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ABSTRACT

EVALUATION OF STEP DETECTION OF PIECEWISE CONSTANT SIGNALS

USING PHASE CONGRUENCY, REAL FOOTPRINTS AND COMPLEX

FOOTPRINTS

SRIKANTESWARA SACHIDANANDA, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Soontorn Oraintara

Several applications involve the use of signals that are piecewise constant. Of-

ten, their measurements or observations are contaminated with noise. Detecting the

steps and recovering the true signal from its noisy measurements is an important

problem.

There are a number of methods in the literature that address this issue. We

use two different approaches. First, we use the idea of phase congruency in detecting

singularities in a 1-dimensional piecewise constant signal. Phase congruency has been

previously used in feature detection from images [1]. It is a dimensionless quantity

that gives an absolute measure in finding the edges or discontinuity in a signal. We

calculate phase congruency measure using Interscale, Relative Phase and Derotated

Phase wavelet coefficients, and observe their performance in detecting discontinuities.

Second, we build on the work of Dragotti et al [2], where the concept of wavelet

footprint transform is introduced. We extend this to a complex footprint transform.

In image processing and analysis, coefficients from complex transforms are known
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to possess better properties than those using a real transform, since they possess

both magnitude and phase information. These can be utilized in improving edge and

feature detection. We study the properties of the complex footprint representation

for 1-dimensional piecewise constant signals. We follow an algorithm developed by

Regi-Pique et al [3], to detects steps in a piecewise constant signal using it’s footprint

coefficients.

We studied the application of these methods to the field of bioinformatics. The

first application involved step detection in order to find DNA copy number alter-

ations. DNA copy numbers are piecewise constant, and discontinuities in the signal

indicate possible genetic irregularities and are useful for cancer diagnosis. We at-

tempt to extend the work of [3] by using complex wavelet footprints for detecting the

discontinuities from its noisy measurements.

The second application is with molecular motors data. These are biological

motors that operate on a molecular scale, and studying their dynamics is useful in

building synthetic motors that replicate their action. The dynamics of these motor

are piecewise constant in nature. We use footprint based technique in recovering

the signal from its noisy measurements. We observe that this approach outperforms

existing signal recovery or noise removal methods.

Thus, this report extends real footprint transform to a complex footprint trans-

form, and uses it in detecting steps in a piecewise constant signal. We also use Phase

congruency for detecting discontinuities in such signals. Two applications where these

can be implemented are then studied, and the results are analyzed.
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CHAPTER 1

INTRODUCTION

Recovering a signal from it’s noisy observations is a key problem in many ap-

plications. Detection theory is the study of how well the desired information can be

extracted from the measured signal. This thesis focuses on the problem of detecting

singularities from noisy measurements of 1-dimensional piecewise constant signals.

For this, we focus on two approaches. Firstly, we use Phase Congruency measure to

detect edges or discontinuities in a signal.

The second method of step detection uses the wavelet footprints transform,

introduced by Dragotti and Vetterli[2]. An algorithm for step detection using these

wavelet footprint coefficients was developed by Regi-Pique et al [7] , [3]. We extend the

real footprint transform and develop a complex footprint representation. We apply

the complex footprint transform on our 1-dimension signal, follow the same algorithm

for step detection as [3]. For images, using a complex wavelet representation rather

than a real wavelet transform provides some properties which can be used to achieve

greater accuracy in edge detection and analysis, Ivan Selesnick et al [8]. We study

whether the new representation gives better performance in detecting edges in the

1-dimensional signals that we use.

We apply these techniques to the field of bioinformatics. With new technologies

such as micro-arrays, there is now a very high volume of raw information obtained at

very high resolution, but is heavily corrupted by measurement and technical noise. We

study the application of step detection using phase congruency, and wavelet footprints

1
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to Molecular Machine Dynamics and to DNA copy number alterations, both of whose

data have underlying piecewise constant structure.

Since the focus is on detecting edges from noisy signals, we first review the

theory of signal detection and step detection.

1.1 Literature Review

1.1.1 Signal Detection

A measured signal is never an exact replica of the true underlying data. In

general, we obtain data (also called measurements or observations) which consists of

signal components embedded in additive noise. Based on the received data we try to

determine whether or not a particular event has occurred. The process by which a

decision is taken regarding the true state of a measured signal falls under the theory

of signal detection.

There are several signal detection techniques in the literature. The simplest

forms are Bayes Detection, Maximum A Posteriori Detection and Maximum Likeli-

hood detection [9].

1.1.2 Step Detection Theory

We are concerned with the step detection of piecewise constant (PWC) signals.

Piecewise constant signals are characterized by a finite number of constant levels

and are commonly corrupted by unknown noise. Figure 1.1 shows some examples

of signals that are piecewise constant, and are contaminated by noise. In many

cases, the number of levels and their associated values are not known. The signals

themselves also change levels randomly. These changes are instantaneous and are

finite in number.
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Figure 1.1: Examples of signals that could be modeled as piecewise constant
obscured by noise

The main processing task is that of detecting the number of levels and recon-

structing the noiseless signal. An abrupt change can also be called a shift, edge, step,

change point, singularity, level change, transition. The filtering process itself (called

smoothing) can also be called detection or approximation or sometimes segmentation.

Conventional linear methods include finite impulse response, infinite impulse

response filters or fast Fourier transform-based filtering. Signal recovery involves

removal of noise and conventional methods typically achieve this by low-pass filtering,

that is, by removal of high-frequency detail in the signal. This method is effective if

the signal to be recovered is sufficiently smooth. But PWC signals are not smooth

and low pass filtering of PWC signals typically introduces large spurious oscillations

near the jumps known as Gibb’s phenomenon. The noise and the PWC signal overlap

substantially in the Fourier basis and so cannot be separated by any basic approach

that reduces the magnitude of some Fourier coefficients, which is the way conventional

low-pass noise removal typically works.

The Running median filter [10] was a non-linear edge detection technique which

was an improvement to the running mean filtering. Canny [11] developed an optimal
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smoothing filter for edge detection in images, which is still popular today. He [11]

evaluated the detectors by three criteria: good detection, good localization and low

spurious response, and he showed that the optimal detector for an isolated step edge

should be the first derivative of Gaussian. Hidden Markov Models for edge detection

were developed by Godfrey in 1980. Phase Congruency based edge detection in images

has also been used by Kovesi[1]. Since it was originally proposed by Marr [12], the

Gaussian filter has been widely used smoothing filter in edge detection.

Wavelets have been extensively used for noise removal. Wavelets possess the

existence of an algorithm with O(N) computational complexity in the forward and

reverse wavelet transforms in the discrete-time setting [13]. Also, many signals in the

wavelet basis are sparse, that is, a large proportion of the coefficients are effectively

zero making the wavelet representation very compact [14]. Haar wavelet has been

used for denoising, Cattani [15]. Edge detection by scale multiplication in wavelet

domain was developed by Zhang [16].

Since we compare our step detection methods with a median filter and L1-

regularized fused LASSO global filtering, we describe them in more detail below.

• Median filter [10] is a non-linear filtering method used to remove noise from

signals. Running Median Filters replaces the middle sample of a moving win-

dow that runs through the time series with the median of the samples in that

window. The only parameter involved is the window length W. This filter per-

forms different from Running Mean Filters in that it leaves the edge and impulse

like root signals unchanged. Also, it is the maximum-likelihood estimate of the

location, m of the distribution of samples in the window, if they are Laplace

distributed [17]. The negative likelihood function of the window samples is:

−lnP (xw|m) = −WlnA+ a
∑

(i∈w)

|xi −m| (1.1)
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where w is the size W index set of samples in each window, A is an unimportant

normalizing factor, and a is the spread of the Laplace distribution. Minimizing

this function with respect to m is equivalent to minimizing E =
∑

i∈w xi −m,

which is solved when m is the median of the samples [17].

• L1-regularized fused LASSO global filtering [18]: A different global filtering ap-

proach that finds an optimal solution to an entire time series at once, rather

than considering a sliding window of samples. The lasso penalizes a least squares

regression by the sum of the absolute values (L1-norm) of the coefficients. The

form of this penalty encourages sparse solutions (with many coefficients equal

to 0). For a model defined by y = f(x) = βx, given the N -length training data

(x1, y1), (x2, y2)...(xN , yN ), the LASSO (least square shrinkage and selection op-

erator) model coefficients β̂lasso are calculated as follows:

β̂lasso = argmin
β







N∑

i=1

(

yi − β0 −
d∑

j=1

βjxij

)2






subject to:
∑d

j=1 |βj| ≤ s

s > 0

The model for L1 fused lasso is as follows:

β̂lasso = argmin
β







N∑

i=1

(

yi − β0 −
d∑

j=1

βjxij

)2






subject to:
∑d

j=1 |βj| ≤ s1

and
∑p

j=2 |βj − βj−1| ≤ s2

As can be seen, the difference between lasso and fused-lasso is that in lasso,

the L1 regularization is applied to the coefficients β, whereas in fused-lasso, the

L1 regularization is applied to both the coefficients β and also the difference

between coefficients βj − βj−1.
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For all finite values of λ, the solution is a piecewise constant curve with finite number

of steps, and is simultaneously the least squares fit to the data. Also, this is a convex

quadratic programming problem guaranteeing that a globally optimal solution can be

rapidly found using standard algorithms.

1.2 Footprint Representation: Motivation and Applications

The goal is to minimize the error in approximating the observed PWC signal.

So far, we have reviewed some of the popular methods that are used. [3] recently

introduced a technique that

• provides a maximally sparse representation of a PWC signal. (known as Wavelet

Footprints [2])

• implements an efficient technique for recovering the true PWC signal from this

sparse representation. (known as Sparse Bayesian Learning [3], [19])

In the remainder of this chapter, we introduce the idea of Wavelet Footprints, and

the motivation for using it for the representation of piecewise constant signals.

Wavelet transforms are powerful tool because it manages to represent both tran-

sient and stationary behavior of a signal with a few transform coefficients. Discontinu-

ities in a PWC signal carry relevant signal information and therefore, they represent a

critical part to analyze. The footprints dictionary is built from the wavelet transform.

Footprints are vectors that model discontinuities in (one-dimensional) piecewise con-

stant signals exactly. They form a basis and allows for compact representation of

piecewise constant signals.

Computationally, the representation can be stated as building a dictionary D =

{fi}i∈I of elementary functions that can well approximate any signal in the class of

PWC signals, with the superposition of a few of its elements. Given a PWC signal g

and D, a basis, there is a unique way to express g as a linear combination of the fi’s
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The notion of footprints has been introduced by [2]. Given a signal of interest,

we first perform the wavelet transform of this signal, and then the wavelet coefficients

are expressed in terms of footprints. Together with the scaling coefficients, footprints

can represent any piecewise constant signal. Wavelets alone are also efficient at rep-

resenting discontinuities in a signal, however, the wavelet coefficients generated by a

discontinuity are dependent across scales. By constructing the footprint expansion

on the wavelet transform, this dependency is removed completely. By representing

any PWC signal with the combination of a few footprints, a sparse representation of

the signal under consideration is obtained. A PWC signal with K breakpoints can

be represented using exactly K+1 footprint coefficients.

Our contribution is in the extension of the footprint representation. So far, the

footprint representation has been used to generate only real coefficients. In this thesis,

we develop a method to extend this dictionary so that complex footprint coefficients

are generated, for a given signal of interest. These new coefficients gives us magnitude

and phase information - since we now have both real and imaginary components. We

study whether this can be used to obtain a more accurate signal reconstruction, than

by using only real footprint coefficients.

There are several applications that require the recovery of true PWC signal

from noisy measurements. [7], [3] uses wavelet footprints in it’s algorithm for for ana-

lyzing DNA copy number alterations. We apply the complex footprint representation

for the same application. We also, for the first time, use the real footprint represen-

tation in the analysis of molecular machine dynamics. Briefly, we introduce the two

applications here, a more descriptive explanation is provided in later chapters.
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1.2.1 DNA Copy Number Alterations analysis

DNA Copy Number Alterations, which are deletion or replication of chromo-

somal regions across the genome are known to be associated with the development

and behaviour of tumors. Copy numbers correspond to physical losses/gains in ge-

netic material and have an underlying piecewise constant structure. Recovering the

true PWC signal from their noisy measurements is key to improving diagnostic and

therapeutic strategies [7].

The development of a fast and accurate method to determine the underlying

PWC signal’s structure- breakpoints and magnitudes is a topic of interest. The

footprint transform of such signals provides a sparse representation. A technique

known as Sparse Bayesian Learning (SBL) uses these footprint coefficients to infer

the copy number changes in the signal.

1.2.2 Molecular Machine Dynamics (MMD)

Molecular systems have evolved naturally within organisms, and perform cer-

tain specialized tasks such as pumps, motors, copiers etc - and are known as Molecular

Machines. Understanding the functioning of these machines allows for the develop-

ment of artificial molecular devices. However, this is a challenging task at this scale

due to molecular measurement noise. [20]

Molecular Motors are one example of molecular machines. These motors operate

in a series of step-like motion. The observation of these step motions are hampered by

the presence of measurement noise. Removing the noise and recovering the underlying

signal, which is a combination of steps and impulses, is the problem we try to solve.

Footprint representation, followed by Sparse Bayesian Learning is applied to this data,

and the true signal is recovered.
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This report is organized as follows. Chapter II discusses the use of Phase

Congruency using wavelets, for step detection. Chapter III discusses the theory of

Wavelet Footprints. Chapter IV discusses about Real and Complex footprints rep-

resentation, and their properties. Chapter V discusses the two applications that we

have used Wavelet Footprints method in, along with theory, simulations, results and

discussions. Chapter VI summarizes the work and provides concluding remarks.



CHAPTER 2

PHASE CONGRUENCY

2.1 Introduction

Features such as edges or lines in a signal (image) give rise to points where the

Fourier components of a signal are maximally in phase. A model, based on this theory,

for extracting features (such as edges) from a signal, called the Local Energy Model

was developed by [4]. Phase varies linearly around a point of discontinuity. Phase

congruency further develops on this - it is a dimensionless quantity that provides an

absolute measure of the significance of feature points. It is a measure of how well phase

is aligned at a discontinuity. Values of phase congruency (PC) vary from a maximum

of 1 (indicating a very significant feature) to 0 (indicating no significance). Kovesi

[1] has shown how phase congruency can be calculated from log Gabor wavelets. We

study this model of phase congruency, applied to 1-dimensional signals and it’s ability

in detecting discontinuities in a piecewise constant signal.

The local energy model for feature (edge) detection states that features are per-

ceived at points where the Fourier components are maximally in phase. For example,

looking at the Fourier series that makes a square wave, all the Fourier components

are sine waves which are exactly in phase at the point of the step. At all other points

in the square wave, the PC is low. The Figure 2.1 explains this concept. In both

diagrams, the solid line is the sum of the Fourier basis functions represented in dashed

lines. [4] has developed a phase congruency measure using log Gabor wavelets.

10
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(a) (b)

Figure 2.1: The Fourier components are all in phase at (a) the point of step in the
square wave, and (b) at peaks and troughs in the triangular wave [4]

2.2 Computing Phase Congruency using wavelets

We are interested in calculating local frequency, and in particular, phase infor-

mation in signals. To preserve phase information, linear-phase filters are used. [4]

uses logarithmic Gabor functions suggested by [21]. These filters have the Gaussian

transfer function when viewed on the frequency scale. On a linear scale, the log Gabor

function has a transfer function of the form

G(w) = e
−(log(w/w0))

2

2(log(κ/w0))
2

where w0 is the filter’s center frequency.

In its basic form, the points of maximum phase congruency can be calculated

by searching for peaks in the local energy function. [22]. Given 1-dimensional signal

I(x), the local energy function is defined as

E(x) =
√

F 2(x) +H2(x)
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where F (x) is the signal I(x) with it’s mean removed, and H(x) is the Hilbert trans-

form of F (x).

PhaseCongruency = E(x)/
∑

n

An

where An is the amplitude of the nth Fourier component. Thus, local energy function

is directly proportional to the phase congruency function, so peaks in local energy

will correspond to peaks in phase congruency.

A more involved Phase Congruency measure is as below.

PC =

∑

n ⌊An(x)∆φn(x)− T ⌋
∑

nAn(x) + ǫ
(2.1)

with ∆φn(x) = cos(φn(x)− φ̄(x)− |sin(φn(x)− φ̄(x))|)

ǫ is a small constant to avoid division by zero, T is an (empirically calculated)

threshold based on the noise influence in the signal, ∆φn(x) is a phase deviation

function that is based on the phase angle φn(x) and the overall mean phase angle

φ̄n(x) - as explained in the Figure 2.2. Further explanation about Phase congruency

is available at [1]. Figure 2.2 shows the Fourier components at a location in the

signal plotted head to tail. This arrangement illustrates Energy vector, the sum of

the Fourier components, and the phase congruency of the signal. A more detailed

explanation is available at [22].

2.3 Phase Congruency Measures used

Given a complex wavelet transform such as the log Gabor transform, we use

the following phase relationships between the wavelet coefficients, while computing

the Phase Congruency, Figure 2.3.

• Relative Phase coefficients: Relative phase is defined as the difference of phases

between two adjacent complex wavelet coefficients at a given scale. Given a
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Figure 2.2: Polar diagram showing the Fourier components at a location in the
signal plotted head to tail. [1]

wavelet coefficient Ca and it’s adjacent coefficient Cb, Ca − Cb is the relative

phase. The relative phase coefficient C takes the magnitude of Ca.

C = |Ca|ej 6 CaC∗

b (2.2)

Further details are available at [23].

• Derotated Phase coefficients: If C1 is a wavelet coefficient at a given scale and

translation, and C2 is the corresponding coefficient at the next coarser scale.
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C_2

C_1

(a)

sc2

sc1
C_a C_b

(b)

Figure 2.3: Phase relationships of complex coeffs: (a) Inter scale coeffs (b)Intra
scale coeffs

The derotated phase coefficient has the magnitude of the C1 coefficient, while

the phase is 6 C = 6 C1 − 2 6 C2 , or

C = |C1|ej 6 C1(C2.C∗

2 ) (2.3)

Thus, this new element involves use of coefficients whose phase has been derotated by

twice the phase of their interpolated coefficient at next coarser scale. Further details

on derotated wavelet coefficients are available in [24].

2.4 Simulation and Results

We simulate an input signal with a step and an impulse, and study the perfor-

mances of the 3 methods of calculating Phase Congruency discussed above.

From Figure 2.4, we observe that for an input signal contaminated with noise

having standard deviation 0.1, PC calculated using Interscale coefficients and Dero-

tated phase are able to detect discontinuities in the underlying signal, whereas relative

phase detects peaks due to the noise as well. We now proceed to analyze the PC per-

formances using a numerical measure.

The measures we used to analyze the accuracy of PC are: Sensitivity and False

Discovery Rate(FDR).

Sensitivity =
# discontinuities detected correctly

Total # discontinuities present

Sensitivity close to 1 indicates a good detection performance.
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Figure 2.4: (a) Simulated input Signal (σ = 0.1 ); Phase Congruency : (b)
InterScale coefficients, (c) Derotated Phase, and (d) Relative Phase coefficients

FDR =
# discontinuities detected incorrectly

Total # discontinuities detected

The FDR should ideally be close to 0.

We calculated the Sensitivity and FDR of a simulated PWC input signal of

length 2000, and averaged the result over 100 iterations. The input signal is a stan-

dard synthetic input used for analysis of DNA copy number alterations. This is
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based on the model proposed in [6]. The detailed construction of this input signal

is discussed in chapter 5 Section 5.2.2. To describe in short, the true signal is PWC

consisting of 6 discrete levels with amplitudes between 0 and 1. The input signal is

then contaminated by noise having standard deviation ranging from 0 − 0.25. We

test the performance of Phase Congruency for these values of noise. For a favorable

result, we require the Sensitivity to be close to 1 and FDR close to 0 for all noise

standard variances.

Table 2.1: Performance metrics of Phase Congruence applied on a synthetic input
signal

Noise Std Dev Phase Congruence Sensitivity FDR
0.01 - 0.1 DP 0.9555 0.4589

IS 0.9615 0.1739
RP 0.9444 0.6222

0.05 - 0.15 DP 0.0.6667 0.1923
IS 0.8 0.3422
RP 0.5 0.7585

0.1 - 0.2 DP 0.3717 0.2857
IS 0.5 0.3717
RP 0.2941 0.845

As observed from the Table 2.1, the performance of Phase Congruency in terms

of Sensitivity and FDR is good for noise standard devation in the range from 0 upto

0.1. Of these, PC calculated using InterScale coefficients performs better than that

using Relative Phase or Derotated Phase coefficients. At levels of noise standard

deviation in the range 0.1-0.2, none of the PC measures performs satisfactorily - the

sensitivity is at most 0.5, which indicates a poor detection ability, while the FDR is

also quite high. This suggests that Phase Congruency is a good measure for detecting
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edges in signals that are contaminated with low levels of noise, but are not as useful

when the signals are contaminated by higher levels of noise.



CHAPTER 3

THEORY OF FOOTPRINTS

3.1 Introduction

Wavelets are able to characterize the local regularity of a function. They are

known to be efficient in representing piecewise smooth (including piecewise constant)

functions. For piecewise smooth signals, the wavelet coefficients are non zero only

around discontinuities. This is equivalent to saying that all the information about the

signal is contained in the few significant wavelet coefficients around the discontinuities.

Away from singularities, the inner product between a wavelet and a smooth function

will be either zero or very small. At singular points, a finite number of wavelets

concentrated around the discontinuity lead to non-zero inner products.

As explained in [2], these wavelet coefficients generated at the singularities

are highly dependent across scales. In traditional wavelet based compression and

denoising algorithm these coefficients are processed independently. However they

should be gathered in a vector and jointly processed. Footprints are used for this

purpose. A footprint is a vector containing all significant wavelet coefficients across

scales around a discontinuity. For instance if our wavelet filter has length L and we

have J wavelet decomposition levels then the footprint of a discontinuity is a vector

of dimension (J+1)×(L−1) containing L−1 wavelet coefficients at each scale in the

position corresponding to the discontinuity position plus the L−1 scaling coefficients

at the same position.

Given a PWC signal of interest, the wavelet transform is performed on it to

obtain the wavelet coefficients. These coefficients are then represented in terms of

18
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footprints. Along with the scaling coefficients, the footprints can completely represent

any piecewise polynomial (including PWC) signal. By representing any discontinuity

with the combination of a few footprints, we can get a sparser representation of the

signal under consideration.

In the following sections, we discuss the development of wavelet footprints and

mathematical notations. First, we discuss the dependence of wavelet coefficients

across scales, and then discuss about building a footprint dictionary using wavelet

basis. We also provide a simple example at the end of the chapter to illustrate the

concepts discussed.

3.2 Dependence of wavelet coefficients across scales - Motivation for
developing footprints

In this section, we focus on the analysis of the dependency of the wavelet co-

efficients across scales, generated by discontinuities in a piecewise smooth signal. A

piecewise constant signal is a subset of this class of signals.

Consider an orthonormal wavelet series with scale and shift parameters m and

n respectively. (where small scales correspond to large m)

ψm,n(t) =
1

2m/2
ψ(2−mt− n) m,n ∈ Z

and ψ(t) is the wavelet basis function.

Also, assume that the wavelet has k vanishing moments, that is

∫ ∞

−∞
tdψ(t)dt = 0, d = 0, 1, ..k − 1

Then, as stated in [25], the wavelet coefficients of a piecewise smooth function decay

rapidly around the discontinuities in the signal. Because of this decay property,

larger wavelet coefficients tend to be around the singular parts of a PWC signal.

These wavelet coefficients gather most of the energy of the original signal.We need
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to analyze the dependency across scales of the wavelet coefficients generated by these

piecewise constant discontinuities.

Consider the simple case of a piecewise constant function with only one discon-

tinuity at location t1 i.e. p(t) = a
(0)
0 1[0,t1)(t) + a

(0)
1 1[t1,T )(t) and a wavelet series with

one vanishing moment and compact support (eg: Haar Wavelet). The decomposition

of this signal in the wavelet basis results in zero wavelet coefficients, except in the

cone of influence[25] of t1. The cone of influence of t1 is the set of points (m,n)

such that t1 is included in the support of ψ(m,n)(t), as in Figure 3.1. In this case,

the wavelet coefficients in this cone of influence are dependent - they have only one

degree of freedom.

t1

Figure 3.1: Cone of Influence

This can be shown since a wavelet with k vanishing moments can be written as

a kth-order derivative of a function θ which also has a fast decay[25]. The following

conditions are true: ψ(t) = (−1)k(dkθ(t)/dtk). It can be shown that

〈p(t), ψm,n(t)〉 = 2m
∫
dp(t)

dt
θm,n(t)dt

= 2m
∫

(a
(0)
1 − a

(0)
0 )δ(t− t1)θ(m,n)(t)dt

where the property 〈p(t), (dθ(t)/dt)〉 = −〈(dp(t)/dt), θ(t)〉 has been used. Thus, if

the wavelet has compact support, 〈p(t), ψm,n(t)〉 is equal to zero if ψm,n(t) does not

overlap t1 and depends only on the difference a
(0)
1 − a

(0)
0 otherwise.
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This means that the wavelet behaviour across scales is deterministic. If one

knows the value of a single nonzero wavelet coefficient in the cone of influence of t1,

one can derive from it all the other wavelet coefficients in that cone of influence.

Hence, we can see that although piecewise smooth signals are well represented

by wavelets, it is possible to model them in a more efficient way. This leads to the

development of footprint representation.

3.3 Wavelet Footprints

A footprint dictionary is constructed, for the class of discrete piecewise constant

signals using Haar wavelet basis [2]. For this, we introduce the following discrete time

wavelet operators:

• ψj l[n] denotes the wavelet function at scale j and shift l

• φJl[n] denotes the scaling function at shift l

Consider a discrete-time piecewise constant signal x[n], n ∈ [0, N −1] with only

one discontinuity at position k, and consider a J level wavelet decomposition of the

signal using Haar wavelets:

x[n] =

N/2J−1
∑

l=0

clφjl[n] +
J∑

j=1

N/2j−1
∑

l=0

yjlψjl[n] (3.1)

where yjl = 〈x, ψjl〉, and cl = 〈x, φJl〉 Since Haar wavelet has one vanishing

moment and finite support, the nonzero wavelet coefficients of this decomposition are

only in the cone of influence of k. Thus the above equation becomes

x[n] =

N/2J−1
∑

l=0

clφJl[n] +
J∑

j=1

yjkjψjkj [n]

where kj = ⌊k/2j⌋. As can be seen, all these coefficients depend only on the amplitude

of the discontinuity at k. Thus, if we define a vector that contains all of them, then
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one can specify any step discontinuity at k by multiplying this vector by the right

factor.

Hence, a footprint can be defined as follows [2]: Given a piecewise constant sig-

nal x with only one discontinuity at position k, a footprint f
(0)
k is a scale space vector

obtained by gathering together all the wavelet coefficients in the cone of influence of

k and then imposing ‖f (0)
k ‖ = 1. Expressed in the wavelet basis, this footprint can

be written as f
(0)
k [n] =

∑J
j=1 djkjψjkj [n] where djkj = yjkj/

√
∑J

j=1 y
2
jkj

.

Hence, any piecewise constant signal x[n] with a step discontinuity at k can be

represented in terms of the scaling functions φJl[n] and f
(0)
k . The signal x(n) from

3.1 becomes

x[n] =
2J−1∑

l=0

clφJl[n] + αf
(0)
k [n]

where α =
〈

x, f
(0)
k

〉

=
∑J

j=1 yjkjdjkj . The above discussion can be repeated for

any other step discontinuity at different locations, and for each location l we have a

different footprint f
(0)
l . Let D = {f (0)

k , k = 0, 1, ..., N − 1} be the complete dictionary

of footprints. Thus, we see that any piecewise constant function x[n], n ∈ [0, N − 1]

can be represented in terms of scaling function and footprints. In particular, if x

is a PWC function with K discontinuities, together with the scaling functions, K

footprints are sufficient to represent it. A PWC signal with only one discontinuity

can be expressed in terms of one footprint, and PWC signals withK discontinuities are

given by the superposition of K piecewise constant signals with only one discontinuity.

Therefore the footprint representation of a signal x withK discontinuities at positions

k1, k2, ..kK is given by

x[n] =

N/2J−1
∑

l=0

clφJl[n] +
K∑

i=1

αif
(0)
ki

[n] (3.2)
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For the case where J = log2(N), (N being a power of 2), a footprint vector

is a pure step function. Hence the footprint basis then becomes a set of linearly

independent step functions. Intuitively, this will allow sparse representation of a

PWC signal.

3.4 An Example

We illustrate how to develop a footprint basis to represent any PWC vector

with a small example. We choose N = 8, J = log2(N) = 3, and use the Haar wavelet

basis for taking wavelet transform.

The 8× 8 Haar basis matrix is:

F = 1√
8


























1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
√
2
√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2
√
2 −

√
2 −

√
2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2


























Denote each row of the above matrix by ψn n = 1, ..., 8

• Consider an input x = [ 0 1 1 1 1 1 1 1 ]. Looking at 3.2, we can re-write x as

x =
∑8

n=1 〈x, ψn〉ψn

= 0.87ψ1 − 0.12ψ2 − 0.18ψ3 − 0.25ψ5
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= 0.87

scaling fn.
︷︸︸︷

ψ1 +1 [−0.88 0.12 0.12 0.12 0.12 0.12 0.12 0.12]
︸ ︷︷ ︸

footprint vector

Ignoring the scaling coefficient 0.87ψ1, the resultant vector is a step function.

This is the footprint vector f
(0)
1 .

In a similar manner, we can develop footprint vectors for other x’s, and thus

obtain the footprint dictionary for representing PWC signals of length 8. Figure 3.2

shows the footprint basis developed in this manner. This is a set of basis vectors that

can fully represent any PWC signal of length 8 in a maximally sparse manner. For

the Haar basis that we have used, these basis vectors themselves are PWC in nature.

1 2 3 4 5 6 7 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Footprint basis vectors for length8 signal

Figure 3.2: Complete footprint basis vectors for representing length-8 PWC
sequences. Each vector is a step function. The set of basis vectors are linearly

independent



CHAPTER 4

DEVELOPMENT OF REAL AND COMPLEX FOOTPRINTS

4.1 Introduction

In this chapter, we build on the theory from the previous chapter. We con-

struct Real Footprints using Haar wavelet basis and form a sparse representation

for piecewise constant functions. We then develop Complex Footprints for the same.

With an example, we discuss the basis functions used and compare Real and Complex

Footprints.

4.2 Real Footprints

In the previous chapter, wavelet footprints have been proposed in the design

of complete dictionaries for representing piecewise constant signals. For piecewise

constant signals and Haar wavelets (and N = 2J), the wavelet footprint dictionary

is formed by a set of vectors, where each vector fk is a simple step function with

one discontinuity between k − 1 and k,
∑M

m=1 fk(m) = 0 and ‖fk‖2 = 1 for k =

1, ...,M − 1. These properties can be used to formulate the footprint dictionary for

signals of arbitrary length M (not just a power of 2) as:

fk(m) =







√
M−k
kN

if m ≤ i
√

k
M(M−k)

if m > i
(4.1)

where k = 1, ..., (M − 1), and f0(m) = 1√
M

is defined to be the DC component

[7] . Consider a piecewise constant vector x with K breakpoints. We know that the

signal can be completely represented by a linear combination of K step vectors fi

(each with a single breakpoint as discussed above) plus a constant vector f0

25
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Let us construct F = [f0, f1, ..., fM−1]. With this notation, the footprint repre-

sentation for the PWC vector x can be written compactly as:

x
[M×1]

= F
[M×M ]

w
[M×1]

(4.2)

w
[M×1]

= F−1

[M×M ]
x

[M×1]
(4.3)

where x = (x0, x1, ..., xM−1) is the input PWC signal and w = (w0, w1, ..., wM−1) is

the vector of footprint coefficients (or weights).

This representation has the following properties:

• The columns of F are a basis for the RM i.e. for any x ∈ RM there exists a

unique w such that x = Fw.

• Any arbitrary PWC vector with exactly K breakpoints can be represented with

K+1 non-zero footprint coefficients.

4.3 Complex Footprints

We now look to extend the theory of Real Footprints to Complex Footprints -

by computing a set of complex coefficients. All computation is done on real numbers

- no complex arithmetic is required for the implementation of the complex footprint

transform. Before doing so, we give a brief background on the Hilbert Transform and

its interaction with the Fourier Transform.

4.3.1 Analytic signal and Hilbert Transform

Let g(t) be a real valued finite energy signal defined over the time interval

−∞ < t <∞ with Fourier transform:

G(f) =

∫ ∞

−∞
x(t) exp (−j 2 π f t) dt
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defined over the frequency interval −∞ < f < ∞. Because g(t) is real, the FT is

complex conjugate symmetric, i.e. G(−f) = −G ∗ (f). The magnitude spectrum is

symmetric and infinite frequency extent for a non-bandlimited real-valued signal.

The continuous time analytic signal ga(t) corresponding to g(t) is defined in the

frequency domain as :

Ga(f) =







2G(f) if f > 0

G(0) if f = 0

0 if f < 0

(4.4)

which is inverse transformed to ga(t).

Due to it’s one sided spectral definition, the analytic signal ga(t) will be necessar-

ily complex-valued and can therefore be represented in terms of its real and imaginary

components ga(t) = gr(t)+j gi(t), for which gr(t) = Re{ga(t)} and gi(t) = Im{ga(t)}

are both real valued functions. It can be shown [26] that:

gr(t) = g(t) and gi(t) = HT{g(t)} (4.5)

in which HT designates the Hilbert Transform operation.

Hilbert transform operation is a two sided (−∞ < t <∞) time-domain convo-

lution of g(t) with the function 1
πt
. The Fourier transform of the real component is

Gr(f) = G(f), which is a conjugate symmetric (even) function. The Fourier trans-

form of the imaginary component is

Gi(f) =







G(f) if f > 0

0 if f = 0

−G∗(−f) if f < 0

(4.6)

which is a conjugate anti-symmetric (odd) function. Combining Gr(f) and Gi(f)

then yields the definition 4.4.
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The analytic signal created has an important property, specifically, the orthog-

onality between the real and imaginary components of the analytic signal:

∫ ∞

−∞
gr(t) gi(t) dt = 0

Another interesting property of the Hilbert transform is H(H(f)) = −I, for any

signal f , where I is the identity matrix.

4.3.2 Properties of discrete time complex signal

An analytic signal is a complex-valued continuous time function with a Fourier

transform that vanishes for negative frequencies. A discrete time complex sequence

can only approximate an analytic signal. We now consider the properties of a discrete-

time complex signal that is close to an analytic signal. There are 2 properties that

must be satisfied in order that a length-N discrete signal ga[n] = gr[n] + j gi[n] to

be an analytic-like discrete signal. First, the real part must exactly yield the original

discrete time sequence

gr[n] = g[n]

Second, the real and imaginary components must be orthogonal to each other:

N−1∑

n=0

gr[n] gi[n] = 0 (4.7)

However, due to finite numerical precision during computation, exact orthogonality

may not be possible.

4.3.3 Discrete Hilbert transform matrix

We require the discrete Hilbert transform matrix in order to compute imaginary

components of the footprint coefficients. The ideal Hilbert transform is infinite length,

and hence needs to be approximated.
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Figure 4.1: An illustration of a PWC Signal and it’s Hilbert transform pair.

The procedure that we follow to compute the Discrete Hilbert Transform of an

N -length signal g[n] is as follows [26]:

• Compute the N -point DFT G[f] of g[n]

• Form the N-point transform of the imaginary component of the signal using the

relation 4.6

• Compute the N-point inverse DFT to obtain a time domain signal.

The signal thus obtained is the imaginary component of the discrete time complex

signal.

The standard N -point DFT of a signal x[n] is

X(f) =
N−1∑

n=0

x[n]e−j2πkn/N 0 ≤ k ≤ N − 1

By setting WN = e−j2π/N we re-write this by

X(f) =
N−1∑

n=0

x[n]W kn
N 0 ≤ k ≤ N − 1

In our computations, we require that the Discrete Hilbert transform matrix we

develop be invertible i.e. have full rank. If we use the standard DFT matrix for the
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Figure 4.2: Modified DFT sampling points

Discrete Hilbert Transform matrix computation, we find that the matrix is not of full

rank. We use a modified DFT, defined by:

X(f) =
N−1∑

n=0

x[n]W
(2k+1)n
2N 0 ≤ k ≤ N − 1

where WN = e−jπ/N

This is detailed in the Figure 4.2, where the blue marks denote the new fre-

quency sampling points, compared with the normal sampling points marked in red .

With this frequency shift, we obtain a discrete Hilbert transform matrix that is full

rank and invertible.

4.4 Determining Complex Footprints coefficients

We find a vector of coefficients, that contains both the real and imaginary

components. The real and imaginary parts are considered as separate elements within

the vector. That is, if we have K complex coefficients, the vector we compute is of

length 2K. We need to develop equations for the complex case that are analogous to

4.2 and 4.3, i.e.: x = Fw and w = F−1x

where F is the footprint basis matrix and w are the footprint coefficients.
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That is, we need to develop equations of the form

x = F̃ w̃ or w̃ = F̃−1x

where F̃ denotes the new footprint basis matrix, and w̃ the new footprint coefficients

with real and imaginary components.

w̃ is the vector of real and imaginary components, w̃ =






wR

wI






[2M×1]

= F̃−1

[2M×M ]
x

[M×1]
.

From the above equation, we see that wR can be computed using an [M × M]

basis (say FR) and wI is computed using a different [M × M] basis (say FI). In order

to compute F̃−1, we refer [8].

[8] states that if the two real wavelet basis matrices are represented by the

square matrices F1 and F2, then the complex wavelet (footprint) basis matrix can be

represented by the rectangular matrix

FC
[2M×M ]

=






F1

F2




 (4.8)

and 




w1

w2






[2M×1]

=






F1

F2






[2M×M ]

x
[M×1]

If the vector x represents a real signal, then w1 = F1x represents the real part

and w2 = F2x represents the imaginary part of the complex footprint coefficients.

The complex coefficients are given by w1 + jw2.

A (left) inverse of FC is given by

F−1
C

[M×2M ]

=
1

2
[F−1

1 F−1
2 ] (4.9)
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and we can verify that

F−1
C .FC =

1

2

[

F−1
1 F−1

2 ]

]






F1

F2




 =

1

2

[

I + I

]

= I (4.10)

Hence, x = F̃−1w̃ can be re-written as

x =
1

2

[

F−1
R F−1

I

]






wR

wI




 (4.11)

Note that the original signal x can be recovered from either the real part or

the imaginary part alone; however, such inverse footprints do not capture all the

advantages a complex transform offers.

• Computation of F−1
R : Comparing 4.11,and 4.2 we can see that F−1

R wR = FwR =⇒

F−1
R = F

• Computation of F−1
I : We know that Hilbert Transform is used in forming the

imaginary component of a discrete complex signal. We compute the imaginary

coefficients as wI = FIx where FI = FRH and H being the discrete hilbert

transform matrix.

x = F−1
I wI (4.12)

where

F−1
I = (FRH)−1 = H−1FR

−1 = −HF (4.13)

Thus, given a real signal x, we have its footprint representation as

x =
1

2

[

F −HF
]






wR

wI




 (4.14)

The objective is to compute wR and wI and form a set of complex coefficients

wR + jwI . We use the magnitude of the complex coefficients for our calculations. In
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image analysis, it is known that using the magnitude of a complex transform coeffi-

cient, one can represent edges and features more accurately than by using only real

coefficients. With this motivation, we apply the same theory to the one-dimensional

signals that we consider, and observe the results.

4.4.1 Example

We give a small example for comparing Real and Complex footprint coefficients.

Consider an arbitrary PWC input signal x of length 180 having an impulse

at the t = 100th sample. We compute the real footprint coefficients using w = Fx

and the complex footprint coefficients using the relation






wR

wI




 = F̃−1x. As stated

above, we take the magnitude of the complex coefficients. This is shown in Figure
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Figure 4.3: Real and complex footprint coefficients

4.3. We observe that the complex coefficient’s magnitude is greater than the real
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coefficient’s alone. This could lead to better detection of a discontinuity. However,

the width of the lobe of the complex coefficient magnitude is greater than that of the

real coefficient. This indicates that the complex coefficients may not be able to give

a more accurate location of a discontinuity than real coefficients.

4.4.2 Shift invariance Property

To study the shift invariance, we use two sample signals, one a shifted version

of the other. ([ 0 0 0 0 0 1 1 1 ] and [ 0 0 0 0 1 1 1 1 ]). We find that real footprint

transform is not shift invariant, but close to it. The development of complex footprints

do no improve the shift invariance property of the transform. The figure 4.4 shows

the shift variance properties of real and complex footprints. The numerical values

associated with the two cases is listed in Table 4.1.
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Figure 4.4: (a) Coefficients computed by taking a real footprint transform of a
signal and it’s unit shifted version. (b) Coefficients computed using complex

footprint transform. Visually, it suggests that the shift-invariance property does not
change significantly in the two cases. Numerical values are in Table 4.1
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Table 4.1: Shift variance property of Real and complex coefficients

y = [ 0 0 0 0 0 1 1 1 ] y = [ 0 0 0 0 1 1 1 1 ]
Real Footprint Coefficients 0 0

0 0
0 0
0 1.4142

1.3693 0
0 0
0 0
0 0

Complex Footprint Coefficients 0 0
0.1528 0.2531
0.3314 0
0.0926 0.8945
0.9238 1.4142
1.3724 0.8945
0.8001 0
0.1528 0.2531



CHAPTER 5

APPLICATIONS

5.1 Introduction

In this chapter, we illustrate the use of footprints in detecting singularities in

noisy measurements of an underlying piecewise constant signal. We focus on two

applications in bioinformatics - The first one is for detecting breakpoints in DNA

copy number sequences, from array-CGH data [3]. Real Footprints have been used

by [7] to develop a compact representation of the data, and Sparse Bayesian Learning

[19] is then applied to infer the breakpoints in the signal. We use Complex footprints

for the same application and analyze the results. The second application is in the

area of molecular machine dynamics where we recover an underlying PWC signal

from noisy observations of a molecular motor [20].

5.2 DNA copy number alterations analysis from array-CGH data

5.2.1 Introduction to aCGH

Copy Number Alterations (CNA) involves deletion or replication of chromoso-

mal regions and are known to occur in numerous genetic disorders. Array-Comparative

Genomic Hybridization (aCGH) is a technique that was developed for high resolu-

tion screening of CNA. CNA data is piecewise constant, with discontinuities at the

locations of deletion or replication of chromosomes.

As explained in Figure 5.1, DNA from the sample to be tested (e.g. blood

or amniotic fluid) is labeled with a green dye and an equal amount of reference

DNA is labeled with red. The two samples are mixed and cohybridized to an array

36
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containing genomic DNA targets that have been spotted on a glass slide. The resulting

ratio of the fluorescence intensities is proportional to the ratio of the copy numbers

of DNA sequences in the test and reference genomes. The areas on the slide that

appear green indicate extra chromosomal material (duplication) in the test sample

at that particular region. The slides are scanned into image files using a microarray

scanner. The spot intensities are measured. Areas on the slide that appear red

indicate relatively less test DNA (deletion) in the sample at that specific spot.[5] The

log2 ratio of the red to the green intensities are computed for each spot, and converted

into a 1-d signal. These are the log intensities that are measured, corresponding to

the relative copy number in the genome, and have an underlying PWC structure.

(a) (b)

Figure 5.1: (a) Principle of acgh. (b) An output array of scanning hundreds of spots
with different ratios of intensities [5]

.



38

Several algorithms have been proposed to detect CNA [27] [28] [29] etc. Some

of them rely on a fundamental characteristic, that a genome is composed of relatively

long segments, DNA sequences that have a constant number of copies present. The

genomic segments can be represented by m probes mapping to a specific position on

the genome having cm copies. The copy numbers cm can be ordered and arranged as

vectors that have the following properties.

• They are piecewise constant with very small number of breakpoints relative to

the number of probes

• They have discrete values i.e. copy numbers can only be 0, 1, 2, 3 ...

However, these properties cannot be directly observed in the log-intensities ym mea-

sured with micro-arrays, due to contamination by biological and technical noise; thus

it is modeled as:

ym = xm + ǫm (5.1)

where xm represents the average log intensity, and ǫm is an additive zero-mean white

random process. See Figure 5.2.

The fact that the copy number is piecewise constant along the genome is ex-

ploited to build a basis expansion using wavelet footprints. In [3], the PWC signal is

represented using real footprint basis, and Sparse Bayesian Learning (SBL) followed

by Backward Elimination (BE) are then applied to infer the discontinuities in the sig-

nal. We now extend this by representing the observed signal in a Complex Footprint

basis.

The goal is to infer where the copy number alteration points are located, from

noisy observed hybridization intensities. We seek to minimize the error in approxi-

mating the observed noisy signal using this new complex footprint representation.
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Figure 5.2: Observation model

Before we start off with the detection algorithm, we present the synthetic

dataset used for this application.

5.2.2 Synthetic Data Set and Metrics Used

The datasets used to compare the algorithms rates of accuracy are those pro-

posed by [6].

1. Determine copy number probability and the distribution of segment length.

The chromosomal segments with DNA copy number c = 0, 1, 2, 3, 4 and 5 are

generated with probability 0.01, 0.08, 0.81, 0.07, 0.02 and 0.01. The lengths for

segments are picked up randomly from the corresponding empirical length dis-

tribution given in [6].
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2. Compute log2ratio. Each sample is a mixture of tumor cells and normal cells.

A proportion of tumor cells is Pt , whose value is from a uniform distribution

between 0.3 and 0.7. The log2ratio is calculated by

log2ratio = log2
cPt + 2(1− Pt)

2
(5.2)

where c is the assigned copy number. The expected log2ratio value is then the

latent true signal.

3. Add Gaussian noises. Gaussian noises with zero mean and variance σ2
n are

added to the latent true signal. Now, we get the equally spaced CGH signal

In order to evaluate the signal reconstruction accuracy of the algorithms, the following

metrics are employed:

1. Sensitivity:
# discontinuities detected correctly

Total # of discontinuities present

2. False Discovery Rate:
# discontinuities detected incorrectly

Total # discontinuities detected

The next section is organized as follows:

• Complete algorithm for step detection using Real Wavelet Footprints represen-

tation of data.

• Implementation of Sparse Bayesian Learning.

• Comparison of steps, equations and formulas for the implementation of the

algorithm using Real and Complex representations.

• Simulation results and discussion of performance of the algorithm using Real

and Complex footprints.
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5.2.3 Algorithm for step detection using Real Wavelet Footprints

5.2.3.1 Formulation of the problem, and motivation for using SBL

The footprint representation can be used to facilitate estimating x from a de-

graded observation y generated as in the model 5.1

y = x+ ǫ = Fw + ǫ (5.3)

where x has been replaced by its footprint representation, Fw. Since the number

of copy number changes (K) is very small compared to the number of probes (M),

x = Fw has a sparse representation in the footprint basis, while the noise ǫ is not

sparse in this representation. Under this scenario, the problem is formulated as that

of finding x̂ = Fŵ that is closest to the observed y subject to having only K non-zero

components of ŵ [3].

ŵ : min
w

e (Fw, y) s.t. s(w) = K (5.4)

Different measures of closeness e(.) and sparseness s(.) can be used. For

closeness, we use the least squares error measure since it is the most widely used for

approximation and will facilitate comparison among algorithms, although it may be

sensitive to outliers.For measuring sparseness we are especially interested in the l0

norm (i.e. the number of wm 6= 0), which best models the biological property that

K << M . Then, the cost function with these measures can be rewritten as follows

ŵ : argmin
w
‖y − Fw‖2 + ‖w‖0 (5.5)

where the lp norm and the l0 pseudo-norm are defined as:

‖w‖p =
M∑

m=1

|wm|2 ‖w‖p→0 =
M∑

m=1

I(wm 6= 0) (5.6)
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If we replace the l0 by l1 norm, then we can obtain the standard Basis Pur-

suit cost function, which finds the weights vector w satisfying x = Fw with min-

imum l1 norm. The l1 norm is often used because convex optimization or linear

programming can be used to solve the problem. In such methods, we can guarantee

convergence to the global minimum of the cost function. However, the global mini-

mum may not coincide with the sparsest solution. If the coherence - represented as

C = max 〈fk, fj〉 k 6= j is small, then minimizing for l1 is equivalent to minimizing

for l0. However, the performance of these methods is severely limited because the

coherence of the footprint basis vectors approaches 1. That is, footprints that cor-

respond to two adjacent discontinuities are highly collinear. Other methods such as

FOCUSS [30] are able to compute a solution with minimum l0 norm. However, there

are convergence errors that are associated with this solution. [19] Therefore, when

the basis F is highly coherent, as in our case, these techniques lead to sub-optimal

performance and a new approach is needed.

5.2.3.2 Sparse Bayesian Learning

Footprint Basis

Representation

Sparse Bayesian

Learning

Backward 

Elimination

input signal y
Footprint 

Coefficients

Estimate of location

 and magnutude of

 breakpoints

Final estimate 

of location and 

magnitude

Figure 5.3: The main processing steps in SBL algorithm

Given a data set of input-output pairs {xn, yn}Nn=1, we assume the data is in

the presence of additive Gaussian noise and a Gaussian likelihood model is used [31]:

p(y|w, σ2) = (2πσ2)−N/2exp

{

− 1

2σ2
‖y − Fw‖2

}

(5.7)

where σ2 is the noise variance of the input signal.
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With as many parameters in the model as input data, we would expect the

ML estimation of w to lead to severe over-fitting. To avoid this, a common approach

is to impose some additional constraint on the paramters, for example, through the

addition of a penalty term to the likelihood or error function. Here, an explicit

prior probability distribution is defined over the parameters. A popular choice is a

zero-mean Gaussian prior distribution over w.

p(w|α) =
M−1∏

m=1

N(wm|0, α−1
m ) (5.8)

with α a vector of N hyperparameters. There is an individual hyperparameter asso-

ciated independently with each weight.

To complete the specification of the hierarchial prior, the hyperpriors α and

noise variance σ2 are defined. Gamma distributions are used for defining α.

p(α) =
M−1∏

m=1

Γ(αm|a, b) (5.9)

For fixed values of the hyperparameters governing the prior, the posterior den-

sity of the weights is Guassian [31].

p(w|y, α, σ2) = N(w|µ,Σ) (5.10)

with

Σ = (σ−2F
′

F + diag(α))−1 µ = σ−2ΣF
′

y (5.11)

Once we have these values, we choose the weights satisfying w = µ.

Thus, we need to estimate α and σ2. σ2 is estimated from the data as:

σ̂2 =
1

2M

M∑

m=1

(ym − ym−1)
2 (5.12)

To find α, the Expectation Maximization (EM) algorithm [32] is used. The EM

algorithm proceeds by treating the weights w as hidden variables and then maximiz-
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ing Ew|y,α,σ[p(y, w;α)] where p(y, w|α) = p(y|w)p(w|α) represents the likelihood of

complete data {w,y}. We have for the l-th iteration, [19]

Estep : Ew|y,α(l),σ−2(w2
m) = Σmm + µ2

m (5.13)

Mstep : α̂(l+1)
m =

1 + 2a

Σmm + µ2
m + 2b

(5.14)

Upon convergence, we find that several α’s are 0, forcing the associated weights

to zero while the non-zero weights are free to take any value - which matches well our

underlying biological knowledge for copy number changes.

Thus, the model contains several hyperparameters, and α and σ parameters are

estimated from the data while b is set to zero (uninformative prior). a is a tradeoff

between speed of convergence and sparsity, and can be adjusted. Thus, sparseness is

adjusted by the α parameter.

An overview of the main steps in the algorithm is presented in the Figure 5.4:

The output of the SBL algorithm is a set of (location,magnitude) pairs corresponding

to the detected breakpoints, of the input signal. However, not all breakpoints found

by SBL have the same statistical significance since noise may make areas without

any underlying alteration appear similar to those areas corresponding to actual alter-

ations. Some breakpoints mark the separation between two long segments (i.e. such

that each segment includes many probes) and are such that the difference between

the estimated amplitudes of the two segments is large. Such breakpoints are more

likely to correspond to true underlying changes in copy number, and therefore will

have a higher statistical score

A Backward Elimination (BE) strategy is used, in which we recursively elim-

inate the breakpoint with lowest statistical evidence. The BE procedure can be

stopped when all the remaining breakpoints have a score higher than a specified
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threshold, the BE critical value. More details on Backward Elimination are available

at [3].

5.2.4 Implementation of SBL

Given the special structure of the footprint basis matrix F , (i.e. an invertible

matrix who’s columns are piecewise constant vectors) [3] has shown that SBL com-

putation can be optimized for the PWC representation. In particular, for the real

footprint basis matrix F , a closed form solution to a inverse of (F ′F ), a (large) ma-

trix, has been determined. This can make the processing very efficient. The matrix

H = G−1 = (F ′F )−1 a symmetric tridiagonal matrix with main diagonal

h0(j) =
(M − ij)ij

M

(ij+1 − ij−1)

(ij+1 − ij)(ij − ij−1)
(5.15)

and upper/lower diagonal elements are

h1(j) =

√

(M − ij)ij(M − ij+1)ij+1

M(ij+1 − ij)
(5.16)

This structure can be used to efficiently compute µm and Σmm for each EM step in

the algorithm.

Also, removing the mean from the signal allows us to remove the f0 from F for

all computation in the algorithm. Hence, the footprint basis matrix F is no longer

an M ×M square matrix but has dimensions of M ×M − 1.

Below, we present the steps followed for implementing the SBL algorithm.

Inputs: y, α, σ2

1. ȳ ← 1
M

∑M
m=1 ym

2. y ← y − ȳ;

3. (h0 and h1) from 5.15and5.16

4. w0 = F−1y
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Figure 5.4: Main steps in SBL algorithm

5. loop: T = σ2(F TF )−1Λ + I

6. Tw = w0; Solve for w using LU decomposition method

7. Compute diag(Σ) where Σ = σ2T−1(F TF )−1

8. for i = 1, ..., I

αj =
1+2a

w2
j+Σjj

end for

9. until w has converged ‖wold − wnew‖ ≤ ǫ

Outputs: w, I i.e. estimated breakpoint locations and magnitudes of the underlying

PWC signal.

For computational efficiency, rather than compute the mean and covariance

directly, as in 5.11 a variable is introduced T = σ2(F TF )−1Λ+ I. By this, the inverse

of any matrix does not have to be computed during the processing of the algorithm -

the only inverse that is required is (F TF )−1, which has a known closed form solution

5.15 and 5.16. Calculation of inverse of a matrix is a computationally heavy operation

and by introducing this new variable T , it is possible to avoid this operation.

As discussed, the first column of the F matrix can be deleted if we remove the

mean from the input signal. Hence, the basis matrix now has size M ×M − 1. Since

it is not square, it is not invertible. However, the pseudo-inverse exists, and F−1 is

bidiagonal. This makes calculation of the initial estimate w0 quite straightforward.
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Table 5.1: Shows the modifications involved while using complex footprints in the
SBL algorithm

Real footprint representation Complex footprint representation

a) x = Fw x = 1
2

[
F −HF

]
[
wR

wI

]

b) w0 = (F TF )−1F Tx wR0 = (F TF )−1F Tx
wI0 = H(F TF )−1F Tx

c) loop: T = (σ2(F TF )−1Λ + I) loop: Tr = (σ2(F TF )−1Λ + I) = Ti
d) Tw = w0; w = T−1w0 TrwR = wR0 ;wR = T−1

r wR0

TiwI = wI0 wI = T−1
i wI0

e) Σ = σ2T−1(F TF )−1 Σr = σ2T−1
r (F TF )−1 = Σi

f) forj = 1, ..., I forj = 1, ..., I
αj =

1+2a
w2

j+Σjj
αj =

1+2a
1
2
(w2

Rj
+w2

Ij
)+Σjj

end end
g) until w converges until w converges

5.3 Comparison of SBL algorithm using Real and Complex footprints

We now discuss the steps in the implementations, as presented in Table 5.1.

We consider an input signal of length M , and a basis matrix of size M × M − 1

We compute the initial estimates of real and imaginary components. We use these

initial estimates in updating the coefficients in each iteration of SBL algorithm. The

EM algorithm calculates an updated vector of hyperparameters α in each iteration.

While computing the hyperparameters, we now use both real and imaginary parts,

as in step f) in the table. Hence at the output of the algorithm, we have M weights

that have been calculated by using information from real and imaginary components.

At this point, we state the reason why we choose this method of computing real

and imaginary coefficients individually, rather than the more straightforward method

of replacing the real footprint basis F with the complex basis [F −HF ] in step a) in

the table. Let F̃ = [F −HF ]. We observe that (F̃ T F̃ )−1 is not invertible (the matrix

is of half-rank), and nor does it have a pseudo-inverse. Hence, any solution which
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uses F̃ explicitly will not be computationally feasible. This is why we are restricted

to use methods that do not involve explicit use of the complex basis, but achieve the

same computations as the complex basis.

5.4 Simulation Results and Discussion

We first consider a simple test signal:

The input signal is a length-600 signal that has a few breakpoints at random.

When the input signal is clean, as in the figures on the left column, we observe that

reconstruction using real footprints gives a signal that is very close to the original

signal. Upon using the imaginary coefficients alone, the discontinuities in the signal

are located with good accuracy. However, using the magnitude of the complex foot-

print coefficients, the reconstruction does not improve from that obtained by using

real footprints alone.

When we add some noise to the input signal (we add Gaussian noise with stan-

dard deviation 0.1), we observe that reconstruction using real footprints is still very

close to the original signal. The imaginary coefficients do not locate the discontinu-

ities well, and reconstructed signal using complex footprints is poor compared with

using real footprints alone.

To obtain numerical values, we constructed a signal as shown above, and added

noise of different variances to the signal. We performed signal reconstruction using

both real and complex footprints. We then analyzed their performances using the

metrics - Sensitivity and False Discovery Rate (which have been defined earlier in

this chapter). The values were averaged over 100 iterations. Table 5.3 shows the
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Table 5.2: Comparison of Real and Complex footprints - using Clean and Noisy
input

Clean Input Input with σ = 0.1
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values that were obtained.

Table 5.3: Comparison of Sensitivity and FDR for signals reconstructed using real
and complex footprints

σ Sens. (real) FDR (real) Sens. (complex) FDR (complex)
0.001 1 0 1 0.3333
0.01 1 0 1 0.3678
0.1 1 0.02 0.955 0.4
0.2 0.9533 0.4599 0.8717 0.5565
0.4 0.8117 0.7124 0.735 0.7542
0.6 0.7483 0.77 0.6683 0.8038
0.8 0.7333 0.7861 0.645 0.8177
0.9 0.7067 0.7987 0.6317 0.8244
1.0 0.7083 0.8 0.6317 0.8258

We also conducted the same experiment using the synthetic array-CGH data

described in section 5.5.2. One such signal is shown in Figure 5.5. We used signal

length of 256. The input signal is contaminated with noise of standard deviation in

the range of 0.1− 0.2 The results are as shown in Table 5.4. These observations

Table 5.4: Performance metrics of footprint based method applied on DNA copy
number measurements, proposed by [6]

Noise Std Dev Real Footprints Complex footprints
Sensitivity FDR Sensitivity FDR

0.01 - 0.1 0.8533 0.4020 0.667 0.691

0.05 - 0.15 0.8420 0.3846 0.667 0.715

0.1 - 0.2 0.7871 0.395 0.402 0.825

tell us that using complex footprints for this application does not improve the results

in terms of sensitivity and false detection rate.
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Figure 5.5: Synthetic data as suggested in [6]

5.4.1 Discussion

We believed that by using a complex footprint representation rather than real

footprints, the complex coefficients would improve the edge detection performance.

We used the magnitude of the complex coefficients for our analysis. We expected

that the magnitudes would represent any discontinuity in the signal better than a real

footprint coefficient could. However, we observed that detection using the complex

coefficients is never better than detection by using only real components. With a

noisy input, the algorithm using complex coefficients gives a poorer reconstruction

than the algorithm using real coefficients only.

We believe this is due to the approximation of the Hilbert transform used while

forming the complex footprint basis. The ideal Hilbert transformer is infinite length,
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whereas we have used a finite length approximation, which could have introduced

errors in the computations.

Also, we observed in the previous chapter that the magnitudes of the complex

footprints coefficients did not improve the shift invariance property compared to using

real footprint coefficients. We conclude that real footprints are more effective than

complex footprints in signal reconstruction of such PWC signals. Hence, for our next

application, we compare the performance of signal reconstruction using real footprints

with other existing methods.

5.5 High-Throughput Analysis of Molecular Machine Dynamics

5.5.1 Molecular Machines

Nanotechnology allows one to construct useful machines on a molecular scale.

Nature has evolved many robust molecular machines such as pumps, tugs, copiers

and motors and understanding the function of these machines is key to the possibility

of designing of interacting artificial molecular devices. These motors that convert

electrochemical energy to linear or rotary kinetic energy, do so in a series of rapid,

nano-scale step-like motions.This step like motion has been observed using advanced

experimental procedures [20].

These experiments produce large volumes of time series data with sampling rates

that often exceed 100kHz but the step-like motions of the molecular components is

obscured by noise. This noise must be removed to extract the underlying molecular

dynamics- in this case, a PWC signal.

This noise removal is a challenging signal processing problem because the signal

to noise ratio is low ad the signal itself is a step-and-impulse like i.e. it is highly

discontinuous
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5.5.2 Step-like synthetic data

Typical noisy step-like time series from experiments on molecular machines

is shown in the Figure 5.6. This is a time series of piecewise constant segments

with superimposed, additive, i.i.d. Gaussian noise. The steps between the constant

segments typically occur at time intervals that are exponentially distributed, and the

steps may be upwards or downwards. This is very similar to a Poisson process, except

that the event count can go down as well as up. The observed discrete time signal is

defined here as xn = µn + ǫn where µn is a piecewise constant step signal with steps

of the same height and ǫn is i.i.d. Gaussian noise of variance σ2 [20].

5.5.3 Existing Methods

The signal that we are dealing with is highly discontinuous. The support in

the Fourier domain of the signal and the noise overlap considerably. Separation in

the Fourier domain using classical linear filtering is not feasible. Special techniques

are thus required that can cope with both high noise levels and discontinuous sig-

nals. Previous methods use a step-filtering approach to this problem include Median

Filtering [10] and Global Filtering using L1-regularized fused LASSO [18], discussed

earlier in this report.

5.5.4 Simulation and Results

We illustrate the use of footprints in detecting singularities in a Molecular Ma-

chine motor data. We used both real and complex footprints and observed the results.

As we have seen in the last section, signal reconstruction using Real Footprints give

a much better performance than using complex footprints for noisy inputs. Also, we

find that using real footprints to reconstruct the signal outperforms existing methods

for obtaining a clean signal from noisy Molecular Machines data.
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Table 5.5: Accuracy of the three algorithms in recovering a PWC signal for a range
of noise variances

Noise std dev MAE median filter MAE fused -LASSO MAE using footprints
0.1 0.0231 0.013 0.0028

0.3 0.0692 0.0187 0.0083

0.5 0.1123 0.0263 0.0138

0.6 0.1358 0.0336 0.0188

0.7 0.1553 0.0393 0.0215

0.9 0.1988 0.0521 0.0295

1.1 0.24 0.071 0.036

Below we present a comparison of the Running Median Filtering, Bayesian

L1-regularized LASSO and Real Footprint methods in recovering underlying step dy-

namics µn, for a unit step height, for a range of noise variances. We create a signal

of length 5000 as described earlier, and take the average over 100 iterations.

The metric used to measure the accuracy of the algorithms was the Mean Abo-

lute Error (MAE).

MAE =
N∑

n=1

|µn −mn|/N (5.17)

A low value of MAE indicates a good signal approximation.

Figure 5.6 shows the reconstructed (or filtered) signals for synthetic data ob-

scured by noise of standard deviation 0.6. The median filter operates with a window

sizeW = 20, the regularization paramter for the fused-LASSO method λ = 10. These

values were chosen such that the MAE in recovering the known steps is minimized.

Numerical values obtained are shown in the Table 5.5.

A graphical comparison of the three methods is shown in Figure 5.7. The MAE

achieved using footprint based method is significantly lower than other methods.

We also run the algorithms on real data from a molecular motor - We use

WS8N wild-type Rohdobacter sphaeroides cells. The flagella (tails) are removed and

0.83 micron beads are attached to the flagellar hooks [20]. The beads are then laser
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Figure 5.6: Mean absolute error calculated by using Footprints, fused -LASSO, and
by using Median Filtering respectively

illuminated, and the speed of rotation of the flagellar motor against time is recorded.

We display typical measurement time series, and those obtained after applying the

various algorithms. As can be seen from Figure 5.8, the reconstruction of the signal

using footprints method gives a much cleaner output compared to other algorithms.

This leads us to conclude that the use of footprints for reconstructing molecular

machine PWC data, outperforms existing methods.

5.5.5 Discussion

Although wavelet basis and especially Haar basis have been suggested in liter-

ature [15] for removing noise from piecewise constant signals, there is an argument

against using wavelet based algorithms as discussed in [13]. Removing noise typically

requires the removal of small-scale detail coefficients. The result of removing these
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coefficients is that the time-localization of the remaining large scale coefficients is

poor, and jumps in the signal cannot be accurately located - they are not exactly

aligned to the locations of the jumps in the reconstructed signal.

However, while using wavelet footprints, the issue of ignoring information from

certain scales does not arise, because by definition, a wavelet footprint gathers in-

formation from wavelet coefficients at all scales. Hence, it is possible to accurately

determine the locations of jumps in the highly discontinuous signal that is used in

this application.

As can be seen from Figure 5.6, the footprints method outperforms the Bayesian

L1-regularised LASSO by a factor of nearly 2. That is, the MAE using footprints

is nearly half that of the next-best algorithm at all the tested noise variances. This

algorithm produces smooth results with sharp edges. However, median filter produces

noisy results.
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The performance of the algorithms on the synthetic time-series with unit step

height across a range of noise variances is shown in the table. The median filter has

the worst overall performance, as the error can reach as much as 20% of the step

height. By contrast, the Bayesian filter can achieve errors of less than 10% of the

step height, while the footprint-based method achieves errors that are even lesser, in

the order of 5% of the step height.
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Figure 5.8: Molecular motor data: (a) Input signal (b)Footprint based
reconstruction, (c) Using LASSO filter with λ = 10, (d) Using median filter with

window W = 10



CHAPTER 6

CONCLUDING REMARKS

In this work, we have studied different techniques for step detection in a piece-

wise constant signal. We used 3 methods, namely step detection using Phase Con-

gruency, real footprints, and using complex footprints. We studied the performance

of these methods using Sensitivity and False Discovery Rate. We used these methods

in 2 different bioinformatics signal processing applications.

First we used the concept of Phase Congruency to detect discontinuities in

PWC signals. For synthetically created signal having low noise levels (noise standard

deviation ≤ 0.1), we found that this measure was able to detect edges accurately.

In particular, Phase Congruency using Inter Scale wavelet coefficients was empiri-

cally found to be more effective than computing using Relative Phase or Derotated

Phase coefficients. Using Phase Congruency for step detection would be beneficial in

applications where the signal is not heavily contaminated by noise.

We then developed the concept of complex footprints. We referred to the work

of [2] who has developed a transform called wavelet footprints, and extended it so

that coefficients take complex values. However, all computation involved continues

to be real. We represented PWC signals using complex footprints. We studied the

shift invariance property of the two transforms. We found that the real footprint

representation is nearly shift-invariant, but not exactly shift invariant. We determined

that the complex representation does not improve the shift-invariance property from

the real case.

59



60

We then applied these step detection methods to two applications which in-

volved recovery of a PWC signal from its noisy observations - both in the area of

bioinformatics. The first application involved step detection in array-CGH data. [3]

has developed an algorithm based on real footprint transform, and achieves highly ac-

curate results. Replacing the real footprint coefficients by the magnitude of complex

coefficients did not improve on these results. For noisy inputs, the result was much

poorer when using complex footprints. We believe this is due to the finite-length

approximation of the infinite length ideal Hilbert transform, in our computation.

Since we found that step detection using real footprints work better then using

complex footprints, we then applied the algorithm using real footprints in the appli-

cation of molecular machines data. The accuracy metric used was Mean Absolute

Error. We found that this method outperforms the existing algorithms that are used,

by a factor of at least two.

Future work on this topic could focus on ways to improve the Hilbert transform

calculation, and also in finding suitable applications for complex footprints.

We conclude that phase congruency can be used when detecting PWC signals

from an input contaminated with low noise. For inputs corrupted with high levels of

noise, the detection algorithm using real wavelet footprints performs better than that

using complex footprints, or phase congruency.
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