting alone, there is less vulnerability

to electronic countermeasures, and less likelihood of having missed detections due to

reduced echo-signal strength caused by nulls in one of the antenna patterns or changes

in the target aspect. There are two related cases: one is when the sensors are collocated,

as on the same ship or at the same land site; the other, is when they are at separated

locations and netted together. The first case will be studied in future research. We

combine all the detections from each radar to form a single track and to update the track

rather than develope separate tracks at each sensor and either select the best track or
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combine them in some other manner. The development of a single track file by the use of

the total data available from all sensors produces a better track than combining the tracks

developed individually at each sensor. It reduces the likelihood of a loss of data as might

be caused by antenna lobing, target fading, interference, and clutter since intergrated

processing permits the favorable weighting of the better data and lesser weighting of

the poorer data. One interesting question in tracking maneuvering targets with multiple

sensors is: does more data always mean better estimates? When the problem of tracking

maneuvering targets with multiple sensors is considered in the literature, the number and

type of sensors that support a given target track is usually fixed with respect to a given

location of the target. However, in many multisensor systems, the number and type of

sensors supporting a particular target track can vary with time due to the mobility, type

and resource limitations of the individual sensors. This variability in the configuration of

the sensor system poses a significant problem when tracking maneuvering targets because

of the uncertainty in the target motion model. [75] has shown that more data does not

necessarily mean better target state estimate. More data means better performance

only if the track filter is consistent. Results in [75] has to satisfy certain criteria and

I am interested to learn if there is a universal condition under which more data does

not necessarily mean better performance, moreover how to associate the observed data,

reducing the redundancy to achieve better target state estimate.



APPENDIX A

MULTIPLE LOG-NORMAL INTERFERERS

115



116

Consider the sum of NI log-normal random variables

I =

NI∑
k=1

Ωk =

NI∑
k=1

10Ωk(dBm)/10 (A.1)

where the Ωk(dBm) are Gaussian random variables with mean μΩk(dBm)
and variance

σ2
Ωk

, and the Ωk = 10Ωk(dBm)/10 are the log-normal random variables. Unfortunately,

there is no known closed form expression for the probability density function (pdf) of

the sum of multiple (NI ≥ 2) log-normal random variables. However, there is a general

consensus that the sum of independent log-normal random variables can be approximated

by another log-normal random variable with appropriately chosen parameters. That is,

I =

NI∑
k=1

10Ωk(dBm)/10 ≈ 10Z(dBm)/10 = Î (A.2)

where Z(dBm) is a Gaussian random variable with mean μZ(dBm) and variance σ2
Z .

The problem is to determine μZ(dBm) and variance σ2
Z in terms of the μΩk(dBm)

and variance

σ2
Ωk

, k = 1, ..., NI . Several methods have been suggested in the literature to solve this

problem including those by Fenton, Schwartz and Yen, and Farley. Each of these meth-

ods provides varying degrees of accuracy over specified ranges of the shadow standard

deviation σΩ, the sum I, and the number of interferes NI .
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With the Fenton-Wilkinson method, the mean μZ(dBm) and variance σ2
Z of Z(dBm)

are obtained by matching the first two moments of the sum I with the first two moments

of the approximation Î. To derive the appropriate moments, it is convenient to use

natural logarithms. We write

Ωk = 10Ωk(dBm)/10 = eεΩk(dBm) = eΩ̂k (B.1)

where ε = (ln10)/10 = 0.23026 and Ω̂k = εΩk(dBm). Note that μΩ̂k
= εμΩk(dBm)

and

σ2
Ω̂k

= ε2σ2
Ωk

. The nth moment of the log-normal random variable Ωk can be obtained

from the moment generating function of the Gaussian random variables Ω̂k as

E[Ωn
k ] = E[enΩ̂k ] = e

nμ
Ω̂k

+(1/2)n2σ2
Ω̂k (B.2)

To find the appropriate moments for the log-normal approximation we can use (14)

and equate the first two moments on both sides of the equation

I =

NI∑
k=1

eΩ̂k ≈ eẐ = Î (B.3)

where Ẑ = εZ(dBm). For example, suppose that Ω̂k, k = 1, ..., NI have mean μΩ̂k
,

k = 1, ..., NI and identical variances σ2
Ω̂
. Identical variances are often assumed because

the standard deviation of log-normal shadowing is largely independent of the radio path

length. Equating the means on both sides of (15)

μI = E[I] =

NI∑
k=1

E[eΩ̂k ] = E[eẐ ] = E[Î] = μÎ (B.4)

gives the result

(
NI∑
k=1

e
μ

Ω̂k

)
e(1/2)σ2

Ω̂ = eμ
Ẑ

+(1/2)σ2
Ẑ (B.5)
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Likewise, we can equate the variances on both sides of (15) under the assumption

that the Ω̂k, k = 1, ..., NI are independent

σ2
I = E[I2] − μ2

I = E[Î2] = σ2
Î

(B.6)

giving the result

(
NI∑
k=1

e
2μ

Ω̂k

)
eσ2

Ω̂(eσ2
Ω̂ − 1) = e2μ

Ẑeσ2
Ẑ (eσ2

Ẑ − 1) (B.7)

By squaring each side of (17) and dividing each side of resulting equation by the

respective side of (19) We can solve for σ2
hatZ

in terms of the known values of μΩ̂k
,

k = 1, ..., NI and σ2
Ω̂
. Afterwards, μẐ can be obtained from (17). This procedure yields

the following solution:

μẐ =
σ2

Ω̂
− σ2

Ẑ

2
+ ln

(
NI∑
k=1

e
μ

Ω̂k

)
(B.8)

σ2
Ẑ

= ln

(
(eσ2

Ω̂ − 1)

∑NI

k=1 e
2μ

Ω̂k

(
∑NI

k=1 e
μ

Ω̂k )2
+ 1

)
(B.9)

Finally, μZ(dBm) = ε−1μẐ and σ2
Z = ε−2σ2

Ẑ
.

The accuracy of this log-normal approximation can be measured in terms of how

accurately the first two moments of I(dB) = 10log10I are estimated, and how well the

cumulative distribution function (cdf) of I(dB) is described by a Gaussian cdf. In problems

relating to the co-channel interference outage in cellular radio systems, we are usually

interested in the tails of both the complementary distribution function (cdfc) FC
I =

P (I ≥ x) and the cdf FI(x) = 1 − FC
I = P (I < x). In this case, we are interested in the

accuracy of the approximation

FI(x) ≈ P (eẐ ≥ x) = Q

(
lnx− μẐ

σẐ

)
(B.10)
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for large and small values of x. It will be shown later that the Fenton-Wilkinson

method can approximate the tails of the cdf and cdfc functions with good accuracy.
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