

ONLINE LEARNING ALGORITHMS FOR DIFFERENTIAL DYNAMIC GAMES AND OPTIMAL

CONTROL

by

KYRIAKOS G. VAMVOUDAKIS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2011

Copyright © by Kyriakos G. Vamvoudakis 2011

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I would like to express my sincere thanks to my supervisor Professor Frank L. Lewis for

his guidance, supervision and support during my doctoral research work. Also I would want to

thank my parents for the moral and material support at all the duration of my study at the

University of Texas at Arlington.

 This work was supported by the National Science Foundation ECS-0801330, the Army

Research Office W91NF-05-1-0314 and the Air Force Office of Scientific Research FA9550-09-

1-0278.

 March 31, 2011

iv

ABSTRACT

ONLINE LEARNING ALGORITHMS FOR DIFFERENTIAL DYNAMIC GAMES AND OPTIMAL

CONTROL

KYRIAKOS G. VAMVOUDAKIS, PhD

The University of Texas at Arlington, 2011

Supervising Professor: FRANK L. LEWIS

 Optimal control deals with the problem of finding a control law for a given system that a

certain optimality criterion is achieved. It can be derived using Pontryagin’s maximum principle

(a necessary condition), or by solving the Hamilton-Jacobi-Bellman equation (a sufficient

condition). Major drawback of optimal control is that it is offline. Adaptive control involves

modifying the control law used by a controller to cope with the facts that the system is unknown

or uncertain. Adaptive controllers are not optimal. Adaptive optimal controllers have been

proposed by adding optimality criteria to an adaptive controller, or adding adaptive

characteristics to an optimal controller.

 In this work, online adaptive learning algorithms are developed for optimal control and

differential dynamic games by using measurements along the trajectory or input/output data.

These algorithms are based on actor/critic schemes and involve simultaneous tuning of the

actor/critic neural networks and provide online solutions to complex Hamilton-Jacobi equations,

along with convergence and Lyapunov stability proofs.

 The research begins with the development of an online algorithm based on policy

iteration for learning the continuous-time (CT) optimal control solution with infinite horizon cost

v

for nonlinear systems with known dynamics. That is, the algorithm learns online in real-time the

solution to the optimal control design Hamilton-Jacobi (HJ) equation. This is called

‘synchronous’ policy iteration.

 Then it became interesting to develop an online learning algorithm to solve the

continuous-time two-player zero-sum game with infinite horizon cost for nonlinear systems. The

algorithm learns online in real-time the solution to the game design Hamilton-Jacobi-Isaacs

equation. This algorithm is called online gaming algorithm ‘synchronous’ zero-sum game policy

iteration.

 One of the major outcomes of this work is the online learning algorithm to solve the

continuous time multi player non-zero sum games with infinite horizon for linear and nonlinear

systems. The adaptive algorithm learns online the solution of coupled Riccati and coupled

Hamilton-Jacobi equations for linear and nonlinear systems respectively. The optimal-adaptive

algorithm is implemented as a separate actor/critic parametric network approximator structure

for every player, and involves simultaneous continuous-time adaptation of the actor/critic

networks.

 The next result shows how to implement Approximate Dynamic Programming methods

using only measured input/output data from the systems. Policy and value iteration algorithms

have been developed that converge to an optimal controller that requires only output feedback.

 The notion of graphical games is developed for dynamical systems, where the

dynamics and performance indices for each node depend only on local neighbor information. A

cooperative policy iteration algorithm, is given for graphical games, that converges to the best

response when the neighbors of each agent do not update their policies and to the cooperative

Nash equilibrium when all agents update their policies simultaneously.

 Finally, a synchronous policy iteration algorithm based on integral reinforcement

learning is given. This algorithm does not need the drift dynamics.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS .. viii

Chapter Page

1. INTRODUCTIONGGGGGGGGGGGGGG..GGG..G.. 1

1.1 Adaptive Optimal Control.. 1

1.2 Zero-Sum Games ... 5

1.3 Non-Zero-Sum Games ... 6

1.4 Motivation ... 8

1.5 Contribution .. 8

1.6 List of publications which resulted from this work .. 10

1.6.1 Book.. 10

1.6.2 Book chapters ... 10

1.6.3 Journal articles ... 10

1.6.4 Conference papers ... 11

1.7 Outline .. 13

2. ONLINE ACTOR-CRITIC ALGORITHM TO SOLVE THE CONTINUOUS TIME
INFINITE HORIZON OPTIMAL CONTROL PROBLEM .. 16

 2.1 Introduction ... 16

 2.2 The optimal control problem and value function approximation 17

2.2.1 Optimal Control and the continuous-time HJB equation 17

2.2.2 Policy Iteration .. 19

2.2.3 Value function approximation (VFA) ... 20

iv

 2.3 Tuning and convergence of Critic NN .. 24

 2.4 Action Neural Network and online synchronous policy iteration 30

 2.5 Simulations ... 33

2.5.1 Linear system example... 33

2.5.2 Nonlinear system example ... 35

 2.6 Conclusion .. 39

3. ONLINE GAMING: REAL TIME SOLUTION OF NONLINEAR TWO-PLAYER
ZERO-SUM GAMES USING SYNCHRONOUS POLICY ITERATION 40

3.1 Introduction ... 40

3.2 Background: Two-Player Differential Game and Policy Iteration 41

3.2.1 Two-player zero-sum differential games and Nash equilibrium 42

3.2.2 Policy Iteration solution of the HJI equation 46

3.3 NN approximation structure for online policy iteration algorithm 48

3.3.1 Value function approximation: Critic Neural Network 48

3.3.2 Tuning and Convergence of the Critic Neural Network 51

3.3.3 Action and Disturbance Neural Network .. 55

3.4 Online solution of Two-Player Zero-Sum Games using Neural Networks 56

3.5 Simulations ... 61

3.5.1 Linear System ... 61

3.5.2 Single Player Linear System .. 63

3.5.3 Nonlinear System ... 66

3.6 Conclusion .. 70

4. MULTI-PLAYER GAMES: ONLINE ADAPTIVE LEARNING SOLUTION OF
COUPLED HAMILTON-JACOBI AND COUPLED RICCATI EQUATIONS 72

4.1 Introduction ... 72

4.2 N-player differential game for nonlinear systems ... 74

v

4.2.1 Multi-Player Non-Zero Sum Games ... 74

4.2.2 Cooperation vs. Non-Cooperation in Multi-Player Games 77

4.2.3 Policy Iteration Solution for Non-Zero Sum Games 77

4.3 Value function approximation for solution
of nonlinear Lyapunov equations.. 78

4.4 Online Solution for 2-player games .. 83

4.5 Simulation Results .. 89

4.5.1 Nonlinear system .. 89

4.5.2 Linear system ... 93

4.5.3 Zero-Sum Game with unstable linear system 95

5. REINFORCEMENT LEARNING FOR PARTIALLY OBSERVABLE PROCESSES:
ADAPTIVE DYNAMIC PROGRAMMING USING MEASURED OUTPUT DATA.............. 99

5.1 Introduction ... 99

5.2 Background .. 100

5.2.1 Dynamic programming and LQR .. 100

5.2.2 Temporal difference, policy iteration, value iteration 102

5.3 Temporal difference, PI, and VI based on output feedback 106

5.3.1 Writing the value function in terms
of available measured data ... 107

5.3.2 Writing the TD error in terms of available measured data............ 111

5.3.3 Writing the policy update in terms of available
measured data ... 111

5.4 Implementation, probing noise, bias and discount factors 115

5.5 Simulation Results .. 118

5.5.1 Stable linear system and policy iteration 118

5.5.2 Q-learning and output feedback ADP... 120

5.5.3 Unstable linear system and value iteration 122

5.6 Conclusion .. 124

vi

6. MULTI AGENT DIFFERENTIAL GRAPHICAL GAMES: POLICY ITERATION
AND ONLINE ADAPTIVE LEARNING SOLUTION ... 126

6.1 Introduction ... 126

6.2 Synchronization and node error dynamics ... 127

6.2.1 Graphs .. 127

6.2.2 Synchronization and node error dynamics 128

6.3 Cooperative multi-player games on graphs .. 130

6.3.1 Cooperative performance index ... 130

6.3.2 Graphical games and cooperative Nash equilibrium 131

6.3.3 Stability and solution of graphical games 133

6.4 Policy iteration solution for cooperative multi-player games 138

6.4.1 Best response ... 138

6.4.2 Policy Iteration for solution of graphical games 140

6.5 Online solution of multi-agent cooperative games
using neural networks ... 143

6.5.1 Critic neural network ... 144

6.5.2 Actor neural network and online solution 145

6.6 Simulations ... 150

6.6.1 Velocity and Position regulated to zero .. 151

6.6.2 All nodes synchronize to the leader node 152

7. ONLINE ADAPTIVE LEARNING OF OPTIMAL CONTROL SOLUTIONS USING
INTEGRAL REINFORCEMENT LEARNING ... 154

7.1 Introduction ... 154

7.2 Optimal control problem and the policy iteration algorithm 155

7.2.1 Optimal control and the continuous time HJB equation 155

7.2.2 Policy iteration .. 157

7.2.3 Value function approximation (VFA) ... 158

7.2.4 Integral reinforcement learning ... 159

vii

7.3 Online integral reinforcement learning algorithm with synchronous
tuning of actor and critic neural networks ... 160

7.3.1 Critic NN and Bellman equation solution 161

7.3.2 Action NN and online adaptive optimal control 163

7.4 Simulation results ... 165

7.4.1 Linear system example... 165

7.4.2 Nonlinear system example ... 167

7.5 Conclusion .. 171

8. CONCLUSIONS AND FUTURE WORK ... 172

APPENDIX

A. PROOFS ... 175

REFERENCES ... 198

BIOGRAPHICAL INFORMATION .. 206

viii

LIST OF ILLUSTRATIONS

Figure Page

 1. Actor/Critic Structure .. 21

 2. Convergence of the critic parameters to the parameters of the optimal critic 34

 3. Evolution of the system states for the duration of the experiment ... 35

 4. Convergence of the critic parameters... 37

 5. Evolution of the system states for the duration of the experiment ... 37

 6. Optimal Value function ... 38

 7. 3D plot of the approximation error for the value function ... 38

 8. 3D plot of the approximation error for the control ... 39

 9. Convergence of the critic parameters to the parameters of the optimal critic 63

10. Evolution of the system states for the duration of the experiment ... 63

11. Convergence of the critic parameters to the parameters of the optimal critic 65

12. Evolution of the system states .. 65

13. Convergence of the critic parameters... 68

14. Evolution of the system states .. 68

15. Optimal Value function ... 69

16. 3D plot of the approximation error for the value function ... 69

17. 3D plot of the approximation error for the control ... 70

18. 3D plot of the approximation error for the disturbance ... 70

19. Convergence of the critic parameters for first player .. 91

20. Convergence of the critic parameters for second player .. 92

21. Evolution of the system states .. 92

22. 3D plot of the approximation error for the value function of player 1 93

ix

23. 3D plot of the approximation error for the control of player 1 ... 93

24. Evolution of the system state .. 94

25. Convergence of the critic NN for the first player ... 95

26. Convergence of the critic NN for the second player ... 95

27. Convergence of the critic NN for the first player ... 97

28. Convergence of the critic NN for the second player ... 97

29. Evolution of the system states .. 98

30. Convergence of 0 , ,u yp p p . .. 120

31. Evolution of the system states for the duration of the experiment ... 120

32. Convergence of 11 12 13, ,H H H .. 121

33. Evolution of the system states for the duration of the experiment. .. 122

34. Convergence of 0 , ,u yp p p ... 124

35. Evolution of the system states for the duration of the experiment ... 124

36. Communication graph .. 150

37. Critic Parameters .. 151

38. Evolution of the system states .. 152

39. Critic Parameters .. 153

40. Synchronization of all the agents to the leader .. 153

41. Convergence of the critic parameters to the parameters of the optimal critic 167

42. Evolution of the system states for the duration of the experiment ... 167

43. Convergence of the critic parameters to the parameters of the optimal critic 169

44. Evolution of the system states for the duration of the experiment ... 170

45. Error between the optimal and approximated value function ... 170

46. Error between the optimal and the approximated control input .. 171

 1

CHAPTER 1

INTRODUCTION

 The introductory chapter discusses background, motivation and contribution. The list of

publications which resulted from this research is given in Section 1.6.

1.1 Adaptive Optimal Control

 Optimal control has emerged as one of the fundamental design philosophies of modern

control systems design. Optimal control policies satisfy the specified system performance while

minimizing a structured cost index which describes the balance between desired performance

and available control resources.

 From a mathematical point of view the solution of the optimal control problem is based

on the solution of the underlying Hamilton-Jacobi-Bellman (HJB) equation. Until recently, due to

the intractability of this nonlinear differential equation for continuous-time (CT) systems, which

form the object of interest in this work, only particular solutions were available (e.g. for the linear

time-invariant case, the HJB becomes the Riccati equation). For this reason considerable effort

has been devoted to developing algorithms which approximately solve this equation [4], [13],

[63]. Far more results are available for the solution of the discrete-time HJB equation. Good

overviews are given in [15], [81], [98], [99], [100].

 Reinforcement learning (RL) is a class of methods used in machine learning to

methodically modify the actions of an agent based on observed responses from its environment

[22],[23], [35], [86]. The RL methods have been developed starting from learning mechanisms

observed in mammals. Every decision-making organism interacts with its environment and uses

those interactions to improve its own actions in order to maximize the positive effect of its

limited available resources; this in turn leads to better survival chances. RL is a means of

learning optimal behaviors by observing the response from the environment to non-optimal

 2

control policies. In engineering terms, RL refers to the learning approach of an actor or agent

which modifies its actions, or control policies, based on stimuli received in response to its

interaction with its environment. This learning can be extended along two dimensions: i) nature

of interaction (competitive or collaborative) and ii) the number of decision makers (single or

multi agent).

 In view of the advantages offered by the RL methods, a recent objective of control

systems researchers is to introduce and develop RL techniques which result in optimal

feedback controllers for dynamical systems that can be described in terms of ordinary

differential or difference equations.

 Some of the methods involve a computational intelligence technique known as Policy

Iteration (PI) [35], [86]. PI refers to a class of algorithms built as a two-step iteration: policy

evaluation and policy improvement. Instead of trying a direct approach to solving the HJB

equation, the PI algorithm starts by evaluating the cost of a given initial admissible (in a sense

to be defined herein) control policy. This is often accomplished by solving a nonlinear Lyapunov

equation. This new cost is then used to obtain a new improved (i.e. which will have a lower

associated cost) control policy. This is often accomplished by minimizing a Hamiltonian function

with respect to the new cost. (This is the so-called ‘greedy policy’ with respect to the new cost).

These two steps of policy evaluation and policy improvement are repeated until the policy

improvement step no longer changes the actual policy, thus convergence to the optimal

controller is achieved. One must note that the infinite horizon cost can be evaluated only in the

case of admissible control policies, which requires that the policy be stabilizing. Admissibility is

in fact a condition for the control policy which is used to initialize the algorithm.

 Werbos defined actor-critic online learning algorithms to solve the optimal control

problem based on so-called Value Iteration (VI), which does not require an initial stabilizing

control policy [98], [99], [100]. He defined a family of VI algorithms which he termed Adaptive

Dynamic Programming (ADP) algorithms. He used a critic neural network (NN) for value

 3

function approximation (VFA) and an actor NN for approximation of the control policy. Adaptive

critics have been described in [69] for discrete-time systems and [8], [30], [91], [92] for

continuous-time systems.

 Generalized Policy Iteration has been discussed in [86]. This is a family of optimal

learning techniques which has PI at one extreme. In generalized PI, at each step one does not

completely evaluate the cost of a given control, but only updates the current cost estimate

towards that value. Likewise, one does not fully update the control policy to the greedy policy

for the new cost estimate, but only updates the policy towards the greedy policy. Value Iteration

in fact belongs to the family of generalized PI techniques.

 In the linear CT system case, when quadratic indices are considered for the optimal

stabilization problem, the HJB equation becomes the well known Riccati equation and the policy

iteration method is in fact Newton’s method proposed by Kleinman [44], which requires iterative

solutions of Lyapunov equations. In the case of nonlinear systems, successful application of the

PI method was limited until [13], where Galerkin spectral approximation methods were used to

solve the nonlinear Lyapunov equations describing the policy evaluation step in the PI

algorithm. Such methods are known to be computationally intensive. These are all off-line

methods for PI.

 The key to solving practically the CT nonlinear Lyapunov equations was in the use of

neural networks (NN) [4] which can be trained to become approximate solutions of these

equations. In fact the PI algorithm for CT systems can be built on Werbos’ actor/critic structure

which involves two neural networks: the critic NN, is trained to approximate the solution of the

nonlinear Lyapunov equation at the policy evaluation step, while the actor neural network is

trained to approximate an improving policy at the policy improving step. The method of [4] is

also an offline method.

 In [91], [92], [93] was developed an online PI algorithm for continuous-time systems

which converges to the optimal control solution without making explicit use of any knowledge on

 4

the internal dynamics of the system. The algorithm was based on sequential updates of the

critic (policy evaluation) and actor (policy improvement) neural networks. That is, while one NN

is tuned the other one remains constant. In this work we provide algorithms for simultaneous

tuning of the two neural networks.

 Most of the PI and Value Iteration (VI) algorithms require at least some knowledge of

the system dynamics and measurement of the entire internal state vector which describes the

dynamics of the system/environment (e.g. [7], [20], [68], [78], [86], [99]). The so called Q-

learning class of algorithms [17], [97] (called action dependent HDP by Werbos [99], [100]) does

not require exact or explicit description of the system dynamics, but they still use full state

measurement in the feedback control loop. From control systems engineering perspective this

latter requirement may be hard to fulfill as measurements of the entire state vector may not be

available and/or may be difficult and expensive to obtain. Although various control algorithms

(e.g. state-feedback) require full state knowledge, in practical implementations taking

measurements of the entire state vector is not feasible. The state vector is generally estimated

based on limited information about the system available by measuring the system’s outputs.

State estimation techniques have been proposed (e. g. [55], [58], [67]). These generally require

a known model of the system dynamics.

 In real life, it is difficult to design and implement optimal estimators because the system

dynamics and the noise statistics are not exactly known. However information about the system

and noise is included in a long enough set of input/output data. It would be desirable to be able

to design an estimator by using input/output data without any system knowledge or noise

identification. Such techniques belong to the field of data-based control techniques, where the

control input depends on input/output data measured directly from the plant. These techniques

are: data-based predictive control [59], unfalsified control [73], Markov data-based LQG control

[82], disturbance-based control [89], simultaneous perturbation stochastic approximation [84],

pulse response-based control [14], iterative feedback tuning [32], and virtual reference feedback

 5

tuning [48]. In [1] data based optimal control was achieved through identification of Markov

parameters.

 In this work, novel output feedback ADP algorithms are derived for affine in the control

input linear time-invariant (LTI) deterministic systems. Such systems have as stochastic

equivalent the partially observable Markov decision processes (POMDPs). In this work, data-

based optimal control is implemented on-line using novel PI and VI ADP algorithms that require

only reduced measured information available at the system outputs. These two classes of

output feedback algorithms do not require any knowledge of the system dynamics (A,B,C) and

as such are similar to Q-learning [17], [97], [99], [100] but they have an added advantage of

requiring only measurements of input/output data and not the full system state. In order to

ensure that the data set is sufficiently rich and linearly independent, there is a need to add (c.f.

[17]) probing noise to the control input. We discuss this issue showing that probing noise leads

to bias. Adding a discount factor in the cost minimizes it to an almost zero effect. This discount

factor is related to adding exponential data weighting in the Kalman Filter to remove the bias

effects of unmodeled dynamics [55].

1.2 Zero-Sum Games

 Games provide an ideal environment in which to study computational intelligence,

offering a range of challenging and engaging problems. Game theory [88] captures the behavior

in which a player’s success in selecting strategies depends on the choices of other players. One

goal of game theory techniques is to find (saddle point) equilibria, in which each player has an

outcome that cannot be improved by unilaterally changing his strategy (e.g. Nash equilibrium).

The H∞ control problem is a minimax optimization problem, and hence a zero-sum game where

the controller is a minimizing player and the disturbance a maximizing one. Since the work of

George Zames in the early 1980s, H∞ techniques have been used in control systems, for

sensitivity reduction and disturbance rejection. This work is concerned with 2-player zero-sum

games that are related to the H∞ control problem, as formulated by [11], [11], [77].

 6

 Game theory and H-infinity solutions rely on solving the Hamilton-Jacobi-Isaacs (HJI)

equations, which in the zero-sum linear quadratic case reduce to the generalized game

algebraic Riccati equation (GARE). In the nonlinear case the HJI equations are difficult or

impossible to solve, and may not have global analytic solutions even in simple cases (e.g.

scalar system, bilinear in input and state). Solution methods are generally offline and generate

fixed control policies that are then implemented in online controllers in real time.

 In this work we provide methods for online gaming, that is for solution of 2-player zero-

sum infinite horizon games online, through learning the saddle point strategies in real-time. The

dynamics may be nonlinear in continuous-time and are assumed known. A novel neural

network adaptive control technique is given that is based on reinforcement learning techniques,

whereby the control and disturbance policies are tuned online using data generated in real time

along the system trajectories. Also tuned is a ‘critic’ approximator structure whose function is to

identify the value or outcome of the current control and disturbance policies. Based on this

value estimate, the policies are continuously updated. This is a sort of indirect adaptive control

algorithm, yet, due to the direct form dependence of the policies on the learned value, it is

affected online as direct (‘optimal’) adaptive control.

1.3 Non-Zero-Sum Games

 Game theory [88] has been very successful in modeling strategic behavior, where the

outcome for each player depends on the actions of himself and all the other players. Every

player chooses a control to minimize independently from the others his own performance

objective. None has knowledge of the others’ strategy. A lot of applications of optimization

theory require the solution of coupled Hamilton-Jacobi equations [11], [27]. In games with N

players, each player decides for the Nash equilibrium depending on Hamilton-Jacobi equations

coupled through their quadratic terms [27], [28]. Each dynamic game consists of three parts: i)

players; ii) actions available for each player; iii) costs for every player that depend on their

actions.

 7

 Multi player non-zero sum games rely on solving the coupled Hamilton-Jacobi (HJ)

equations, which in the linear quadratic case reduce to the coupled algebraic Riccati equations

[2], [27], [28]. Solution methods are generally offline and generate fixed control policies that are

then implemented in online controllers in real time. In the nonlinear case the coupled HJ

equations are difficult or impossible to solve, and may not have global analytic solutions even in

simple cases (e.g. scalar system, bilinear in input and state) [83] (discussion of viscosity

solutions).

 For the most part, interest in the control systems community has been in the (non-

cooperative) zero-sum games, which provide the solution of the H-infinity robust control problem

[11], [60]. However, dynamic team games may have some cooperative objectives and some

selfish objectives among the players. This cooperative/non-cooperative balance is captured in

the NZS games, as detailed herein.

 In this work we are interested in feedback policies with full state information, and

provide methods for online gaming, that is for solution of N-player infinite horizon NZS games

online, through learning the Nash-equilibrium in real-time. The dynamics are nonlinear in

continuous-time and are assumed known. A novel adaptive control technique is given that is

based on reinforcement learning techniques, whereby each player’s control policies are tuned

online using data generated in real time along the system trajectories. Also tuned by each

player are ‘critic’ approximator structures whose function is to identify the values of the current

control policies for each player. Based on these value estimates, the players’ policies are

continuously updated. This is a sort of indirect adaptive control algorithm, yet, due to the simple

form dependence of the control policies on the learned value, it is affected online as direct

(‘optimal’) adaptive control.

 8

1.4 Motivation

 Optimal control is generally an offline design technique that requires full knowledge of

the systems dynamics, e.g. in the linear systems case one must solve the Riccati equation. On

the other hand, adaptive control is a body of online design techniques that use measured data

along system trajectories to learn to compensate for unknown system dynamics, disturbances,

and modeling errors to provide guaranteed performance. Optimal adaptive controllers have

been designed using indirect techniques, whereby the unknown plant is first identified and then

a Riccati equation is solved [36], [87]. Inverse adaptive controllers have been provided that

optimize a performance index, meaningful but not of the designer’s choice [45], [57]. Direct

adaptive controllers that converge to optimal solutions for nonlinear systems given a PI selected

by the designer have generally not been developed.

 Therefore developing online learning algorithms for optimal control and games where

every controller minimizes a different performance index is of great interest in the control

systems society.

1.5 Contribution

 The contributions of the thesis are the following:

1. An online adaptive optimal controller to solve the continuous-time infinite horizon optimal

control problem which uses reinforcement learning principles.

2. An online gaming algorithm to solve the zero-sum game problem.

3. An online adaptive control algorithm based on policy iteration to solve the continuous-time

multi player non zero sum game with infinite horizon for linear and nonlinear systems.

4. Reinforcement learning methods which require only output feedback and yet converge to an

optimal controller.

5. Policy iteration algorithm and online adaptive learning solution for graphical games

6. An online adaptive optimal controller to solve the continuous-time infinite horizon optimal

control problem based on integral reinforcement learning that does not need the drift dynamics.

 9

 The first result is concerned with developing an online algorithm where the actor/critic

networks are tuned simultaneously. This algorithm converges to the solution of Hamilton-

Jacobi-Bellman equation without solving it and is termed as ‘synchronous’ policy iteration. The

convergence to the optimal controller is proven, and the stability of the system is also

guaranteed.

 The second result included in this thesis is an online gaming algorithm to solve the

zero-sum game with infinite horizon for linear and nonlinear systems. The two-player zero sum

problem provides the solution to the bounded L2 gain problem and so is important for robust

control. However, its solution depends on solving a design Hamilton-Jacobi-Isaacs (HJI)

equation, which is generally intractable for nonlinear systems. This algorithm converges to the

Hamilton-Jacobi-Isaacs and the Game Algebraic Riccati equation for nonlinear and linear

systems respectively without solving them. The convergence to the optimal saddle point

solution is proven and stability of the system is also guaranteed.

 The third result is a new online algorithm to solve non-zero sum dynamic games. This

algorithm converges to the solution of coupled Riccati and coupled Hamilton-Jacobi equations

for linear and nonlinear systems respectively. The optimal-adaptive algorithm is implemented as

a separate actor/critic parametric network approximator structure for every player, and involves

simultaneous continuous-time adaptation of the actor/critic networks. Furthermore this method

finds in real time approximations of the optimal value and the Nash equilibrium while also

guaranteeing closed-loop stability.

 The fourth result in this thesis develops policy iteration and value iteration algorithms

that require only input/output data and not measurements of the states. This new output

feedback optimal learning methods have the important advantage that knowledge of the system

dynamics is not needed for their implementation.

 10

 The fifth result introduces graphical games where the dynamics and performance

indices for each node depend only on local neighbor information. A policy iteration algorithm

and an online learning algorithm are proposed and proofs of convergence are also provided.

 The last result develops an online adaptive controller based on integral reinforcement

learning that tunes the actor and critic NN simultaneously and does not need any knowledge on

the drift dynamics.

1.6 List of publications which resulted from this work

1.6.1. Book

D. Vrabie, K. G. Vamvoudakis, Frank Lewis, Optimal Adaptive Control and Differential Games

by Reinforcement Learning Principles, in preparation, IET 2011.

Greg R. Hudas, Dariusz Mikulski, Kyriakos G. Vamvoudakis, Frank L. Lewis, E. Gu, Decision

and Control for Tactical Behaviors of Autonomous Systems, in preparation, 2011.

1.6.2. Book Chapters

K. G. Vamvoudakis, and F. L. Lewis, “Online Gaming: Real Time Solution of Nonlinear Two-

Player Zero-Sum Games Using Synchronous Policy Iteration,” in Advances in Reinforcement

Learning, ed. Abdelhamid Mellouk, Chapter 18, INTECH, 2011.

K. G. Vamvoudakis, and F. L. Lewis, “Online synchronous policy iteration method for optimal

control,” in Recent Advances in Intelligent Control Systems, ed. Wen Yu, Chapter 14, Springer-

Verlag, Berlin, 2009.

1.6.3. Journal articles

Submitted/Under review:

Kyriakos G. Vamvoudakis, F. L. Lewis, “Online Neural Network Solution of Nonlinear Two-

Player Zero-Sum Games Using Synchronous Policy Iteration,” submitted to International

Journal of Robust and Nonlinear Control, 2010.

 11

Accepted/Published:

Kyriakos G. Vamvoudakis, and F. L. Lewis, “Multi-Player Games: Online Adaptive Learning

Solution of Coupled Hamilton-Jacobi Equations,” to appear in Automatica, 2011.

Kyriakos G. Vamvoudakis, and F. L. Lewis, “Online Actor-Critic Algorithm to Solve the

Continuous-Time Infinite Horizon Optimal Control Problem,” Automatica, vol. 46, no. 5, pp. 878-

888, 2010.

This paper was one of the Top 25 Articles in Decision Sciences, Elsevier, April-

September 2010.

F. L. Lewis, Kyriakos G. Vamvoudakis, “Reinforcement Learning for Partially Observable

Dynamic Processes: Adaptive Dynamic Programming Using Measured Output Data,” IEEE

Trans. Systems, Man, and Cybernetics, Part B, vol. 41, no. 1, pp. 14-25, 2011.

Greg Hudas, K. G. Vamvoudakis, D. Mikulski and F. L. Lewis, “Online Adaptive Learning for

Team Strategies in Multi-Agent Systems,” invited paper to (special issue, “Intelligent Behaviors

for Tactical Unmanned Systems”) Journal of Defense Modeling & Simulation, to appear, 2010.

1.6.4. Conference papers

Submitted/Under review:

Kyriakos G. Vamvoudakis, and F. L. Lewis, “Policy Iteration Algorithms for distributed networks

and graphical games,” submitted to 50th IEEE Conference on Decision and Control, Orlando,

December, 2011.

Kyriakos G. Vamvoudakis, and F. L. Lewis, “Policy Iteration Algorithm for distributed networks

and graphical games,” submitted to 50th IEEE Conference on Decision and Control, Orlando,

December, 2011.

 12

Kyriakos G. Vamvoudakis, F. L. Lewis, “Non-Zero Sum Games: Online Learning Solution of

Coupled Hamilton-Jacobi and Coupled Riccati Equations,” submitted to IEEE Multi-Conference

on Systems and Control, Denver, Colorado, September 28-30, 2011.

Accepted/Published in Proceedings:

Kyriakos G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online Adaptive Learning of Optimal

Control Solutions Using Integral Reinforcement Learning,” to appear in IEEE Symp. ADPRL,

Paris, France, April 11-15, 2011.

Kyriakos G. Vamvoudakis, F. L. Lewis, “Online Solution of Nonlinear Two-Player Zero-Sum

Games Using Synchronous Policy Iteration,” Proc. 49th IEEE Conference on Decision and

Control, pp. 3040 – 3047, Atlanta, 2010.

Kyriakos G. Vamvoudakis, D. G. Mikulski, Greg R. Hudas, F. L. Lewis, E. Y. Gu, “Distributed

Games for Multi-Agent Systems: Games on Communication Graphs,” Proc. 27th Army Science

Conference, Orlando, FL, 2010.

This paper won the Autonomous/Unmanned Vehicles Best Paper Award

Greg Hudas, F.L. Lewis and K.G. Vamvoudakis, "Online Gaming for Learning Optimal Team

Strategies in Real Time," Proc. of SPIE, vol. 7692, 76920W, doi:10.1117/12.850231, 2010.

F. L. Lewis, Kyriakos G. Vamvoudakis, “Optimal Adaptive Control for Unknown Systems Using

Output Feedback by Reinforcement Learning Methods,” Proc. 8th IEEE International

Conference on Control & Automation, pp. 2138 - 2145, Xiamen, 2010.

K. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online policy iteration based algorithms to solve

the continuous-time infinite horizon optimal control problem,” Proc. IEEE Symp. ADPRL, pp. 36-

41, Nashville, Mar. 2009.

 13

 K. G. Vamvoudakis, and F. L. Lewis, “Online Actor Critic Algorithm to solve the Continuous-

Time Infinite Horizon Optimal Control Problem,” Proc. Int. Joint Conf. on Neural Networks, pp.

3180-3187, Atlanta, June 2009.

D. Vrabie, K. Vamvoudakis, and F. L. Lewis, “Adaptive Optimal Controllers based on

Generalized policy iteration in Continuous-Time Framework,” Proc. Mediterranean Conf. Control

and Automation, pp. 1402-1409, Thessaloniki, June 2009.

1.7 Outline

 Chapter 2 presents an online algorithm based on policy iteration for learning the

continuous time optimal control with infinite horizon for nonlinear systems with known dynamics.

It is implemented as an actor/critic structure which involves simultaneous continuous-time

adaptation of both actor and critic neural networks. A persistence of excitation condition is

shown to guarantee convergence of the critic to the actual value function. Simulation results,

obtained considering a continuous time F16 aircraft plant with quadratic function and an affine in

control input nonlinear system with a quadratic cost.

 Chapter 3 presents an online adaptive learning algorithm based on policy iteration to

solve the continuous-time two-player zero-sum game with infinite horizon cost for nonlinear

systems with known dynamics. The algorithm learns online an approximate local solution to the

game HJI equation. The algorithm is implemented as an actor/critic/disturbance structure which

involves simultaneous continuous-time adaptation of critic, actor and disturbance neural

networks. A persistence of excitation condition is shown to guarantee convergence of the critic

to the actual optimal value function. The convergence to the optimal saddle point solution is

proven, and stability of the system is also guaranteed. Simulation examples show the

effectiveness of the new algorithm in solving the HJI equation online for a linear systems and a

complex nonlinear system.

 14

 Chapter 4 presents an adaptive algorithm based on policy iteration reinforcement

learning techniques to solve the continuous-time multi player non-zero sum game with infinite

horizon for linear and nonlinear systems. Non-zero sum games allow for players to have a

cooperative team component and an individual selfish component of strategy. This algorithm

learns online the solution of coupled Riccati and coupled Hamilton-Jacobi equations and finds in

real time approximations of the optimal value and the Nash equilibrium while also guaranteeing

closed-loop stability. A detailed mathematical analysis is done for two player non-zero sum

games. Simulation examples for linear and nonlinear systems show the effectiveness of the

new algorithm.

 Chapter 5 develops policy and value iteration algorithms that converge to an optimal

controller that requires only output feedback. It is shown that, similar to Q-learning, the new

methods have the important advantage that knowledge of the system dynamics is not needed

for the implementation of these learning algorithms or for the output feedback control. The

learned output feedback controller is in the form of a polynomial autoregressive moving-average

controller that has equivalent performance with the optimal state variable feedback gain.

Simulation examples show the effectiveness of the proposed algorithms and also compare their

performance to that of Q-learning.

 Chapter 6 brings together cooperative control, reinforcement learning and game theory

to solve multi-player differential games on communication graph topologies. The notion of

graphical games is developed for dynamical systems, where the dynamics and performance

indices for each node depend only on local neighbor information. A derivation of coupled Riccati

equations for solution of graphical games is proposed. Furthermore a policy iteration algorithm

is shown to converge to the best response when every agent has fixed policies for his neighbors

and to the Nash equilibrium when all agents update their policies simultaneously. Finally an

online adaptive learning solution is shown to solve online the graphical games.

 15

 Chapter 7 introduces an online algorithm that uses integral reinforcement knowledge for

learning the continuous-time optimal control solution for nonlinear systems with infinite horizon

costs and partial knowledge of the system dynamics. This algorithm is a data based approach

to the solution of the Hamilton-Jacobi-Bellman equation and it does not require explicit

knowledge on the system’s drift dynamics.

 Chapter 8 presents conclusions and future work ideas.

 16

CHAPTER 2

ONLINE ACTOR-CRITIC ALGORITHM TO SOLVE THE CONTINUOUS-TIME INFINITE

HORIZON OPTIMAL CONTROL PROBLEM

2.1 Introduction

 This chapter is concerned with developing an online approximate solution, based on PI,

for the infinite horizon optimal control problem for continuous-time nonlinear systems with

known dynamics. We present an online adaptive algorithm which involves simultaneous tuning

of both actor and critic neural networks (i.e. both neural networks are tuned at the same time).

We term this algorithm ‘synchronous’ policy iteration. This approach is an extremal version of

the generalized Policy Iteration introduced in [86].

 This approach to policy iteration is motivated by work in adaptive control [36], [87].

Adaptive control is a powerful tool that uses online tuning of parameters to provide effective

controllers for nonlinear or linear systems with modeling uncertainties and disturbances.

Closed-loop stability while learning the parameters is guaranteed, often by using Lyapunov

design techniques. Parameter convergence, however, often requires that the measured signals

carry sufficient information about the unknown parameters (persistence of excitation condition).

 There are two main contributions in this chapter. The first involves introduction of a

nonstandard ‘normalized’ critic neural network tuning algorithm, along with guarantees for its

convergence based on a persistence of excitation condition regularly required in adaptive

control. The second involves adding nonstandard extra terms to the actor neural network tuning

algorithm that are required to guarantee close loop stability, along with stability and

convergence proofs.

 The chapter is organized as follows. Section 2.2 provides the formulation of the optimal

control problem, followed by the general description of policy iteration and neural network value

 17

function approximation. Section 2.3 discusses tuning of the critic NN, in effect designing an

observer for the unknown value function. Section 2.4 presents the online synchronous PI

method, and shows how to simultaneously tune the critic and actor NNs to guarantee

convergence and closed-loop stability. Results for convergence and stability are developed

using a Lyapunov technique. Section 2.5 presents simulation examples that show the

effectiveness of the online synchronous CT PI algorithm in learning the optimal value and

control for both linear systems and nonlinear systems.

2.2 The optimal control problem and value function approximation

2.2.1. Optimal control and the continuous-time HJB equation

 Consider the nonlinear time-invariant affine in the input dynamical system given by

() (()) (()) (())x t f x t g x t u x t= +ɺ ; 0(0)x x= (2.1)

with state () nx t ∈ℝ , (()) nf x t ∈ℝ , (()) n mg x t ×∈ℝ and control input () mu t ∈ℝ . We assume

that, (0) 0f = , () ()f x g x u+ is Lipschitz continuous on a set
nΩ ⊆ ℝ that contains the origin, and

that the system is stabilizable on Ω , i.e. there exists a continuous control function ()u t U∈

such that the system is asymptotically stable on Ω . The system dynamics (), ()f x g x are

assumed known.

 Define the infinite horizon integral cost

0

0

() ((), ())V x r x u dτ τ τ
∞

= ∫ (2.2)

where (,) () Tr x u Q x u Ru= + with ()Q x positive definite, i.e. 0, () 0x Q x∀ ≠ > and

0 () 0x Q x= ⇒ = , and m mR ×∈ℝ a symmetric positive definite matrix.

 Definition 2.1. [4] (Admissible policy) A control policy ()xµ is defined as admissible

with respect to (2.2) on Ω , denoted by ()µ∈Ψ Ω , if ()xµ is continuous on Ω , (0) 0µ = ,

() ()u x xµ= stabilizes (2.1) on Ω , and 0()V x is finite 0x∀ ∈Ω .

 18

 For any admissible control policy ()µ∈Ψ Ω , if the associated cost function

0

0

() ((), (()))V x r x x dµ τ µ τ τ
∞

= ∫ (2.3)

is 1
C , then an infinitesimal version of (2.3) is the so-called nonlinear Lyapunov equation

 ()0 (, ()) (() () ()), (0) 0
T

xr x x V f x g x x Vµ µµ µ= + + = (2.4)

where
x

V µ denotes the partial derivative of the value function V µ with respect to x . (Note that

the value function does not depend explicitly on time).

 We define the gradient here as a column vector, and use at times the alternative

operator notation x∇ ≡ ∂ ∂ .

 Equation (2.4) is a Lyapunov equation for nonlinear systems which, given a controller

() ()xµ ∈Ψ Ω , can be solved for the value function ()V xµ associated with it. Given that ()xµ is

an admissible control policy, if ()V xµ satisfies (2.4), with , then ()V xµ is a Lyapunov function for

the system (2.1) with control policy ()xµ .

 The optimal control problem can now be formulated: Given the continuous-time system

(2.1), the set ()µ∈Ψ Ω of admissible control policies and the infinite horizon cost functional

(2.2), find an admissible control policy such that the cost index (2.2) associated with the system

(2.1) is minimized.

 Defining the Hamiltonian of the problem

(, ,) ((), ()) ((()) (()) ())T

x x
H x u V r x t u t V f x t g x t tµ= + + , (2.5)

the optimal cost function * ()V x defined by

*

0
()

0

() min (((), (())))V x r x x d
µ

τ µ τ τ
∞

∈Ψ Ω
= ∫ .

with 0x x= is known as the value function, and satisfies the HJB equation

 19

*

()
0 min [(, ,)]xH x V

µ
µ

∈Ψ Ω
= (2.6)

 Assuming that the minimum on the right hand side of (2.6) exists and is unique then the

optimal control function for the given problem is

* 1 *1
() () ()

2

T

xx R g x V xµ −= − . (2.7)

 Inserting this optimal control policy in the nonlinear Lyapunov equation we obtain the

formulation of the HJB equation in terms of *

x
V

* * 1 *

*

1
0 () () () () () () ()

4

(0) 0

T T T

x x xQ x V x f x V x g x R g x V x

V

−= + −

=

 (2.8)

 For the linear system case, considering a quadratic cost functional, the equivalent of

this HJB equation is the well known Riccati equation.

 In order to find the optimal control solution for the problem one only needs to solve the

HJB equation (2.8) for the value function and then substitute the solution in (2.7) to obtain the

optimal control. However, due to the nonlinear nature of the HJB equation finding its solution is

generally difficult or impossible.

2.2.2. Policy Iteration

 The approach of synchronous policy iteration used in this chapter is motivated by Policy

iteration (PI) [86]. Therefore in this section we describe PI.

 Policy iteration (PI) [86] is an iterative method of reinforcement learning for solving

optimal control problems, and consists of policy evaluation based on (2.4) and policy

improvement based on (2.7). Specifically, the PI algorithm consists in solving iteratively the

following two equations:

 20

 Policy Iteration Algorithm:

 1. given () ()i xµ , solve for the value
()

(())
i

V x tµ using

()

()

() ()0 (, ()) () (() () ())

(0) 0

i

i

i T ir x x V f x g x x

V

µ

µ

µ µ= + ∇ +

=
 (2.9)

 2. update the control policy using

()

(1)

()

argmin[(, ,)]
i

i

x
u

H x u Vµ +

∈Ψ Ω
= ∇ , (2.10)

 which explicitly is

()

(1) 11

2
() ()

i
i T

x
x R g x Vµ + −= − ∇ . (2.11)

 To ensure convergence of the PI algorithm an initial admissible policy (0) (()) ()x tµ ∈Ψ Ω

is required. It is in fact required by the desired completion of the first step in the policy iteration:

i.e. finding a value associated with that initial policy (which needs to be admissible to have a

finite value and for the nonlinear Lyapunov equation to have a solution). The algorithm then

converges to the optimal control policy * ()µ ∈Ψ Ω with corresponding cost * ()V x . Proofs of

convergence of the PI algorithm have been given in several references. See [4], [8], [13], [30],

[35], [63], [91], [92], [93].

 Policy iteration is a Newton method. In the linear time-invariant case, it reduces to the

Kleinman algorithm [44] for solution of the Riccati equation, a familiar algorithm in control

systems. Then, (2.9) become a Lyapunov equation.

2.2.3. Value function approximation (VFA)

 The standard PI Algorithm just discussed proceeds by alternately updating the critic

value and the actor policy by solving respectively the equations (2.9) and (2.11). In this chapter,

the fundamental update equations in PI namely (2.9) for the value and (2.11) for the policy are

 21

used to design two neural networks. Then, by contrast to standard PI, it is shown how to tune

these critic and actor neural networks simultaneously in real time to guarantee convergence to

the control policy as well as stability during the training process.

 The policy iteration algorithm, as other reinforcement learning algorithms, can be

implemented on an actor/critic structure which consists of two neural network structures to

approximate the solutions of the two equations (2.9) and (2.10) at each step of the iteration. The

structure is presented in the next figure.

xu

0() () ;x f x g x u x= +ɺ
System

Cost function
Actor

()xµ
Controller

Critic

()V x

xu

0() () ;x f x g x u x= +ɺ
System

Cost function
Actor

()xµ
Controller

Critic

()V x

Figure 1. Actor/Critic Structure.

 In the actor/critic structure [98], [99], [100] the cost
()

(())
i

V x tµ and the control (1) ()i xµ +

are approximated at each step of the PI algorithm by neural networks, called respectively the

critic Neural Network (NN) and the actor NN. Then, the PI algorithm consists in tuning

alternatively each of the two neural networks. The critic NN is tuned to solve (2.9) (in a least-

squares sense [26]), and the actor NN to solve (2.11). Thus, while one NN is being tuned, the

other is held constant. Note that, at each step in the iteration, the critic neural network is tuned

to evaluate the performance of the current control policy.

 The critic NN is based on value function approximation (VFA). In the following, it is

desired to determine a rigorously justifiable form for the critic NN. Since one desires

approximation in Sobolev norm, that is, approximation of the value ()V x as well as its gradient,

some discussion is given that relates normal NN approximation usage to the Weierstrass

 22

higher-order approximation theorem.

 The solutions to the nonlinear Lyapunov equation (2.4), (2.9) may not be smooth for

general nonlinear systems, except in a generalized sense [83]. However, in keeping with other

work in the literature [77] we make the following assumptions.

 Assumption 2.1. The solution to (2.4) is smooth, i.e. 1() ()V x C∈ Ω .

 Assumption 2.2. The solution to (2.4) is positive definite. This is guaranteed for

stabilizable dynamics if the performance functional satisfies zero-state observability [77], which

is guaranteed by the condition that () 0, {0}; (0) 0Q x x Q> ∈Ω− = be positive definite.

 Assumption 2.1 allows us to bring in informal style of the Weierstrass higher-order

approximation Theorem [4], [26] and the results of [34], which state that then there exists a

complete independent basis set { ()}
i
xϕ such that the solution ()V x to (2.4) and its gradient are

uniformly approximated, that is, there exist coefficients ci such that

1 1 1

() () () ()
�

i i i i i i

i i i �

V x c x c x c xϕ ϕ ϕ
∞ ∞

= = = +

= = +∑ ∑ ∑

1 1

1

() () ()
T

i i

i �

V x C x c xφ ϕ
∞

= +

≡ + ∑ (2.12)

1 1 1

() () ()() �
i i i

i i i

i i i �

x x xV x
c c c

x x x x

ϕ ϕ ϕ∞ ∞

= = = +

∂ ∂ ∂∂
= = +

∂ ∂ ∂ ∂∑ ∑ ∑
(2.13)

where
1 1 2
() [() () ()] :T n �

�
x x x xφ ϕ ϕ ϕ= →⋯ ℝ ℝ and the last terms in these equations converge

uniformly to zero as � → ∞ . (Specifically, the basis set is dense in the Sobolev norm 1,W ∞ [6].)

Standard usage of the Weierstrass high-order approximation Theorem uses polynomial

approximation. However, non-polynomial basis sets have been considered in the literature (e.g.

[34], [76]).

 Thus, it is justified to assume there exist weights
1

W such that the value function ()V x

is approximated as

1 1

() () ()TV x W x xφ ε= + (2.14)

 23

 Then
1
() : n �xφ →ℝ ℝ is called the NN activation function vector, N the number of

neurons in the hidden layer, and ()xε the NN approximation error. As per the above, the NN

activation functions { () : 1, }
i
x i �ϕ = are selected so that { () : 1, }

i
x iϕ = ∞ provides a complete

independent basis set such that ()V x and its derivative

1

1 1 1

()
T

TxV
W W

x x x

φ ε
φ ε

∂∂ ∂ 
= + = ∇ +∇ ∂ ∂ ∂ 

 (2.15)

are uniformly approximated. Then, as the number of hidden-layer neurons � → ∞ , the

approximation errors 0, 0ε ε→ ∇ → uniformly [26]. In addition, for fixed N, the NN

approximation errors (),xε and ε∇ are bounded by constants on a compact set [34].

 Using the NN value function approximation, considering a fixed control policy ()u t , the

nonlinear Lyapunov equation (2.4) becomes

1 1 1
(, ,) () ()T T

H
H x u W W f gu Q x u Ruφ ε= ∇ + + + = (2.16)

where the residual error due to the function approximation error is

() 1 1 1

1

() () () ()()
T T

H i i

i �

f gu C W f gu c x f guε ε φ ϕ
∞

= +

= − ∇ + = − − ∇ + − ∇ +∑ (2.17)

Under the Lipschitz assumption on the dynamics, this residual error is bounded on a compact

set.

 Define v as the magnitude of a scalar v, x as the vector norm of a vector x, and

2
as the induced matrix 2-norm.

 Definition 2.2. (uniform convergence). A sequence of functions { }np converges

uniformly to p on a set Ω if 0, () : sup () () , ()n
x

� p x p x n �ε ε ε ε
∈Ω

∀ > ∃ − < > .

 The following Lemma has been shown in [4].

 24

 Lemma 2.1. For any admissible policy ()u t , the least-squares solution to (2.16) exists

and is unique for each N. Denote this solution as
1

W and define

1 1 1
() ()TV x W xφ= (2.18)

Then, as � → ∞ :

1 1 2

1

1

. sup 0

. 0

. sup 0

. sup 0

H
x

x

x

a

b W C

c V V

d V V

ε
∈Ω

∈Ω

∈Ω

→

− →

− →

∇ −∇ →

 ■

 This result shows that
1
()V x converges uniformly in Sobolev norm 1,W ∞ [6] to the exact

solution ()V x to (2.4) as � → ∞ , and the weights
1

W converge to the first N of the weights, C1,

which exactly solve (2.4).

 Since the object of interest in this chapter is finding the solution of the HJB using the

above introduced function approximator, it is interesting now to look at the effect of the

approximation error on the HJB equation (2.8)

11
1 1 1 1 1 14

()
T T T T

HJB
W f W gR g W Q xϕ ϕ ϕ ε−∇ − ∇ ∇ + = (2.19)

where the residual error due to the function approximation error is

1 11 1
1 12 4

T T T T T

HJB
f W gR g gR gε ε ϕ ε ε ε− −= −∇ + ∇ ∇ + ∇ ∇ (2.20)

 It was also shown in [4] that this error converges uniformly to zero as the number of

hidden layer units N increases. That is,

0, () : sup HJB
x

�ε ε ε ε
∈Ω

∀ > ∃ < .

2.3 Tuning and Convergence of Critic NN

 In this section we address the issue of tuning and convergence of the critic NN weights

when a fixed admissible control policy is prescribed. Therefore, the focus is on the nonlinear

Lyapunov equation (2.4) for a fixed policy u .

 In fact, this amounts to the design of an observer for the value function which is known

 25

as ‘cost function’ in the optimal control literature. Therefore, this algorithm is consistent with

adaptive control approaches which first design an observer for the system state and unknown

dynamics, and then use this observer in the design of a feedback control.

 The weights of the critic NN,
1

W which provide the best approximate solution for (2.16)

are unknown. Therefore, the output of the critic neural network is

1 1

ˆ ˆ() ()TV x W xφ= (2.21)

where
1

Ŵ are the current estimated values of the ideal critic NN weights
1

W . Recall that

1
() : n �xφ →ℝ ℝ is the vector of activation functions, with N the number of neurons in the hidden

layer. The approximate nonlinear Lyapunov equation is then

1 1 1 1
ˆ ˆ(, ,) () ()T TH x W u W f gu Q x u Ru eφ= ∇ + + + = (2.22)

 In view of Lemma 2.1, define the critic weight estimation error

1 1 1

ˆW W W= −ɶ .

 Then

1 1 1

() .T

H
e W f guφ ε= − ∇ + +ɶ

 Given any admissible control policy u , it is desired to select
1

Ŵ to minimize the

squared residual error

 1
1 1 12

.
T

E e e=

 Then
1 1
ˆ ()W t W→ and

1 H
e ε→ . We select the tuning law for the critic weights as the

normalized gradient descent algorithm

1 1

1 1 1 1 12

1 11

ˆ ˆ[()]
ˆ (1)

T T

T

E
W a a W Q x u Ru

W

σ
σ

σ σ
∂

= − = − + +
+∂

ɺ
 (2.23)

where
1 1

()f guσ φ= ∇ + . This is a modified gradient descent algorithm where 2

1 1
(1)Tσ σ + is used

 26

for normalization instead of
1 1

(1)Tσ σ + . This is required in the proofs, where one needs both

appearances of
1 1 1
/ (1)Tσ σ σ+ in (2.23) to be bounded [36], [87].

 Note that, from (2.16),

1 1

() () .T T

H
Q x u Ru W f guϕ ε+ = − ∇ + + (2.24)

 Substituting (2.24) in (2.23) and, with the notation

1 1 1 1
/ (1)Tσ σ σ σ= + ,

1 1
1 T

s
m σ σ= + (2.25)

we obtain the dynamics of the critic weight estimation error as

1 1 1 1 1 1 1 .H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ (2.26)

 Though it is traditional to use critic tuning algorithms of the form (2.23), it is not

generally understood when convergence of the critic weights can be guaranteed. In this

chapter, we address this issue in a formal manner. This development is motivated by adaptive

control techniques that appear in [36], [87].

 To guarantee convergence of
1

Ŵ to
1

W , the next Persistence of Excitation (PE)

assumption and associated technical lemmas are required.

 Persistence of Excitation (PE) Assumption. Let the signal
1

σ

be persistently

exciting over the interval [,]t t T+ , i.e. there exist constants
1

0β > ,
2

0β > , 0Τ > such that, for

all t,

1 0 1 1 2() () .

t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫ (2.27)

 27

The PE assumption is needed in adaptive control if one desires to perform system identification

using e.g. RLS [36]. It is needed here because one effectively desires to identify the critic

parameters to approximate ()V x .

 Technical Lemma 2.1. Consider the error dynamics system with output defined as

 1 1 1 1 1 1 1

H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ

1 1

Ty Wσ= ɶ . (2.28)

The PE condition (2.27) is equivalent to the uniform complete observability (UCO) [50] of this

system, that is there exist constants
3

0β > ,
4

0β > , 0Τ > such that, for all t,

3 1 1 1 4(,) () () (,) .

t T

T

t

S t t dβ τ σ τ σ τ τ τ β
+

ΤΙ ≤ ≡ Φ Φ ≤ Ι∫ (2.29)

with
1 0 0 1
(,),t t t tΦ ≤ the state transition matrix of (2.28).

 Proof: System (2.28) and the system defined by
1 1 1 1 1

, TW a u y Wσ σ= =ɺɶ ɶ

are equivalent

under the output feedback /
H s

u y mε= − + . Note that (2.27) is the observability gramian of this

last system.

 ■

 The importance of UCO is that bounded input and bounded output implies that the state

1
()W tɶ is bounded. In Theorem 2.1 we shall see that the critic tuning law (2.23) indeed

guarantees boundedness of the output in (2.28).

 Technical Lemma 2.2. Consider the error dynamics system (2.28). Let the signal
1

σ

be persistently exciting. Then:

a) The system (2.28) is exponentially stable. In fact if 0
H

ε = then

|| () || || (0) ||kTW k e Wα−Τ ≤ɶ ɶ with

1 3

1
ln(1 2)aα β= − −

Τ
. (2.30)

 28

b) Let
max

|| ||
H

ε ε≤ and
max

|| ||y y≤ then
1

|| ||Wɶ converges exponentially to the residual set

(){ }2

1 max 2 1 max max

1

()W t y a y
β

δβ ε
β

Τ
 ≤ + + 

ɶ . (2.31)

where δ is a positive constant of the order of 1.

 Proof: See Appendix A.

 ■

 The next result shows that the tuning algorithm (2.23) is effective under the PE

condition, in that the weights
1

Ŵ converge to the actual unknown weights
1

W which solve the

nonlinear Lyapunov equation (2.16) for the given control policy ()u t . That is, (2.21) converges

close to the actual value function of the current control policy.

 Theorem 2.1. Let ()u t be any admissible bounded control policy. Let tuning for the

critic NN be provided by (2.23) and assume that
1

σ

is persistently exciting. Let the residual error

in (2.16) be bounded
maxH

ε ε< . Then the critic parameter error converges exponentially with

decay factor given by (2.30) to the residual set

[]{ }2

1 2 1 max

1

() 1 2 .W t a
β

δβ ε
β

Τ
≤ +ɶ (2.32)

 Proof:

 Consider the following Lyapunov function candidate

1

1 1 1

1
() { }.

2

T
L t tr W a W

−= ɶ ɶ (2.33)

 The derivative of L is given by

1

1 1 12
{ []}

T T

H

s

L tr W W
m

σ
σ ε= − −ɺ ɶ ɶ

1 1 1
1 1 12

{ } { }
T

T T H

s ss

L tr W W tr W
m mm

σ σ σ ε
= − +ɺ ɶ ɶ ɶ

 29

 21 1

1 1
|| || || ||

T T

H

s s s

L W W
m m m

σ σ ε
≤ − +ɺ ɶ ɶ

1 1

1 1
|| || || || .

T T

H

s s s

L W W
m m m

σ σ ε 
≤ − − 

  

ɺ ɶ ɶ (2.34)

Therefore 0L ≤ɺ if

1

1 max
|| || ,

T

H

s s

W
m m

σ ε
ε> >ɶ (2.35)

since 1
s

m ≥ .

This provides an effective practical bound for
1 1

TWσ ɶ , since ()L t decreases if (2.35) holds.

 Consider the estimation error dynamics (2.28) with the output bounded effectively by

max
|| ||y ε< , as just shown. Now Technical Lemma 2.2 shows exponential convergence to the

residual set

[]{ }2

1 1 2 max

1

() 1 2 .W t a
β

δβ ε
β

Τ
≤ +ɶ (2.36)

This completes the proof.

 ■

 Remark 2.1. Note that, as � → ∞ , 0
H

ε → uniformly [4]. This means that
max

ε

decreases as the number of hidden layer neurons in (2.21) increases.

 Remark 2.2. This theorem requires the assumption that the control policy ()u t is

bounded, since ()u t appears in
H

ε . In the upcoming Theorem 2.2 this restriction is removed.

 30

2.4 Action Neural Network and online synchronous policy iteration

 We will now present an online adaptive PI algorithm which involves simultaneous, or

synchronous, tuning of both the actor and critic neural networks. That is, the weights of both

neural networks are tuned at the same time. This approach is a version of Generalized Policy

Iteration (GPI), as introduced in [86]. In standard policy iteration, the critic and actor NN are

tuned sequentially, with the weights of the other NN being held constant. By contrast, we tune

both NN simultaneously in real-time.

 It is desired to determine a rigorously justified form for the actor NN. To this end, let us

consider one step of the Policy Iteration algorithm (2.9)-(2.11). Suppose that the solution

1() ()V x C∈ Ω to the nonlinear Lyapunov equation (2.9) for a given admissible policy ()u t is given

by (2.12). Then, according to (2.13) and (2.11) one has for the policy update

1

1

1
() ()

2

T

i i

i

u R g x c xϕ
∞

−

=

= − ∇∑ (2.37)

for some unknown coefficients
i
c . Then one has the following result.

 Lemma 2.2. Let the least-squares solution to (2.16) be
1

W and define

1 1

1 1 1 1

1 1
() () () () ()

2 2

T T Tu x R g x V x R g x x Wφ− −= − ∇ = − ∇ (2.38)

with V1 defined in (2.18).

Then, as � → ∞ :

a.
1sup 0

x

u u
∈Ω

− →

b. There exists an N0 such that u1(x) is admissible for N>N0.

 Proof: See [4].

 In light of this result, the ideal control policy update is taken as (2.38), with
1

W unknown.

Therefore, define the control policy in the form of an action neural network which computes the

control input in the structured form

 31

11
2 1 22

ˆ() () ,T Tu x R g x Wφ−= − ∇ (2.39)

where
2

Ŵ denotes the current estimated values of the ideal NN weights W1. Define the actor

NN estimation error as

2 1 2
ˆW W W= −ɶ (2.40)

 The next definition and facts complete the machinery required for our main result.

 Definition 2.3. [50] (UUB) The equilibrium point 0
e
x = of (2.1) is said to be uniformly

ultimately bounded (UUB) if there exists a compact set nS R⊂ so that for all
0
x S∈ there exists a

bound B and a time
0

(,)T B x such that ()
e

x t x B− ≤ for all
0

.t t T≥ +

 Facts 2.1.

a. (.)f , is Lipschitz, and (.)g is bounded by a constant

() , ()
f g

f x b x g x b< <

b. The NN approx error and its gradient are bounded on a compact set containing Ω so

that

bεε <

x
bεε∇ <

c. The NN activation functions and their gradients are bounded so that

1

1

()

()
x

x b

x b

φ

φ

φ

φ

<

∇ <

 ■

 Fact 2.1c is satisfied, e.g. by sigmoids, tanh, and other standard NN activation

functions.

 We now present the main Theorem, which provides the tuning laws for the actor and

critic neural networks that guarantee convergence of the synchronous online PI algorithm to the

 32

optimal controller, while guaranteeing closed-loop stability.

 Theorem 2.2. Let the dynamics be given by (2.1), the critic NN be given by (2.21) and

the control input be given by actor NN (2.39). Let tuning for the critic NN be provided by

 2

1 1 2 1 2 22

2 2

ˆ ˆ[()]
(1)

T T

T
W a W Q x u Ru

σ
σ

σ σ
= − + +

+
ɺ

 (2.41)

where
2 1 2

()f guσ φ= ∇ + , and assume that
2 2 2 2

/ (1)Tσ σ σ σ= +

is persistently exciting. Let the

actor NN be tuned as

12 2 2 2 1 2 1 2 1

1ˆ ˆ ˆ ˆ ˆ{() () () }
4

T TW FW F W D x W m x Wα σ= − − −
ɺ

 (2.42)

where

1

1 1 1
() () () () ()T TD x x g x R g x xφ φ−≡ ∇ ∇ , 2

2

2 2(1)
T

m
σ

σ σ
≡

+
,

and
1

0F >

and

2
0F > are tuning parameters. Let Assumptions 2.1-2.2 and facts 2.1 hold, and

the tuning parameters be selected as detailed in the proof. Then there exists an N0 such that,

for the number of hidden layer units
0

� �> the closed-loop system state, the critic NN error

1
Wɶ , and the actor NN error

2
Wɶ are UUB. Moreover, Theorem 2.1 holds with

max
ε defined in the

proof, so that exponential convergence of
1

Ŵ to the approximate optimal critic value
1

W

is

obtained.

 Proof: See appendix A.

 ■

 Remark 2.3. Let 0ε > and let N0 be the number of hidden layer units above

which sup HJB
x

ε ε
∈Ω

< . In the proof it is seen that the theorem holds for
0

� �> . Additionally,

ε provides an effective bound on the critic weight residual set in Theorem 2.1. That is,
max

ε in

(2.32) is effectively replaced by ε .

 Remark 2.4. The theorem shows that PE is needed for proper identification of the

 33

value function by the critic NN, and that a nonstandard tuning algorithm is required for the actor

NN to guarantee stability. The second term in (2.42) is a cross-product term that involves both

the critic weights and the actor weights. It is needed to guarantee good behavior of the

Lyapunov function, i.e. that the energy decreases to a bounded compact region.

 Remark 2.5. The tuning parameters F1 and F2 in (2.42) must be selected to make the

matrix M in (A.22) positive definite.

 Note that the dynamics is required to implement this algorithm in that
2 1 2

()f guσ φ= ∇ + ,

1
()D x , and (2.39) depend on (), ()f x g x .

2.5 Simulations

2.5.1. Linear System Example

 Consider the continuous-time F16 aircraft plant with quadratic cost function used in [85]

1.01887 0.90506 0.00215 0

0.82225 1.07741 0.17555 0

0 0 1 1

x x u

− −   
   = − − +   
   −   

ɺ

where Q and R in the cost function are identity matrices of appropriate dimensions. In this

linear case the solution of the HJB equation is given by the solution of the algebraic Riccati

equation (ARE). Since the value is quadratic in the LQR case, the critic NN basis set
1
()xφ was

selected as the quadratic vector in the state components. Solving the ARE gives the

parameters of the optimal critic as

 *

1
[1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]TW = .

which are the components of the Riccati solution matrix P.

 The synchronous PI algorithm is implemented as in Theorem 2.2. PE was ensured by

adding a small probing noise to the control input. Figure 2 shows the critic parameters, denoted

by

1 1 2 3 4 5 6
ˆ []T

c c c c c c
W W W W W W W=

converging to the optimal values. In fact after 800s the critic parameters converged to

 34

 1
ˆ () [1.4279 1.1612 -0.1366 1.4462 -0.1480 0.4317] .TfW t =

 The actor parameters after 800s converge to the values of 2 1
ˆ ˆ() ().f fW t W t=

 Then, the actor NN is given by (2.39) as

1

2 1

3 111
2 22

2

3 2

3

2 0 0

0
0

0
ˆˆ () 0 ()

0 2 0
1

0

0 0 2

T

T

f

x

x x

x x
u x R W t

x

x x

x

−

 
 
  
  = −   
     
 
  

i.e. approximately the correct optimal control solution 1 Tu R B Px−= − .

 The evolution of the system states is presented in Figure 3. One can see that after

750s convergence of the NN weights in both critic and actor has occurred. This shows that the

probing noise effectively guaranteed the PE condition. On convergence, the PE condition of the

control signal is no longer needed, and the probing signal was turned off. After that, the states

remain very close to zero, as required.

Figure 2. Convergence of the critic parameters to the parameters of the optimal critic.

 35

Figure 3. Evolution of the system states for the duration of the experiment.

2.5.2. Nonlinear System Example

 Consider the following affine in control input nonlinear system, with a quadratic cost

derived as in [64], [93]

 2() () ,x f x g x u x R= + ∈ɺ

where

2

1 2

1 2

1

1

0.5 0.5 (1 ()
()

cos(2) 2

0
 ()

)

.
cos(2) 2

x x
f x

x

g x

x x

x

− + 
=  + 

 
= 

−



−

+ 

−

 One selects
1 0

, 1.
0 1

Q R
 

= = 
 

 Using the procedure in [64] the optimal value function is

 * 2 2

1 2

1
()

2
V x x x= +

and the optimal control signal is

 36

 *

1 2
() (cos(2) 2) .u x x x= − +

 One selects the critic NN vector activation function as

 2 2

1 1 1 2 2
() [] ,Tx x x x xφ =

 Figure 4 shows the critic parameters, denoted by

1 1 2 3
ˆ []T

c c c
W W W W= .

 These converge after about 80s to the correct values of

1
ˆ () [0.5017 -0.0020 1.0008] .T

f
W t =

 The actor parameters after 80s converge to the values of

2
ˆ () [0.5017 -0.0020 1.0008] .T

f
W t =

 So that the actor NN (2.39)

1

11
2 2 12

1

2

2 0 0.5017
0

ˆ () -0.0020
cos(2) 2

0 2 1.0008

T

T x

u x R x x
x

x

−

   
     = −      +        

also converged to the optimal control.

 The evolution of the system states is presented in Figure 5. One can see that after 80s

convergence of the NN weights in both critic and actor has occurred. This shows that the

probing noise effectively guaranteed the PE condition. On convergence, the PE condition of the

control signal is no longer needed, and the probing signal was turned off. After that, the states

remain very close to zero, as required.

 Figure 6 show the optimal value function. The identified value function given by

1 1 1
ˆ ˆ() ()TV x W xφ= is virtually indistinguishable. In fact, Figure 7 shows the 3-D plot of the

difference between the approximated value function, by using the online algorithm, and the

optimal one. This error is close to zero. Good approximation of the actual value function is being

evolved. Finally Figure 8 shows the 3-D plot of the difference between the approximated control,

by using the online algorithm, and the optimal one. This error is close to zero.

 37

Figure 4. Convergence of the critic parameters.

Figure 5. Evolution of the system states for the duration of the experiment.

 38

Figure 6. Optimal Value function.

Figure 7. 3D plot of the approximation error for the value function.

 39

Figure 8. 3D plot of the approximation error for the control.

2.6 Conclusion

 In this chapter we have proposed a new adaptive algorithm which solves the

continuous-time optimal control problem for affine in the inputs nonlinear systems. We call this

algorithm synchronous online PI for CT systems. The algorithm requires complete knowledge

of the system model.

 40

CHAPTER 3

ONLINE GAMING: REAL TIME SOLUTION OF NONLINEAR TWO-PLAYER ZERO-SUM

GAMES USING SYNCHRONOUS POLICY ITERATION

3.1 Introduction

 In this chapter we provide methods for online gaming, that is for solution of 2-player

zero-sum infinite horizon games online, through learning the saddle point strategies in real-time.

The dynamics may be nonlinear in continuous-time and are assumed known. A novel neural

network adaptive control technique is given that is based on reinforcement learning techniques,

whereby the control and disturbance policies are tuned online using data generated in real time

along the system trajectories. Also tuned is a ‘critic’ approximator structure whose function is to

identify the value or outcome of the current control and disturbance policies. Based on this

value estimate, the policies are continuously updated. This is a sort of indirect adaptive control

algorithm, yet, due to the direct form dependence of the policies on the learned value, it is

affected online as direct (‘optimal’) adaptive control.

 This chapter presents an optimal adaptive control method that converges online to the

solution to the zero sum 2-player differential game (and hence the solution of the bounded 2L

gain problem). Three approximator structures are used. Parameter update laws are given to

tune critic, actor, and disturbance neural networks simultaneously online to converge to the

solution to the HJI equation and the saddle point policies, while also guaranteeing closed-loop

stability. Rigorous proofs of performance and convergence are given.

 The chapter is organized as follows. Section 3.2 reviews the formulation of the two-

player zero-sum differential game. A policy iteration algorithm is given to solve the HJI equation

by successive solutions on nonlinear Lyapunov-like equations. This essentially extends

 41

Kleinman’s algorithm to nonlinear zero-sum differential games. Section 3.3 describes the

neural network value function approximation. First a suitable ‘critic’ approximator structure is

developed for the value function and its tuning method is pinned down. A persistence of

excitation is needed to guarantee proper convergence. Next, suitable ‘actor’ approximator

structures are developed for the control and disturbance policies. Finally in section 3.4 the main

results of the chapter are presented. Theorem 3.2, shows how to tune all three approximators

simultaneously by using measurements along the system trajectories in real time and Theorem

3.3, proves exponential convergence to the critic neural network and convergence to the

approximate Nash solution. Proofs using Lyapunov techniques guarantee convergence and

closed-loop stability. Section 3.5 presents simulation examples that show the effectiveness of

the online synchronous zero-sum game CT PI algorithm in learning the optimal value, control

and disturbance for both linear and nonlinear systems.

 3.2 Background: Two Player Differential Game and Policy Iteration

 This section presents a background review of 2-player zero-sum differential games.

The objective is to lay a foundation for the structure needed in subsequent sections for online

solution of these problems in real-time. In this regard, the Policy Iteration Algorithm for 2-player

games presented at the end of this section is key.

 Consider the nonlinear time-invariant affine in the input dynamical system given by

() () () () ()x f x g x u x k x d x= + +ɺ (3.1)

where state () nx t ∈ℝ , (()) nf x t ∈ℝ , (()) nxmg x t ∈ℝ ,control (()) mu x t ∈ℝ , (()) nxqk x t ∈ℝ and

disturbance (()) qd x t ∈ℝ , Assume that ()f x is locally Lipschitz, (0) 0f = so that 0x = is an

equilibrium point of the system.

 Define the performance index [53]

()22

0 0

((0), ,) () (, ,)TJ x u d Q x u Ru d dt r x u d dtγ
∞ ∞

= + − ≡∫ ∫ (3.2)

 42

for () 0Q x ≥ , 0TR R= > ,
22(, ,) () Tr x u d Q x u Ru dγ= + − and *

0γ γ≥ ≥ , where *γ is the smallest

γ for which the system is stabilized [77]. For feedback policies ()u x and disturbance policies

()d x , define the value or cost of the policies as

()22((), ,) () T

t

V x t u d Q x u Ru d dtγ
∞

= + −∫ (3.3)

 When the value is finite, a differential equivalent to this is the nonlinear Lyapunov-like

equation

()0 (, ,) (() () () () ()), (0) 0
T

r x u d V f x g x u x k x d x V= + ∇ + + =
 (3.4)

where nV V x R∇ = ∂ ∂ ∈ is the (transposed) gradient and the Hamiltonian is

()(, , ,) (, ,) (() () () ())
T

H x V u d r x u d V f x g x u x k x d∇ = + ∇ + + (3.5)

 For feedback policies [1], a solution () 0V x ≥ to (3.4) is the value (3.3) for given

feedback policy ()u x and disturbance policy ()d x .

3.2.1. Two-player zero-sum differential games and Nash equilibrium

 Define the 2-player zero-sum differential game [11], [1]

()2* 2

0

((0)) minmax ((0), ,) minmax () T

u ud d
V x J x u d Q x u Ru d dtγ

∞

= = + −∫ (3.6)

subject to the dynamical constraints (3.1). Thus, u is the minimizing player and d is the

maximizing one. This 2-player optimal control problem has a unique solution if a game theoretic

saddle point exists, i.e., if the Nash condition holds

minmax ((0), ,) maxmin ((0), ,)
u ud d

J x u d J x u d= (3.7)

 A necessary condition for this is Isaacs’ condition

minmax (, , ,) maxmin (, , ,)
u ud d

H x V u d H x V u d∇ = ∇ (3.8)

or, equivalently

 43

* * * *(, , ,) (, , ,) (, , ,)H x V u d H x V u d H x V u d∇ ≤ ∇ ≤ ∇ (3.9)

for some saddle point solution * *(,)u d .

 To this game is associated the Hamilton-Jacobi-Isaacs (HJI) equation

1

2

1 1
0 () () () () () () () () (), (0) 0

4 4

T T T T TQ x V x f x V x g x R g x V x V x kk V x V
γ

−= +∇ − ∇ ∇ + ∇ ∇ =

(3.10)

 Given a solution *() 0 : nV x ≥ →ℝ ℝ to the HJI (3.10), denote the associated control and

disturbance as

* 1 *1
2

()Tu R g x V−= − ∇ (3.11)

* *

2

1
()

2

Td k x V
γ

= ∇ (3.12)

and write

* * 1

2

1 1
0 (, , ,) () () () () () () () () ()

4 4

T T T T TH x V u d Q x V x f x V x g x R g x V x V x kk V x
γ

−= ∇ = +∇ − ∇ ∇ + ∇ ∇ (3.13)

 Lemma 3.1. Isaacs condition satisfied. Select 0γ > . Suppose () : nV x R R→ is

smooth, () 0V x ≥ , and is a solution to the HJI equation (3.10). Then the Isaacs condition (3.8)

is satisfied for control *()u t given by (3.11) and *()d t given by (3.12) in terms of ()V x .

 Proof : If () 0V x ≥ satisfies the HJI, then complete the squares to obtain

2 2
* * 2 * * * 2 * * *(, , ,) (, , ,) () () () ()T TH x V u d H x V u d d d u u R u u d d u u R u uγ γ∇ = ∇ − − + − − =− − + − −

 (3.14)

with * *() (), () ()u t u t d t d t= = given respectively by (3.11), (3.12). This implies (3.9).

 ■

 The next result shows that this implies (3.7) under certain conditions. System (3.1) is

said to be zero state observable if () 0, () 0 () 0u t y t x t≡ ≡ ⇒ ≡ . The HJI equation (3.13) may

have more than one nonnegative definite solution () 0V x ≥ . A minimal non negative definite

 44

solution () 0aV x ≥ is one such that there exists no other non negative definite solution () 0V x ≥

such that () () 0aV x V x≥ ≥ .

 Lemma 3.2. Solution of 2-player zero-sum game. [1] Select 0γ > . Suppose

() : n
aV x R R→ is smooth, () 0aV x ≥ , and is a minimal non negative definite solution to the HJI

equation (3.13). Assume, (3.1) is zero state observable. Then condition (3.7) is satisfied for

control *()u t given by (3.11) and *()d t given by (3.12) in terms of ()aV x . Then the system is in

Nash equilibrium, the game has a value given by ((0))aV x , and * *(,)u d is a saddle point

equilibrium solution among strategies in 2[0,)L ∞ . Moreover, the closed-loop systems

*(() ())f x g x u+ and * *(() () ())f x g x u k x d+ + are locally asymptotically stable.

 Proof Outline: One has for any smooth () : nV x →ℝ ℝ

() ()2 22 2

0 0

0

((0), ,) () () () ()

(()) ((0))

T T

T T T T
T

T

J x u d h x h x u Ru d dt h x h x u Ru d dt

Vdt V x T V x

γ γ≡ + − = + −

+ − +

∫ ∫

∫ ɺ

0

(, , ,) (()) ((0))

T

H x V u d dt V x T V x= ∇ − +∫

 Now, suppose ()V x satisfies the HJI equation (3.13) and use (3.14) to obtain

2
* * 2 * * *

0

((0), ,) () () (()) ((0))

T

T
TJ x u d u u R u u d d dt V x T V xγ = − − − − − + 

 ∫

 Therefore, for finite T, ((0), ,)TJ x u d has a saddle point induced by that of the

Hamiltonian. The remainder of the proof involves showing that, for the specific HJI solution

selected, the closed-loop system * *(() () ())f x g x u k x d+ + is locally asymptotically stable. Then

taking the limit as T → ∞ yields the result.

 ■

 45

 The issue in this proof is that existence of a Nash equilibrium on an infinite horizon

requires that the closed-loop system * *(() () ())f x g x u k x d+ + be locally asymptotically stable. It

is proven in [1] that the minimum non negative definite solution to the HJI is the unique non

negative definite solution for which this is true. Linearize the system (3.1) about the origin to

obtain the Generalized ARE. Of the non negative definite solutions to the GARE, select the one

corresponding to the stable invariant manifold of the Hamiltonian matrix. Then, the minimum

non negative definite solution of the HJI is the one having this stabilizing GARE solution as its

Hessian matrix evaluated at the origin [77].

 The next result provides a solution to the bounded 2L gain problem.

 Lemma 3.3. Solution to the Bounded 2L gain problem. [77] Select 0γ > . Suppose

() : nV x →ℝ ℝ is smooth, () 0V x ≥ , and is a solution to the HJI equation (3.13). Assume, (3.1)

is zero state observable. Then system (3.1) has 2L gain γ≤ . Moreover the control *()u t

selected as (3.11) in terms of the HJI solution solves the 2L gain problem and renders the

equilibrium point locally asymptotically stable (when () 0d t =), e.g. *(() ())f x g x u+ is locally

asymptotically stable. Finally, *
2() [0,)u t L∈ ∞ .

 ■

 Note that under the hypotheses of the Lemma, specifically zero state observability, if

() 0V x ≥ is a solution to the HJI equation (3.13), then one has in fact () 0V x > [77].

 Lemma 3.4. [77] Select 0γ > . Assume (3.1) is locally detectable from ()y h x= , and

there exists a control policy ()u x so that locally the system has 2L gain γ≤ and the system is

asymptotically stable. Then there exists a local smooth solution () 0V x ≥ to the HJI equation

(3.13). Furthermore, the control given in terms of this solution by (3.11) renders the 2L gain

γ≤ for all trajectories originating at the origin locally.

 ■

 46

 Note that global solutions to the HJI (3.13) may not exist. Moreover, if they do, they

may not be smooth. For a discussion on viscosity solutions to the HJI, see [9], [10], [1]. The HJI

equation (3.13) may have more than one nonnegative local smooth solution () 0V x ≥ . A minimal

nonnegative solution () 0aV x ≥ is one such that there exists no other nonnegative solution

() 0V x ≥ such that () () 0aV x V x≥ ≥ . Linearize the system (3.1) about the origin to obtain the

Generalized ARE (See Section 3.5.1). Of the nonnegative solutions to the GARE, select the

one corresponding to the stable invariant manifold of the Hamiltonian matrix. Then, the

minimum nonnegative solution of the HJI is the one having this stabilizing GARE solution as its

Hessian matrix evaluated at the origin [77].

 It is shown in [1] that if *()V x is the minimum non-negative solution to the HJI (3.13) and

(3.1) is locally detectable, then (3.11), (3.12) given in terms of *()V x are in Nash equilibrium

solution to the zero-sum game and *()V x is its value.

3.2.2. Policy Iteration solution of the HJI equation

 The HJI equation (3.13) is usually intractable to solve directly. One can solve the HJI

iteratively using one of several algorithms that are built on iterative solutions of the Lyapunov

equation (3.4). Included are [25] which uses an inner loop with iterations on the control, and [3],

[5], [77] which uses an inner loop with iterations on the disturbance. These are in effect

extensions of Kleinman’s algorithm [44] to nonlinear 2-player games. The complementarity of

these algorithms is shown in [91], [92]. Here, we shall use the latter algorithm (e.g.[3], [5], [77]).

 The structure given in the algorithm below will be used as the basis for approximate

online solution techniques in the next section.

 Policy Iteration (PI) Algorithm for 2-Player Zero-Sum Differential Games

 Initialization: Start with a stabilizing feedback control policy 0u

1. For 0,1,...j = given ju

2. For 0,1,...i = set 0 0d = , solve for (())i
jV x t , 1id + using

 47

2
20 () ()()iT i T i

j j j jQ x V x f gu kd u Ru dγ= +∇ + + + − (3.15)

1

2

1
argmax[(, , ,)] ()

2

i i T i
j j j

d

d H x V u d k x V
γ

+ = ∇ = ∇ (3.16)

On convergence, set 1() ()i
j jV x V x+ =

3. Update the control policy using

11
1 1 12

argmin[(,), ,] ()T
j j j

u

u H x V u d R g x V−
+ + += ∇ = − ∇ (3.17)

 Go to 1.

 ■

 Nota Benne: In practice, the iterations in i and j are continued until some

convergence criterion is met, e.g. 1i i
j jV V+ − or, respectively 1j jV V+ − is small enough in some

suitable norm.

 Given a feedback policy ()u x , write the Hamilton-Jacobi (HJ) equation

()
2

1
0 () () () () () () () () (), (0) 0

4

T T T TQ x V x f x g x u x u x Ru x V x kk V x V
γ

= +∇ + + + ∇ ∇ = (3.18)

for fixed ()u x . The minimal nonnegative solution ()V x to this equation is the so-called available

storage for the given ()u x [77]. Note that the inner loop of this algorithm finds the available

storage for ju , where it exists.

 Assuming that the available storage at each index j is smooth on a local domain of

validity, the convergence of this algorithm to the minimal nonnegative solution to the HJI

equation is shown in [5], [77]. Under these assumptions, the existence of smooth solutions at

each step to the Lyapunov-like equation (3.15) was further shown in [5]. Also shown was the

asymptotic stability of ()ijf gu kd+ + at each step. In fact, the inner loop yields

1() (),i i
j jV x V x x+ ≥ ∀ while the outer loop yields 1() (),j jV x V x x+ ≤ ∀ until convergence to *V . Note

that this algorithm relies on successive solutions of nonlinear Lyapunov-like equations (3.15).

 48

 As such, the discussion surrounding (3.4) shows that the algorithm finds the value

(())i
jV x t of successive control policy/disturbance policy pairs.

3.3 Neural Network approximation structure for online policy iteration algorithm

 The PI Algorithm is a sequential algorithm that solves the HJI equation (3.13) and finds

the Nash solution * *(,)u d based on sequential solutions of the nonlinear Lyapunov

equation(3.15). That is, while the disturbance policy is being updated, the feedback policy is

held constant. In this section, we use PI to lay a rigorous foundation for the NN approximator

structure required on-line solution of the 2-player zero-sum differential game in real time. In the

next section, this structure will be used to develop an adaptive control algorithm of novel form

that converges to the zero-sum (ZS) game solution. It is important to define the neural network

structures and the NN estimation errors properly or such an adaptive algorithm cannot be

developed.

 The PI algorithm itself is not implemented in this work. Instead, here one implements

both loops, the outer feedback control update loop and the inner disturbance update loop,

simultaneously using neural network learning implemented as differential equations for tuning

the weights, while simultaneously keeping track of and learning the value ((), ,)V x t u d (3.3) of

the current control and disturbance by solution of the Lyapunov equation (3.4)/(3.15). We call

this synchronous PI for zero-sum games.

3.3.1. Value function approximation: Critic Neural Network

 This work uses nonlinear approximator structures (e.g. neural networks) for Value

Function Approximation (VFA) [15], [98], [99], therefore sacrificing some representational

accuracy in order to make the representation manageable in practice. Sacrificing accuracy in

the representation of the value function is not so critical, since the ultimate goal is to find an

optimal policy and not necessarily an accurate value function. Based on the structure of the PI

algorithm in Section 3.2.2, VFA for online 2-player games requires three approximators, which

are taken as neural networks (NN), one for the value function, one for the feedback control

 49

policy, and one for the disturbance policy. These are motivated respectively by the need to

solve equations (3.15), (3.17), and (3.16).

 To solve equation (3.15), we use VFA, which here requires approximation in Sobolev

norm [6], that is, approximation of the value ()V x as well as its gradient ()V x∇ . The following

definition describes uniform convergence that is needed later.

 Definition 3.1. (uniform convergence). A sequence of functions { }nf converges

uniformly to f if 0, () : sup () () , ()n� f x f x n �ε ε ε ε∀ > ∃ − < > .

 According to the Weierstrass higher-order approximation Theorem [4], [6], [26], [34],

there exists a complete independent basis set { ()}i xϕ such that the solution ()V x to (3.4) and

its gradient are uniformly approximated, that is, there exist coefficients ic such that

1 1 1

() () () ()
�

i i i i i i
i i i �

V x c x c x c xϕ ϕ ϕ
∞ ∞

= = = +

= = +∑ ∑ ∑

1 1
1

() () ()T
i i

i �

V x C x c xφ ϕ
∞

= +

≡ + ∑ (3.19)

1 1 1

() () () ()�
i i i

i i i
i i i �

V x x x x
c c c

x x x x

ϕ ϕ ϕ∞ ∞

= = = +

∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂
∑ ∑ ∑

 (3.20)

where 1 1 2() [() () ()] :T n �
�x x x xφ ϕ ϕ ϕ= →⋯ ℝ ℝ , and the second terms in these equations converge

uniformly to zero as � → ∞ . Specifically, the linear subspace generated by the basis set is

dense in the Sobolev norm 1,W ∞ [6].

 Therefore, assume there exist NN weights 1W such that the value function ()V x is

approximated as

 1 1() () ()TV x W x xφ ε= + (3.21)

with 1() :
n �xφ →ℝ ℝ the NN activation function vector, N the number of neurons in the hidden

layer, and ()xε the NN approximation error. For approximation in Sobolev space, the NN

 50

activation functions { () : 1, }i x i �ϕ = should be selected so that { () : 1, }i x iϕ = ∞ provides a complete

independent basis set such that ()V x and its derivative are uniformly approximated, e.g.,

additionally

1
1 1 1

()
T

TV x
W W

x x x

φ ε
φ ε

∂ ∂ ∂ 
= + = ∇ +∇ ∂ ∂ ∂ 

 (3.22)

Then, as the number of hidden-layer neurons � → ∞ , the approximation errors 0, 0ε ε→ ∇ →

uniformly [6], [26]. In addition, for fixed N, the NN approximation errors (),xε and ε∇ are

bounded by constants locally [34].

 We refer to the NN with weights 1W that performs VFA as the critic NN.

 Standard usage of the Weierstrass high-order approximation Theorem uses polynomial

approximation. However, non-polynomial basis sets have been considered in the literature

(e.g.[34], [76]). The NN approximation literature has considered a variety of activation functions

including sigmoids, tanh, radial basis functions, etc.

 Using the NN VFA, considering fixed feedback and disturbance policies (()), (())u x t d x t ,

equation (3.4) becomes

22

1 1 1(, , ,) () (() () () () ())T T
HH x W u d Q x u Ru d W f x g x u x k x d xγ φ ε= + − + ∇ + + = (3.23)

where the residual error is

() 1 1 1

1

() () () ()()
T T

H i i
i �

f gu kd C W f gu kd c x f gu kdε ε φ ϕ
∞

= +

= − ∇ + + = − − ∇ + + − ∇ + +∑ (3.24)

 Under the Lipschitz assumption on the dynamics, this residual error is bounded locally.

 The following Proposition has been shown in [3], [6].

 Proposition 3.1. For any policies (()), (())u x t d x t

the least-squares solution to (3.23)

exists and is unique for each N. Denote this solution as 1W and define

1 1 1() ()TV x W xφ= (3.25)

Then, as � → ∞ :

 51

a. sup 0Hε →

b. 1 1 2
0W C− →

c. 1sup 0V V− →

d. 1sup 0V V∇ −∇ →

 ■

 This result shows that 1()V x converges uniformly in Sobolev norm 1,W ∞ [6] to the exact

solution ()V x to (3.4) as � → ∞ , and the weights 1W converge to the first N of the weights, 1C ,

which exactly solve (3.4).

 The effect of the approximation error on the HJI equation (3.10) is

1
1 1 1 1 1 1 1 1 1 12

1 1
() () () () () () ()

4 4

T T T T T T T
HJIQ x W x f x W x g x R g x W W x kk Wϕ ϕ ϕ ϕ ϕ ε

γ
−+ ∇ − ∇ ∇ + ∇ ∇ =

 (3.26)

where the residual error due to the function approximation error is

2 2

1 11 1 1 1
1 1 1 12 4 2 4

T T T T T T T T T
HJI f W gR g gR g W kk kk

γ γ
ε ε ϕ ε ε ε ϕ ε ε ε− −≡ −∇ + ∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇ (3.27)

 It was also shown in [3], [6] that this error converges uniformly to zero as the number of

hidden layer units N increases. That is,

0, () : sup , ()HJI� � �ε ε ε ε ε∀ > ∃ < > .

3.3.2. Tuning and Convergence of the Critic Neural Network

 In this section are addressed the tuning and convergence of the critic NN weights when

fixed feedback control and disturbance policies are prescribed. Therefore, the focus is on

solving the nonlinear Lyapunov-like equation (3.4) (e.g. (3.15)) for a fixed feedback policy u and

fixed disturbance policy d .

 In fact, this amounts to the design of an observer for the value function. Therefore, this

algorithm is consistent with adaptive control approaches which first design an observer for the

system state and unknown dynamics, and then use this observer in the design of a feedback

 52

control.

 The ideal weights of the critic NN, 1W which provide the best approximate solution for

(3.23) are unknown. Therefore, the output of the critic neural network is

 1 1
ˆ ˆ() ()TV x W xφ= (3.28)

where 1Ŵ are the current estimated values of 1W . The approximate nonlinear Lyapunov-like

equation is then

22
1 1 1 1
ˆ ˆ(, , ,) () ()T TH x W u d W f gu kd Q x u Ru d eφ γ= ∇ + + + + − = (3.29)

with 1e a residual equation error. In view of Proposition 3.1, define the critic weight estimation

error

1 1 1
ˆW W W= −ɶ .

 Then,

1 1 1() .T
He W f guφ ε= − ∇ + +ɶ

 Given any feedback control policy u , it is desired to select 1Ŵ to minimize the squared

residual error

1

1 1 12
.TE e e=

 Then 1 1
ˆ ()W t W→ and 1 He ε→ . Select the tuning law for the critic weights as the

normalized gradient descent algorithm

221 1
1 1 1 1 12

1 1 1

ˆ ˆ[()]
ˆ (1)

TE
W a a W Q x u Ru d

W

σ
σ γ

σ σ
Τ

Τ

∂
= − = − + + −

∂ +

ɺ
 (3.30)

where 1 1()f gu kdσ φ= ∇ + + . This is a nonstandard modified gradient descent algorithm where

2
1 1(1)Tσ σ + is used for normalization instead of 1 1(1)Tσ σ + . This is required in the theorem

proofs, where one needs both appearances of 1 1 1/ (1)Tσ σ σ+ in (3.30) to be bounded [36], [87].

 Note that, from (3.23),

 53

22

1 1() () .T T
HQ x u Ru d W f gu kdγ ϕ ε+ − = − ∇ + + + (3.31)

 Substituting (3.31) in (3.30) and, with the notation

1 1 1 1/ (1)Tσ σ σ σ= + , 1 11 T
sm σ σ= + (3.32)

we obtain the dynamics of the critic weight estimation error as

 1 1 1 1 1 1 1 .H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ (3.33)

 To guarantee convergence of 1Ŵ to 1W , the next Persistence of Excitation (PE)

assumption and associated technical lemmas are required.

 Persistence of Excitation (PE) Assumption. Let the signal 1σ

be persistently

exciting over the interval [,]t t T+ , i.e. there exist constants 1 0β > , 2 0β > , 0Τ > such that, for all

t,

1 0 1 1 2() () .
t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫ (3.34)

with Ι the identity matrix of appropriate dimensions.

 The PE assumption is needed in adaptive control as described thoroughly in Chapter 2.

 The properties of tuning algorithm (3.30) are given in the subsequent results. They are

proven in Chapter 2.

 Technical Lemma 3.1. Consider the error dynamics system with output defined as

1 1 1 1 1 1 1
H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ

1 1
Ty Wσ= ɶ . (3.35)

 The PE condition (3.34) is equivalent to the uniform complete observability (UCO) [50]of

this system, that is there exist constants 3 0β > , 4 0β > , 0Τ > such that, for all t,

3 1 1 1 4(,) () () (,) .
t T

T

t

S t t dβ τ σ τ σ τ τ τ β
+

ΤΙ ≤ ≡ Φ Φ ≤ Ι∫ (3.36)

 54

with 1 0 0 1(,),t t t tΦ ≤ the state transition matrix of (3.35) and Ι the identity matrix of appropriate

dimensions.

 ■

 Technical Lemma 3.2. Consider the error dynamics system (3.35). Let the signal 1σ

be persistently exciting. Then:

a) The system (3.35) is exponentially stable. In fact if 0Hε = then

|| () || || (0) ||kTW k e Wα−Τ ≤ɶ ɶ with

1 3

1
ln(1 2)aα β= − −

Τ
. (3.37)

b) Let max|| ||Hε ε≤ and max|| ||y y≤ . Then 1|| ||Wɶ converges exponentially to the residual set

(){ }2
1 max 2 1 max max

1

()W t y a y
β

δβ ε
β

Τ
 ≤ + + 

ɶ . (3.38)

where δ is a positive constant of the order of 1. ■

 The next result shows that the tuning algorithm (3.30) is effective under the PE

condition, in that the weights 1Ŵ converge to the actual unknown weights 1W which solve the

nonlinear Lyapunov-like equation (3.23) in a least-squares sense for the given feedback and

disturbance policies (()), (())u x t d x t
.

That is, (3.28) converges close to the actual value function

of the current policies. The proof is in Chapter 2 in Theorem 2.1.

 Theorem 3.1. Let (()), (())u x t d x t be any bounded policies. Let tuning for the critic NN be

provided by (3.30) and assume that 1σ

is persistently exciting. Let the residual error in (3.23) be

bounded maxHε ε< . Then the critic parameter error converges exponentially with decay factor

given by (3.37) to the residual set

[]{ }2
1 2 1 max

1

() 1 2 .W t a
β

δβ ε
β

Τ
≤ +ɶ (3.39)

 ■

 55

 Remark 3.1. Note that, as � → ∞ , 0Hε → uniformly [3], [6]. This means that maxε

decreases as the number of hidden layer neurons in (3.28) increases.

 Remark 3.2. This theorem requires the assumption that the feedback policy (())u x t and

the disturbance policy (())d x t are bounded, since the policies appear in (3.24). In the upcoming

Theorems 3.2 and 3.3 this restriction is removed.

3.3.3. Action and Disturbance Neural Network

 It is important to define the neural network structure and the NN estimation errors

properly for the control and disturbance or an adaptive algorithm cannot be developed. To

determine a rigorously justified form for the actor and the disturbance NN, consider one step of

the Policy Iteration algorithm (3.15)-(3.17). Suppose that the solution ()V x to the nonlinear

Lyapunov equation (3.15) for given control and disturbance policies is smooth and given by

(3.19). Then, according to (3.20) and (3.16), (3.17) one has for the policy and the disturbance

updates:

1

1

1
() ()

2

T
i i

i

u R g x c xϕ
∞

−

=

= − ∇∑ (3.40)

2
1

1
() ()

2

T
i i

i

d k x c xϕ
γ

∞

=

= ∇∑ (3.41)

for some unknown coefficients ic . Then one has the following result.

 The following proposition is proved in [3] for constrained inputs. Non-constrained inputs

are easier to prove.

 Proposition 3.2. Let the least-squares solution to (3.23) be 1W and define

1 1
1 1 1 1

1 1
() () () ()

2 2

T T Tu R g x V x R g x x Wφ− −= − ∇ = − ∇ (3.42)

 1 1 1 12 2

1 1
() () () ()

2 2

T T Td k x V x k x x Wφ
γ γ

= ∇ = ∇ (3.43)

with 1V defined in (3.25). Then, as � → ∞ :

 56

a. 1sup 0u u− →

b. 1sup 0d d− →

c. There exists a number of NN hidden layer neurons N0 such that 1u and 1d stabilize the

system (3.1) for N>N0.

 ■

 In light of this result, the ideal feedback and disturbance policy updates are taken as

(3.42), (3.43) with 1W unknown. Therefore, define the feedback policy in the form of an action

neural network which computes the control input in the structured form

11
1 22
ˆˆ() () ,T Tu x R g x Wφ−= − ∇

 (3.44)

where 2Ŵ denotes the current estimated values of the ideal NN weights 1W . Define the actor

NN estimation error as

2 1 2
ˆW W W= −ɶ (3.45)

 Likewise, define the disturbance in the form of a disturbance neural network which

computes the disturbance input in the structured form

2

1
1 32

ˆ ˆ() () ,T Td x k x W
γ

φ= ∇ (3.46)

where 3Ŵ denotes the current estimated values of the ideal NN weights 1W . Define the

disturbance NN estimation error as

3 1 3
ˆW W W= −ɶ (3.47)

3.4 Online Solution of Two-Player Zero-Sum Games Using Neural Networks

 This section presents our main results of Chapter 3. An online adaptive PI algorithm is

given for online solution of the zero-sum game problem which involves simultaneous, or

synchronous, tuning of critic, actor, and disturbance neural networks. That is, the weights of all

three neural networks are tuned at the same time. This approach is a version of Generalized

 57

Policy Iteration (GPI), as introduced in [86]. In the standard Policy Iteration algorithm (3.15)-

(3.17), the critic and actor NNs are tuned sequentially, e.g. one at a time, with the weights of the

other NNs being held constant. By contrast, we tune all NN simultaneously in real-time.

 The next Facts complete the machinery required for the main results.

 Facts 3.1.

a. For each feedback control and disturbance policy the nonlinear Lyapunov equation

(3.15) has a smooth local solution () 0V x ≥ .

b. (.)f , is Lipschitz, and (.), (.)g k are bounded by constants:

() , () , ()f g kf x b x g x b k x b< < <

c. The NN approximation error and its gradient are bounded locally so that

bεε <

x
bεε∇ <

d. The NN activation functions and their gradients are bounded locally so that

1

1

()

()
x

x b

x b

φ

φ

φ

φ

<

∇ <

e. The critic NN weights are bounded by known constants

1 maxW W<

 ■

 The discussion in Section 3.2 justifies Fact 3.1a. Fact 3.1d is satisfied, e.g. by

sigmoids, tanh, and other standard NN activation functions.

 The main Theorems are now given, which provide the tuning laws for the actor, critic

and disturbance neural networks that guarantee convergence of the synchronous online zero-

sum game PI algorithm in real-time to the game saddle point solution, while guaranteeing

closed-loop stability.

 58

 Theorem 3.2. System stability and convergence of NN weights.

 Let the dynamics be given by (3.1), the critic NN be given by (3.28), the control input be

given by actor NN (3.44) and the disturbance input be given by disturbance NN (3.46). Let

tuning for the critic NN be provided by

2

22
1 1 2 12

2 2

ˆˆ ˆ ˆ ˆ[()]
(1)

T T

T
W a W Q x d u Ru

σ
σ γ

σ σ
= − + − +

+

ɺ
 (3.48)

where 2 1
ˆˆ()f gu kdσ φ= ∇ + + . Let the actor NN be tuned as

 12 2 2 2 1 2 1 2 1

1ˆ ˆ ˆ ˆ ˆ() () ()
4

T TW a F W F W D x W m x Wσ 
= − − − 

 

ɺ
 (3.49)

and the disturbance NN be tuned as

 ()3 3 4 3 3 2 1 1 3 12

1ˆ ˆ ˆ ˆ ˆ()
4

T TW a F W F W x W m Wσ
γ

  = − − + Ε 
  

ɺ
 (3.50)

where

1
1 1 1 1 1 1() () () () (), () () ()T T T TD x x g x R g x x E x x kk xφ φ φ φ−≡ ∇ ∇ ≡∇ ∇ , 2

2
2 2(1)T

m
σ

σ σ
≡

+
,

and 1 2 3 40, 0, 0, 0F F F F> > > > are tuning parameters. Let Facts 1 hold and let () 0Q x > .

Suppose that 2 2 2 2/ (1)Tσ σ σ σ= +

is persistently exciting. Let the tuning parameters

1 2 3 4, , ,F F F F in (3.49), and (3.50) be selected to make the matrix 22D in (A.35) positive definite.

Then there exists an N0 such that, for the number of hidden layer units 0� �> the closed-loop

system state, the critic NN error 1Wɶ , the actor NN error 2Wɶ and the disturbance NN error 3Wɶ are

UUB.

Proof: See appendix A.

 ■

 Remark 3.3. See the comments following equation (3.27). Let 0ε > and let N0 be the

number of hidden layer units above which sup HJIε ε< . In the proof it is seen that the theorem

 59

holds for 0� �> .

 Remark 3.4. The theorem shows that PE is needed for proper identification of the

value function by the critic NN, and that nonstandard tuning algorithms are required for the actor

and the disturbance NN to guarantee stability.

 Remark 3.5. The assumption () 0Q x > is sufficient but not necessary for this result. If

this condition is replaced by zero state observability, the proof still goes through, however it is

tedious and does not add insight. The method used would be the technique used in the proof of

technical Lemma 2.2 Part a in Chapter 2, or the standard methods of [36], [87].

 Theorem 3.3. Exponential Convergence and Nash equilibrium.

 Suppose the hypotheses of Theorem 3.2, hold. Then Theorem 3.1 holds so that

exponential convergence of 1Ŵ to the approximate optimal critic value 1W

is obtained. Then:

a. 1 1 1
ˆˆ ˆ(, , ,)H x W u d is UUB. That is, 1Ŵ converges to the approximate HJI solution, the value

of the ZS game. Where

1
1 1 1

1 ˆˆ () ()
2

T Tu R g x x Wφ−= − ∇ (3.51)

 1 1 12

1ˆ ˆ() ()
2

T Td k x x Wφ
γ

= ∇ (3.52)

b. ˆˆ(), ()u x d x (see (3.44) and (3.46)) converges to the approximate Nash equilibrium

solution of the ZS game.

 Proof. Consider the UUB weights 1Wɶ , 2Wɶ and 3Wɶ as proved in Theorem 3.2. Also

maxε in Theorem 3.1 is practically bounded by the bound in (A.40).

a. The approximate HJI equation is

1 1 1 1 1 1 1 1 12

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ(,) () () ()
4 4

T T T
HJIH x W Q x W x f x W DW W EWϕ ε

γ
= + ∇ − + − (3.53)

After adding zero we have

 60

1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2

1 1 1 1ˆ ˆ ˆ(,) () ()
4 2 4 2

T T T T T
HJIH x W W x f x W DW W DW W EW W EWϕ ε

γ γ
= ∇ − − + + −ɶ ɶ ɶ ɶ ɶ ɶ ɶ (3.54)

 But

1 1 1Ŵ W W= − +ɶ (3.55)

 After taking norms in (3.55) and letting 1 maxW W< one has

1 1 1 1 1 1 maxŴ W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ (3.56)

 Now (3.54) becomes by taking into account (3.56),

()
()

2

1 1 1 1 1 1 1 1 max

2

1 1 1 1 1 max2 2

1 1ˆ(,) () ()
4 2

1 1

4 2
HJI

H x W W x f x W D W D W W

W E W E W W

ϕ

ε
γ γ

≤ ∇ + + +

+ + + +

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
(3.57)

 Let Facts 3.1 hold and also sup HJIε ε< then (3.57) becomes

()
()

2

1 1 1 1 1 1 1 max

2

1 1 1 1 1 max2 2

1 1ˆ(,)
4 2

1 1

4 2

x fH x W b b W x W D W D W W

W E W E W W

φ

ε
γ γ

≤ + + +

+ + + +

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
 (3.58)

 All the signals on the right hand side of (3.58) are UUB. So 1
ˆ(,)H x W is UUB and

convergence to the approximate HJI solution is obtained.

b. According to Theorem 3.1 and equations (3.42), (3.43) and (3.44), (3.46), 1û u− and 1d̂ d−

are UUB because 2 1Ŵ W− and 3 1Ŵ W− are UUB

 So the pair ˆˆ(), ()u x d x gives the Nash equilibrium solution of the zero-sum game.

This completes the proof.

 ■

 Remark 3.6. The theorems make no mention of finding the minimum nonnegative

solution to the HJI. However they do guarantee convergence to a solution ((), ())u x d x such that

(() () () () ())f x g x u x k x d x+ + is stable. This is only accomplished by the minimal nonnegative HJI

 61

solution. Practical implementation, in view of the Policy Iteration Algorithm, would start with

initial weights of zero in the disturbance NN (3.46). NN usage suggests starting with the initial

control NN weights in (3.44) randomly selected and nonzero.

 Note that the dynamics is required to be known to implement this algorithm in that

2 1
ˆˆ()f gu kdσ φ= ∇ + + , 1()D x , 1()E x and (3.44), (3.46) depend on (), (), ()f x g x k x .

3.5 Simulations

 Here we present simulations of a linear and a nonlinear system to show that the game

can be solved ONLINE by learning in real time, using the method of this chapter.

3.5.1. Linear System

 Consider the continuous-time F16 aircraft plant with quadratic cost function used in [85].

The system state vector is []ex qα δ= , where α denotes the angle of attack, q is the pitch

rate and eδ is the elevator deflection angle. The control input is the elevator actuator voltage

and the disturbance is wind gusts on angle of attack. One has the dynamics x Ax Bu Kd= + +ɺ ,

1.01887 0.90506 0.00215 0 1

0.82225 1.07741 0.17555 0 0

0 0 1 1 0

x x u d

− −     
     = − − + +     
     −     

ɺ

where Q and R in the cost function are identity matrices of appropriate dimensions and 5γ = .

Also 1 2 3 1a a a= = = , 1 2 3 4, 10 , , 10F I F I F I F I= = = = where I is an identity matrix of appropriate

dimensions. In this linear case the solution of the HJI equation is given by the solution of the

game algebraic Riccati equation (GARE)

 1

2

1
0T T TA P PA Q PBR B P PKK P

γ
−+ + − + =

 Since the value is quadratic in the LQR case, the critic NN basis set 1()xφ was selected

as the quadratic vector in the state components x x⊗ with ⊗ the Kronecker product.

Redundant terms were removed to leave (1) / 2 6n n + = components. Solving the GARE gives

the parameters of the optimal critic as

 62

*
1 [1.6573 1.3954 -0.1661 1.6573 -0.1804 0.4371]TW = .

which are the components of the Riccati solution matrix P.

 The synchronous zero-sum game PI algorithm is implemented as in Theorem 2. PE

was ensured by adding a small probing noise to the control and the disturbance input. Figure 9

shows the critic parameters, denoted by

 1 1 2 3 4 5 6
ˆ []Tc c c c c cW W W W W W W=

converging to the optimal values. In fact after 300s the critic parameters converged to

 1
ˆ () [1.7090 1.3303 -0.1629 1.7354 -0.1730 0.4468] .TfW t =

 The actor parameters after 300s converge to the values of

2
ˆ () [1.7090 1.3303 -0.1629 1.7354 -0.1730 0.4468] .TfW t =

 The disturbance parameters after 300s converge to the values of

3
ˆ () [1.7090 1.3303 -0.1629 1.7354 -0.1730 0.4468] .TfW t =

 Then, the actor NN is given as

1

2 1

3 111
2 22

2

3 2

3

2 0 0

0
0

0
ˆˆ () 0 ()

0 2 0
1

0

0 0 2

T

T

f

x

x x

x x
u x R W t

x

x x

x

−

 
 
  
  = −   
     
 
  

.

 Then, the disturbance NN is given as

2

1

2 1

3 11
32

2

3 2

3

2 0 0

0
0

0ˆ ˆ() 0 ()
0 2 0

1
0

0 0 2

T

T

f

x

x x

x x
d x W t

x

x x

x

γ

 
 
  
  =   
     
 
  

The evolution of the system states is presented in Figure 10. One can see that after

300s convergence of the NN weights in critic, actor and disturbance has occurred.

 63

Figure 9. Convergence of the critic parameters to the parameters of the optimal critic.

Figure 10. Evolution of the system states for the duration of the experiment.

3.5.2. Single Player Linear System

 The purpose of this example is to show that one learns FASTER if one has an

opponent. That is, the online two-player game converges faster than an equivalent online 1-

 64

player (optimal control) problem. In this example, we use the method for online solution of the

optimal control problem presented in Chapter 2.

 Consider the continuous-time F16 aircraft plant described before but with 0.d = Solving

the ARE with Q and R identity matrices of appropriate dimensions, gives the parameters of

the optimal critic as

*
1 [1.4245 1.1682 -0.1352 1.4361 -0.1516 0.4329]

T
W = .

 Figure 11 shows the critic parameters, denoted by

 1 1 2 3 4 5 6
ˆ []Tc c c c c cW W W W W W W=

converging to the optimal values. In fact after 800s the critic parameters converged to

 1
ˆ () [1.4270 1.1654 -0.1367 1.4387 -0.1496 0.4323] .T

fW t =

 The actor parameters after 800s converge to the values of

 2
ˆ () [1.4270 1.1654 -0.1367 1.4387 -0.1496 0.4323] .T

fW t =

 The actor NN is given as

1

2 1

3 111
2 2

2

3 2

3

2 0 0 1.4270

0 1.1654
0

0 -0.1367
ˆ () 0

1.43870 2 0
1

-0.14960

0.43230 0 2

T

T

x

x x

x x
u x R

x

x x

x

−

   
   
    
    =−     
         
     

.

 The evolution of the system states is presented in Figure 12. One can see that after

800s convergence of the NN weights in critic and actor has occurred. This shows that the

probing noise effectively guaranteed the PE condition.

 65

Figure 11. Convergence of the critic parameters to the parameters of the optimal critic.

Figure 12. Evolution of the system states.

 In comparison with part 3.5.1, it is very clear that the two-player zero-sum game

algorithm has faster convergence skills than the single-player. As a conclusion the critic NN

learns faster when there is an oponent for the control input, named disturbance.

 66

3.5.3. Nonlinear System

 Consider the following affine in control input nonlinear system, with a quadratic cost

constructed as in [64]

2() () () ,x f x g x u k x d x= + + ∈ɺ ℝ

where

1 2

1
3 3 2 2
1 2 12 2 2

()
cos(2) 2

1
0.25 () 0.25 (sin)(4) 2

x

x x x

x

f x
xxx

γ

− + 
 =  + − +


− +


−


1 1

0 0
 () , () .

cos(2) 2 (4) 2(sin)
g x k x

x x

   
= =   + +   

 One selects
1 0

, 1, 8.
0 1

Q R γ
 

= = = 
 

 Also 1 2 3 1a a a= = = , 1 2 3 4, 10 , , 10F I F I F I F I= = = = where I is an identity matrix of

appropriate dimensions.

 The optimal value function is

 * 4 2
1 2

1 1
()

4 2
V x x x= +

the optimal control signal is

 * 1
1 22

() (cos(2) 2)u x x x= − +

and

 *
1 22

1
() (sin(4) 2)

2
d x x x

γ
= +

 One selects the critic NN vector activation function as

 2 2 4 4
1 1 2 1 2() []x x x x xϕ =

 Figure 13 shows the critic parameters, denoted by

1 1 2 3 4
ˆ []Tc c c cW W W W W=

by using the synchronous zero-sum game algorithm. After convergence at about 50s have

 67

 1
ˆ () [-0.0006 0.4981 0.2532 0.0000]TfW t =

 The actor parameters after 80s converge to the values of

 2
ˆ () [-0.0006 0.4981 0.2532 0.0000] ,T

fW t =

and the disturbance parameters after 50s converge to the values of

 3
ˆ () [-0.0006 0.4981 0.2532 0.0000] .TfW t =

 So that the actor NN

1

211
2 232

11

3
2

2 0

0 20 ˆˆ () ()
04cos(2) 2

0 4

T

T

f

x

x
u x R W t

xx

x

−

 
 

   = −    +   
  

also converged to the optimal control, and the disturbance NN

2

1

2
1

332
11

3
2

2 0

0 20ˆ ˆ() ()
04sin(4) 2

0 4

T

T

f

x

x
d x W t

xx

x

γ

 
 

   =    +   
  

also converged to the optimal disturbance.

 The evolution of the system states is presented in Figure 14. Figure 15 shows the

optimal value function. The identified value function given by 1 1 1
ˆ ˆ() ()TV x W xφ= is virtually

indistinguishable from the exact solution and so is not plotted. In fact, Figure 16 shows the 3-D

plot of the difference between the approximated value function and the optimal one. This error is

close to zero. Good approximation of the actual value function is being evolved. Figure 17

shows the 3-D plot of the difference between the approximated control, by using the online

algorithm, and the optimal one. This error is close to zero.

 Finally Figure 18 shows the 3-D plot of the difference between the approximated

disturbance, by using the online algorithm, and the optimal one. This error is close to zero.

 68

Figure 13. Convergence of the critic parameters.

Figure 14. Evolution of the system states.

 69

Figure 15. Optimal Value function.

Figure 16. 3D plot of the approximation error for the value function.

 70

Figure 17. 3D plot of the approximation error for the control.

Figure 18. 3D plot of the approximation error for the disturbance.

3.6 Conclusion

 In this chapter we have proposed a new optimal adaptive algorithm which solves online

the continuous-time zero-sum game problem for affine in the inputs nonlinear systems. The

 71

importance of this algorithm relies the simultaneous tuning of the actor, critic and disturbance

neural networks and the convergence to HJI without solving this equation. Proofs using

Lyapunov techniques guarantee convergence and closed-loop stability. Simulation examples

show the effectiveness of the proposed algorithm.

 72

CHAPTER 4

MULTI-PLAYER GAMES: ONLINE ADAPTIVE LEARNING SOLUTION OF COUPLED

HAMILTON-JACOBI AND COUPLED RICCATI EQUATIONS

4.1 Introduction

 For the most part, interest in the control systems community has been in the (non-

cooperative) zero-sum games, which provide the solution of the H-infinity robust control problem

[11], [60]. However, dynamic team games may have some cooperative objectives and some

selfish objectives among the players. This cooperative/non-cooperative balance is captured in

the NZS games, as detailed herein.

 In this chapter we are interested in feedback policies with full state information, and

provide methods for online gaming, that is for solution of N-player infinite horizon NZS games

online, through learning the Nash-equilibrium in real-time. The dynamics are nonlinear in

continuous-time and are assumed known. A novel adaptive control technique is given that is

based on reinforcement learning techniques, whereby each player’s control policies are tuned

online using data generated in real time along the system trajectories. Also tuned by each

player are ‘critic’ approximator structures whose function is to identify the values of the current

control policies for each player. Based on these value estimates, the players’ policies are

continuously updated. This is a sort of indirect adaptive control algorithm, yet, due to the simple

form dependence of the control policies on the learned value, it is affected online as direct

(‘optimal’) adaptive control.

 This chapter proposes an algorithm for nonlinear continuous-time systems with known

dynamics to solve the N-player non-zero sum (NZS) game problem where each player wants to

optimize his own performance index [11]. The number of parametric approximator structures

 73

that are used is 2� . Each player maintains a critic approximator neural network (NN) to learn

his optimal value and a control actor NN to learn his optimal control policy. Parameter update

laws are given to tune the N-critic and N-actor neural networks simultaneously online to

converge to the solution to the coupled HJ equations, while also guaranteeing closed-loop

stability. Rigorous proofs of performance and convergence are given. For the sake of clarity,

we restrict ourselves to two player differential games in the actual proof. The proof technique

can be directly extended using further careful bookkeeping to multiple players.

 The chapter is organized as follows. It is necessary to develop policy iteration (PI)

techniques for solving multi-player games, for these PI algorithms give the controller structure

needed for the online adaptive learning techniques presented in this work. Therefore, Section

4.2 presents the formulation of multi-player NZS differential games for nonlinear systems [11]

and presents a policy iteration algorithm to solve the required coupled nonlinear HJ equations

by successive solutions of nonlinear Lyapunov-like equations. Based on this structure, Section

4.4 develops an adaptive control method for on-line learning of the solution to the two-player

NZS game problem. The method generalizes to the multi-player games, and particularizes to

the special case of zero-sum (ZS) games. Based on the PI algorithm in Section 4.3, suitable

approximator structures (based on neural networks) are developed for the value function and

the control inputs of the two players. A rigorous mathematical analysis is carried out. It is found

that the actor and critic neural networks require novel nonstandard tuning algorithms to

guarantee stability and convergence to the Nash equilibrium. A persistence of excitation

condition [36], [87] is needed to guarantee proper convergence to the optimal value functions.

A Lyapunov analysis technique is used. Section 4.5 presents simulation examples that show the

effectiveness of the synchronous online game algorithm in learning the optimal values for both

linear and nonlinear systems.

 74

 4.2 N-Player differential game for nonlinear systems

 In this section is presented the formulation of N-player games for nonlinear systems. A

Policy Iteration solution algorithm is given. The objective is to lay a foundation for the control

structure needed in Section 4.4 for online solution of the game problems in real-time.

4.2.1 Multi-Player Non Zero Sum Games

 Consider the N-player nonlinear time-invariant differential game on an infinite time

horizon

1

() ()

�

j j

j

x f x g x u

=

= +∑ɺ (4.1)

where state () nx t ∈ℝ , players or controls () jm
ju t ∈ℝ . Assume that (0) 0f = and ()f x , ()jg x are

locally Lipschitz.

 The cost functionals associated with each player are

1 2 1 2

10 0

((0), , ,) (()) ((), , ,) ;

�
T

i � i j ij j i �

j

J x u u u Q x u R u dt r x t u u u dt i �

∞ ∞

=

= + ≡ ∈∑∫ ∫… … (4.2)

where function () 0iQ x ≥ is generally nonlinear, and 0, 0ii ijR R> ≥ are symmetric matrices.

 We seek optimal controls among the set of feedback control policies with complete

state information.

 Definition 4.1. (Admissible policies) Feedback control policies ()i iu xµ= are defined as

admissible with respect to (4.2) on a set nΩ ⊂ ℝ , denoted by ()iµ ∈Ψ Ω if ()i xµ is continuous on

Ω , (0) 0iµ = , ()i xµ stabilizes (4.1) on Ω , and (4.2) is finite 0x∀ ∈Ω .

 Given admissible feedback policies/strategies () (),i iu t xµ= the value is

1 2 1 2

1

((0), , ,) (()) ((), , ,) ;

�
T

i � i j ij j i �

jt t

V x Q x R d r x t d i �µ µ µ µ µ τ µ µ µ τ
∞ ∞

=

= + ≡ ∈∑∫ ∫… … (4.3)

 Define the N-player game

 75

*
1 2

1

((), , ,) min (()) ;
i

�
T

i � i j ij j

jt

V x t Q x R d i �
µ

µ µ µ µ µ τ
∞

=

= + ∈∑∫… (4.4)

 By assuming that all the players have the same hierarchical level, we focus on the so-

called Nash equilibrium that is given by the following definition.

 Definition 4.2. [11] (Nash equilibrium strategies) An N-tuple of strategies

{ }* * *
1 2, ,...,µ µ µΝ with * ,i i i �µ ∈Ω ∈ is said to constitute a Nash equilibrium solution for an N-player

finite game in extensive form, if the following N inequalities are satisfied for all * ,i i i �µ ∈Ω ∈ :

* * * * * * * *
1 2 1 2(, , ,...,) (, , ,...,),i i i i iJ J J i �µ µ µ µ µ µ µ µΝ Ν≤ ∈≜ (4.5)

 The N-tuple of quantities { }* * *
1 2, ,...,J J JΝ is known as a Nash equilibrium outcome of the

N-player game.

 Differential equivalents to each value function are given by the following nonlinear

Lyapunov equations (different form from those given in [11])

1

1

0 (, , ,) () (() ()), (0) 0,

�
T

� i j j i

j

r x u u V f x g x u V i �

=

= + ∇ + = ∈∑… (4.6)

where in
i iV V x∇ = ∂ ∂ ∈ℝ is the gradient vector (e.g. transposed gradient). Then, suitable

nonnegative definite solutions to (4.6) are the values evaluated using the infinite integral (4.4)

along the system trajectories. Define the Hamiltonian functions

1 1

1

(, , , ,) (, , ,) () (() ()),

�
T

i i � � i j j

j

H x V u u r x u u V f x g x u i �

=

∇ = + ∇ + ∈∑… … (4.7)

 According to the stationarity conditions, associated feedback control policies are given

by

11
2

0 () () ,Ti
i ii i i

i

H
x R g x V i �

u
µ −∂

= ⇒ = − ∇ ∈
∂

 (4.8)

 Substituting (4.8) into (4.6) one obtains the N coupled Hamilton-Jacobi (HJ) equations

 76

1 11 1
2 4

1 1

0 () () () () () () () , (0) 0

� �
T T T T T

i j jj j j i j j jj ij jj j j i

j j

V f x g x R g x V Q x V g x R R R g x V V− − −

= =

 
 = ∇ − ∇ + + ∇ ∇ =
 
 

∑ ∑ (4.9)

 These coupled HJ equations are in ‘closed-loop’ form. The equivalent ‘open-loop’ form

is

1 11 1
2 4

1 1

0 () () () () () () , (0) 0

� �
T T T T T T

i i i j jj j j j j jj ij jj j j i

j j

V f x Q x V g x R g x V V g x R R R g x V V− − −

= =

= ∇ + − ∇ ∇ + ∇ ∇ =∑ ∑
 (4.10)

 In linear systems of the form

1

�

j j

j

x Ax B u

=

= +∑ɺ , (4.9) becomes the N coupled generalized

algebraic Riccati equations

11
4

1

0 ,

�
T T T

i c c i i j j jj ij jj j j

j

PA A P Q P B R R R B P i �− −

=

= + + + ∈∑ (4.11)

where 11
2

1

�
T

c i ii i i

i

A A B R B P−

=

= − ∑ . It is shown in [11] that if there exist solutions to (4.11) and further

satisfying the conditions that for each i �∈ the pair 11
2

,T
j jj j j i

j �
j i

A B R B P B−

∈
≠

 
 
 −
 
 
 

∑ is stabilizable and

the pair 1 11 1
2 4

,T T T
j jj j j i j j jj ij jj j j

j � j �
j i j i

A B R B P Q P B R R R B P− − −

∈ ∈
≠ ≠

 
 
 − +
 
 
 

∑ ∑ is detectable, then the N-tuple of the

stationary feedback policies * 11
2

() ,
T

i i ii i ix K x R B Px i �µ −= − = − ∈ provides a Nash equilibrium

solution for the linear quadratic N-player differential game among feedback policies with full

state information. Furthermore the resulting system dynamics, described by

0, (0)cx A x x x= =ɺ are asymptotically stable.

 77

4.2.2 Cooperation vs. Non-Cooperation in Multi-Player Games

One may write the costs as

1 1

1 1
() ,

� �

i j i j i

j j

J J J J J J i �
� �

= =

= + − ≡ + ∈∑ ∑ ɶ (4.12)

where J is an overall cooperative ‘team’ cost and iJ
ɶ a ‘conflict’ cost for player i. If 0J = one

has a zero-sum game. The most studied case is the 2-player zero-sum game when 1 2J J= − .

Such games are known as convex-concave games, result in saddle-point Nash equilibria, and

have been extensively studied in control systems due to their relation to the H∞ control problem

[11], [1], [60]. However, general dynamic team games may have some cooperative objectives

and some selfish objectives among the players. This interplay between cooperative and non-

cooperative objectives is captured in NZS games, as detailed in (4.12). Therefore, this work is

interested in general N-player games which may or may not be zero-sum.

 Though NZS games may contain non-cooperative components, note that the solution to

each player’s coupled HJI equations (4.9) requires knowledge of all the other players’ strategies

(4.8). This is in the spirit of rational opponents [11] whereby the players share information, yet

from the definition of Nash equilibrium each decides to remain at the equilibrium policy.

4.2.3 Policy Iteration Solution for Non-Zero Sum Games

 Equations (4.9) are difficult or impossible to solve. An iterative offline solution

technique is given by the following policy iteration algorithm. It solves the coupled HJ equations

by iterative solution of uncoupled nonlinear Lyapunov equations.

 Algorithm 1. Policy Iteration for N-player games

a) Start with stabilizing initial policies 0 0
1(), , ()�x xµ µ… .

b) Given the N-tuple of policies 1(), , ()k k
�x xµ µ… , solve for the N-tuple of costs

1 2(()), (())... (())k k k
�V x t V x t V x t using

 78

1

1

0 (, , ,) () () () , (0) 0

�
k k k T i k

� i j j i

j

r x V f x g x V i �µ µ µ
=

 
 = + ∇ + = ∈
 
 

∑… (4.13)

c) Update the N-tuple of control policies using:

1
1

()

argmin[(, , , ,)]

i

k
i i i �

u

H x V u u i �µ +

∈Ψ Ω
= ∇ ∈… (4.14)

which explicitly is

1 11
2

() ()
k T k
i ii i ix R g x V i �µ + −= − ∇ ∈ (4.15)

 ■

 A linear 2-player version of Algorithm 1 is given in [28] and can be considered as an

extension of Kleiman’s Algorithm [44] to 2-player games.

 In the next section we use PI Algorithm 1 to motivate the control structure for an online

adaptive N-player game solution algorithm. Then it is proven that ‘optimal adaptive’ control

algorithm converges online to the solution of coupled HJs (4.10), while guaranteeing closed-

loop stability.

4.3 Value function approximation for solution of nonlinear Lyapunov equations

 This work uses nonlinear approximator structures for Value Function Approximation

(VFA) [15], [98], [99] to solve (4.13). We show how to solve the 2-player non-zero sum game

presented in Section 2, the approach can easily be extended to more than 2 players.

 Consider the nonlinear time-invariant affine in the input dynamical system given by

() () () () ()x f x g x u x k x d x= + +ɺ (4.16)

where state () nx t ∈ℝ , first control input () mu x ∈ℝ , and second control input () qd x ∈ℝ . Assume

that (0) 0f = and ()f x , (), ()g x k x are locally Lipschitz, () ff x b x< .

 Assumption 1. For admissible feedback control policies the nonlinear Lyapunov

equations (4.13) have locally smooth solutions 1 2() 0, () 0,V x V x x′ ′≥ ≥ ∀ ∈Ω .

 79

 According to the Weierstrass higher-order approximation Theorem [4], [26], [34], there

exist complete independent basis sets such that the solution 1 2(()), (())V x t V x t′ ′ to (4.6) and their

gradients are uniformly approximated. Specifically, the basis sets are dense in the Sobolev

norm 1,W ∞ [6].

 Therefore, assume there exist constant neural network (NN) weights 1W and 2W such

that the value functions 1 ()V x′ and 2 ()V x′ are approximated on a compact set Ω as

1 1 1 1() () ()TV x W x xφ ε′ = + (4.17)

2 2 2 2() () ()TV x W x xφ ε′ = + (4.18)

with 1() :
n Kxφ →ℝ ℝ and 2 () :

n Kxφ →ℝ ℝ the NN activation function basis set vectors, K the

number of neurons in the hidden layer, and 1()xε and 2 ()xε the NN approximation errors. From

the approximation literature, the basis functions can be selected as sigmoids, tanh, polynomials,

etc.

 The value function derivatives are also uniformly approximated, e.g., additionally,

x∀ ∈Ω ,

()
, 1,2

T
Ti i i

i i i i

V x
W W i

x x x

φ ε
φ ε

′∂ ∂ ∂ 
= + =∇ +∇ = ∂ ∂ ∂ 

 (4.19)

 Then, as the number of hidden-layer neurons K → ∞ , the approximation errors

0, 0, 1,2i i iε ε→ ∇ → = uniformly [4], [26]. In addition, for fixed K, the NN approximation errors

1 2(), ()x xε ε and 1 2,ε ε∇ ∇ are bounded on a set Ω by constants if Ω is compact [34]. We refer to

the NN with weights 1W and 2W that perform VFA as the critic NNs for each player.

 Using the NN VFA (4.17), (4.18) considering fixed feedback policies u and d the

Hamiltonians (4.7) become:

11 1 1 11 12 1 1(, , ,) () (() () ())
T T T

HH x W u d Q x u R u d R d W f x g x u k x dφ ε= + + + ∇ + + = (4.20)

 80

22 2 2 21 22 2 2(, , ,) () (() () ())
T T T

HH x W u d Q x u R u d R d W f x g x u k x dφ ε= + + + ∇ + + = (4.21)

 The residual errors for the two players are

() (), 1,2
iH i f gu kd iε ε Τ≡ − ∇ + + = (4.22)

 Substituting 1W , 2W into the HJ equations (4.10), one obtains

11
1 1 1 11 1 1 1 14

11
2 2 22 12 22 2 24

() () () () () () ()

() () () ()

T T T T

T T T T

Q x W x g x R g x x W W x f x

W x k x R R R k x x W

φ φ φ

φ φ

−

− −

− ∇ ∇ + ∇

+ ∇ ∇

1

11
1 1 22 2 2 12

() () () () , (0) 0
T T T

HJW x k x R k x x W Vφ φ ε−− ∇ ∇ = = (4.23)

11
2 2 2 22 2 2 2 24
() () () () () () ()

T T T T
Q x W x k x R k x x W W x f xφ φ φ−− ∇ ∇ + ∇

11
1 1 11 21 11 1 14

() () () ()
T T T T

W x g x R R R g x x Wφ φ− −+ ∇ ∇

2

11
2 2 11 1 1 22

() () () () , (0) 0
T T T

HJW x g x R g x x W Vφ φ ε−− ∇ ∇ = = (4.24)

where the residual errors due to function approximation error for the first player is

1

1 1 11 1 1
1 1 11 1 1 11 1 2 22 12 22 22 4 4

() () () () () ()
T T T T T T T

HJ W g x R g x g x R g x k x R R R k xε φ ε ε ε ε ε− − − −≡ ∇ ∇ + ∇ ∇ − ∇ ∇

1 11 1
2 2 22 12 22 2 1 1 1 22 24 2

() () () () ()
T T T T T T

W k x R R R k x f x W k x R k xφ ε ε φ ε− − −− ∇ ∇ −∇ + ∇ ∇

1 11 1
1 22 2 2 2 22 12 2

() () () ()
T T T T
k x R k x W k x R k xε ε φ ε− −+ ∇ ∇ + ∇ ∇

and
2HJε for the second player is similarly defined.

 The following proposition follows as in [4], [5].

 Proposition 4.2. For any admissible feedback policies (()), (())u x t d x t

the least-squares

pair solution to (4.20) and (4.21) exists and is unique for each K. Denote these solutions as

1W and 2W and define

 1 1 1() ()TV x W xφ= (4.25)

2 2 2() ()TV x W xφ= (4.26)

Then, as K → ∞ :

a) sup 0, 1,2
iH

x

iε
∈Ω

→ =

 81

b) sup 0, 1,2
iHJ

x

iε
∈Ω

→ =

c) sup 0, 1,2i i
x

V V i
∈Ω

′− → =

d) sup 0, 1,2i i
x

V V i
∈Ω

′∇ −∇ → =

 ■

 This result shows that 1()V x , 2()V x converge uniformly in Sobolev norm 1,W ∞ [6] to the

exact solution 1 '()V x , 2 '()V x to (4.6). Therefore,

11 1 1 10 () : sup , ()HJ

x

K K Kε ε ε ε ε
∈Ω

∀ > ∃ < > and

22 2 2 20 () : sup , ()HJ
x

K K Kε ε ε ε ε
∈Ω

∀ > ∃ < > .

 Assuming current NN weight estimates 1Ŵ and 2Ŵ , the outputs of the two critic NN are

given by

1 1 1
ˆ ˆ() ()TV x W xφ= (4.27)

2 2 2
ˆ ˆ() ()TV x W xφ= (4.28)

 The approximate Lyapunov-like equations are then

1 1 1 2 1 1 11 1 2 12 2 1 1 1 2 1
ˆ ˆ(, , ,) () (() () ())T T TH x W u d Q x u R u d R d W f x g x u k x d eφ= + + + ∇ + + = (4.29)

2 2 1 2 2 1 21 1 2 22 2 2 2 1 2 2
ˆ ˆ(, , ,) () (() () ())T T TH x W u d Q x u R u d R d W f x g x u k x d eφ= + + + ∇ + + = (4.30)

 It is desired to select 1Ŵ and 2Ŵ to minimize the square residual error

 1 1
1 1 1 2 22 2

T T
E e e e e= +

 Then 1 1
ˆ ()W t W→ , 2 2

ˆ ()W t W→ and
11 He ε→ ,

22 He ε→ .

 Select the tuning laws for the critic weights as the normalized gradient descent

algorithm

 82

 1 1
1 1 1 1 1 1 1 11 1 2 12 22

1 1 1

ˆ ˆ[()]
ˆ (1)

T TE
W a a W Q x u R u d R d

W

σ
σ

σ σ
Τ

Τ

∂
= − = − + + +

∂ +

ɺ
 (4.31)

 1 2
2 2 2 2 2 2 1 21 1 2 22 22

2 2 2

ˆ ˆ[()]
ˆ (1)

T TE
W a a W Q x u R u d R d

W

σ
σ

σ σ
Τ

Τ

∂
= − = − + + +

∂ +

ɺ
 (4.32)

where 1 2(() () ()), 1,2i i f x g x u k x d iσ φ=∇ + + = . Note that these are modified gradient descent

algorithms with the normalizing terms in the denominators raised to the power 2.

 Persistence of Excitation (PE) Assumption. Let the signals 1σ , 2σ

be persistently

exciting over the interval [,]t t T+ , i.e. there exist constants 1 0β > , 2 0β > , 3 0β > , 4 0β > 0Τ >

such that, for all t,

1 0 1 1 2() ()

t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫ (4.33)

3 1 2 2 4() ()

t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫ (4.34)

where / (1), 1,2T
i i i i iσ σ σ σ= + = , and Ι the identity matrix of appropriate dimensions.

 The PE assumption is needed in adaptive control if one desires to perform system

identification using e.g. RLS [36], [87]. It is needed in the upcoming Theorem 4.1 because one

effectively desires to identify the critic parameters to approximate solutions 1()V x and 2()V x to

the nonlinear Lyapunov equations (4.6).

 The properties of tuning algorithms (4.31) and (4.32) and their exponential

convergence to residual sets are given in the following theorem that was proven for a single

player in Chapter 2.

 Theorem 4.1. Let (()), (())u x t d x t be any admissible bounded feedback policies. Let

tuning for the critic NNs be provided by (4.31), (4.32) and assume that 1σ and 2σ

are

 83

persistently exciting. Let the residual errors in (4.22) be bounded by
1 1maxHε ε< and

2 2maxHε ε< . Then the critic parameter errors converge exponentially to the residual sets

{ }
1

2
1 1 2 1 max

1

() 1 2W t a
β

δ β ε
β

Τ
≤ +  

ɶ

 (4.35)

{ }
2

4
2 2 4 2 max

3

() 1 2W t a
β

δ β ε
β

Τ
≤ +  

ɶ (4.36)

where 1δ , 2δ are positive constants of the order of 1.

 Proof: Follows as Chapter 2 (Theorem 2.1).

 ■

4.4 Online Solution for 2-player games

 In this section we develop an optimal adaptive control algorithm that solves the 2-player

game problem online using data measured along the system trajectories. A special case is the

zero-sum 2-player game that was derived in Chapter 3. The technique given here generalizes

directly to the N-player game. A Lyapunov technique is used to derive novel parameter tuning

algorithms for the values and control policies that guarantee closed-loop stability as well as

convergence to the approximate game solution of (4.10).

 A suitable ‘actor-critic’ control structure is developed based on the PI Algorithm in the

previous section. The adaptive control structure relies on each player maintaining two

approximator structures, one for its current value estimate (c.f. (4.13)) and one for its current

policy (c.f. (4.14), (4.15)). This structure is based on reinforcement learning precepts.

 Define

1 11 1
1 11 1 11 1 12 2
() () () () ()

T T T
u x R g x V x R g x x Wφ− −= − ∇ = − ∇

 (4.37)

 1 11 1
2 22 2 22 2 22 2
() () () () ()

T T T
d x R k x V x R k x x Wφ− −= − ∇ = − ∇ (4.38)

with 1V and 2V defined in terms of the least squares solutions to (4.20), (4.21) e.g. (3.25) and

 84

(4.26) respectively. According to Proposition 4.2, as K → ∞ (3.42) and (3.43) converge

uniformly to (4.8). The next result follows as in [4], [5].

 Proposition 4.3. There exists a number of hidden layer units K0 such that 1()u x and

2()d x are admissible for K>K0.

 ■

 In light of this result, the ideal control policy updates are taken as (4.37) and (4.38) with

1W and 2W unknown. Therefore, define the control policies in the form of action neural networks

which compute the control inputs in the structured form

11
3 11 1 32

ˆ() ()
T T

u x R g x Wφ−= − ∇ (4.39)

11
4 22 2 42

ˆ() ()
T T

d x R k x Wφ−= − ∇ (4.40)

where 3Ŵ and 4Ŵ denote the current estimated values of the ideal NN weights 1W and

2W respectively. Define the critic and the actor NN estimation errors respectively as

1 1 1
ˆW W W= −ɶ , 2 2 2

ˆW W W= −ɶ , 3 1 3
ˆW W W= −ɶ 4 2 4

ˆW W W= −ɶ . (4.41)

 Facts 4.1. For a given compact set nΩ ⊂ ℝ :

a. (.), (.)g k are bounded by constants:

() , ()g kg x b k x b< <

b. The NN approx errors and their gradients are bounded so that

1 1bεε < ,
11 x

bεε∇ < , 2 2bεε < ,
22 x

bεε∇ <

c. The NN activation functions and their gradients are bounded so that

1 1 2 21 1 2 2() , () , () , ()
x x

x b x b x b x bφ φ φ φφ φ φ φ< ∇ < < ∇ <

d. The critic NN weights are bounded by known constants

 1 1maxW W< , 2 2maxW W<

 ■

 85

 The main Theorems of Chapter 4 are now given, which provide the tuning laws for the

actor and critic neural networks that guarantee convergence of the 2-player nonzero-sum game

algorithm in real-time to the Nash equilibrium solution, while also guaranteeing closed-loop

stability.

 Theorem 4.2. Stability and bounded Neural Network weight errors. Let the

dynamics be given by (4.16), and consider the 2-player game formulation in Section 4.2. Let the

critic NNs be given by (4.27) and (4.28), the control inputs be given (4.39) and (4.40). Let

tuning for the critic NNs be provided by

3
1 1 3 1 1 3 11 3 4 12 42

3 3

ˆ ˆ[()]
(1)

T T T

T
W a W Q x u R u d R d

σ
σ

σ σ
= − + + +

+

ɺ
 (4.42)

4
2 2 4 2 2 3 21 3 4 22 42

4 4

ˆ ˆ[()]
(1)

T T T

T
W a W Q x u R u d R d

σ
σ

σ σ
= − + + +

+

ɺ
 (4.43)

where 3 1 3 4()f gu kdσ φ= ∇ + + and 4 2 3 4()f gu kdσ φ= ∇ + + . Let the first actor NN (first player) be

tuned as

 1
3 3 2 3 1 3 1 1 11 21 11 1 3 2 2 1 3 1 1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{() (() () ())}
4

T T T T T TW a F W F W g x R R R g x W m W D x W m Wσ φ φ− −= − − − ∇ ∇ +
ɺ

 (4.44)

and the second actor (second player) NN be tuned as

 1
4 4 4 4 3 4 2 2 22 12 22 2 4 1 1 2 4 2 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{() (() () ())}
4

T T T T T TW a F W F W k x R R R k x W m W D x W m Wσ φ φ− −= − − − ∇ ∇ +
ɺ

 (4.45)

where

1 1
1 1 11 1 2 2 22 2() () () () (), () () (),T T T TD x x g x R g x x D x x kR k xφ φ φ φ− −≡ ∇ ∇ ≡ ∇ ∇ 3

1 2
3 3(1)T

m
σ

σ σ
≡

+
,

4
2 2

4 4(1)T
m

σ

σ σ
≡

+
 and 1 2 3 40, 0, 0, 0F F F F> > > > are tuning parameters. Let Assumption 4.1

hold, and also assume 1() 0Q x > and 2 () 0Q x > . Suppose that 3 3 3 3/ (1)Tσ σ σ σ= + and

4 4 4 4/ (1)Tσ σ σ σ= +

are persistently exciting. Let the tuning parameters be selected as detailed

in the proof. Then there exists a K0 such that, for the number of hidden layer units 0K K> the

 86

closed-loop system state, the critic NN errors 1Wɶ and 2Wɶ , the first actor NN error 3Wɶ and the

second actor NN error 4Wɶ are UUB.

 Proof: See appendix A.

 ■

 Remark 4.1. The tuning parameters 1 2 3 4, , ,F F F F in (4.44), and (4.45) must be selected

to make the matrix M in (A.50) positive definite (more discussion is presented in the appendix).

 Remark 4.2. NN usage suggests starting with the initial control NN weights in (4.39)

and (4.40) randomly selected and nonzero.

 Remark 4.3. The assumption 1() 0Q x > and 2 () 0Q x > is sufficient but not necessary.

 Remark 4.4. Standard neuroadaptive controllers for single players require only 1 NN,

namely the control action NN [50]. However, optimal neuroadaptive controllers based on RL

(e.g. through PI Algorithm) require also a critic NN that identifies the value function for each

player. In the optimal control (single-player) case this requires 2 NN, as described in Chapter 2.

That is, the price paid for an adaptive controller that converges to an optimal control solution is

a doubling in the number of NN, which approximately doubles the computational complexity.

 Theorem 4.3. Nash solution of the game. Suppose the hypotheses of Theorem 4.2

hold. Then:

a. 1 1 1 2
ˆˆ ˆ(, , ,)H x W u d and 2 2 1 2

ˆˆ ˆ(, , ,)H x W u d are UUB, where

11
1 11 1 12

ˆˆ () ()
T T

u R g x x Wφ−= − ∇ (4.46)

 11
2 22 2 22
ˆ ˆ() ()

T T
d R k x x Wφ−= − ∇ (4.47)

That is, 1Ŵ and 2Ŵ converge to the approximate coupled HJ solution.

b. 3 4(), ()u x d x (see (4.39) and (4.40)) converge to the approximate Nash solution of the

game.

 Proof: Consider the weights 1Wɶ , 2Wɶ , 3Wɶ and 4Wɶ to be UUB as proved in Theorem 4.2.

 87

a. The approximate coupled HJ equations are

1

11
1 1 1 2 1 1 2 1 1 1 11 1 14

1 11 1
1 1 1 1 22 2 2 2 2 22 12 22 2 22 4

ˆˆ ˆ ˆ ˆ ˆˆ(, , ,) (, ,) () () () () ()

ˆ ˆ ˆ ˆ ˆ() () () () () () () () () ()

T T T

T T T T T T T T
HJ

H x W u d H x W W Q x W x g x R g x x W

W x f x W x k x R k x x W W x k x R R R k x x W

φ φ

φ φ φ φ φ ε

−

− − −

≡ = − ∇ ∇

+ ∇ − ∇ ∇ + ∇ ∇ −

and

2

11
2 2 1 2 2 1 2 2 2 2 11 1 12

1 11 1
1 1 11 21 11 1 1 2 2 22 2 2 2 24 4

ˆˆ ˆ ˆ ˆ ˆˆ(, , ,) (, ,) () () () () ()

ˆ ˆ ˆ ˆ ˆ() () () () () () () () () ()

T T T

T T T T T T T T
HJ

H x W u d H x W W Q x W x g x R g x x W

W x g x R R R g x x W W x k x R k x x W W x f x

φ φ

φ φ ε φ φ φ

−

− − −

≡ = − ∇ ∇

+ ∇ ∇ − − ∇ ∇ + ∇

 After adding zero we have

11 1 1
1 1 2 1 1 1 1 1 1 1 1 2 2 22 12 22 2 24 2 4

ˆ ˆ ˆ ˆ(, ,) () () () () () ()
T T T T T T T

H x W W W x f x W DW W DW W x k x R R R k x x Wφ φ φ− −= ∇ + − − ∇ ∇ɶ ɶ ɶ ɶ

1 11 1
2 2 22 12 22 2 2 1 1 22 2 24 2

ˆ ˆ() () () () () () () ()
T T T T T T T

W x k x R R R k x x W W x k x R k x x Wφ φ φ φ− − −+ ∇ ∇ + ∇ ∇

1

11
1 1 22 2 22

() () () ()
T T T

HJW x k x R k x x Wφ φ ε−− ∇ ∇ − (4.48)

and

11
2 1 2 2 2 2 2 11 1 12

ˆ ˆ ˆ ˆ(, ,) () () () () () ()
T T T T

H x W W W x f x W x g x R g x x Wφ φ φ−= ∇ + ∇ ∇ɶ

11
2 2 11 1 12

() () () ()
T T T

W x g x R g x x Wφ φ−− ∇ ∇

1 11 1
1 1 11 21 11 1 1 1 1 11 21 11 1 14 4
ˆ ˆ() () () () () () () ()

T T T T T T T T
W x g x R R R g x x W W x g x R R R g x x Wφ φ φ φ− − − −− ∇ ∇ + ∇ ∇

2

1 11 1
2 2 22 2 2 2 2 22 2 24 2

() () () () () () () ()
T T T T T T

HJW x k x R k x x W W x k x R k x x Wφ φ φ φ ε− −+ ∇ ∇ − ∇ ∇ −ɶ ɶ ɶ (4.49)

 But

 1 1 1Ŵ W W= − +ɶ and 2 2 2Ŵ W W= − +ɶ (4.50)

 After taking norms in (4.50) and letting 1 1maxW W< and 2 2maxW W< one has

 1 1 1 1 1 1 1maxŴ W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ (4.51)

and

 2 2 2 2 2 2 2maxŴ W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ (4.52)

 Now (4.48) becomes, by taking into account (4.51), (4.52), Facts 4.1 and
1 1sup HJ

x

ε ε
∈Ω

<

 88

()1

22
11 1

1 1 2 1 1 1 2 2max 2 22 12 22 24 4

2 11
2max 2 22 12 22 24

ˆ ˆ(, ,) () () () ()

() () () ()

x

T
T T T

f

T T T

H x W W b b x W W D W W x k x R R R k x x

W x k x R R R k x x

φ φ φ

φ φ

− −

− −

≤ + + + ∇ ∇

+ ∇ ∇

ɶ ɶ ɶ

()() 11 1
1 1max 2 2max 1 22 2 1max 1 12 2

() () () ()T TW W W W x k x R k x x W W Dφ φ−+ + + ∇ ∇ +ɶ ɶ ɶ

11
1max 2max 1 22 2 12

() () () ()T TW W x k x R k x xφ φ ε−+ ∇ ∇ + (4.53)

and same for (4.49) with
2 2sup HJ

x

ε ε
∈Ω

<

()()1

11
2 1 2 2 2 2max 1 1max 2 11 12

ˆ ˆ(, ,) () () () ()
x

T T
fH x W W b b x W W W W W x g x R g x xφ φ φ−≤ + + + ∇ ∇ɶ ɶ ɶ

()21 11 1
2max 1max 2 11 1 1 1max 1 11 21 11 12 4

() () () () () () () ()T T T T TW W x g x R g x x W W x g x R R R g x xφ φ φ φ− − −+ ∇ ∇ + + ∇ ∇ɶ

2
2 1 11 1

1max 1 11 21 11 1 2 2 22 24 4
() () () () () () () ()T T T T TW x g x R R R g x x W x k x R k x xφ φ φ φ− − −+ ∇ ∇ + ∇ ∇ɶ

11
2max 2 2 22 2 22

() () () ()T TW W x k x R k x xφ φ ε−+ ∇ ∇ +ɶ (4.54)

 All the signals on the right hand side of (4.53) and (4.54) are UUB. So

1 1 1 2
ˆˆ ˆ(, , ,)H x W u d and 2 2 1 2

ˆˆ ˆ(, , ,)H x W u d are UUB and convergence to the approximate coupled HJ

solution is obtained.

b. According to Theorem 4.1, 4.2 and equations (3.42), (3.43) and (4.39), (4.40) 3 1u u−

and 4 2d d− are UUB because 3 1Ŵ W− and 4 2Ŵ W− are UUB.

 So the pair 3 4(), ()u x d x gives the approximate Nash equilibrium solution of the game.

This completes the proof.

 ■

 Remark 4.5. The theorems show that PE is needed for proper identification of the

value functions by the critic NNs, and that nonstandard tuning algorithms are required for the

actor NNs to guarantee stability.

 Remark 4.6. Theorems 4.2 and 4.3 show UUB of key quantities. According to the

definition of vector D in (A.49) and to (4.53), (4.54), the error bounds depend on the NN

 89

approximation errors, nonlinear Lyapunov equation and HJ equation residuals, and the bounds

1max 2max,W W on the unknown NN weights. By the Weierstrass Approximation Theorem and

Proposition 4.2, all of these go to zero uniformly as the number of NN hidden layers increases

except for 1max 2max,W W . The question of obtaining improved errors bounds in neuroadaptive

control has a long and studied literature. Methods have been developed for removing

1max 2max,W W from the UUB error bounds. See for instance the work of Ge et al (e.g. [29]).

Those results could be used to extend the tuning algorithms provided here, but do not constitute

a part of the novel results presented herein.

 The bounds in the theorems are in fact conservative. The simulation results show that

the values and Nash solutions are very closely identified.

4.5 Simulation Results

 Here we present simulations of nonlinear and linear systems to show that the game can

be solved ONLINE by learning in real time, using the method of this chapter. PE is needed to

guarantee convergence to the Nash solution. In these simulations, exponentially decreasing

probing noise is added to the control inputs to ensure PE until convergence is obtained.

4.5.1 Nonlinear system

 Consider the following affine in control input nonlinear system, with a quadratic cost

constructed as in [64]

 2() () () ,x f x g x u k x d x= + + ∈ɺ ℝ

where

 2 21 1 1
2 1 22 4

2

24

2
1 1

()
cos(2) 2 (4)() (s 2in)

x
f x

xx xx x x

 
 =

+ + +− + − 

2

1 1

00
 () , (

s
) .

cos(2) 2 (4n 2i)
g x k x

x x

  
= =   + +    

 Select 1 22Q Q= , 11 222R R= and 12 212R R= , where 2Q , 22R and 21R are identity matrices.

 90

Select 1 2 3 4 1a a a a= = = = and 4 3 2 1 100F F F F I= = = = for the constants on the tuning laws,

where I is an identity matrix of appropriate dimensions.

 The optimal value function for the first critic (player 1) is

 * 2 2
1 1 2

1
()

2
V x x x= +

and for the second critic (player 2) is

 * 2 2
2 1 2

1 1
()

4 2
V x x x= + .

 The optimal control signal for the first player is

 *
1 2() 2(cos(2) 2)u x x x= − +

and the optimal control signal for the second player is

 * 2
1 2() (sin(4) 2)d x x x= − + .

 One selects the NN vector activation function for the critics as

2 2
1 2 1 1 2 2() () []x x x x x xϕ ϕ= ≡ and uses the control algorithm presented in Theorem 4.2. Each

player maintains two NN, a critic NN to estimate its current value and an action NN to estimate

its current control policy.

 Figure 19 shows the critic parameters for the first player, denoted by

1 1 2 3
ˆ []Tc c cW W W W= by using the proposed game algorithm. After convergence at about 150s

one has 1
ˆ () [0.5015 0.0007 1.0001]TfW t = . Figure 20 shows the critic parameters for the second

player 2 2 1 2 2 2 3
ˆ []Tc c cW W W W= . After convergence at about 150s one has

 2
ˆ () [0.2514 0.0006 0.5001]TfW t = .

 The actor parameters for the first player after 150s converge to the values of

3
ˆ () [0.5015 0.0007 1.0001] ,T

fW t = and the actor parameters for the second player converge to

the values of

 4
ˆ () [0.2514 0.0006 0.5001] .TfW t =

 91

 Therefore the actor NN for the first player

1
11

11 2 12
1

2

2 0 0.5015
0

ˆ() 0.0007
cos(2) 2

0 2 1.0001

T
T x

u x R x x
x

x

−
   

     = −      +        

also converged to the optimal control, and similarly for the second player

1
11

22 2 12 2
1

2

2 0 0.2514
0

ˆ() 0.0006
sin(4) 2

0 2 0.5001

T
T x

d x R x x
x

x

−
   

     = −      +         

.

 The evolution of the system states is presented in Figure 21. After the probing noise is

turned off, the states converge to zero. Figure 22 shows the 3-D plot of the difference between

the approximated value function for player 1 and the optimal one (similarly for the second

player). These errors are close to zero. Good approximations of the actual value functions are

being evolved. Figure 23 shows the 3-D plot of the difference between the approximated control

for the first player, by using the online algorithm, and the optimal one. This error is close to zero.

Similarly for the second player.

Figure 19. Convergence of the critic parameters for first player.

 92

Figure 20. Convergence of the critic parameters for second player.

Figure 21. Evolution of the system states.

 93

Figure 22. 3D plot of the approximation error for the value function of player 1.

Figure 23. 3D plot of the approximation error for the control of player 1.

4.5.2 Linear system

 The aim of this example is to illustrate the online algorithm with a simple example that

was simulated in previous work in [39], [60] to solve coupled Riccatis.

 Suppose

 1 2() 2 () () 3 ()x t x t u t u t= + +ɺ

 94

with

 2 2 2
1 1 2

0

(9 0.64)J x u u dt

∞

= − + −∫

and

2 2
2 1

0

(9)J x u dt

∞

= +∫ .

 Select 1 2 3 4 1a a a a= = = = , 4 3 2 1 5F F F F= = = = for the constants on the tuning laws.

According to [60] the solution of the coupled Riccati is given by 1 1.4145P = − and 2 1.5718P = . By

using the algorithm proposed in Theorem 4.2 the solution of the coupled Riccati is found online

to be 1 -1.4250P = and 2 1.5754P = . Figure 24 shows the evolution of the system state. Figures 25

and 26 show the convergence of the critic Neural Networks for each player.

Figure 24. Evolution of the system state.

 95

Figure 25. Convergence of the critic NN for the first player.

Figure 26. Convergence of the critic NN for the second player.

4.5.3 Zero-Sum Game with unstable linear system

 Consider the following unstable linear system,

0 0.25 1 1

1 0 0 0
x x u d

     
= + +     

     
ɺ

 96

with

 1

0

1 0
(25)

0 1

T T T
J x x u u d d dt

∞
 

= + − 
 ∫ and 2 1J J= − .

 One can see that this is a zero-sum game because 1 2 11 21 22 12, ,Q Q R R R R= − = − = − .

 Select 1 2 3 4 1a a a a= = = = , 4 3 2 1 5F F F F I= = = = for the constants on the tuning laws,

where I is an identity matrix of appropriate dimensions. In this linear case the solution is given

by the solution of the game algebraic Riccati equation (GARE) with

 22 5Rγ ≡ = , 11 1R R≡ = and 1

1 0

0 1
Q Q

 
≡ =  

 
.

 1

2

1
0T T TA P PA Q PBR B P PKK P

γ
−+ + − + =

 Solving the GARE gives the parameters of the optimal critic as

 * [1.9439 1.3137 1.9656]TW =

which are the components of the Riccati solution matrix P.

 Since the value is quadratic in the LQR case, the critic NNs basis sets 1 2() ()x xφ φ= were

selected as the quadratic vector in the state components x x⊗ with ⊗ the Kronecker product.

Redundant terms were removed to leave (1) / 2 3n n + = components.

 The two-player game algorithm is implemented as in Theorem 4.2. PE was ensured by

adding a small exponenttial decreasing probing noise to the control inputs. Figure 27 shows the

critic parameters for the first player, denoted by 1 1 2 3
ˆ []Tc c cW W W W= and Figure 28 the critic

parameters for the second player, 2 2 1 2 2 2 3
ˆ []Tc c cW W W W= , converging to the optimal values. It

is clear that 1 2
ˆ ˆW W= − . In fact after 400s the critic parameters for the first player converged to

 1
ˆ () [1.9417 1.3138 1.9591]TfW t =

and the second to

 2
ˆ () [-1.9417 -1.3138 -1.9591]TfW t = .

 97

 Finally Figure 29 shows the evolution of the states.

Figure 27. Convergence of the critic NN for the first player.

Figure 28. Convergence of the critic NN for the second player.

 98

Figure 29. Evolution of the system states.

 99

CHAPTER 5

REINFORCEMENT LEARNING FOR PARTIALLY OBSERVABLE DYNAMIC PROCESSES:

ADAPTIVE DYNAMIC PROGRAMMING USING MEASURED OUTPUT DATA

5.1 Introduction

 In this work, novel output feedback ADP algorithms are derived for affine in the control

input linear time-invariant (LTI) deterministic systems. Such systems have as stochastic

equivalent the partially observable Markov decision processes (POMDPs). In this chapter, data-

based optimal control is implemented on-line using novel PI and VI ADP algorithms that require

only reduced measured information available at the system outputs. These two classes of

output feedback algorithms do not require any knowledge of the system dynamics (A,B,C) and

as such are similar to Q-learning [17], [97], [99], [100] but they have an added advantage of

requiring only measurements of input/output data and not the full system state. In order to

ensure that the data set is sufficiently rich and linearly independent, there is a need to add (c.f.

[17]) probing noise to the control input. We discuss this issue showing that probing noise leads

to bias. Adding a discount factor in the cost minimizes it to an almost zero effect. This discount

factor is related to adding exponential data weighting in the Kalman Filter to remove the bias

effects of unmodeled dynamics [55].

 The chapter is organized as follows. Section 5.2 provides the background of the optimal

control problem, dynamic programming and reinforcement learning methods for the linear

quadratic regulation problem. Section 5.3 introduces the new class of PI and VI algorithms by

formulating the temporal difference error with respect to observed data and redefining the

control sequence as the output of a dynamic polynomial controller. Section 5.4 discusses the

implementation aspects of the output feedback ADP algorithms. For convergence the new

 100

algorithms require persistently exciting probing noise whose bias effect is canceled by using a

discounted cost function. Section 5.5 presents simulation results obtained using the new data

based ADP algorithms and is followed by concluding remarks.

5.2 Background

 In this Section we give a review of optimal control, dynamic programming, and

reinforcement learning methods (i.e. policy iteration (PI) and value iteration (VI)) for the linear

quadratic regulator (LQR). It is pointed out that both these methods employ contraction maps to

solve the Bellman equation, which is a fixed-point equation [62]. Both PI and VI methods require

full measurements of the entire state vector. In the next section we show how to implement PI

and VI using only reduced information available at the system outputs.

5.2.1 Dynamic Programming and LQR

 Consider the linear time-invariant discrete-time (DT) system

1k k k

k k

x Ax Bu

y Cx

+ = +

=
 (5.1)

with n
kx ∈ℝ the state, m

ku ∈ℝ the control input, and p
ky ∈ℝ the measured output. Assume

throughout that (A, B) is controllable and (A, C) is observable [53].

 Given a stabilizing control policy ()k ku xµ= , associate to the system the performance

index

()()
T T

k i i i i i
i k i k

V x y Qy u Ru r
µ

∞ ∞

= =

= + ≡∑ ∑ (5.2)

with weighting matrices 0, 0T TQ Q R R= ≥ = > and (,)A C Q observable. Note that

()k ku xµ= is the fixed policy. The utility is

T T
k k k k kr y Qy u Ru= + (5.3)

 101

 The optimal control problem [53] is to find the policy ()k ku xµ= that minimizes the cost

(5.2) along the trajectories of the system (5.1). Due to the special structure of the dynamics and

the cost this is known as the linear quadratic regulator (LQR) problem.

 A difference equation equivalent to (5.2) is given by the Bellman equation

1() ()T T
k k k k k kV x y Qy u Ru V xµ µ

+= + + (5.4)

 The optimal cost, or value, is given by

()*
() min

T T
k i i i i

i k

V x y Qy u Ru
µ

∞

=

= +∑ . (5.5)

 According to Bellman’s optimality principle the value may be determined using the

Hamilton-Jacobi-Bellman (HJB) equation

()* *
1() min ()

k

T T
k k k k k k

u
V x y Qy u Ru V x += + + (5.6)

and the optimal control is given by

()* *
1() argmin ()

k

T T
k k k k k k

u

x y Qy u Ru V xµ += + + (5.7)

 For the LQR case, any value is quadratic in the state so that the cost associated to any

policy ()k ku xµ= (not necessary optimal) is

() T
k k kV x x Pxµ = (5.8)

for some n n× matrix P. Substituting this into (5.4) one obtains the LQR Bellman equation

1 1
T T T T
k k k k k k k kx Px y Qy u Ru x Px+ += + + (5.9)

 If the policy is a linear state variable feedback so that

()k k ku x Kxµ= = − (5.10)

then the closed loop system is

1 ()k k c kx A BK x A x+ = − ≡ (5.11)

 102

 Inserting these equations into (5.9) and averaging over all state trajectories yields the

Lyapunov equation

0 () ()T T TA BK P A BK P C QC K RK= − − − + + (5.12)

 If the feedback K is stabilizing, and (A, C) is observable, there exists a positive definite

solution to this equation. Then, the Lyapunov solution gives the value of using the state

feedback K, i.e. solution of this equation gives the kernel P such that () T
k k kV x x Pxµ = .

 To find the optimal control, insert (5.1) into (5.9) to obtain

() ()T T T T
k k k k k k k k k kx Px y Qy u Ru Ax Bu P Ax Bu= + + + + (5.13)

 To determine the minimizing control, set the derivative with respect to uk equal to zero

to obtain

1()T T
k ku R B PB B PAx−= − + (5.14)

whence substitution into (5.13) yields the Riccati equation

10 ()T T T T TA PA P C QC A PB R B PB B PA−= − + − + (5.15)

This is the LQR equivalent to the HJB equation (5.6).

5.2.2 Temporal difference, policy iteration, value iteration

 It is well known that the optimal value and control can be determined online in real time

using temporal difference reinforcement learning methods ([20], [68], [78], [86], [99]), which rely

on solving online for the value that makes small the so-called Bellman temporal difference error

1() ()T T
k k k k k k ke V x y Qy u Ru V xµ µ

+= − + + + (5.16)

The temporal difference error is defined based on the Bellman equation (5.4). For use in any

practical real-time algorithm, the value should be approximated by a parametric structure [15],

[98], [99].

 103

 For the LQR case, the value is quadratic in the state and the Bellman temporal

difference error is

 1 1
T T T T

k k k k k k k k ke x Px y Qy u Ru x Px+ += − + + + (5.17)

 Given a control policy, solution of this equation is equivalent to solving Lyapunov

equation (5.12) and gives the kernel P such that () T
k k kV x x Pxµ = .

 Write (5.6) equivalently as

()* *
10 min () ()

k

T T
k k k k k k

u
V x y Qy u Ru V x += − + + + (5.18)

This is a fixed point equation. As such, it can be solved by the method of successive

approximation using a contraction map. The successive approximation method resulting from

this fixed point equation is known as Policy Iteration (PI), an iterative method of determining the

optimal value and policy. For the LQR, PI is performed by the following two steps, based on the

temporal difference error (5.17) and a policy update step based on (5.7).

Algorithm 5.1- PI

Select a stabilizing initial control policy 0 0 ()k ku xµ= . Then, for 0,1,...j = perform until

convergence:

1. Policy Evaluation. Using the policy ()
j j

kku xµ= in (5.1), solve for 1jP + such that

 1 1
1 10 ()

j jT j T T T j
k k k k k kk kx P x y Qy u Ru x P x+ +

+ += − + + + (5.19)

2. Policy Improvement.

()1 1 1
1 1() argmin

k

j j T T T j
k k k k k k kk

u

u x y Qy u Ru x P xµ+ + +
+ += = + + (5.20)

 ■

 104

The solution in the policy evaluation step is generally carried out in a least-squares sense. The

initial policy is required to be stable since only then does (5.19) have a meaningful solution.

 This algorithm is equivalent to the following, which uses the Lyapunov equation (5.12),

instead of the Bellman equation, and (5.14).

Algorithm 5.2- PI Lyapunov Iteration Equivalent

Select a stabilizing initial control policy 0K . Then, for 0,1,...j = perform until convergence:

1. Policy Evaluation.

1 10 () () ()j T j j j T j T jA BK P A BK P C QC K RK+ += − − − + + (5.21)

2. Policy Improvement.

1 1 1 1()j T j T jK R B P B B P A+ + − += + (5.22)

 ■

 It was shown in [15] that under general conditions, the policy
1jµ +
 obtained by (5.20) is

improved over the
jµ in the sense that

1

() ()
j j

k kV x V x
µ µ+

≤ . It was shown by Hewer [20] that

Algorithm 5.2 converges under the controllability/observability assumptions if the initial feedback

gain is stabilizing.

 Note that in PI Algorithm 5.2, the system dynamics (A, B) are required for the policy

evaluation step, while in PI Algorithm 5.1 they are not. Algorithm 5.2 is performed off-line

knowing the state dynamics.

On the other hand, Algorithm 5.1 is performed on-line in real-time as the data 1(, ,)k k kx r x + are

measured at each time step, with T T
k k k k kr y Qy u Ru= + the utility. Note that (5.19) is a scalar

equation, whereas the value kernel P is a symmetric n n× matrix with (1) / 2n n + independent

elements. Therefore, (1) / 2n n + data sets are required before (5.19) can be solved. This is a

standard problem in least-squares estimation. The policy evaluation step may be performed

 105

using batch least-squares, as enough data are collected along the system trajectory, or using

recursive least-squares (RLS). The dynamics (A, B) are not required for this, since the state

1kx + is measured at each step, which contains implicit information about the dynamics (A, B).

This procedure amounts to a stochastic approximation method that evaluates the performance

of a given policy along one sample path, e.g. the system trajectory. PI Algorithm 5.1 effectively

provides a method for solving the Riccati equation (5.15) online using data measured along the

system trajectories. Full state measurements of kx are required.

 A second class of algorithms for on-line iterative solution of the optimal control based

on the Bellman temporal difference error (5.17) is given by Value Iteration (VI) or heuristic

dynamic programming (HDP) [99]. Instead of the fixed point equation in the form (5.18), which

leads to policy iteration, consider (5.6),

()* *
1() min ()

k

T T
k k k k k k

u
V x y Qy u Ru V x += + + (5.23)

which is also a fixed point equation. As such, it can be solved using a contraction map by

successive approximation using the Value Iteration (VI) algorithm.

Algorithm 5.3- VI

Select an initial control policy 0K . Then, for 0,1,...j = perform until convergence:

1. Value Update.

1
1 1()

j jT j T T T j
k k k k k kk kx P x y Qy u Ru x P x+

+ += + + (5.24)

2. Policy Improvement.

 ()1 1 1
1 1() argmin

k

j j T T T j
k k k k k k kk

u

u x y Qy u Ru x P xµ+ + +
+ += = + + (5.25)

 ■

Since (5.23) is not an equation but a recursion, its implementation does not require a stabilizing

policy. Therefore, the VI algorithm does not require an initial stabilizing gain. It is equivalent to

 106

a matrix recursion knowing the system dynamics (A, B), which has been shown to converge in

[46].

 Note that the policy update steps in PI Algorithm 5.1 and in VI Algorithm 5.3 rely on the

hypothesis of the value function approximation (VFA) parameterization (5.8). Both algorithms

require knowledge of the dynamics (A, B) for the policy improvement step. In [7] it is shown that

if a second approximator structure is assumed for the policy, then only the B matrix is needed

for the policy improvement in Algorithm 5.1 or 5.3.

 An approach which provides on-line real-time algorithms for solution of the optimal

control problem without knowing any system dynamics is Q learning. This has been applied to

both PI [17] and VI, where it is known as action dependent HDP [99].

 All these methods require measurement of the full state n
kx ∈ℝ .

5.3 Temporal Difference, PI, and VI based on output feedback

 This section presents the new results of this chapter. The Bellman error (5.17) for LQR

is quadratic in the state. This can be used in a PI or VI algorithm for online learning of optimal

controls as long as full measurements of state n
kx ∈ℝ are available. In this section we show

how to write the Bellman temporal difference error in terms only of the observed data, namely

the input sequence uk and the output sequence yk.

 The main result of the following equations is (5.45), (5.46) which give a temporal

difference error in terms only of observed output data.

 To reformulate policy iteration and value iteration in terms only of the observed data, we

show how to write () T
k k kV x x Pxµ = as a quadratic form in terms of the input and output

sequences. A surprising benefit is that there result two algorithms for reinforcement learning

that do not require any knowledge of the system dynamics (A, B, C). That is, these algorithms

have the same advantage as Q-learning in not requiring knowledge of the system dynamics, yet

 107

they have the added benefit of requiring only measurements of the available input/output data,

not the full system state as required by Q learning.

5.3.1 Writing the value function in terms of available measured data

 Consider the deterministic linear time invariant system

1k k k

k k

x Ax Bu

y Cx

+ = +

=
 (5.26)

with n
kx ∈ℝ , m

ku ∈ℝ , and p
ky ∈ℝ . Assume that (A, B) is controllable and (A, C) is

observable [53]. Controllability is the property of matrices (A, B) and means that any initial state

can be driven to any desired final state. Observability is a property of (A, C) and means that

observations of the output ky over a long enough time horizon can be used to reconstruct the

full state kx . Given the current time k, the dynamics can be written on a time horizon [k-N, k] as

the expanded state equation

1

22 1

k

k� �
k k �

k �

u

u
x A x B AB A B A B

u

−

−−
−

−

 
 
  = +    
 
 

⋯
⋮

 (5.27)

2

1
1 13

2 2

0

0 0

0 0

0 0 0 0 0

�

�
k k�

k k
k �

k � k �

CB CAB CA B
y uCA

CB CA B
y u

x
CA

CB
y uC

−
−

− −−

− −
−

− −

 
      
      
      = +      
      
       

  

⋯

⋯
⋮

⋮ ⋮ ⋱ ⋱ ⋮⋮ ⋮
⋯

 (5.28)

or by appropriate definition of variables as

1,
�

k k � � k k �x A x U u− − −= + (5.29)

1, 1,k k � � k � � k k �y V x T u− − − − −= + (5.30)

with

 108

1�
�U B AB A B

− =  ⋯

 the controllability matrix and

1�

�

CA

V
CA

C

− 
 
 =  
 
  

⋮
 (5.31)

the observability matrix, where p� n
�V

×∈ℝ . TN is the Toeplitz matrix of Markov parameters.

 Vectors

1 1

2 2
1, 1,,

k k

k kp� m�
k k � k k �

k � k �

y u

y u
y R u R

y u

− −

− −
− − − −

− −

   
   
   = ∈ = ∈
   
   
   

⋮ ⋮

are the input and output sequences over the time interval [k-N, k-1]. They represent the

available measured data.

 Since (A, C) is observable, there exists a K, the observability index, such that

() for �rank V n � K< < , () for .�rank V n � K= ≥ Note that K satisfies Kp n≥ . Let � K≥ . Then

�V has full column rank n, and there exists a matrix n p�M ×∈ℝ such that

�
�A MV= . (5.32)

 This was used in [1] to find the optimal control through identification of the Markov

parameters.

 Since �V has full column rank, its left inverse is given as

1()T T
� � � �V V V V+ −= (5.33)

so that

0 1()�
� � �M A V Z I V V M M+ += + − ≡ + (5.34)

 109

for any matrix Z, with 0M denoting the minimum norm operator and (())� � �P R V I V V⊥ += − the

projection onto range perpendicular of �V .

 The following Lemma shows how to write the system state in terms of input/output data.

 Lemma 5.1. Let the system (5.26) be observable. Then the system state is given

uniquely in terms of the measured input/output sequences by

()0 1, 0 1, 1, 1,k k k � � � k k � y k k � u k k �x M y U M T u M y M u− − − − − − − −= + − ≡ + (5.35)

or

1,

1,

k k �
k u y

k k �

u
x M M

y

− −

− −

 
 =   

 
 (5.36)

where 0yM M= and 0u � �M U M T= −

with 0
�

�M A V += , 1()T T
� � � �V V V V+ −= the left inverse of the observability matrix (5.31), and

� K≥ , where K is the observability index.

 Proof: Note that �
k � � k �A x MV x− −= , so that according to (5.30)

1, 1,
�

k � � k � k k � � k k �A x MV x My MT u− − − − − −= = − (5.37)

0 1 0 1 1, 0 1 1,() () ()� k � k k � � k k �M M V x M M y M M T u− − − − −+ = + − + (5.38)

Note however that 1 0�M V = so that

 0� k � � k �MV x M V x− −= ,

and apply 1M to (5.30) to see that

1 1, 1 1, 1 10 , . . 0k k � � k k � �M y M T u M s t M V− − − −= − ∀ = (5.39)

 Therefore,

 110

0 0 1, 0 1,
�

k � � k � k k � � k k �A x M V x M y M T u− − − − − −= = − (5.40)

independently of M1. Then, from (5.29)

()0 1, 0 1, 1, 1,k k k � � � k k � y k k � u k k �x M y U M T u M y M u− − − − − − − −= + − ≡ + (5.41)

 ■

 This result expresses kx in terms of the system inputs and outputs from time k-N

through time k-1. Now we will express the value function in terms of the inputs and outputs.

 It is important to note that the system dynamics information (e.g. A, B, C) must be

known to use (5.36). In fact, 0yM M= is given in (5.34) where �V
+ depends on A and C. Also,

uM depends on 0M , �U , �T . �U is given in (5.27), (5.29) in terms of A and B. �T in (5.28),

(5.30) depends on A, B and C.

 In the next step, it is shown how to use the structural dependence in (5.35) yet avoid

knowledge of A, B and C.

 Define the vector of observed data at time k as

1,

1,
1,

k k �

k k �
k k �

u
z

y

− −
− −

− −

 
=  

 
. (5.42)

 Now one has

1, 1,()

T
uT T

k k k k k � u y k k �T
y

M
V x x Px z P M M z

M

µ
− − − −

 
  = =    

 (5.43)

1, 1, 1, 1,()

T T
u u u yT T

k k k � k k � k k � k k �T T
y u y y

M PM M PM
V x z z z P z

M PM M PM

µ
− − − − − − − −

 
 = ≡
 
 

 (5.44)

Note that 1,
m�

k k �u − − ∈ℝ , 1,
p�

k k �y − − ∈ℝ , ()
1,

m p �
k k �z +
− − ∈ℝ , () ()m p � m p �P + × +∈ℝ .

 Equation (5.44) expresses the value function at time k as a quadratic form in terms of

past inputs and outputs.

 111

 Note, that the inner kernel matrix P in (5.44) depends on the system dynamics A, B and

C. In the next section it is shown how to use reinforcement learning methods to learn the kernel

matrix P without knowing A, B and C.

5.3.2 Writing the TD error in terms of available measured data

 We may now write Bellman’s equation (5.9) in terms of the observed data as

 1, 1, , 1 , 1
T T T T
k k � k k � k k k k k k � k k �z Pz y Qy u Ru z Pz− − − − − + − += + + . (5.45)

Based on this equation, write the temporal difference error (5.17) in terms of inputs and outputs

as

1, 1, , 1 , 1
T T T T

k k k � k k � k k k k k k � k k �e z Pz y Qy u Ru z Pz− − − − − + − += − + + + (5.46)

Using this TD error, the policy evaluation step of any form of reinforcement learning based on

the Bellman temporal difference error (5.17) can be equivalently performed using only the

measured data, not the state.

 Matrix P depends on A, B and C through yM and uM . However, reinforcement

learning methods allow one to learn P online without A, B, C, as shown next.

5.3.3 Writing the Policy Update in terms of Available Measured Data

 Using Q learning, one can perform PI and VI without any knowledge of the system

dynamics. Likewise, it is now shown that, using the above constructions, one can derive a form

for the policy improvement step (5.20)/(5.25) that does not depend on the state or the dynamics,

but only on the measured input/output data.

The policy improvement step may be written in terms of the observed data as

()1 1() argmin

k

T T T
k k k k k k k

u

x y Qy u Ru x Pxµ + += + + (5.47)

 112

(), 1 , 1() argmin

k

T T T
k k k k k k k � k k �

u

x y Qy u Ru z Pzµ − + − += + + (5.48)

 Partition , 1 , 1
T
k k � k k �z Pz− + − + as

0

, 1 , 1 1, 1 22 23 1, 1

, 1 , 132 33

T
u y

k k
T T
k k � k k � k k � u k k �

T
k k � k k �y

p p pu u

z Pz u p P P u

y yp P P

− + − + − − + − − +

− + − +

    
    

=     
    

     

 (5.49)

One has ((1))
0 , ,

m m m m � m p�
u yp p p

× × − ×∈ ∈ ∈ℝ ℝ ℝ . Then, differentiating with respect to ku to

perform the minimization in (5.48) yields

 0 1, 1 , 10 k k u k k � y k k �Ru p u p u p y− − + − += + + + (5.50)

or

 ()1
0 1, 1 , 1()k u k k � y k k �u R p p u p y−

− − + − += − + + (5.51)

 This is a dynamic polynomial auto regression moving average (ARMA) controller that

generates the current control input uk in terms of previous inputs and the current and previous

outputs.

 Exactly as in Q learning (called by Werbos action-dependent learning [99]), the control

input appears in the quadratic form (5.49), so that the minimization in (5.48) can be carried out

in terms of the learned kernel matrix P without resort to the system dynamics. However, since

(5.49) contains present and past values of the input and the output, the result is a dynamical

controller in polynomial ARMA form.

 We have developed the following reinforcement learning algorithms which only use the

measured input/output data, and do not require measurements of the full state vector kx .

 113

Algorithm 5.4- PI Algorithm Using Output Feedback

Select a stabilizing initial control policy 0 0
ku µ= . Then, for 0,1,...j = perform until convergence:

1. Policy Evaluation. Solve for 1jP + such that

 1 1
1, 1, , 1 , 10 ()

j jT j T T T j
k k � k k � k k k k � k k �k kz P z y Qy u Ru z P z+ +
− − − − − + − += − + + + (5.52)

2. Policy Improvement. Partition P as in (5.49). Then define the updated policy by

 ()1 11 1 1 1
1, 1 , 10() ()

j jj j j
k u k k � y k k �ku x R p p u p yµ+ ++ − + +

− − + − += = − + ⋅ + (5.53)

 ■

Algorithm 5.5- VI Algorithm Using Output Feedback

Select any initial control policy 0 0
ku µ= . Then, for 0,1,...j = perform until convergence:

1. Policy Evaluation. Solve for 1jP + such that

 1
1, 1, , 1 , 1()

j jT j T T T j
k k � k k � k k k k � k k �k kz P z y Qy u Ru z P z+
− − − − − + − += + + (5.54)

2. Policy Improvement. Partition P as in (5.49). Then define the updated policy by

 ()1 11 1 1 1
1, 1 , 10() ()

j jj j j
k u k k � y k k �ku x R p p u p yµ+ ++ − + +

− − + − += = − + ⋅ + (5.55)

 ■

 Remark 5.1. These algorithms do not require measurements of the internal state

vector kx . They only require measurements at each time step k of the utility

T T
k k k k kr y Qy u Ru= + , the inputs from time k-N through time k, and the outputs from time k-N

through time k. The policy evaluation step may be implemented using standard methods such

as batch least-squares or Recursive Least Squares (RLS) (see next section).

 114

 Remark 5.2. The control policy given by these algorithms in the form of (5.51), (5.53),

(5.55) is a dynamic ARMA regulator in terms of past inputs and current and past outputs. As

such, it optimizes a polynomial square-of-sums cost function that is equivalent to the LQR sum-

of-squares cost function (5.2). This polynomial cost function could be determined using the

techniques in [53].

 Remark 5.3. The PI Algorithm 5.4 requires an initial stabilizing control policy, while the

VI Algorithm 5.5 does not. As such, VI is suitable for control of open-loop unstable systems.

 Remark 5.4. The PI algorithm requires an initial stabilizing control policy 0 0
ku µ= that is

required to be a function only of the observable data. Suppose one can find an initial stabilizing

state feedback gain 0 0 0()k k ku x K xµ= = − . Then the equivalent stabilizing output feedback

ARMA controller is easy to find and is given by

1,0 0 0 0

1,

()
k k �

k k k u y
k k �

u
u x K x K M M

y
µ − −

− −

 
 = = − = −   

 

 The next result shows that the controller (5.51) is unique.

 Lemma 5.2. Define 0 1,M M according to (5.34). Then the control sequence generated

by (5.51) is independent of 1M and depends only on 0M . Moreover, (5.51) is equivalent to

 ()1
1, 1 , 1()T

k u k k � y k k �u R B PB p u p y−
− − + − += − + + (5.56)

where ,u yp p depend only on 0M .

 Proof: Write (5.50) as

, 1

0 1, 1 , 1 0
, 1

0 |
k k �

k k u k k � y k k � k u y
k k �

u
Ru p u p u p y Ru p p p

y

− +
− − + − +

− +

 
 = + + + = +      

 According to (5.44) and (5.49)

 0 0 , 0
T T

u m u u y m u yp p I M PM p I M PM= =          

 115

therefore

()0 1, 1 , 1 , 1 , 10 0 T
k k u k k � y k k � k m u u k k � y k k �Ru p u p u p y Ru I M P M u M y− − + − + − + − += + + + = + +  

 According to Lemma 5.1 this is unique independently of M1 (see (5.38)) and equal to

()()0 , 1 0 , 10 0
T

k m u � � k k � k k �Ru I M P U M T u M y− + − += + − +  

 Now

 0
0

T

mT
m u u

I
I M P M P

  
=         

.

 However

 ()0 1()
0 0

m m
u � �

I I
M U M M T B

   
= − + =   

   

where one has used the structure of ,� �U T . Consequently

()()0 1, 1 , 1 0 , 1 0 , 10
T

k k u k k � y k k � k � � k k � k k �Ru p u p u p y Ru B P U M T u M y− − + − + − + − += + + + = + − +

which is independent of 1M .

 Now note that 0 0
0

mT T
m u u

I
p I M PM B PB

 
= =    

 
 as per the above. Hence (5.56) follows

from (5.51).

 ■

 Remark 5.5. Note that the controller cannot be implemented in the form (5.56), since it

requires that matrix P be known.

5.4 Implementation, probing noise, bias and discount factors

 In this section we discuss the need for probing noise to implement the above

algorithms, show that this noise leads to deleterious effects such as bias, and argue how adding

a discount factor in the cost (5.2) can reduce this bias to a negligible effect.

 116

 The equations in Policy Iteration and Value Iteration are solved online by standard

techniques using methods such as batch least-squares or recursive least-squares. See [17]

where RLS was used in Q-learning. In PI, one solves (5.52) by writing it in the form

1
1, 1, , 1 , 1() ()

j jj T T
k k � k k � k k � k k � k k k kstk P z z z z y Qy u Ru

+
− − − − − + − +

 ⊗ − ⊗ = +  (5.57)

with ⊗ the Kronecker product and stk(.) the column stacking operator [18]. Redundant

quadratic terms in the Kronecker product are combined. In VI one solves (5.54) in the form

1
1, 1, , 1 , 1() ()

j jj T T T j
k k � k k � k k k k � k k �k kstk P z z y Qy u Ru z P z

+
− − − − − + − +

 ⊗ = + +  (5.58)

 Both of these equations only require that the input/output data be measured. They are

scalar equations, yet one must solve for the kernel matrix () ()m p � m p �P + × +∈ℝ , which is

symmetric and has [][]() () 1 / 2m p � m p �+ + + independent terms. Therefore, one requires

data samples for at least [][]() () 1 / 2m p � m p �+ + + time steps for solution using batch LS.

 To solve the PI update equation (5.57), it is required that the quadratic vector

1, 1, , 1 , 1k k � k k � k k � k k �z z z z− − − − − + − +
 ⊗ − ⊗  be linearly independent over time, a property known

as persistence of excitation (PE). To solve the VI update equation (5.58), one requires PE of

the quadratic vector 1, 1,k k � k k �z z− − − −
 ⊗  . It is standard practice (see [17] for instance) to inject

probing noise into the control action to obtain PE, so that one puts into the system dynamics the

input ˆk k ku u d= + , with ku the control computed by the PI or VI current policy and kd a probing

noise or dither, e.g. white noise.

 It is well known that dither can caused biased results and mismatch in system

identification. In [102] this issue is discussed and several alternative methods are presented for

injecting dither into system identification schemes to obtain improved results. Unfortunately, in

control applications, one has little choice about where to inject the probing noise.

 117

 To see the deleterious effects of probing noise, consider the Bellman equation (5.9)

with input ˆk k ku u d= + , where kd is a probing noise. One writes

1 1
ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ() () () ()

T T T T
k k k k k k k k

T T T T
k k k k k k k k k k k k k k

x Px y Qy u Ru x Px

x Px y Qy u d R u d Ax Bu Bd P Ax Bu Bd

+ += + +

= + + + + + + + +

ˆ ˆ() ()

ˆ ˆ ˆ() () () ()

T T T T T T T
k k k k k k k k k k k k k k k k

T T T
k k k k k k k k

x Px y Qy u Ru d Rd u Rd d Ru Ax Bu P Ax Bu

Ax Bu PBd Bd P Ax Bu Bd PBd

= + + + + + + +

+ + + + +

 Now, use { } { }trace AB trace BA= for commensurate matrices A and B, take expected

values to evaluate correlation matrices and assume the dither at time k is white noise

independent of ,k ku x so that ˆ{ } 0, { () } 0T T
k k k k kE Ru d E PBd Ax Bu= + = and the cross terms drop

out. Then, averaged over repeated control runs with different probing noise sequence kd , this

equation is effectively

 ˆ ˆ ˆ() () ()T T T T T T
k k k k k k k k k k k kx Px y Qy u Ru Ax Bu P Ax Bu d B PB R d= + + + + + +

which is the undithered Bellman equation plus a term depending on the dither covariance. As

such, the solution computed by PI or VI will not correspond to the actual value corresponding to

the Bellman equation.

 It is now argued that discounting the cost can significantly reduce the deleterious effects

of probing noise. Adding a discount factor 1γ < to the cost (5.2) results in

()()
i k T T i k

k i i i i i
i k i k

V x y Qy u Ru r
µ γ γ

∞ ∞
− −

= =

= + ≡∑ ∑ (5.59)

with associated Bellman equation

1 1
T T T T
k k k k k k k kx Px y Qy u Ru x Pxγ + += + + (5.60)

This has an HJB (Riccati) equation equivalent of

 ()1
0 ()

T T T T TRP A PA A PB B PB B PA C QCγγ −= − + − + + (5.61)

 118

and an optimal policy of

1
()

T TR
k ku B PB B PAxγ

−= − + (5.62)

 The benefits of discounting are most clearly seen by examining value iteration. The

Value Iteration Algorithm 5.3, which with discount has (5.24) modified as

1
1 1()

j jT j T T T j
k k k k k kk kx P x y Qy u Ru x P xγ+

+ += + + (5.63)

corresponds to the underlying Riccati difference equation

()1
1 ()

T T T T TR
j j j j jP A P A A P B B P B B P A C QCγγ −
+ = − + + (5.64)

where each iteration is decayed by the factor 1γ < . The effects of this can best be understood

by considering the Lyapunov difference equation

1 0,
T T

j jP A P A C QC Pγ+ = + (5.65)

which has solution

1

0
0

() ()
j

j T j j i T i i
j

i

P A P A A QAγ γ
−

=

= + ∑ (5.66)

 The effect of the discount factor is thus to decay the effects of the initial conditions.

 In similar vein, the discount factor decays the effects of previous probing noises and

improper initial conditions in the PI and VI algorithms. In fact, adding a discount factor is closely

related to adding exponential data weighting in the Kalman Filter to remove the bias effects of

unmodeled dynamics [55].

5.5 Simulations Results

5.5.1 Stable linear system and policy iteration

 Consider the stable linear system with quadratic cost function

[]

1

1.1 0.3 1

1 0 0

1 0.8

k k k

k k

x x u

y x

+
−   

= +   
   

= −

 119

where Q and R in the cost function are identity matrices of appropriate dimensions. The

open-loop poles are 1 0.5z = , and 2 0.6z = . In order to verify the correctness of the proposed

algorithm, the optimal value kernel matrix P is found by solving (5.15) to be

1.0150 -0.8150

-0.8150 0.6552
P

 
=  

 
.

Now by using

T T
u u u y

T T
y u y y

M PM M PM
P

M PM M PM

 
 ≡
 
 

and (5.35) one has

1.0150 -0.8440 1.1455 -0.3165

-0.8440 0.7918 -1.0341 0.2969

1.1455 -1.0341 1.3667 -0.3878

-0.3165 0.2969 -0.3878 0.1113

P

 
 
 =
 
 
 

.

 Since the system is stable, we use the output feedback PI Algorithm 5.4 implemented

as in equations (5.52) and (5.53). PE was ensured by adding dithering noise to the control input,

and a discount (forgetting) factor 0.2γ = was added to diminish the dither bias effects. The

observer index is 2K = and � is selected equal to 2.

 By applying dynamic output feedback control (5.53) the system remained stable and the

parameters of the P converged to the optimal ones, in fact

1.1340 -0.8643 1.1571 -0.3161

-0.8643 0.7942 -1.0348 0.2966ˆ

1.1571 -1.0348 1.3609 -0.3850

-0.3161 0.2966 -0.3850 0.1102

P

 
 
 =
 
 
 

.

 In the example, Batch Least Squares was used to solve (5.52) at each step.

 Figure 30 shows the convergence of 1 2
0 , ,u yp p p

×∈ ∈ ∈ℝ ℝ ℝ of P to the correct

values. Figure 31 shows the evolution of the system states and their convergence to zero.

 120

Figure 30. Convergence of 0 , ,u yp p p .

Figure 31. Evolution of the system states for the duration of the experiment.

5.5.2 Q-learning and output feedback ADP

 The purpose of this example is to compare the performance of Q learning [17], [97] and

Output Feedback ADP. Consider the stable linear system described before, and apply Q

 121

learning.

 The Q function for this particular system is given by:

(,)

4.9768 -0.8615 2.8716

-0.8615 1.2534 -0.8447

2.8716 -0.8447 3.8158

T T T
k k

h k k T T
k k

T T
k k k k

k k k k

x xQ A PA A PB
Q x u

u uB PA R B PB

x x x x
H

u u u u

 +   
=     

 +    

 
        ≡ =        
         

 By comparing these two methods it is obvious that Q learning has a faster performance

than the Output Feedback ADP since fewer parameters are being identified.

 Figure 32 shows the convergence of the three parameters 11 12 13, ,H H H of H matrix

shown before to the correct values. Figure 33 shows the evolution of the system states.

Figure 32. Convergence of 11 12 13, ,H H H .

 122

Figure 33. Evolution of the system states for the duration of the experiment.

5.5.3 Unstable linear system and Value Iteration

 Consider the unstable linear system with quadratic cost function

[]

1

1.8 0.7700 1

1 0 0

1 0.5

k k k

k k

x x u

y x

+
−   

= +   
   

= −

where Q and R in the cost function are identity matrices of appropriate dimensions. The

open-loop poles are 1 0.7z = , and 2 1.1z = so the system is unstable. In order to verify the

correctness of the proposed algorithm, the optimal value kernel matrix P is found by solving

(5.15) to be

1.3442 -0.7078

-0.7078 0.3756
P

 
=  

 
.

 Now by using

T T
u u u y

T T
y u y y

M PM M PM
P

M PM M PM

 
 ≡
 
 

and (5.35)one has

 123

1.3442 -0.7465 2.4582 -1.1496

-0.7465 0.4271 -1.3717 0.6578

2.4582 -1.3717 4.4990 -2.1124

-1.1496 0.6578 -2.1124 1.0130

P

 
 
 =
 
 
 

.

 Since the system is open-loop unstable, one must use value iteration, not policy

iteration. The output feedback VI Algorithm 5.5 is implemented as in equations (5.54) and

(5.55). PE was ensured by adding dithering noise to the control input, and a discount

(forgetting) factor 0.2γ = was used to diminish the dither bias effects. The observer index is

2K = and � is selected equal to 2.

 By applying dynamic output feedback control (5.55), the system is stabilized and the

parameters of the P converged to the optimal ones, in fact

1.3431 -0.7504 2.4568 -1.1493

-0.7504 0.4301 -1.3730 0.6591ˆ

2.4568 -1.3730 4.4979 -2.1120

-1.1493 0.6591 -2.1120 1.0134

P

 
 
 =
 
 
 

.

 In the example, Batch Least Squares was used to solve (5.54) at each step.

 Figure 34 shows the convergence of 1 2
0 , ,u yp p p

×∈ ∈ ∈ℝ ℝ ℝ of P . Figure 35 shows

the evolution of the system states, their boundedness despite the fact that the plant is initially

unstable, and their convergence to zero.

 124

Figure 34. Convergence of 0 , ,u yp p p .

Figure 35. Evolution of the system states for the duration of the experiment.

5.6 Conclusion

 In this chapter we have proposed the implementation of ADP using only measured

input/output data from a dynamical system. This is known in control system theory as ‘output

feedback’ as opposed to full state feedback, and corresponds to reinforcement learning for a

 125

class of partially observable Markov decision processes (POMDPs). Both policy iteration and

value iteration algorithms are developed that require only output feedback. An added and

surprising benefit is that, similar to Q learning, the system dynamics are not needed to

implement these output feedback algorithms, so that they converge to the optimal controller for

completely unknown systems. The system order must be known, and an upper bound on its

‘observability index’. The learned output feedback controller is given in the form of a polynomial

ARMA controller that is equivalent to the optimal state variable feedback gain. This controller

needs the addition of probing noise in order to be sufficiently rich. This probing noise adds some

bias, and in order to avoid it, a discount factor is added in the cost.

 126

CHAPTER 6

MULTI AGENT DIFFERENTIAL GRAPHICAL GAMES: POLICY ITERATION AND ONLINE

ADAPTIVE LEARNING SOLUTION

6.1 Introduction

 Distributed networks have received much attention in the last year because of their

flexibility and computational performance. The ability to coordinate agents is important in many

real-world tasks where it is necessary for agents to exchange information with each other.

Synchronization behavior among agents is found in flocking of birds, schooling of fish, and other

natural systems. Work has been done to develop cooperative control methods for consensus

and synchronization ([24], [37], [66], [70], [72], [73], [74], [90]). See [65], [71] for surveys.

Leaderless consensus results in all nodes converging to common value that cannot generally

be controlled. We call this the cooperative regulator problem. On the other hand the problem of

cooperative tracking requires that all nodes synchronize to a leader or control node [33], [56],

[74], [96]. This has been called pinning control or control with a virtual leader. Consensus has

been studied for systems on communication graphs with fixed or varying topologies and

communication delays. This chapter brings together cooperative control, reinforcement

learning, and game theory to solve multi-player differential games on communication graph

topologies. There are four main contributions in this chapter. The first involves the formulation of

a graphical game for dynamical systems networked by a communication graph. The dynamics

and value function of each node depend only on the actions of that node and its neighbors. This

graphical game allows for synchronization as well as Nash equilibrium solutions among

neighbors. The second contribution is the derivation of coupled Riccati equations for solution of

graphical games. The third contribution is a Policy Iteration algorithm for solution of graphical

 127

games that relies only on local information from neighbor nodes. It is shown that this algorithm

converges to the best response policy of a node if its neighbors have fixed policies, and to the

Nash solution if all nodes update their policies. The last contribution is the development of an

online adaptive learning algorithm for computing the Nash equilibrium solutions of graphical

games.

 The chapter is organized as follows. Section 6.2 reviews synchronization in graphs and

derives an error dynamics for each node that is influenced by its own actions and those of its

neighbors. Section 6.3 introduces differential graphical games cooperative Nash equilibrium.

Coupled Riccati equations are developed and stability and solution for Nash equilibrium are

proven. Section 6.4 proposes a policy iteration algorithm for the solution of graphical games and

gives proofs of convergence. Section 6.5 presents an online adaptive learning solution based

on the structure of the policy iteration algorithm of Section 6.4. Finally Section 6.6 presents a

simulation example that shows the effectiveness of the proposed algorithms in learning in real-

time the solutions of graphical games.

6.2 Synchronization and node error dynamics

6.2.1 Graphs

 Consider a graph (,)G V= Ε with a nonempty finite set of N nodes 1{ , , }�V v v= ⋯ and a

set of edges or arcs V VΕ ⊆ × . We assume the graph is simple, e.g. no repeated edges and

(,) ,i iv v E i∉ ∀ no self loops. Denote the connectivity matrix as []ijE e= with 0 (,)ij j ie if v v> ∈Ε

and 0ije = otherwise. Note 0iie = . The set of neighbors of a node iv is { : (,) }i j j i� v v v= ∈Ε ,

i.e. the set of nodes with arcs incoming to iv . Define the in-degree matrix as a diagonal matrix

[]iD d= with

i

i ij

j �

d e

∈

= ∑ the weighted in-degree of node i (i.e. i -th row sum of E). Define the

graph Laplacian matrix as L D E= − , which has all row sums equal to zero.

 A directed path is a sequence of nodes 0 1, , , rv v v⋯ such that

1(,) , {0,1, , 1}i iv v E i r+ ∈ ∈ −⋯ . A directed graph is strongly connected if there is a directed path

 128

from iv to jv for all distinct nodes ,i jv v V∈ . A (directed) tree is a connected digraph where

every node except one, called the root, has in-degree equal to one. A graph is said to have a

spanning tree if a subset of the edges forms a directed tree. A strongly connected digraph

contains a spanning tree.

 General directed graphs with fixed topology are considered in this chapter.

6.2.2 Synchronization and node error dynamics

 Consider the N systems or agents distributed on communication graph Gr with node

dynamics

i i i ix Ax B u= +ɺ (6.1)

where () n
ix t ∈ℝ is the state of node i, () im

iu t ∈ℝ its control input. Cooperative team objectives

may be prescribed in terms of the local neighborhood tracking error n
iδ ∈ℝ [43]) as

0() ()

i

i ij i j i i

j �

e x x g x xδ
∈

= − + −∑ (6.2)

 The pinning gain 0ig ≥ is nonzero for a small number of nodes i that are coupled

directly to the leader or control node 0x , and 0ig > for at least one i [56] We refer to the

nodes i for which 0ig ≠ as the pinned or controlled nodes. Note that iδ represents the

information available to node i for state feedback purposes as dictated by the graph structure.

 The state of the control or target node is 0 ()
nx t ∈ℝ which satisfies the dynamics

0 0x Ax=ɺ
 (6.3)

Note that this is in fact a command generator [49] and we seek to design a cooperative control

command generator tracker. Note that the trajectory generator A may not be stable.

 The Synchronization control design problem is to design local control protocols for

all the nodes in G to synchronize to the state of the control node, i.e. one requires

0() (),ix t x t i→ ∀ .

 129

 From (6.2), the overall error vector for network Gr is given by

()()() ()()0n nL G I x x L G Iδ ζ= + ⊗ − = + ⊗

 (6.4)

where 1 2

T
T T T n�

�δ δ δ δ = ∈ ⋯ ℝ and 0 0
n�x Ix= ∈ℝ , with 1 n� n

nI I R ×= ⊗ ∈ and 1 the N-

vector of ones. The Kronecker product is ⊗ . � �G R ×∈ is a diagonal matrix with diagonal

entries equal to the pinning gains ig . The (global) consensus or synchronization error (e.g. the

disagreement vector in [66]) is

()0 n�x xζ = − ∈ℝ (6.5)

 The communication digraph is assumed to be strongly connected. Then, if 0ig ≠ for at

least one i , ()L G+ is nonsingular with all eigenvalues having positive real parts [43]. The next

result therefore follows from (6.4) and the Cauchy Schwartz inequality and the properties of the

Kronecker product [18].

 Lemma 6.1. Let the graph be strongly connected and 0G ≠ . Then the

synchronization error is bounded by

/ ()L Gζ δ σ≤ + (6.6)

with ()L Gσ + the minimum singular value of ()L G+ , and () 0tδ ≡ if and only if the nodes

synchronize, that is

0() ()x t Ix t= (6.7)

 ■

 Our objective now shall be to make small the local neighborhood tracking errors ()i tδ ,

which in view of Lemma 6.1 will guarantee synchronization.

 To find the dynamics of the local neighborhood tracking error, write

0() ()

i

i ij i j i i

j �

e x x g x xδ
∈

= − + −∑ɺ ɺ ɺ ɺ ɺ

 130

0(()) ()

i

i ij i i i j j j i i i i

j �

e Ax B u Ax B u g Ax B u Axδ
∈

= + − + + + −∑ɺ

() () ()

i i

i ij i j i i o ij i i j j i i i

j � j �

e Ax Ax Ag x x e B u B u g B uδ
∈ ∈

= − + − + − +∑ ∑ɺ

()

i

i i i i i i ij j j

j �

A d g B u e B uδ δ
∈

= + + − ∑ɺ

 (6.8)

with , ,i
mn

i iu iδ ∈ ∈ ∀ℝ ℝ .

 This is a dynamical system with multiple control inputs, from node i and all of its

neighbors.

6.3 Cooperative multi-player games on graphs

 We wish to achieve synchronization while simultaneously optimizing some performance

specifications on the agents. To capture this, we intend to use the machinery of multi-player

games [11].

6.3.1 Cooperative performance index

 Define the local performance indices

1 1
2 2

0 0

((0), ,) () ((), (), ())

i

T T T
i i i i i ii i i ii i j ij j i i i i

j �

J u u Q u R u u R u dt L t u t u t dtδ δ δ δ
∞ ∞

− −
∈

= + + ≡∑∫ ∫ (6.9)

where ()iu t− is the vector of the control inputs { : }j iu j �∈ of the neighbors of node i, and iu−

denotes { () : 0 }iu t t− ≤ . All weighting matrices are constant and symmetric with

0, 0, 0ii ii ijQ R R> > ≥ . Note that the i-th performance index includes only information about the

inputs of node i and its neighbors.

 For dynamics (6.8) with performance objectives (6.9), introduce the associated

Hamiltonians

(, , ,) ()

i

T
i i i i i i i i i i i ij j j

j �

H p u u p A d g B u e B uδ δ−
∈

 
 ≡ + + −
 
 

∑ 1 1 1
2 2 2

0

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

+ + + =∑

 (6.10)

 131

where ip is the co-state variable.

 Necessary conditions [53] for a minimum of (6.9) are (6.1) and

Ti
i i ii i

i

H
p A p Q δ

δ
∂

− = ≡ +
∂

ɺ

 (6.11)

1
0 ()

Ti
i i i ii i i

i

H
u d g R B p

u

−∂
= ⇒ = − +

∂
 (6.12)

6.3.2 Graphical games and cooperative Nash equilibrium

 Interpreting the control inputs ,i ju u as state dependent policies or strategies, the value

function for node i corresponding to those policies is

1
2

(()) ()

i

T T T
i i i ii i i ii i j ij j

j �t

V t Q u R u u R u dtδ δ δ
∞

∈

= + + ∑∫
 (6.13)

 Definition 6.1. Control policies ,iu i∀ are defined as admissible if iu are continuous,

(0) 0iu = , iu stabilize system (6.8) locally, and values (6.13) are finite.

 When iV is finite, using Leibniz’ formula, a differential equivalent to this is given in

terms of the Hamiltonian function by the Bellman equation

(, , ,) ()

i

T
i i

i i i i i i i i i ij j j
i i j �

V V
H u u A d g B u e B uδ δ

δ δ−
∈

 ∂ ∂  ≡ + + −
 ∂ ∂
 

∑

1 1 1
2 2 2

0

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

+ + + =∑
 (6.14)

with boundary condition (0) 0iV = . (The gradient is disabused here as a column vector.) That

is, solution of equation (6.14) serves as an alternative to evaluating the infinite integral (6.13) for

finding the value associated to the current feedback policies. It is shown in the Proof of

Theorem 6.1 that (6.14) is a Lyapunov equation. According to (6.13) and (6.10) one equates

/i i ip V δ= ∂ ∂ .

 The control objective of agent i is to determine

 132

* 1
2

(()) min ()
i

i

T T T
i i i ii i i ii i j ij j

u
j �t

V t Q u R u u R u dtδ δ δ
∞

∈

= + + ∑∫
 (6.15)

which corresponds to Nash equilibrium.

 Definition 6.2. [11] (Global Nash equilibrium) An N-tuple of policies { }* * *
1 2, ,...,u u uΝ is

said to constitute a global Nash equilibrium solution for an N player game if for all i �∈

* * * * * * * *
1 2 1 2(, ,..., ,...,) (, ,..., ,...,)i i i i iJ J u u u u J u u u uΝ Ν≤≜

 (6.16)

 The N-tuple of game values { }* * *
1 2, ,...,J J JΝ is known as a Nash equilibrium outcome of

the N-player game.

 The distributed multiplayer game with local dynamics (6.8) and local performance

indices (6.9) should be contrasted with standard multiplayer games [2], [11] which have

centralized dynamics

1

�

i i

i

z Az B u

=

= +∑ɺ (6.17)

where nz∈ℝ is the state, () im
iu t ∈ℝ is the control input for every player, and where the

performance index of each player depends on the control inputs of all other players. In the

graphical games, by contrast, each node dynamics and performance index only depends on its

own state, its control, and the controls of its immediate neighbors.

 We want to study the distributed game on a graph defined by (6.15) with distributed

dynamics (6.8). It is not clear in this scenario how global Nash equilibrium is to be achieved.

 Graphical games have been studied in the computational intelligence community [40],

[41], [80]. A (nondynamic) graphical game has been defined there as a tuple (, ,)G U v with

(,)G V E= a graph with N nodes, action set 1 �U U U= × ×⋯ with iU the set of actions available

to node i, and 1

T

�v v v=   ⋯ a payoff vector, with (,{ : })i i j iv U U j � R∈ ∈ the payoff function

of node i. It is important to note that the payoff of node i only depends on its own action and

 133

those of its immediate neighbors. The work on graphical games has focused on developing

algorithms to find standard Nash equilibria for payoffs generally given in terms of matrices. Such

algorithms are simplified in that they only have complexity on the order of the maximum node

degree in the graph, not on the order of the number of players N. Undirected graphs are

studied, and it is assumed that the graph is connected.

 Our intention in this chapter is to provide online real-time adaptive methods for solving

differential graphical games that are distributed in nature. That is, the control protocols and

adaptive algorithms of each node are allowed to depend only information about itself and its

neighbors. Moreover, as the game solution is being learned, all node dynamics are required to

be stable, until finally all the nodes synchronize to the state of the control node.

 The following notions are needed in the study of differential graphical games. Define

{ : }i j iu u j �− = ∈ as the set of policies of the neighbors of node i.

 Definition 6.3. [80] Agent i’s best response to fixed policies iu− of his neighbors is the

policy *
iu such that

*(,) (,)i i i i i iJ u u J u u− −≤ (6.18)

for all policies iu of agent i.

 For centralized multi-agent games, where the dynamics is given by (6.17) and the

performance index of each agent depends on the actions of all other agents, an alternative

definition of Nash equilibrium is that each agent is in best response to all other agents.

However, in Definition 6.3 each node i is only in best response to all his neighbors. If the graph

is strongly connected and each node is in best response to all his neighbors then all nodes in

the graph are in global Nash equilibrium

6.3.3 Stability and solution of graphical games

 According to the results just established, the following assumptions are made.

 134

 Assumptions 6.1.

a. The graph is strongly connected and at least one pinning gain ig is nonzero. Then

()L G+ is nonsingular.

 The game is well-formed in the sense that:

b. 0j ijB e E≠ ∈⇌ .

c. 0ij ijR e E≠ ∈⇌ .

 Employing the stationarity condition (6.12) [53] one obtains the control policies

1
() () ()

T i
i i i i i ii i i i

i

V
u u V d g R B h p

δ
− ∂

= ≡ − + ≡ −
∂

 (6.19)

 Substituting into (6.14) yields the coupled cooperative game Hamilton-Jacobi (HJ)

equations

2 11 1
2 2

()

T T
c T Ti i i
i i ii i i i i ii i

i i i

V V V
A Q d g B R Bδ δ

δ δ δ
−∂ ∂ ∂

+ + +
∂ ∂ ∂

2 1 11
2

() 0,

i

T
j jT

j j j jj ij jj j
j jj �

V V
d g B R R R B i �

δ δ
− −

∈

∂ ∂
+ + = ∈

∂ ∂∑ (6.20)

where the closed-loop matrix is

2 1 1
() () ,

i

jc T Ti
i i i i i ii i ij j j j jj j

i jj �

VV
A A d g B R B e d g B R B i �δ

δ δ
− −

∈

∂∂
= − + + + ∈

∂ ∂∑ (6.21)

 For a given iV , define * ()i i iu u V= as (6.19) given in terms of iV . Then HJ equations

(6.20) can be written as

* *
(, , ,) 0i

i i i i
i

V
H u uδ

δ −
∂

=
∂

 (6.22)

 There is one coupled HJ equation corresponding to each node, so solution of this N-

player game problem is blocked by requiring a solution to N coupled partial differential

equations. In the next section we show how to solve this N-player cooperative game online in a

 135

distributed fashion at each node, requiring only measurements from neighbor nodes, by using

techniques from reinforcement learning.

 For the global state δ given in (6.4) we can write the dynamics as

() () ()� n iI A L G I diag B uδ δ= ⊗ + + ⊗ɺ (6.23)

where u is the control given by

()1() ()T
ii i nu diag R B D G I p−= − + ⊗ (6.24)

where (.)diag denotes diagonal matrix of appropriate dimensions. Furthermore the global co-

state dynamics are

() ()T
� ii

H
p I A p diag Q δ

δ
∂

− = ≡ ⊗ +
∂

ɺ (6.25)

This is a set of coupled dynamic equations reminiscent of standard multi-player games [11] or

single agent optimal control [53]. Therefore the solution can be written without any loss of

generality as

p Pδ= (6.26)

for some matrix 0P > n�xn�∈ℝ .

 Lemma 6.2. HJ equations (6.20) are equivalent to the coupled Riccati equations

1 1
2 2

0T T T T T T T
i i i iP A P B P Q P R Pδ δ δ δ δ δ δ δ− + + = (6.27)

or equivalently

() 0T T T
ic ic i iP A A P Q P R P+ + + = (6.28)

where P is defined by (6.26), and

[]

0

0

0

i ii
A

A

 
 
 =  
 
  

,

0

0

0

i ii

ii

Q
Q

 
 
 =     
  

 136

()
1

0

(())

0

T
ii iji i i i ii i

i i n ij n

B diag d g B R B
d g I a I

−

 
 
 

= +    + −    
 
 

ic i iA A B P= −

1

1 1
(()) (())

i

ij T
i i i i ii i i ii i

ii

i�

R

R
R diag d g B R diag d g R B

R

R

− −

 
 
 
 

= + + 
 
 
 
  

⋱

⋱

where []ij denotes the position of the element in the block matrix.

 Proof:

 Take (6.14) and write it with respect to the global state and co-state as

()

1 1

1 1 1 1
0 0 00

00

0 0 0 0

T T

ii iji ii
i ii i n ij n

� �� �

� �

V V

B u

H
B ud g I a IA

B uV V

δ δ

δ

δ δ

∂ ∂   
     ∂ ∂                      ≡ +             + −                    ∂ ∂                

∂ ∂      

⋯

⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋯

11 1

1 1
2 2

0

0
0

0

T
i

ijT
ii

i iiiii

� �i�

Ru u

R

u uRQ

u uR

δ δ

      
      
      + + =              
           

⋮ ⋮
 (6.29)

 By definition of the co-state one has

1

1

�

�

V

p P

V

δ

δ

δ

∂ 
 ∂ 
 

≡ = 
 
 ∂
 
∂  

⋮

⋮
 (6.30)

 137

 From the control policies (6.19), (6.29) becomes (6.27), which can be written in closed-

loop form as (6.28).

 ■

 Theorem 6.1. Stability and Solution for Cooperative Nash Equilibrium.

 Let 10 ,iV C i �> ∈ ∈ be smooth solutions to HJ equations (6.20) and control policies *
iu ,

i �∈ be given by (6.19) in terms of these solutions iV . Then

a. Systems (6.8) are asymptotically stable.

b. * *,i iu u− are in cooperative Nash equilibrium and the corresponding game values are

*((0)) ,i i iJ V i �δ = ∈ (6.31)

 Proof:

a. If 0iV > satisfies (6.20) then it also satisfies (6.14). Take the time derivative to obtain

1
2

()

i i

T T
T T Ti i

i i i i i i i ij j j i ii i i ii i j ij j
i i j � j �

V V
V A d g B u e B u Q u R u u R uδ δ δ δ

δ δ
∈ ∈

   ∂ ∂    = = + + − = − + +
   ∂ ∂
   

∑ ∑ɺɺ (6.32)

which is negative definite since 0iiQ > . Therefore iV is a Lyapunov function for iδ and systems

(6.8) are asymptotically stable.

b. According to part a, () 0i tδ → for the selected control policies. For any smooth functions

(),i iV i �δ ∈ , such that (0) 0iV = , setting (()) 0i iV δ ∞ = one can write (6.9) as

1
2

0 0

((0), ,) () ((0))

i

T T T
i i i i i ii i i ii i j ij j i i i

j �

J u u Q u R u u R u dt V V dtδ δ δ δ
∞ ∞

−
∈

= + + + +∑∫ ∫ ɺ

or

1
2

0

0

((0), ,) () ((0))

(())

i

i

T T T
i i i i i ii i i ii i j ij j i i

j �

T

i
i i i i i ij j j

i j �

J u u Q u R u u R u dt V

V
A d g B u e B u dt

δ δ δ δ

δ
δ

∞

−
∈

∞

∈

= + + +

∂
+ + + −

∂

∑∫

∑∫

 138

 Now let iV satisfy (6.20) and * *,i iu u− be the optimal controls given by (6.19). By

completing the squares one has

* * * *1 1
2 2

0

* * *

((0), ,) ((0)) (() () () ()

() ())

i

i i

T T
i i i i i i j j ij j j i i ii i i

j �

T
Ti

ij j j j j ij j j
i j � j �

J u u V u u R u u u u R u u

V
e B u u u R u u dt

δ δ

δ

∞

−
∈

∈ ∈

= + − − + − −

∂
− − + −

∂

∑∫

∑ ∑

 At the equilibrium point *
i iu u= and *

j ju u= so

 * * *((0), ,) ((0))i i i i i iJ u u Vδ δ− =

 Define

* * *1
2

0

(,) ((0)) () ()
T

i i i i i i i ii i iJ u u V u u R u u dtδ
∞

− = + − −∫

and * ((0))i i iJ V δ= . Then clearly *
iJ and *(,)i i iJ u u− satisfy (6.16).

 ■

6.4 Policy iteration solution for cooperative multi-player games

6.4.1 Best response

 Theorem 6.1 reveals that the systems are in cooperative Nash equilibrium if, for all

i �∈ node i selects his best response policy to his neighbors policies and the graph is strongly

connected. Define the best response HJ equation as the Bellman equation (6.14) with control

*
i iu u= given by (6.19) and arbitrary policies { : }i j iu u j �− = ∈

* 2 11 1 1
2 2 2

0 (, , ,) ()

i

T T
c T T Ti i i i

i i i i i i ii i i i i ii i j ij j
i i i i j �

V V V V
H u u A Q d g B R B u R uδ δ δ

δ δ δ δ
−

−
∈

∂ ∂ ∂ ∂
= ≡ + + + +

∂ ∂ ∂ ∂ ∑ (6.33)

where the closed-loop matrix is

2 1
()

c T i
i i i i i ii i

i

V
A A d g B R Bδ

δ
− ∂

= − +
∂

i

ij j j

j �

e B u

∈

−∑ (6.34)

 139

 Theorem 6.2. Solution for Best Response Policy

 Given fixed neighbor policies { : }i j iu u j �− = ∈ , assume there is an admissible policy

iu . Let 10iV C> ∈ be a smooth solution to the best response HJ equation (6.33) and let control

policy *
iu be given by (6.19) in terms of this solution iV . Then

a. System (6.8) is asymptotically stable.

b. *
iu is the best response to the fixed policies iu− of its neighbors.

 Proof:

a. 0iV > satisfies (6.33). Proof follows Theorem 6.1, part a.

b. According to part a, () 0i tδ → for the selected control policies. For any smooth functions

(),i iV i �δ ∈ , such that (0) 0iV = , setting (()) 0i iV δ ∞ = one can write (6.9) as

1
2

0

0

((0), ,) ()

((0)) (())

i

i

T T T
i i i i i ii i i ii i j ij j

j �

T

i
i i i i i i i ij j j

i j �

J u u Q u R u u R u dt

V
V A d g B u e B u dt

δ δ δ

δ δ
δ

∞

−
∈

∞

∈

= + +

∂
+ + + + −

∂

∑∫

∑∫

 Now let iV satisfy (6.33), *
iu be the optimal controls given by (6.19) and iu− be arbitrary

policies. By completing the squares one has

* *1
2

0

((0), ,) ((0)) () ()
T

i i i i i i i i ii i iJ u u V u u R u u dtδ δ
∞

− = + − −∫

 The agents are in best response to fixed policies iu− when *
i iu u= so

 *((0), ,) ((0))i i i i i iJ u u Vδ δ− =

 Then clearly ((0), ,)i i i iJ u uδ − and *((0), ,)i i i iJ u uδ − satisfy (6.18).

 ■

 140

6.4.2 Policy Iteration for solution of graphical games

 The following algorithm for the N-player distributed games is motivated by the structure

of policy iteration algorithms in reinforcement learning [15], [86], which rely on repeated policy

evaluation (e.g. solution of (6.14)) and policy improvement (solution of (6.19)). These two steps

are repeated until the policy improvement step no longer changes the present policy. If the

algorithm converges for every i , then it converges to the solution to HJ equations (6.20), and

hence provides the distributed Nash equilibrium. One must note that the costs can be evaluated

only in the case of admissible control policies, admissibility being a condition for the control

policy which initializes the algorithm.

 Algorithm 6.1. Policy Iteration (PI) Solution for N-player distributed games.

 Step 0: Start with admissible initial policies 0 ,iu i∀ .

 Step 1: (Policy Evaluation) Solve for k
iV using (6.14)

(, , ,) 0

k
k ki

i i i i
i

V
H u uδ

δ −
∂

=
∂

, 1, ,i �∀ = … (6.35)

 Step 2: (Policy Improvement) Update the N-tuple of control policies using

 1 argmin (, , ,), 1, ,
i

k
k ki
i i i i i

u i

V
u H u u i �δ

δ
+

−
∂

= ∀ =
∂

…

which explicitly is

1 1()

k
k T i
i i i ii i

i

V
u d g R B

δ
+ − ∂

= − +
∂

, 1, ,i �∀ = … . (6.36)

 Go to step 1.

 On convergence End

 ■

 The following two theorems prove convergence of the policy iteration algorithm for

distributed games for two different cases. The two cases considered are the following, i) only

agent i updates its policy and ii) all the agents update their policies.

 141

 Theorem 6.3. Convergence of Policy Iteration algorithm when only i
th

 agent

updates its policy and all players iu− in the neighborhood do not change. Given fixed

neighbors policies iu− , assume there exists an admissible policy iu . Assume that agent i

performs Algorithm 6.1 and its neighbors do not update their control policies. Then the algorithm

converges to the best response iu to policies iu− of the neighbors and to the solution iV to the

best response HJ equation (6.33).

 Proof:

 It is clear that

1(, ,) min (, , ,) (, , ,)
i

k k k
o k k k k ki i i
i i i i i i i i i i i

u
i i i

V V V
H u H u u H u uδ δ δ

δ δ δ
+

− − −
∂ ∂ ∂

≡ =
∂ ∂ ∂

(6.37)

 Let (, , ,) 0

k
k ki

i i i i
i

V
H u uδ

δ −
∂

=
∂

from (6.35) then according to (6.37) it is clear that

 (, ,) 0
k

o ki
i i i

i

V
H uδ

δ −
∂

≤
∂

 (6.38)

 Using the next control policy 1k
iu
+ and the current policies k

iu− one has the orbital

derivative [47]

1 1(, , ,) (, ,)
k

k k k k ki
i i i i i i i i i

i

V
V H u u L u uδ δ

δ
+ +

− −
∂

= −
∂

ɺ

From (6.37) and (6.38) one has

0 1 1(, ,) (, ,) (, ,)

k
k k k k k ki
i i i i i i i i i i i i

i

V
V H u L u u L u uδ δ δ

δ
+ +

− − −
∂

= − ≤ −
∂

ɺ

(6.39)

 Because only agent i update its control it is true that 1k k
i iu u+

− −= and

1
1(, , ,) 0

k
k ki

i i i i
i

V
H u uδ

δ

+
+

−
∂

=
∂

.

 But since 1 1 1(, ,)k k k
i i i i iV L u uδ+ + +

−= −ɺ , from (6.39) one has

 142

0 1 1 1(, ,) (, ,) (, ,)

k
k k k k k k ki
i i i i i i i i i i i i i

i

V
V H u L u u L u u Vδ δ δ

δ
+ + +

− − −
∂

= − ≤ − =
∂

ɺ ɺ

(6.40)

 So that 1k k
i iV V +≤ɺ ɺ and by integration it follows that

1k k
i iV V+ ≤ (6.41)

 Since * k
i iV V≤ , the algorithm converges, to *

iV , to the best response HJ equation (6.33).

 ■

 The next result concerns the case where all nodes update their policies at each step of

the algorithm. Define the relative control weighting as 1
()ij jj ijR Rρ σ −= , where 1

()jj ijR Rσ − is the

maximum singular value of 1
jj ijR R
− .

 Theorem 6.4. Convergence of Policy Iteration algorithm when all agents update

their policies. Assume all nodes i update their policies at each iteration of PI. Then for small

enough edge weights ije and ijρ , iu converges to the global Nash equilibrium and for all i ,

and the values converge to the optimal game values *k
i iV V→ .

 Proof:

 It is clear that

1 1

1 1 0(, , ,) (, ,)

k k
k k ki i

i i i i i i i
i i

V V
H u u H uδ δ

δ δ

+ +
+ +

− −
∂ ∂

≡
∂ ∂

1

1 1 1 11
2

() () () ()

i i i

k T
k k T k k kT k k k ki
j j ij j j j ij j j ij j j j

ij � j � j �

V
u u R u u u R u u e B u u

δ

+
+ + + +

∈ ∈ ∈

∂
+ − − + − + −

∂∑ ∑ ∑

and so

1 1 1 1 1 11
2

1
1 1

(, ,) (, ,) () ()

() ()

i

i i

k k k k k k k T k k
i i i i i i i i i j j ij j j

j �

k T
k k kT k ki

ij j j j j ij j j
i j � j �

V L u u L u u u u R u u

V
e B u u u R u u

δ δ

δ

+ + + + + +
− −

∈

+
+ +

∈ ∈

= − = − + − −

∂
+ − + −

∂

∑

∑ ∑

ɺ

 Therefore,

 143

1
1 1 1 1 11

2
() () () ()

i i i

k T
k k k k T k k k k kT k ki
i i j j ij j j ij j j j j ij j j

ij � j � j �

V
V V u u R u u e B u u u R u u

δ

+
+ + + + +

∈ ∈ ∈

∂
≤ − − − + − − −

∂∑ ∑ ∑ɺ ɺ

A sufficient condition for 1k k
i iV V +≤ɺ ɺ is

 11
2

() 0
T k T kT
j ij j i ij j j j ij ju R u p e B u u R u

+∆ ∆ − ∆ + ∆ >

or

1 1 11
2

() ()() 0,
T k T k T
j ij j ij i j j j j j j jj ij ju R u e p B u d g p B R R u

+ − −∆ ∆ − ∆ − + ∆ >

1 11
2
() ()k k

ij j ij i j j j ij j jR u e p B d g p Bσ ρ+ −∆ > ⋅ + + ⋅

where 1
()

k k
j j ju u u

+∆ = − , ip the co-state and ()ijRσ is the minimum singular value of ijR .

 This holds if 0, 0ij ije ρ= = . By continuity, it holds for small values of ,ij ije ρ .

 ■

 This proof indicates that for the PI algorithm to converge, the neighbors’ controls should

not unduly influence the i-th node dynamics (6.8), and the j-th node should weight its own

control ju in its performance index jJ relatively more than node i weights ju in iJ . These

requirements are consistent with selecting the weighting matrices to obtain proper performance

in the simulation examples.

 An alternative condition for convergence in Theorem 6.4 is that the norm jB should

be small. This is similar to the case of weakly coupled dynamics in multi-player games in [11].

6.5 Online solution of multi-agent cooperative games using neural networks

 In this section an online algorithm for solving cooperative Hamilton-Jacobi equations

(6.20) based on Chapter 5 is presented. This algorithm uses the structure in the PI Algorithm

6.1 to develop an actor/critic architecture for approximate online solution of (6.20). The

algorithm uses two approximator structures at each node, which are taken here as neural

networks (NN) [4], [15], [86]. One critic NN is used at each node for value function

approximation, and one actor NN at each node to approximate the control policy (6.36). The

 144

critic NN seeks to solve Bellman equation (6.35). We give tuning laws for the actor NN and the

critic NN such that equations (6.35) and (6.36) are solved simultaneously online for each node.

Then, the solutions to the coupled HJ equations (6.20) are determined. Though these coupled

HJ equations are difficult to solve, and may not even have analytic solutions, we show how to

tune the NN so that the approximate solutions are learned online. The next assumption is

made.

 Assumption 6.2. For each admissible control policy the nonlinear Bellman equations

(6.14), (6.35) have smooth solutions 0iV ≥ .

 To solve the Bellman equations (6.35), approximation is required of both the value

functions
iV and their gradients /i iV δ∂ ∂ . This requires approximation in Sobolev space [4].

6.5.1 Critic neural network

 According to the Weierstrass higher-order approximation theorem [4] there are NN

weights iW such that the smooth value functions iV are approximated using a critic NN as

() T
i i i i iV Wδ φ ε= + (6.42)

with : n h
iφ →ℝ ℝ the critic NN activation function vectors and h the number of neurons in the

critic NN hidden layer. The NN approximation error iε converges to zero uniformly as h → ∞ .

 Assuming current weight estimates ˆiW , the outputs of the critic NN are given by

ˆ ˆ T
i i iV W φ= (6.43)

 Then, the Bellman equation (6.35) can be approximated at each step k as

ˆ(, , ,)

ˆ (())

i

i

i

T T T
i i i i i i ii i i ii i j ij j

j �

T i
i i i i i i ij j j H

i j �

H W u u Q u R u u R u

W A d g B u e B u e

δ δ δ

ϕ
δ

δ

−
∈

∈

= + +

∂
+ + + − =

∂

∑

∑
 (6.44)

 It is desired to select ˆiW to minimize the square residual error

1
1 2 i i

T
H HE e e= (6.45)

 145

 Then ˆ
i iW W→ which solves (6.44) in a least-squares sense and

iHe becomes small.

Theorem 6.5 gives a tuning law for the critic weights that achieves this.

6.5.2 Actor neural network and online solution

 Define the control policy in the form of an action neural network which computes the

control input (6.36) in the structured form

11
2

ˆˆ ()

T
T i

i � i i ii i i �
i

u d g R B W
ϕ
δ

−
+ +

∂
= − +

∂
 (6.46)

where ˆi �W + denote the current estimated values of the ideal NN weights iW . Define the actor

NN estimation errors as ˆ
i i iW W W= −ɶ and ˆ

i � i i �W W W+ += −ɶ .

 The next results show how to tune the critic NN and actor NN in real time at each node

so that equations (6.35) and (6.36) are simultaneously solved, while closed-loop system stability

is also guaranteed. Simultaneous solution of (6.35) and (6.36) guarantees that the coupled HJ

equations (6.20) are solved for each node i. System (6.8) is said to be uniformly ultimately

bounded (UUB) if there exists a compact set nS R⊂ so that for all
0
x S∈ there exists a bound B

and a time
0

(,)T B x such that ()x t B≤ for all
0

.t t T≥ +

 Select the tuning law for the i
th
 critic NN as

1 1
42

2 11
4

ˆ ˆ ˆ ˆ[
ˆ (1)

ˆ ˆ()]

i

T Ti
i i i i i i ii i i � i i �

i ii

T

j jT T T
j j j � j jj ij jj j j �

j jj �

E
W a a W Q W DW

W

d g W B R R R B W

σ
σ δ δ

σ σ

ϕ ϕ

δ δ

Τ
+ +Τ

− −
+ +

∈

∂
= − = − + +

+∂

∂ ∂
+ +

∂ ∂∑

ɺ

 (6.47)

where ˆ ˆ(())

i

i
i � i i i i i � ij j j �

i j �

A d g B u e B u
ϕ

σ δ
δ

+ + +
∈

∂
= + + −

∂ ∑

and the tuning law for the i
th
 actor NN as

 146

1

2 1

1ˆ ˆ ˆ ˆ ˆ{()
4

1 ˆ ˆ() }
4

ii

T
T i �

i � i � i i � i i � i i i � i
si

TT
j jT T Ti �

i � j j j j jj ij jj j
s j jj �

j i

W a F W F W DW W
m

W d g W B R R R B
m

σ
σ

ϕ ϕσ
δ δ

+
+ + + + + +

− −+
+

∈
≠

= − − −

∂ ∂
− +

∂ ∂∑

ɺ

 (6.48)

where 1()

T
Ti i

i i ii i
i i

D x B R B
ϕ ϕ
δ δ

−∂ ∂
≡

∂ ∂
, (1)

i

T
s i � i �m σ σ+ +≡ + , 0, 0i i �a a +> >… and 0, 0i i �F F +> >…

are tuning parameters.

 Theorem 6.5. Online Cooperative Games.

 Let the error dynamics be given by (6.8), and consider the cooperative game

formulation in (6.15). Let the critic NN at each node be given by (6.43) and the control input be

given for each node by actor NN (6.46). Let the tuning law for the i
th
 critic NN be provided by

(6.47) and the tuning law for the i
th
 actor NN be provided by (6.48) and assume

/ (1)T
i � i � i � i �σ σ σ σ+ + + += + is persistently exciting and 0iiQ > . Then the closed-loop system

state, the critic NN errors iWɶ , and the actor NN errors i �W +
ɶ are uniformly ultimately bounded.

Proof: The proof is similar to the previous chapter.

 ■

 Remark 6.1. Theorem 6.5 provides algorithms for tuning the actor/critic networks of the

N agents at the same time to guarantee stability and make the system errors ()i tδ small and

the NN approximation errors bounded. Small errors guarantee synchronization of all the node

trajectories.

 Remark 6.2. Persistence of excitation is needed for proper identification of the value

functions by the critic NNs, and nonstandard tuning algorithms are required for the actor NNs to

guarantee stability. It is important to notice that the actor tuning law of every agent needs

information of the critic weights of all his neighbors.

 Remark 6.3. NN usage suggests starting with random, nonzero control NN weights in

(6.46) in order to converge to the coupled Riccatis solution. However, it should be noted that

convergence is more sensitive to the persistence of excitation in the control inputs than to the

 147

NN weight initialization. If the proper persistence of excitation is not selected, the control

weights may not converge to the correct values.

 Remark 6.4. The issue of which inputs to use for the critic and actor NNs needs to be

addressed. According to the dynamics (6.8), the value functions (6.13), and the control inputs

(6.19), the NN inputs at node i should consist of its own state, the states of its neighbors, and

the co-states of its neighbors. However, in view of (6.26) the co-states are functions of the

states. In view of the approximation capabilities of NN, it is found in simulations that it is

suitable to use as the NN inputs at node i its own state and the states of its neighbors.

 The next result shows that the tuning laws given in Theorem 6.5 guarantee approximate

solution to the coupled HJ equations (6.20) and convergence to the Nash equilibrium.

 Theorem 6.6. Convergence to Cooperative Nash Equilibrium.

 Suppose the hypotheses of Theorem 6.5 hold. Then:

a. ˆ ˆ ˆ(, , ,),i i i i iH W u u i �δ − ∀ ∈ are uniformly ultimately bounded, where

 11
2

ˆˆ ()

T
T i

i i i ii i i
i

u d g R B W
ϕ
δ

− ∂
= − +

∂

That is, ˆiW converge to the approximate cooperative coupled HJ-solution.

b. ˆ
i �u + converge to the approximate cooperative Nash equilibrium (Definition 6.2) for

every i .

 Proof: The proof is similar to the one in chapter 5 but is done only with respect to the

neighbors (local information) of each agent and not with respect to all agents.

 Consider the weights ˆ ˆ,i i �W W + to be UUB as proved in Theorem 6.5.

a. The approximate coupled HJ equations are ˆ ˆ ˆ(, , ,),i i i i iH W u u i �δ − ∀ ∈ .

2 11
4

ˆ ˆ ˆ ˆˆ ˆ(, , ,) (,)

ˆ ˆ()

T T i
i i i i i i i i i i ii i i i

i

T
T Ti i

i i i i ii i i
i i

H W u u H W W Q W A

d g W B R B W

ϕ
δ δ δ δ δ

δ

ϕ ϕ
δ δ

− −

−

∂
≡ = +

∂

∂ ∂
− +

∂ ∂

 148

2 1 1 11 1
4 2

ˆ ˆ ˆ ˆ()
i

i i

T T
j j jT T T Ti

j j j j jj ij jj j j i ij j jj j j HJ
j j jij � j �

d g W B R R R B W W e B R B W
ϕ ϕ ϕϕ

ε
δ δ δδ

− − −

∈ ∈

∂ ∂ ∂∂
+ + + −

∂ ∂ ∂∂∑ ∑

where ,
iHJ iε ∀ are the residual errors due to approximation.

 After adding zero we have

2 11
4

2 1 2 11 1
2 2

2 1 11
4

ˆ ˆ(,) ()

ˆ() ()

()

T
T T Ti i i

i i i i i i i i i i ii i i
i ii

T T
T T T Ti i i i

i i i i ii i i i i i i ii i i
i i i i

T
j jT T

j j j j jj ij jj j j
j jj

H W W W A d g W B R B W

d g W B R B W d g W B R B W

d g W B R R R B W

ϕ ϕ ϕ
δ δ

δ δδ

ϕ ϕ ϕ ϕ
δ δ δ δ

ϕ ϕ

δ δ

−
−

− −

− −

∈

∂ ∂ ∂
= − − +

∂ ∂∂

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂

∂ ∂
− +

∂ ∂

ɶ ɶ ɶ

ɶ ɶ 2 1 11
2

2 1 1 11
2

11 1
2 2

()

ˆ ˆ ˆ()

i i

i

i i

i

T
j jT T

j j j j jj ij jj j j
j j� j �

T T
j j jT T T Ti

j j j j jj ij jj j j i ij j jj j j HJ
j j jij � j �

T
jT T Ti

i ij j jj j j i
ji j �

d g W B R R R B W

d g W B R R R B W W e B R B W

W e B R B W W

ϕ ϕ

δ δ

ϕ ϕ ϕϕ
ε

δ δ δδ

ϕϕ
δδ

− −

∈

− − −

∈ ∈

−

∈

∂ ∂
+ +

∂ ∂

∂ ∂ ∂∂
+ + + −

∂ ∂ ∂∂

∂∂ ∂
− −

∂∂

∑ ∑

∑ ∑

∑ɶ ɶ 1 ˆ

i

T
jTi

ij j jj j j
ji j �

e B R B W
ϕϕ
δδ

−

∈

∂

∂∂ ∑

11
2
ˆ

i

T
jT Ti

i ij j jj j j
ji j �

W e B R B W
ϕϕ
δδ

−

∈

∂∂
−

∂∂ ∑ (6.49)

 But

ˆ ,i i iW W W i= − + ∀ɶ . (6.50)

 After taking norms in (6.50) and letting maxi iW W< one has

max
ˆ
i i i i i i iW W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ

 Now (6.49) with sup
iHJ iε ε< becomes

 149

()

2
2 22 11

4

2 2

2 2 22 1 2 11 1
max max max2 2

2
2 22 1 11

4

2
2 221

max2

ˆ ˆ(,) ()

() ()

()

()

i

i i
i i i i i i i i i i ii

i i

i i
i i i i ii i i i i ii i i

i i

j

j j j j jj ij jj
jj �

j

j j j j
j

H W W W A d g W B R

d g W B R d g W B R W W

d g W B R R R

d g W B R

ϕ ϕ
δ δ

δ δ

ϕ ϕ

δ δ

ϕ

δ

ϕ

δ

−
−

− −

− −

∈

∂ ∂
≤ + +

∂ ∂

∂ ∂
+ + + + +

∂ ∂

∂
+ +

∂

∂
+ +

∂

∑

ɶ ɶ

ɶ

ɶ

1 1

i

jj ij jj

j �

R R− −

∈
∑

()

() ()

()

()

2

22 1 11
max max2

2 1
max max

2 11
2

2 11
max max2

1
max2

()

i

i

i

i

j

j j j j jj ij jj j j
jj �

ji
i i ij j jj j j

ji j �

ji
i ij j jj j

ji j �

ji
i ij j jj j j

ji j �

i
i i

i

d g W B R R R W W

W W e B R W W

W e B R W

W e B R W W

W W

ϕ

δ

ϕϕ
δδ

ϕϕ
δδ

ϕϕ
δδ

ϕ

δ

− −

∈

−

∈

−

∈

−

∈

∂
+ + +

∂

∂∂
+ + +

∂∂

∂∂
+

∂∂

∂∂
+ +

∂∂

∂
+ +

∂

∑

∑

∑

∑

ɶ

ɶ ɶ

ɶ ɶ

ɶ

ɶ 2 1
max

i

j

ij j jj j

jj �

e B R W
ϕ

δ
−

∈

∂

∂∑

 2ε+ (6.51)

 All the signals on the right hand side of (6.51) are UUB and convergence to the

approximate coupled HJ solution is obtained for every agent.

b. According to Theorem 6.5, ˆ ,i � iW W i+ − ∀ are UUB. Then it is obvious that ˆ ,i �u i+ ∀ give the

approximate cooperative Nash equilibrium (Definition 6.2).

 ■

 150

6.6 Simulations

 This section will show the effectiveness of the online approach described in Theorem

6.5 for two different cases.

 Consider the three-node strongly connected digraph structure shown in Figure 36 with a

leader node connected to node 3. The edge weights and the pinning gains are taken equal to 1.

Every node is a second order system.

Figure 36. Communication Graph.

 Select the weight matrices in (6.9) as

11 22 33

1 0

0 1
Q Q Q

 
= = =  

 
, 11 12 134, 1, 1,R R R= = = − 31 22 23 33 32 214, 9, 1, 9, 1, 1R R R R R R= − = = = = = a

nd 1 2 31, 2d d d= = = .

 Since the value is quadratic in the Linear Quadratic Regulator (LQR) case, the critic

NNs basis sets were selected as the quadratic vector in the agent’s components and the

neighbors’ components. The systems below are of second order then we can write for every

agent

1 11 12δ δ δ =   , 2 21 22δ δ δ =   , 3 31 32δ δ δ =  

 Thus the NN activation functions are

 151

2 2 2 2
1 1 3 11 11 12 12 31 31 32 32(,0,) 0 0 0φ δ δ δ δ δ δ δ δ δ δ =  

2 2 2 2
1 1 2 11 11 12 12 21 21 22 21(, ,0) 0 0 0φ δ δ δ δ δ δ δ δ δ δ =  

2 2 2 2 2 2
3 1 2 3 11 11 12 12 21 21 22 22 31 31 32 32(, ,)φ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ =  

6.6.1 Velocity and Position regulated to zero

 For the graph structure shown above consider the following node dynamics

1 1 1

2 2 2

3 3 3

2 1 2

4 1 1

2 1 2

4 1 3

2 1 2

4 1 2

x x u

x x u

x x u

−   
= +   − −   

−   
= +   − −   

−   
= +   − −   

ɺ

ɺ

ɺ

 The graphical game is implemented as in Theorem 6.5. Persistence of excitation was

ensured by adding a small exponential decreasing probing noise to the control inputs. Figure 37

shows the critic parameters for every agent. Figure 38 shows the evolution of the states for the

duration of the experiment.

Figure 37. Critic parameters.

 152

Figure 38. Evolution of the system states.

6.6.2 All nodes synchronize to the leader node

 For the graph structure shown above consider the following node dynamics

1 1 1

2 2 2

3 3 3

0 1 2

1 0 1

0 1 2

1 0 3

0 1 2

1 0 2

x x u

x x u

x x u

   
= +   −   

   
= +   −   

   
= +   −   

ɺ

ɺ

ɺ

 The graphical game is implemented as in Theorem 6.5. Persistence of excitation was

ensured by adding a small exponential decreasing probing noise to the control inputs. Figure 39

shows the critic parameters for every agent and figure 40 shows the synchronization of all the

agents to the leader behavior.

 153

Figure 39. Critic parameters.

Figure 40. Synchronization of all the agents to the leader.

 154

CHAPTER 7

ONLINE ADAPTIVE LEARNING OF OPTIMAL CONTROL SOLUTIONS USING INTEGRAL

REINFORCEMENT LEARNING

7.1 Introduction

 In this chapter we use Reinforcement Learning (RL) methods, specifically a new

Integral Reinforcement Learning (IRL) approach, to provide an online learning solution to

optimal control problem that does not require knowledge of the system drift dynamics. Integral

reinforcement learning (IRL) was first introduced in [91], [92] to provide a practical means of

applying reinforcement learning to continuous-time systems. The algorithm that we introduce

herein is conceptually based on the Policy Iteration (PI) technique of chapter 2.

 This chapter is concerned with developing approximate online solutions, based on PI,

for the infinite horizon optimal control problem for continuous-time (CT) nonlinear systems. We

present an online integral reinforcement algorithm that combines the advantages of the

algorithm in chapter 2 and [92]. These include simultaneous tuning of both actor and critic

neural networks (i.e. both neural networks are tuned at the same time) and no need for the drift

term in the dynamics [92]. Simultaneous tuning idea was first introduced by [98], [99] and has

been the idea of recent chapters in the area, however in most of these chapters the authors

either designed model-based controllers [21] or used dynamic neural networks to identify the

nonlinear plant [16]. Our algorithm avoids partial knowledge of the plant and uses only two

neural networks by designing a hybrid controller as in [92].

 The contributions in this chapter are i) provide a new online continuous time algorithm

that converge to the solution of HJB and Bellman equation without solving them, ii) partial need

of dynamics, and iii) update actor and critic neural networks simultaneously in real time.

 155

 The chapter is organized as follows. Section 7.2 provides the formulation of the optimal

control problem followed by the general description of neural network value function

approximation (VFA). Section 7.3 introduces the online synchronous integral reinforcement

learning algorithm for the actor and critic networks based on PI. Results for convergence and

stability are given. Section 7.4 presents simulation examples that show the effectiveness of the

online integral reinforcement learning algorithm.

7.2 Optimal control problem and the policy iteration algorithm

7.2.1 Optimal control and the continuous time HJB equation

Let the system dynamics be described by the differential equation

() (()) (()) (())x t f x t g x t u x t= +ɺ ; 0(0)x x= (7.1)

with state () nx t ∈ℝ , (()) nf x t ∈ℝ , (()) n mg x t ×∈ℝ and control input () mu t U∈ ⊂ R . We assume

that (0) 0, (0) 0f g= = , () ()f x g x u+ is Lipschitz continuous on a set nΩ ⊆ R that contains the

origin. We assume that the dynamical system is stabilizable on Ω , i.e. there exists a continuous

control function ()u t U∈ such that the system is asymptotically stable on Ω , and that

() ()f x g x u+ is Lipschitz continuous on Ω .

 Define the infinite horizon integral cost

0

0

() ((), ())V x r x u dτ τ τ
∞

= ∫ (7.2)

where (,) () Tr x u Q x u Ru= + with ()Q x positive definite, i.e. 0, () 0x Q x∀ ≠ > and

0 () 0x Q x= ⇒ = , and m mR ×∈R a positive definite matrix.

 Definition 7.1. [4] (Admissible policy) A control policy ()xµ is defined as admissible

with respect to (7.2) on Ω , denoted by ()µ ∈Ψ Ω , if ()xµ is continuous on Ω , (0) 0µ = , ()xµ

stabilizes (7.1) on Ω and 0()V x is finite 0x∀ ∈Ω .

 156

 For any admissible control policy ()µ ∈Ψ Ω , if the associated cost function

0

0

() ((), (()))V x r x x d
µ τ µ τ τ

∞

= ∫ (7.3)

is 1C , then an infinitesimal version of (7.3)is

0 (, ()) (() () ()), (0) 0T
xr x x V f x g x x Vµ µµ µ= + + = (7.4)

where xV
µ denotes the partial derivative of the value function V µ with respect to x . (Note that

the value function does not depend explicitly on time). Equation (7.4) is a Lyapunov equation for

nonlinear systems which, given a controller () ()xµ ∈Ψ Ω , can be solved for the value function

()V xµ associated with it. Given that ()xµ is an admissible control policy, if ()V xµ satisfies (7.4)

, with (, ()) 0r x xµ ≥ , then ()V xµ is a Lyapunov function for the system (7.1) with control policy

()xµ .

 The optimal control problem can now be formulated: Given the continuous-time system

(7.1), the set ()µ ∈Ψ Ω of admissible control policies and the infinite horizon cost functional

(7.2), find an admissible control policy such that the cost index (7.2) associated with the system

(7.1) is minimized.

 Define the Hamiltonian of the problem

(, ,) ((), ()) ((()) (()) ())T
x xH x u V r x t u t V f x t g x t u t∇ = +∇ + (7.5)

the optimal cost function *()V x satisfies the HJB equation

*

()
0 min [(, ,)]x

u
H x u V

∈Ψ Ω
= ∇ (7.6)

where x

V
V

x

∂
∇ ≡

∂
is disabused here as a column vector.

 157

 Assuming that the minimum on the right hand side of (7.6) exists and is unique then the

optimal control function for the given problem is

* 1 *() ()T
xu x R g x V−= − ∇ (7.7)

 Inserting this optimal control policy in the Hamiltonian we obtain the formulation of the

HJB equation in terms of *
xV

* * 1 * *1
0 () () () () , (0) 0

4

T T T
x x xQ x V f x V g x R g x V V−= +∇ − ∇ ∇ = (7.8)

This is a necessary and sufficient condition for the optimal value function [53]. For the linear

system case, considering a quadratic cost functional, the equivalent of this HJB equation is the

well known Riccati equation.

 In order to find the optimal control solution for the problem one only needs to solve the

HJB equation (7.8)for the value function and then substitute the solution in (7.7) to obtain the

optimal control. However, solving the HJB equation is generally difficult as it is a nonlinear

differential equation, quadratic in the cost function, which also requires complete knowledge of

the system dynamics (i.e. the system dynamics described by the functions (), ()f x g x need to be

known). The next section provides the policy iteration algorithm and the value function

approximation of the critic network.

7.2.2 Policy iteration

 Policy iteration is an iterative method of reinforcement learning [16] for solving (7.8),

and consists of policy improvement based on (7.7) and policy evaluation based on (7.4).

 In the actor/critic structure the Critic and the Actor functions are approximated by neural

networks, and the PI algorithm consists in tuning alternatively each of the two neural networks.

 The critic neural network is tuned to evaluate the performance of the current control

policy.

 158

 Policy Iteration Algorithm:

 Step 1. Given policies () ()i xµ , solve for the value
()

(())
i

V x tµ using

()

()

() ()
0 (, ()) () (() () ())

(0) 0

i

i

i T i
xr x x V f x g x x

V

µ

µ

µ µ= + ∇ +

=
 (7.9)

 Step 2. Update the control policy using

()(1)

()

argmin[(, ,)]
ii

x
u

H x u Vµ +

∈Ψ Ω
= ∇ (7.10)

which explicitly is

()(1) 11
2

() ()
ii T

xx R g x Vµ + −= − ∇ (7.11)

 To ensure convergence of the PI algorithm an initial admissible policy (0) (()) ()x tµ ∈Ψ Ω

is required. It is in fact required by the desired completion of the first step in the policy iteration:

i.e. finding a value associated with that initial policy (which needs to be admissible to have a

finite value and for the nonlinear Lyapunov equation to have a solution). The algorithm then

converges to the optimal control policy * ()µ ∈Ψ Ω with corresponding cost *()V x . Proofs of

convergence of the PI algorithm have been given in several references. See [4], [13], [15], [30],

[35], [63], [92].

 Policy iteration is a Newton method. In the linear time-invariant case, it reduces to the

Kleinman algorithm [44] for solution of the Riccati equation, a familiar algorithm in control

systems. Then, (7.9) become a Lyapunov equation.

 A major problem with this formulation of PI for CT systems is that the full system

dynamics must be known as both f(x) and g(x) appear in the Bellman equation (7.9).

7.2.3 Value function approximation (VFA)

 A practical method for implementing PI for CT systems is presented in this section.

This involves two aspects: value function approximation (VFA) and integral reinforcement

 159

learning (IRL). The critic NN is based on value function approximation (VFA). Thus, assume

there exist weights 1W such that the value ()V x is approximated by a neural network as

1() () ()TV x W x xφ ε= + (7.12)

where () : n �xφ →R R is the activation functions vector, N the number of neurons in the hidden

layer, and ()xε the NN approximation error. It is known that ()xε is bounded by a constant on a

compact set. Select the activation functions to provide a complete basis set such that ()V x and

its derivative

1
TV
W

x x

ε
φ

∂ ∂
= ∇ +

∂ ∂
 (7.13)

are uniformly approximated. According to the Weierstrass higher-order approximation theorem

[4], such a basis exists if ()V x is sufficiently smooth. This means that, as the number of hidden-

layer neurons � → ∞ , the approximation error 0ε → uniformly.

7.2.4 Integral reinforcement learning

 The PI algorithm given above requires full system dynamics, since both f(x) and g(x)

appear in the Bellman equation (7.9). In order to find an equivalent formulation of the Bellman

equation that does not involve the dynamics, we note that for any time 0t and time interval T

the value function (7.3) satisfies

0

0 0

0

() ((), (())) ()

t

t t T

t T

V x r x x d V xµ µτ µ τ τ −

−

= +∫ (7.14)

 In [92] it is shown that (7.14) and (7.9) are equivalent, i.e., they both have the same

solution. Therefore, (7.14) can be seen as a Bellman equation for CT systems. Note that this

form does not involve the system dynamics. We call this the integral reinforcement learning

(IRL) form of the Bellman equation.

 160

 Therefore, by using a critic NN for VFA, the Bellman error based on (7.14) becomes

[92]

() 1 1() (()) (())

t

T T T
B

t T

Q x R d W x t W x t Tµ µ τ φ φ ε
−

+ + − − =∫ (7.15)

 We define the integral reinforcement as

()()

t

T

t T

p Q x R dµ µ τ
−

= +∫ (7.16)

 Now (7.15) can be written as

1 (())T
B p W x tε φ− = ∆ (7.17)

where (()) (()) (())x t x t x t Tφ φ φ∆ ≡ − − .

 Under the Lipschitz assumption on the dynamics, this residual error is bounded on a

compact set. Moreover, in [4] it has been shown that, under certain assumptions, as the

number of hidden layer neurons � → ∞ , one has 0Bε → .

7.3 Online integral reinforcement learning algorithm with synchronous tuning of actor and critic
neural networks

 Standard PI algorithms for CT systems are offline methods that require complete

knowledge on the system dynamics to obtain the solution (i.e. the functions (), ()f x g x in (7.1)

need to be known). In order to change the offline character of PI for CT systems, and thus make

it consistent with online learning mechanisms in the mammal brain, we present an adaptive

learning algorithm that uses simultaneous continuous-time tuning for the actor and critic neural

networks and does not need the drift term ()f x in the dynamics. We term this online integral

reinforcement learning algorithm.

 161

7.3.1 Critic NN and Bellman equation solution

 The weights of the critic NN, 1W , which solve (7.15) are unknown. Then the output of the

critic neural network is

1
ˆ ˆ() ()TV x W xφ= (7.18)

where 1Ŵ are the current known values of the critic NN weights. Recall that () : n �xφ →R R is

the activation functions vector, with N the number of neurons in the hidden layer. The

approximate Bellman error is then

() 1 1 1
ˆ ˆ() (()) (())

t

T T T

t T

Q x u Ru d W x t W x t T eτ φ φ
−

+ + − − =∫ (7.19)

which according to (7.16) can be written as

1 1
ˆ (())TW x t e pφ∆ = − (7.20)

 It is desired to select 1Ŵ to minimize the squared residual error

1
1 1 12

TE e e= (7.21)

 Then 1 1
ˆ ()W t W→ . We select the tuning law for the critic weights as the normalized

gradient descent algorithm

()
()1 1 12

(())ˆ ˆ[() (())]

1 (()) (())

tT
T T

T
t T

x t
W a Q x u Ru d x t W

x t x t

φ
τ φ

φ φ −

∆
= − + + ∆

+ ∆ ∆
∫

ɺ
 (7.22)

Note that the data required in this tuning algorithm at each time are ()(), ()t p tφ∆ .

 162

Define the critic weight estimation error 1 1 1
ˆW W W= −ɶ and substitute (7.15) in (7.22) and, with the

notation () () / (() () 1)t t t tφ φ φ φΤ∆ = ∆ ∆ ∆ + and 1 () ()T
sm t tφ φ= + ∆ ∆ , we obtain the dynamics of the

critic weight estimation error as

1 1 1 1() () () B

s

W a t t W a t
m

ε
φ φ φΤ= − ∆ ∆ + ∆ɺɶ ɶ (7.23)

 Though it is traditional to use critic tuning algorithms of the form (7.22), it is not

generally understood when convergence of the critic weights can be guaranteed. In this

chapter, we address this issue in a formal manner. To guarantee convergence of 1Ŵ to 1W , the

next Persistence of Excitation (PE) assumption is required.

 Note that:

(()) () ()

t t

t T t T

x t x xd f gu dφ φ τ φ τ
− −

∆ = ∇ = ∇ +∫ ∫ɺ (7.24)

 It is obvious to see from (7.20) that the regression vector ()tφ∆ must be persistently

exciting to solve for 1Ŵ in a least squares sense.

 Persistence of Excitation (PE) Assumption. Let the signal ()tφ∆

be persistently

exciting over the interval [,]t T t− , i.e. there exist constants 1 0β > , 2 0β > , 0Τ > such that, for

all t,

1 0 2() ()

t

t T

S dβ φ τ φ τ τ βΤ

−

Ι ≤ ≡ ∆ ∆ ≤ Ι∫ (7.25)

 Remark 7.1. Note that, as � → ∞ , 0Bε → uniformly [4].

 163

7.3.2 Action NN and online adaptive optimal control

 The policy improvement step in PI is given by substituting (7.13)into (7.7)as

11
12

() ()T Tu x R g x Wφ−= − ∇ (7.26)

with critic weights 1W unknown. Therefore, define the control policy in the form of an action

neural network which computes the control input in the structured form

11
2 22

ˆ() ()T Tu x R g x Wφ−= − ∇ (7.27)

where 2Ŵ denotes the current known values of the actor NN weights.

 Based on (7.8) and (7.15), define the approximate HJB equation

11 1 1

1
() () () (())

4

t

T T
HJB

t

Q x W D x W x d W x tε τ φ
−Τ

 
− − + = ∆ 

 ∫ (7.28)

with the notation 1
1() () () () ()T TD x x g x R g x xφ φ−= ∇ ∇ , where 1W denotes the ideal unknown

weights of the critic and actor neural networks which solve the HJB.

 We now present the main Theorems, which provide the tuning laws for the actor and

critic neural networks that guarantee convergence to the optimal controller along with closed-

loop stability. The next notion of practical stability is needed.

 Definition 7.2. [50] (UUB) A time signal ()tζ is said to be uniformly ultimately bounded

(UUB) if there exists a compact set nS ⊂ ℝ so that for all (0) Sζ ∈ there exists a bound B and a

time (, (0))T B ζ such that ()t Bζ ≤ for all 0 .t t T≥ +

 Theorem 7.1. Let tuning for the critic NN be provided by

()
11 1 1 2 22

(()) 1ˆ ˆ ˆ ˆ(()) ()
4

1 (()) (())

tT
T T

T
t T

x t
W a x t W Q x W D W d

x t x t

φ
φ τ

φ φ −

 ∆   = − ∆ + +   + ∆ ∆  
∫

ɺ
 (7.29)

 164

where 2(()) ()

t

t T

x t f gu dφ φ τ
−

∆ = ∇ +∫ and assume that ()tφ∆

is persistently exciting (which

means 2u is persistently exciting). Let the actor NN be tuned as

()
()

1
12 2 2 2 1 1 2 2 14 2

(())ˆ ˆ ˆ ˆ ˆ(()) ()

1 (()) (())

T
T

T

x t
W a F W F x t W a D x W W

x t x t

φ
φ

φ φ

∆
= − − ∆ −

+ ∆ ∆

ɺ
 (7.30)

 Then the closed-loop system state is UUB, the critic parameter error 1 1 1
ˆW W W= −ɶ and

the actor parameter error 2 1 2
ˆW W W= −ɶ are UUB.

 Proof:

 The convergence proof is based on Lyapunov analysis. We consider the Lyapunov

function

1 1
1 1 1 2 2 2

1 1
() () () ()

2 2

T T
L t V x tr W a W tr W a W

− −= + +ɶ ɶ ɶ ɶ (7.31)

With the chosen tuning laws one can then show that the errors 1Wɶ and 2Wɶ are UUB and

convergence is obtained. The chapter has the same form with the one in chapter 2.

 ■

 Theorem 7.2. Optimal solution. Suppose the hypotheses of Theorem 7.1 hold. Then:

a. ()1 1 1
ˆ ˆ ˆˆ ˆ ˆ(, ,) () (()) (())

t

T T T
HJB

t T

H u W x Q x u Ru d W x t W x t Tε τ φ φ
−

≡ + − + − −∫

is UUB, where 11
12
ˆˆ () ()T Tu R g x x Wφ−= − ∇ . That is, 1Ŵ converge to the approximate HJB solution.

b. 2
ˆ ()u x converges to the optimal solution, where 11

2 22
ˆˆ () ()T Tu R g x x Wφ−= − ∇ .

 Proof:

a. Consider the weights 1Wɶ , 2Wɶ to be UUB as proved in Theorem 7.1.

 165

()1 1 1
ˆ ˆ ˆˆ ˆ ˆ(, ,) () (()) (())

t

T T T
HJB

t T

H u W x Q x u Ru d W x t W x t Tε τ φ φ
−

≡ + − + − −∫

 After adding zero we have

()1 1
1 1 1 1 1 1 1 1 14 2
ˆˆ(, ,) () () (()) (())

t

T T T T
HJB

t T

H u W x W D x W W D x W d W x t W x t Tε τ ϕ ϕ
−

≡ − − − + −∫ ɶ ɶ ɶ ɶ ɶ

 By taking norms in both sides and taking into account that sup HJB
x

ε ε
∈Ω

< and letting

1 1maxW W< .

2
1 1

1 1 1 1 1max 1 14 2
ˆˆ(, ,) () () ((()) (()))

t

t T

H u W x W D x W W D x d W x t x t Tε τ ϕ ϕ
−

 ≡ + + + + − 
 ∫ ɶ ɶ ɶ (7.32)

 All the signals on the right hand side of are UUB. So 1
ˆˆ(, ,)H u W x is UUB and

convergence to the approximate HJB solution is obtained.

b. According to Theorem 7.1 and equations (7.26)and, (7.27), 2u u− is UUB because

2 1Ŵ W− is UUB.

 So 2 ()u x gives the optimal solution.

 This completes the proof.

 ■

 Remark 7.2. The positive tuning parameters 1F , 2F are selected appropriately to ensure

stability.

7.4 Simulation results

 To support the new synchronous online integral reinforcement learning algorithm for CT

systems, we offer two simulation examples, one linear and one nonlinear. In both cases we

observe convergence to the actual optimal value function and control. In these simulations,

 166

exponentially decreasing noise is added to the control inputs to ensure PE until convergence is

obtained.

7.4.1 Linear system example

 Consider the continuous-time F16 aircraft plant with quadratic cost function used in [85]

1.01887 0.90506 0.00215 0

0.82225 1.07741 0.17555 0

0 0 1 1

x x u

− −   
   = − − +   
   −   

ɺ

where Q and R in the cost function are identity matrices of appropriate dimensions and

0.01T = . In this linear case the solution of the HJB equation is given by the solution of the

algebraic Riccati equation (ARE). Since the value is quadratic in the LQR case, the critic NN

basis set ()xφ was selected as the quadratic vector in the state components. Solving the ARE

gives the parameters of the optimal critic as *
1 [1.4245 1.1682 -0.1352 1.4349 -0.1501 0.4329]TW = .

 The integral reinforcement algorithm is implemented as in Theorem 7.1. PE was

ensured by adding a small probing noise to the control input. Figure 41 shows the critic

parameters, denoted by

 1 1 2 3 4 5 6
ˆ []Tc c c c c cW W W W W W W=

converging to the optimal values. In fact after 250s the critic parameters converged to

1
ˆ () [1.4279 1.0193 -0.1473 1.4462 -0.1376 0.4330]TfW t =

 The actor parameters after 300s converge to the values of

2
ˆ () [1.4279 1.0193 -0.1473 1.4462 -0.1376 0.4330] .TfW t =

 The actor NN is given by

1

2 1

3 11
2 22

2

3 2

3

2 0 0

0
0

0
ˆˆ () 0 ()

0 2 0
1

0

0 0 2

T

T

f

x

x x

x x
u x W t

x

x x

x

 
 
  
  =−   
     
 
 

 167

 The evolution of the system states is presented in Figure 42. One can see that after

250s convergence of the NN weights in both critic and actor has occurred. This shows that the

probing noise effectively guaranteed the PE condition.

Figure 41. Convergence of the critic parameters to the parameters of the optimal critic.

Figure 42. Evolution of the system states for the duration of the experiment.

 168

7.4.2 Nonlinear system example

 Consider the following affine in control input nonlinear system, with a quadratic cost

constructed as in [64]

2() () ,x f x g x u x R= + ∈ɺ

where

1 2

3 3
1

2
3 2

2 2 1
2

11 1
1 0

0
() , () ,

cos(2) 2 cos(2.2) 25 ()

x x

f x g x
x x x x

x
x x x

x

− + 
  

= =   + +− − − + + +   
 

 One selects
1 0

, 1
0 1

Q R
 

= = 
 

and 0.01T = .

 The optimal value function is

 * 4 2
1 2

1 1
()

4 2
V x x x= +

the optimal control signal is

 * 31
1 1 22

() (cos(2) 2)u x x x x= − + +

 One selects the critic NN vector activation function as

2 2 4 4

1 2 1 2
() []x x x x xφ =

 Figure 43 shows the critic parameters, denoted by

1 1 2 3 4
ˆ []Tc c c cW W W W W=

 After the simulation by using the integral reinforcement learning algorithm we have

1
ˆ () [0.0033 0.4967 0.2405 0.0153]T

f
W t =

 The actor parameters after 80s converge to the values of

2
ˆ () [0.0033 0.4967 0.2405 0.0153]TfW t = .

 The actor NN is given by

 169

3
1 11

2 232 3
1 1 2 2

0 2 0 4 0 ˆˆ () ()
cos(2) 2 0 2 0 4

T

f

x x
u x W t

x x x x

  
=−   

+ +     

 The evolution of the system states is presented in Figure 44. One can see that after

80s convergence of the NN weights in both critic and actor has occurred. This shows that the

probing noise effectively guaranteed the PE condition.

 Figure 45 shows the 3-D plot of the difference between the approximated value

function, by using the online algorithm, and the optimal one. This error is close to zero. Good

approximation of the actual value function is being evolved. Figure 46 shows the 3-D plot of the

difference between the approximated control, by using the online integral reinforcement learning

algorithm, and the optimal one. This error is close to zero.

Figure 43. Convergence of the critic parameters to the parameters of the optimal critic.

 170

Figure 44. Evolution of the system states for the duration of the experiment.

Figure 45. Error between the optimal and approximated value function.

 171

Figure 46. Error between the optimal and the approximated control input.

7.5 Conclusion

 In this chapter we have proposed a new adaptive algorithm which solves the

continuous-time optimal control problem for affine in the inputs nonlinear systems. The

importance of this algorithm relies on the partial need of dynamics, only ()g x is needed, the

simultaneous tuning of the actor and critic neural networks and the convergence to HJB and

Bellman equation solution without solving these equations.

 172

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

 In this thesis have been developed online learning algorithms which use reinforcement

learning ideas to solve games and optimal control problems by tuning simultaneously all the

critic and actor neural networks and by measuring the states or input/output data.

 This thesis considers three classes of dynamical systems. The first one is the linear

continuous-time system, the second one is the affine in control nonlinear continuous-time

system and the third one is the linear discrete-time system.

 The new results presented herein are:

1. An online adaptive optimal controller to solve the continuous-time infinite horizon

optimal control problem by tuning the critic and actor neural networks simultaneously. The

algorithm converges to the solution of Hamilton-Jacobi-Bellman equation without solving it.

2. An online gaming algorithm to solve the zero-sum game problem, by tuning the critic,

actor and disturbance neural networks simultaneously. The algorithm converges to the solution

of Hamilton-Jacobi-Isaacs equation without solving it.

3. An online adaptive control algorithm based on policy iteration to solve the

continuous-time multi player non zero sum game with infinite horizon for linear and nonlinear

systems. Every player has his own actor/critic structure and the algorithm tunes all N actor/critic

neural networks at the same time. The algorithm converges to the solution of coupled Hamilton-

Jacobi equations and coupled Riccati equations for nonlinear and linear systems respectively

without solving them.

4. Reinforcement learning methods which require only output feedback and yet

converge to an optimal controller.

5. Policy iteration and online learning solution is developed for graphical games.

 173

6. Online adaptive learning algorithm (synchronous policy iteration) that uses integral

reinforcement learning and does not need any knowledge on the drift dynamics.

Convergence and stability proofs are provided for all the aforementioned algorithms.

The following are some of the directions for continuation of this work

1. Extend the idea of online adaptive learning algorithm with integral reinforcement

learning to zero and non-zero sum games.

2. Adaptive optimal controllers for nonlinear systems that use only output feedback.

 174

APPENDIX A

PROOFS

 175

Proofs for Chapter 2

Proof for Technical Lemma 2.2 Part a:

 This is a more complete version of results in [36], [87].

 Set 0
H

ε = in (2.26). Take the Lyapunov function

1

1 1 1

1

2

T
L W a W

−= ɶ ɶ (A.1)

 The derivative is

1 1 1 1

TL W Wσ σ Τ= −ɺ ɶ ɶ

 Integrating both sides

1 1 1 1

1 1 1 1

() () () ()

() () () (,) () () (,) ()

t T

t

t T

T

t

L t T L t W W d

L t T L t W t t t d W t

σ τ σ τ τ

τ σ τ σ τ τ τ

+
Τ Τ

+
Τ Τ

+ − = −

+ = − Φ Φ

∫

∫

ɶ ɶ

ɶ ɶ

1 1 1 1 3
() () () (1 2) ()L t W t SW t a L tβΤ= − ≤ −ɶ ɶ

 So

1 3
() (1 2) ()L t a L tβ+Τ ≤ − (A.2)

 Define
1 3

(1 2)aγ β= − . By using norms we write (A.2) in terms of
1

Wɶ as

2 2

1 3

1 1

1 3

1 1
() (1 2) ()

2 2

() (1 2) ()

W t T a W t
a a

W t T a W t

β

β

+ ≤ −

+ ≤ −

ɶ ɶ

ɶ ɶ

 () ()W t T W tγ+ ≤ɶ ɶ

 Therefore

|| () || || (0) ||kW k WγΤ ≤ɶ ɶ (A.3)

 176

i.e. ()W tɶ decays exponentially. To determine the decay time constant in continuous time,

note that

|| () || || (0) ||kTW k e Wα−Τ ≤ɶ ɶ (A.4)

where kT ke α γ− = .

 Therefore the decay constant is

1 3

1 1
ln() ln(1 2).aα γ α β= − ⇔ = − −

Τ Τ
 (A.5)

This completes the proof.

 ■

Proof for Technical Lemma 2.2 Part b:

 Consider the system

() () ()

() () ()T

x t B t u t

y t C t x t

=


=

ɺ
 (A.6)

 The state and the output are

() () () ()

() () ()

t T

t

T

x t T x t B u d

y t T C t T x t T

τ τ τ
+

+ = +

 + = + +

∫ (A.7)

 Let ()C t be PE, so that

 1 2() ()

t T

T

C

t

I S C C d Iβ λ λ λ β
+

≤ ≡ ≤∫ . (A.8)

 Then,

 177

() () () () () ()

() () () () ()

() () ()

() () () () () ()

t T

T T

t

t T

T

t t

t T

T

t

t T

T

C

t t

y t T C t T x t C t T B u d

C y C B u d d

C C x t d

C y C B u d d S x t

λ

λ

τ τ τ

λ λ λ τ τ τ λ

λ λ λ

λ λ λ τ τ τ λ

+

+

+

+

+ = + + +

 
− =  

 

 
− =  

 

∫

∫ ∫

∫

∫ ∫

1
() () () () () ()

t T

T

C

t t

x t S C y C B u d d

λ

λ λ λ τ τ τ λ
+

−
   

= −   
   
∫ ∫

 Taking the norms in both sides yields

1 1
|| () || || () () || || () () () () ||

t T t T

T

C C

t t t

x t S C y d S C C B u d d

λ

λ λ λ λ λ τ τ τ λ
+ +

− −
   

≤ +    
   

∫ ∫ ∫

1 1

2 2
1

1

1

|| () || () (() ()) (() ())

() () || () () ||

t T t T

T T

t t

t t

T

C

t t

x t C C d y y d

S C C d B u d

β λ λ λ λ λ λ

λ λ λ τ τ τ

+ +
−

+Τ +Τ
−

≤ Ι

  
+  

  

∫ ∫

∫ ∫

2 2

max

1 1

|| () || || () || || () ||

t T

t

x t y B u d
β δβ

τ τ τ
β β

+Τ
≤ + ⋅∫

(A.9)

where δ is a positive constant of the order of 1. Now consider

1 1 1
() .W t a uσ=ɺɶ

(A.10)

 Note that setting H

s

u y
m

ε
= − + with output given

1 1

Ty Wσ= ɶ turns (A.10) into (2.26). Set

1 1 1 1
, , ()B a C x t Wσ σ= = = ɶ

so that (A.6) yields (A.10). Then,

max max

H

s

u y y
m

ε
ε≤ + ≤ + (A.11)

since 1
s

m ≥ . Then,

1 1|| () || || () || || () || || () ||

t T t T

t t

� B u d a u dτ τ τ σ τ τ τ
+ +

≡ ⋅ = ⋅∫ ∫

 178

1 max max 1() || () ||

t T

t

a y dε σ τ τ
+

≤ + ∫

1/ 2 1/ 2

2

1 max max 1
() || () || 1

t T t T

t t

a y d dε σ τ τ τ
+ +   

≤ +    
   
∫ ∫

 By using (A.8),

1 max max 2
()� a y ε β≤ + Τ (A.12)

 Finally (A.9) and (A.12) yield,

(){ }2

1 max 2 1 max max

1

() .W t y a y
β

δβ ε
β

Τ
 ≤ + + 

ɶ (A.13)

This completes the proof.

 ■

Proof of Theorem 2.2.

 The convergence proof is based on Lyapunov analysis. We consider the Lyapunov

function

1 1

1 1 1 2 2 2

1 1
() () () ().

2 2

T T
L t V x tr W a W tr W a W

− −= + +ɶ ɶ ɶ ɶ (A.14)

 With the chosen tuning laws one can then show that the errors
1

Wɶ and
2

Wɶ are UUB

and convergence is obtained.

 Hence the derivative of the Lyapunov function is given by

1 1

1 1 1 2 2 2
() () T TL x V x W W W Wα α− −= + +ɺ ɺɺ ɺ ɶ ɶ ɶ ɶ

1 2
() () ()

V
L x L x L x= + +ɺ ɺ ɺ (A.15)

 First term is,

1
11 1 2 1 2

1 1ˆ ˆ() () () () () () () .
2 2

T T T T
V x W f x D x W x f x g x R g x Wφ ε φ−   

= ∇ − +∇ − ∇   
   

ɺ

Then

11 1 2 1

1 ˆ() () () ()
2

T
V x W f x D x W xφ ε 

= ∇ − + 
 

ɺ

 179

 ()1 11 1 1 1 2 1 1 1

1 1ˆ() () () ()
2 2

T T T
W f x W D x W W W D x W xφ ε= ∇ + − − +

1 11 1 1 2 1 1 1

11 1 1 2 1

1 1
() () () ()

2 2

1
() ()

2

T T T

T T

W f x W D x W W D x W x

W W D x W x

φ ε

σ ε

= ∇ + − +

= + +

ɶ

ɶ

where

 1

1 1 2

1 ˆ() () () () () () () .
2

T T T
x x x f x g x R g x x Wε ε ε φ− 

≡ = ∇ − ∇ 
 

ɺ

 From the HJB equation

 11 1 1 1

1
() () () .

4

T T

HJBW Q x W D x W xσ ε= − − +

 Then

1 1 1 1 1 2 1

1 1
() () () () () ()

4 2

T T

V HJBL x Q x W D x W W D x W x xε ε= − − + + +ɺ ɶ
1 1 2 1

1
() () ().

2

T

VL x W D x W xε≡ + +ɺ ɶ

 (A.16)

Second term is,

()

()

1

1 1 1 1

1 2
11 1 1 2 1 2 22

2 2

2
1 2 1 2 1 2 1 1 1 1 12

2 2

1ˆ ˆ ˆ()
41

1 1ˆ ˆ ˆ(() () () () ())
4 41

T

T T T

T

T T T T T

HJB
T

L W W

W W Q x W DW

W W Q x W D x W Q x W W D x W x

α

σ
α α σ

σ σ

σ
σ σ ε

σ σ

−

−

=

 
= + + 

 +

= + + − − − +
+

ɺɺ ɶ ɶ

ɶ

ɶ

()
2

1 2 1 1 1 2 1 2 1 1 12

2 2

1 1ˆ ˆ ˆ(() () () () ())
4 41

T T T T T

HJB
T

W x W x W W D x W W D x W x
σ

σ σ ε
σ σ

= − + − +
+

ɶ

()
()2

1 1 1 2 1 1 1 1 1 2 1 22

2 2

1 1 1

1 1 1ˆ ˆ ˆ ˆ(() () () () ()
2 2 41

1
() ())

4

T
T T T T T T

T

T

HJB

W W x f x W D x W W D x W W D x W

W D x W x

σ
φ

σ σ

ε

= − ∇ − + +
+

− +

ɶ ɶ

()
2

1 11 1 1 2 1 2 22

2 2

1 1ˆ(() () () () ())
2 41

T T T T T

HJB
T

W f x x W W D x W W D x W x
σ

φ ε
σ σ

= − ∇ + + +
+

ɶ ɶ ɶ ɶ ɶ .

 180

()
2

1 1 2 1 2 1 22

2 2

1
(() ())

41

T T T

HJB
T

L W W W D x W x
σ

σ ε
σ σ

= − + +
+

ɺ ɶ ɶ ɶ ɶ

()
2

1 1 2 1 22

2 2

1
()

4 1

T T

T
L W W D x W

σ

σ σ
= +

+

ɺ ɶ ɶ ɶ (A.17)

where

()
()2

1 1 2 12

2 2

()
1

T T

HJB
T

L W W x
σ

σ ε
σ σ

= − +
+

ɺ ɶ ɶ

1 2 2 1

()T T HJB

s

x
W W

m

ε
σ σ

 
= − + 

 
ɶ ɶ .

 Finally by adding the terms (A.16) and (A.17)

1 1 1 1 1 2 1

1 1
() () () () () ()

4 2

T T

HJBL x Q x W D x W W D x W x xε ε= − − + + +ɺ ɶ

()
12

1 2 1 2 1 2 2 2 22

2 2

1
(() ())

41

T T T T

HJB
T

W W W D x W x W W
σ

σ ε α
σ σ

−+ − + + +
+

ɺɶ ɶ ɶ ɶ ɶ ɶ

1 2 2
11 1 2 2 2 2 1 2 1 1 1 2 1 1 1

1 1 1ˆ() () () () ()
2 4 4

T T
T T T T

V

s s

L x L L x W W W D x W W D x W W W D x W W
m m

σ σ
ε α −= + + − + + −

ɺɺ ɺɺ ɶ ɶ ɶ ɶ ɶ

2 2
2 1 2 1 2 1 2 1

1 1 ˆ ˆ() ()
4 4

T T
T T

s s

W D x W W W D x W W
m m

σ σ
+ +ɶ ɶ ɶ (A.18)

 where 2

2

2 2 1
T

σ
σ

σ σ
=

+
and

2 2
1T

s
m σ σ= + .

 In order to select the update law for the action neural network, write (A.18) as

1 21
11 1 2 2 2 2 1 2 1 14

2 2 2

2 1 1 1 2 1 1 1 2 1 1 2

1ˆ ˆ ˆ() () () ()
2

1 1 1
() () ()

4 4 4

T

T T

V

s

T T

T T T

s s s

L x L L x W W D x W W W D x W
m

W D x W W W D x W W W D x W W
m m m

σ
ε α

σ σ σ

− 
= + + − − + 

 

+ − +

ɺɺ ɺɺ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

and we define the actor tuning law as

()2 2 2 2 1 2 1 1 2 1

1ˆ ˆ ˆ ˆ ˆ() .
4

T T
W FW F W D x W m Wα σ 

= − − − 
 

ɺ
 (A.19)

 181

 This adds to Lɺ the terms

2 2 2 2 1 2 1

2 2 1 2 2 1 2 1 1

ˆ ˆ

() ()

T T T

T T T

W FW W F W

W F W W W F W W

σ

σ

−

= − − −

ɶ ɶ

ɶ ɶ ɶ ɶ

2 2 1 2 2 2 2 1 2 1 2 1 2 1

T T T T T TW FW W FW W F W W F Wσ σ= − − +ɶ ɶ ɶ ɶ ɶ ɶ .

 Overall

1 1 1 1 2 2 1 1

2 2 2

2 1 1 2 1 1 1 2 1 1 1 2 1 1 2

2 2 1 2 2 2 2 1 2 1 2 1 2 1

()1
() () () () ()

4

1 1 1 1
() () () ()

2 4 4 4

T T T HJB

HJB

s

T T

T T T T

s s s

T T T T T T

x
L x Q x W D x W x W W x

m

W D x W W D x W W W D x W W W D x W W
m m m

W FW W FW W F W W F W

ε
ε σ σ ε

σ σ σ

σ σ

 
= − − + + − + + 

 

+ + − +

+ − − +

ɺ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

 (A.20)

 Now it is desired to introduce norm bounds. It is easy to show that under the Facts

 ()21
1 min 1 22
() ()

x x xf g
x b b x b b b R W Wε ε φε σ< + + ɶ

 Also, since () 0Q x > there exists q such that ()Tx qx Q x< for x∈Ω . It is shown in [4]

that
HJB

ε converges to zero uniformly as N increases.

 Select 0ε > and
0
()� ε such that sup HJB

x

ε ε
∈Ω

< . Then, assuming
0

� �> and writing in

terms of
2 1

2

x

Z W

W

σ Τ

 
 =  
  

ɶ ɶ

ɶ

(A.20) becomes

()

2 21
1 1 1 min2

1
1 1 12

1 1
1 1 1 2 1 1 1 12 8

1
() || || ()

4

0 0

1
0

8

1
0

8

x x g

T

T

s

T

s

L W D x W b b b R

qI

Z I F DW Z
m

F DW F DWm mW D
m

ε ϕε σ

Τ

< + +

 
 
 
   − − −    
  

− − − +  
   

ɺ

ɶ ɶ

 182

21 1 1
1 2 1 2 1 1 1 min2 4 2

() ()

x

x x

f

T

s

T T

g

b b

Z
m

D F F DWm W b b b R

ε

ε φ

ε

σ σ

 
 
 +  
 

+ − − +  

ɶ (A.21)

Define

()

1
1 1 12

1 1
1 1 1 2 1 1 1 12 8

0 0

1
0

8

1
0

8

T

s

T

s

qI

M I F DW
m

F DW F DWm mW D
m

Τ

 
 
 
   = − −    
  

− − − +  
   

(A.22)

21 1 1
1 2 1 2 1 1 1 min2 4 2

() ()

x

x x

f

s

T T

g

b b

d
m

D F F DWm W b b b R

ε

ε φ

ε

σ σ

 
 
 =  
 

+ − − +  

2 21

1 1 1 min2

1
() || || ()

4 x x gc W D x W b b b Rε ϕε σ= + +

Let the parameters be chosen such that 0M > . Now (A.21) becomes

2

min
()L Z M d Z cσ ε< − + + +ɺ ɶ ɶ

Completing the squares, the Lyapunov derivative is negative if

2

2

min minmin

.
2 () ()4 ()

Z

d d c
Z B

M MM

ε
σ σσ

+
> + + ≡ɶ (A.23)

 It is now straightforward to demonstrate that if L exceeds a certain bound, then, Lɺ is

negative. Therefore, according to the standard Lyapunov extension theorem [42], [50] the

analysis above demonstrates that the state and the weights are UUB.

 This completes the proof.

 ■

 183

Proofs for Chapter 3

Proof for Theorem 3.2: The convergence proof is based on Lyapunov analysis.

 We consider the Lyapunov function

 1 1 1
1 1 1 2 2 2 3 3 3

1 1 1
() () () () ().

2 2 2

T T T
L t V x tr W a W tr W a W tr W a W

− − −= + + +ɶ ɶ ɶ ɶ ɶ ɶ (A.24)

 The derivative of the Lyapunov function is given by

 1 1 1
1 1 1 2 2 2 3 3 3() () T T TL x V x W W W W W Wα α α− − −= + + +ɺ ɺ ɺɺ ɺ ɶ ɶ ɶ ɶ ɶ ɶ (A.25)

 First term is,

1
1 1 1 2 1 3 1 2 1 32 2

1 1 1 1ˆ ˆ ˆ ˆ() () () () () () () ()
2 22 2

T T T T T T
V x W f x D x W E x W x f x g x R g x W kk Wφ ε φ φ

γ γ
−   

= ∇ − + +∇ − ∇ + ∇      
   

ɺ

Then

() ()

1 1 1 2 1 3 12

1 1 1 11 1 1 1 2 1 1 1 1 3 1 1 12 2

1 1ˆ ˆ() () () () ()
2 2

1 1 1 1ˆ ˆ() () () () () ()
2 2 2 2

T

T T T T T

V x W f x D x W E x W x

W f x W D x W W W D x W W E x W W W x W x

φ ε
γ

φ ε
γ γ

 
= ∇ − + +  

 

= ∇ + − − − − + Ε +

ɺ

1 1 1 11 1 1 2 1 1 1 3 1 1 12 2

1 11 1 1 2 1 3 12

1 1 1 1
() () () () () ()

2 2 2 2

1 1
() () ()

2 2

T T T T T

T T T

W f x W D x W W D x W W E x W W x W x

W W D x W W E x W x

φ ε
γ γ

σ ε
γ

= ∇ + − − + Ε +

= + − +

ɶ ɶ

ɶ ɶ

where 1
1 1 2 1 32

1 1ˆ ˆ() () ()(() () ()).
2 2

T T T T T
x x x f x g x R g x W kk Wε ε ε φ φ

γ
−≡ = ∇ − ∇ + ∇ɺ

 From the HJI equation 1 11 1 1 1 1 12

1 1
() () () .

4 4

T T T T
HJIW h h W D x W W E x W xσ ε

γ
= − − + +

 Then

1 1 1 1 1 1 1 1 2 1 1 3 12 2

1 1 1 1
() () () () () () ()

4 24 2

T T T T T
V HJIL x h h W D x W W D x W W E x W W E x W x xε ε

γ γ
= − − + + − + +ɺ ɶ ɶ

 1 1 2 1 1 3 12

1 1
() () () ().

2 2

T T
VL x W D x W W E x W xε

γ
≡ + − +ɺ ɶ ɶ (A.26)

where 1 1 1 1 1 1 12

1 1
() () () () ()

4 4

T T T
V HJIL x h h W D x W W D x W x xε ε

γ
= − − + + +ɺ

 184

 Second term is,

()
1 1 2

1 11 1 1 1 1 1 1 2 1 2 2 3 32 2

2 2

1 1ˆ ˆ ˆ ˆ ˆ(())
4 41

T T T T T

T

L W W W W Q x W D W W W
σ

α α α σ
γσ σ

− −= = + + − Ε
+

ɺɺ ɶ ɶ ɶ

()
2

11 1 2 1 2 1 2 3 32 2

2 2

1 1
(() ())

4 41

T T T T
HJI

T

L W W W D x W W W x
σ

σ ε
γσ σ

= − + − Ε +
+

ɺ ɶ ɶ ɶ ɶ ɶ ɶ

()
2

11 1 2 1 2 3 32 2

2 2

1 1
()

4
1

T T T

T

L W W D x W W W
σ

γσ σ

 
= + − Ε  

 +

ɺ ɶ ɶ ɶ ɶ ɶ (A.27)

where

()
()2

1 1 2 12

2 2

()

1

T T
HJI

T

L W W x
σ

σ ε
σ σ

= − +
+

ɺ ɶ ɶ
1 2 2 1

()T T HJI

s

x
W W

m

ε
σ σ

 
= − + 

 
ɶ ɶ .

 By adding the terms of (A.26) and (A.27) we have

()

1 1 1 1 1 1 1 1 2 1 1 3 12 2

1 12
11 2 1 2 1 2 3 3 2 2 2 3 3 32 2

2 2

1 1 1 1
() () () () () () () ()

4 24 2

1 1
(() ())

4 41

T T T T
HJI

T T T T T T
HJI

T

L x Q x W D x W W E x W W D x W W E x W x x

W W W D x W W W x W W W W

ε ε
γ γ

σ
σ ε α α

γσ σ

− −

= − − + + − + +

+ − + − Ε + + +
+

ɺ ɶ ɶ

ɺ ɺɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

2 2
1 1 2 1 1 1 2 1 1 1

2 2 2
2 1 2 1 2 1 2 1 3 1 1 12

2 2
3 1 3 1 3 1 3 1 2 1 12 2

1 1
() () () () ()

4 4

1 1 1ˆ ˆ() () ()
4 4 4

1 1 1 1ˆ ˆ() () ()
24 4 2

T T
T T

V
s s

T T T
T T T

s s s

T T
T T T

s s

L x L L x x W D x W W W D x W W
m m

W D x W W W D x W W W E x W W
m m m

W E x W W W E x W W W D x W
m m

σ σ
ε

σ σ σ

γ

σ σ

γ γ

= + + − +

+ + −

− − + −

ɺ ɺɺ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
13 12
()

T
W x W

γ
Εɶ

1 12
3 1 1 1 2 2 2 3 3 32

1 ˆ ˆ()
4

T
T T T

s

W E x W W W W W W
m

σ
α α

γ
− −+ − −
ɺ ɺɶ ɶ ɶ (A.28)

where 2
2

2 2 1T

σ
σ

σ σ
=

+
and 2 2 1T

sm σ σ= + .

 In order to select the update law for the action neural networks, write (A.28) as

 185

2

1 12 21 1
11 1 2 2 2 2 1 3 3 3 1 3 14 4

ˆ ˆ ˆ ˆ ˆ ˆ() () () ()
T T

T T
V

s s

L x L L x W W D x W W W W x W W
m mγ

σ σ
ε α α− −   

= + + − − − + Ε   
      

ɺ ɺɺ ɺɺ ɶ ɶ

2 2 2
2 1 1 2 1 1 1 2 1 1 1 2 1 1 2

1 1 1 1
() () () ()

2 4 4 4

T T
T T T T

s s s

W D x W W D x W W W D x W W W D x W W
m m m

σ σ σ
+ + − +ɶ ɶ ɶ ɶ ɶ ɶ

2 2 2
3 1 1 3 1 1 1 3 1 1 1 3 1 1 32 2 2 2

1 1 1 1
() () () ()

2 4 4 4

T T
T T T T

s s s

W x W W x W W W x W W W x W W
m m m

σ σ σ

γ γ γ γ
− Ε − Ε + Ε − Εɶ ɶ ɶ ɶ ɶ ɶ

 Now define the actor tuning law as

 ()2 2 2 2 1 2 1 1 2 1

1ˆ ˆ ˆ ˆ ˆ()
4

T T
W F W F W D x W m Wα σ 

= − − − 
 

ɺ
 (A.29)

and the disturbance tuning law as

 ()3 3 4 3 3 2 1 1 3 12

1ˆ ˆ ˆ ˆ ˆ()
4

T T
W F W F W x W m Wα σ

γ

  
= − − + Ε 

  

ɺ
. (A.30)

 This adds to Lɺ the terms

2 2 1 2 2 2 2 1 2 1 2 1 2 1 3 4 1 3 4 3 3 3 2 1 3 3 2 1
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ− − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 Overall

1 1 1 1 1 1 1 2 2 1 12

2 2
2 1 1 2 1 1 1 2 1 1 1

()1 1
() () () () () ()

4 4

1 1 1
() () ()

2 4 4

T T T T HJI
HJI

s

T T
T T T

s s

x
L x Q x W D x W W E x W x W W x

m

W D x W W D x W W W D x W W
m m

ε
ε σ σ ε

γ

σ σ

 
= − − + + + − + + 

 

+ + −

ɺ ɶ ɶ

ɶ ɶ ɶ ɶ

2 2
2 1 1 2 3 1 1 3 1 1 32 2

2 2
3 1 1 1 3 1 1 12 2

1 1 1
() () ()

4 2 4

1 1
() ()

4 4

T T T

s s

T T
T T

s s

W D x W W W x W W x W W
m m

W x W W W x W W
m m

σ σ

γ γ

σ σ

γ γ

+ − Ε − Ε

− Ε + Ε

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

2 2 1 2 2 2 2 1 2 1 2 1 2 1 3 4 1 3 4 3 3 3 2 1 3 3 2 1
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ+ − − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 (A.31)

 Now it is desired to introduce norm bounds. It is easy to show that under the Facts 3.1

 () ()2

2 21 1
1 min 1 2 1 32 2
() ()

x x x x xf g kx b b x b b b R W W b b b W Wε ε φ ε φγ
ε σ< + + + +ɶ ɶ

 Also since () 0Q x > there exists q such that ()Tx qx Q x< locally. It is shown in [3], [5] that

HJIε converges to zero uniformly as N increases.

 186

 Select 0ε > and 0 ()� ε such that sup HJIε ε< . Then assuming 0� �> and writing in

terms of 2 1

2

3

x

W
Z

W

W

σ Τ

 
 
 =  
 
  

ɶ
ɶ

ɶ

ɶ

, (A.31) becomes

2

2 2 2 21 1
1 1 1 1 1 min 122 2

1 1
() () || || () || ||

4 4
x x x xg kL W D x W E x W b b b R W b b bε ϕ ε φγ

ε σ
γ

< + + + +ɺ

 ()

()2

1 1
1 1 1 3 1 12 2 2

1 1
1 1 1 2 1 1 1 12 8

1 1
3 1 1 4 1 1 1 12 2 8

0 0 0

1 1
0

8 8

1
0 0

8

1
0 0

8

T

s s

T

T

s

T

s

qI

I F DW F W
m m

Z Z
F DW F DW m mW D

m

F W F W m mW
m γ

γ

γ

Τ

Τ

− + Ε

−
− − +

+ Ε + Ε + Ε

 
 

   
        

      
 

  
      

ɶ ɶ

2 2 2

21 1 1
1 2 1 2 1 1 1 min2 4 2

21 1 1
1 4 3 2 1 1 12 4 2

() ()

()

x

x x

x x

f

T s

T T
g

T T
k

b b

m
Z

D F F DW m W b b b R

F F W m W b b b

ε

ε φ

ε φγ γ γ

ε

σ σ

σ

 
 
 
 

+  
 + − − +
 
 − Ε + − + Ε +
  

ɶ (A.32)

 Define

()

()2

1 1
1 1 1 3 1 12 2 2

1 1
1 1 1 2 1 1 1 12 8

1 1
3 1 1 4 1 1 1 12 2 8

0 0 0

1 1
0

8 8

1
0 0

8

1
0 0

8

T

s s

T

s

T

s

qI

I F DW F W
m m

F DW F DW m mW D
m

F W F W m mW
m

M

γ

γ

γ

Τ

Τ

− + Ε

− − +

+ Ε + Ε + Ε

 
 

   
        

 =      
 

  
      

 (A.33)

 187

2 2 2

21 1 1
1 2 1 2 1 1 1 min2 4 2

21 1 1
1 4 3 2 1 1 12 4 2

() ()

()

x

x x

x x

f

s

T T
g

T T
k

b b

m
d

D F F DW m W b b b R

F F W m W b b b

ε

ε φ

ε φγ γ γ

ε

σ σ

σ

 
 
 
 

=  
 + − − +
 
 − Ε + − + Ε +
  

2

2 2 2 21 1
1 1 1 1 1 min 122 2

1 1
() () || || () || ||

4 4
x x x xg kc W D x W E x W b b b R W b b bε ϕ ε φγ

σ
γ

= + + +

 Let the parameters 1F , 2F , 3F and 4F be chosen such that 0M > . To justify this, the

matrix M is written in compact form as

23

32 33

0 0

0

0

q

M I M

M M

 
 =  
  

 (A.34)

where in order to be positive definite the following properties must hold

a) 0q >

b) 0I >

c) Shur complement for I is

 1
22 23 33 32 0D I M M M−= − > (A.35)

 22D can be made positive definite by selecting 2 1 4 3,F F F F≫ ≫ , since 1W is bounded above

by maxW .

 Now (A.32) becomes

2

min ()L Z M d Z cσ ε< − + + +ɺ ɶ ɶ

 Completing the squares, the Lyapunov derivative is negative if

2

2
min minmin

.
2 () ()4 ()

Z

d d c
Z B

M MM

ε
σ σσ

+
> + + ≡ɶ (A.36)

 188

 It is now straightforward to demonstrate that if L exceeds a certain bound, then, Lɺ is

negative. Therefore, according to the standard Lyapunov extension theorem [50] the analysis

above demonstrates that the state and the weights are UUB.

 To show this from (A.24), one has,

2 2 2 2 2 22 2
min 1 2 3 max 1 2 3

1 2 3 1 2 3

1 1 1 1 1 1
() ()

2 2 2 2 2 2
P x W W W L P x W W W

a a a a a a
σ σ+ + + ≤ ≤ + + +ɶ ɶ ɶ ɶ ɶ ɶ

 (A.35)

1 2

min max

2 2
2 1 2 1

2 2

3 3

() ()

1 1

2 2

1 1
2 2

1 1
2 2

T T

S S

P P

a a
Z Z L Z Z

a a

a a

σ σ

σ σ

   
   
   
   
   ≤ ≤
   
   
   
      

ɶ ɶ ɶ ɶ

��������
�������� ��������
��������

 (A.37)

 Equation (A.37) is equivalent to

 min 1 max 2() ()T TZ S Z L Z S Zσ σ≤ ≤ɶ ɶ ɶ ɶ

 Then

2 2

min 1 max 2() ()S Z L S Zσ σ≤ ≤ɶ ɶ .

 Therefore,

2
2

1 2
max 2 2

min minmin

()
2 () ()4 ()

d d c
L S

M MM

ε ε
σ

σ σσ

 
+ + > + +  

 

 (A.38)

implies (A.36).

 Note that condition (A.36) holds if the norm of any component of Zɶ exceeds the bound,

i.e. specifically Zx B> or 2 1 ZW Bσ Τ >ɶ or 2 ZW B>ɶ or 3 ZW B>ɶ [42].

 Now consider the error dynamics and the output as in Technical Lemmas 3.1, 3.2 and

assume 2σ is persistently exciting

 189

1 1
11 1 2 2 1 1 2 2 1 2 3 32 2 2

()
4 4

T THJI

s s s

a a
W a W a W D x W W W

m m m

ε
σ σ σ

γ
Τ= − + + − Εɺɶ ɶ ɶ ɶ ɶ ɶ

 2 1
Ty Wσ= ɶ . (A.39)

Then Theorem 3.1 is true with

2 2 12 1

1 max 2 32

1 1 1

4 4

T

s s s s

D
W W W

m m m m

σ
ε ε

γ

Ε
> > − +ɶ ɶ ɶ (A.40)

This provides an effective practical bound for 2 1
T
Wσ ɶ .

This completes the proof.

 ■

Proofs for Chapter 4

Proof for Theorem 4.2: The convergence proof is based on Lyapunov analysis.

 We consider the Lyapunov function

1 1 1 1
1 2 1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 1
() () () .

2 2 2 2

T T T TL t V x V x W a W W a W W a W W a W− − − −= + + + + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (A.41)

where 1()V x and 2()V x are the approximate solutions to (4.10) and are given by (4.25) and (4.26)

respectively.

 The time derivative of the Lyapunov function is given by

 1 1 1 1
1 2 1 1 1 2 2 2 3 3 3 4 4 4() () () T T T TL x V x V x W a W W a W W a W W a W− − − −= + + + + +ɺ ɺ ɺ ɺɺ ɺ ɺ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (A.42)

 Next we will evaluate each one of the terms of ()L xɺ . First term is, differentiating (4.25),

and adding and subtracting 1 2 2

1
()

2

TW E x W and 1 1 1

1
()

2

TW D x W

1 1
1 1 1 1 3 2 4 1 11 1 3 22 2 4

1 1 1 1 1 3 1 2 2 4 1 1 1 1 2 2 1

1 1 1 1ˆ ˆ ˆ ˆ() () () () () () () ()
2 2 2 2

1 1 1 1ˆ ˆ() ()() ()() () () ()
2 2 2 2

T T T T T T

T T T T T

V x W f x D x W E x W x f x g x R g x W kR k W

W f x W D x W W W E x W W W D x W W E x W x

φ ε φ φ

φ ε

− −   
= ∇ − − +∇ − ∇ − ∇   

   

= ∇ + − + − − − +

ɺ

ɺ

1 1 1 1 3 1 2 4 1

1 1
() () ()

2 2

T T TW W D x W W E x W xσ ε= + + +ɶ ɶ ɺ

 190

where

1
2 1 22 2() () ()T TE x x kR k xφ φ−≡ ∇ ∇ , 1 1 1 2()()x f gu kdσ φ= ∇ + + , 1

1 1 11 1() () () () ()T TD x x g x R g x xφ φ−≡ ∇ ∇ and

1 1() ()Tx xε ε= ∇ɺ 1 1
11 1 3 22 2 4

1 1ˆ ˆ() () ()
2 2

T T T Tf x g x R g x W kR k Wφ φ− − 
− ∇ − ∇ 

 
 (A.43)

 From (4.23) we have

1

1 11 1
1 1 1 1 1 11 1 1 2 2 22 12 22 2 24 4

() () () () ()
T T T T T T T T

HJW Q x W g x R g x W W k x R R R k x Wσ ϕ ϕ ϕ ϕ ε− − −= − − ∇ ∇ − ∇ ∇ +

 Similarly for the second term

 2 2 2 2 1 3 2 2 4 2

1 1
() () () ()

2 2

T T TV x W W E x W W D x W xσ ε= + + +ɺ ɶ ɶ ɺ

where 1
1 2 11 1() () () () ()T TE x x g x R g x xφ φ−≡ ∇ ∇ , 2 2 1 2()()x f gu kdσ φ= ∇ + + 1

2 2 22 2() () ()T TD x x kR k xφ φ−≡ ∇ ∇

and

2 2() ()Tx xε ε= ∇ɺ 1 1
11 1 3 22 2 4

1 1ˆ ˆ() () ()
2 2

T T T Tf x g x R g x W kR k Wφ φ− − 
− ∇ − ∇ 

 
 (A.44)

 From (4.24)

2

1 11 1
2 2 2 1 1 11 21 11 1 1 2 2 22 2 24 4

() () () () ()
T T T T T T T T

HJW Q x W g x R R R g x W W k x R k x Wσ ϕ ϕ ϕ ϕ ε− − −= − − ∇ ∇ − ∇ ∇ +

 Then we add 1()V xɺ and 2()V xɺ

11
1 2 1 1 1 11 1 14
() () () () ()

T T T
vL V x V x Q x W g x R g x Wϕ ϕ−≡ + = − − ∇ ∇ɺ ɺ ɺ

1

2

11
2 2 22 12 22 2 2 1 1 3 1 2 4 14

1 11 1
2 1 1 11 21 11 1 1 2 2 22 2 24 4

2 1 3 2 2 4 2

1 1
() () () () ()

2 2

() () () () ()

1 1
() () ()

2 2

T T T T T T
HJ

T T T T T T T
HJ

T T

W k x R R R k x W W D x W W E x W x

Q x W g x R R R g x W W k x R k x W

W E x W W D x W x

ϕ ϕ ε ε

ϕ ϕ ϕ ϕ ε

ε

− −

− − −

− ∇ ∇ + + + +

− − ∇ ∇ − ∇ ∇ +

+ + +

ɶ ɶ ɺ

ɶ ɶ ɺ

1 1 3 1 2 4 2 1 3 2 2 4 1 2

1 1 1 1
() () () () () () ()

2 2 2 2

T T T T
v vL L x W D x W W E x W W E x W W D x W x xε ε≡ + + + + + +ɺɺ ɶ ɶ ɶ ɶ ɺ ɺ (A.45)

where

 191

1

2

1 11 1
1 1 1 11 1 1 2 2 22 12 22 2 24 4

1 11 1
2 1 1 11 21 11 1 1 2 2 22 2 24 4

() () () () ()

() () () () ()

T T T T T T T
v HJ

T T T T T T T
HJ

L Q x W g x R g x W W k x R R R k x W

Q x W g x R R R g x W W k x R k x W

ϕ ϕ ϕ ϕ ε

ϕ ϕ ϕ ϕ ε

− − −

− − −

= − − ∇ ∇ − ∇ ∇ +

− − ∇ ∇ − ∇ ∇ +

ɺ

 Using the tuning law (4.42) for the first critic and the definitions for the parameter errors

(4.41), the third term becomes

1

13 1 1 1
1 1 3 1 1 2 4 3 1 3 4 2 22 12 22 2 42 2 4 4

3 3

11
2 2 22 12 22 2 42

(() () () ()
(1)

() () ())

T T T T T T T T

T

T T T T
HJ

L W W W E x W W D x W W k x R R R k x W

W k x R R R k x W x

σ
σ φ φ

σ σ

φ φ ε

− −

− −

= − + + + ∇ ∇
+

− ∇ ∇ +

ɺ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ

 Finally by rearranging and grouping the terms

 13
1 1 1 3 1 3 4 2 22 12 22 2 42

3 3

1
[() () ()

4 (1)

T T T T T T

T
L L W W D x W W k x R R R k x W

σ
φ φ

σ σ
− −= + + ∇ ∇

+
ɺɺ ɶ ɶ ɶ ɶ ɶ

1
1 2 4 2 2 22 12 22 2 42(() () ())]T T T T TW E x W W k x R R R k x Wφ φ− −+ − ∇ ∇ɶ ɶ (A.46)

where 1

1

1 1 3 3 1

()
()

HJT T

s

x
L W W

m

ε
σ σ= − +ɺ ɶ ɶ , 3

3

3 3 1T

σ
σ

σ σ
=

+
 and

1 3 3 1
T

sm σ σ= + .

 Similarly by using the tuning law (4.43) for the second critic and the definitions for the

parameter errors (4.41), the fourth term becomes

 14
2 2 2 4 2 4 3 1 11 21 11 1 32

4 4

1
[() () ()

4 (1)

T T T T T T

T
L L W W D x W W g x R R R g x W

σ
φ φ

σ σ
− −= + + ∇ ∇

+
ɺɺ ɶ ɶ ɶ ɶ ɶ

1
3 1 2 3 1 11 21 11 1 12(() ())]T T T T TW EW W g x R R R g x Wφ φ− −+ − ∇ ∇ɶ ɶ (A.47)

where 2

2

2 2 4 4 2

()
()

HJT T

s

x
L W W

m

ε
σ σ= − +ɺ ɶ ɶ , 4

4

4 4 1T

σ
σ

σ σ
=

+
 and

2 4 4 1
T

sm σ σ= + .

 Finally we need to add the terms of (A.45), (A.46) and (A.47), but in order to select the

update laws for the action NNs, we group together the terms of 3Wɶ and 4Wɶ that are multiplied

with the estimated values (two last terms)

 192

1 2 1 2 2 2 4 1 1 3 1 2 4 2 1 3

1 1 1 1
() () () () () () () ()

2 2 2 2

T T T T
vL x L x L L x x W D x W W D x W W E x W W E x Wε ε= + + + + + + + +ɺ ɺ ɺɺ ɶ ɶ ɶ ɶɺ ɺ

1 2 1

13 4 3
1 2 4 1 2 1 3 2 2 2 22 12 22 2 4 1

1 1 1
() () ()

2 2 2

T T T
T T T T T T

s s s

W E x W W W EW W W k x R R R k x W W
m m m

σ σ σ
φ φ− −+ + − ∇ ∇ɶ ɶ ɶ ɶ ɶ ɶ

2 1 1

1 4 3 3
1 1 11 21 11 1 3 2 3 1 1 1 3 1 1 1

1 1 1
() () () ()

2 4 4

T T T
T T T T T T

s s s

W g x R R R g x W W W D x W W W D x W W
m m m

σ σ σ
φ φ− −− ∇ ∇ + −ɶ ɶ ɶ ɶ ɶ

1 1

13 3
3 1 3 1 4 2 22 12 22 2 2 1

1 1
() () ()

4 4

T T
T T T T T

s s

W D x W W W k x R R R k x W W
m m

σ σ
φ φ− −+ − ∇ ∇ɶ ɶ ɶ

1

1 3
4 2 22 12 22 2 2 1

1
() ()

4

T
T T T T

s

W k x R R R k x W W
m

σ
φ φ− −+ ∇ ∇ɶ ɶ

1 2 2

2 2

1 3 4 4
4 2 22 12 22 2 4 1 4 2 2 2 4 2 2 2

14 4
4 2 4 2 3 1 11 21 11 1 1 2

1 1 1
() () () ()

4 4 4

1 1
() () ()

4 4

T T T
T T T T T T

s s s

T T
T T T T T

s s

W k x R R R k x W W W D x W W W D x W W
m m m

W D x W W W g x R R R g x W W
m m

σ σ σ
φ φ

σ σ
φ φ

− −

− −

+ ∇ ∇ + −

+ + ∇ ∇

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

2 2

1 14 4
3 1 11 21 11 1 1 2 3 1 11 21 11 1 3 2

1 1
() () () ()

4 4

T T
T T T T T T T T

s s

W g x R R R g x W W W g x R R R g x W W
m m

σ σ
φ φ φ φ− − − −− ∇ ∇ + ∇ ∇ɶ ɶ ɶ

2 1

1 1 4 3
3 3 3 1 11 21 11 1 3 2 1 3 1

1 1ˆ ˆ ˆ ˆ ˆ[() () ()]
4 4

T T
T T T T

s s

W a W g x R R R g x W W D x W W
m m

σ σ
φ φ− − −− − ∇ ∇ −

ɺɶ

1 2

1 1 3 4
4 4 4 2 22 12 22 2 4 1 2 4 2

1 1ˆ ˆ ˆ ˆ ˆ[() () ()]
4 4

T T
T T T T

s s

W a W k x R R R k x W W D x W W
m m

σ σ
φ φ− − −− − ∇ ∇ −

ɺɶ

 In order for the last two terms to be zero we define the actor tuning law for the first

player as

1 2

13 4
3 3 2 3 1 3 1 1 3 1 1 11 21 11 1 3 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{() () () () }
4 4

T T
T T T T

s s

W a F W F W D x W W g x R R R g x W W
m m

σ σ
σ φ φ− −= − − − − ∇ ∇

ɺ

and the second player’s actor tuning law is defined as

2 1

14 3
4 4 4 4 3 4 2 2 4 2 2 22 12 22 2 4 1

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{() () () () }
4 4

T T
T T T T

s s

W a F W F W D x W W k x R R R k x W W
m m

σ σ
σ φ φ− −= − − − − ∇ ∇

ɺ

 But this adds to Lɺ the following terms

3 2 1 3 2 3 3 1 3 1 3 1 3 1 4 4 2 4 4 4 4 3 4 2 4 3 4 2
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ− − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 193

Overall

1

2

1 11 1
1 1 1 11 1 1 2 2 22 12 22 2 24 4

1 11 1
2 1 1 11 21 11 1 1 2 2 22 2 24 4

() () () () () ()

() () () () ()

T T T T T T T
HJB

T T T T T T T
HJB

L x Q x W g x R g x W W k x R R R k x W

Q x W g x R R R g x W W k x R k x W

ϕ ϕ φ φ ε

φ φ φ φ ε

− − −

− − −

= − − ∇ ∇ − ∇ ∇ +

− − ∇ ∇ − ∇ ∇ +

ɺ

1 2

1 2

1 3 3 1 1 2 4 4 2 2

() ()
() () () ()

HJ HJT T T T

s s

x x
W W x W W x

m m

ε ε
σ σ ε σ σ ε+ − + + + − + +ɶ ɶ ɶ ɶɺ ɺ

1 1 3 1 2 4 2 1 3 2 2 4

1 1 1 1
() () () ()

2 2 2 2

T T T TW D x W W E x W W E x W W D x W+ + + +ɶ ɶ ɶ ɶ

1 2 1

13 4 3
1 2 4 1 2 1 3 2 2 2 22 12 22 2 4 1

1 1 1
() () ()

2 2 2

T T T
T T T T T T

s s s

W E x W W W EW W W k x R R R k x W W
m m m

σ σ σ
φ φ− −+ + − ∇ ∇ɶ ɶ ɶ ɶ ɶ ɶ

2 1 1

1 4 3 3
1 1 11 21 11 1 3 2 3 1 1 1 3 1 1 1

1 1 1
() () () ()

2 4 4

T T T
T T T T T T

s s s

W g x R R R g x W W W D x W W W D x W W
m m m

σ σ σ
φ φ− −− ∇ ∇ + −ɶ ɶ ɶ ɶ ɶ

1 1

13 3
3 1 3 1 4 2 22 12 22 2 2 1

1 1
() () ()

4 4

T T
T T T T T

s s

W D x W W W k x R R R k x W W
m m

σ σ
φ φ− −+ + ∇ ∇ɶ ɶ ɶ ɶ

1 1

1 13 3
4 2 22 12 22 2 2 1 4 2 22 12 22 2 4 1

1 1
() () () ()

4 4

T T
T T T T T T T T

s s

W k x R R R k x W W W k x R R R k x W W
m m

σ σ
φ φ φ φ− − − −− ∇ ∇ + ∇ ∇ɶ ɶ ɶ

2 2

4 4
4 2 2 2 4 2 2 2

1 1
() ()

4 4

T T
T T

s s

W D x W W W D x W W
m m

σ σ
+ −ɶ ɶ ɶ

2 2

14 4
4 2 4 2 3 1 11 21 11 1 1 2

1 1
() () ()

4 4

T T
T T T T T

s s

W D x W W W g x R R R g x W W
m m

σ σ
φ φ− −+ + ∇ ∇ɶ ɶ ɶ ɶ

2 2

1 14 4
3 1 11 21 11 1 1 2 3 1 11 21 11 1 3 2

1 1
() () () ()

4 4

T T
T T T T T T T T

s s

W g x R R R g x W W W g x R R R g x W W
m m

σ σ
φ φ φ φ− − − −− ∇ ∇ + ∇ ∇ɶ ɶ ɶ

3 2 1 3 2 3 3 1 3 1 3 1 3 1 4 4 2 4 4 4 4 3 4 2 4 3 4 2
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ+ − − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (A.48)

 Now it is desired to introduce norm bounds. It is easy to show that under the Facts 4.1

equations (A.43) and (A.44) become

() ()1 1 1 1 2

2 21 1
1 min 11 1 3 min 22 2 42 2
() () ()

x x x x xf g kx b b x b b b R W W b b b R W Wε ε φ ε φε σ σ< + + + +ɶ ɶɺ

() ()2 2 1 2 2

2 21 1
2 min 11 1 3 min 22 2 42 2
() () ()

x x x x xf g kx b b x b b b R W W b b b R W Wε ε φ ε φε σ σ< + + + +ɶ ɶɺ

 Also since 1() 0Q x > and 2() 0Q x > there exists 1q and 2q such that 1 1()
Tx q x Q x< and

2 2()
Tx q x Q x< for x∈Ω .

 194

 Select 1 0ε > , 2 0ε > and 0 1()K ε , 0 2()K ε such that
1 1sup HJ

x

ε ε
∈Ω

< and
2 2sup HJ

x

ε ε
∈Ω

< . Then

assuming 0K K> and writing in terms of

3 1

4 2

3

4

x

W

Z W

W

W

σ

σ

Τ

Τ

 
 
 
 =  
 
 
  

ɶ

ɶ ɶ

ɶ

ɶ

and known bounds (under Facts 4.1),

(A.48) becomes

2 21 11 1
1 1 11 1 2 2 22 12 22 2 14 4

2 21 11 1
1 1 11 21 11 1 2 2 22 2 24 4

() () () () ()

() () () ()

T T T T T

T T T T T

L x W g x R g x W k x R R R k x

W g x R R R g x W k x R k x

ϕ ϕ ϕ ϕ ε

ϕ ϕ ϕ ϕ ε

− − −

− − −

= ∇ ∇ + ∇ ∇ +

+ ∇ ∇ + ∇ ∇ +

ɺ

1 2 2 1 2 21 1

2 2 2 21 1 1 1
min 11 1 min 22 2 min 11 1 min 22 22 2 2 2
() () () ()

x x x x x x x xg k g kb b b R W b b b R W b b b R W b b b R Wε φ ε φ ε φ ε φσ σ σ σ+ + + +

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

T

m m m m m

m m m m m

Z m m m m m Z

m m m m m

m m m m m

 
 
 
 −
 
 
  

ɶ ɶ

1

2

3

4

5

d

d

Z d

d

d

 
 
 
 +
 
 
  

ɶ (A.49)

Where the components of the matrix M are given by

11 1 2

22 33

1
44 2 1 1 1 1 1 1 1 11 21 11 1 2 2

1
2 2 1 11 21 11 1

1
(() ()

8

() ())

T T T T T T

T T T T

m q q

m m I

m F DW m mW D g x R R R g x W m

m W g x R R R g x

φ φ

φ φ

− −

− −

= +

= =

= − + +∇ ∇

+ ∇ ∇

1
55 4 2 22 12 22 2 1 1

1
1 1 2 22 12 22 2 2 2 2 2 2 2

1
(() ()

8

() () () ())

T T T T

T T T T T T

m F k x R R R k x W m

mW k x R R R k x m W D x D x W m

φ φ

φ φ

− −

− −

= − ∇ ∇

+ ∇ ∇ + +

1

42 1 1 1 24

1 1

2 8

T

s

m F DW m
m

= − − =

1 1

1
52 2 22 12 22 2 2 2 1 25

1 1
() ()

8 4

T T T T

s s

m k x R R R k x W E W m
m m

φ φ− −= − ∇ ∇ − =

2 2

1 1
43 1 11 21 11 1 1 1 11 21 11 1 1 34

1 1
() () () ()

4 8

T T T T T T T

s s

m g x R R R g x W g x R R R g x W m
m m

φ φ φ φ− − − −= − ∇ ∇ − ∇ ∇ =

 195

2

53 3 2 2 53

12 21 31 13 32 23 41 14 51 15 54 45

1 1
()

2 8

0

T

s

m F D x W m
m

m m m m m m m m m m m m

= − − =

= = = = = = = = = = = =

and the components of vector D are given

1 2

1

1

2

2

1

2

3

()
x x f

HJ

s

HJ

s

d b b b

d
m

d
m

ε ε

ε

ε

= +

=

=

11

21
4 2 1 1 3 1 1 1 1 2 min 11 1 1 1 12

1
1 11 21 11 1 1 2 2

1 1 1
()

2 2 4

1
() ()

4

x x

T T
g

T T T T

d F W F W DW EW b b b R DW m W

g x R R R g x W m W

ε φσ σ

φ φ− −

= − + + + −

− ∇ ∇

21

5 4 2 3 4 2 2 2 2 1

2 11
min 22 2 2 2 2 2 22 12 22 2 2 1 12

1 1

2 2

1 1
() () () ()

4 4x x

T

T T T T T
k

d F W F W D W E W

b b b R D x W m W k x R R R k x W m Wε φ

σ

σ φ φ− −

= − + +

+ − − ∇ ∇

Define

2 21 11 1
1 1 11 1 2 2 22 12 22 24 4

() () () ()T T T T Tc W g x R g x W k x R R R k xϕ ϕ ϕ ϕ− − −= ∇ ∇ + ∇ ∇

2 21 11 1
1 1 11 21 11 1 2 2 22 24 4

() () () ()T T T T TW g x R R R g x W k x R k xϕ ϕ ϕ ϕ− − −+ ∇ ∇ + ∇ ∇

1 2 2 1 2 21 1

2 2 2 21 1 1 1
min 11 1 min 22 2 min 11 1 min 22 22 2 2 2
() () () ()

x x x x x x x xg k g kb b b R W b b b R W b b b R W b b b R Wε φ ε φ ε φ ε φσ σ σ σ+ + + +

 According to Facts 4.1 c is bounded by maxc , and D is bounded by maxD which can be

expressed in terms of the bounds given there.

 Let the parameters be chosen such that 0M > . To justify this, the matrix M is written in

compact form as

1 2

2 23

32 33

0 0

0

0

q q

M I M

M M

+ 
 =  
  

 (A.50)

where in order to be positive definite the following properties (Lewis, Syrmos, 1995) must hold

a) 1 2 0q q+ >

 196

b) 2 0I >

c) Shur complement for 2I is 1
22 2 23 33 32 0D I M M M−= − > which hold after proper selection of

1F , 2F , 3F and 4F .

d) Schur complement for 33M is 1
33 33 32 2 23 0D M M I M−= − > which hold after proper selection

of 1F , 2F , 3F and 4F .

 Now (A.49) becomes

2

min max max 1 2()L Z M D Z cσ ε ε< − + + + +ɺ ɶ ɶ

 Completing the squares, the Lyapunov derivative is negative if

2

max max max 1 2
2

min minmin

.
2 () ()4 ()

Z

D D c
Z B

M MM

ε ε
σ σσ

+ +
> + + ≡ɶ (A.51)

 It is now straightforward to demonstrate that if L exceeds a certain bound, then, Lɺ is

negative. Therefore, according to the standard Lyapunov extension theorem the analysis above

demonstrates that the state and the weights are UUB [42], [52].

 Note that condition (A.51) holds if the norm of any component of Zɶ exceeds the bound,

i.e. specifically Zx B> or 3 1 ZW Bσ Τ >ɶ or 4 2 ZW Bσ Τ >ɶ or 3 ZW B>ɶ or 4 ZW B>ɶ .

 Now consider the error dynamics and the output as in Chapter 2 and assume 3σ and

4σ are persistently exciting. Substituting (4.23), (4.24) in (4.31) and (4.32) respectively we

obtain the error dynamics

1

1 1

1
1 1 3 3 1 1 3 3 1 32

()
4

HJ T

s s

a
W a W a W D x W

m m

ε
σ σ σΤ= − + +ɺɶ ɶ ɶ ɶ 11

4 2 22 12 22 2 42
()

4

T T T T

s

a
W R R R k x W

m
φ φ− −+ ∇ ∇ɶ ɶ

11
1 2 4 2 2 22 12 22 2 42

(() ())
2

T T T T T

s

a
W E x W W R R R k x W

m
φ φ− −+ − ∇ ∇ɶ ɶ

1 3 1y Wσ Τ= ɶ

and

 197

2

2 2 2

12 2
2 2 4 4 2 2 4 4 2 4 3 1 11 21 11 1 32 2

() () ()
4 4

HJ T T T T T

s s s

a a
W a W a W D x W W g x R R R g x W

m m m

ε
σ σ σ φ φΤ − −= − + + + ∇ ∇ɺɶ ɶ ɶ ɶ ɶ ɶ

2

12
3 1 2 3 1 11 21 11 1 12

(() ())
2

T T T T T

s

a
W EW W g x R R R g x W

m
φ φ− −+ − ∇ ∇ɶ ɶ

2 4 2y Wσ Τ= ɶ

 Then Theorem 4.1 is true with

1

1 1 1 1 1

12 2
3 1 2 2 22 12 22 2

1 max 3 1 4 4 1

1 1 () 1 () () 1

4 2 4

T T T T

s s s s s

D E x k x R R R k x
W W W W W

m m m m m

σ φ φ
ε ε

− −∇ ∇
> > + + +ɶ ɶ ɶ ɶ

1

1
2 22 12 22 2

2 4

1 () ()

2

T T T

s

k x R R R k x
W W

m

φ φ− −∇ ∇
− ɶ

and

2

2 2 2 2 2

12 2
4 2 1 1 11 21 11 1

2 max 4 2 3 3 2

1 1 () 1 () () 1

4 2 4

T T T T

s s s s s

D E x g x R R R g x
W W W W W

m m m m m

σ φ φ
ε ε

− −∇ ∇
> > + + +ɶ ɶ ɶ ɶ

2

1
1 11 21 11 1

1 3

1 () ()

2

T T T

s

g x R R R g x
W W

m

φ φ− −∇ ∇
− ɶ

 This provides effectival bounds for 3 1
TWσ ɶ and 4 2

TWσ ɶ .

 This completes the proof.

 ■

 198

REFERENCES

[1] Aangenent W., Kostic D., Jager B. D. van de Molengaft Rene, Steibuch M. (2005). Data-based

Optimal Control, Proc. Of America Control Conference, Portland, OR, 1460-1465.

[2] Abou-Kandil, Freiling G., Ionescu V., & Jank G. (2003). Matrix Riccati Equations in Control and

Systems Theory, Birkhäuser.

[3] Abu-Khalaf M., Lewis F. L. (2008). Neurodynamic Programming and Zero-Sum Games for

Constrained Control Systems, IEEE Transactions on Neural Networks, 19(7), 1243-1252.

[4] Abu-Khalaf M. & Lewis F. L. (2005). Nearly Optimal Control Laws for Nonlinear Systems with

Saturating Actuators Using a Neural Network HJB Approach, Automatica, 41(5), 779-791.

[5] Abu-Khalaf M., Lewis F. L., Huang Jie (2006). Policy Iterations on the Hamilton-Jacobi- Isaacs

Equation for H∞ State Feedback Control With Input Saturation, IEEE Transactions on Automatic

Control, 51(12), 1989-1995.

[6] Adams R & Fournier J. (2003). Sobolev spaces, New York: Academic Press.

[7] Al-Tamimi A., Lewis F.L., & Abu-Khalaf M. (2008). Discrete-Time Nonlinear HJB Solution Using

Approximate Dynamic Programming: Convergence Proof, IEEE Transactions on Systems, Man

and Cybernetics, Part B, 38, 943-949.

[8] Baird L. C. III (1994). Reinforcement Learning in Continuous Time: Advantage Updating, Proc. of

ICNN, Orlando FL.

[9] Ball J., Helton W. (1996). Viscosity solutions of Hamilton-Jacobi equations arising in nonlinear

H∞ -control. J. Math Syst., Estimat., Control, 6(1), 1-22.

[10] Bardi M., Capuzzo-Dolcetta I. (1997). Optimal Control and Viscosity Solutions of Hamilton-Jacobi-

Bellman Equations. Boston, MA: Birkhäuser.

[11] Başar T., & Olsder G. J. (1999). Dynamic Noncooperative Game Theory, 2
nd

 ed. Philadelphia,

PA: SIAM.

 199

[12] Başar T. & Bernard P. (1995). H∞ Optimal Control and Related Minimax Design Problems.

Boston, MA: Birkhäuser.

[13] Beard R., Saridis G, Wen J. (1997). Galerkin approximations of the generalized Hamilton–

Jacobi–Bellman equation, Automatica, 33(12), 2159–2177.

[14] Bennighof J.K., Chang S.M., & Subramaniam M. (1993). Minimum Time Pulse Response Based

Control of Flexible Structures, J. Guid., Control and Dyn., 16(5), 874–881.

[15] Bertsekas D. P. & Tsitsiklis J. N. (1996). Neuro-Dynamic Programming, Athena Scientific, MA.

[16] Bhasin S., Johnson M., Dixon W. E. (2010). A model free robust policy iteration algorithm for

optimal control of nonlinear systems, Proc. 49th IEEE Conference on Decision and Control, 3060-

3065.

[17] Bradtke S. J., Ydstie B. E., Barto A. G. (1994). Adaptive linear quadratic control using policy

iteration, Proceedings of the American Control Conference, 3475-3476.

[18] Brewer J. W. (1978). Kronecker Products and Matrix Calculus in System Theory, IEEE Trans. On

Circuits and Systems, 25, 772-781.

[19] Busoniu L., Babuska R., De Schutter B. (2008). A comprehensive survey of multi-agent

reinforcement learning, IEEE Transactions on Systems, Man and Cybernetics-Part C:

Applications and Reviews, 38(2), 156-172.

[20] Cao X. (2007). Stochastic Learning and Optimization, Springer-Verlag, Berlin.

[21] Dierks T., & Jagannathan S. (2010). Optimal control of affine nonlinear continuous-time systems

using an online Hamilton-Jacobi-Isaacs Formulation, Proc. IEEE Conf. Decision and Control,

3048-3053.

[22] Doya K. (2000). Reinforcement Learning In Continuous Time and Space, Neural Computation,

12(1), 219-245.

[23] Doya K., Kimura H., Kawato M. (2001). Neural Mechanisms of Learning and Control. IEEE

Control Syst. Mag., 21(4), 42-54.

[24] Fax J., & Murray R. (2004). Information flow and cooperative control of vehicle formations, IEEE

Trans. Automatic Control, 49(9), 1465-1476.

[25] Feng Y., Anderson B. D., Rotkowitz M. (2009) A game theoretic algorithm to compute local

stabilizing solutions to HJBI equations in nonlinear H∞ control, Automatica, 45(4), 881-888.

 200

[26] Finlayson B. A. (1990). The method of weighted residuals and variational principles. New York:

Academic Press.

[27] Freiling G., Jank G., Abou-Kandil H. (2002). On global existence of Solutions to Coupled Matrix

Riccati equations in closed loop Nash Games, IEEE Transactions on Automatic Control, 41(2),

264- 269.

[28] Gajic Z., & Li T-Y. (1988). Simulation results for two new algorithms for solving coupled algebraic

Riccati equations, Third Int. Symp. On Differential Games, Sophia, Antipolis, France.

[29] Ge S. S., & Wang C. (2004). Adaptive neural control of uncertain MIMO nonlinear systems, IEEE

Trans. Neural Networks, 15(3), 674-692.

[30] Hanselmann T., Noakes L., & Zaknich A. (2007). Continuous-Time Adaptive Critics, IEEE Trans

on Neural Networks, 18(3), 631-647.

[31] Hewer G. (1971). An Iterative Technique for the Computation of the Steady State Gains for the

Discrete Optimal Regulator, IEEE Trans. on Automatic Control, 16, 382- 384.

[32] Hjalmarsson H. & Gevers M. (1998). Iterative Feedback Tuning: Theory and Applications. IEEE

Control Syst. Mag., 18(4), 26–41.

[33] Hong Y., Hu J., & Cao L. (2006). Tracking control for multi-agent consensus with an active leader

and variable topology, Automatica, 42(7), 1177-1182.

[34] Hornik K., Stinchcombe M., & White H. (1990). Universal approximation of an unknown mapping

and its derivatives using multilayer feedforward networks, Neural Networks, 3, 551–560.

[35] Howard R. A. (1960). Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.

[36] Ioannou P. & Fidan B. (2006). Adaptive Control Tutorial, SIAM, Advances in Design and Control,

PA.

[37] Jadbabaie A., Lin J., & Morse A. (2003). Coordination of groups of mobile autonomous agents

using nearest neighbor rules, IEEE Trans. Automatic Control, 48(6), 988-1001.

[38] Johnson M., Hiramatsu T., Fitz-Coy N., & Dixon W. E. (2010), Asymptotic Stackelberg Optimal

Control desing for an Uncertain Euler Lagrange System, IEEE Conference on Decision and

Contro, 6686-6691.

 201

[39] Jungers M., De Pieri E., Abou-Kandil H., (2007). Solving coupled algebraic Riccati equations from

closed-loop Nash strategy, by lack of trust approach, International Journal of Tomography and

Statistics, 7(F07), 49-54.

[40] Kakade S., Kearns M., Langford J., & Ortiz L. (2003). Correlated equilibria in graphical games,

Proc. 4th ACM Conference on Electronic Commerce, 42-47.

[41] Kearns M., Littman M., & Singh S. (2001). Graphical models for game theory, Proc 17th Annual

Conference on Uncertainty in Artifical Intelligence, 253-260.

[42] Khalil H. K., (1996). Nonlinear Systems. Prentice-Hall.

[43] Khoo S., Xie L., & Man Z. (2009). Robust Finite-Time Consensus Tracking algorithm for Multi-

robot Systems, IEEE Transactions on Mechatronics, 14, 219-228.

[44] Kleinman D. (1968). On an Iterative Technique for Riccati Equation Computations, IEEE Trans.

on Automatic Control, 13(1), 114–115.

[45] Krstic M. & Deng H. (1998). Stabilization of Nonlinear Uncertain Systems, Springer.

[46] Lancaster P. & Rodman L. (1995). Algebraic Riccati Equations, Oxford Science Publications,

Oxford University Press, New York.

[47] Leake R. J., & Liu Ruey-Wen (1967). Construction of Suboptimal Control Sequences, J. SIAM

Control, 5(1), 54-63.

[48] Lecchini A., Campi M. C., & Savaresi S. M. (2002). Virtual Reference Feedback Tuning for Two

Degree of Freedom Controllers, Internat. J. Adapt. Control Sig. Process, 16, 355-371.

[49] Lewis F. (1992). Applied Optimal Control and Estimation: Digital Design and Implementation,

New Jersey: Prentice-Hall.

[50] Lewis F.L., Jagannathan S., Yesildirek A. (1999). Neural Network Control of Robot Manipulators

and Nonlinear Systems, Taylor & Francis.

[51] Lewis F.L., Lendaris G., & Liu D. (2008). Special Issue on Approximate Dynamic Programming

and Reinforcement Learning for Feedback Control, IEEE Trans. Systems, Man, and Cybernetics,

Part B, 38(4).

[52] Lewis F.L., Liu. K., & Yesildirek A. (1995). Neural Net Controller with Guaranteed Tracking

Performance, IEEE Trans on Neural Networks, 6(3), 703-715.

[53] Lewis F. L., & Syrmos V. L. (1995). Optimal Control, John Wiley.

 202

[54] Lewis F.L., Vrabie D., (2009). Reinforcement Learning and Adaptive Dynamic Programming for

Feedback Control, IEEE Circuits and Systems Magazine, 9(3), 32-50.

[55] Lewis F.L., Xie Lihua, Popa D.O. (2007). Optimal and Robust Estimation, CRC Press.

[56] Li X., Wang X., & Chen G. (2004). Pinning a complex dynamic network to its equilibrium, IEEE

Trans. Circuits Syst. I, Reg. Papers, 51(10), 2074-2087.

[57] Li Z. H. & Krstic M. (1997). Optimal design of adaptive tracking controllers for nonlinear systems,

Proc. of ACC, 1191-1197.

[58] Lim R. K., Phan M. Q., & Longman R. W. (1998). State-Space System Identification with

Identified Hankel Matrix, Department of Mechanical and Aerospace Engineering Technical Report

No. 3045, Princeton University.

[59] Lim R. K., Phan M. Q. (1997). Identification of a Multistep-Ahead Observer and Its Application to

Predictive Control, J. Guid., Control and Dyn., 20(6), 1200-1206.

[60] Limebeer D. J. N., Anderson B. D. O., & Hendel H., (1994). A Nash game approach to mixed

2 /H H∞ control, IEEE Transactions on Automatic Control, 39(1), 69-82.

[61] Littman M. L. (2001). Value function reinforcement learning in Markov games, Journal of

Cognitive Systems Research 1.

[62] Mehta P. & Meyn S. (2009). Q-learning and Pontryagin’s minimum principle, preprint.

[63] Murray J. J., Cox C. J., Lendaris G. G., & Saeks R. (2002). Adaptive Dynamic Programming,

IEEE Trans. on Systems, Man and Cybernetics, 32(2), 140-153.

[64] Nevistic V. & Primbs J. A. (1996). Constrained nonlinear optimal control: a converse HJB

approach, California Institute of Technology, Pasadena, CA 91125, Tech Rep. CIT-CDS 96-021.

[65] Olfati-Saber R., Fax J, Murray R. (2007). Consensus and cooperation in netwowrked multi-agent

systems, Proc. IEEE, 95(1), 215-233.

[66] Olfati-Saber R., Murray R. M. (2004). Consensus Problems in Networks of Agents with Switching

Topoligy and Time-delays, IEEE Transactions of Automatic Contro, 49, 1520-1533.

[67] Phan M. Q., Lim R. K., & Longman, R. W. (1998). Unifying Input-Output and State-Space

Perspectives of Predictive Control, Department of Mechanical and Aerospace Engineering

Technical Report No. 3044, Princeton University.

 203

[68] Powell W. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality. J.

Wiley & Sons.

[69] Prokhorov D., & Wunsch D. (1997). Adaptive critic designs, IEEE Trans. on Neural Networks,

8(5), 997-1007.

[70] Qu Z. (2009). Cooperative Control of Dynamical systems: Applications to Autonomous Vehicles,

New York: Springer-Verlag.

[71] Ren W., Beard R., Atkins E. (2005). A survey of consensus problems in multi-agent coordination,

Proc Amer. Control Conference, 1859-1864.

[72] Ren W., Beard R. (2005). Consensus seeking in multi-agent systems under dynamically changing

interaction topologies, IEEE Trans. Autom. Control, 50(5), 655-661.

[73] Ren W., Beard R. (2008). Distributed Consensus in Multi-vehicle Cooperative Control, Springer.

[74] Ren W., Moore K., Chen Y. (2007). Hign-order and model reference consensus algorithms in

coperative control of multi-vehicle systems, J. Dynam. Syst., Meas., Control, 129(5), 678-688.

[75] Safonov M. G. & Tsao T. C. (1997). The Unfalsified Control Concept and Learning, IEEE Trans.

Autom. Control, 42(6), 843–847.

[76] Sandberg E. W. (1998). Notes on uniform approximation of time-varying systems on finite time

intervals, IEEE Transactions on Circuits and Systems—1: Fundamental Theory and Applications,

45(8), 863-865.

[77] Van der Schaft A. J. (1992). L2-gain analysis of nonlinear systems and nonlinear state feedback

H∞ control, IEEE Transactions on Automatic Control, 37(6), 770–784.

[78] Schultz W. (2004). Neural coding of basic reward terms of animal learning theory, game theory,

microeconomics and behavioral ecology, Current Opinion in Neurobiology, 14, 139-147.

[79] Schultz W., Dayan P., Montague P. Read (1997). A Neural Substrate of Prediction and Reward”,

Science, 275, 1593-1599.

[80] Shoham Y., Leyton-Brown K. (2009). Multiagent Systems: Algorithmic, Game Theoretic, and

Logical Foundations, Cambridge University Press.

[81] Si J., Barto A., Powel W., & Wunsch D. (2004). Handbook of Learning and Approximate Dynamic

Programming, John Wiley, New Jersey.

 204

[82] Skelton R. E. & Shi G. (2000). Markov Data-Based LQG Control, J. of Dyn. Systems, Meas., and

Control, 122, 551–559.

[83] Sontag E.D. & Sussmann H.J.(1995). Nonsmooth control-Lyapunov functions, IEEE Proc.

CDC95, 2799-2805.

[84] Spall J.C. & Criston J.A. (1998). Model-free control of nonlinear stochastic systems with discrete-

time measurements, IEEE Trans. Autom.Control, 43(9), 1198–1210.

[85] Stevens B., & Lewis F. L. (2003). Aircraft Control and Simulation, 2
nd

 edition, John Willey, New

Jersey.

[86] Sutton R. S., & Barto A. G. (1998) Reinforcement Learning – An Introduction, MIT Press,

Cambridge, Massachusetts.

[87] Tao G. (2003) Adaptive Control Design and Analysis. Adaptive and Learning Systems for Signal

Processing, Communications and Control Series, Hoboken, N.J.: Wiley-Interscience.

[88] Tijs S (2003). Introduction to Game Theory, Hindustan Book Agency, India.

[89] Toussaint R. L., Boissy J. C., Norg M. L., Steinbuch M., & Bosgra O.H. (1998). Suppressing Non-

periodically Repeating Disturbances In Mechanical Servo Systems.” Proc. IEEE Conf. Dec.

Control, Tampa, Florida, 2541–2542.

[90] Tsitsiklis J. (1984). Problems in decentralized decision making and computation, Ph.D.

dissertation, Dept. Elect. Eng. And Comput. Sci., MIT, Cambridge, MA.

[91] Vrabie D. (2009). Online Adaptive Optimal Control for Continuous Time Systems. Ph.D. Thesis,

Dept. of Electrical Engineering, Univ. Texas at Arlington, Arlington, TX, USA.

[92] Vrabie, D., Pastravanu, O., Lewis, F. L., & Abu-Khalaf, M. (2009). Adaptive Optimal Control for

continuous-time linear systems based on policy iteration, Automatica, 45(2), 477-484.

[93] Vrabie D., Vamvoudakis K., & Lewis F. (2009). Adaptive optimal controllers based on generalized

policy iteration in a continuous-time framework, Proc. of the IEEE Mediterranean Conf. on Control

and Automation, 1402-1409.

[94] Vrancx P., Verbeeck K., Nowe A. (2008). Decentralized learning in markov games, IEEE

Transactions on Systems, Man and Cybernetics, 39(4), 976-981.

[95] Wang F.Y., Zhang H., Liu D. (2009). Adaptive dynamic programming: an introduction, IEEE

Computational Intelligence Magazine, 39-47.

 205

[96] Wang X., Chen G. (2002). Pinning control of scale-free dynamical networks, Physica A, 310(3-4),

521-531.

[97] Watkins C. (1989). Learning from Delayed Rewards, Ph.D. Thesis, Cambridge University,

Cambridge, England.

[98] Werbos P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavior

Sciences, Ph.D. Thesis.

[99] Werbos P. J. (1992). Approximate dynamic programming for real-time control and neural

modeling, Handbook of Intelligent Control, ed. D.A. White and D.A. Sofge, New York: Van

Nostrand Reinhold.

[100] Werbos P. J. (1989). Neural networks for control and system identification, IEEE Proc. CDC, 1,

260-265.

[101] White D.A., Sofge D.A (Eds.) (1992). Handbook of intelligent control, Van Nostrand Reinhold,

New York.

[102] Widrow B. and Walach E. (2008). Adaptive Inverse Control - A Signal Processing Approach,

Wiley, Hoboken, NJ.

 206

BIOGRAPHICAL INFORMATION

 Kyriakos G. Vamvoudakis was born in Athens Greece. He received the Diploma in

Electronic and Computer Engineering from the Technical University of Crete, Greece in 2006

with highest honors, the M.Sc. degree in Electrical Engineering from The University of Texas at

Arlington in 2008 and the Ph.D. in 2011 from the same department. He has been working as a

research assistant at the Automation and Robotics Research Institute, The University of Texas

at Arlington. He is coauthor of 2 book chapters, and 25 technical publications. His current

research interests include approximate dynamic programming, game theory, neural network

feedback control, optimal control, adaptive control and systems biology. He is a member of Tau

Beta Pi, Eta Kappa Nu and Golden Key honor societies and is listed in Who's Who in the world

and Who's Who in Science and Engineering. He received the Best Paper Award for

Autonomous/Unmanned Vehicles at the 27
th
 Army Science Conference in 2010. He also

received the Best Researcher/Student Award, UTA Automation & Robotics Research Institute in

2010. He has co-organized special sessions for several international conferences. Mr.

Vamvoudakis is a registered Electrical/Computer engineer (PE) and member of Technical

Chamber of Greece.

