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ABSTRACT 

 
HIGH ORDER COMPACT SCHEME FOR 

DISCONTINUOUS DIFFERENTIAL  

EQUATIONS  

 

JAMES LOUIS THOMPSON, PhD 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  CHAOQUN LIU  

 A high order implicit second derivative compact method is given which is similar the 

Adams-Moulton method, but requiring only two steps for sixth order. This method is used in 

both predictor-corrector and Newton’s method formulations, and although the compact scheme 

is not A-stable or stiffly stable, it’s region of stability is over six times greater than the Sixth order 

Adams-Moulton method. This compact method has a small truncation error coefficient, and is 

more accurate than Enright’s method within the region of stability. 

          Fourth and sixth order explicit compact methods are derived as well, and the three step 

sixth order explicit method is used as the predictor for the harmonic oscillator equation with 

Coulomb damping. Consistency and rate of convergence conditions are derived for these 

compact methods, and convergence is proved as well. The region of stability is plotted for the 

sixth order implicit case. 

          The two step sixth order implicit compact method is compared against the five step stiffly-

stable Enright method and the five step Adams-Moulton scheme on three test problems, and is 
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shown to be more accurate than Enright’s method, and has better accuracy and is more stable 

than Adams-Moulton. 

      The predictor-corrector compact formulation is tested on two Coulomb friction problems, and 

the difficulty caused by the discontinuous right-hand side is avoided by breaking the problem 

into segments between the discontinuities. 
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CHAPTER 1 

FRICTIONAL DAMPING                                                          

          This chapter discusses frictional damping in simple physical systems. The examples are all 

one dimensional, and the equations of motion are derived for both viscous and Coulomb friction. 

The purpose of this chapter is to provide motivational background for the differential equations 

studied in the following chapters, and is intended as a brief survey rather than an exhaustive 

study. 

1.1 Viscous Friction 

          Viscosity may be described roughly as the shear forces existing in moving fluids (Feynman, 

1963). There are many examples of viscous forces, including air resistance to slowly moving 

bodies, and pistons sliding in lubricated cylinders. Consider a plate sliding on a flat surface which 

has been coated with a liquid. It is known that the force on the plate required to maintain a 

constant velocity is (Feynman, 1963; Hutton, 1981) 

                                                                   A
d

v
F η= ,                                                             (1.1) 

where η  is the coefficient of viscosity, v  is the velocity, d  is the thickness of the fluid, and A  is 

the surface area of the plate contacting the fluid. 

          If the free end of a securely anchored spring is attached to the plate, the spring/plate 

system displaced a distance 0x  in the positive x  direction, and the plate then released, how will 

the viscosity of the fluid affect the motion? Applying Newton’s second law to this system gives 

                                                                xckxxm ′−−=′′  ,                                                      (1.2) 

where the constant c  is defined as 

                                                                        
d

A
c η≡ .                                                             (1.3) 
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Equation (1.2) is usually written as 

                                                              0=+′+′′ x
m

k
x

m

c
x .                                                   (1.4) 

          The linear homogeneous differential equation (1.4) can be solved by the usual techniques. 

Defining the undamped frequency 0ω   as 

                                                                   
m

k
≡0ω ,                                                              (1.5) 

and the damping factor as (Hutton, 1981; Jacobsen and Ayre, 1958) 

                                                                   
02 ω

ζ
m

c
≡   ,                                                          (1.6) 

the roots of the auxiliary equation for (1.4) are 

                                                               ( )12
02,1 −±−= ζζωs .                                           (1.7) 

The value ofζ gives three distinct solutions to equation (1.4). These solutions are called 

overdamped, critically damped, and underdamped for 1>ζ , 1=ζ , and 1<ζ  respectively. 

                   1>ζ ,                    
tt

eaeatx





 −+−





 −−−

+=
1

2

1

1

2
0

2
0

)(
ζζωζζω

                              (1.8) 

                   1=ζ ,                             ( ) tetaatx 0
43)( ω−+=                                                       (1.9) 

                   1<ζ ,        ( )tataetx t
0

2
60

2
5 1cos1sin)( 0 ωζωζζω −+−= − ,                      (1.10) 

where the constants ja  are determined by the initial conditions. 

          Equations (1.8), (1.9), and (1.10) show the effects of viscous damping on the motion, 

namely that the oscillatory motion has a lower frequency than the undamped case, and the 

amplitude of the oscillation decays to zero exponentially. Additionally, if the damping is strong 

enough ( 1≥ζ ) there is no oscillatory motion at all, and the plate approaches the static 

equilibrium point 0=x  asymptotically. 
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1.2 Coulomb Friction 

          If the viscous fluid is removed, the plate must slide on the dry table surface. This type of 

frictional force is then called Coulomb friction, although it is sometimes called dry, solid, or 

constant friction. Coulomb frictional force always opposes the motion, but can never cause 

motion. 

          The force required to maintain constant plate motion is 

                                                                      NFf µ= .                                                          (1.11) 

Here N  is the normal force between the table and the plate, and µ  is the coefficient of friction. 

Although not strictly true (Feynman, 1962), the coefficient of friction µ  is assumed to be 

independent of velocity, with value between zero and one. If the table surface is horizontal, and 

there is no vertical force other than gravity, then the normal force N  equals the weight W  of the 

plate. 

          If the plate velocity is zero, the frictional force is given by (1.11) only if the magnitude of the 

net applied horizontal force AF  is greater than Nµ . Otherwise the frictional force is  

                                                                     Af FF −= .                                                          (1.12) 

          Replacing viscous damping in the spring/plate system of section (1.1) with Coulomb friction 

changes the equation of motion (1.4) to 

                                                                0=−+′′
m

F
x

m

k
x f

,                                                 (1.13) 

where fF  is given by 

                                        ( ) ( )( ) ( )[ ]xxxWFf sgnsgn1sgn ′−−′−= µ                                     (1.14) 

for non-zero velocity, or for zero velocity with 

                                                                    ( ) Wtkx µ> .                                                       (1.15) 

The signing function in (1.14) is defined as 
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                                                              ( ) 1sgn =z ,     0>z  

                                                              ( ) 0sgn =z ,    0=z   

                                                              ( ) 1sgn −=z    0<z                                                   (1.16) 

If the velocity is zero and (1.15) is not satisfied, 

                                                                     ( )tkxFf = .                                                         (1.17) 

The second term in (1.14) is often ignored in the literature (Jacobsen and Ayre, 1958), but it is 

necessary if (1.13) is to obey the second law at the turning points. If the initial conditions are 

                                                                       ( ) ax =0      

                                                                       ( ) 00 =′x ,                                                          (1.18) 

with a  positive and 

                                                                        
k

W
a

µ
> ,                                                         (1.19) 

then differential equation (1.13) and initial conditions (1.18) comprise a non-linear initial value 

problem. The non-linearity comes from the jump discontinuity of the Coulomb frictional force at 

each point in time where the velocity ( )itx′  changes direction. Equation (1.14) shows that the 

frictional force instantaneously changes sign whenever the plate stops. The magnitude of the 

jump is Wµ2 at each turning point, Wµ  if the plate comes to rest at 0=x , and ( )jtkxW ±µ at 

the remaining points of the dead band (points where the spring force is to small to cause motion). 

The physics of the spring/plate and similar problems means that the set of all times it  where the 

discontinuities of x ′′  occur is a set of measure zero. 

          The initial value problem defined by (1.13) and (1.18) can be solved with conventional 

techniques in a piecewise manner, but a Laplace transform solution is given here instead (Pipes, 

1970; Hutton, 1981). The differential equation (1.13) may be written as 

                                                         ( ) ( ) ( )tghtxtx µω =+′′ 2
0 .                                                (1.20) 
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Here 0ω  is defined by (1.5), and the coefficient of ( )th  comes from the fact that 

                                                                      mgW = ,                                                           (1.21) 

with g defined as the acceleration of gravity. The function ( )th  is a square wave with period T2  

and amplitude one, and may also be expressed as a sum of Heaviside functions 

                                                    ( ) ( ) ( ) ( )nTtututh
N

n

n −−+= ∑
=1

12 .                                       (1.22) 

The Laplace transforms of ( )tx  and ( )tx ′′  are 

                                                                     ( ){ } ( )sXtxL ≡ ,                                                  (1.23) 

                                                ( ){ } ( ) ( ) ( )002 =′−=−≡′′ txtsxsXstxL  

                                                               ( ) sasXs −= 2 .                                                         (1.24) 

The shifting theorem 

                                                     ( ) ( ){ } ( )sFetutfL sτττ −=−−                                            (1.25) 

is used to transform ( )th ,   

                                                     ( ){ } ( )∑
=

−−+=
N

n

nTsn e
ss

thL
1

1
21

.                                          (1.26) 

The transformed differential equation is  

                                          ( ) ( ) ( ) 







−++=+ ∑

=

−
N

n

nTsn e
s

g
sasXs

1

2
0

2 121
µ

ω .                        (1.27) 

The solution for the transformed displacement is 

                               ( ) ( )
)(

12
)( 2

0
2

1
2

0
22

0
2 ω

µ
ω

µ
ω +

−+
+

+
+

=
−

=
∑

ss

e
g

ss

g

s

sa
sX

nTsN

n

n
.                (1.28) 

The inverse transform ( )tx  of ( )sX  is 

       ( ) ( ) ( ) ( )[ ] ( )nTtunTt
g

t
g

tatx
N

n

n −−−−+−+= ∑
=1

02
0

02
0

0 cos11
2

cos1cos ω
ω
µ

ω
ω
µ

ω          (1.29) 
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This motion will continue until the velocity goes to zero inside the dead band defined by 

                                                             
k

W
x

k

W µµ
≤≤− ,                                                     (1.30) 

after which the spring no longer exerts enough force to overcome friction. This assumes that the 

amplitude ( )tx  decreases with time. Consider a time t  such that [ ]Tt ,0∈ , and compare the 

amplitude with that of ( )tx  with [ ]TTt 2,∈ . After the initial displacement a , the first maximum 

displacement during the first half cycle occurs at Tt = , where 

                                                            ( ) 2
0

2
ω
µg

aTx +−= .                                                     (1.31) 

The second half cycle displacement extreme occurs at Tt 2= ,                                                                           

                                                           ( ) 2
0

42
ω
µg

aTx −= ,                                                       (1.32) 

a decrease in amplitude of 2
0

2
ω
µg

. 

          The above analysis of the spring/plate system with Coulomb friction shows that the 

amplitude of the motion decays linearly with time, and vibrates at the same frequency as a 

frictionless oscillator. The most important difference between Coulomb and viscous damping is 

that the jump discontinuities of the Coulomb friction term make the differential equation nonlinear. 

                                                             1.3 Forced Vibrations 

          In sections 1.1 and 1.2 an external force was applied to the spring/mass system to give  

initial displacement to the system, but thereafter the damping forces were the only external forces 

present. Consider now the application of a sinusoidal forcing function will then have equation of 

motion 

                                                          tFkxxcxm E ωsin=+′+′′ .                                           (1.33) 

This is normally rewritten as 
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                                                    tXxxx ωωωζω sin2 2
00

2
00 =+′+′′ ,                                   (1.34) 

where 

                                                                      
k

F
X E=0 ,                                                          (1.35) 

and the undamped frequency 0ω  and damping factor ζ  are defined as before (see equations 

(1.5) and (1.6) respectively). The inhomogeneous differential equation (1.34) is linear; hence the 

solution is the sum of the homogenous solution and a particular solution. The homogeneous 

solutions are given by (1.8), (1.9), and (1.10), and since these solutions all decay to zero, the only 

remaining part of the solution is the particular solution. The particular solution is therefore called 

the steady state solution. The steady state solution is (Hutton, 1981; Jacobsen and Ayre, 1958)  

                                               ( )
( ) ( )

( )φω
ζ

−
+−

= t
rr

X
tx sin

21 222

0 ,                                   (1.36) 

where the phase angle φ  is defined as 

                                                             







−

= 21
2

r

r
ArcTan

ζ
φ .                                                (1.37) 

The variable r  is the forcing frequency ω  divided by 0ω , and is called the frequency ratio. The 

maximum value of ( )tx  occurs when  

                                                                  221 ζ−=r ,                                                       (1.38) 

as long as 

                                                                        
2
2

≤ζ .                                                          (1.39) 

This maximum amplitude is 

                                                              
2

0
max

12 ζζ −
=

X
x .                                                   (1.40) 
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Equation (1.40) has the expected pole at resonance ( 1=r ) if 0=ζ , but for non-zero values of 

ζ , the amplitude is a bounded function of r . Thus viscous damping removes the resonant pole 

of the undamped oscillator, and shifts the maximum response to values of r  between zero and 

one. 

          The equation of motion for Coulomb damping with a forcing function is 

                                                        tFFkxxm Ef ωsin=−+′′ ,                                             (1.41) 

with fF  having the same definition as in the unforced Coulomb damping case. The normal form 

for equation (1.41) is 

                                                 ( ) tXXxx f ωωω sin2
00

2
0 =−+′′ ,                                         (1.42) 

where 0ω  and 0X  are defined as in the viscous case, and fX  is defined by 

                                                                     
k

F
X f

f ≡ .                                                           (1.43) 

          The solution to (1.42) can have many forms (Den Hartog, 1985). There can be steady state 

solutions without stops in motion, or with one or more stops per half cycle. Den Hartog derived 

exact solutions to (1.42) for the cases of zero and one stops in each half cycle. Den Hartog’s 

results will not be reproduced here, but the results will be summarized. 

          First, if a steady state solution exists, it will have the same frequency as the forcing 

function. Second, the motion may stop one or more times per half cycle. The last, and most 

surprising aspect of the solution is that for values of fF  and EF  such that 

                                                                      
4
π

≤
E

f

F

F
,                                                            (1.44) 

the solution is unbounded at resonance. This result can be understood by looking at the 

difference in work done by the forcing function and the work done by friction. Since both are 

proportional to the amplitude, if fF  is less than some fraction of EF , the energy input is greater 
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than the energy dissipated regardless of the amplitude, therefore the amplitude grows without 

bound. For viscous damping the dissipation is proportional to amplitude squared, and therefore 

as the amplitude grows the dissipation quickly catches up to the energy input, and equilibrium is 

achieved. 

1.4 Numerical Approach 

          The non-linear nature of Coulomb friction problems makes numerical solutions problematic 

(Gear, 1971). This can be illustrated by the simple unforced Coulomb problem (1.13), with 

10 =ω , and 2.=gµ  (Thompson and Liu, 2004). The exact solution to this problem is  

                                                   2.)cos(8.)( += ttx               π<≤ t0  

                                                   2.)cos(4.)( −= ttx               ππ 2<≤ t  

                                                   2.)( =tx                                π2≥t ,                                  (1.45) 

                                                   )sin(8.)( ttx −=′                   π<≤ t0       

                                                   )sin(4.)( ttx −=′                   ππ 2<≤ t   

                                                   0)( =′ tx                                π2≥t .                                   (1.46) 

Apply the fourth order Runge-Kutta explicit method in the usual way, including the correct 

Coulomb friction model (1.14), (1.15), and (1.16), to this differential equation. Figure 1.1 shows 

the normalized error in the numerical solution as a function of time for ]20,0[∈t . Figure 1.1 

clearly shows the rapid increase in error after the first discontinuity. The error is normal during 

π<≤ t0 (approximately 610− ), but jumps three orders of magnitude after the first discontinuity. 

The error increases asymptotically after the second turning point; in fact the numerical solution is 

decaying towards zero for π2≥t . Any numerical method used for problems with Coulomb 

friction must overcome the effects of these discontinuities. These difficulties suggest breaking the 

domain into discrete intervals, with each interval bounded by the time at which discontinuity 

occurs (Gear, 1981). Although the differential equations are well behaved in the interior of each 
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interval, this approach will require automatic detection of each discontinuity. For Coulomb friction 

problems, this can be done by looking for sign changes in velocity at each point of the calculation. 

 

Figure 1.1 Error in Runge-Kutta calculation for a simple Coulomb damping problem. The 
computation was done in double precision with 1.0=h  

 

The code must then go back to the previous grid point and find the time where the velocity is 

zero; a time which is usually between grid points. This time will then begin the calculation as a 

new problem, with initial conditions given by 

                                                                    αα xtx ≡)(   

                                                                    0)( ≡′ αtx .                                                           (1.47) 

The accuracy of the zero velocity time will affect the error in the following interval, and therefore a 

high order numerical method, a grid refinement, or a combination of both is necessary.  
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          Simple single step methods such as the explicit fourth order Runge-Kutta or Obrechkoff’s 

A-stable second derivative method (Obrechkoff, 1942) could easily be implemented for these 

problems. More complex methods involving blocked Runge-Kutta schemes give high order and 

good stability (Shampine, 2011; Verner, 2008). Shampines explicit Runge-Kutta pair uses eight 

equally spaced points in the span of each step, and are eighth order at interior points and ninth 

order at the step grid points. The average radius of the stability region for Shampine’s scheme is 

approximately 4.3. The blocked Runge-Kutta methods would require modification to detect the 

points of discontinuity in Coulomb friction problems, and more generally, matrix methods pose 

additional difficulties during the detection process. Hence the goal in this work is higher order 

compact methods (Lele, 1992). A two-step, sixth order implicit compact method (Thompson and 

Liu, 2004) will give good accuracy and stability with less complexity than block Runge-Kutta 

methods, and is the method used in this work. This method can be used in a predictor-corrector 

scheme with a sixth order explicit compact corrector, or combined with Newton’s method in a 

more straight forward approach. Although the compact schemes are not A-stable, the stability 

region of the implicit two step method is considerably larger than either the fourth order explicit 

Runge-Kutta method, sixth order implicit Adams-Moulton method, and the ninth order Shampine 

scheme. 

          In cases where the spring constant is large enough to require stiffly stable methods, Enright 

has published methods of the form (Enright, 1974) 

                                                   10
2

0
11 +

=
−++ ′′+′+= ∑ n

k

j
jnjnn yhybhyy γ ,                                   (1.48) 

where k  is the number of steps. These formulae are of order 2+k , and are A-stable up through 

two steps, and stiffly-stable for 73 ≤≤ k . Thus a sixth order Enright scheme would be a four- 

step method, and is later shown to be less accurate than the sixth order two-step compact 

scheme. 
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          The compact method is derived in the same way as the formulae for the Adams methods, 

except Hermite polynomials are used to interpolate ))(,( tytf  rather than the Lagrange 

interpolation used in the Adams schemes. The function ))(,( tytf  is the right hand side of 

                                                                ))(,()( tytfty =′ .                                                   (1.49) 

Hermite polynomials have the property 

                                                               ))(,()( iii tytftH =    

                                                               ))(,()( iii tytftH ′=′ ,                                               (1.50) 

thereby doubling the order of the polynomial .This gives doubles the order of the Adams methods 

for a given number of steps. 

          The derivation of both explicit and implicit compact equations is done in Chapter 2. Chapter 

3 looks at consistency, convergence, and stability for the compact method, and finally in Chapter 

4 the compact method is compared to Adams-Moulton and Enright methods, and then applied to 

differential equations with Coulomb and viscous friction. 
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CHAPTER 2 

THE COMPACT METHOD 

                    In this chapter both two and three step explicit and two step implicit compact 

schemes are derived for first order differential equations of the form 

                                                         ))(,()( tytfty =′ ,  0)( yay = ,                                        (2.1) 

where the independent variable ],[ bat∈ . 

The function ))(,( tytf  is interpolated with Hermite polynomials, and these polynomials are used 

to approximate ))(,( tytf  in  

                                              ∫
+ ′=−+

1

)()()( 1

i

i

t

tii dttytyty    

                                                                      ∫
+

=
1

))(,(
i

i

t

t
dttytf .                                              (2.2) 

The first section discusses the application of Hermite polynomials to the derivation of the compact 

schemes, the second section contains the derivation of the difference equations for both two and 

three step explicit schemes, and section three in this chapter is the derivation of the difference 

equation for the two step implicit compact scheme. 

2.1 Hermite Polynomial Interpolation 

          Since it may not be possible to perform the integration in equation (2.2), it may be 

necessary to seek approximate solutions. One possible approach is the polynomial interpolation 

of  ))(,( tytf  on some interval of time. This interpolation scheme is the essence of well known 

multistep methods such as Adams-Bashforth and Adams-Moulton. In the Adams methods the 

coefficients of each power of the independent variable in 

                                                    k
ktatataatP ++++= ...)( 2

210                                           (2.3) 

are chosen such that  
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                                                             ))(,()( iii tytftP =                                                        (2.4) 

whenever { }mnnnni ttttt −+−+∈ 111 ,...,,,  for the implicit Adams-Moulton scheme. For the explicit 

Adams-Bashforth case { }mnnni tttt −+−∈ 11,...,, . In Both cases the index m  denotes the number of 

prior grid steps whose information is incorporated into the solution at 1+nt .  It will be shown in the 

work that follows that adding the requirement 

                                                              ))(,()( iii tytftP ′=′                                                     (2.5) 

reduces the error due to approximation of ))(,( tytf over that where only (2.4) is used. The 

addition of (2.5) to the interpolation of ))(,( tytf  is uniquely satisfied by the Hermite polynomials  

                                       )(
)!22(

)()(
)()( )22(

22
0

12 ς+
+ +

−−
+= nn

n f
n

xxxx
xHxf

Λ
,                      (2.6) 

for some ),()( bax ∈ς  (Burden and Faires, 2005). 

          The Hermite polynomials of equation (2.6) are now used to construct numerical schemes 

for the solution of the first order differential equation (2.1). The interpolation will be done on a 

subset of the uniform grid defined by  

                                                            nhatn += ,  },,1,0{ Nn Κ∈ ,                                    (2.7) 

with 

                                                                    
N

ab
h

−
= .                                                             (2.8) 

The numerical solution 1+ny at the grid point 1+nt  will be calculated by interpolating ))(,( tytf on 

the preceding m grid points for explicit methods, and on the grid points 111 ,,,, +−−+ nnnmn tttt Κ  for 

implicit methods. The Hermite polynomial for the m -step explicit method is 

                                           12
12

2
21012 )( −

−− ++++= m
mm tatataatH Λ .                                 (2.9) 

The m2  coefficients 1210 ,,, −maaa Κ can be obtained by solution of the equations 
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n
m
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2
210 Λ  
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m

nmn ftamtaa ′=−+++ −
−

22
1221 )12(2 Λ  

1
12

112
2

12110 −
−

−−−− =++++ n
m

nmnn ftatataa Λ  

1
22

112121 )12(2 −
−

−−− ′=−+++ n
m

nmn ftamtaa Λ  

                                                                          Μ 

mn
m

mnmmnmn ftatataa −+
−
−+−−+−+ =++++ 1
12

112
2

12110 Λ  

                             mn
m

mnmmnmn ftamtataa −+
−
−+−−+−+ ′=−++++ 1
22

112
2

13121 )12(32 Λ .               (2.10) 

The notation kf  in (2.10) is an abbreviation for ))(,( kk tytf . 

          The interpolating polynomial for implicit m -step schemes is given by 

                                       12
12

2
21012 )( +

++ ++++= m
mm tatataatH Λ .                                  (2.11) 

For a given step size, the order of polynomial (2.11) is two greater than the order of polynomial 

(2.10) used for explicit methods. For implicit methods, the 22 +m  coefficients 1210 ,,, +maaa Κ  

are determined from 

  

                                           1
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112121 )12(2 ++++ ′=++++ n
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2
210 Λ  

n
m

nmn ftamtaa ′=++++ +
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1221 )12(2 Λ  

                                                                          Μ 
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m
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+
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                            mn
m

mnmmnmn ftamtataa −+−++−+−+ ′=+++++ 1
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112
2

13121 )12(32 Λ .                (2.12) 
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The solutions for the coefficients ka in (2.10) and (2.12) are used to derive the compact methods.  

Using equation (2.9) in the right hand side of (2.2) generates the explicit compact methods,  

                                                         ∫
+

−+ +=
1

)()()( 121

i

i

t

t mii dttHtyty ,                                   (2.13) 

and the implicit schemes are derived by using (2.11),  

                                                          ∫
+

++ +=
1

)()()( 121

i

i

t

t mii dttHtyty .                                  (2.14) 

          The Adams schemes are derived using Newton’s backward-difference formulas rather than 

finding the polynomial coefficients directly (Atkinson, 1989; Burden and Faires, 2005). While the 

Hermite polynomials have a Newton divided difference interpolation formula, this approach is not 

as advantageous as in the Adams methods and is not used here. 

2.2 Explicit Compact Formulas 

          The formulas for explicit two and three step methods are derived in this section, with 

rational coefficient expressions in both cases.  

          First, equation (2.10) is simplified by shifting the time axis such that the subscript n  

corresponds to 0=t . This transformation reduces equation (2.10) to 

nfa =0  

 nfa ′=1  

nnn
m

m ffhfhaha −′+=−++ −
−

− 1
12

12
2

2 )(Λ  

nn
m

m ffhamha ′−′=−−++− −
−

− 1
22

122 )()12(2 Λ  

                                                                             Μ 

nnmn
m

m fhmffhmahmahma ′−+−=−−++−−− −+
−

− )1())1(()1()1( 1
12

12
33

3
22

2 Λ  

     nmn
m

m ffhmamhmahma ′−′=−−−++−+−− −+
−

− 1
22

12
22

32 ))1(()12()1(3)1(2 Λ      (2.15) 
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After solving (2.15) for the coefficients 1210 ,,, −maaa Κ , the explicit compact method is 

determined from (2.13) 

                                           ∫ −
−+ ++++=

h m
mii dttataatyty

0

12
12101 )()()( Λ , 

                                             12

2

2

3

1

2

01 232 −+ +++++= m

m

ii a
m

h
a

h
a

h
hayy Λ .                     (2.16) 

This gives the numerical scheme as a function of f  evaluated at the previous m  grid points. 

          For a two step method, equation (2.15) becomes 

                                                                      nfa =0  

                                                                      nfa ′=1  

nnn ffhfahah −′+=− −13
3

2
2  

                                                       nn ffahha ′−′=+− −13
2

2 32 .                                            (2.17) 

The solution for 2a  and 3a  is 

                                                  }233{
1

1122 −− ′+′++−= nnnn fhfhff
h

a , 

                                                  }22{
1

1133 −− ′+′++−= nnnn fhfhff
h

a .                                  (2.18) 

Inserting ,,, 210 aaa  and 3a  into (2.16) gives the two step explicit compact method, 

                                     [ ])717(186
12 111 −−+ ′+′++−+= nnnnnn ffhff
h

yy .                          (2.19) 

          The coefficient equations for the three step explicit scheme is 

                                                                       nfa =0  

                                                                      nfa ′=1  

nnn fhffahahahah ′++−=−+− −15
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4
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3
3

2
2  
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                                        15
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4
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3
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2 8032124 −′+′−=+−+− nn ffahahahha .                             (2.20) 

Using Gaussian elimination on the last four equations in (2.20) gives 
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                                          2125
4 4)(
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h
ah .                               (2.21) 

From backward substitution, the coefficients ,,, 432 aaa  and 5a  are 

                           ]}21612[71623{
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1
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                           ]}53213[171633{
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1

21255 −−− ′+′+′++−= nnnnn fffhff
h

a .                          (2.22) 

Inserting the coefficients from (2.22) into the generic explicit compact method (2.16) generates 

the three step explicit compact scheme 

     { }]1731080637[581608949
240 21211 −−−−+ ′+′+′+++−+= nnnnnnnn fffhfff
h

yy .     (2.23) 
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2.3 Implicit Compact Method 

          The formula for the two step implicit compact scheme is derived in this section. Coefficient 

equation (2.12) must be used to obtain these expressions, and the shift in the time coordinate 

used for explicit methods is applied here as well. 

          The time coordinate shift changes (2.12) to 

                                                                       nfa =0  

                                                                       nfa ′=1  
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2
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2 5432 .                                (2.24) 

Gaussian elimination reduces the last four equations in (2.24) to 
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                                           11115
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3
4 −+−+ ′+′+′++−= nnnnn fffff

h
ah .                             (2.25) 

Backward substitution gives the coefficients ,,, 432 aaa  and 5a for the implicit two step formula 

                                       ]}[484{
4
1

111122 −+−+ ′+′−++−= nnnnn ffhfff
h

a       

                                        ]}8[55{
4
1

111133 −+−+ ′+′+′−−= nnnnn fffhff
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                                       ]}[242{
4
1

111144 −+−+ ′−′+−+−= nnnnn ffhfff
h

a  

                                       ]}4[33{
4
1

111155 −+−+ ′+′+′++−= nnnnn fffhff
h

a .                         (2.26) 

`The approximate solution to the first order differential equation (2.1) can now be calculated from 

(2.14) 

                                      dttatataatyty m
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                                        12
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01 222 +
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++++= m
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h
hayy Λ .                                (2.27) 

Using the coefficients ,,,,, 43210 aaaaa  and 5a  in (2.27) gives the two step implicit compact 

equation 

             { }]34013[11128101
240 11111 −+−++ ′+′+′−++++= nnnnnnnn fffhfff
h

yy .            (2.28) 

Since equation (2.28) generally has the unknown 1+ny on the right hand side in the 1+nf  and 1+′nf  

terms, it is combined with some explicit method in a predictor-corrector scheme or it is used with 

a Newton’s method solution. These complications are justified by the larger stability region of the 

implicit method, as discussed in the next chapter. 

2.4 Truncation Error 

          The local truncation error for a numerical method is defined as the difference between the 

exact solution at 1+nt and the numerical method evaluated with the exact solution )( 1+nty , all 

divided by the grid spacing h (Gear, 1971). The order of a method is defined as the maximum 

local truncation error over the interval ],[ ba  on which the problem is defined for a given h .   

Hence the integral of the last term in (2.6) divided by h  will give the order of the method. 

          For explicit compact methods the equation (2.6) is 



 

 
 

21

                     ))((
)!2(

)()()(
)())(,( )2(

2
1

2
1

2

12 tf
m

tttttt
tHtytf mmnnn

m ξ−+−
−

−−−
+=

Λ
.           (2.29) 

The local truncation error is therefore  

                       dttftttttt
mh
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n

))(()()()(
)!2(

1 )2(2
1

2
1

2
1

1

ξτ ∫
+

−+−+ −−−= Λ .               (2.30) 

Changing the variable by substituting shtt n += , with )1,0(∈s (Gear, 1971) 

                                   dsfmsss
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m
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n )()1()1(
)!2(
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1 ξτ ∫ −++=+ Λ .                         (2.31) 

Since the function 222 )1()1( −++ msss Λ  does not change sign on ]1,0[ , the Weighted Mean 

Value Theorem for integrals states that for some nµ  such that 11 +−+ << nnmn tt µ  

                                      dsmsss
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fh n
mm

n ∫ −++=+

1
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222
)2(2

1 )1()1(
)!2(

)(
Λ

µ
τ .                         (2.32) 

For the two step explicit scheme (2.19), the local truncation error is 

                                                           )(
720
31 )5(4

1 nn yh µτ =+ ,                                                (2.33) 

and for the three step explicit scheme the local truncation error is (Thompson and Liu, 2004) 

                                                          )(
4725
53 )7(6

1 nn yh µτ =+ .                                               (2.34) 

          For the implicit case, the Hermite interpolation formula (2.6) gives 

                    ))((
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Using the same approach as in the explicit case, the expression for the implicit local truncation 

error is  
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for nµ  such that 11 +−+ << nnmn tt µ . The truncation error for the two step implicit compact method 

equation (2.28) is (Thompson and Liu, 2004) 

                                                          )(
9450

1 )7(6
1 nn yh µτ =+ .                                               (2.37) 

One advantage common to all second derivative methods is smaller error coefficients (Lambert, 

1991). The fourth order explicit Adams-Bashforth coefficient is over eight times larger than the 

fourth order explicit compact coefficient, the five step sixth order Adams-Bashforth coefficient is 

over sixty eight times greater than the sixth order explicit compact coefficient, and the sixth order 

Adams-Moulton coefficient is more than two orders of magnitude greater than that of the two step 

implicit sixth order compact method. 
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CHAPTER 3 

CONSISTENCY, CONVERGENCE, AND STABILITY 

          This chapter discusses consistency, convergence, and stability for the compact methods of 

the previous chapter. Necessary and sufficient conditions for both consistency and speed of 

convergence for general second derivative multistep methods of the form 

                                        jn

m

j
j

m

j
jnj
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j
jnjn ychybhyay −

−

−=

−

−=
−

−

=
−+ ′′+′+= ∑∑∑

1

1

2
1

1

1

0
1                                  (3.1) 

are given in section 3.1. A theorem on convergence of numerical methods of the form of (3.1) 

with 10 =a , and the remaining 0=ja for all }1,,2,1{ −∈ mj Λ  is proved in section 3.2, and 

section 3.3 discusses stability for the compact methods. 

 

3.1 Consistency and Speed of Convergence 

          The general concept of consistency is that the difference equation approaches the 

differential equation as the grid spacing h goes to zero, which says that the truncation error goes 

to zero as h goes to zero. The following definitions will make this general concept more precise. 

Definition 3.1.1 The truncation error )(yTn is the difference between )( 1+nty and the method (3.1) 

evaluated at the exact solution (Atkinson, 1989) 
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j
jnjjnjjnjnn tychtybhtyatyyT , for 1−≥ mn .    (3.2) 

Definition 3.1.2 The local truncation error for the method (3.1) is defined as  

                                                               
h

yT
y n

n

)(
)( =τ .                                                           (3.3) 

Definition 3.1.3 The consistency condition for the numerical method (3.1) is defined by (Atkinson, 

1989) 
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                                                  0)()(
1

→≡
≤≤−

yMaxh n
Nnm
ττ as 0→h .                                     (3.4) 

The rate at which the numerical solution converges to the exact answer is determined by the 

conditions such that  

                                                                  )()( khOh =τ .                                                         (3.5)        

Definition 3.1.4 A multistep method is consistent if (Burden and Faires, 2005) 

                                               0)(lim
0

=
→

hn
h

τ , for all },,1,{ Nmmn Κ+∈                                

and 

                                               ,0)(~lim
0

=−
→ nn

h
tyy  for all }1,2,1{ −∈ mn Κ .                           (3.6) 

Here the initial condition sets the error at 0=n  to zero, the second of equations (3.6) states that 

the numerical method used to calculate each ny~  of the remaining initial m steps must also be 

consistent for the multistep method to be consistent. Atkinson proves the following theorem for 

methods where 0=jc for all }1,,1.0,1{ −−∈ mj Κ . The proof for second derivative methods 

here is similar to that of Atkinson. 

Theorem 3.1.1 For a given integer k the method (3.1) is consistent if and only if  
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j
jj bja .                                       (3.7) 

Furthermore, the order condition (3.5) is valid for all functions ],[)( 1 baCty k +∈  if and only if the 

method (3.1) satisfies (3.7) and 
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i cjiibjiaj   for all },,3,2{ ki Κ∈ .        (3.8) 

Proof: Expand )(ty  in a Taylor series about nt  
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Since nT  is linear 
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From equation (3.2), evaluating ))(( i
nn ttT − for 0=i  gives 
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where 
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Therefore 
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The reminder term can be rewritten as 
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hence 
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as long as ],[)( 2 baCty k +∈ . For the numerical method (3.1) to be consistent, it is necessary for 



 

 
 

26

)()( hOh =τ , which requires )()( 2hOyTn = . This means that 1=k in (3.16), and therefore 

0α and 1α  in equation (3.14) must be zero. Equation (3.11) gives 

                                                                      ∑
−

=

=
1

0

1
m

j
ja ,                                                          (3.17) 

and (3.13) with 1=i  gives 
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The first part of Theorem 3.1.1 is therefore proved. If )()( khOh =τ , then )()( 1+= k
n hOyT , and 

equations (3.16) and (3.17) show that this is true if and only if 0≡iα  for all 

},,3,2{ ki Κ∈ .Therefore 
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for all },,3,2{ ki Κ∈ , and the theorem is proved. 

          Since 10 =a , and 0=ja if }1,,2,1{ −∈ mj Κ for the compact methods, the first equation in 

the consistency condition (3.7) is always satisfied, and the second condition reduces to 

                                                                     1
1

1

=∑
−

−=

m

j
jb .                                                           (3.20) 

The order condition (3.8) for compact methods also simplifies, and is 
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The only non zero jb in the two step explicit compact method are 0b and 1b , 

                                                            
2
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0 −=b , and 
2
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1 =b ,                                                 (3.22) 
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 therefore the consistency condition (3.20) is satisfied for this case. The three step explicit 

compact method has non zero jb components 

                                              
240
949

0 −=b ,  
240
608

1 =b , and 
240
581

2 =b ,                                   (3.23) 

and (3.20) is satisfied for the three step case as well. The non zero jb for the two step implicit 

compact method are 

                                              
240
101

1 =−b ,  
240
128

0 =b , and 
240
11

1 =b ,                                     (3.24) 

and this method is also consistent. 

          The rate of convergence criteria (3.21) is also satisfied for all three compact methods. The 

truncation errors for the compact methods are defined in Chapter 2, equations (2.33), (2.34), and 

(2.37) for the explicit two step scheme, the three step explicit scheme, and the implicit two step 

scheme respectively. The order of each truncation error will be shown to satisfy the rate of 

convergence criteria (3.21) for all },,3,2{ ki Κ∈ . For the implicit two step method, 6=k . 
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For the explicit three step explicit method, 6=k  as well. 
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
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 −−+






 +=−−++ ccbb  

    :6=i .1
240
173

16
240

1080
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240
581
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240
608

6)16(30)32(6 2121 =






 ++






 −−=++−− ccbb (3.26) 

Finally, the two step explicit method has 4=k . 

                                  :2=i 1
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                                  :3=i 1
12
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3)(6)(3 11 =



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

−+



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=−+ cb  

                                  :4=i .1
12
7

12
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18

4)(12)(4 11 =






+






−=+− cb                                 (3.27) 

          The compact methods are therefore consistent, and both the two step implicit and three 

step explicit schemes are sixth order, while the two step explicit method is a fourth order. 

3.2 Convergence 

          Let )( nty  be the exact solution to the first order differential equation (2.1), and define ny  as 

the solution to the difference equation associated with some numerical method. If 

                                            0)(
0

=−
→

nn
h

ytyLim  for all },,1,0{ Nn Κ∈ ,                                (3.28) 

then the numerical method is said to be convergent (Gear, 1971). For multistep methods, 

equation (3.28) must apply to the method used to generate the first 1−m steps also. 

Theorem 3.2.1. Apply the numerical method (3.1) to the first order differential equation 
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                                       )),(,()( tytfty =′     0)( yay = ,    and ],[ bat∈ .                           (3.29) 

Assume method (3.1) is consistent, ))(,( tytf  and ))(,( tytf ′ both satisfy a Lipschitz condition,  

0≥ja  for all }1,,1,0{ −∈ mj Κ , and assume the initial errors satisfy  

                                        0)()(
10

→−≡
−≤≤

jj
mj

ytyMaxhη   as   0→h .                               (3.30) 

Then the method (3.1) is convergent, and 

                                                 )()()( 21 hhytyMax jj
bta j

ταηα +≤−
≤≤

.                                     (3.31) 

Proof: This proof follows that given by Atkinson for 0≡kc  for }1,,1,0,1{ −−∈ mk Κ . 

          Rearranging (3.2) and using ))(,( tytf for )(ty′ , 

      )())(,())(,()()(
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jnjn ∑∑∑
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−−−

−

−=
−

−

=
−+ +′++= τ .  (3.32) 

Define kkk ytye −= )( , and subtract the numerical method (3.1) from (3.32), 

          [ ]∑ ∑
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                                                    [ ] )(),())(,(
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m
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−

−=
−−−− .     (3.33) 

Using the Lipschitz conditions for ))(,( tytf and ))(,( tytf ′  gives 
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+ .              (3.34) 

Define the error bound at the node n by 

                                           
ni

in eMaxE
≤≤

≡
0

 for each )}(,,1,0{ hNn Κ∈ .                                 (3.35) 

Combining this definition with (3.34),  
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j
jn τ+++≤ ∑∑∑

−

−=
++

−

−=

−

=
+ .                (3.36) 
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The consistency condition (3.7) reduces expression (3.36) to 

                                    )(][
1

1
12

2
1

1
11 hhEcKhbhKEe
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nj
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j
jnn τ+++≤ ∑∑
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+
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+ .                       (3.37) 

Since the theorem is concerned with the limiting case 0→h , let 1<h . Therefore  

                                                                  22
2 hKKh < .                                                          (3.38) 

The error equation (3.37) becomes 

                                                      )(11 hhhcEEe nnn τ++≤ ++ ,                                            (3.39) 

where the constant c is defined as 

                                                        ∑∑
−

−=

−

−=

+≡
1

1
2

1

1
1

m

j
j

m

j
j cKbKc .                                               (3.40) 

The right hand side of (3.39) is also a bound for nE , and therefore 

                                                      )(11 hhhcEEE nnn τ++≤ ++ ,                                            (3.41) 

and hence 

                                      )(2)21(
1

)(
11 hhEhc

hc

hh

hc

E
E n

n
n τ

τ
++≤

−
+

−
≤+ .                            (3.42) 

Recursive application of (3.42) to nE  gives 

                            )(])21()21(1[)21( 1
0 hhhchcEhcE nn

n τ−+++++++≤ Λ .                 (3.43) 

But 

                                              )(2)(22)21( abcatcnhcn eeehc n −− ≤=≤+ ,                                    (3.44) 

and 

                          
hc

e

hc

hc
hchc

abcn
n

2
1

2
1)21(

])21()21(1[
)(2

1 −
≤

−+
=+++++

−
−Λ .              (3.45) 

Using (3.44), (3.45), and the fact that )(0 hE η≤ , 
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





 −
+≤

−
− ,                                   (3.46) 

and the theorem is proved. 

          Second derivative methods of the form of (3.1) with 0≥ja  for }1,,1,0{ −∈ mj Κ are 

therefore convergent numerical methods; consequently the compact schemes are convergent as 

well. 

3.3 Stability 

          A numerical method is considered to be stable if small perturbations in the initial conditions 

produce correspondingly small changes in the subsequent approximations (Burden and Faires, 

2005). A number of definitions pertinent to multistep methods are also given in this section 

(Enright, 1974). 

Definition 3.3.1. The stability region R associated with a multistep formula is defined as the set 

          :{ λhR = the formula applied to ,)(, 00 ytyyy ==′ λ with constant step size ,0>h    

                          produces a sequence }{ ny satisfying 0→ny as ∞→n }. 

Definition 3.3.2. A formula is A-stable if the region R contains the open left half-plane. 

Definition 3.3.3. A formula is stiffly-stable if R contains a region of the form 21 RR ∪ where  

                                                           }0){Re(1 <≤= DzR                                                    

                                                  })Im(,0)Re({2 ϑ<<<= zzDR .                                      (3.47) 

Definition 3.3.4. A formula is stable at infinity if there exist a real number 0<β such that 

                                                                     1
1

<
−< n

n

h y

y
Sup

βλ
.                                                     (3.48) 

          Applying the numerical method (3.1) to the special problem ,)(, 00 ytyyy ==′ λ  used to 

investigate stability in multistep methods gives 
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                            0)()1( 22
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1 =++−−− −
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=
+−− ∑ jnj

m

j
jjn ychbhaychbh λλλλ .                 (3.49) 

This is a homogeneous linear difference equation of order m . Looking for solutions of the form 

(Henrici, 1962; Isaacson and Keller, 1966) 

                                                             ,k
k ry =  for  0≥k ,                                                    (3.50) 

changes (3.49) into 

                            0)()1( 122
1

0
1

22
1 =++−−− −−

−

=
−− ∑ jm

j

m

j
jj

m rchbharchbh λλλλ ,                 (3.51) 

after dividing out 1+−mnr . This equation is the characteristic equation, and the left hand side is the 

characteristic polynomial (Atkinson, 1989). When ,0=λ the characteristic equation reduces to 

                                                         0
1

0

1 =−∑
−

=

−−
m

j

jm
j

m rar .                                                     (3.52) 

The root condition associated with (3.52) comes from Burden and Faires.  

Definition 3.3.5. Let mrrr ,,, 21 Κ be the roots of the characteristic equation (3.52) associated with 

the difference equation (3.1). These roots are not necessarily distinct. If 1≤ir  for all 

},,2,1{ mi Κ∈ , and if all roots with 1=ir are simple roots, then the difference method satisfies 

the root condition. 

Definition 3.3.6. Numerical methods that satisfy the root condition and have 1=ir for only one 

value of i  are called strongly stable. 

Definition 3.3.7. Numerical methods that satisfy the root condition and have more than one root of 

magnitude one are called weakly stable. 

Definition 3.3.8. Numerical methods that do not satisfy the root condition are called unstable. 
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          The compact methods and the Adams methods both have ,10 =a and the 

remaining 0=ja . Hence the characteristic equation for compact and Adams methods is 

                                                       ,0)1(11 =−=− −− rrrr mmm                                              (3.53) 

and both methods are therefore strongly stable. 

          Consider the characteristic equation with non-zeroλ for the implicit two step compact 

method, 

                0)()()1( 1
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00
2

1
22

1 =+−++−−− −− chbhrchbharchbh λλλλλλ .             (3.54) 

The principle root of (3.54) is given by 
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A plot of the stability region for the two step implicit compact method is shown in Figure 3.1. The 

intersection of the region of stability with the negative real axis is 8−  for the two step compact 

implicit method; whereas the sixth order implicit Adams-Moulton method intersects the negative 

real axis at approximately 2.1− .   
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Figure 3.1 Region of stability for the two step implicit compact method. The method is stable for 
all λh inside the region.  
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CHAPTER 4 

NUMERICAL EXAMPLES 

          The numerical results of a number of differential equations are presented in this chapter. 

Section 4.1 compares the sixth order two step compact implicit method with the stiffly-stable sixth 

order Enright method and the sixth order Adams-Moulton method on three first order differential 

equations. Section 4.2 applies the compact method to a number of second order differential 

equations with ))(,( tytf  discontinuous on a set of measure zero. Concluding remarks are in 

Section 4.3.  

4.1 Comparing Compact, Enright, and Adams-Moulton Methods 

          The two step implicit compact method is compared to two well known methods on three 

first order test cases, the stiffly-stable sixth order four step implicit Enright method (Enright, 1974) 

        1
2

32111 32
3

5760
17

45
1

480
41

90
47

5760
3133

+−−−++ ′−






 −+−++= nnnnnnnn fhfffffhyy ,      (4.1) 

and the sixth order five step Adams-Moulton scheme with the difference equation 

         ( )432111 271734827981427475
1440 −−−−++ +−+−++= nnnnnnnn ffffff

h
yy .        (4.2) 

Since all three methods are implicit, Newton’s method is used to obtain solutions to the difference 

equations. 

          The first test differential equation is (Thompson and Liu, 2011) 

                                        )(2)( 3 tytety t −=′ , 0)0( =y , 10 ≤≤ t .                                    (4.3) 
 
The exact solution for problem (4.3) is 

                                                  tt eetty 23 04.)2.(2.)( −+−= .                                                 (4.4) 

The problem (4.3) was run in double precision and with grid spacing 1.0=h . The first five steps 

of each method are set equal to the exact solution for comparison purposes. The results for the 
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three methods are shown in Table 4.1. The compact method has approximately one order of 

magnitude better error than Enright’s method, and two orders of magnitude improvement over the 

Adams-Moulton method. 

Table 4.1 Comparison of the absolute value of error for sixth order implicit compact, Enright, and 
Adams-Moulton methods for problem (4.3). 

 
Time Exact Solution Compact Error 

times E-6 
Enright Error 
times E-6 

Adams-Moulton 
Error times E-6 

.5 .28361652 .03693388 .38269513 3.3366422 

.6 .49601957 .08243833 .84556844 7.2018678 

.7 .82648027 .14063143 1.4402560 12.350526 

.8 1.3308570 .21747165 2.2261762 19.060274 

.9 2.0897744 .32105130 3.2866842 28.163294 
1.0 3.2190993 .46245055 4.7356017 40.598609 

 

          The second test problem is a stiff problem (Thompson and Liu, 2011),  

                             ttyty 2)(20)( 2 +−−=′ ,    
3

1
)0( =y ,    14. ≤≤− t ,                               (4.5) 

with exact solution  

                                                               tetty 202

3
1

)( −+= .                                                     (4.6) 

The numerical solution for each method was run in double precision with 1.0=h . The first five 

steps were set equal to the exact values in order to test each method during the stiff segment of 

the problem. The results are shown in Table 4.2, and the errors for the compact case are plotted  

Table 4.2 Comparison of the absolute value of error for sixth order implicit compact, Enright, and 
Adams-Moulton methods for problem (4.5). 

  
Time Exact 

Solution 
Compact Error Enright Error Adams-Moulton 

Error 
0.1 .05511176 .0021955527 .113595974 8.9208512 
0.2 .04610521 .00093713491 .013323595 4.0705533 
0.3 .09082625 .00026894149 .009719635 8.5288475 
0.4 .16011182 .64867790 E-4 10.195924 E-4 11.340270 
0.5 .25001513 .14201195 E-4 7.6252280 E-4 15.340988 
0.6 .36000205 .29261845 E-5 22.279349 E-5 20.879584 
0.7 .49000028 .57899321 E-6 99.305093 E-6 28.498281 
0.8 .64000004 .11136651 E-6 33.355624 E-6 38.825679 
0.9 .81000000 .20989679 E-7 133.51016 E-7 52.900019 
1.0 1.0000000 .38975043 E-8 487.89183 E-8 72.088495 
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Figure 4.1 Absolute value of the error for the two step compact implicit method applied to problem 
(4.5)  

 

   
Figure 4.2 Absolute value of the error for the four step Enright method for problem (4.5).  
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in Figure 4.1, and the error for Enright’s method is plotted in Figure 4.2. As Table 4.2 shows, the 

Adams-Moulton method is unstable for this problem, and hence the error was not plotted for 

Adams-Moulton. Figures (4.1) and (4.2) both show that the error degrades during the time when 

the stiff term is predominant, but improves as the 2t term grows. The two error graphs show that 

the compact method had smaller error during the stiff portion and also recovered more quickly 

than Enright’s method for problem (4.5). 

          The last test problem is a simple stiff problem with 8−=λh , which is on the boundary of 

the stability region for the two step implicit compact method. This is outside the stability region for 

The Adams-Moulton scheme, and this method was not attempted for problem three. The problem 

is the differential equation 

                                              ),(80)( tyty −=′ ,
3
1

)0( =y and 5.10 ≤≤ t .                             (4.7) 

The exact solution for (4.7) is 

                                                                 tety 80

3
1

)( −= .                                                           (4.8) 

  The problem was run with grid spacing 1.0=h . The error for the compact method is shown in 

Figure 4.3, with the error for Enright shown in Figure 4.4.  

         The error graphs show two interesting facts. First, both errors are orders of magnitude 

above the exact value (for 1=t , 3610)( −≈ty ). The interesting thing is that the compact scheme 

has smaller error, but is bordering on instability, while the Enright method has more error than the 

compact method, but as would be expected, the Enright scheme is clearly stable. 
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Figure 4.3 Absolute value of the error for the two step implicit compact method for problem (4.7).  

   

 

Figure 4.4 Absolute value of the error for Enright’s method applied to problem (4.7). 
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4.2 The Compact Method for Problems with Coulomb Friction 

          The problems associated with Coulomb friction were discussed in Chapter 1. The approach 

taken in this work is separation into a sequence of smooth problems, with the end of one segment 

used as the beginning of a new problem. The initial conditions for the new problem always having 

a zero first derivative and the position at the time where the velocity goes to zero. This time is 

generally not a grid point, and thus must be detected by the program. Care must be taken here, 

since calculating across these discontinuous second derivatives causes big errors, as Figure 1.1 

clearly illustrates. This suggest the use of a predictor-corrector scheme since the predictor will be 

an explicit method, and is thus more suitable for detecting  a sign change in the velocity. This sign 

change is the trigger for the end of segment calculations. This work uses a Hermite polynomial fit 

to the two grid points preceding the detection of a velocity zero. The Hermite polynomial 

interpolates the corrector velocity at these two grid points, and Newton’s method is used to find 

the zero of the polynomial. A single step method must be used to find the first 1−m values of 

y and y′ , and a fourth order explicit Runge-Kutta method is used this purpose. The Runge-Kutta 

method is also used in the crossing point calculations. 

          The first problem is the unforced spring-block problem described in the first chapter, 

                                           ),sgn(2. xxx ′−−=′′   ,1)0( =x  .0)0( =′x                                    (4.9) 

The solutions are 

                                                    2.)cos(8.)( += ttx               π<≤ t0  

                                                   2.)cos(4.)( −= ttx               ππ 2<≤ t  

                                                     2.)( =tx                                π2≥t ,                                 (4.10) 

                                                    )sin(8.)( ttx −=′                   π<≤ t0       

                                                   )sin(4.)( ttx −=′                   ππ 2<≤ t   

                                                      0)( =′ tx                                π2≥t .                                (4.11) 
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The numerical approach used the sixth order explicit three step compact method predictor, with 

the sixth order implicit two step compact corrector. The numerical results for 1.0=h and double 

precision are shown in Figure 4.5. The error plots for (4.9) are presented in Figure 4.6 for 

)(tx and Figure 4.7 for )(tx′ . 

          The last problem has both viscous and Coulomb damping (Taubert, 1976), and is 

significantly stiff. 

              ),cos(2)sgn(2646.1 txxxx π+′−−′−=′′    2.3)0( =x , and  4)0( =′x .              (4.12) 

This calculation used double precision with 005.0=h . Figure 4.8 is a plot of )(tx , and Figure 4.9 

plots )(tx′ .This problem is dominated by the strong spring force, and the fact that the Coulomb 

friction and forcing function are about equal. The compact method is in good agreement with 

Taubert. 

 

 

Figure 4.5 Compact method solutions for position and velocity for the unforced Coulomb problem.   
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Figure 4.6 Positional error for the unforced Coulomb friction problem. 

 

Figure 4.7 Velocity error for the unforced Coulomb friction problem. 
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Figure 4.8 Solution for position in problem (4.12) with viscous and Coulomb damping. 

 

Figure 4.9 Solution for velocity in problem (4.12) with viscous and Coulomb damping. 

4.3 Conclusions 

          The compact method performs well compared to Enright’s method and the well known 

Adams-Moulton method. This new method has order 22 +m , giving high accuracy for a small 
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number of steps m . Although the method is not stiffly-stable, the stability region is larger than 

that of the Adams methods (even those of smaller order) and explicit Runge-Kutta method. The 

examples of section 4.1 show that the two step implicit compact method is more accurate than 

the stiffly-stable four step Enright method within the region of stability of the compact method, and 

approximately two orders of magnitude more accurate than the five step Adams-Moulton method. 

          The accuracy of the compact methods combined in a predictor-corrector scheme was used 

successfully in section 4.2 for both Coloumb and mixed friction problems. The computational 

difficulty from discontinuity in )(tx ′′  can be removed by breaking the problem into sections where 

the acceleration is continuous, and beginning a new initial condition problem at each point of 

discontinuity. The accuracy of the compact method reduces the error in the calculated values of 

the crossing points, thereby extending the computational range for these problems.  
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