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ABSTRACT 

 
ONLINE LEARNING ALGORITHMS FOR DIFFERENTIAL DYNAMIC GAMES AND OPTIMAL 

CONTROL 

 

KYRIAKOS G. VAMVOUDAKIS, PhD 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  FRANK L. LEWIS 

 Optimal control deals with the problem of finding a control law for a given system that a 

certain optimality criterion is achieved. It can be derived using Pontryagin’s maximum principle 

(a necessary condition), or by solving the Hamilton-Jacobi-Bellman equation (a sufficient 

condition). Major drawback of optimal control is that it is offline. Adaptive control involves 

modifying the control law used by a controller to cope with the facts that the system is unknown 

or uncertain. Adaptive controllers are not optimal. Adaptive optimal controllers have been 

proposed by adding optimality criteria to an adaptive controller, or adding adaptive 

characteristics to an optimal controller.  

 In this work, online adaptive learning algorithms are developed for optimal control and 

differential dynamic games by using measurements along the trajectory or input/output data. 

These algorithms are based on actor/critic schemes and involve simultaneous tuning of the 

actor/critic neural networks and provide online solutions to complex Hamilton-Jacobi equations, 

along with convergence and Lyapunov stability proofs.  

 The research begins with the development of an online algorithm based on policy 

iteration for learning the continuous-time (CT) optimal control solution with infinite horizon cost 
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for nonlinear systems with known dynamics. That is, the algorithm learns online in real-time the 

solution to the optimal control design Hamilton-Jacobi (HJ) equation. This is called 

‘synchronous’ policy iteration. 

 Then it became interesting to develop an online learning algorithm to solve the 

continuous-time two-player zero-sum game with infinite horizon cost for nonlinear systems. The 

algorithm learns online in real-time the solution to the game design Hamilton-Jacobi-Isaacs 

equation. This algorithm is called online gaming algorithm ‘synchronous’ zero-sum game policy 

iteration.  

 One of the major outcomes of this work is the online learning algorithm to solve the 

continuous time multi player non-zero sum games with infinite horizon for linear and nonlinear 

systems. The adaptive algorithm learns online the solution of coupled Riccati and coupled 

Hamilton-Jacobi equations for linear and nonlinear systems respectively. The optimal-adaptive 

algorithm is implemented as a separate actor/critic parametric network approximator structure 

for every player, and involves simultaneous continuous-time adaptation of the actor/critic 

networks.  

 The next result shows how to implement Approximate Dynamic Programming methods 

using only measured input/output data from the systems. Policy and value iteration algorithms 

have been developed that converge to an optimal controller that requires only output feedback. 

 The notion of graphical games is developed for dynamical systems, where the 

dynamics and performance indices for each node depend only on local neighbor information. A 

cooperative policy iteration algorithm, is given for graphical games, that converges to the best 

response when the neighbors of each agent do not update their policies and to the cooperative 

Nash equilibrium when all agents update their policies simultaneously. 

 Finally, a synchronous policy iteration algorithm based on integral reinforcement 

learning is given. This algorithm does not need the drift dynamics.  
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CHAPTER 1 

INTRODUCTION 

 The introductory chapter discusses background, motivation and contribution. The list of 

publications which resulted from this research is given in Section 1.6. 

1.1 Adaptive Optimal Control 

 Optimal control has emerged as one of the fundamental design philosophies of modern 

control systems design. Optimal control policies satisfy the specified system performance while 

minimizing a structured cost index which describes the balance between desired performance 

and available control resources. 

 From a mathematical point of view the solution of the optimal control problem is based 

on the solution of the underlying Hamilton-Jacobi-Bellman (HJB) equation. Until recently, due to 

the intractability of this nonlinear differential equation for continuous-time (CT) systems, which 

form the object of interest in this work, only particular solutions were available (e.g. for the linear 

time-invariant case, the HJB becomes the Riccati equation). For this reason considerable effort 

has been devoted to developing algorithms which approximately solve this equation [4], [13], 

[63]. Far more results are available for the solution of the discrete-time HJB equation. Good 

overviews are given in [15], [81], [98], [99], [100]. 

 Reinforcement learning (RL) is a class of methods used in machine learning to 

methodically modify the actions of an agent based on observed responses from its environment 

[22],[23], [35], [86]. The RL methods have been developed starting from learning mechanisms 

observed in mammals. Every decision-making organism interacts with its environment and uses 

those interactions to improve its own actions in order to maximize the positive effect of its 

limited available resources; this in turn leads to better survival chances. RL is a means of 

learning optimal behaviors by observing the response from the environment to non-optimal 



 

 2

control policies. In engineering terms, RL refers to the learning approach of an actor or agent 

which modifies its actions, or control policies, based on stimuli received in response to its 

interaction with its environment. This learning can be extended along two dimensions: i) nature 

of interaction (competitive or collaborative) and ii) the number of decision makers (single or 

multi agent). 

 In view of the advantages offered by the RL methods, a recent objective of control 

systems researchers is to introduce and develop RL techniques which result in optimal 

feedback controllers for dynamical systems that can be described in terms of ordinary 

differential or difference equations.  

 Some of the methods involve a computational intelligence technique known as Policy 

Iteration (PI) [35], [86]. PI refers to a class of algorithms built as a two-step iteration: policy 

evaluation and policy improvement. Instead of trying a direct approach to solving the HJB 

equation, the PI algorithm starts by evaluating the cost of a given initial admissible (in a sense 

to be defined herein) control policy.  This is often accomplished by solving a nonlinear Lyapunov 

equation.  This new cost is then used to obtain a new improved (i.e. which will have a lower 

associated cost) control policy.  This is often accomplished by minimizing a Hamiltonian function 

with respect to the new cost.  (This is the so-called ‘greedy policy’ with respect to the new cost). 

These two steps of policy evaluation and policy improvement are repeated until the policy 

improvement step no longer changes the actual policy, thus convergence to the optimal 

controller is achieved. One must note that the infinite horizon cost can be evaluated only in the 

case of admissible control policies, which requires that the policy be stabilizing.  Admissibility is 

in fact a condition for the control policy which is used to initialize the algorithm. 

 Werbos defined actor-critic online learning algorithms to solve the optimal control 

problem based on so-called Value Iteration (VI), which does not require an initial stabilizing 

control policy [98], [99], [100].  He defined a family of VI algorithms which he termed Adaptive 

Dynamic Programming (ADP) algorithms.  He used a critic neural network (NN) for value 
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function approximation (VFA) and an actor NN for approximation of the control policy.  Adaptive 

critics have been described in [69] for discrete-time systems and [8], [30], [91], [92] for 

continuous-time systems. 

 Generalized Policy Iteration has been discussed in [86]. This is a family of optimal 

learning techniques which has PI at one extreme.  In generalized PI, at each step one does not 

completely evaluate the cost of a given control, but only updates the current cost estimate 

towards that value.  Likewise, one does not fully update the control policy to the greedy policy 

for the new cost estimate, but only updates the policy towards the greedy policy.  Value Iteration 

in fact belongs to the family of generalized PI techniques. 

 In the linear CT system case, when quadratic indices are considered for the optimal 

stabilization problem, the HJB equation becomes the well known Riccati equation and the policy 

iteration method is in fact Newton’s method proposed by Kleinman [44], which requires iterative 

solutions of Lyapunov equations. In the case of nonlinear systems, successful application of the 

PI method was limited until [13], where Galerkin spectral approximation methods were used to 

solve the nonlinear Lyapunov equations describing the policy evaluation step in the PI 

algorithm. Such methods are known to be computationally intensive.  These are all off-line 

methods for PI. 

 The key to solving practically the CT nonlinear Lyapunov equations was in the use of 

neural networks (NN) [4] which can be trained to become approximate solutions of these 

equations. In fact the PI algorithm for CT systems can be built on Werbos’ actor/critic structure 

which involves two neural networks:  the critic NN, is trained to approximate the solution of the 

nonlinear Lyapunov equation at the policy evaluation step, while the actor neural network is 

trained to approximate an improving policy at the policy improving step. The method of [4] is 

also an offline method. 

 In [91], [92], [93] was developed an online PI algorithm for continuous-time systems 

which converges to the optimal control solution without making explicit use of any knowledge on 
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the internal dynamics of the system. The algorithm was based on sequential updates of the 

critic (policy evaluation) and actor (policy improvement) neural networks. That is, while one NN 

is tuned the other one remains constant. In this work we provide algorithms for simultaneous 

tuning of the two neural networks. 

 Most of the PI and Value Iteration (VI) algorithms require at least some knowledge of 

the system dynamics and measurement of the entire internal state vector which describes the 

dynamics of the system/environment (e.g. [7], [20], [68], [78], [86], [99]). The so called Q-

learning class of algorithms [17], [97] (called action dependent HDP by Werbos [99], [100]) does 

not require exact or explicit description of the system dynamics, but they still use full state 

measurement in the feedback control loop. From control systems engineering perspective this 

latter requirement may be hard to fulfill as measurements of the entire state vector may not be 

available and/or may be difficult and expensive to obtain. Although various control algorithms 

(e.g. state-feedback) require full state knowledge, in practical implementations taking 

measurements of the entire state vector is not feasible. The state vector is generally estimated 

based on limited information about the system available by measuring the system’s outputs. 

State estimation techniques have been proposed (e. g. [55], [58], [67]). These generally require 

a known model of the system dynamics. 

 In real life, it is difficult to design and implement optimal estimators because the system 

dynamics and the noise statistics are not exactly known. However information about the system 

and noise is included in a long enough set of input/output data. It would be desirable to be able 

to design an estimator by using input/output data without any system knowledge or noise 

identification. Such techniques belong to the field of data-based control techniques, where the 

control input depends on input/output data measured directly from the plant. These techniques 

are: data-based predictive control [59], unfalsified control [73], Markov data-based LQG control 

[82], disturbance-based control [89], simultaneous perturbation stochastic approximation [84], 

pulse response-based control [14], iterative feedback tuning [32], and virtual reference feedback 
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tuning [48]. In [1] data based optimal control was achieved through identification of Markov 

parameters. 

 In this work, novel output feedback ADP algorithms are derived for affine in the control 

input linear time-invariant (LTI) deterministic systems. Such systems have as stochastic 

equivalent the partially observable Markov decision processes (POMDPs). In this work, data-

based optimal control is implemented on-line using novel PI and VI ADP algorithms that require 

only reduced measured information available at the system outputs. These two classes of 

output feedback algorithms do not require any knowledge of the system dynamics (A,B,C) and 

as such are similar to Q-learning [17], [97], [99], [100] but they have an added advantage of 

requiring only measurements of input/output data and not the full system state. In order to 

ensure that the data set is sufficiently rich and linearly independent, there is a need to add (c.f. 

[17]) probing noise to the control input. We discuss this issue showing that probing noise leads 

to bias. Adding a discount factor in the cost minimizes it to an almost zero effect. This discount 

factor is related to adding exponential data weighting in the Kalman Filter to remove the bias 

effects of unmodeled dynamics [55]. 

1.2 Zero-Sum Games 

 Games provide an ideal environment in which to study computational intelligence, 

offering a range of challenging and engaging problems. Game theory [88] captures the behavior 

in which a player’s success in selecting strategies depends on the choices of other players. One 

goal of game theory techniques is to find (saddle point) equilibria, in which each player has an 

outcome that cannot be improved by unilaterally changing his strategy (e.g. Nash equilibrium). 

The H∞ control problem is a minimax optimization problem, and hence a zero-sum game where 

the controller is a minimizing player and the disturbance a maximizing one. Since the work of 

George Zames in the early 1980s, H∞  techniques have been used in control systems, for 

sensitivity reduction and disturbance rejection. This work is concerned with 2-player zero-sum 

games that are related to the H∞ control problem, as formulated by [11], [11], [77].   
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 Game theory and H-infinity solutions rely on solving the Hamilton-Jacobi-Isaacs (HJI) 

equations, which in the zero-sum linear quadratic case reduce to the generalized game 

algebraic Riccati equation (GARE).  In the nonlinear case the HJI equations are difficult or 

impossible to solve, and may not have global analytic solutions even in simple cases (e.g. 

scalar system, bilinear in input and state).  Solution methods are generally offline and generate 

fixed control policies that are then implemented in online controllers in real time.   

 In this work we provide methods for online gaming, that is for solution of 2-player zero-

sum infinite horizon games online, through learning the saddle point strategies in real-time.  The 

dynamics may be nonlinear in continuous-time and are assumed known.  A novel neural 

network adaptive control technique is given that is based on reinforcement learning techniques, 

whereby the control and disturbance policies are tuned online using data generated in real time 

along the system trajectories.  Also tuned is a ‘critic’ approximator structure whose function is to 

identify the value or outcome of the current control and disturbance policies.  Based on this 

value estimate, the policies are continuously updated.  This is a sort of indirect adaptive control 

algorithm, yet, due to the direct form dependence of the policies on the learned value, it is 

affected online as direct (‘optimal’) adaptive control. 

1.3 Non-Zero-Sum Games 

 Game theory [88] has been very successful in modeling strategic behavior, where the 

outcome for each player depends on the actions of himself and all the other players. Every 

player chooses a control to minimize independently from the others his own performance 

objective. None has knowledge of the others’ strategy. A lot of applications of optimization 

theory require the solution of coupled Hamilton-Jacobi equations [11], [27]. In games with N 

players, each player decides for the Nash equilibrium depending on Hamilton-Jacobi equations 

coupled through their quadratic terms [27], [28].  Each dynamic game consists of three parts: i) 

players; ii) actions available for each player; iii) costs for every player that depend on their 

actions.  
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 Multi player non-zero sum games rely on solving the coupled Hamilton-Jacobi (HJ) 

equations, which in the linear quadratic case reduce to the coupled algebraic Riccati equations 

[2], [27], [28]. Solution methods are generally offline and generate fixed control policies that are 

then implemented in online controllers in real time.  In the nonlinear case the coupled HJ 

equations are difficult or impossible to solve, and may not have global analytic solutions even in 

simple cases (e.g. scalar system, bilinear in input and state) [83] (discussion of viscosity 

solutions). 

 For the most part, interest in the control systems community has been in the (non-

cooperative) zero-sum games, which provide the solution of the H-infinity robust control problem 

[11], [60].  However, dynamic team games may have some cooperative objectives and some 

selfish objectives among the players.  This cooperative/non-cooperative balance is captured in 

the NZS games, as detailed herein. 

 In this work we are interested in feedback policies with full state information, and 

provide methods for online gaming, that is for solution of N-player infinite horizon NZS games 

online, through learning the Nash-equilibrium in real-time.  The dynamics are nonlinear in 

continuous-time and are assumed known. A novel adaptive control technique is given that is 

based on reinforcement learning techniques, whereby each player’s control policies are tuned 

online using data generated in real time along the system trajectories.  Also tuned by each 

player are ‘critic’ approximator structures whose function is to identify the values of the current 

control policies for each player.  Based on these value estimates, the players’ policies are 

continuously updated.  This is a sort of indirect adaptive control algorithm, yet, due to the simple 

form dependence of the control policies on the learned value, it is affected online as direct 

(‘optimal’) adaptive control.  
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1.4 Motivation 

 Optimal control is generally an offline design technique that requires full knowledge of 

the systems dynamics, e.g. in the linear systems case one must solve the Riccati equation.  On 

the other hand, adaptive control is a body of online design techniques that use measured data 

along system trajectories to learn to compensate for unknown system dynamics, disturbances, 

and modeling errors to provide guaranteed performance. Optimal adaptive controllers have 

been designed using indirect techniques, whereby the unknown plant is first identified and then 

a Riccati equation is solved [36], [87]. Inverse adaptive controllers have been provided that 

optimize a performance index, meaningful but not of the designer’s choice [45], [57]. Direct 

adaptive controllers that converge to optimal solutions for nonlinear systems given a PI selected 

by the designer have generally not been developed. 

 Therefore developing online learning algorithms for optimal control and games where 

every controller minimizes a different performance index is of great interest in the control 

systems society.  

1.5 Contribution 

 The contributions of the thesis are the following: 

1. An online adaptive optimal controller to solve the continuous-time infinite horizon optimal 

control problem which uses reinforcement learning principles.  

2. An online gaming algorithm to solve the zero-sum game problem.  

3. An online adaptive control algorithm based on policy iteration to solve the continuous-time 

multi player non zero sum game with infinite horizon for linear and nonlinear systems.  

4. Reinforcement learning methods which require only output feedback and yet converge to an 

optimal controller.  

5. Policy iteration algorithm and online adaptive learning solution for graphical games 

6. An online adaptive optimal controller to solve the continuous-time infinite horizon optimal 

control problem based on integral reinforcement learning that does not need the drift dynamics.  
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 The first result is concerned with developing an online algorithm where the actor/critic 

networks are tuned simultaneously. This algorithm converges to the solution of Hamilton-

Jacobi-Bellman equation without solving it and is termed as ‘synchronous’ policy iteration. The 

convergence to the optimal controller is proven, and the stability of the system is also 

guaranteed. 

 The second result included in this thesis is an online gaming algorithm to solve the 

zero-sum game with infinite horizon for linear and nonlinear systems. The two-player zero sum 

problem provides the solution to the bounded L2 gain problem and so is important for robust 

control. However, its solution depends on solving a design Hamilton-Jacobi-Isaacs (HJI) 

equation, which is generally intractable for nonlinear systems. This algorithm converges to the 

Hamilton-Jacobi-Isaacs and the Game Algebraic Riccati equation for nonlinear and linear 

systems respectively without solving them. The convergence to the optimal saddle point 

solution is proven and stability of the system is also guaranteed.  

 The third result is a new online algorithm to solve non-zero sum dynamic games. This 

algorithm converges to the solution of coupled Riccati and coupled Hamilton-Jacobi equations 

for linear and nonlinear systems respectively. The optimal-adaptive algorithm is implemented as 

a separate actor/critic parametric network approximator structure for every player, and involves 

simultaneous continuous-time adaptation of the actor/critic networks. Furthermore this method 

finds in real time approximations of the optimal value and the Nash equilibrium while also 

guaranteeing closed-loop stability.  

 The fourth result in this thesis develops policy iteration and value iteration algorithms 

that require only input/output data and not measurements of the states. This new output 

feedback optimal learning methods have the important advantage that knowledge of the system 

dynamics is not needed for their implementation. 
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 The fifth result introduces graphical games where the dynamics and performance 

indices for each node depend only on local neighbor information. A policy iteration algorithm 

and an online learning algorithm are proposed and proofs of convergence are also provided. 

 The last result develops an online adaptive controller based on integral reinforcement 

learning that tunes the actor and critic NN simultaneously and does not need any knowledge on 

the drift dynamics. 
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1.7 Outline 

 Chapter 2 presents an online algorithm based on policy iteration for learning the 

continuous time optimal control with infinite horizon for nonlinear systems with known dynamics. 

It is implemented as an actor/critic structure which involves simultaneous continuous-time 

adaptation of both actor and critic neural networks. A persistence of excitation condition is 

shown to guarantee convergence of the critic to the actual value function. Simulation results, 

obtained considering a continuous time F16 aircraft plant with quadratic function and an affine in 

control input nonlinear system with a quadratic cost. 

 Chapter 3 presents an online adaptive learning algorithm based on policy iteration to 

solve the continuous-time two-player zero-sum game with infinite horizon cost for nonlinear 

systems with known dynamics. The algorithm learns online an approximate local solution to the 

game HJI equation. The algorithm is implemented as an actor/critic/disturbance structure which 

involves simultaneous continuous-time adaptation of critic, actor and disturbance neural 

networks. A persistence of excitation condition is shown to guarantee convergence of the critic 

to the actual optimal value function. The convergence to the optimal saddle point solution is 

proven, and stability of the system is also guaranteed. Simulation examples show the 

effectiveness of the new algorithm in solving the HJI equation online for a linear systems and a 

complex nonlinear system.  
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 Chapter 4 presents an adaptive algorithm based on policy iteration reinforcement 

learning techniques to solve the continuous-time multi player non-zero sum game with infinite 

horizon for linear and nonlinear systems. Non-zero sum games allow for players to have a 

cooperative team component and an individual selfish component of strategy. This algorithm 

learns online the solution of coupled Riccati and coupled Hamilton-Jacobi equations and finds in 

real time approximations of the optimal value and the Nash equilibrium while also guaranteeing 

closed-loop stability. A detailed mathematical analysis is done for two player non-zero sum 

games. Simulation examples for linear and nonlinear systems show the effectiveness of the 

new algorithm. 

 Chapter 5 develops policy and value iteration algorithms that converge to an optimal 

controller that requires only output feedback. It is shown that, similar to Q-learning, the new 

methods have the important advantage that knowledge of the system dynamics is not needed 

for the implementation of these learning algorithms or for the output feedback control. The 

learned output feedback controller is in the form of a polynomial autoregressive moving-average 

controller that has equivalent performance with the optimal state variable feedback gain. 

Simulation examples show the effectiveness of the proposed algorithms and also compare their 

performance to that of Q-learning. 

 Chapter 6 brings together cooperative control, reinforcement learning and game theory 

to solve multi-player differential games on communication graph topologies. The notion of 

graphical games is developed for dynamical systems, where the dynamics and performance 

indices for each node depend only on local neighbor information. A derivation of coupled Riccati 

equations for solution of graphical games is proposed. Furthermore a policy iteration algorithm 

is shown to converge to the best response when every agent has fixed policies for his neighbors 

and to the Nash equilibrium when all agents update their policies simultaneously. Finally an 

online adaptive learning solution is shown to solve online the graphical games. 
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 Chapter 7 introduces an online algorithm that uses integral reinforcement knowledge for 

learning the continuous-time optimal control solution for nonlinear systems with infinite horizon 

costs and partial knowledge of the system dynamics. This algorithm is a data based approach 

to the solution of the Hamilton-Jacobi-Bellman equation and it does not require explicit 

knowledge on the system’s drift dynamics. 

 Chapter 8 presents conclusions and future work ideas. 
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CHAPTER 2 

ONLINE ACTOR-CRITIC ALGORITHM TO SOLVE THE CONTINUOUS-TIME INFINITE 

HORIZON OPTIMAL CONTROL PROBLEM 

2.1 Introduction 

 This chapter is concerned with developing an online approximate solution, based on PI, 

for the infinite horizon optimal control problem for continuous-time nonlinear systems with 

known dynamics. We present an online adaptive algorithm which involves simultaneous tuning 

of both actor and critic neural networks (i.e. both neural networks are tuned at the same time).  

We term this algorithm ‘synchronous’ policy iteration. This approach is an extremal version of 

the generalized Policy Iteration introduced in [86].  

 This approach to policy iteration is motivated by work in adaptive control [36], [87]. 

Adaptive control is a powerful tool that uses online tuning of parameters to provide effective 

controllers for nonlinear or linear systems with modeling uncertainties and disturbances. 

Closed-loop stability while learning the parameters is guaranteed, often by using Lyapunov 

design techniques. Parameter convergence, however, often requires that the measured signals 

carry sufficient information about the unknown parameters (persistence of excitation condition).  

 There are two main contributions in this chapter. The first involves introduction of a 

nonstandard ‘normalized’ critic neural network tuning algorithm, along with guarantees for its 

convergence based on a persistence of excitation condition regularly required in adaptive 

control. The second involves adding nonstandard extra terms to the actor neural network tuning 

algorithm that are required to guarantee close loop stability, along with stability and 

convergence proofs. 

 The chapter is organized as follows. Section 2.2 provides the formulation of the optimal 

control problem, followed by the general description of policy iteration and neural network value 
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function approximation. Section 2.3 discusses tuning of the critic NN, in effect designing an 

observer for the unknown value function. Section 2.4 presents the online synchronous PI 

method, and shows how to simultaneously tune the critic and actor NNs to guarantee 

convergence and closed-loop stability. Results for convergence and stability are developed 

using a Lyapunov technique. Section 2.5 presents simulation examples that show the 

effectiveness of the online synchronous CT PI algorithm in learning the optimal value and 

control for both linear systems and nonlinear systems. 

2.2 The optimal control problem and value function approximation 

2.2.1. Optimal control and the continuous-time HJB equation 

 Consider the nonlinear time-invariant affine in the input dynamical system given by 

( ) ( ( )) ( ( )) ( ( ))x t f x t g x t u x t= +ɺ ; 0(0)x x=   (2.1) 

with state ( ) nx t ∈ℝ , ( ( )) nf x t ∈ℝ , ( ( )) n mg x t ×∈ℝ  and control input ( ) mu t ∈ℝ . We assume 

that, (0) 0f = , ( ) ( )f x g x u+ is Lipschitz continuous on a set 
nΩ ⊆ ℝ  that contains the origin, and 

that the system is stabilizable on Ω , i.e. there exists a continuous control function ( )u t U∈  

such that the system is asymptotically stable on Ω . The system dynamics ( ), ( )f x g x are 

assumed known. 

 Define the infinite horizon integral cost 

0

0

( ) ( ( ), ( ))V x r x u dτ τ τ
∞

= ∫  (2.2) 

where ( , ) ( ) Tr x u Q x u Ru= +  with ( )Q x  positive definite, i.e. 0, ( ) 0x Q x∀ ≠ >  and 

0 ( ) 0x Q x= ⇒ = , and m mR ×∈ℝ  a symmetric positive definite matrix.   

 Definition 2.1. [4] (Admissible policy) A control policy ( )xµ  is defined as admissible 

with respect to (2.2) on Ω , denoted by ( )µ∈Ψ Ω , if ( )xµ  is continuous on Ω , (0) 0µ = , 

( ) ( )u x xµ=  stabilizes (2.1) on Ω , and 0( )V x  is finite 0x∀ ∈Ω .  
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 For any admissible control policy ( )µ∈Ψ Ω , if the associated cost function  

0

0

( ) ( ( ), ( ( )))V x r x x dµ τ µ τ τ
∞

= ∫  (2.3) 

is 1
C , then an infinitesimal version of (2.3) is the so-called nonlinear Lyapunov equation  

  ( )0 ( , ( )) ( ( ) ( ) ( )), (0) 0
T

xr x x V f x g x x Vµ µµ µ= + + =  (2.4) 

where 
x

V µ  denotes the partial derivative of the value function V µ  with respect to x . (Note that 

the value function does not depend explicitly on time).  

 We define the gradient here as a column vector, and use at times the alternative 

operator notation x∇ ≡ ∂ ∂ . 

 Equation (2.4) is a Lyapunov equation for nonlinear systems which, given a controller 

( ) ( )xµ ∈Ψ Ω , can be solved for the value function ( )V xµ  associated with it. Given that ( )xµ  is 

an admissible control policy, if ( )V xµ  satisfies (2.4), with , then ( )V xµ  is a Lyapunov function for 

the system (2.1) with control policy ( )xµ . 

 The optimal control problem can now be formulated: Given the continuous-time system 

(2.1), the set ( )µ∈Ψ Ω  of admissible control policies and the infinite horizon cost functional 

(2.2), find an admissible control policy such that the cost index (2.2) associated with the system 

(2.1) is minimized.   

 Defining the Hamiltonian of the problem  

( , , ) ( ( ), ( )) ( ( ( )) ( ( )) ( ))T

x x
H x u V r x t u t V f x t g x t tµ= + + , (2.5) 

the optimal cost function * ( )V x  defined by 

   
*

0
( )

0

( ) min ( ( ( ), ( ( ))) )V x r x x d
µ

τ µ τ τ
∞

∈Ψ Ω
= ∫ .  

with 0x x=  is known as the value function, and satisfies the HJB equation  
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*

( )
0 min [ ( , , )]xH x V

µ
µ

∈Ψ Ω
=     (2.6) 

 Assuming that the minimum on the right hand side of (2.6) exists and is unique then the 

optimal control function for the given problem is  

 
* 1 *1
( ) ( ) ( )

2

T

xx R g x V xµ −= − . (2.7) 

 Inserting this optimal control policy in the nonlinear Lyapunov equation we obtain the 

formulation of the HJB equation in terms of *

x
V  

* * 1 *

*

1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

4

(0) 0

T T T

x x xQ x V x f x V x g x R g x V x

V

−= + −

=

  (2.8) 

 For the linear system case, considering a quadratic cost functional, the equivalent of 

this HJB equation is the well known Riccati equation. 

 In order to find the optimal control solution for the problem one only needs to solve the 

HJB equation (2.8) for the value function and then substitute the solution in (2.7) to obtain the 

optimal control. However, due to the nonlinear nature of the HJB equation finding its solution is 

generally difficult or impossible. 

2.2.2. Policy Iteration 

 The approach of synchronous policy iteration used in this chapter is motivated by Policy 

iteration (PI) [86]. Therefore in this section we describe PI. 

 Policy iteration (PI) [86] is an iterative method of reinforcement learning for solving 

optimal control problems, and consists of policy evaluation based on (2.4) and policy 

improvement based on (2.7). Specifically, the PI algorithm consists in solving iteratively the 

following two equations: 
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 Policy Iteration Algorithm: 

 1. given ( ) ( )i xµ , solve for the value 
( )

( ( ))
i

V x tµ  using 

 

( )

( )

( ) ( )0 ( , ( )) ( ) ( ( ) ( ) ( ))

(0) 0

i

i

i T ir x x V f x g x x

V

µ

µ

µ µ= + ∇ +

=
  (2.9) 

 2. update the control policy using 

 
( )

( 1)

( )

argmin[ ( , , )]
i

i

x
u

H x u Vµ +

∈Ψ Ω
= ∇ , (2.10) 

 which explicitly is  

 
( )

( 1) 11

2
( ) ( )

i
i T

x
x R g x Vµ + −= − ∇ . (2.11)

  

 To ensure convergence of the PI algorithm an initial admissible policy (0) ( ( )) ( )x tµ ∈Ψ Ω  

is required. It is in fact required by the desired completion of the first step in the policy iteration: 

i.e. finding a value associated with that initial policy (which needs to be admissible to have a 

finite value and for the nonlinear Lyapunov equation to have a solution). The algorithm then 

converges to the optimal control policy * ( )µ ∈Ψ Ω  with corresponding cost * ( )V x . Proofs of 

convergence of the PI algorithm have been given in several references. See [4], [8], [13], [30], 

[35], [63], [91], [92], [93]. 

 Policy iteration is a Newton method. In the linear time-invariant case, it reduces to the 

Kleinman algorithm [44] for solution of the Riccati equation, a familiar algorithm in control 

systems.  Then, (2.9) become a Lyapunov equation. 

2.2.3. Value function approximation (VFA) 

 The standard PI Algorithm just discussed proceeds by alternately updating the critic 

value and the actor policy by solving respectively the equations (2.9) and (2.11).  In this chapter, 

the fundamental update equations in PI namely (2.9) for the value and (2.11) for the policy are 
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used to design two neural networks. Then, by contrast to standard PI, it is shown how to tune 

these critic and actor neural networks simultaneously in real time to guarantee convergence to 

the control policy as well as stability during the training process. 

 The policy iteration algorithm, as other reinforcement learning algorithms, can be 

implemented on an actor/critic structure which consists of two neural network structures to 

approximate the solutions of the two equations (2.9) and (2.10) at each step of the iteration. The 

structure is presented in the next figure. 

xu

0( ) ( ) ;x f x g x u x= +ɺ
System

Cost function
Actor

( )xµ
Controller

Critic

( )V x

xu

0( ) ( ) ;x f x g x u x= +ɺ
System

Cost function
Actor

( )xµ
Controller

Critic

( )V x

 

Figure 1. Actor/Critic Structure. 

 In the actor/critic structure [98], [99], [100] the cost 
( )

( ( ))
i

V x tµ  and the control ( 1) ( )i xµ +  

are approximated at each step of the PI algorithm by neural networks, called respectively the 

critic Neural Network (NN) and the actor NN. Then, the PI algorithm consists in tuning 

alternatively each of the two neural networks. The critic NN is tuned to solve (2.9) (in a least-

squares sense [26]), and the actor NN to solve (2.11). Thus, while one NN is being tuned, the 

other is held constant. Note that, at each step in the iteration, the critic neural network is tuned 

to evaluate the performance of the current control policy. 

 The critic NN is based on value function approximation (VFA). In the following, it is 

desired to determine a rigorously justifiable form for the critic NN.  Since one desires 

approximation in Sobolev norm, that is, approximation of the value ( )V x as well as its gradient, 

some discussion is given that relates normal NN approximation usage to the Weierstrass 
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higher-order approximation theorem.   

 The solutions to the nonlinear Lyapunov equation (2.4), (2.9) may not be smooth for 

general nonlinear systems, except in a generalized sense [83]. However, in keeping with other 

work in the literature [77] we make the following assumptions. 

 Assumption 2.1.  The solution to (2.4) is smooth, i.e. 1( ) ( )V x C∈ Ω . 

 Assumption 2.2.  The solution to (2.4) is positive definite.  This is guaranteed for 

stabilizable dynamics if the performance functional satisfies zero-state observability [77], which 

is guaranteed by the condition that ( ) 0, {0}; (0) 0Q x x Q> ∈Ω− =  be positive definite. 

 Assumption 2.1 allows us to bring in informal style of the Weierstrass higher-order 

approximation Theorem [4], [26] and the results of [34], which state that then there exists a 

complete independent basis set { ( )}
i
xϕ  such that the solution ( )V x to (2.4) and its gradient are 

uniformly approximated, that is, there exist coefficients ci such that 

1 1 1

( ) ( ) ( ) ( )
�

i i i i i i

i i i �

V x c x c x c xϕ ϕ ϕ
∞ ∞

= = = +

= = +∑ ∑ ∑    
 

1 1

1

( ) ( ) ( )
T

i i

i �

V x C x c xφ ϕ
∞

= +

≡ + ∑   (2.12)  

1 1 1

( ) ( ) ( )( ) �
i i i

i i i

i i i �

x x xV x
c c c

x x x x

ϕ ϕ ϕ∞ ∞

= = = +

∂ ∂ ∂∂
= = +

∂ ∂ ∂ ∂∑ ∑ ∑    
(2.13) 

where 
1 1 2
( ) [ ( ) ( ) ( )] :T n �

�
x x x xφ ϕ ϕ ϕ= →⋯ ℝ ℝ  and the last terms in these equations converge 

uniformly to zero as � → ∞ .  (Specifically, the basis set is dense in the Sobolev norm 1,W ∞  [6].)  

Standard usage of the Weierstrass high-order approximation Theorem uses polynomial 

approximation.  However, non-polynomial basis sets have been considered in the literature (e.g. 

[34], [76]). 

 Thus, it is justified to assume there exist weights 
1

W  such that the value function ( )V x  

is approximated as  

 
1 1

( ) ( ) ( )TV x W x xφ ε= +    (2.14) 
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 Then 
1
( ) : n �xφ →ℝ ℝ  is called the NN activation function vector, N the number of 

neurons in the hidden layer, and ( )xε  the NN approximation error. As per the above, the NN 

activation functions { ( ) : 1, }
i
x i �ϕ =  are selected so that { ( ) : 1, }

i
x iϕ = ∞  provides a complete 

independent basis set such that ( )V x  and its derivative 

1

1 1 1

( )
T

TxV
W W

x x x

φ ε
φ ε

∂∂ ∂ 
= + = ∇ +∇ ∂ ∂ ∂ 

  (2.15) 

are uniformly approximated. Then, as the number of hidden-layer neurons � → ∞ , the 

approximation errors 0, 0ε ε→ ∇ →  uniformly [26].  In addition, for fixed N, the NN 

approximation errors ( ),xε and ε∇  are bounded by constants on a compact set [34]. 

 Using the NN value function approximation, considering a fixed control policy ( )u t , the 

nonlinear Lyapunov equation (2.4) becomes  

1 1 1
( , , ) ( ) ( )T T

H
H x u W W f gu Q x u Ruφ ε= ∇ + + + =    (2.16) 

where the residual error due to the function approximation error is 

( ) 1 1 1

1

( ) ( ) ( ) ( )( )
T T

H i i

i �

f gu C W f gu c x f guε ε φ ϕ
∞

= +

= − ∇ + = − − ∇ + − ∇ +∑  (2.17) 

Under the Lipschitz assumption on the dynamics, this residual error is bounded on a compact 

set.   

 Define v  as the magnitude of a scalar v, x  as the vector norm of a vector x, and 

2
as the induced matrix 2-norm. 

 Definition 2.2. (uniform convergence).  A sequence of functions { }np   converges 

uniformly to p on a set Ω  if 0, ( ) : sup ( ) ( ) , ( )n
x

� p x p x n �ε ε ε ε
∈Ω

∀ > ∃ − < > . 

 The following Lemma has been shown in [4].  
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 Lemma 2.1.  For any admissible policy ( )u t , the least-squares solution to (2.16) exists 

and is unique for each N.  Denote this solution as 
1

W and define 

1 1 1
( ) ( )TV x W xφ=   (2.18) 

Then, as � → ∞ : 

 
1 1 2

1

1

. sup 0

. 0

. sup 0

. sup 0

H
x

x

x

a

b W C

c V V

d V V

ε
∈Ω

∈Ω

∈Ω

→

− →

− →

∇ −∇ →

 

  ■ 

 This result shows that 
1
( )V x converges uniformly in Sobolev norm 1,W ∞  [6] to the exact 

solution ( )V x to (2.4) as � → ∞ , and the weights 
1

W converge to the first N of the weights, C1, 

which exactly solve (2.4).  

 Since the object of interest in this chapter is finding the solution of the HJB using the 

above introduced function approximator, it is interesting now to look at the effect of the 

approximation error on the HJB equation (2.8)  

11
1 1 1 1 1 14

( )
T T T T

HJB
W f W gR g W Q xϕ ϕ ϕ ε−∇ − ∇ ∇ + =  (2.19) 

where the residual error due to the function approximation error is 

1 11 1
1 12 4

T T T T T

HJB
f W gR g gR gε ε ϕ ε ε ε− −= −∇ + ∇ ∇ + ∇ ∇      (2.20) 

 It was also shown in [4] that this error converges uniformly to zero as the number of 

hidden layer units N increases. That is,

 

0, ( ) : sup HJB
x

�ε ε ε ε
∈Ω

∀ > ∃ < . 

2.3 Tuning and Convergence of Critic NN 

 In this section we address the issue of tuning and convergence of the critic NN weights 

when a fixed admissible control policy is prescribed. Therefore, the focus is on the nonlinear 

Lyapunov equation (2.4) for a fixed policy u .  

 In fact, this amounts to the design of an observer for the value function which is known 
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as ‘cost function’ in the optimal control literature. Therefore, this algorithm is consistent with 

adaptive control approaches which first design an observer for the system state and unknown 

dynamics, and then use this observer in the design of a feedback control. 

 The weights of the critic NN, 
1

W which provide the best approximate solution for (2.16) 

are unknown. Therefore, the output of the critic neural network is  

 
1 1

ˆ ˆ( ) ( )TV x W xφ=  (2.21) 

where 
1

Ŵ  are the current estimated values of the ideal critic NN weights 
1

W . Recall that 

1
( ) : n �xφ →ℝ ℝ  is the vector of activation functions, with N the number of neurons in the hidden 

layer. The approximate nonlinear Lyapunov equation is then 

1 1 1 1
ˆ ˆ( , , ) ( ) ( )T TH x W u W f gu Q x u Ru eφ= ∇ + + + =  (2.22) 

 In view of Lemma 2.1, define the critic weight estimation error  

     
1 1 1

ˆW W W= −ɶ . 

 Then  

    
1 1 1

( ) .T

H
e W f guφ ε= − ∇ + +ɶ  

 Given any admissible control policy u , it is desired to select 
1

Ŵ  to minimize the 

squared residual error 

 1
1 1 12

.
T

E e e=  

 Then 
1 1
ˆ ( )W t W→  and 

1 H
e ε→ .  We select the tuning law for the critic weights as the 

normalized gradient descent algorithm  

1 1

1 1 1 1 12

1 11

ˆ ˆ[ ( ) ]
ˆ ( 1)

T T

T

E
W a a W Q x u Ru

W

σ
σ

σ σ
∂

= − = − + +
+∂

ɺ
  (2.23) 

where 
1 1

( )f guσ φ= ∇ + . This is a modified gradient descent algorithm where 2

1 1
( 1)Tσ σ +  is used 
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for normalization instead of 
1 1

( 1)Tσ σ + .  This is required in the proofs, where one needs both 

appearances of 
1 1 1
/ (1 )Tσ σ σ+  in (2.23) to be bounded [36], [87]. 

 Note that, from (2.16), 

 
1 1

( ) ( ) .T T

H
Q x u Ru W f guϕ ε+ = − ∇ + +   (2.24) 

 Substituting (2.24) in (2.23) and, with the notation 

1 1 1 1
/ ( 1)Tσ σ σ σ= + , 

1 1
1 T

s
m σ σ= +                        (2.25) 

we obtain the dynamics of the critic weight estimation error as 

1 1 1 1 1 1 1 .H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ                  (2.26) 

 Though it is traditional to use critic tuning algorithms of the form (2.23), it is not 

generally understood when convergence of the critic weights can be guaranteed. In this 

chapter, we address this issue in a formal manner.  This development is motivated by adaptive 

control techniques that appear in [36], [87]. 

 To guarantee convergence of 
1

Ŵ  to 
1

W , the next Persistence of Excitation (PE) 

assumption and associated technical lemmas are required. 

 Persistence of Excitation (PE) Assumption.  Let the signal 
1

σ
 

be persistently 

exciting over the interval [ , ]t t T+ , i.e. there exist constants 
1

0β > , 
2

0β > , 0Τ >  such that, for 

all t, 

1 0 1 1 2( ) ( ) .

t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫   (2.27) 
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The PE assumption is needed in adaptive control if one desires to perform system identification 

using e.g. RLS [36]. It is needed here because one effectively desires to identify the critic 

parameters to approximate ( )V x . 

 Technical Lemma 2.1. Consider the error dynamics system with output defined as 

    1 1 1 1 1 1 1

H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ   

1 1

Ty Wσ= ɶ .  (2.28) 

The PE condition (2.27) is equivalent to the uniform complete observability (UCO) [50] of this 

system, that is there exist constants 
3

0β > , 
4

0β > , 0Τ >  such that, for all t, 

3 1 1 1 4( , ) ( ) ( ) ( , ) .

t T

T

t

S t t dβ τ σ τ σ τ τ τ β
+

ΤΙ ≤ ≡ Φ Φ ≤ Ι∫           (2.29) 

with 
1 0 0 1
( , ),t t t tΦ ≤  the state transition matrix of (2.28). 

 Proof:  System (2.28) and the system defined by 
1 1 1 1 1

, TW a u y Wσ σ= =ɺɶ ɶ

  

are equivalent 

under the output feedback /
H s

u y mε= − + .  Note that (2.27) is the observability gramian of this 

last system.           

 ■ 

 The importance of UCO is that bounded input and bounded output implies that the state 

1
( )W tɶ  is bounded.  In Theorem 2.1 we shall see that the critic tuning law (2.23) indeed 

guarantees boundedness of the output in (2.28). 

 Technical Lemma 2.2. Consider the error dynamics system (2.28).  Let the signal 
1

σ
 

be persistently exciting.  Then: 

a) The system (2.28) is exponentially stable.  In fact if 0
H

ε =  then 

|| ( ) || || (0) ||kTW k e Wα−Τ ≤ɶ ɶ with  

1 3

1
ln( 1 2 )aα β= − −

Τ
.                      (2.30) 
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b) Let
max

|| ||
H

ε ε≤ and
max

|| ||y y≤ then 
1

|| ||Wɶ converges exponentially to the residual set 

( ){ }2

1 max 2 1 max max

1

( )W t y a y
β

δβ ε
β

Τ
 ≤ + + 

ɶ .      (2.31) 

where δ is a positive constant of the order of 1. 

 Proof: See Appendix A. 

 ■ 

 The next result shows that the tuning algorithm (2.23) is effective under the PE 

condition, in that the weights 
1

Ŵ  converge to the actual unknown weights 
1

W  which solve the 

nonlinear Lyapunov equation (2.16) for the given control policy ( )u t . That is, (2.21) converges 

close to the actual value function of the current control policy. 

 Theorem 2.1. Let ( )u t  be any admissible bounded control policy. Let tuning for the 

critic NN be provided by (2.23) and assume that 
1

σ
 
is persistently exciting. Let the residual error 

in (2.16) be bounded 
maxH

ε ε< . Then the critic parameter error converges exponentially with 

decay factor given by (2.30) to the residual set  

[ ]{ }2

1 2 1 max

1

( ) 1 2 .W t a
β

δβ ε
β

Τ
≤ +ɶ  (2.32) 

 Proof: 

 Consider the following Lyapunov function candidate 

1

1 1 1

1
( ) { }.

2

T
L t tr W a W

−= ɶ ɶ        (2.33) 

 The derivative of L  is given by 

1

1 1 12
{ [ ]}

T T

H

s

L tr W W
m

σ
σ ε= − −ɺ ɶ ɶ  

1 1 1
1 1 12

{ } { }
T

T T H

s ss

L tr W W tr W
m mm

σ σ σ ε
= − +ɺ ɶ ɶ ɶ  
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                21 1

1 1
|| || || ||

T T

H

s s s

L W W
m m m

σ σ ε
≤ − +ɺ ɶ ɶ   

1 1

1 1
|| || || || .

T T

H

s s s

L W W
m m m

σ σ ε 
≤ − − 

  

ɺ ɶ ɶ  (2.34) 

Therefore 0L ≤ɺ  if 

1

1 max
|| || ,

T

H

s s

W
m m

σ ε
ε> >ɶ  (2.35) 

since 1
s

m ≥ .  

This provides an effective practical bound for 
1 1

TWσ ɶ , since ( )L t  decreases if (2.35) holds. 

 Consider the estimation error dynamics (2.28) with the output bounded effectively by 

max
|| ||y ε< , as just shown. Now Technical Lemma 2.2 shows exponential convergence to the 

residual set  

[ ]{ }2

1 1 2 max

1

( ) 1 2 .W t a
β

δβ ε
β

Τ
≤ +ɶ  (2.36)  

This completes the proof.  

  ■ 

 Remark 2.1. Note that, as � → ∞ , 0
H

ε →  uniformly [4]. This means that 
max

ε  

decreases as the number of hidden layer neurons in (2.21) increases. 

 Remark 2.2. This theorem requires the assumption that the control policy ( )u t  is 

bounded, since ( )u t appears in 
H

ε . In the upcoming Theorem 2.2 this restriction is removed. 
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2.4 Action Neural Network and online synchronous policy iteration 

 We will now present an online adaptive PI algorithm which involves simultaneous, or 

synchronous, tuning of both the actor and critic neural networks. That is, the weights of both 

neural networks are tuned at the same time. This approach is a version of Generalized Policy 

Iteration (GPI), as introduced in [86]. In standard policy iteration, the critic and actor NN are 

tuned sequentially, with the weights of the other NN being held constant. By contrast, we tune 

both NN simultaneously in real-time. 

 It is desired to determine a rigorously justified form for the actor NN.  To this end, let us 

consider one step of the Policy Iteration algorithm (2.9)-(2.11).  Suppose that the solution 

1( ) ( )V x C∈ Ω  to the nonlinear Lyapunov equation (2.9) for a given admissible policy ( )u t is given 

by (2.12).  Then, according to (2.13) and (2.11) one has for the policy update 

1

1

1
( ) ( )

2

T

i i

i

u R g x c xϕ
∞

−

=

= − ∇∑                            (2.37) 

for some unknown coefficients 
i
c .  Then one has the following result. 

 Lemma 2.2.  Let the least-squares solution to (2.16) be 
1

W and define 

1 1

1 1 1 1

1 1
( ) ( ) ( ) ( ) ( )

2 2

T T Tu x R g x V x R g x x Wφ− −= − ∇ = − ∇   (2.38) 

with V1 defined in (2.18).   

Then, as � → ∞ : 

a. 
1sup 0

x

u u
∈Ω

− →  

b.  There exists an N0 such that u1(x) is admissible for N>N0. 

 Proof:  See [4]. 

 In light of this result, the ideal control policy update is taken as (2.38), with 
1

W unknown.  

Therefore, define the control policy in the form of an action neural network which computes the 

control input in the structured form 
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11
2 1 22

ˆ( ) ( ) ,T Tu x R g x Wφ−= − ∇  (2.39) 

where 
2

Ŵ  denotes the current estimated values of the ideal NN weights W1.  Define the actor 

NN estimation error as 

2 1 2
ˆW W W= −ɶ  (2.40) 

 The next definition and facts complete the machinery required for our main result. 

 Definition 2.3. [50]  (UUB) The equilibrium point 0
e
x =  of (2.1) is said to be uniformly 

ultimately bounded (UUB) if there exists a compact set nS R⊂ so that for all 
0
x S∈ there exists a 

bound B and a time 
0

( , )T B x  such that ( )
e

x t x B− ≤  for all 
0

.t t T≥ +   

 Facts 2.1.  

a. (.)f , is Lipschitz, and (.)g  is bounded by a constant 

( ) , ( )
f g

f x b x g x b< <  

b. The NN approx error and its gradient are bounded on a compact set containing Ω  so 

that 

bεε <  

x
bεε∇ <  

c. The NN activation functions and their gradients are bounded so that 

1

1

( )

( )
x

x b

x b

φ

φ

φ

φ

<

∇ <
 

 ■ 

   Fact 2.1c is satisfied, e.g. by sigmoids, tanh, and other standard NN activation 

functions. 

 We now present the main Theorem, which provides the tuning laws for the actor and 

critic neural networks that guarantee convergence of the synchronous online PI algorithm to the 
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optimal controller, while guaranteeing closed-loop stability. 

 Theorem 2.2. Let the dynamics be given by (2.1), the critic NN be given by (2.21) and 

the control input be given by actor NN (2.39).  Let tuning for the critic NN be provided by 

 2

1 1 2 1 2 22

2 2

ˆ ˆ[ ( ) ]
( 1)

T T

T
W a W Q x u Ru

σ
σ

σ σ
= − + +

+
ɺ

 (2.41) 

where 
2 1 2

( )f guσ φ= ∇ + , and assume that 
2 2 2 2

/ ( 1)Tσ σ σ σ= +
 
is persistently exciting. Let the 

actor NN be tuned as 

12 2 2 2 1 2 1 2 1

1ˆ ˆ ˆ ˆ ˆ{( ) ( ) ( ) }
4

T TW FW F W D x W m x Wα σ= − − −
ɺ

 (2.42) 

where 
    

1

1 1 1
( ) ( ) ( ) ( ) ( )T TD x x g x R g x xφ φ−≡ ∇ ∇ , 2

2

2 2( 1)
T

m
σ

σ σ
≡

+
,   

and 
1

0F >
 
and 

2
0F >  are tuning parameters.  Let Assumptions 2.1-2.2 and facts 2.1 hold, and 

the tuning parameters be selected as detailed in the proof.  Then there exists an N0 such that, 

for the number of hidden layer units 
0

� �>  the closed-loop system state, the critic NN error 

1
Wɶ , and the actor NN error 

2
Wɶ  are UUB.  Moreover, Theorem 2.1 holds with 

max
ε  defined in the 

proof, so that exponential convergence of 
1

Ŵ  to the approximate optimal critic value 
1

W
 
is 

obtained. 

 Proof:  See appendix A. 

  ■ 

 Remark 2.3.  Let 0ε >  and let N0 be the number of hidden layer units above 

which sup HJB
x

ε ε
∈Ω

< .  In the proof it is seen that the theorem holds for
0

� �> .  Additionally, 

ε provides an effective bound on the critic weight residual set in Theorem 2.1.  That is, 
max

ε  in 

(2.32) is effectively replaced by ε . 

 Remark 2.4.  The theorem shows that PE is needed for proper identification of the 
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value function by the critic NN, and that a nonstandard tuning algorithm is required for the actor 

NN to guarantee stability.  The second term in (2.42) is a cross-product term that involves both 

the critic weights and the actor weights.  It is needed to guarantee good behavior of the 

Lyapunov function, i.e. that the energy decreases to a bounded compact region.  

 Remark 2.5. The tuning parameters F1 and F2 in (2.42) must be selected to make the 

matrix M in (A.22) positive definite.  

 Note that the dynamics is required to implement this algorithm in that 
2 1 2

( )f guσ φ= ∇ + , 

1
( )D x , and (2.39) depend on ( ), ( )f x g x . 

2.5 Simulations 

2.5.1. Linear System Example 

 Consider the continuous-time F16 aircraft plant with quadratic cost function used in [85] 

   

1.01887 0.90506 0.00215 0

0.82225 1.07741 0.17555 0

0 0 1 1

x x u

− −   
   = − − +   
   −   

ɺ   

where Q  and R  in the cost function are identity matrices of appropriate dimensions. In this 

linear case the solution of the HJB equation is given by the solution of the algebraic Riccati 

equation (ARE).  Since the value is quadratic in the LQR case, the critic NN basis set 
1
( )xφ  was 

selected as the quadratic vector in the state components.  Solving the ARE gives the 

parameters of the optimal critic as 

   *

1
[1.4245    1.1682   -0.1352 1.4349   -0.1501 0.4329]TW = . 

which are the components of the Riccati solution matrix P. 

 The synchronous PI algorithm is implemented as in Theorem 2.2.  PE was ensured by 

adding a small probing noise to the control input.  Figure 2 shows the critic parameters, denoted 

by 

     
1 1 2 3 4 5 6
ˆ [ ]T

c c c c c c
W W W W W W W=  

converging to the optimal values. In fact after 800s the critic parameters converged to 
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      1
ˆ ( ) [1.4279    1.1612   -0.1366 1.4462   -0.1480 0.4317] .TfW t =   

 The actor parameters after 800s converge to the values of 2 1
ˆ ˆ( ) ( ).f fW t W t=  

 Then, the actor NN is given by (2.39) as 

   

1

2 1

3 111
2 22

2

3 2

3

2 0 0

0
0

0
ˆˆ ( ) 0 ( )

0 2 0
1

0

0 0 2

T

T

f

x

x x

x x
u x R W t

x

x x

x

−

 
 
  
  = −   
     
 
  

 

i.e. approximately the correct optimal control solution 1 Tu R B Px−= − . 

 The evolution of the system states is presented in Figure 3.  One can see that after 

750s convergence of the NN weights in both critic and actor has occurred.  This shows that the 

probing noise effectively guaranteed the PE condition. On convergence, the PE condition of the 

control signal is no longer needed, and the probing signal was turned off.  After that, the states 

remain very close to zero, as required. 

 

Figure 2. Convergence of the critic parameters to the parameters of the optimal critic. 
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Figure 3. Evolution of the system states for the duration of the experiment. 

2.5.2. Nonlinear System Example 

 Consider the following affine in control input nonlinear system, with a quadratic cost 

derived as in [64], [93] 

                 2( ) ( ) ,x f x g x u x R= + ∈ɺ  

where 

    

2

1 2

1 2

1

1

0.5 0.5 (1 ( )
( )     

cos(2 ) 2

0
 ( )

)

.
cos(2 ) 2

x x
f x

x

g x

x x

x

− + 
=  + 

 
= 

−



−

+ 

−
 

 One selects 
1 0

, 1.
0 1

Q R
 

= = 
 

 

 Using the procedure in [64] the optimal value function is 

     * 2 2

1 2

1
( )

2
V x x x= +  

and the optimal control signal is 
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     *

1 2
( ) (cos(2 ) 2) .u x x x= − +  

 One selects the critic NN vector activation function as 

     2 2

1 1 1 2 2
( ) [ ] ,Tx x x x xφ =   

 Figure 4 shows the critic parameters, denoted by 

     
1 1 2 3
ˆ [ ]T

c c c
W W W W= . 

 These converge after about 80s to the correct values of 

    
1
ˆ ( ) [0.5017   -0.0020    1.0008] .T

f
W t =     

 The actor parameters after 80s converge to the values of 

          
2
ˆ ( ) [0.5017   -0.0020    1.0008] .T

f
W t =  

 So that the actor NN (2.39) 

   

1

11
2 2 12

1

2

2 0 0.5017
0

ˆ ( ) -0.0020
cos(2 ) 2

0 2  1.0008

T

T x

u x R x x
x

x

−

   
     = −      +        

 

also converged to the optimal control. 

 The evolution of the system states is presented in Figure 5.  One can see that after 80s 

convergence of the NN weights in both critic and actor has occurred. This shows that the 

probing noise effectively guaranteed the PE condition.  On convergence, the PE condition of the 

control signal is no longer needed, and the probing signal was turned off.  After that, the states 

remain very close to zero, as required. 

 Figure 6 show the optimal value function.  The identified value function given by 

1 1 1
ˆ ˆ( ) ( )TV x W xφ=  is virtually indistinguishable.  In fact, Figure 7 shows the 3-D plot of the 

difference between the approximated value function, by using the online algorithm, and the 

optimal one. This error is close to zero. Good approximation of the actual value function is being 

evolved. Finally Figure 8 shows the 3-D plot of the difference between the approximated control, 

by using the online algorithm, and the optimal one. This error is close to zero. 
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Figure 4. Convergence of the critic parameters. 

 

Figure 5. Evolution of the system states for the duration of the experiment. 
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Figure 6. Optimal Value function. 

 

Figure 7. 3D plot of the approximation error for the value function. 
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Figure 8. 3D plot of the approximation error for the control. 

 
2.6 Conclusion 

 In this chapter we have proposed a new adaptive algorithm which solves the 

continuous-time optimal control problem for affine in the inputs nonlinear systems. We call this 

algorithm synchronous online PI for CT systems.  The algorithm requires complete knowledge 

of the system model.  



 

 40

CHAPTER 3 

 
ONLINE GAMING: REAL TIME SOLUTION OF NONLINEAR TWO-PLAYER ZERO-SUM 

GAMES USING SYNCHRONOUS POLICY ITERATION 

  

3.1 Introduction 

 In this chapter we provide methods for online gaming, that is for solution of 2-player 

zero-sum infinite horizon games online, through learning the saddle point strategies in real-time.  

The dynamics may be nonlinear in continuous-time and are assumed known.  A novel neural 

network adaptive control technique is given that is based on reinforcement learning techniques, 

whereby the control and disturbance policies are tuned online using data generated in real time 

along the system trajectories.  Also tuned is a ‘critic’ approximator structure whose function is to 

identify the value or outcome of the current control and disturbance policies.  Based on this 

value estimate, the policies are continuously updated.  This is a sort of indirect adaptive control 

algorithm, yet, due to the direct form dependence of the policies on the learned value, it is 

affected online as direct (‘optimal’) adaptive control. 

 This chapter presents an optimal adaptive control method that converges online to the 

solution to the zero sum 2-player differential game (and hence the solution of the bounded 2L  

gain problem). Three approximator structures are used. Parameter update laws are given to 

tune critic, actor, and disturbance neural networks simultaneously online to converge to the 

solution to the HJI equation and the saddle point policies, while also guaranteeing closed-loop 

stability.  Rigorous proofs of performance and convergence are given. 

 The chapter is organized as follows. Section 3.2 reviews the formulation of the two-

player zero-sum differential game.  A policy iteration algorithm is given to solve the HJI equation 

by successive solutions on nonlinear Lyapunov-like equations.  This essentially extends 
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Kleinman’s algorithm to nonlinear zero-sum differential games.  Section 3.3 describes the 

neural network value function approximation. First a suitable ‘critic’ approximator structure is 

developed for the value function and its tuning method is pinned down.  A persistence of 

excitation is needed to guarantee proper convergence.  Next, suitable ‘actor’ approximator 

structures are developed for the control and disturbance policies.  Finally in section 3.4 the main 

results of the chapter are presented. Theorem 3.2, shows how to tune all three approximators 

simultaneously by using measurements along the system trajectories in real time and Theorem 

3.3, proves exponential convergence to the critic neural network and convergence to the 

approximate Nash solution.  Proofs using Lyapunov techniques guarantee convergence and 

closed-loop stability. Section 3.5 presents simulation examples that show the effectiveness of 

the online synchronous zero-sum game CT PI algorithm in learning the optimal value, control 

and disturbance for both linear and nonlinear systems. 

 3.2 Background: Two Player Differential Game and Policy Iteration 

 This section presents a background review of 2-player zero-sum differential games.  

The objective is to lay a foundation for the structure needed in subsequent sections for online 

solution of these problems in real-time.  In this regard, the Policy Iteration Algorithm for 2-player 

games presented at the end of this section is key. 

 Consider the nonlinear time-invariant affine in the input dynamical system given by 

( ) ( ) ( ) ( ) ( )x f x g x u x k x d x= + +ɺ                                  (3.1) 

where state ( ) nx t ∈ℝ , ( ( )) nf x t ∈ℝ , ( ( )) nxmg x t ∈ℝ ,control ( ( )) mu x t ∈ℝ , ( ( )) nxqk x t ∈ℝ and 

disturbance ( ( )) qd x t ∈ℝ ,  Assume that ( )f x  is locally Lipschitz, (0) 0f =  so that 0x =  is an 

equilibrium point of the system. 

 Define the performance index [53]  

( )22

0 0

( (0), , ) ( ) ( , , )TJ x u d Q x u Ru d dt r x u d dtγ
∞ ∞

= + − ≡∫ ∫        (3.2) 
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for ( ) 0Q x ≥ , 0TR R= > , 
22( , , ) ( ) Tr x u d Q x u Ru dγ= + − and *

0γ γ≥ ≥ , where *γ is the smallest 

γ for which the system is stabilized [77].  For feedback policies ( )u x  and disturbance policies 

( )d x , define the value or cost of the policies as  

( )22( ( ), , ) ( ) T

t

V x t u d Q x u Ru d dtγ
∞

= + −∫                 (3.3) 

 When the value is finite, a differential equivalent to this is the nonlinear Lyapunov-like 

equation 

( )0 ( , , ) ( ( ) ( ) ( ) ( ) ( )), (0) 0
T

r x u d V f x g x u x k x d x V= + ∇ + + =
 (3.4)  

where nV V x R∇ = ∂ ∂ ∈  is the (transposed) gradient and the Hamiltonian is 

( )( , , , ) ( , , ) ( ( ) ( ) ( ) ( ) )
T

H x V u d r x u d V f x g x u x k x d∇ = + ∇ + +   (3.5) 

 For feedback policies [1], a solution ( ) 0V x ≥  to (3.4) is the value (3.3) for given 

feedback policy ( )u x and disturbance policy ( )d x . 

3.2.1. Two-player zero-sum differential games and Nash equilibrium 

 Define the 2-player zero-sum differential game [11], [1] 

( )2* 2

0

( (0)) minmax ( (0), , ) minmax ( ) T

u ud d
V x J x u d Q x u Ru d dtγ

∞

= = + −∫                        (3.6) 

subject to the dynamical constraints (3.1). Thus, u is the minimizing player and  d is the 

maximizing one. This 2-player optimal control problem has a unique solution if a game theoretic 

saddle point exists, i.e., if the Nash condition holds 

minmax ( (0), , ) maxmin ( (0), , )
u ud d

J x u d J x u d=             (3.7) 

 A necessary condition for this is Isaacs’ condition 

minmax ( , , , ) maxmin ( , , , )
u ud d

H x V u d H x V u d∇ = ∇       (3.8) 

or, equivalently 
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* * * *( , , , ) ( , , , ) ( , , , )H x V u d H x V u d H x V u d∇ ≤ ∇ ≤ ∇      (3.9) 

for some saddle point solution * *( , )u d .  

 To this game is associated the Hamilton-Jacobi-Isaacs (HJI) equation 

   

1

2

1 1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0) 0

4 4

T T T T TQ x V x f x V x g x R g x V x V x kk V x V
γ

−= +∇ − ∇ ∇ + ∇ ∇ =

(3.10) 

 Given a solution *( ) 0 : nV x ≥ →ℝ ℝ  to the HJI (3.10), denote the associated control and 

disturbance as  

* 1 *1
2

( )Tu R g x V−= − ∇  (3.11) 

* *

2

1
( )

2

Td k x V
γ

= ∇    (3.12) 

and write 

* * 1

2

1 1
0 ( , , , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4

T T T T TH x V u d Q x V x f x V x g x R g x V x V x kk V x
γ

−= ∇ = +∇ − ∇ ∇ + ∇ ∇ (3.13)   

 Lemma 3.1.  Isaacs condition satisfied.  Select 0γ > .  Suppose ( ) : nV x R R→  is 

smooth, ( ) 0V x ≥ , and is a solution to the HJI equation (3.10).  Then the Isaacs condition (3.8) 

is satisfied for control *( )u t  given by (3.11) and *( )d t  given by (3.12) in terms of ( )V x . 

 Proof :  If ( ) 0V x ≥  satisfies the HJI, then complete the squares to obtain 

2 2
* * 2 * * * 2 * * *( , , , ) ( , , , ) ( ) ( ) ( ) ( )T TH x V u d H x V u d d d u u R u u d d u u R u uγ γ∇ = ∇ − − + − − =− − + − −

  (3.14) 

with * *( ) ( ), ( ) ( )u t u t d t d t= =  given respectively by (3.11), (3.12).  This implies (3.9). 

 ■ 

 The next result shows that this implies (3.7) under certain conditions.  System (3.1) is 

said to be zero state observable if ( ) 0, ( ) 0 ( ) 0u t y t x t≡ ≡ ⇒ ≡ .  The HJI equation (3.13) may 

have more than one nonnegative definite solution ( ) 0V x ≥ .  A minimal non negative definite 
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solution ( ) 0aV x ≥  is one such that there exists no other non negative definite solution ( ) 0V x ≥  

such that ( ) ( ) 0aV x V x≥ ≥ . 

 Lemma 3.2.  Solution of 2-player zero-sum game. [1]  Select 0γ > .  Suppose 

( ) : n
aV x R R→  is smooth, ( ) 0aV x ≥ , and is a minimal non negative definite solution to the HJI 

equation (3.13).  Assume, (3.1) is zero state observable.  Then condition (3.7) is satisfied for 

control *( )u t  given by (3.11) and *( )d t  given by (3.12) in terms of ( )aV x .  Then the system is in 

Nash equilibrium, the game has a value given by ( (0))aV x , and * *( , )u d  is a saddle point 

equilibrium solution among strategies in 2[0, )L ∞ .  Moreover, the closed-loop systems 

*( ( ) ( ) )f x g x u+  and * *( ( ) ( ) ( ) )f x g x u k x d+ +  are locally asymptotically stable. 

 Proof Outline:   One has for any smooth ( ) : nV x →ℝ ℝ  

( ) ( )2 22 2

0 0

0

( (0), , ) ( ) ( ) ( ) ( )

( ( )) ( (0))

T T

T T T T
T

T

J x u d h x h x u Ru d dt h x h x u Ru d dt

Vdt V x T V x

γ γ≡ + − = + −

+ − +

∫ ∫

∫ ɺ
 

0

( , , , ) ( ( )) ( (0))

T

H x V u d dt V x T V x= ∇ − +∫  

 Now, suppose ( )V x  satisfies the HJI equation (3.13) and use (3.14) to obtain 

2
* * 2 * * *

0

( (0), , ) ( ) ( ) ( ( )) ( (0))

T

T
TJ x u d u u R u u d d dt V x T V xγ = − − − − − + 

 ∫  

 Therefore, for finite T, ( (0), , )TJ x u d  has a saddle point induced by that of the 

Hamiltonian.  The remainder of the proof involves showing that, for the specific HJI solution 

selected, the closed-loop system * *( ( ) ( ) ( ) )f x g x u k x d+ +  is locally asymptotically stable.  Then 

taking the limit as T → ∞  yields the result.  

           ■ 
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 The issue in this proof is that existence of a Nash equilibrium on an infinite horizon 

requires that the closed-loop system * *( ( ) ( ) ( ) )f x g x u k x d+ +  be locally asymptotically stable.  It 

is proven in [1] that the minimum non negative definite solution to the HJI is the unique non 

negative definite solution for which this is true.  Linearize the system (3.1) about the origin to 

obtain the Generalized ARE.  Of the non negative definite solutions to the GARE, select the one 

corresponding to the stable invariant manifold of the Hamiltonian matrix.  Then, the minimum 

non negative definite solution of the HJI is the one having this stabilizing GARE solution as its 

Hessian matrix evaluated at the origin [77]. 

 The next result provides a solution to the bounded 2L  gain problem. 

 Lemma 3.3.  Solution to the Bounded 2L  gain problem. [77] Select 0γ > .  Suppose 

( ) : nV x →ℝ ℝ  is smooth, ( ) 0V x ≥ , and is a solution to the HJI equation (3.13).  Assume, (3.1) 

is zero state observable.  Then system (3.1) has 2L  gain γ≤ .  Moreover the control *( )u t  

selected as (3.11) in terms of the HJI solution solves the 2L  gain problem and renders the 

equilibrium point locally asymptotically stable (when ( ) 0d t = ), e.g. *( ( ) ( ) )f x g x u+  is locally 

asymptotically stable.  Finally, *
2( ) [0, )u t L∈ ∞ . 

                                                                                              ■ 

 Note that under the hypotheses of the Lemma, specifically zero state observability, if 

( ) 0V x ≥  is a solution to the HJI equation (3.13), then one has in fact ( ) 0V x >  [77].   

 Lemma 3.4.  [77]  Select 0γ > .  Assume (3.1) is locally detectable from ( )y h x= , and 

there exists a control policy ( )u x  so that locally the system has 2L  gain γ≤  and the system is 

asymptotically stable.  Then there exists a local smooth solution ( ) 0V x ≥  to the HJI equation 

(3.13).  Furthermore, the control given in terms of this solution by (3.11) renders the 2L  gain 

γ≤  for all trajectories originating at the origin locally. 

                                                                                              ■ 
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 Note that global solutions to the HJI (3.13) may not exist.  Moreover, if they do, they 

may not be smooth.  For a discussion on viscosity solutions to the HJI, see [9], [10], [1]. The HJI 

equation (3.13) may have more than one nonnegative local smooth solution ( ) 0V x ≥ .  A minimal 

nonnegative solution ( ) 0aV x ≥  is one such that there exists no other nonnegative solution 

( ) 0V x ≥  such that ( ) ( ) 0aV x V x≥ ≥ . Linearize the system (3.1) about the origin to obtain the 

Generalized ARE (See Section 3.5.1).  Of the nonnegative solutions to the GARE, select the 

one corresponding to the stable invariant manifold of the Hamiltonian matrix.  Then, the 

minimum nonnegative solution of the HJI is the one having this stabilizing GARE solution as its 

Hessian matrix evaluated at the origin [77].  

 It is shown in [1] that if *( )V x is the minimum non-negative solution to the HJI (3.13) and 

(3.1) is locally detectable, then (3.11), (3.12) given in terms of *( )V x are in Nash equilibrium 

solution to the zero-sum game and *( )V x is its value. 

3.2.2. Policy Iteration solution of the HJI equation 

 The HJI equation (3.13) is usually intractable to solve directly.  One can solve the HJI 

iteratively using one of several algorithms that are built on iterative solutions of the Lyapunov 

equation (3.4).  Included are [25] which uses an inner loop with iterations on the control, and [3], 

[5], [77] which uses an inner loop with iterations on the disturbance.  These are in effect 

extensions of Kleinman’s algorithm [44] to nonlinear 2-player games.  The complementarity of 

these algorithms is shown in [91], [92].  Here, we shall use the latter algorithm (e.g.[3], [5], [77]). 

 The structure given in the algorithm below will be used as the basis for approximate 

online solution techniques in the next section.   

 Policy Iteration (PI) Algorithm for 2-Player Zero-Sum Differential Games  

 Initialization: Start with a stabilizing feedback control policy 0u  

1. For 0,1,...j =  given ju  

2. For 0,1,...i =  set 0 0d = , solve for ( ( ))i
jV x t , 1id +  using 
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2
20 ( ) ( )( )iT i T i

j j j jQ x V x f gu kd u Ru dγ= +∇ + + + −  (3.15)

1

2

1
argmax[ ( , , , )] ( )

2

i i T i
j j j

d

d H x V u d k x V
γ

+ = ∇ = ∇   (3.16) 

On convergence, set 1( ) ( )i
j jV x V x+ =  

3. Update the control policy using  

11
1 1 12

argmin[ ( , ), , ] ( )T
j j j

u

u H x V u d R g x V−
+ + += ∇ = − ∇  (3.17)   

 Go to 1. 

 ■ 

 Nota Benne:  In practice, the iterations in i and j are continued until some 

convergence criterion is met, e.g. 1i i
j jV V+ −  or, respectively 1j jV V+ −  is small enough in some 

suitable norm. 

 Given a feedback policy ( )u x , write the Hamilton-Jacobi (HJ) equation  

( )
2

1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), (0) 0

4

T T T TQ x V x f x g x u x u x Ru x V x kk V x V
γ

= +∇ + + + ∇ ∇ =       (3.18)  

for fixed ( )u x . The minimal nonnegative solution ( )V x to this equation is the so-called available 

storage for the given ( )u x [77]. Note that the inner loop of this algorithm finds the available 

storage for ju , where it exists. 

 Assuming that the available storage at each index j is smooth on a  local domain of 

validity, the convergence of this algorithm to the minimal nonnegative solution to the HJI 

equation is shown in [5], [77].  Under these assumptions, the existence of smooth solutions at 

each step to the Lyapunov-like equation (3.15) was further shown in [5].  Also shown was the 

asymptotic stability of ( )ijf gu kd+ +  at each step.  In fact, the inner loop yields 

1( ) ( ),i i
j jV x V x x+ ≥ ∀  while the outer loop yields 1( ) ( ),j jV x V x x+ ≤ ∀  until convergence to *V . Note 

that this algorithm relies on successive solutions of nonlinear Lyapunov-like equations (3.15).   
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 As such, the discussion surrounding (3.4) shows that the algorithm finds the value 

( ( ))i
jV x t  of successive control policy/disturbance policy pairs. 

3.3 Neural Network approximation structure for online policy iteration algorithm 

 The PI Algorithm is a sequential algorithm that solves the HJI equation (3.13) and finds 

the Nash solution * *( , )u d based on sequential solutions of the nonlinear Lyapunov 

equation(3.15).  That is, while the disturbance policy is being updated, the feedback policy is 

held constant.  In this section, we use PI to lay a rigorous foundation for the NN approximator 

structure required on-line solution of the 2-player zero-sum differential game in real time.  In the 

next section, this structure will be used to develop an adaptive control algorithm of novel form 

that converges to the zero-sum (ZS) game solution.  It is important to define the neural network 

structures and the NN estimation errors properly or such an adaptive algorithm cannot be 

developed.   

 The PI algorithm itself is not implemented in this work.  Instead, here one implements 

both loops, the outer feedback control update loop and the inner disturbance update loop, 

simultaneously using neural network learning implemented as differential equations for tuning 

the weights, while simultaneously keeping track of and learning the value ( ( ), , )V x t u d  (3.3) of 

the current control and disturbance by solution of the Lyapunov equation (3.4)/(3.15). We call 

this synchronous PI for zero-sum games. 

3.3.1. Value function approximation: Critic Neural Network 

 This work uses nonlinear approximator structures (e.g. neural networks) for Value 

Function Approximation (VFA) [15], [98], [99], therefore sacrificing some representational 

accuracy in order to make the representation manageable in practice. Sacrificing accuracy in 

the representation of the value function is not so critical, since the ultimate goal is to find an 

optimal policy and not necessarily an accurate value function.  Based on the structure of the PI 

algorithm in Section 3.2.2, VFA for online 2-player games requires three approximators, which 

are taken as neural networks (NN), one for the value function, one for the feedback control 
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policy, and one for the disturbance policy.  These are motivated respectively by the need to 

solve equations (3.15), (3.17), and (3.16). 

 To solve equation (3.15), we use VFA, which here requires approximation in Sobolev 

norm [6], that is, approximation of the value ( )V x  as well as its gradient ( )V x∇ .  The following 

definition describes uniform convergence that is needed later. 

 Definition 3.1. (uniform convergence).  A sequence of functions { }nf  converges 

uniformly to f if 0, ( ) : sup ( ) ( ) , ( )n� f x f x n �ε ε ε ε∀ > ∃ − < > . 

 According to the Weierstrass higher-order approximation Theorem [4], [6], [26], [34], 

there exists a complete independent basis set { ( )}i xϕ  such that the solution ( )V x  to (3.4) and 

its gradient are uniformly approximated, that is, there exist coefficients ic such that 

1 1 1

( ) ( ) ( ) ( )
�

i i i i i i
i i i �

V x c x c x c xϕ ϕ ϕ
∞ ∞

= = = +

= = +∑ ∑ ∑    
 

1 1
1

( ) ( ) ( )T
i i

i �

V x C x c xφ ϕ
∞

= +

≡ + ∑  (3.19) 

 
1 1 1

( ) ( ) ( ) ( )�
i i i

i i i
i i i �

V x x x x
c c c

x x x x

ϕ ϕ ϕ∞ ∞

= = = +

∂ ∂ ∂ ∂
= = +

∂ ∂ ∂ ∂
∑ ∑ ∑

 (3.20) 

where 1 1 2( ) [ ( ) ( ) ( )] :T n �
�x x x xφ ϕ ϕ ϕ= →⋯ ℝ ℝ , and the second terms in these equations converge 

uniformly to zero as � → ∞ .  Specifically, the linear subspace generated by the basis set is 

dense in the Sobolev norm 1,W ∞ [6].   

 Therefore, assume there exist NN weights 1W  such that the value function ( )V x  is 

approximated as  

    1 1( ) ( ) ( )TV x W x xφ ε= +  (3.21) 

with 1( ) :
n �xφ →ℝ ℝ  the NN activation function vector, N the number of neurons in the hidden 

layer, and ( )xε  the NN approximation error. For approximation in Sobolev space, the NN 
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activation functions { ( ) : 1, }i x i �ϕ =  should be selected so that { ( ) : 1, }i x iϕ = ∞  provides a complete 

independent basis set such that ( )V x  and its derivative are uniformly approximated, e.g., 

additionally 

    

1
1 1 1

( )
T

TV x
W W

x x x

φ ε
φ ε

∂ ∂ ∂ 
= + = ∇ +∇ ∂ ∂ ∂    

 (3.22) 

Then, as the number of hidden-layer neurons � → ∞ , the approximation errors 0, 0ε ε→ ∇ →  

uniformly [6], [26].  In addition, for fixed N, the NN approximation errors ( ),xε and ε∇  are 

bounded by constants locally [34].  

 We refer to the NN with weights 1W  that performs VFA as the critic NN. 

 Standard usage of the Weierstrass high-order approximation Theorem uses polynomial 

approximation.  However, non-polynomial basis sets have been considered in the literature 

(e.g.[34], [76]).  The NN approximation literature has considered a variety of activation functions 

including sigmoids, tanh, radial basis functions, etc.   

 Using the NN VFA, considering fixed feedback and disturbance policies ( ( )), ( ( ))u x t d x t , 

equation (3.4) becomes  

   
22

1 1 1( , , , ) ( ) ( ( ) ( ) ( ) ( ) ( ))T T
HH x W u d Q x u Ru d W f x g x u x k x d xγ φ ε= + − + ∇ + + =  (3.23)  

where the residual error is 

   
( ) 1 1 1

1

( ) ( ) ( ) ( )( )
T T

H i i
i �

f gu kd C W f gu kd c x f gu kdε ε φ ϕ
∞

= +

= − ∇ + + = − − ∇ + + − ∇ + +∑  (3.24) 

 Under the Lipschitz assumption on the dynamics, this residual error is bounded locally. 

 The following Proposition has been shown in [3], [6].   

 Proposition 3.1.  For any policies ( ( )), ( ( ))u x t d x t
 
the least-squares solution to (3.23) 

exists and is unique for each N.  Denote this solution as 1W  and define 

1 1 1( ) ( )TV x W xφ=  (3.25) 

Then, as � → ∞ : 
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a. sup 0Hε →  

b. 1 1 2
0W C− →  

c. 1sup 0V V− →  

d. 1sup 0V V∇ −∇ →  

            ■ 

 This result shows that 1( )V x converges uniformly in Sobolev norm 1,W ∞  [6] to the exact 

solution ( )V x to (3.4) as � → ∞ , and the weights 1W converge to the first N of the weights, 1C , 

which exactly solve (3.4).  

 The effect of the approximation error on the HJI equation (3.10) is 

  

1
1 1 1 1 1 1 1 1 1 12

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4

T T T T T T T
HJIQ x W x f x W x g x R g x W W x kk Wϕ ϕ ϕ ϕ ϕ ε

γ
−+ ∇ − ∇ ∇ + ∇ ∇ =

 (3.26)

 

where the residual error due to the function approximation error is 

2 2

1 11 1 1 1
1 1 1 12 4 2 4

T T T T T T T T T
HJI f W gR g gR g W kk kk

γ γ
ε ε ϕ ε ε ε ϕ ε ε ε− −≡ −∇ + ∇ ∇ + ∇ ∇ − ∇ ∇ − ∇ ∇      (3.27) 

 It was also shown in  [3], [6] that this error converges uniformly to zero as the number of 

hidden layer units N increases. That is,

 

0, ( ) : sup , ( )HJI� � �ε ε ε ε ε∀ > ∃ < > . 

3.3.2. Tuning and Convergence of the Critic Neural Network 

 In this section are addressed the tuning and convergence of the critic NN weights when 

fixed feedback control and disturbance policies are prescribed. Therefore, the focus is on 

solving the nonlinear Lyapunov-like equation (3.4) (e.g. (3.15)) for a fixed feedback policy u and 

fixed disturbance policy d .  

 In fact, this amounts to the design of an observer for the value function. Therefore, this 

algorithm is consistent with adaptive control approaches which first design an observer for the 

system state and unknown dynamics, and then use this observer in the design of a feedback 
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control. 

 The ideal weights of the critic NN, 1W  which provide the best approximate solution for 

(3.23) are unknown. Therefore, the output of the critic neural network is  

 1 1
ˆ ˆ( ) ( )TV x W xφ=  (3.28) 

where 1Ŵ  are the current estimated values of 1W . The approximate nonlinear Lyapunov-like 

equation is then 

22
1 1 1 1
ˆ ˆ( , , , ) ( ) ( )T TH x W u d W f gu kd Q x u Ru d eφ γ= ∇ + + + + − =  (3.29) 

with 1e  a residual equation error.  In view of Proposition 3.1, define the critic weight estimation 

error  

1 1 1
ˆW W W= −ɶ .   

 Then,  

1 1 1( ) .T
He W f guφ ε= − ∇ + +ɶ  

 Given any feedback control policy u , it is desired to select 1Ŵ  to minimize the squared 

residual error 

 
1

1 1 12
.TE e e=  

 Then 1 1
ˆ ( )W t W→  and 1 He ε→ .  Select the tuning law for the critic weights as the 

normalized gradient descent algorithm  

221 1
1 1 1 1 12

1 1 1

ˆ ˆ[ ( ) ]
ˆ (1 )

TE
W a a W Q x u Ru d

W

σ
σ γ

σ σ
Τ

Τ

∂
= − = − + + −

∂ +

ɺ
  (3.30) 

where 1 1( )f gu kdσ φ= ∇ + + . This is a nonstandard modified gradient descent algorithm where 

2
1 1( 1)Tσ σ +  is used for normalization instead of 1 1( 1)Tσ σ + .  This is required in the theorem 

proofs, where one needs both appearances of 1 1 1/ (1 )Tσ σ σ+ in (3.30) to be bounded [36], [87]. 

 Note that, from (3.23), 
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22

1 1( ) ( ) .T T
HQ x u Ru d W f gu kdγ ϕ ε+ − = − ∇ + + +  (3.31) 

 Substituting (3.31) in (3.30) and, with the notation 

1 1 1 1/ ( 1)Tσ σ σ σ= + , 1 11 T
sm σ σ= +  (3.32) 

we obtain the dynamics of the critic weight estimation error as 

      1 1 1 1 1 1 1 .H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ   (3.33) 

 To guarantee convergence of 1Ŵ  to 1W , the next Persistence of Excitation (PE) 

assumption and associated technical lemmas are required. 

 Persistence of Excitation (PE) Assumption.  Let the signal 1σ
 

be persistently 

exciting over the interval [ , ]t t T+ , i.e. there exist constants 1 0β > , 2 0β > , 0Τ >  such that, for all 

t, 

1 0 1 1 2( ) ( ) .
t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫  (3.34) 

with Ι  the identity matrix of appropriate dimensions. 

 The PE assumption is needed in adaptive control as described thoroughly in Chapter 2. 

 The properties of tuning algorithm (3.30) are given in the subsequent results.  They are 

proven in Chapter 2. 

 Technical Lemma 3.1. Consider the error dynamics system with output defined as 

1 1 1 1 1 1 1
H

s

W a W a
m

ε
σ σ σΤ= − +ɺɶ ɶ   

1 1
Ty Wσ= ɶ . (3.35) 

 The PE condition (3.34) is equivalent to the uniform complete observability (UCO) [50]of 

this system, that is there exist constants 3 0β > , 4 0β > , 0Τ >  such that, for all t, 

3 1 1 1 4( , ) ( ) ( ) ( , ) .
t T

T

t

S t t dβ τ σ τ σ τ τ τ β
+

ΤΙ ≤ ≡ Φ Φ ≤ Ι∫  (3.36) 
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with 1 0 0 1( , ),t t t tΦ ≤  the state transition matrix of (3.35) and Ι  the identity matrix of appropriate 

dimensions. 

 ■ 

  Technical Lemma 3.2. Consider the error dynamics system (3.35).  Let the signal 1σ
 

be persistently exciting.  Then: 

a) The system (3.35) is exponentially stable.  In fact if 0Hε =  then 

|| ( ) || || (0) ||kTW k e Wα−Τ ≤ɶ ɶ with  

1 3

1
ln( 1 2 )aα β= − −

Τ
. (3.37) 

b) Let max|| ||Hε ε≤ and max|| ||y y≤ .  Then 1|| ||Wɶ converges exponentially to the residual set 

( ){ }2
1 max 2 1 max max

1

( )W t y a y
β

δβ ε
β

Τ
 ≤ + + 

ɶ .     (3.38) 

where δ is a positive constant of the order of 1. ■ 

 The next result shows that the tuning algorithm (3.30) is effective under the PE 

condition, in that the weights 1Ŵ  converge to the actual unknown weights 1W  which solve the 

nonlinear Lyapunov-like equation (3.23) in a least-squares sense for the given feedback and 

disturbance policies ( ( )), ( ( ))u x t d x t
. 

That is, (3.28) converges close to the actual value function 

of the current policies.  The proof is in Chapter 2 in Theorem 2.1. 

 Theorem 3.1. Let ( ( )), ( ( ))u x t d x t  be any bounded policies. Let tuning for the critic NN be 

provided by (3.30) and assume that 1σ
 
is persistently exciting. Let the residual error in (3.23) be 

bounded maxHε ε< . Then the critic parameter error converges exponentially with decay factor 

given by (3.37) to the residual set  

[ ]{ }2
1 2 1 max

1

( ) 1 2 .W t a
β

δβ ε
β

Τ
≤ +ɶ  (3.39) 

 ■  
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 Remark 3.1. Note that, as � → ∞ , 0Hε →  uniformly  [3], [6].  This means that maxε  

decreases as the number of hidden layer neurons in (3.28) increases. 

 Remark 3.2. This theorem requires the assumption that the feedback policy ( ( ))u x t  and 

the disturbance policy ( ( ))d x t are bounded, since the policies appear in (3.24). In the upcoming 

Theorems 3.2 and 3.3 this restriction is removed. 

3.3.3. Action and Disturbance Neural Network 

 It is important to define the neural network structure and the NN estimation errors 

properly for the control and disturbance or an adaptive algorithm cannot be developed.  To 

determine a rigorously justified form for the actor and the disturbance NN, consider one step of 

the Policy Iteration algorithm (3.15)-(3.17).  Suppose that the solution ( )V x  to the nonlinear 

Lyapunov equation (3.15) for given control and disturbance policies is smooth and given by 

(3.19).   Then, according to (3.20) and (3.16), (3.17) one has for the policy and the disturbance 

updates: 

1

1

1
( ) ( )

2

T
i i

i

u R g x c xϕ
∞

−

=

= − ∇∑  (3.40) 

2
1

1
( ) ( )

2

T
i i

i

d k x c xϕ
γ

∞

=

= ∇∑  (3.41) 

for some unknown coefficients ic .  Then one has the following result. 

 The following proposition is proved in [3] for constrained inputs. Non-constrained inputs 

are easier to prove. 

 Proposition 3.2.  Let the least-squares solution to (3.23) be 1W and define 

   

1 1
1 1 1 1

1 1
( ) ( ) ( ) ( )

2 2

T T Tu R g x V x R g x x Wφ− −= − ∇ = − ∇   (3.42) 

   1 1 1 12 2

1 1
( ) ( ) ( ) ( )

2 2

T T Td k x V x k x x Wφ
γ γ

= ∇ = ∇                    (3.43) 

with 1V defined in (3.25).  Then, as � → ∞ : 
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a. 1sup 0u u− →  

b. 1sup 0d d− →  

c.  There exists a number of NN hidden layer neurons  N0 such that 1u and 1d stabilize the 

system (3.1) for N>N0. 

 ■ 

 In light of this result, the ideal feedback and disturbance policy updates are taken as 

(3.42), (3.43) with 1W  unknown.  Therefore, define the feedback policy in the form of an action 

neural network which computes the control input in the structured form  

11
1 22
ˆˆ( ) ( ) ,T Tu x R g x Wφ−= − ∇

 (3.44)
 

where 2Ŵ  denotes the current estimated values of the ideal NN weights 1W .  Define the actor 

NN estimation error as 

2 1 2
ˆW W W= −ɶ   (3.45) 

 Likewise, define the disturbance in the form of a disturbance neural network which 

computes the disturbance input in the structured form  

2

1
1 32

ˆ ˆ( ) ( ) ,T Td x k x W
γ

φ= ∇  (3.46) 

where 3Ŵ  denotes the current estimated values of the ideal NN weights 1W .  Define the 

disturbance NN estimation error as 

3 1 3
ˆW W W= −ɶ    (3.47) 

3.4 Online Solution of Two-Player Zero-Sum Games Using Neural Networks 

 This section presents our main results of Chapter 3.  An online adaptive PI algorithm is 

given for online solution of the zero-sum game problem which involves simultaneous, or 

synchronous, tuning of critic, actor, and disturbance neural networks. That is, the weights of all 

three neural networks are tuned at the same time. This approach is a version of Generalized 
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Policy Iteration (GPI), as introduced in [86]. In the standard Policy Iteration algorithm (3.15)-

(3.17), the critic and actor NNs are tuned sequentially, e.g. one at a time, with the weights of the 

other NNs being held constant. By contrast, we tune all NN simultaneously in real-time. 

 The next Facts complete the machinery required for the main results. 

 Facts 3.1.  

a. For each feedback control and disturbance policy the nonlinear Lyapunov equation 

(3.15) has a smooth local solution ( ) 0V x ≥ .   

b. (.)f , is Lipschitz, and (.), (.)g k are bounded by constants: 

( ) , ( ) , ( )f g kf x b x g x b k x b< < <  

c. The NN approximation error and its gradient are bounded locally so that 

bεε <  

x
bεε∇ <  

d. The NN activation functions and their gradients are bounded locally  so that 

1

1

( )

( )
x

x b

x b

φ

φ

φ

φ

<

∇ <
 

e. The critic NN weights are bounded by known constants 

1 maxW W<  

 ■ 

 The discussion in Section 3.2 justifies Fact 3.1a.  Fact 3.1d is satisfied, e.g. by 

sigmoids, tanh, and other standard NN activation functions. 

 The main Theorems are now given, which provide the tuning laws for the actor, critic 

and disturbance neural networks that guarantee convergence of the synchronous online zero-

sum game PI algorithm in real-time to the game saddle point solution, while guaranteeing 

closed-loop stability. 
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 Theorem 3.2. System stability and convergence of NN weights. 

 Let the dynamics be given by (3.1), the critic NN be given by (3.28), the control input be 

given by actor NN (3.44) and the disturbance input be given by disturbance NN (3.46).  Let 

tuning for the critic NN be provided by 

   
2

22
1 1 2 12

2 2

ˆˆ ˆ ˆ ˆ[ ( ) ]
( 1)

T T

T
W a W Q x d u Ru

σ
σ γ

σ σ
= − + − +

+

ɺ
 (3.48)

 

where 2 1
ˆˆ( )f gu kdσ φ= ∇ + + . Let the actor NN be tuned as 

   12 2 2 2 1 2 1 2 1

1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )
4

T TW a F W F W D x W m x Wσ 
= − − − 

 

ɺ
 (3.49)

  

and the disturbance NN be tuned as 

   ( )3 3 4 3 3 2 1 1 3 12

1ˆ ˆ ˆ ˆ ˆ( )
4

T TW a F W F W x W m Wσ
γ

  = − − + Ε 
  

ɺ
 (3.50) 

where 
    

1
1 1 1 1 1 1( ) ( ) ( ) ( ) ( ), ( ) ( ) ( )T T T TD x x g x R g x x E x x kk xφ φ φ φ−≡ ∇ ∇ ≡∇ ∇ , 2

2
2 2( 1)T

m
σ

σ σ
≡

+
,   

and 1 2 3 40, 0, 0, 0F F F F> > > > are tuning parameters.  Let Facts 1 hold and let ( ) 0Q x > .  

Suppose that 2 2 2 2/ ( 1)Tσ σ σ σ= +
 

is persistently exciting.  Let the tuning parameters 

1 2 3 4, , ,F F F F in (3.49), and (3.50) be selected to make the matrix 22D in (A.35) positive definite. 

Then there exists an N0 such that, for the number of hidden layer units 0� �>  the closed-loop 

system state, the critic NN error 1Wɶ , the actor NN error 2Wɶ and the disturbance NN error 3Wɶ  are 

UUB.   

Proof:  See appendix A.  

 ■ 

 Remark 3.3.  See the comments following equation (3.27). Let 0ε >  and let N0 be the 

number of hidden layer units above which sup HJIε ε< .  In the proof it is seen that the theorem 
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holds for 0� �> .   

 Remark 3.4.  The theorem shows that PE is needed for proper identification of the 

value function by the critic NN, and that nonstandard tuning algorithms are required for the actor 

and the disturbance NN to guarantee stability.   

 Remark 3.5.  The assumption ( ) 0Q x >  is sufficient but not necessary for this result.  If 

this condition is replaced by zero state observability, the proof still goes through, however it is 

tedious and does not add insight.  The method used would be the technique used in the proof of 

technical Lemma 2.2 Part a in Chapter 2, or the standard methods of [36], [87]. 

 Theorem 3.3. Exponential Convergence and Nash equilibrium.  

 Suppose the hypotheses of Theorem 3.2, hold.  Then Theorem 3.1 holds so that 

exponential convergence of 1Ŵ  to the approximate optimal critic value 1W
 
is obtained. Then:  

a. 1 1 1
ˆˆ ˆ( , , , )H x W u d  is UUB.  That is, 1Ŵ  converges to the approximate HJI solution, the value 

of the ZS game. Where  

                

1
1 1 1

1 ˆˆ ( ) ( )
2

T Tu R g x x Wφ−= − ∇  (3.51) 

   1 1 12

1ˆ ˆ( ) ( )
2

T Td k x x Wφ
γ

= ∇  (3.52)       

b. ˆˆ( ), ( )u x d x  (see (3.44) and (3.46)) converges to the approximate Nash equilibrium 

solution of the ZS game. 

 Proof. Consider the UUB weights 1Wɶ , 2Wɶ  and 3Wɶ as proved in Theorem 3.2. Also 

maxε in Theorem 3.1 is practically bounded by the bound in (A.40). 

a. The approximate HJI equation is 

1 1 1 1 1 1 1 1 12

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( ) ( )
4 4

T T T
HJIH x W Q x W x f x W DW W EWϕ ε

γ
= + ∇ − + −   (3.53) 

After adding zero we have 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 12 2

1 1 1 1ˆ ˆ ˆ( , ) ( ) ( )
4 2 4 2

T T T T T
HJIH x W W x f x W DW W DW W EW W EWϕ ε

γ γ
= ∇ − − + + −ɶ ɶ ɶ ɶ ɶ ɶ ɶ (3.54) 

 But 

1 1 1Ŵ W W= − +ɶ   (3.55) 

 After taking norms in (3.55) and letting 1 maxW W< one has  

1 1 1 1 1 1 maxŴ W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ  (3.56) 

 Now (3.54) becomes by taking into account (3.56), 

( )
( )

2

1 1 1 1 1 1 1 1 max

2

1 1 1 1 1 max2 2

1 1ˆ( , ) ( ) ( )
4 2

1 1

4 2
HJI

H x W W x f x W D W D W W

W E W E W W

ϕ

ε
γ γ

≤ ∇ + + +

+ + + +

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
(3.57) 

 Let Facts 3.1 hold and also sup HJIε ε<  then (3.57) becomes 

( )
( )

2

1 1 1 1 1 1 1 max

2

1 1 1 1 1 max2 2

1 1ˆ( , )
4 2

1 1

4 2

x fH x W b b W x W D W D W W

W E W E W W

φ

ε
γ γ

≤ + + +

+ + + +

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ
   (3.58) 

 All the signals on the right hand side of (3.58) are UUB. So 1
ˆ( , )H x W is UUB and 

convergence to the approximate HJI solution is obtained. 

b. According to Theorem 3.1 and equations (3.42), (3.43) and (3.44), (3.46), 1û u−  and 1d̂ d−  

are UUB because 2 1Ŵ W− and 3 1Ŵ W− are UUB 

 So the pair ˆˆ( ), ( )u x d x  gives the Nash equilibrium solution of the zero-sum game. 

This completes the proof.                                                          

 ■ 

 Remark 3.6.  The theorems make no mention of finding the minimum nonnegative 

solution to the HJI.  However they do guarantee convergence to a solution ( ( ), ( ))u x d x such that 

( ( ) ( ) ( ) ( ) ( ))f x g x u x k x d x+ +  is stable.  This is only accomplished by the minimal nonnegative HJI 
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solution.  Practical implementation, in view of the Policy Iteration Algorithm, would start with 

initial weights of zero in the disturbance NN (3.46).  NN usage suggests starting with the initial 

control NN weights in (3.44) randomly selected and nonzero. 

 Note that the dynamics is required to be known to implement this algorithm in that 

2 1
ˆˆ( )f gu kdσ φ= ∇ + + , 1( )D x , 1( )E x  and (3.44), (3.46) depend on ( ), ( ), ( )f x g x k x . 

3.5 Simulations 

 Here we present simulations of a linear and a nonlinear system to show that the game 

can be solved ONLINE by learning in real time, using the method of this chapter.   

3.5.1. Linear System 

 Consider the continuous-time F16 aircraft plant with quadratic cost function used in [85].  

The system state vector is [ ]ex qα δ= , where α  denotes the angle of attack, q  is the pitch 

rate and eδ  is the elevator deflection angle.  The control input is the elevator actuator voltage 

and the disturbance is wind gusts on angle of attack.   One has the dynamics x Ax Bu Kd= + +ɺ , 

1.01887 0.90506 0.00215 0 1

0.82225 1.07741 0.17555 0 0

0 0 1 1 0

x x u d

− −     
     = − − + +     
     −     

ɺ   

where Q  and R  in the cost function are identity matrices of appropriate dimensions and 5γ = . 

Also 1 2 3 1a a a= = = , 1 2 3 4, 10 , , 10F I F I F I F I= = = = where I is an identity matrix of appropriate 

dimensions. In this linear case the solution of the HJI equation is given by the solution of the 

game algebraic Riccati equation (GARE) 

 1

2

1
0T T TA P PA Q PBR B P PKK P

γ
−+ + − + =  

 Since the value is quadratic in the LQR case, the critic NN basis set 1( )xφ  was selected 

as the quadratic vector in the state components x x⊗  with ⊗  the Kronecker product.  

Redundant terms were removed to leave ( 1) / 2 6n n + =  components.   Solving the GARE gives 

the parameters of the optimal critic as 
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*
1 [1.6573    1.3954   -0.1661 1.6573   -0.1804 0.4371]TW = . 

which are the components of the Riccati solution matrix P. 

 The synchronous zero-sum game PI algorithm is implemented as in Theorem 2.  PE 

was ensured by adding a small probing noise to the control and the disturbance input.  Figure 9 

shows the critic parameters, denoted by 

 1 1 2 3 4 5 6
ˆ [ ]Tc c c c c cW W W W W W W=  

converging to the optimal values. In fact after 300s the critic parameters converged to 

  1
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .TfW t =   

 The actor parameters after 300s converge to the values of 

2
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .TfW t =  

 The disturbance parameters after 300s converge to the values of 

3
ˆ ( ) [1.7090    1.3303   -0.1629  1.7354   -0.1730 0.4468] .TfW t =  

 Then, the actor NN is given as 

1

2 1

3 111
2 22

2

3 2

3

2 0 0

0
0

0
ˆˆ ( ) 0 ( )

0 2 0
1

0

0 0 2

T

T

f

x

x x

x x
u x R W t

x

x x

x

−

 
 
  
  = −   
     
 
  

. 

 Then, the disturbance NN is given as 

2

1

2 1

3 11
32

2

3 2

3

2 0 0

0
0

0ˆ ˆ( ) 0 ( )
0 2 0

1
0

0 0 2

T

T

f

x

x x

x x
d x W t

x

x x

x

γ

 
 
  
  =   
     
 
  

 

 
The evolution of the system states is presented in Figure 10.  One can see that after 

300s convergence of the NN weights in critic, actor and disturbance has occurred.
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Figure 9. Convergence of the critic parameters to the parameters of the optimal critic. 

 

Figure 10. Evolution of the system states for the duration of the experiment. 

 

3.5.2. Single Player Linear System 

 The purpose of this example is to show that one learns FASTER if one has an 

opponent.  That is, the online two-player game converges faster than an equivalent online 1-



 

 64

player (optimal control) problem.  In this example, we use the method for online solution of the 

optimal control problem presented in Chapter 2. 

 Consider the continuous-time F16 aircraft plant described before but with 0.d =  Solving 

the ARE with Q  and R   identity matrices of appropriate dimensions, gives the parameters of 

the optimal critic as 

*
1 [1.4245    1.1682   -0.1352  1.4361   -0.1516  0.4329]

T
W = . 

 Figure 11 shows the critic parameters, denoted by 

 1 1 2 3 4 5 6
ˆ [ ]Tc c c c c cW W W W W W W=  

converging to the optimal values. In fact after 800s the critic parameters converged to 

   1
ˆ ( ) [1.4270    1.1654   -0.1367  1.4387   -0.1496 0.4323] .T

fW t =   

 The actor parameters after 800s converge to the values of 

   2
ˆ ( ) [1.4270    1.1654   -0.1367  1.4387   -0.1496 0.4323] .T

fW t =  

 The actor NN is given as 

1

2 1

3 111
2 2

2

3 2

3

2 0 0 1.4270

0 1.1654
0

0 -0.1367
ˆ ( ) 0

1.43870 2 0
1

-0.14960

0.43230 0 2

T

T

x

x x

x x
u x R

x

x x

x

−

   
   
    
    =−     
         
     

.
 

 The evolution of the system states is presented in Figure 12.  One can see that after 

800s convergence of the NN weights in critic and actor has occurred.  This shows that the 

probing noise effectively guaranteed the PE condition.  
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Figure 11. Convergence of the critic parameters to the parameters of the optimal critic. 

 

Figure 12. Evolution of the system states. 

 In comparison with part 3.5.1, it is very clear that the two-player zero-sum game 

algorithm has faster convergence skills than the single-player. As a conclusion the critic NN 

learns faster when there is an oponent for the control input, named disturbance. 

 



 

 66

3.5.3. Nonlinear System 

 Consider the following affine in control input nonlinear system, with a quadratic cost 

constructed as in [64] 

2( ) ( ) ( ) ,x f x g x u k x d x= + + ∈ɺ ℝ  

where 

1 2

1
3 3 2 2
1 2 12 2 2

( )
cos(2 ) 2

1
0.25 ( ) 0.25 (sin )(4 ) 2

x

x x x

x

f x
xxx

γ

− + 
 =  + − +


− +


−


 
1 1

0 0
 ( ) , ( ) .

cos(2 ) 2 (4 ) 2(sin )
g x k x

x x

   
= =   + +   

 

 One selects 
1 0

, 1, 8.
0 1

Q R γ
 

= = = 
 

  

 Also 1 2 3 1a a a= = = , 1 2 3 4, 10 , , 10F I F I F I F I= = = = where I is an identity matrix of 

appropriate dimensions. 

 The optimal value function is 

      * 4 2
1 2

1 1
( )

4 2
V x x x= +  

the optimal control signal is 

      * 1
1 22

( ) (cos(2 ) 2)u x x x= − +  

and  

      *
1 22

1
( ) (sin(4 ) 2)

2
d x x x

γ
= +  

 One selects the critic NN vector activation function as 

      2 2 4 4
1 1 2 1 2( ) [         ]x x x x xϕ =  

 Figure 13 shows the critic parameters, denoted by 

1 1 2 3 4
ˆ [ ]Tc c c cW W W W W=  

by using the synchronous zero-sum game algorithm.  After convergence at about 50s have 
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 1
ˆ ( ) [-0.0006    0.4981    0.2532   0.0000]TfW t =  

 The actor parameters after 80s converge to the values of 

      2
ˆ ( ) [-0.0006    0.4981    0.2532   0.0000] ,T

fW t =  

and the disturbance parameters after 50s converge to the values of 

      3
ˆ ( ) [-0.0006    0.4981    0.2532   0.0000] .TfW t =  

 So that the actor NN  

1

211
2 232

11

3
2

2 0

0 20 ˆˆ ( ) ( )
04cos(2 ) 2

0 4

T

T

f

x

x
u x R W t

xx

x

−

 
 

   = −    +   
  

 

also converged to the optimal control, and the disturbance NN  

2

1

2
1

332
11

3
2

2 0

0 20ˆ ˆ( ) ( )
04sin(4 ) 2

0 4

T

T

f

x

x
d x W t

xx

x

γ

 
 

   =    +   
  

 

also converged to the optimal disturbance. 

 The evolution of the system states is presented in Figure 14.  Figure 15 shows the 

optimal value function.  The identified value function given by 1 1 1
ˆ ˆ( ) ( )TV x W xφ=  is virtually 

indistinguishable from the exact solution and so is not plotted.  In fact, Figure 16 shows the 3-D 

plot of the difference between the approximated value function and the optimal one. This error is 

close to zero. Good approximation of the actual value function is being evolved. Figure 17 

shows the 3-D plot of the difference between the approximated control, by using the online 

algorithm, and the optimal one. This error is close to zero.  

 Finally Figure 18 shows the 3-D plot of the difference between the approximated 

disturbance, by using the online algorithm, and the optimal one. This error is close to zero.  
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Figure 13. Convergence of the critic parameters. 

 

Figure 14. Evolution of the system states. 
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Figure 15. Optimal Value function. 

 

Figure 16. 3D plot of the approximation error for the value function. 



 

 70

 

Figure 17. 3D plot of the approximation error for the control. 

 

Figure 18. 3D plot of the approximation error for the disturbance. 

 

3.6 Conclusion 

 In this chapter we have proposed a new optimal adaptive algorithm which solves online 

the continuous-time zero-sum game problem for affine in the inputs nonlinear systems. The 
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importance of this algorithm relies the simultaneous tuning of the actor, critic and disturbance 

neural networks and the convergence to HJI without solving this equation. Proofs using 

Lyapunov techniques guarantee convergence and closed-loop stability. Simulation examples 

show the effectiveness of the proposed algorithm. 
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CHAPTER 4 

MULTI-PLAYER GAMES: ONLINE ADAPTIVE LEARNING SOLUTION OF COUPLED 

HAMILTON-JACOBI AND COUPLED RICCATI EQUATIONS 

  

4.1 Introduction 

 For the most part, interest in the control systems community has been in the (non-

cooperative) zero-sum games, which provide the solution of the H-infinity robust control problem 

[11], [60].  However, dynamic team games may have some cooperative objectives and some 

selfish objectives among the players.  This cooperative/non-cooperative balance is captured in 

the NZS games, as detailed herein. 

 In this chapter we are interested in feedback policies with full state information, and 

provide methods for online gaming, that is for solution of N-player infinite horizon NZS games 

online, through learning the Nash-equilibrium in real-time.  The dynamics are nonlinear in 

continuous-time and are assumed known. A novel adaptive control technique is given that is 

based on reinforcement learning techniques, whereby each player’s control policies are tuned 

online using data generated in real time along the system trajectories.  Also tuned by each 

player are ‘critic’ approximator structures whose function is to identify the values of the current 

control policies for each player.  Based on these value estimates, the players’ policies are 

continuously updated.  This is a sort of indirect adaptive control algorithm, yet, due to the simple 

form dependence of the control policies on the learned value, it is affected online as direct 

(‘optimal’) adaptive control. 

 This chapter proposes an algorithm for nonlinear continuous-time systems with known 

dynamics to solve the N-player non-zero sum (NZS) game problem where each player wants to 

optimize his own performance index [11]. The number of parametric approximator structures 
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that are used is 2� .  Each player maintains a critic approximator neural network (NN) to learn 

his optimal value and a control actor NN to learn his optimal control policy.  Parameter update 

laws are given to tune the N-critic and N-actor neural networks simultaneously online to 

converge to the solution to the coupled HJ equations, while also guaranteeing closed-loop 

stability.  Rigorous proofs of performance and convergence are given. For the sake of clarity, 

we restrict ourselves to two player differential games in the actual proof.  The proof technique 

can be directly extended using further careful bookkeeping to multiple players.  

 The chapter is organized as follows.  It is necessary to develop policy iteration (PI) 

techniques for solving multi-player games, for these PI algorithms give the controller structure 

needed for the online adaptive learning techniques presented in this work.  Therefore, Section 

4.2 presents the formulation of multi-player NZS differential games for nonlinear systems [11] 

and presents a policy iteration algorithm to solve the required coupled nonlinear HJ equations 

by successive solutions of nonlinear Lyapunov-like equations.  Based on this structure, Section 

4.4 develops an adaptive control method for on-line learning of the solution to the two-player 

NZS game problem.  The method generalizes to the multi-player games, and particularizes to 

the special case of zero-sum (ZS) games.  Based on the PI algorithm in Section 4.3, suitable 

approximator structures (based on neural networks) are developed for the value function and 

the control inputs of the two players.  A rigorous mathematical analysis is carried out. It is found 

that the actor and critic neural networks require novel nonstandard tuning algorithms to 

guarantee stability and convergence to the Nash equilibrium. A persistence of excitation 

condition [36], [87] is needed to guarantee proper convergence to the optimal value functions.  

A Lyapunov analysis technique is used. Section 4.5 presents simulation examples that show the 

effectiveness of the synchronous online game algorithm in learning the optimal values for both 

linear and nonlinear systems. 
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 4.2 N-Player differential game for nonlinear systems 

 In this section is presented the formulation of N-player games for nonlinear systems.  A 

Policy Iteration solution algorithm is given.  The objective is to lay a foundation for the control 

structure needed in Section 4.4 for online solution of the game problems in real-time. 

4.2.1 Multi-Player Non Zero Sum Games  

 Consider the N-player nonlinear time-invariant differential game on an infinite time 

horizon 

1

( ) ( )

�

j j

j

x f x g x u

=

= +∑ɺ  (4.1) 

where state ( ) nx t ∈ℝ , players or controls ( ) jm
ju t ∈ℝ . Assume that (0) 0f =  and ( )f x , ( )jg x  are 

locally Lipschitz. 

 The cost functionals associated with each player are  

1 2 1 2

10 0

( (0), , , ) ( ( ) ) ( ( ), , , ) ;

�
T

i � i j ij j i �

j

J x u u u Q x u R u dt r x t u u u dt i �

∞ ∞

=

= + ≡ ∈∑∫ ∫… …  (4.2) 

where function ( ) 0iQ x ≥  is generally nonlinear, and 0, 0ii ijR R> ≥  are symmetric matrices. 

 We seek optimal controls among the set of feedback control policies with complete 

state information. 

 Definition 4.1. (Admissible policies)  Feedback control policies ( )i iu xµ= are defined as 

admissible with respect to (4.2) on a set nΩ ⊂ ℝ , denoted by ( )iµ ∈Ψ Ω if ( )i xµ is continuous on 

Ω , (0) 0iµ = , ( )i xµ stabilizes (4.1) on Ω , and (4.2) is finite 0x∀ ∈Ω . 

 Given admissible feedback policies/strategies ( ) ( ),i iu t xµ=  the value is 

1 2 1 2

1

( (0), , , ) ( ( ) ) ( ( ), , , ) ;

�
T

i � i j ij j i �

jt t

V x Q x R d r x t d i �µ µ µ µ µ τ µ µ µ τ
∞ ∞

=

= + ≡ ∈∑∫ ∫… …  (4.3) 

 Define the N-player game  
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*
1 2

1

( ( ), , , ) min ( ( ) ) ;
i

�
T

i � i j ij j

jt

V x t Q x R d i �
µ

µ µ µ µ µ τ
∞

=

= + ∈∑∫…  (4.4) 

 By assuming that all the players have the same hierarchical level, we focus on the so-

called Nash equilibrium that is given by the following definition. 

 Definition 4.2. [11] (Nash equilibrium strategies) An N-tuple of strategies 

{ }* * *
1 2, ,...,µ µ µΝ with * ,i i i �µ ∈Ω ∈ is said to constitute a Nash equilibrium solution for an N-player 

finite game in extensive form, if the following N inequalities are satisfied for all * ,i i i �µ ∈Ω ∈ : 

* * * * * * * *
1 2 1 2( , , ,..., ) ( , , ,..., ),i i i i iJ J J i �µ µ µ µ µ µ µ µΝ Ν≤ ∈≜     (4.5) 

 The N-tuple of quantities { }* * *
1 2, ,...,J J JΝ is known as a Nash equilibrium outcome of the 

N-player game. 

 Differential equivalents to each value function are given by the following nonlinear 

Lyapunov equations (different form from those given in [11]) 

1

1

0 ( , , , ) ( ) ( ( ) ( ) ), (0) 0,

�
T

� i j j i

j

r x u u V f x g x u V i �

=

= + ∇ + = ∈∑…     (4.6) 

where in
i iV V x∇ = ∂ ∂ ∈ℝ  is the gradient vector (e.g. transposed gradient).  Then, suitable 

nonnegative definite solutions to (4.6) are the values evaluated using the infinite integral (4.4) 

along the system trajectories.  Define the Hamiltonian functions 

1 1

1

( , , , , ) ( , , , ) ( ) ( ( ) ( ) ),

�
T

i i � � i j j

j

H x V u u r x u u V f x g x u i �

=

∇ = + ∇ + ∈∑… …   (4.7) 

 According to the stationarity conditions, associated feedback control policies are given 

by 

11
2

0 ( ) ( ) ,Ti
i ii i i

i

H
x R g x V i �

u
µ −∂

= ⇒ = − ∇ ∈
∂

   (4.8) 

 Substituting (4.8) into (4.6) one obtains the N coupled Hamilton-Jacobi (HJ) equations 
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1 11 1
2 4

1 1

0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) , (0) 0

� �
T T T T T

i j jj j j i j j jj ij jj j j i

j j

V f x g x R g x V Q x V g x R R R g x V V− − −

= =

 
 = ∇ − ∇ + + ∇ ∇ =
 
 

∑ ∑ (4.9) 

 These coupled HJ equations are in ‘closed-loop’ form.  The equivalent ‘open-loop’ form 

is 

1 11 1
2 4

1 1

0 ( ) ( ) ( ) ( ) ( ) ( ) , (0) 0

� �
T T T T T T

i i i j jj j j j j jj ij jj j j i

j j

V f x Q x V g x R g x V V g x R R R g x V V− − −

= =

= ∇ + − ∇ ∇ + ∇ ∇ =∑ ∑
 (4.10) 

 In linear systems of the form 

1

�

j j

j

x Ax B u

=

= +∑ɺ , (4.9) becomes the N coupled generalized 

algebraic Riccati equations 

11
4

1

0 ,

�
T T T

i c c i i j j jj ij jj j j

j

PA A P Q P B R R R B P i �− −

=

= + + + ∈∑   (4.11) 

where 11
2

1

�
T

c i ii i i

i

A A B R B P−

=

= − ∑ . It is shown in [11] that if there exist solutions to (4.11) and further 

satisfying the conditions that for each i �∈ the pair 11
2

,T
j jj j j i

j �
j i

A B R B P B−

∈
≠

 
 
 −
 
 
 

∑ is stabilizable and 

the pair 1 11 1
2 4

,T T T
j jj j j i j j jj ij jj j j

j � j �
j i j i

A B R B P Q P B R R R B P− − −

∈ ∈
≠ ≠

 
 
 − +
 
 
 

∑ ∑ is detectable, then the N-tuple of the 

stationary feedback policies * 11
2

( ) ,
T

i i ii i ix K x R B Px i �µ −= − = − ∈ provides a Nash equilibrium 

solution for the linear quadratic N-player differential game among feedback policies with full 

state information. Furthermore the resulting system dynamics, described by 

0, (0)cx A x x x= =ɺ are asymptotically stable. 
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4.2.2 Cooperation vs. Non-Cooperation in Multi-Player Games 

One may write the costs as 

1 1

1 1
( ) ,

� �

i j i j i

j j

J J J J J J i �
� �

= =

= + − ≡ + ∈∑ ∑ ɶ   (4.12) 

where J  is an overall cooperative ‘team’ cost and iJ
ɶ  a ‘conflict’ cost for player i.  If 0J =  one 

has a zero-sum game.  The most studied case is the 2-player zero-sum game when 1 2J J= − .  

Such games are known as convex-concave games, result in saddle-point Nash equilibria, and 

have been extensively studied in control systems due to their relation to the H∞  control problem 

[11], [1], [60].  However, general dynamic team games may have some cooperative objectives 

and some selfish objectives among the players.  This interplay between cooperative and non-

cooperative objectives is captured in NZS games, as detailed in (4.12).  Therefore, this work is 

interested in general N-player games which may or may not be zero-sum. 

 Though NZS games may contain non-cooperative components, note that the solution to 

each player’s coupled HJI equations (4.9) requires knowledge of all the other players’ strategies 

(4.8).  This is in the spirit of rational opponents [11] whereby the players share information, yet 

from the definition of Nash equilibrium each decides to remain at the equilibrium policy. 

 

4.2.3 Policy Iteration Solution for Non-Zero Sum Games 

 Equations (4.9) are difficult or impossible to solve.  An iterative offline solution 

technique is given by the following policy iteration algorithm.  It solves the coupled HJ equations 

by iterative solution of uncoupled nonlinear Lyapunov equations. 

 Algorithm 1.  Policy Iteration for N-player games 

a) Start with stabilizing initial policies 0 0
1( ), , ( )�x xµ µ… . 

b) Given the N-tuple of policies 1( ), , ( )k k
�x xµ µ… , solve for the N-tuple of costs 

1 2( ( )), ( ( ))... ( ( ))k k k
�V x t V x t V x t using 
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1

1

0 ( , , , ) ( ) ( ) ( ) , (0) 0

�
k k k T i k

� i j j i

j

r x V f x g x V i �µ µ µ
=

 
 = + ∇ + = ∈
 
 

∑…   (4.13) 

c) Update the N-tuple of control policies using:  

1
1

( )

argmin[ ( , , , , )]

i

k
i i i �

u

H x V u u i �µ +

∈Ψ Ω
= ∇ ∈…               (4.14) 

which explicitly is  

1 11
2

( ) ( )
k T k
i ii i ix R g x V i �µ + −= − ∇ ∈                            (4.15) 

 ■ 

 A linear 2-player version of Algorithm 1 is given in [28] and can be considered as an 

extension of Kleiman’s Algorithm [44] to 2-player games.  

 In the next section we use PI Algorithm 1 to motivate the control structure for an online 

adaptive N-player game solution algorithm.  Then it is proven that ‘optimal adaptive’ control 

algorithm converges online to the solution of coupled HJs (4.10), while guaranteeing closed-

loop stability. 

4.3 Value function approximation for solution of nonlinear Lyapunov equations 
 

 This work uses nonlinear approximator structures for Value Function Approximation 

(VFA) [15], [98], [99] to solve (4.13). We show how to solve the 2-player non-zero sum game 

presented in Section 2, the approach can easily be extended to more than 2 players. 

 Consider the nonlinear time-invariant affine in the input dynamical system given by 

( ) ( ) ( ) ( ) ( )x f x g x u x k x d x= + +ɺ                           (4.16) 

where state ( ) nx t ∈ℝ , first control input ( ) mu x ∈ℝ , and second control input ( ) qd x ∈ℝ .  Assume 

that (0) 0f =  and  ( )f x , ( ), ( )g x k x  are locally Lipschitz, ( ) ff x b x< .   

 Assumption 1. For admissible feedback control policies the nonlinear Lyapunov 

equations (4.13) have locally smooth solutions 1 2( ) 0, ( ) 0,V x V x x′ ′≥ ≥ ∀ ∈Ω . 
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 According to the Weierstrass higher-order approximation Theorem [4], [26], [34], there 

exist complete independent basis sets such that the solution 1 2( ( )), ( ( ))V x t V x t′ ′ to (4.6) and their 

gradients are uniformly approximated. Specifically, the basis sets are dense in the Sobolev 

norm 1,W ∞  [6]. 

 Therefore, assume there exist constant neural network (NN) weights 1W  and 2W such 

that the value functions 1 ( )V x′ and 2 ( )V x′  are approximated on a compact set Ω  as   

1 1 1 1( ) ( ) ( )TV x W x xφ ε′ = +  (4.17)  

2 2 2 2( ) ( ) ( )TV x W x xφ ε′ = +  (4.18) 

with 1( ) :
n Kxφ →ℝ ℝ and  2 ( ) :

n Kxφ →ℝ ℝ the NN activation function basis set vectors, K the 

number of neurons in the hidden layer, and 1( )xε and 2 ( )xε  the NN approximation errors.  From 

the approximation literature, the basis functions can be selected as sigmoids, tanh, polynomials, 

etc.   

 The value function derivatives are also uniformly approximated, e.g., additionally, 

x∀ ∈Ω , 

( )
, 1,2

T
Ti i i

i i i i

V x
W W i

x x x

φ ε
φ ε

′∂ ∂ ∂ 
= + =∇ +∇ = ∂ ∂ ∂ 

 (4.19)   

 Then, as the number of hidden-layer neurons K → ∞ , the approximation errors 

0, 0, 1,2i i iε ε→ ∇ → =  uniformly [4], [26].  In addition, for fixed K, the NN approximation errors 

1 2( ), ( )x xε ε and 1 2,ε ε∇ ∇  are bounded on a set Ω  by constants if Ω  is compact [34]. We refer to 

the NN with weights 1W and 2W that perform VFA as the critic NNs for each player.  

 Using the NN VFA (4.17), (4.18) considering fixed feedback policies u and d the 

Hamiltonians (4.7) become: 

11 1 1 11 12 1 1( , , , ) ( ) ( ( ) ( ) ( ) )
T T T

HH x W u d Q x u R u d R d W f x g x u k x dφ ε= + + + ∇ + + =  (4.20) 



 

 80

22 2 2 21 22 2 2( , , , ) ( ) ( ( ) ( ) ( ) )
T T T

HH x W u d Q x u R u d R d W f x g x u k x dφ ε= + + + ∇ + + =   (4.21) 

 The residual errors for the two players are 

( ) ( ), 1,2
iH i f gu kd iε ε Τ≡ − ∇ + + =  (4.22) 

 Substituting  1W , 2W  into the HJ equations (4.10), one obtains 

11
1 1 1 11 1 1 1 14

11
2 2 22 12 22 2 24

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T

T T T T

Q x W x g x R g x x W W x f x

W x k x R R R k x x W

φ φ φ

φ φ

−

− −

− ∇ ∇ + ∇

+ ∇ ∇
 

1

11
1 1 22 2 2 12

( ) ( ) ( ) ( ) , (0) 0
T T T

HJW x k x R k x x W Vφ φ ε−− ∇ ∇ = =  (4.23)  

11
2 2 2 22 2 2 2 24
( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T
Q x W x k x R k x x W W x f xφ φ φ−− ∇ ∇ + ∇  

11
1 1 11 21 11 1 14

( ) ( ) ( ) ( )
T T T T

W x g x R R R g x x Wφ φ− −+ ∇ ∇
 

2

11
2 2 11 1 1 22

( ) ( ) ( ) ( ) , (0) 0
T T T

HJW x g x R g x x W Vφ φ ε−− ∇ ∇ = =   (4.24) 

where the residual errors due to function approximation error for the first player is 

1

1 1 11 1 1
1 1 11 1 1 11 1 2 22 12 22 22 4 4

( ) ( ) ( ) ( ) ( ) ( )
T T T T T T T

HJ W g x R g x g x R g x k x R R R k xε φ ε ε ε ε ε− − − −≡ ∇ ∇ + ∇ ∇ − ∇ ∇

1 11 1
2 2 22 12 22 2 1 1 1 22 24 2

( ) ( ) ( ) ( ) ( )
T T T T T T

W k x R R R k x f x W k x R k xφ ε ε φ ε− − −− ∇ ∇ −∇ + ∇ ∇

1 11 1
1 22 2 2 2 22 12 2

( ) ( ) ( ) ( )
T T T T
k x R k x W k x R k xε ε φ ε− −+ ∇ ∇ + ∇ ∇  

and 
2HJε for the second player is similarly defined.  

 The following proposition follows as in [4], [5]. 

 Proposition 4.2.  For any admissible feedback policies ( ( )), ( ( ))u x t d x t
 
the least-squares 

pair solution to (4.20) and (4.21) exists and is unique for each K.  Denote these solutions as 

1W and 2W and define 

   1 1 1( ) ( )TV x W xφ=   (4.25)

2 2 2( ) ( )TV x W xφ=                                                           (4.26) 

Then, as K → ∞ : 

a) sup 0, 1,2
iH

x

iε
∈Ω

→ =  
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b) sup 0, 1,2
iHJ

x

iε
∈Ω

→ =  

c) sup 0, 1,2i i
x

V V i
∈Ω

′− → =  

d) sup 0, 1,2i i
x

V V i
∈Ω

′∇ −∇ → =  

  ■ 

 This result shows that 1( )V x , 2( )V x converge uniformly in Sobolev norm 1,W ∞  [6] to the 

exact solution 1 '( )V x , 2 '( )V x  to (4.6). Therefore,

 
11 1 1 10 ( ) : sup , ( )HJ

x

K K Kε ε ε ε ε
∈Ω

∀ > ∃ < > and 

22 2 2 20 ( ) : sup , ( )HJ
x

K K Kε ε ε ε ε
∈Ω

∀ > ∃ < > . 

 Assuming current NN weight estimates 1Ŵ and 2Ŵ , the outputs of the two critic NN are 

given by 

1 1 1
ˆ ˆ( ) ( )TV x W xφ=  (4.27)  

2 2 2
ˆ ˆ( ) ( )TV x W xφ=  (4.28) 

 The approximate Lyapunov-like equations are then 

1 1 1 2 1 1 11 1 2 12 2 1 1 1 2 1
ˆ ˆ( , , , ) ( ) ( ( ) ( ) ( ) )T T TH x W u d Q x u R u d R d W f x g x u k x d eφ= + + + ∇ + + =  (4.29) 

2 2 1 2 2 1 21 1 2 22 2 2 2 1 2 2
ˆ ˆ( , , , ) ( ) ( ( ) ( ) ( ) )T T TH x W u d Q x u R u d R d W f x g x u k x d eφ= + + + ∇ + + =   (4.30) 

 It is desired to select 1Ŵ and 2Ŵ to minimize the square residual error 

 1 1
1 1 1 2 22 2

T T
E e e e e= +  

 Then 1 1
ˆ ( )W t W→ , 2 2

ˆ ( )W t W→  and 
11 He ε→ ,

22 He ε→ .   

 Select the tuning laws for the critic weights as the normalized gradient descent 

algorithm  
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   1 1
1 1 1 1 1 1 1 11 1 2 12 22

1 1 1

ˆ ˆ[ ( ) ]
ˆ (1 )

T TE
W a a W Q x u R u d R d

W

σ
σ

σ σ
Τ

Τ

∂
= − = − + + +

∂ +

ɺ
 (4.31) 

   1 2
2 2 2 2 2 2 1 21 1 2 22 22

2 2 2

ˆ ˆ[ ( ) ]
ˆ (1 )

T TE
W a a W Q x u R u d R d

W

σ
σ

σ σ
Τ

Τ

∂
= − = − + + +

∂ +

ɺ
  (4.32) 

where 1 2( ( ) ( ) ( ) ), 1,2i i f x g x u k x d iσ φ=∇ + + = .  Note that these are modified gradient descent 

algorithms with the normalizing terms in the denominators raised to the power 2.  

 Persistence of Excitation (PE) Assumption.  Let the signals 1σ , 2σ
 
be persistently 

exciting over the interval [ , ]t t T+ , i.e. there exist constants 1 0β > , 2 0β > , 3 0β > , 4 0β >  0Τ >  

such that, for all t, 

1 0 1 1 2( ) ( )

t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫   (4.33) 

3 1 2 2 4( ) ( )

t T

t

S dβ σ τ σ τ τ β
+

ΤΙ ≤ ≡ ≤ Ι∫  (4.34) 

where / ( 1), 1,2T
i i i i iσ σ σ σ= + = , and Ι the identity matrix of appropriate dimensions.  

 The PE assumption is needed in adaptive control if one desires to perform system 

identification using e.g. RLS [36], [87]. It is needed in the upcoming Theorem 4.1 because one 

effectively desires to identify the critic parameters to approximate solutions 1( )V x and 2( )V x  to 

the nonlinear Lyapunov equations (4.6). 

 The properties of tuning algorithms (4.31) and  (4.32) and their exponential 

convergence to residual sets are given in the following theorem that was proven for a single 

player in Chapter 2.   

 Theorem 4.1. Let ( ( )), ( ( ))u x t d x t  be any admissible bounded feedback policies. Let 

tuning for the critic NNs be provided by (4.31), (4.32) and assume that 1σ and 2σ
 

are 
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persistently exciting. Let the residual errors in (4.22) be bounded by
1 1maxHε ε< and 

2 2maxHε ε< . Then the critic parameter errors converge exponentially to the residual sets  

{ }
1

2
1 1 2 1 max

1

( ) 1 2W t a
β

δ β ε
β

Τ
≤ +  

ɶ

  (4.35)

 

{ }
2

4
2 2 4 2 max

3

( ) 1 2W t a
β

δ β ε
β

Τ
≤ +  

ɶ  (4.36) 

where 1δ , 2δ  are positive constants of the order of 1. 

 Proof:  Follows as Chapter 2 (Theorem 2.1). 

 ■ 

4.4 Online Solution for 2-player games 
 

 In this section we develop an optimal adaptive control algorithm that solves the 2-player 

game problem online using data measured along the system trajectories.  A special case is the 

zero-sum 2-player game that was derived in Chapter 3. The technique given here generalizes 

directly to the N-player game.  A Lyapunov technique is used to derive novel parameter tuning 

algorithms for the values and control policies that guarantee closed-loop stability as well as 

convergence to the approximate game solution of (4.10). 

 A suitable ‘actor-critic’ control structure is developed based on the PI Algorithm in the 

previous section. The adaptive control structure relies on each player maintaining two 

approximator structures, one for its current value estimate (c.f. (4.13)) and one for its current 

policy (c.f. (4.14), (4.15)).  This structure is based on reinforcement learning precepts.  

 Define 

 

1 11 1
1 11 1 11 1 12 2
( ) ( ) ( ) ( ) ( )

T T T
u x R g x V x R g x x Wφ− −= − ∇ = − ∇

 (4.37)

 

 1 11 1
2 22 2 22 2 22 2
( ) ( ) ( ) ( ) ( )

T T T
d x R k x V x R k x x Wφ− −= − ∇ = − ∇  (4.38) 

with 1V and 2V defined in terms of the least squares solutions to (4.20), (4.21) e.g. (3.25) and 
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(4.26) respectively. According to Proposition 4.2, as K → ∞ (3.42) and (3.43) converge 

uniformly to (4.8). The next result follows as in [4], [5]. 

 Proposition 4.3.  There exists a number of hidden layer units  K0 such that 1( )u x and 

2( )d x are admissible for K>K0.  

 ■ 

 In light of this result, the ideal control policy updates are taken as (4.37) and (4.38) with 

1W and 2W unknown. Therefore, define the control policies in the form of action neural networks 

which compute the control inputs in the structured form  

11
3 11 1 32

ˆ( ) ( )
T T

u x R g x Wφ−= − ∇  (4.39) 

11
4 22 2 42

ˆ( ) ( )
T T

d x R k x Wφ−= − ∇  (4.40) 

where 3Ŵ and 4Ŵ  denote the current estimated values of the ideal NN weights 1W  and 

2W respectively.  Define the critic and the actor NN estimation errors respectively as 

1 1 1
ˆW W W= −ɶ , 2 2 2

ˆW W W= −ɶ , 3 1 3
ˆW W W= −ɶ  4 2 4

ˆW W W= −ɶ . (4.41) 

 Facts 4.1. For a given compact set nΩ ⊂ ℝ : 

a. (.), (.)g k are bounded by constants: 

( ) , ( )g kg x b k x b< <  

b. The NN approx errors and their gradients are bounded so that 

1 1bεε < , 
11 x

bεε∇ < , 2 2bεε < , 
22 x

bεε∇ <  

c. The NN activation functions and their gradients are bounded so that 

1 1 2 21 1 2 2( ) , ( ) , ( ) , ( )
x x

x b x b x b x bφ φ φ φφ φ φ φ< ∇ < < ∇ <  

d. The critic NN weights are bounded by known constants  

 1 1maxW W< , 2 2maxW W<
 

 ■ 
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 The main Theorems of Chapter 4 are now given, which provide the tuning laws for the 

actor and critic neural networks that guarantee convergence of the 2-player nonzero-sum game 

algorithm in real-time to the Nash equilibrium solution, while also guaranteeing closed-loop 

stability. 

 Theorem 4.2. Stability and bounded Neural Network weight errors. Let the 

dynamics be given by (4.16), and consider the 2-player game formulation in Section 4.2. Let the 

critic NNs be given by (4.27) and (4.28), the control inputs be given (4.39) and (4.40).  Let 

tuning for the critic NNs be provided by  

3
1 1 3 1 1 3 11 3 4 12 42

3 3

ˆ ˆ[ ( ) ]
( 1)

T T T

T
W a W Q x u R u d R d

σ
σ

σ σ
= − + + +

+

ɺ
 (4.42) 

4
2 2 4 2 2 3 21 3 4 22 42

4 4

ˆ ˆ[ ( ) ]
( 1)

T T T

T
W a W Q x u R u d R d

σ
σ

σ σ
= − + + +

+

ɺ
 (4.43) 

where 3 1 3 4( )f gu kdσ φ= ∇ + + and 4 2 3 4( )f gu kdσ φ= ∇ + + . Let the first actor NN (first player) be 

tuned as 

 1
3 3 2 3 1 3 1 1 11 21 11 1 3 2 2 1 3 1 1

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{( ) ( ( ) ( ) ( ) )}
4

T T T T T TW a F W F W g x R R R g x W m W D x W m Wσ φ φ− −= − − − ∇ ∇ +
ɺ

 (4.44) 

and the second actor (second player) NN be tuned as 

  1
4 4 4 4 3 4 2 2 22 12 22 2 4 1 1 2 4 2 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{( ) ( ( ) ( ) ( ) )}
4

T T T T T TW a F W F W k x R R R k x W m W D x W m Wσ φ φ− −= − − − ∇ ∇ +
ɺ

 (4.45) 

where 
  

1 1
1 1 11 1 2 2 22 2( ) ( ) ( ) ( ) ( ), ( ) ( ) ( ),T T T TD x x g x R g x x D x x kR k xφ φ φ φ− −≡ ∇ ∇ ≡ ∇ ∇ 3

1 2
3 3( 1)T

m
σ

σ σ
≡

+
,

4
2 2

4 4( 1)T
m

σ

σ σ
≡

+
  and 1 2 3 40, 0, 0, 0F F F F> > > > are tuning parameters.  Let Assumption 4.1 

hold, and also assume 1( ) 0Q x > and 2 ( ) 0Q x > . Suppose that 3 3 3 3/ ( 1)Tσ σ σ σ= + and 

4 4 4 4/ ( 1)Tσ σ σ σ= +
 
are persistently exciting.  Let the tuning parameters be selected as detailed 

in the proof.  Then there exists a K0 such that, for the number of hidden layer units 0K K>  the 
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closed-loop system state, the critic NN errors 1Wɶ  and 2Wɶ , the first actor NN error 3Wɶ and the 

second actor NN error 4Wɶ  are UUB.   

 Proof: See appendix A. 

 ■ 

 Remark 4.1. The tuning parameters 1 2 3 4, , ,F F F F in (4.44), and (4.45) must be selected 

to make the matrix M in (A.50) positive definite (more discussion is presented in the appendix).  

 Remark 4.2.  NN usage suggests starting with the initial control NN weights in (4.39) 

and (4.40) randomly selected and nonzero. 

 Remark 4.3.  The assumption 1( ) 0Q x >  and 2 ( ) 0Q x > is sufficient but not necessary. 

 Remark 4.4.  Standard neuroadaptive controllers for single players require only 1 NN, 

namely the control action NN [50].  However, optimal neuroadaptive controllers based on RL 

(e.g. through PI Algorithm) require also a critic NN that identifies the value function for each 

player.  In the optimal control (single-player) case this requires 2 NN, as described in Chapter 2.  

That is, the price paid for an adaptive controller that converges to an optimal control solution is 

a doubling in the number of NN, which approximately doubles the computational complexity. 

 Theorem 4.3. Nash solution of the game. Suppose the hypotheses of Theorem 4.2 

hold. Then:  

a. 1 1 1 2
ˆˆ ˆ( , , , )H x W u d and 2 2 1 2

ˆˆ ˆ( , , , )H x W u d are UUB, where  

11
1 11 1 12

ˆˆ ( ) ( )
T T

u R g x x Wφ−= − ∇   (4.46) 

  11
2 22 2 22
ˆ ˆ( ) ( )

T T
d R k x x Wφ−= − ∇  (4.47) 

That is, 1Ŵ  and 2Ŵ  converge to the approximate coupled HJ solution. 

b. 3 4( ), ( )u x d x  (see (4.39) and (4.40)) converge to the approximate Nash solution of the 

game. 

 Proof: Consider the weights 1Wɶ , 2Wɶ , 3Wɶ and 4Wɶ to be UUB as proved in Theorem 4.2.  
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a. The approximate coupled HJ equations are 

1

11
1 1 1 2 1 1 2 1 1 1 11 1 14

1 11 1
1 1 1 1 22 2 2 2 2 22 12 22 2 22 4

ˆˆ ˆ ˆ ˆ ˆˆ( , , , ) ( , , ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T

T T T T T T T T
HJ

H x W u d H x W W Q x W x g x R g x x W

W x f x W x k x R k x x W W x k x R R R k x x W

φ φ

φ φ φ φ φ ε

−

− − −

≡ = − ∇ ∇

+ ∇ − ∇ ∇ + ∇ ∇ −

 

and 

2

11
2 2 1 2 2 1 2 2 2 2 11 1 12

1 11 1
1 1 11 21 11 1 1 2 2 22 2 2 2 24 4

ˆˆ ˆ ˆ ˆ ˆˆ( , , , ) ( , , ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T

T T T T T T T T
HJ

H x W u d H x W W Q x W x g x R g x x W

W x g x R R R g x x W W x k x R k x x W W x f x

φ φ

φ φ ε φ φ φ

−

− − −

≡ = − ∇ ∇

+ ∇ ∇ − − ∇ ∇ + ∇

           

 After adding zero we have  

11 1 1
1 1 2 1 1 1 1 1 1 1 1 2 2 22 12 22 2 24 2 4

ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( ) ( ) ( ) ( )
T T T T T T T

H x W W W x f x W DW W DW W x k x R R R k x x Wφ φ φ− −= ∇ + − − ∇ ∇ɶ ɶ ɶ ɶ  

1 11 1
2 2 22 12 22 2 2 1 1 22 2 24 2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T T T T T T

W x k x R R R k x x W W x k x R k x x Wφ φ φ φ− − −+ ∇ ∇ + ∇ ∇  

1

11
1 1 22 2 22

( ) ( ) ( ) ( )
T T T

HJW x k x R k x x Wφ φ ε−− ∇ ∇ −              (4.48) 

and 

11
2 1 2 2 2 2 2 11 1 12

ˆ ˆ ˆ ˆ( , , ) ( ) ( ) ( ) ( ) ( ) ( )
T T T T

H x W W W x f x W x g x R g x x Wφ φ φ−= ∇ + ∇ ∇ɶ

11
2 2 11 1 12

( ) ( ) ( ) ( )
T T T

W x g x R g x x Wφ φ−− ∇ ∇

1 11 1
1 1 11 21 11 1 1 1 1 11 21 11 1 14 4
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T T T T T T T
W x g x R R R g x x W W x g x R R R g x x Wφ φ φ φ− − − −− ∇ ∇ + ∇ ∇  

2

1 11 1
2 2 22 2 2 2 2 22 2 24 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T T T T T

HJW x k x R k x x W W x k x R k x x Wφ φ φ φ ε− −+ ∇ ∇ − ∇ ∇ −ɶ ɶ ɶ  (4.49) 

 But 

 1 1 1Ŵ W W= − +ɶ and 2 2 2Ŵ W W= − +ɶ   (4.50) 

 After taking norms in (4.50) and letting 1 1maxW W< and 2 2maxW W<  one has 

 1 1 1 1 1 1 1maxŴ W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ  (4.51) 

and 

 2 2 2 2 2 2 2maxŴ W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ   (4.52) 

 Now (4.48) becomes, by taking into account (4.51), (4.52), Facts 4.1 and 
1 1sup HJ

x

ε ε
∈Ω

<  
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( )1

22
11 1

1 1 2 1 1 1 2 2max 2 22 12 22 24 4

2 11
2max 2 22 12 22 24

ˆ ˆ( , , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x

T
T T T

f

T T T

H x W W b b x W W D W W x k x R R R k x x

W x k x R R R k x x

φ φ φ

φ φ

− −

− −

≤ + + + ∇ ∇

+ ∇ ∇

ɶ ɶ ɶ
 

( )( ) 11 1
1 1max 2 2max 1 22 2 1max 1 12 2

( ) ( ) ( ) ( )T TW W W W x k x R k x x W W Dφ φ−+ + + ∇ ∇ +ɶ ɶ ɶ  

11
1max 2max 1 22 2 12

( ) ( ) ( ) ( )T TW W x k x R k x xφ φ ε−+ ∇ ∇ +       (4.53) 

and same for (4.49) with 
2 2sup HJ

x

ε ε
∈Ω

<  

( )( )1

11
2 1 2 2 2 2max 1 1max 2 11 12

ˆ ˆ( , , ) ( ) ( ) ( ) ( )
x

T T
fH x W W b b x W W W W W x g x R g x xφ φ φ−≤ + + + ∇ ∇ɶ ɶ ɶ

( )21 11 1
2max 1max 2 11 1 1 1max 1 11 21 11 12 4

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T TW W x g x R g x x W W x g x R R R g x xφ φ φ φ− − −+ ∇ ∇ + + ∇ ∇ɶ

2
2 1 11 1

1max 1 11 21 11 1 2 2 22 24 4
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T TW x g x R R R g x x W x k x R k x xφ φ φ φ− − −+ ∇ ∇ + ∇ ∇ɶ       

11
2max 2 2 22 2 22

( ) ( ) ( ) ( )T TW W x k x R k x xφ φ ε−+ ∇ ∇ +ɶ   (4.54) 

 All the signals on the right hand side of (4.53) and (4.54) are UUB. So 

1 1 1 2
ˆˆ ˆ( , , , )H x W u d and 2 2 1 2

ˆˆ ˆ( , , , )H x W u d are UUB and convergence to the approximate coupled HJ 

solution is obtained.   

b. According to Theorem 4.1, 4.2 and equations  (3.42), (3.43) and (4.39), (4.40) 3 1u u−  

and 4 2d d−  are UUB because 3 1Ŵ W− and 4 2Ŵ W− are UUB. 

 So the pair 3 4( ), ( )u x d x  gives the approximate Nash equilibrium solution of the game. 

This completes the proof.  

 ■ 

 Remark 4.5.  The theorems show that PE is needed for proper identification of the 

value functions by the critic NNs, and that nonstandard tuning algorithms are required for the 

actor NNs to guarantee stability.   

 Remark 4.6.  Theorems 4.2 and 4.3 show UUB of key quantities.  According to the 

definition of vector D in (A.49) and to (4.53), (4.54), the error bounds depend on the NN 
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approximation errors, nonlinear Lyapunov equation and HJ equation residuals, and the bounds 

1max 2max,W W on the unknown NN weights.  By the Weierstrass Approximation Theorem and 

Proposition 4.2, all of these go to zero uniformly as the number of NN hidden layers increases 

except for 1max 2max,W W .  The question of obtaining improved errors bounds in neuroadaptive 

control has a long and studied literature.  Methods have been developed for removing 

1max 2max,W W  from the UUB error bounds.  See for instance the work of Ge et al (e.g. [29]).  

Those results could be used to extend the tuning algorithms provided here, but do not constitute 

a part of the novel results presented herein. 

 The bounds in the theorems are in fact conservative.  The simulation results show that 

the values and Nash solutions are very closely identified. 

4.5 Simulation Results 
 

 Here we present simulations of nonlinear and linear systems to show that the game can 

be solved ONLINE by learning in real time, using the method of this chapter. PE is needed to 

guarantee convergence to the Nash solution. In these simulations, exponentially decreasing 

probing noise is added to the control inputs to ensure PE until convergence is obtained. 

4.5.1 Nonlinear system 

 Consider the following affine in control input nonlinear system, with a quadratic cost 

constructed as in [64] 

       2( ) ( ) ( ) ,x f x g x u k x d x= + + ∈ɺ ℝ  

where  

   2 21 1 1
2 1 22 4

2

24

2
1 1

( )
cos(2 ) 2 (4 )( ) (s 2in )

x
f x

xx xx x x

 
 =

+ + +− + − 
  

    
2

1 1

00
 ( ) , (

s
) .

cos(2 ) 2 (4n 2i )
g x k x

x x

  
= =   + +    

 

 Select 1 22Q Q= , 11 222R R= and 12 212R R= , where 2Q , 22R and 21R are identity matrices. 
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Select 1 2 3 4 1a a a a= = = = and 4 3 2 1 100F F F F I= = = = for the constants on the tuning laws, 

where I is an identity matrix of appropriate dimensions. 

 The optimal value function for the first critic (player 1) is  

     * 2 2
1 1 2

1
( )

2
V x x x= +   

and for the second critic (player 2) is 

      * 2 2
2 1 2

1 1
( )

4 2
V x x x= + . 

 The optimal control signal for the first player is  

     *
1 2( ) 2(cos(2 ) 2)u x x x= − +   

and the optimal control signal for the second player is  

     * 2
1 2( ) (sin(4 ) 2)d x x x= − + . 

 One selects the NN vector activation function for the critics as 

2 2
1 2 1 1 2 2( ) ( ) [      ]x x x x x xϕ ϕ= ≡  and uses the control algorithm presented in Theorem 4.2.  Each 

player maintains two NN, a critic NN to estimate its current value and an action NN to estimate 

its current control policy.   

 Figure 19 shows the critic parameters for the first player, denoted by  

1 1 2 3
ˆ [ ]Tc c cW W W W=  by using the proposed game algorithm.  After convergence at about 150s 

one has 1
ˆ ( ) [0.5015    0.0007    1.0001]TfW t = . Figure 20 shows the critic parameters for the second 

player 2 2 1 2 2 2 3
ˆ [ ]Tc c cW W W W= . After convergence at about 150s one has   

    2
ˆ ( ) [0.2514    0.0006    0.5001]TfW t = .  

 The actor parameters for the first player after 150s converge to the values of 

3
ˆ ( ) [0.5015    0.0007    1.0001] ,T

fW t = and the actor parameters for the second player converge to 

the values of 

     4
ˆ ( ) [0.2514    0.0006    0.5001] .TfW t =   
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 Therefore the actor NN for the first player 

  

1
11

11 2 12
1

2

2 0 0.5015
0

ˆ( ) 0.0007
cos(2 ) 2

0 2 1.0001

T
T x

u x R x x
x

x

−
   

     = −      +        

 

also converged to the optimal control,  and similarly for the second player 

                

1
11

22 2 12 2
1

2

2 0 0.2514
0

ˆ( ) 0.0006
sin(4 ) 2

0 2 0.5001

T
T x

d x R x x
x

x

−
   

     = −      +         

. 

 The evolution of the system states is presented in Figure 21.  After the probing noise is 

turned off, the states converge to zero.  Figure 22 shows the 3-D plot of the difference between 

the approximated value function for player 1 and the optimal one (similarly for the second 

player). These errors are close to zero. Good approximations of the actual value functions are 

being evolved. Figure 23 shows the 3-D plot of the difference between the approximated control 

for the first player, by using the online algorithm, and the optimal one. This error is close to zero. 

Similarly for the second player. 

 

Figure 19. Convergence of the critic parameters for first player. 
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Figure 20. Convergence of the critic parameters for second player. 

 
Figure 21. Evolution of the system states. 
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Figure 22. 3D plot of the approximation error for the value function of player 1. 

 

 

Figure 23. 3D plot of the approximation error for the control of player 1. 

4.5.2 Linear system 

 The aim of this example is to illustrate the online algorithm with a simple example that 

was simulated in previous work in [39], [60] to solve coupled Riccatis. 

 Suppose  

    1 2( ) 2 ( ) ( ) 3 ( )x t x t u t u t= + +ɺ  
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with 

   2 2 2
1 1 2

0

( 9 0.64 )J x u u dt

∞

= − + −∫  

and  

2 2
2 1

0

(9 )J x u dt

∞

= +∫ . 

 Select 1 2 3 4 1a a a a= = = = , 4 3 2 1 5F F F F= = = = for the constants on the tuning laws. 

According to [60] the solution of the coupled Riccati is given by 1 1.4145P = − and 2 1.5718P = . By 

using the algorithm proposed in Theorem 4.2 the solution of the coupled Riccati is found online 

to be 1  -1.4250P = and 2 1.5754P = . Figure 24 shows the evolution of the system state. Figures 25 

and 26 show the convergence of the critic Neural Networks for each player. 

 

Figure 24. Evolution of the system state. 
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Figure 25. Convergence of the critic NN for the first player. 

 

Figure 26. Convergence of the critic NN for the second player. 

 
4.5.3 Zero-Sum Game with unstable linear system 

 Consider the following unstable linear system, 

   
0 0.25 1 1

1 0 0 0
x x u d

     
= + +     

     
ɺ  
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with  

  1

0

1 0
( 25 )

0 1

T T T
J x x u u d d dt

∞
 

= + − 
 ∫ and 2 1J J= − .  

 One can see that this is a zero-sum game because 1 2 11 21 22 12, ,Q Q R R R R= − = − = − .  

 Select 1 2 3 4 1a a a a= = = = , 4 3 2 1 5F F F F I= = = = for the constants on the tuning laws, 

where I is an identity matrix of appropriate dimensions.  In this linear case the solution is given 

by the solution of the game algebraic Riccati equation (GARE) with  

   22 5Rγ ≡ = , 11 1R R≡ = and 1

1 0

0 1
Q Q

 
≡ =  

 
. 

    1

2

1
0T T TA P PA Q PBR B P PKK P

γ
−+ + − + =  

 Solving the GARE gives the parameters of the optimal critic as    

    * [1.9439    1.3137   1.9656]TW =  

which are the components of the Riccati solution matrix P. 

 Since the value is quadratic in the LQR case, the critic NNs basis sets 1 2( ) ( )x xφ φ=  were 

selected as the quadratic vector in the state components x x⊗  with ⊗  the Kronecker product.  

Redundant terms were removed to leave ( 1) / 2 3n n + =  components.    

 The two-player game algorithm is implemented as in Theorem 4.2.  PE was ensured by 

adding a small exponenttial decreasing probing noise to the control inputs.  Figure 27 shows the 

critic parameters for the first player, denoted by 1 1 2 3
ˆ [ ]Tc c cW W W W= and Figure 28 the critic 

parameters for the second player, 2 2 1 2 2 2 3
ˆ [ ]Tc c cW W W W= , converging to the optimal values. It 

is clear that 1 2
ˆ ˆW W= − . In fact after 400s the critic parameters for the first player converged to 

     1
ˆ ( ) [1.9417    1.3138   1.9591]TfW t =   

and the second to  

    2
ˆ ( ) [-1.9417    -1.3138   -1.9591]TfW t = . 
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  Finally Figure 29 shows the evolution of the states. 

 

 

Figure 27. Convergence of the critic NN for the first player. 

 

Figure 28. Convergence of the critic NN for the second player. 
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Figure 29. Evolution of the system states. 
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CHAPTER 5 

 
REINFORCEMENT LEARNING FOR PARTIALLY OBSERVABLE DYNAMIC PROCESSES: 

ADAPTIVE DYNAMIC PROGRAMMING USING MEASURED OUTPUT DATA  

  

5.1 Introduction 

 In this work, novel output feedback ADP algorithms are derived for affine in the control 

input linear time-invariant (LTI) deterministic systems. Such systems have as stochastic 

equivalent the partially observable Markov decision processes (POMDPs). In this chapter, data-

based optimal control is implemented on-line using novel PI and VI ADP algorithms that require 

only reduced measured information available at the system outputs. These two classes of 

output feedback algorithms do not require any knowledge of the system dynamics (A,B,C) and 

as such are similar to Q-learning [17], [97], [99], [100] but they have an added advantage of 

requiring only measurements of input/output data and not the full system state. In order to 

ensure that the data set is sufficiently rich and linearly independent, there is a need to add (c.f. 

[17]) probing noise to the control input. We discuss this issue showing that probing noise leads 

to bias. Adding a discount factor in the cost minimizes it to an almost zero effect. This discount 

factor is related to adding exponential data weighting in the Kalman Filter to remove the bias 

effects of unmodeled dynamics [55].   

 The chapter is organized as follows. Section 5.2 provides the background of the optimal 

control problem, dynamic programming and reinforcement learning methods for the linear 

quadratic regulation problem. Section 5.3 introduces the new class of PI and VI algorithms by 

formulating the temporal difference error with respect to observed data and redefining the 

control sequence as the output of a dynamic polynomial controller. Section 5.4 discusses the 

implementation aspects of the output feedback ADP algorithms. For convergence the new 
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algorithms require persistently exciting probing noise whose bias effect is canceled by using a 

discounted cost function. Section 5.5 presents simulation results obtained using the new data 

based ADP algorithms and is followed by concluding remarks. 

5.2 Background 

 In this Section we give a review of optimal control, dynamic programming, and 

reinforcement learning methods (i.e. policy iteration (PI) and value iteration (VI)) for the linear 

quadratic regulator (LQR). It is pointed out that both these methods employ contraction maps to 

solve the Bellman equation, which is a fixed-point equation [62]. Both PI and VI methods require 

full measurements of the entire state vector. In the next section we show how to implement PI 

and VI using only reduced information available at the system outputs. 

5.2.1 Dynamic Programming and LQR 

 Consider the linear time-invariant discrete-time (DT) system 

1k k k

k k

x Ax Bu

y Cx

+ = +

=
 (5.1) 

with n
kx ∈ℝ  the state, m

ku ∈ℝ  the control input, and p
ky ∈ℝ  the measured output.  Assume 

throughout that (A, B) is controllable and (A, C) is observable [53].   

 Given a stabilizing control policy ( )k ku xµ= , associate to the system the performance 

index 

( )( )
T T

k i i i i i
i k i k

V x y Qy u Ru r
µ

∞ ∞

= =

= + ≡∑ ∑                     (5.2) 

with weighting matrices 0, 0T TQ Q R R= ≥ = >  and ( , )A C Q  observable.  Note that 

( )k ku xµ= is the fixed policy. The utility is 

T T
k k k k kr y Qy u Ru= +                                                (5.3) 
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 The optimal control problem [53] is to find the policy ( )k ku xµ=  that minimizes the cost 

(5.2) along the trajectories of the system (5.1).  Due to the special structure of the dynamics and 

the cost this is known as the linear quadratic regulator (LQR) problem.    

 A difference equation equivalent to (5.2) is given by the Bellman equation 

1( ) ( )T T
k k k k k kV x y Qy u Ru V xµ µ

+= + +                    (5.4) 

 The optimal cost, or value, is given by 

( )*
( ) min

T T
k i i i i

i k

V x y Qy u Ru
µ

∞

=

= +∑ .                         (5.5) 

 According to Bellman’s optimality principle the value may be determined using the 

Hamilton-Jacobi-Bellman (HJB) equation 

( )* *
1( ) min ( )

k

T T
k k k k k k

u
V x y Qy u Ru V x += + +                     (5.6) 

and the optimal control is given by  

( )* *
1( ) argmin ( )

k

T T
k k k k k k

u

x y Qy u Ru V xµ += + +                     (5.7) 

 For the LQR case, any value is quadratic in the state so that the cost associated to any 

policy ( )k ku xµ= (not necessary optimal) is 

( ) T
k k kV x x Pxµ =                                                       (5.8) 

for some n n×  matrix P.  Substituting this into (5.4) one obtains the LQR Bellman equation 

1 1
T T T T
k k k k k k k kx Px y Qy u Ru x Px+ += + +                     (5.9) 

 If the policy is a linear state variable feedback so that 

( )k k ku x Kxµ= = −                                                 (5.10) 

then the closed loop system is 

1 ( )k k c kx A BK x A x+ = − ≡                                      (5.11) 
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 Inserting these equations into (5.9) and averaging over all state trajectories yields the 

Lyapunov equation 

0 ( ) ( )T T TA BK P A BK P C QC K RK= − − − + +  (5.12) 

 If the feedback K is stabilizing, and (A, C) is observable, there exists a positive definite 

solution to this equation.  Then, the Lyapunov solution gives the value of using the state 

feedback K, i.e. solution of this equation gives the kernel P such that ( ) T
k k kV x x Pxµ = .  

 To find the optimal control, insert (5.1) into (5.9) to obtain  

( ) ( )T T T T
k k k k k k k k k kx Px y Qy u Ru Ax Bu P Ax Bu= + + + +     (5.13) 

 To determine the minimizing control, set the derivative with respect to uk equal to zero 

to obtain 

1( )T T
k ku R B PB B PAx−= − +                                 (5.14) 

whence substitution into (5.13) yields the Riccati equation 

10 ( )T T T T TA PA P C QC A PB R B PB B PA−= − + − +            (5.15) 

This is the LQR equivalent to the HJB equation (5.6). 

 

5.2.2 Temporal difference, policy iteration, value iteration 

 It is well known that the optimal value and control can be determined online in real time 

using temporal difference reinforcement learning methods ([20], [68], [78], [86], [99]), which rely 

on solving online for the value that makes small the so-called Bellman temporal difference error  

1( ) ( )T T
k k k k k k ke V x y Qy u Ru V xµ µ

+= − + + +                (5.16) 

The temporal difference error is defined based on the Bellman equation (5.4).  For use in any 

practical real-time algorithm, the value should be approximated by a parametric structure [15], 

[98], [99].   
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 For the LQR case, the value is quadratic in the state and the Bellman temporal 

difference error is 

    1 1
T T T T

k k k k k k k k ke x Px y Qy u Ru x Px+ += − + + +                    (5.17) 

 Given a control policy, solution of this equation is equivalent to solving Lyapunov 

equation (5.12) and gives the kernel P such that ( ) T
k k kV x x Pxµ = .   

 Write (5.6) equivalently as  

( )* *
10 min ( ) ( )

k

T T
k k k k k k

u
V x y Qy u Ru V x += − + + +  (5.18) 

This is a fixed point equation.  As such, it can be solved by the method of successive 

approximation using a contraction map.  The successive approximation method resulting from 

this fixed point equation is known as Policy Iteration (PI), an iterative method of determining the 

optimal value and policy.  For the LQR, PI is performed by the following two steps, based on the 

temporal difference error (5.17) and a policy update step based on (5.7). 

Algorithm 5.1- PI  

Select a stabilizing initial control policy 0 0 ( )k ku xµ= .  Then, for 0,1,...j =  perform until 

convergence: 

1.  Policy Evaluation.  Using the policy ( )
j j

kku xµ=  in (5.1), solve for 1jP +  such that 

    1 1
1 10 ( )

j jT j T T T j
k k k k k kk kx P x y Qy u Ru x P x+ +

+ += − + + +      (5.19) 

 

2.  Policy Improvement.   

( )1 1 1
1 1( ) argmin

k

j j T T T j
k k k k k k kk

u

u x y Qy u Ru x P xµ+ + +
+ += = + +   (5.20) 

                                                                                                   ■ 
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The solution in the policy evaluation step is generally carried out in a least-squares sense.  The 

initial policy is required to be stable since only then does (5.19) have a meaningful solution. 

 This algorithm is equivalent to the following, which uses the Lyapunov equation (5.12), 

instead of the Bellman equation, and (5.14). 

Algorithm 5.2- PI Lyapunov Iteration Equivalent 

Select a stabilizing initial control policy 0K .  Then, for 0,1,...j =  perform until convergence: 

1.  Policy Evaluation. 

1 10 ( ) ( ) ( )j T j j j T j T jA BK P A BK P C QC K RK+ += − − − + +        (5.21) 

2.  Policy Improvement.   

1 1 1 1( )j T j T jK R B P B B P A+ + − += +                        (5.22) 

                                                                                                   ■ 

 It was shown in [15] that under general conditions, the policy 
1jµ +
 obtained by (5.20) is 

improved over the 
jµ  in the sense that 

1

( ) ( )
j j

k kV x V x
µ µ+

≤ .  It was shown by Hewer [20] that 

Algorithm 5.2 converges under the controllability/observability assumptions if the initial feedback 

gain is stabilizing. 

 Note that in PI Algorithm 5.2, the system dynamics (A, B) are required for the policy 

evaluation step, while in PI Algorithm 5.1 they are not.  Algorithm 5.2 is performed off-line 

knowing the state dynamics.   

On the other hand, Algorithm 5.1 is performed on-line in real-time as the data 1( , , )k k kx r x +  are 

measured at each time step, with T T
k k k k kr y Qy u Ru= +  the utility.  Note that (5.19) is a scalar 

equation, whereas the value kernel P is a symmetric n n×  matrix with ( 1) / 2n n +  independent 

elements.  Therefore, ( 1) / 2n n +  data sets are required before (5.19) can be solved.  This is a 

standard problem in least-squares estimation.  The policy evaluation step may be performed 
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using batch least-squares, as enough data are collected along the system trajectory, or using 

recursive least-squares (RLS).  The dynamics (A, B) are not required for this, since the state 

1kx +  is measured at each step, which contains implicit information about the dynamics (A, B).  

This procedure amounts to a stochastic approximation method that evaluates the performance 

of a given policy along one sample path, e.g. the system trajectory.  PI Algorithm 5.1 effectively 

provides a method for solving the Riccati equation (5.15) online using data measured along the 

system trajectories. Full state measurements of kx  are required. 

 A second class of algorithms for on-line iterative solution of the optimal control based 

on the Bellman temporal difference error (5.17) is given by Value Iteration (VI) or heuristic 

dynamic programming (HDP) [99].  Instead of the fixed point equation in the form (5.18), which 

leads to policy iteration, consider (5.6), 

( )* *
1( ) min ( )

k

T T
k k k k k k

u
V x y Qy u Ru V x += + +                (5.23) 

which is also a fixed point equation.  As such, it can be solved using a contraction map by 

successive approximation using the Value Iteration (VI) algorithm.  

Algorithm 5.3- VI 

Select an initial control policy 0K .  Then, for 0,1,...j =  perform until convergence: 

1.  Value Update. 

1
1 1( )

j jT j T T T j
k k k k k kk kx P x y Qy u Ru x P x+

+ += + +                     (5.24) 

2.  Policy Improvement.   

  ( )1 1 1
1 1( ) argmin

k

j j T T T j
k k k k k k kk

u

u x y Qy u Ru x P xµ+ + +
+ += = + +  (5.25) 

                                                                                                   ■ 

Since (5.23) is not an equation but a recursion, its implementation does not require a stabilizing 

policy.  Therefore, the VI algorithm does not require an initial stabilizing gain.  It is equivalent to 
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a matrix recursion knowing the system dynamics (A, B), which has been shown to converge in 

[46]. 

 Note that the policy update steps in PI Algorithm 5.1 and in VI Algorithm 5.3 rely on the 

hypothesis of the value function approximation (VFA) parameterization (5.8).  Both algorithms 

require knowledge of the dynamics (A, B) for the policy improvement step.  In [7] it is shown that 

if a second approximator structure is assumed for the policy, then only the B matrix is needed 

for the policy improvement in Algorithm 5.1 or 5.3.  

 An approach which provides on-line real-time algorithms for solution of the optimal 

control problem without knowing any system dynamics is Q learning.  This has been applied to 

both PI [17] and VI, where it is known as action dependent HDP [99].  

 All these methods require measurement of the full state n
kx ∈ℝ . 

5.3 Temporal Difference, PI, and VI based on output feedback 

 This section presents the new results of this chapter.  The Bellman error (5.17) for LQR 

is quadratic in the state.  This can be used in a PI or VI algorithm for online learning of optimal 

controls as long as full measurements of state n
kx ∈ℝ  are available.  In this section we show 

how to write the Bellman temporal difference error in terms only of the observed data, namely 

the input sequence uk and the output sequence yk.   

 The main result of the following equations is (5.45), (5.46) which give a temporal 

difference error in terms only of observed output data.  

 To reformulate policy iteration and value iteration in terms only of the observed data, we 

show how to write ( ) T
k k kV x x Pxµ = as a quadratic form in terms of the input and output 

sequences.  A surprising benefit is that there result two algorithms for reinforcement learning 

that do not require any knowledge of the system dynamics (A, B, C).  That is, these algorithms 

have the same advantage as Q-learning in not requiring knowledge of the system dynamics, yet 
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they have the added benefit of requiring only measurements of the available input/output data, 

not the full system state as required by Q learning. 

5.3.1 Writing the value function in terms of available measured data 

 Consider the deterministic linear time invariant system 

1k k k

k k

x Ax Bu

y Cx

+ = +

=
  (5.26) 

with n
kx ∈ℝ , m

ku ∈ℝ , and p
ky ∈ℝ .  Assume that (A, B) is controllable and (A, C) is 

observable [53].  Controllability is the property of matrices (A, B) and means that any initial state 

can be driven to any desired final state. Observability is a property of (A, C) and means that 

observations of the output ky over a long enough time horizon can be used to reconstruct the 

full state kx . Given the current time k, the dynamics can be written on a time horizon [k-N, k] as 

the expanded state equation 

1

22 1

k

k� �
k k �

k �

u

u
x A x B AB A B A B

u

−

−−
−

−

 
 
  = +    
 
 

⋯
⋮

   (5.27) 

2

1
1 13

2 2

0

0 0

0 0

0 0 0 0 0

�

�
k k�

k k
k �

k � k �

CB CAB CA B
y uCA

CB CA B
y u

x
CA

CB
y uC

−
−

− −−

− −
−

− −

 
      
      
      = +      
      
       

  

⋯

⋯
⋮

⋮ ⋮ ⋱ ⋱ ⋮⋮ ⋮
⋯

 (5.28) 

or by appropriate definition of variables as 

1,
�

k k � � k k �x A x U u− − −= +                                   (5.29) 

1, 1,k k � � k � � k k �y V x T u− − − − −= +                           (5.30) 

with  
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1�
�U B AB A B

− =  ⋯  

 the controllability matrix and  

1�

�

CA

V
CA

C

− 
 
 =  
 
  

⋮
    (5.31) 

the observability matrix, where p� n
�V

×∈ℝ .  TN is the Toeplitz matrix of Markov parameters. 

 Vectors 

 

1 1

2 2
1, 1,,

k k

k kp� m�
k k � k k �

k � k �

y u

y u
y R u R

y u

− −

− −
− − − −

− −

   
   
   = ∈ = ∈
   
   
   

⋮ ⋮
 

are the input and output sequences over the time interval [k-N, k-1].  They represent the 

available measured data. 

 Since (A, C) is observable, there exists a K, the observability index, such that 

( )  for �rank V n � K< < , ( )  for .�rank V n � K= ≥   Note that K satisfies Kp n≥ .  Let � K≥ .  Then 

�V  has full column rank n, and there exists a matrix n p�M ×∈ℝ  such that 

�
�A MV= .                                                           (5.32) 

 This was used in [1] to find the optimal control through identification of the Markov 

parameters.   

 Since �V  has full column rank, its left inverse is given as 

1( )T T
� � � �V V V V+ −=                                                 (5.33) 

so that  

0 1( )�
� � �M A V Z I V V M M+ += + − ≡ +                  (5.34) 
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for any matrix Z, with 0M  denoting the minimum norm operator and ( ( ))� � �P R V I V V⊥ += −  the 

projection onto range perpendicular of �V .   

 The following Lemma shows how to write the system state in terms of input/output data. 

 Lemma 5.1.   Let the system (5.26) be observable.  Then the system state is given 

uniquely in terms of the measured input/output sequences by 

( )0 1, 0 1, 1, 1,k k k � � � k k � y k k � u k k �x M y U M T u M y M u− − − − − − − −= + − ≡ +  (5.35) 

or 

 
1,

1,

k k �
k u y

k k �

u
x M M

y

− −

− −

 
 =   

 
                                 (5.36)

  

where 0yM M= and 0u � �M U M T= −                                                                        

with 0
�

�M A V += , 1( )T T
� � � �V V V V+ −=  the left inverse of the observability matrix (5.31), and 

� K≥ , where K  is the observability index. 

 Proof:  Note that �
k � � k �A x MV x− −= , so that according to (5.30) 

1, 1,
�

k � � k � k k � � k k �A x MV x My MT u− − − − − −= = −          (5.37) 

0 1 0 1 1, 0 1 1,( ) ( ) ( )� k � k k � � k k �M M V x M M y M M T u− − − − −+ = + − +              (5.38) 

Note however that 1 0�M V =  so that  

    0� k � � k �MV x M V x− −= ,  

and apply 1M  to (5.30) to see that  

1 1, 1 1, 1 10 , . . 0k k � � k k � �M y M T u M s t M V− − − −= − ∀ =        (5.39) 

 Therefore,  
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0 0 1, 0 1,
�

k � � k � k k � � k k �A x M V x M y M T u− − − − − −= = −       (5.40) 

independently of M1.  Then, from (5.29) 

( )0 1, 0 1, 1, 1,k k k � � � k k � y k k � u k k �x M y U M T u M y M u− − − − − − − −= + − ≡ +  (5.41) 

                                                                                                   ■ 

 This result expresses kx  in terms of the system inputs and outputs from time k-N 

through time k-1.  Now we will express the value function in terms of the inputs and outputs. 

 It is important to note that the system dynamics information (e.g. A, B, C) must be 

known to use (5.36). In fact, 0yM M= is given in (5.34) where �V
+ depends on A and C. Also, 

uM depends on 0M , �U , �T . �U is given in (5.27), (5.29) in terms of A and B. �T in (5.28), 

(5.30) depends on A, B and C. 

 In the next step, it is shown how to use the structural dependence in (5.35) yet avoid 

knowledge of A, B and C. 

 Define the vector of observed data at time k as 

1,

1,
1,

k k �

k k �
k k �

u
z

y

− −
− −

− −

 
=  

 
.                                           (5.42) 

 Now one has  

1, 1,( )

T
uT T

k k k k k � u y k k �T
y

M
V x x Px z P M M z

M

µ
− − − −

 
  = =    

 (5.43) 

1, 1, 1, 1,( )

T T
u u u yT T

k k k � k k � k k � k k �T T
y u y y

M PM M PM
V x z z z P z

M PM M PM

µ
− − − − − − − −

 
 = ≡
 
 

 (5.44) 

Note that 1,
m�

k k �u − − ∈ℝ , 1,
p�

k k �y − − ∈ℝ , ( )
1,

m p �
k k �z +
− − ∈ℝ , ( ) ( )m p � m p �P + × +∈ℝ . 

 Equation (5.44) expresses the value function at time k as a quadratic form in terms of 

past inputs and outputs. 
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 Note, that the inner kernel matrix P in (5.44) depends on the system dynamics A, B and 

C. In the next section it is shown how to use reinforcement learning methods to learn the kernel 

matrix P  without knowing A, B and C. 

 

5.3.2 Writing the TD error in terms of available measured data 

 We may now write Bellman’s equation (5.9) in terms of the observed data as  

 1, 1, , 1 , 1
T T T T
k k � k k � k k k k k k � k k �z Pz y Qy u Ru z Pz− − − − − + − += + + . (5.45) 

Based on this equation, write the temporal difference error (5.17) in terms of inputs and outputs 

as 

1, 1, , 1 , 1
T T T T

k k k � k k � k k k k k k � k k �e z Pz y Qy u Ru z Pz− − − − − + − += − + + +    (5.46) 

Using this TD error, the policy evaluation step of any form of reinforcement learning based on 

the Bellman temporal difference error (5.17) can be equivalently performed using only the 

measured data, not the state.   

 Matrix P  depends on A, B and C through yM and uM . However, reinforcement 

learning methods allow one to learn P online without A, B, C, as shown next. 

 

5.3.3 Writing the Policy Update in terms of Available Measured Data 

 Using Q learning, one can perform PI and VI without any knowledge of the system 

dynamics.  Likewise, it is now shown that, using the above constructions, one can derive a form 

for the policy improvement step (5.20)/(5.25) that does not depend on the state or the dynamics, 

but only on the measured input/output data.   

The policy improvement step may be written in terms of the observed data as 

( )1 1( ) argmin

k

T T T
k k k k k k k

u

x y Qy u Ru x Pxµ + += + +  (5.47) 
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( ), 1 , 1( ) argmin

k

T T T
k k k k k k k � k k �

u

x y Qy u Ru z Pzµ − + − += + +      (5.48) 

 Partition , 1 , 1
T
k k � k k �z Pz− + − +  as 

0

, 1 , 1 1, 1 22 23 1, 1

, 1 , 132 33

T
u y

k k
T T
k k � k k � k k � u k k �

T
k k � k k �y

p p pu u

z Pz u p P P u

y yp P P

− + − + − − + − − +

− + − +

    
    

=     
    

     

    (5.49) 

One has ( ( 1))
0 , ,

m m m m � m p�
u yp p p

× × − ×∈ ∈ ∈ℝ ℝ ℝ .  Then, differentiating with respect to ku  to 

perform the minimization in (5.48) yields 

 0 1, 1 , 10 k k u k k � y k k �Ru p u p u p y− − + − += + + +  (5.50) 

or 

 ( )1
0 1, 1 , 1( )k u k k � y k k �u R p p u p y−

− − + − += − + +      (5.51) 

 This is a dynamic polynomial auto regression moving average (ARMA) controller that 

generates the current control input uk in terms of previous inputs and the current and previous 

outputs. 

 Exactly as in Q learning (called by Werbos action-dependent learning [99]), the control 

input appears in the quadratic form (5.49), so that the minimization in (5.48) can be carried out 

in terms of the learned kernel matrix P  without resort to the system dynamics.  However, since 

(5.49) contains present and past values of the input and the output, the result is a dynamical 

controller in polynomial ARMA form. 

 We have developed the following reinforcement learning algorithms which only use the 

measured input/output data, and do not require measurements of the full state vector kx . 
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Algorithm 5.4- PI Algorithm Using Output Feedback  

Select a stabilizing initial control policy 0 0
ku µ= .  Then, for 0,1,...j =  perform until convergence: 

1.  Policy Evaluation.  Solve for 1jP +  such that 

 1 1
1, 1, , 1 , 10 ( )

j jT j T T T j
k k � k k � k k k k � k k �k kz P z y Qy u Ru z P z+ +
− − − − − + − += − + + +  (5.52) 

2.  Policy Improvement.  Partition P  as in (5.49). Then define the updated policy by 

    ( )1 11 1 1 1
1, 1 , 10( ) ( )

j jj j j
k u k k � y k k �ku x R p p u p yµ+ ++ − + +

− − + − += = − + ⋅ +  (5.53) 

                                                                                                  ■ 

Algorithm 5.5- VI Algorithm Using Output Feedback  

Select any initial control policy 0 0
ku µ= .  Then, for 0,1,...j =  perform until convergence: 

1.  Policy Evaluation.  Solve for 1jP +  such that 

 1
1, 1, , 1 , 1( )

j jT j T T T j
k k � k k � k k k k � k k �k kz P z y Qy u Ru z P z+
− − − − − + − += + +  (5.54) 

2.  Policy Improvement.  Partition P  as in (5.49). Then define the updated policy by 

 ( )1 11 1 1 1
1, 1 , 10( ) ( )

j jj j j
k u k k � y k k �ku x R p p u p yµ+ ++ − + +

− − + − += = − + ⋅ +  (5.55) 

                                                                                                  ■ 

 Remark 5.1.  These algorithms do not require measurements of the internal state 

vector kx .  They only require measurements at each time step k of the utility 

T T
k k k k kr y Qy u Ru= + , the inputs from time k-N through time k, and the outputs from time k-N 

through time k.  The policy evaluation step may be implemented using standard methods such 

as batch least-squares or Recursive Least Squares (RLS) (see next section). 
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 Remark 5.2.  The control policy given by these algorithms in the form of (5.51), (5.53), 

(5.55) is a dynamic ARMA regulator in terms of past inputs and current and past outputs.  As 

such, it optimizes a polynomial square-of-sums cost function that is equivalent to the LQR sum-

of-squares cost function (5.2).  This polynomial cost function could be determined using the 

techniques in [53]. 

 Remark 5.3.  The PI Algorithm 5.4 requires an initial stabilizing control policy, while the 

VI Algorithm 5.5 does not.  As such, VI is suitable for control of open-loop unstable systems. 

 Remark 5.4.  The PI algorithm requires an initial stabilizing control policy 0 0
ku µ=  that is 

required to be a function only of the observable data.  Suppose one can find an initial stabilizing 

state feedback gain 0 0 0( )k k ku x K xµ= = − .  Then the equivalent stabilizing output feedback 

ARMA controller is easy to find and is given by 

 
1,0 0 0 0

1,

( )
k k �

k k k u y
k k �

u
u x K x K M M

y
µ − −

− −

 
 = = − = −   

 
 

 The next result shows that the controller (5.51) is unique. 

 Lemma 5.2.  Define 0 1,M M  according to (5.34).  Then the control sequence generated 

by (5.51) is independent of 1M  and depends only on 0M .  Moreover, (5.51) is equivalent to 

   ( )1
1, 1 , 1( )T

k u k k � y k k �u R B PB p u p y−
− − + − += − + +  (5.56) 

where ,u yp p  depend only on 0M . 

 Proof:  Write (5.50) as 

 
, 1

0 1, 1 , 1 0
, 1

0 |
k k �

k k u k k � y k k � k u y
k k �

u
Ru p u p u p y Ru p p p

y

− +
− − + − +

− +

 
 = + + + = +      

 

 According to (5.44) and (5.49) 

 0 0 , 0
T T

u m u u y m u yp p I M PM p I M PM= =            
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therefore 

( )0 1, 1 , 1 , 1 , 10 0 T
k k u k k � y k k � k m u u k k � y k k �Ru p u p u p y Ru I M P M u M y− − + − + − + − += + + + = + +    

 According to Lemma 5.1 this is unique independently of M1 (see (5.38)) and equal to  

( )( )0 , 1 0 , 10 0
T

k m u � � k k � k k �Ru I M P U M T u M y− + − += + − +    

 Now 

 0
0

T

mT
m u u

I
I M P M P

  
=         

. 

 However 

 ( )0 1( )
0 0

m m
u � �

I I
M U M M T B

   
= − + =   

   
 

where one has used the structure of ,� �U T . Consequently 

( )( )0 1, 1 , 1 0 , 1 0 , 10
T

k k u k k � y k k � k � � k k � k k �Ru p u p u p y Ru B P U M T u M y− − + − + − + − += + + + = + − +  

which is independent of 1M .  

 Now note that 0 0
0

mT T
m u u

I
p I M PM B PB

 
= =    

 
 as per the above.  Hence (5.56) follows 

from (5.51).  

                                                                                              ■ 

 Remark 5.5.  Note that the controller cannot be implemented in the form (5.56), since it 

requires that  matrix P be known. 

 

5.4 Implementation, probing noise, bias and discount factors 

 In this section we discuss the need for probing noise to implement the above 

algorithms, show that this noise leads to deleterious effects such as bias, and argue how adding 

a discount factor in the cost (5.2) can reduce this bias to a negligible effect.  
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 The equations in Policy Iteration and Value Iteration are solved online by standard 

techniques using methods such as batch least-squares or recursive least-squares. See [17] 

where RLS was used in Q-learning.  In PI, one solves (5.52) by writing it in the form 

1
1, 1, , 1 , 1( ) ( )

j jj T T
k k � k k � k k � k k � k k k kstk P z z z z y Qy u Ru

+
− − − − − + − +

 ⊗ − ⊗ = +   (5.57) 

with ⊗  the Kronecker product and stk(.) the column stacking operator [18].  Redundant 

quadratic terms in the Kronecker product are combined.  In VI one solves (5.54) in the form 

1
1, 1, , 1 , 1( ) ( )

j jj T T T j
k k � k k � k k k k � k k �k kstk P z z y Qy u Ru z P z

+
− − − − − + − +

 ⊗ = + +   (5.58) 

 Both of these equations only require that the input/output data be measured.  They are 

scalar equations, yet one must solve for the kernel matrix ( ) ( )m p � m p �P + × +∈ℝ , which is 

symmetric and has [ ][ ]( ) ( ) 1 / 2m p � m p �+ + +  independent terms.  Therefore, one requires 

data samples for at least [ ][ ]( ) ( ) 1 / 2m p � m p �+ + +  time steps for solution using batch LS.   

 To solve the PI update equation (5.57), it is required that the quadratic vector 

1, 1, , 1 , 1k k � k k � k k � k k �z z z z− − − − − + − +
 ⊗ − ⊗   be linearly independent over time, a property known 

as persistence of excitation (PE).  To solve the VI update equation  (5.58), one requires PE of 

the quadratic vector 1, 1,k k � k k �z z− − − −
 ⊗  .  It is standard practice (see [17] for instance) to inject 

probing noise into the control action to obtain PE, so that one puts into the system dynamics the 

input ˆk k ku u d= + , with ku  the control computed by the PI or VI current policy and kd  a probing 

noise or dither, e.g. white noise.   

 It is well known that dither can caused biased results and mismatch in system 

identification.  In [102] this issue is discussed and several alternative methods are presented for 

injecting dither into system identification schemes to obtain improved results.  Unfortunately, in 

control applications, one has little choice about where to inject the probing noise. 



 

 117

 To see the deleterious effects of probing noise, consider the Bellman equation (5.9) 

with input ˆk k ku u d= + , where kd  is a probing noise.  One writes 

1 1
ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ( ) ( ) ( ) ( )

T T T T
k k k k k k k k

T T T T
k k k k k k k k k k k k k k

x Px y Qy u Ru x Px

x Px y Qy u d R u d Ax Bu Bd P Ax Bu Bd

+ += + +

= + + + + + + + +
 

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

T T T T T T T
k k k k k k k k k k k k k k k k

T T T
k k k k k k k k

x Px y Qy u Ru d Rd u Rd d Ru Ax Bu P Ax Bu

Ax Bu PBd Bd P Ax Bu Bd PBd

= + + + + + + +

+ + + + +
            

 Now, use { } { }trace AB trace BA=  for commensurate matrices A and B, take expected 

values to evaluate correlation matrices and assume the dither at time k is white noise 

independent of ,k ku x  so that ˆ{ } 0, { ( ) } 0T T
k k k k kE Ru d E PBd Ax Bu= + =  and the cross terms drop 

out.  Then, averaged over repeated control runs with different probing noise sequence kd , this 

equation is effectively  

 ˆ ˆ ˆ( ) ( ) ( )T T T T T T
k k k k k k k k k k k kx Px y Qy u Ru Ax Bu P Ax Bu d B PB R d= + + + + + +  

which is the undithered Bellman equation plus a term depending on the dither covariance.  As 

such, the solution computed by PI or VI will not correspond to the actual value corresponding to 

the Bellman equation. 

 It is now argued that discounting the cost can significantly reduce the deleterious effects 

of probing noise.  Adding a discount factor 1γ <  to the cost (5.2) results in 

( )( )
i k T T i k

k i i i i i
i k i k

V x y Qy u Ru r
µ γ γ

∞ ∞
− −

= =

= + ≡∑ ∑     (5.59) 

with associated Bellman equation 

1 1
T T T T
k k k k k k k kx Px y Qy u Ru x Pxγ + += + +                 (5.60) 

This has an HJB (Riccati) equation equivalent of 

 ( )1
0 ( )

T T T T TRP A PA A PB B PB B PA C QCγγ −= − + − + +  (5.61) 
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and an optimal policy of 

1
( )

T TR
k ku B PB B PAxγ

−= − +                                (5.62) 

 The benefits of discounting are most clearly seen by examining value iteration.  The 

Value Iteration Algorithm 5.3, which with discount has (5.24) modified as 

1
1 1( )

j jT j T T T j
k k k k k kk kx P x y Qy u Ru x P xγ+

+ += + +     (5.63) 

corresponds to the underlying Riccati difference equation 

( )1
1 ( )

T T T T TR
j j j j jP A P A A P B B P B B P A C QCγγ −
+ = − + +  (5.64) 

where each iteration is decayed by the factor 1γ < .  The effects of this can best be understood 

by considering the Lyapunov difference equation  

1 0,
T T

j jP A P A C QC Pγ+ = +                               (5.65) 

which has solution  

1

0
0

( ) ( )
j

j T j j i T i i
j

i

P A P A A QAγ γ
−

=

= + ∑  (5.66) 

 The effect of the discount factor is thus to decay the effects of the initial conditions. 

 In similar vein, the discount factor decays the effects of previous probing noises and 

improper initial conditions in the PI and VI algorithms.  In fact, adding a discount factor is closely 

related to adding exponential data weighting in the Kalman Filter to remove the bias effects of 

unmodeled dynamics [55]. 

5.5 Simulations Results 

5.5.1 Stable linear system and policy iteration 

 Consider the stable linear system with quadratic cost function 

[ ]

1

1.1 0.3 1

1 0 0

1 0.8

k k k

k k

x x u

y x

+
−   

= +   
   

= −
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where Q  and R  in the cost function are identity matrices of appropriate dimensions.  The 

open-loop poles are 1 0.5z = , and 2 0.6z = . In order to verify the correctness of the proposed 

algorithm, the optimal value kernel matrix P  is found by solving (5.15) to be 

1.0150 -0.8150

-0.8150 0.6552
P

 
=  

 
.  

Now by using 

T T
u u u y

T T
y u y y

M PM M PM
P

M PM M PM

 
 ≡
 
 

and (5.35) one has 

1.0150 -0.8440 1.1455 -0.3165

-0.8440 0.7918 -1.0341 0.2969

1.1455 -1.0341 1.3667 -0.3878

-0.3165 0.2969 -0.3878 0.1113

P

 
 
 =
 
 
 

. 

 Since the system is stable, we use the output feedback PI Algorithm 5.4 implemented 

as in equations (5.52) and (5.53). PE was ensured by adding dithering noise to the control input, 

and a discount (forgetting) factor 0.2γ = was added to diminish the dither bias effects. The 

observer index is 2K =  and � is selected equal to 2.   

 By applying dynamic output feedback control (5.53) the system remained stable and the 

parameters of the  P  converged to the optimal ones, in fact 

 

1.1340 -0.8643 1.1571 -0.3161

-0.8643 0.7942 -1.0348  0.2966ˆ

1.1571 -1.0348 1.3609 -0.3850

-0.3161 0.2966 -0.3850 0.1102

P

 
 
 =
 
 
 

. 

 In the example, Batch Least Squares was used to solve (5.52) at each step. 

 Figure 30 shows the convergence of 1 2
0 , ,u yp p p

×∈ ∈ ∈ℝ ℝ ℝ  of P to the correct 

values. Figure 31 shows the evolution of the system states and their convergence to zero.  
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Figure 30.  Convergence of 0 , ,u yp p p . 

 

Figure 31.  Evolution of the system states for the duration of the experiment. 

 

5.5.2 Q-learning and output feedback ADP 

 The purpose of this example is to compare the performance of Q learning [17], [97] and 

Output Feedback ADP. Consider the stable linear system described before, and apply Q 
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learning. 

 The Q function for this particular system is given by: 

( , )

4.9768   -0.8615    2.8716

-0.8615   1.2534   -0.8447

2.8716   -0.8447    3.8158

T T T
k k

h k k T T
k k

T T
k k k k

k k k k

x xQ A PA A PB
Q x u

u uB PA R B PB

x x x x
H

u u u u

 +   
=     

 +    

 
        ≡ =        
         

 

 By comparing these two methods it is obvious that Q learning has a faster performance 

than the Output Feedback ADP since fewer parameters are being identified. 

 Figure 32 shows the convergence of the three parameters 11 12 13, ,H H H of H matrix 

shown before to the correct values. Figure 33 shows the evolution of the system states.  

 

Figure 32.  Convergence of 11 12 13, ,H H H . 
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Figure 33.  Evolution of the system states for the duration of the experiment. 

 

5.5.3 Unstable linear system and Value Iteration 

 Consider the unstable linear system with quadratic cost function 

[ ]

1

1.8 0.7700 1

1 0 0

1 0.5

k k k

k k

x x u

y x

+
−   

= +   
   

= −

 

where Q  and R  in the cost function are identity matrices of appropriate dimensions.  The 

open-loop poles are 1 0.7z = , and 2 1.1z = so the system is unstable. In order to verify the 

correctness of the proposed algorithm, the optimal value kernel matrix P  is found by solving 

(5.15) to be 

1.3442 -0.7078

-0.7078 0.3756
P

 
=  

 
.  

 Now by using 

T T
u u u y

T T
y u y y

M PM M PM
P

M PM M PM

 
 ≡
 
 

and (5.35)one has 
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1.3442 -0.7465 2.4582 -1.1496

-0.7465 0.4271 -1.3717 0.6578

2.4582 -1.3717 4.4990 -2.1124

-1.1496 0.6578 -2.1124 1.0130

P

 
 
 =
 
 
 

. 

 Since the system is open-loop unstable, one must use value iteration, not policy 

iteration.  The output feedback VI Algorithm 5.5 is implemented as in equations (5.54) and 

(5.55). PE was ensured by adding dithering noise to the control input, and a discount 

(forgetting) factor 0.2γ = was used to diminish the dither bias effects. The observer index is 

2K =  and � is selected equal to 2.   

 By applying dynamic output feedback control (5.55), the system is stabilized and the 

parameters of the P  converged to the optimal ones, in fact  

 

1.3431   -0.7504    2.4568   -1.1493

-0.7504    0.4301   -1.3730    0.6591ˆ

2.4568   -1.3730    4.4979   -2.1120

-1.1493    0.6591   -2.1120    1.0134

P

 
 
 =
 
 
 

. 

 In the example, Batch Least Squares was used to solve (5.54) at each step. 

 Figure 34 shows the convergence of 1 2
0 , ,u yp p p

×∈ ∈ ∈ℝ ℝ ℝ  of P . Figure 35 shows 

the evolution of the system states, their boundedness despite the fact that the plant is initially 

unstable, and their convergence to zero. 
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Figure 34.  Convergence of 0 , ,u yp p p . 

 

Figure 35.  Evolution of the system states for the duration of the experiment. 

5.6 Conclusion 

 In this chapter we have proposed the implementation of ADP using only measured 

input/output data from a dynamical system.  This is known in control system theory as ‘output 

feedback’ as opposed to full state feedback, and corresponds to reinforcement learning for a 
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class of partially observable Markov decision processes (POMDPs).  Both policy iteration and 

value iteration algorithms are developed that require only output feedback.  An added and 

surprising benefit is that, similar to Q learning, the system dynamics are not needed to 

implement these output feedback algorithms, so that they converge to the optimal controller for 

completely unknown systems.  The system order must be known, and an upper bound on its 

‘observability index’.  The learned output feedback controller is given in the form of a polynomial 

ARMA controller that is equivalent to the optimal state variable feedback gain. This controller 

needs the addition of probing noise in order to be sufficiently rich. This probing noise adds some 

bias, and in order to avoid it, a discount factor is added in the cost. 
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CHAPTER 6 

MULTI AGENT DIFFERENTIAL GRAPHICAL GAMES: POLICY ITERATION AND ONLINE 

ADAPTIVE LEARNING SOLUTION 

 

6.1 Introduction 

 Distributed networks have received much attention in the last year because of their 

flexibility and computational performance. The ability to coordinate agents is important in many 

real-world tasks where it is necessary for agents to exchange information with each other. 

Synchronization behavior among agents is found in flocking of birds, schooling of fish, and other 

natural systems. Work has been done to develop cooperative control methods for consensus 

and synchronization ([24], [37], [66], [70], [72], [73], [74], [90]). See [65], [71] for surveys. 

Leaderless consensus results in all nodes converging to common value that cannot generally 

be controlled. We call this the cooperative regulator problem. On the other hand the problem of 

cooperative tracking requires that all nodes synchronize to a leader or control node [33], [56], 

[74], [96]. This has been called pinning control or control with a virtual leader. Consensus has 

been studied for systems on communication graphs with fixed or varying topologies and 

communication delays.  This chapter brings together cooperative control, reinforcement 

learning, and game theory to solve multi-player differential games on communication graph 

topologies. There are four main contributions in this chapter. The first involves the formulation of 

a graphical game for dynamical systems networked by a communication graph.  The dynamics 

and value function of each node depend only on the actions of that node and its neighbors. This 

graphical game allows for synchronization as well as Nash equilibrium solutions among 

neighbors. The second contribution is the derivation of coupled Riccati equations for solution of 

graphical games. The third contribution is a Policy Iteration algorithm for solution of graphical 
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games that relies only on local information from neighbor nodes. It is shown that this algorithm 

converges to the best response policy of a node if its neighbors have fixed policies, and to the 

Nash solution if all nodes update their policies. The last contribution is the development of an 

online adaptive learning algorithm for computing the Nash equilibrium solutions of graphical 

games.   

 The chapter is organized as follows. Section 6.2 reviews synchronization in graphs and 

derives an error dynamics for each node that is influenced by its own actions and those of its 

neighbors. Section 6.3 introduces differential graphical games cooperative Nash equilibrium. 

Coupled Riccati equations are developed and stability and solution for Nash equilibrium are 

proven. Section 6.4 proposes a policy iteration algorithm for the solution of graphical games and 

gives proofs of convergence. Section 6.5 presents an online adaptive learning solution based 

on the structure of the policy iteration algorithm of Section 6.4. Finally Section 6.6 presents a 

simulation example that shows the effectiveness of the proposed algorithms in learning in real-

time the solutions of graphical games. 

6.2 Synchronization and node error dynamics 

6.2.1 Graphs 

 Consider a graph ( , )G V= Ε  with a nonempty finite set of N nodes 1{ , , }�V v v= ⋯  and a 

set of edges or arcs V VΕ ⊆ × .  We assume the graph is simple, e.g. no repeated edges and 

( , ) ,i iv v E i∉ ∀  no self loops.  Denote the connectivity matrix as [ ]ijE e=  with 0 ( , )ij j ie if v v> ∈Ε  

and 0ije =  otherwise.  Note 0iie = . The set of neighbors of a node iv  is { : ( , ) }i j j i� v v v= ∈Ε , 

i.e. the set of nodes with arcs incoming to iv .  Define the in-degree matrix as a diagonal matrix 

[ ]iD d=  with 

i

i ij

j �

d e

∈

= ∑  the weighted in-degree of node i  (i.e. i -th row sum of E).  Define the 

graph Laplacian matrix as L D E= − , which has all row sums equal to zero. 

 A directed path is a sequence of nodes 0 1, , , rv v v⋯  such that 

1( , ) , {0,1, , 1}i iv v E i r+ ∈ ∈ −⋯ .  A directed graph is strongly connected if there is a directed path 
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from iv  to jv  for all distinct nodes ,i jv v V∈ .  A (directed) tree is a connected digraph where 

every node except one, called the root, has in-degree equal to one.  A graph is said to have a 

spanning tree if a subset of the edges forms a directed tree.  A strongly connected digraph 

contains a spanning tree. 

 General directed graphs with fixed topology are considered in this chapter. 

 

6.2.2 Synchronization and node error dynamics 

 Consider the N systems or agents distributed on communication graph Gr with node 

dynamics 

i i i ix Ax B u= +ɺ   (6.1) 

where ( ) n
ix t ∈ℝ  is the state of node i, ( ) im

iu t ∈ℝ  its control input.  Cooperative team objectives 

may be prescribed in terms of the local neighborhood tracking error n
iδ ∈ℝ  [43]) as 

0( ) ( )

i

i ij i j i i

j �

e x x g x xδ
∈

= − + −∑  (6.2) 

 The pinning gain 0ig ≥  is nonzero for a small number of nodes i that are coupled 

directly to the leader or control node 0x , and 0ig >  for at least one i  [56]  We refer to the 

nodes i for which 0ig ≠  as the pinned or controlled nodes.  Note that iδ  represents the 

information available to node i for state feedback purposes as dictated by the graph structure. 

 The state of the control or target node is 0 ( )
nx t ∈ℝ  which satisfies the dynamics  

0 0x Ax=ɺ
 (6.3)

 

Note that this is in fact a command generator [49] and we seek to design a cooperative control 

command generator tracker.  Note that the trajectory generator A may not be stable. 

 The Synchronization control design problem is to design local control protocols for 

all the nodes in G to synchronize to the state of the control node, i.e. one requires 

0( ) ( ),ix t x t i→ ∀ .  
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 From (6.2), the overall error vector for network Gr  is given by 

      
( )( )( ) ( )( )0n nL G I x x L G Iδ ζ= + ⊗ − = + ⊗

 
 (6.4) 

where 1 2

T
T T T n�

�δ δ δ δ = ∈ ⋯ ℝ  and 0 0
n�x Ix= ∈ℝ , with 1 n� n

nI I R ×= ⊗ ∈  and 1  the N-

vector of ones.  The Kronecker product is ⊗ .  � �G R ×∈  is a diagonal matrix with diagonal 

entries equal to the pinning gains ig . The (global) consensus or synchronization error (e.g. the 

disagreement vector in [66]) is 

( )0 n�x xζ = − ∈ℝ  (6.5) 

 The communication digraph is assumed to be strongly connected.  Then, if 0ig ≠  for at 

least one i , ( )L G+  is nonsingular with all eigenvalues having positive real parts [43].  The next 

result therefore follows from (6.4) and the Cauchy Schwartz inequality and the properties of the 

Kronecker product [18].  

 Lemma 6.1.  Let the graph be strongly connected and 0G ≠ .   Then the 

synchronization error is bounded by 

/ ( )L Gζ δ σ≤ +  (6.6) 

with ( )L Gσ +  the minimum singular value of ( )L G+ , and ( ) 0tδ ≡  if and only if the nodes 

synchronize, that is 

0( ) ( )x t Ix t= (6.7) 

 ■ 

 Our objective now shall be to make small the local neighborhood tracking errors ( )i tδ , 

which in view of Lemma 6.1 will guarantee synchronization.   

 To find the dynamics of the local neighborhood tracking error, write  

0( ) ( )

i

i ij i j i i

j �

e x x g x xδ
∈

= − + −∑ɺ ɺ ɺ ɺ ɺ
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0( ( )) ( )

i

i ij i i i j j j i i i i

j �

e Ax B u Ax B u g Ax B u Axδ
∈

= + − + + + −∑ɺ

 

 

( ) ( ) ( )

i i

i ij i j i i o ij i i j j i i i

j � j �

e Ax Ax Ag x x e B u B u g B uδ
∈ ∈

= − + − + − +∑ ∑ɺ

  

( )

i

i i i i i i ij j j

j �

A d g B u e B uδ δ
∈

= + + − ∑ɺ

 (6.8)

 

with , ,i
mn

i iu iδ ∈ ∈ ∀ℝ ℝ . 

 This is a dynamical system with multiple control inputs, from node i and all of its 

neighbors. 

 
6.3 Cooperative multi-player games on graphs 

 We wish to achieve synchronization while simultaneously optimizing some performance 

specifications on the agents. To capture this, we intend to use the machinery of multi-player 

games [11]. 

6.3.1 Cooperative performance index 

 Define the local performance indices  

1 1
2 2

0 0

( (0), , ) ( ) ( ( ), ( ), ( ))

i

T T T
i i i i i ii i i ii i j ij j i i i i

j �

J u u Q u R u u R u dt L t u t u t dtδ δ δ δ
∞ ∞

− −
∈

= + + ≡∑∫ ∫  (6.9) 

where ( )iu t−  is the vector of the control inputs { : }j iu j �∈  of the neighbors of node i, and iu−  

denotes { ( ) : 0 }iu t t− ≤ . All weighting matrices are constant and symmetric with 

0, 0, 0ii ii ijQ R R> > ≥ . Note that the i-th performance index includes only information about the 

inputs of node i and its neighbors.  

 For dynamics (6.8) with performance objectives (6.9), introduce the associated 

Hamiltonians 

( , , , ) ( )

i

T
i i i i i i i i i i i ij j j

j �

H p u u p A d g B u e B uδ δ−
∈

 
 ≡ + + −
 
 

∑ 1 1 1
2 2 2

0

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

+ + + =∑

 (6.10) 
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where ip is the co-state variable. 

 Necessary conditions [53] for a minimum of (6.9) are (6.1) and  

  

Ti
i i ii i

i

H
p A p Q δ

δ
∂

− = ≡ +
∂

ɺ

  (6.11)   

1
0 ( )

Ti
i i i ii i i

i

H
u d g R B p

u

−∂
= ⇒ = − +

∂
  (6.12)

 

6.3.2 Graphical games and cooperative Nash equilibrium 

 Interpreting the control inputs ,i ju u  as state dependent policies or strategies, the value 

function for node i corresponding to those policies is 

1
2

( ( )) ( )

i

T T T
i i i ii i i ii i j ij j

j �t

V t Q u R u u R u dtδ δ δ
∞

∈

= + + ∑∫
 (6.13)

 

 Definition 6.1. Control policies ,iu i∀  are defined as admissible if iu  are continuous, 

(0) 0iu = , iu  stabilize system (6.8) locally, and values (6.13) are finite. 

 When iV  is finite, using Leibniz’ formula, a differential equivalent to this is given in 

terms of the Hamiltonian function by the Bellman equation 

( , , , ) ( )

i

T
i i

i i i i i i i i i ij j j
i i j �

V V
H u u A d g B u e B uδ δ

δ δ−
∈

 ∂ ∂  ≡ + + −
 ∂ ∂
 

∑
 

1 1 1
2 2 2

0

i

T T T
i ii i i ii i j ij j

j �

Q u R u u R uδ δ
∈

+ + + =∑
 (6.14)

 

with boundary condition (0) 0iV = .  (The gradient is disabused here as a column vector.)  That 

is, solution of equation (6.14) serves as an alternative to evaluating the infinite integral (6.13) for 

finding the value associated to the current feedback policies.  It is shown in the Proof of 

Theorem 6.1 that (6.14) is a Lyapunov equation.  According to (6.13) and (6.10) one equates 

/i i ip V δ= ∂ ∂ . 

 The control objective of agent i is to determine 
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* 1
2

( ( )) min ( )
i

i

T T T
i i i ii i i ii i j ij j

u
j �t

V t Q u R u u R u dtδ δ δ
∞

∈

= + + ∑∫
 (6.15)

 

which corresponds to Nash equilibrium.   

 Definition 6.2. [11] (Global Nash equilibrium) An N-tuple of policies { }* * *
1 2, ,...,u u uΝ  is 

said to constitute a global Nash equilibrium solution for an N player game if for all i �∈  

* * * * * * * *
1 2 1 2( , ,..., ,..., ) ( , ,..., ,..., )i i i i iJ J u u u u J u u u uΝ Ν≤≜

 (6.16)
 

 The N-tuple of game values { }* * *
1 2, ,...,J J JΝ is known as a Nash equilibrium outcome of 

the N-player game. 

 The distributed multiplayer game with local dynamics (6.8) and local performance 

indices (6.9) should be contrasted with standard multiplayer games [2], [11] which have 

centralized dynamics 

1

�

i i

i

z Az B u

=

= +∑ɺ  (6.17) 

where nz∈ℝ  is the state, ( ) im
iu t ∈ℝ  is the control input for every player, and where the 

performance index of each player depends on the control inputs of all other players.  In the 

graphical games, by contrast, each node dynamics and performance index only depends on its 

own state, its control, and the controls of its immediate neighbors. 

 We want to study the distributed game on a graph defined by (6.15) with distributed 

dynamics (6.8).  It is not clear in this scenario how global Nash equilibrium is to be achieved. 

 Graphical games have been studied in the computational intelligence community [40], 

[41], [80]. A (nondynamic) graphical game has been defined there as a tuple ( , , )G U v  with 

( , )G V E=  a graph with N nodes, action set 1 �U U U= × ×⋯  with iU  the set of actions available 

to node i, and 1

T

�v v v=   ⋯ a payoff vector, with ( ,{ : })i i j iv U U j � R∈ ∈ the payoff function 

of node i. It is important to note that the payoff of node i only depends on its own action and 
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those of its immediate neighbors. The work on graphical games has focused on developing 

algorithms to find standard Nash equilibria for payoffs generally given in terms of matrices. Such 

algorithms are simplified in that they only have complexity on the order of the maximum node 

degree in the graph, not on the order of the number of players N. Undirected graphs are 

studied, and it is assumed that the graph is connected. 

 Our intention in this chapter is to provide online real-time adaptive methods for solving 

differential graphical games that are distributed in nature.  That is, the control protocols and 

adaptive algorithms of each node are allowed to depend only information about itself and its 

neighbors. Moreover, as the game solution is being learned, all node dynamics are required to 

be stable, until finally all the nodes synchronize to the state of the control node. 

 The following notions are needed in the study of differential graphical games.  Define 

{ : }i j iu u j �− = ∈  as the set of policies of the neighbors of node i.  

 Definition 6.3. [80] Agent i’s best response to fixed policies iu−  of his neighbors is the 

policy *
iu  such that 

*( , ) ( , )i i i i i iJ u u J u u− −≤  (6.18) 

for all policies iu  of agent i. 

 For centralized multi-agent games, where the dynamics is given by (6.17) and the 

performance index of each agent depends on the actions of all other agents, an alternative 

definition of Nash equilibrium is that each agent is in best response to all other agents.  

However, in Definition 6.3 each node i is only in best response to all his neighbors.  If the graph 

is strongly connected and each node is in best response to all his neighbors then all nodes in 

the graph are in global Nash equilibrium 

6.3.3 Stability and solution of graphical games 

 According to the results just established, the following assumptions are made. 
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 Assumptions 6.1.  

a. The graph is strongly connected and at least one pinning gain ig  is nonzero.  Then 

( )L G+  is nonsingular. 

 The game is well-formed in the sense that:  

b. 0j ijB e E≠ ∈⇌ . 

c. 0ij ijR e E≠ ∈⇌ .  

 Employing the stationarity condition (6.12) [53] one obtains the control policies  

1
( ) ( ) ( )

T i
i i i i i ii i i i

i

V
u u V d g R B h p

δ
− ∂

= ≡ − + ≡ −
∂

 (6.19) 

 Substituting into (6.14) yields the coupled cooperative game Hamilton-Jacobi (HJ) 

equations 

2 11 1
2 2

( )

T T
c T Ti i i
i i ii i i i i ii i

i i i

V V V
A Q d g B R Bδ δ

δ δ δ
−∂ ∂ ∂

+ + +
∂ ∂ ∂

   

2 1 11
2

( ) 0,

i

T
j jT

j j j jj ij jj j
j jj �

V V
d g B R R R B i �

δ δ
− −

∈

∂ ∂
+ + = ∈

∂ ∂∑  (6.20) 

where the closed-loop matrix is 

2 1 1
( ) ( ) ,

i

jc T Ti
i i i i i ii i ij j j j jj j

i jj �

VV
A A d g B R B e d g B R B i �δ

δ δ
− −

∈

∂∂
= − + + + ∈

∂ ∂∑  (6.21) 

 For a given iV , define * ( )i i iu u V=  as (6.19) given in terms of  iV .  Then HJ equations 

(6.20) can be written as 

* *
( , , , ) 0i

i i i i
i

V
H u uδ

δ −
∂

=
∂

 (6.22) 

 There is one coupled HJ equation corresponding to each node, so solution of this N-

player game problem is blocked by requiring a solution to N coupled partial differential 

equations.  In the next section we show how to solve this N-player cooperative game online in a 
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distributed fashion at each node, requiring only measurements from neighbor nodes, by using 

techniques from reinforcement learning.   

 For the global state δ  given in (6.4) we can write the dynamics as 

( ) ( ) ( )� n iI A L G I diag B uδ δ= ⊗ + + ⊗ɺ  (6.23) 

where u is the control given by 

( )1( ) ( )T
ii i nu diag R B D G I p−= − + ⊗  (6.24) 

where (.)diag denotes diagonal matrix of appropriate dimensions.  Furthermore the global co-

state dynamics are 

( ) ( )T
� ii

H
p I A p diag Q δ

δ
∂

− = ≡ ⊗ +
∂

ɺ   (6.25) 

This is a set of coupled dynamic equations reminiscent of standard multi-player games [11] or 

single agent optimal control [53]. Therefore the solution can be written without any loss of 

generality as  

p Pδ=  (6.26) 

for some matrix 0P > n�xn�∈ℝ . 

 Lemma 6.2. HJ equations (6.20) are equivalent to the coupled Riccati equations 

1 1
2 2

0T T T T T T T
i i i iP A P B P Q P R Pδ δ δ δ δ δ δ δ− + + =  (6.27) 

or equivalently 

( ) 0T T T
ic ic i iP A A P Q P R P+ + + =  (6.28) 

where P is defined by (6.26), and 

[ ]

0

0

0

i ii
A

A

 
 
 =  
 
  

,

0

0

0

i ii

ii

Q
Q

 
 
 =     
  
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( )
1

0

(( ) )

0

T
ii iji i i i ii i

i i n ij n

B diag d g B R B
d g I a I

−

 
 
 

= +    + −    
 
 

ic i iA A B P= −  

1

1 1
(( ) ) (( ) )

i

ij T
i i i i ii i i ii i

ii

i�

R

R
R diag d g B R diag d g R B

R

R

− −

 
 
 
 

= + + 
 
 
 
  

⋱

⋱
  

where [ ]ij denotes the position of the element in the block matrix. 

 Proof: 

 Take (6.14) and write it with respect to the global state and co-state as 

( )

1 1

1 1 1 1
0 0 00

00

0 0 0 0

T T

ii iji ii
i ii i n ij n

� �� �

� �

V V

B u

H
B ud g I a IA

B uV V

δ δ

δ

δ δ

∂ ∂   
     ∂ ∂                      ≡ +             + −                    ∂ ∂                

∂ ∂      

⋯

⋮ ⋮ ⋮ ⋱ ⋮⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋯

 

11 1

1 1
2 2

0

0
0

0

T
i

ijT
ii

i iiiii

� �i�

Ru u

R

u uRQ

u uR

δ δ

      
      
      + + =              
           

⋮ ⋮
 (6.29) 

 By definition of the co-state one has 

1

1

�

�

V

p P

V

δ

δ

δ

∂ 
 ∂ 
 

≡ = 
 
 ∂
 
∂  

⋮

⋮
 (6.30) 
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 From the control policies (6.19), (6.29) becomes (6.27), which can be written in closed-

loop form as (6.28).      

 ■ 

 Theorem 6.1. Stability and Solution for Cooperative Nash Equilibrium.  

 Let 10 ,iV C i �> ∈ ∈ be smooth solutions to HJ equations (6.20) and control policies *
iu , 

i �∈  be given by (6.19) in terms of these solutions iV . Then 

a. Systems (6.8) are asymptotically stable. 

b. * *,i iu u− are in cooperative Nash equilibrium and the corresponding game values are 

*( (0)) ,i i iJ V i �δ = ∈  (6.31)

 
 Proof: 

a. If 0iV >  satisfies (6.20) then it also satisfies (6.14). Take the time derivative to obtain  

1
2

( )

i i

T T
T T Ti i

i i i i i i i ij j j i ii i i ii i j ij j
i i j � j �

V V
V A d g B u e B u Q u R u u R uδ δ δ δ

δ δ
∈ ∈

   ∂ ∂    = = + + − = − + +
   ∂ ∂
   

∑ ∑ɺɺ (6.32) 

which is negative definite since 0iiQ > . Therefore iV  is a Lyapunov function for iδ  and systems 

(6.8) are asymptotically stable. 

b. According to part a, ( ) 0i tδ →  for the selected control policies.  For any smooth functions 

( ),i iV i �δ ∈ , such that (0) 0iV = , setting ( ( )) 0i iV δ ∞ =  one can write (6.9) as  

1
2

0 0

( (0), , ) ( ) ( (0))

i

T T T
i i i i i ii i i ii i j ij j i i i

j �

J u u Q u R u u R u dt V V dtδ δ δ δ
∞ ∞

−
∈

= + + + +∑∫ ∫ ɺ  

or 

1
2

0

0

( (0), , ) ( ) ( (0))

( ( ) )

i

i

T T T
i i i i i ii i i ii i j ij j i i

j �

T

i
i i i i i ij j j

i j �

J u u Q u R u u R u dt V

V
A d g B u e B u dt

δ δ δ δ

δ
δ

∞

−
∈

∞

∈

= + + +

∂
+ + + −

∂

∑∫

∑∫
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 Now let iV  satisfy (6.20) and * *,i iu u−  be the optimal controls given by (6.19).  By 

completing the squares one has 

* * * *1 1
2 2

0

* * *

( (0), , ) ( (0)) ( ( ) ( ) ( ) ( )

( ) ( ))

i

i i

T T
i i i i i i j j ij j j i i ii i i

j �

T
Ti

ij j j j j ij j j
i j � j �

J u u V u u R u u u u R u u

V
e B u u u R u u dt

δ δ

δ

∞

−
∈

∈ ∈

= + − − + − −

∂
− − + −

∂

∑∫

∑ ∑
 

 At the equilibrium point *
i iu u= and *

j ju u= so  

 * * *( (0), , ) ( (0))i i i i i iJ u u Vδ δ− =  

 Define 

* * *1
2

0

( , ) ( (0)) ( ) ( )
T

i i i i i i i ii i iJ u u V u u R u u dtδ
∞

− = + − −∫  

and * ( (0))i i iJ V δ= .  Then clearly *
iJ and *( , )i i iJ u u− satisfy (6.16).  

 ■ 

6.4 Policy iteration solution for cooperative multi-player games 

6.4.1 Best response 

 Theorem 6.1 reveals that the systems are in cooperative Nash equilibrium if, for all 

i �∈  node i selects his best response policy to his neighbors policies and the graph is strongly 

connected.  Define the best response HJ equation as the Bellman equation (6.14) with control 

*
i iu u=  given by (6.19) and arbitrary policies { : }i j iu u j �− = ∈  

* 2 11 1 1
2 2 2

0 ( , , , ) ( )

i

T T
c T T Ti i i i

i i i i i i ii i i i i ii i j ij j
i i i i j �

V V V V
H u u A Q d g B R B u R uδ δ δ

δ δ δ δ
−

−
∈

∂ ∂ ∂ ∂
= ≡ + + + +

∂ ∂ ∂ ∂ ∑  (6.33) 

where the closed-loop matrix is 

2 1
( )

c T i
i i i i i ii i

i

V
A A d g B R Bδ

δ
− ∂

= − +
∂

i

ij j j

j �

e B u

∈

−∑  (6.34) 
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 Theorem 6.2. Solution for Best Response Policy  

 Given fixed neighbor policies { : }i j iu u j �− = ∈ , assume there is an admissible policy 

iu . Let 10iV C> ∈ be a smooth solution to the best response HJ equation (6.33) and let control 

policy *
iu  be given by (6.19) in terms of this solution iV . Then 

a. System (6.8) is asymptotically stable. 

b. *
iu  is the best response to the fixed policies iu−  of its neighbors. 

 Proof: 

a. 0iV >  satisfies (6.33). Proof follows Theorem 6.1, part a.  

b. According to part a, ( ) 0i tδ →  for the selected control policies.  For any smooth functions 

( ),i iV i �δ ∈ , such that (0) 0iV = , setting ( ( )) 0i iV δ ∞ =  one can write (6.9) as  

1
2

0

0

( (0), , ) ( )

( (0)) ( ( ) )

i

i

T T T
i i i i i ii i i ii i j ij j

j �

T

i
i i i i i i i ij j j

i j �

J u u Q u R u u R u dt

V
V A d g B u e B u dt

δ δ δ

δ δ
δ

∞

−
∈

∞

∈

= + +

∂
+ + + + −

∂

∑∫

∑∫
 

 Now let iV  satisfy (6.33), *
iu  be the optimal controls given by (6.19) and iu−  be arbitrary 

policies.  By completing the squares one has 

* *1
2

0

( (0), , ) ( (0)) ( ) ( )
T

i i i i i i i i ii i iJ u u V u u R u u dtδ δ
∞

− = + − −∫  

 The agents are in best response to fixed policies iu− when *
i iu u=  so  

  *( (0), , ) ( (0))i i i i i iJ u u Vδ δ− =  

 Then clearly ( (0), , )i i i iJ u uδ − and *( (0), , )i i i iJ u uδ − satisfy (6.18). 

 ■ 
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6.4.2 Policy Iteration for solution of graphical games 

 The following algorithm for the N-player distributed games is motivated by the structure 

of policy iteration algorithms in reinforcement learning [15], [86], which rely on repeated policy 

evaluation (e.g. solution of (6.14)) and policy improvement (solution of (6.19)). These two steps 

are repeated until the policy improvement step no longer changes the present policy.  If the 

algorithm converges for every i , then it converges to the solution to HJ equations (6.20), and 

hence provides the distributed Nash equilibrium. One must note that the costs can be evaluated 

only in the case of admissible control policies, admissibility being a condition for the control 

policy which initializes the algorithm. 

 Algorithm 6.1. Policy Iteration (PI) Solution for N-player distributed games. 

 Step 0: Start with admissible initial policies 0 ,iu i∀ .  

 Step 1: (Policy Evaluation) Solve for k
iV  using (6.14) 

( , , , ) 0

k
k ki

i i i i
i

V
H u uδ

δ −
∂

=
∂

, 1, ,i �∀ = …  (6.35) 

 Step 2: (Policy Improvement) Update the N-tuple of control policies using 

 1 argmin ( , , , ), 1, ,
i

k
k ki
i i i i i

u i

V
u H u u i �δ

δ
+

−
∂

= ∀ =
∂

…  

which explicitly is  

1 1( )

k
k T i
i i i ii i

i

V
u d g R B

δ
+ − ∂

= − +
∂

, 1, ,i �∀ = … .  (6.36) 

 Go to step 1. 

 On convergence   End  

 ■ 

 The following two theorems prove convergence of the policy iteration algorithm for 

distributed games for two different cases. The two cases considered are the following, i) only 

agent i updates its policy and ii) all the agents update their policies. 
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 Theorem 6.3. Convergence of Policy Iteration algorithm when only i
th

 agent 

updates its policy and all players iu− in the neighborhood do not change. Given fixed 

neighbors policies iu− , assume there exists an admissible policy iu . Assume that agent i 

performs Algorithm 6.1 and its neighbors do not update their control policies. Then the algorithm 

converges to the best response iu  to policies iu−  of the neighbors and to the solution iV  to the 

best response HJ equation (6.33). 

 Proof: 

 It is clear that  

1( , , ) min ( , , , ) ( , , , )
i

k k k
o k k k k ki i i
i i i i i i i i i i i

u
i i i

V V V
H u H u u H u uδ δ δ

δ δ δ
+

− − −
∂ ∂ ∂

≡ =
∂ ∂ ∂

 

(6.37) 

 Let ( , , , ) 0

k
k ki

i i i i
i

V
H u uδ

δ −
∂

=
∂

from (6.35) then according to (6.37) it is clear that  

 ( , , ) 0
k

o ki
i i i

i

V
H uδ

δ −
∂

≤
∂

 (6.38) 

 Using the next control policy 1k
iu
+  and the current policies k

iu−  one has the orbital 

derivative [47] 

 

1 1( , , , ) ( , , )
k

k k k k ki
i i i i i i i i i

i

V
V H u u L u uδ δ

δ
+ +

− −
∂

= −
∂

ɺ

 

 

From (6.37) and (6.38)  one has 

0 1 1( , , ) ( , , ) ( , , )

k
k k k k k ki
i i i i i i i i i i i i

i

V
V H u L u u L u uδ δ δ

δ
+ +

− − −
∂

= − ≤ −
∂

ɺ
 

(6.39) 

 Because only agent i update its control it is true that 1k k
i iu u+

− −=  and  

1
1( , , , ) 0

k
k ki

i i i i
i

V
H u uδ

δ

+
+

−
∂

=
∂

.  

 But since 1 1 1( , , )k k k
i i i i iV L u uδ+ + +

−= −ɺ , from (6.39) one has  
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0 1 1 1( , , ) ( , , ) ( , , )

k
k k k k k k ki
i i i i i i i i i i i i i

i

V
V H u L u u L u u Vδ δ δ

δ
+ + +

− − −
∂

= − ≤ − =
∂

ɺ ɺ
 

(6.40)
 

 So that 1k k
i iV V +≤ɺ ɺ and by integration it follows that 

1k k
i iV V+ ≤  (6.41) 

 Since * k
i iV V≤ , the algorithm converges, to *

iV , to the best response HJ equation (6.33). 

 ■ 

 The next result concerns the case where all nodes update  their policies at each step of 

the algorithm.  Define the relative control weighting as 1
( )ij jj ijR Rρ σ −= , where 1

( )jj ijR Rσ − is the 

maximum singular value of 1
jj ijR R
− . 

 Theorem 6.4. Convergence of Policy Iteration algorithm when all agents update 

their policies. Assume all nodes i update their policies at each iteration of PI.  Then for small 

enough edge weights ije  and ijρ , iu  converges to the global Nash equilibrium and for all i , 

and the values converge to the optimal game values *k
i iV V→ . 

 Proof: 

 It is clear that 

 
1 1

1 1 0( , , , ) ( , , )

k k
k k ki i

i i i i i i i
i i

V V
H u u H uδ δ

δ δ

+ +
+ +

− −
∂ ∂

≡
∂ ∂
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u u R u u u R u u e B u u

δ

+
+ + + +

∈ ∈ ∈

∂
+ − − + − + −
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and so 

1 1 1 1 1 11
2

1
1 1

( , , ) ( , , ) ( ) ( )

( ) ( )

i

i i

k k k k k k k T k k
i i i i i i i i i j j ij j j

j �

k T
k k kT k ki

ij j j j j ij j j
i j � j �

V L u u L u u u u R u u

V
e B u u u R u u

δ δ

δ

+ + + + + +
− −

∈

+
+ +

∈ ∈

= − = − + − −

∂
+ − + −

∂

∑

∑ ∑

ɺ

 

 Therefore, 
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1
1 1 1 1 11

2
( ) ( ) ( ) ( )

i i i

k T
k k k k T k k k k kT k ki
i i j j ij j j ij j j j j ij j j

ij � j � j �

V
V V u u R u u e B u u u R u u

δ

+
+ + + + +

∈ ∈ ∈

∂
≤ − − − + − − −

∂∑ ∑ ∑ɺ ɺ

 

A sufficient condition for 1k k
i iV V +≤ɺ ɺ  is  

    11
2

( ) 0
T k T kT
j ij j i ij j j j ij ju R u p e B u u R u

+∆ ∆ − ∆ + ∆ >  

or 

    

1 1 11
2

( ) ( )( ) 0,
T k T k T
j ij j ij i j j j j j j jj ij ju R u e p B u d g p B R R u

+ − −∆ ∆ − ∆ − + ∆ >
 

    

1 11
2
( ) ( )k k

ij j ij i j j j ij j jR u e p B d g p Bσ ρ+ −∆ > ⋅ + + ⋅
 

where 1
( )

k k
j j ju u u

+∆ = − , ip the co-state and ( )ijRσ is the minimum singular value of ijR .

 

 This holds if 0, 0ij ije ρ= = .  By continuity, it holds for small values of  ,ij ije ρ . 

 ■ 

 This proof indicates that for the PI algorithm to converge, the neighbors’ controls should 

not unduly influence the i-th node dynamics (6.8), and the j-th node should weight its own 

control ju  in its performance index jJ  relatively more than node i weights ju  in iJ .  These 

requirements are consistent with selecting the weighting matrices to obtain proper performance 

in the simulation examples. 

 An alternative condition for convergence in Theorem 6.4 is that the norm jB  should 

be small.  This is similar to the case of weakly coupled dynamics in multi-player games in [11]. 

6.5 Online solution of multi-agent cooperative games using neural networks 

 In this section an online algorithm for solving cooperative Hamilton-Jacobi equations 

(6.20) based on Chapter 5 is presented. This algorithm uses the structure in the PI Algorithm 

6.1 to develop an actor/critic architecture for approximate online solution of (6.20). The 

algorithm uses two approximator structures at each node, which are taken here as neural 

networks (NN) [4], [15], [86].  One critic NN is used at each node for value function 

approximation, and one actor NN at each node to approximate the control policy (6.36).  The 
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critic NN seeks to solve Bellman equation (6.35).  We give tuning laws for the actor NN and the 

critic NN such that equations (6.35) and (6.36) are solved simultaneously online for each node.  

Then, the solutions to the coupled HJ equations (6.20) are determined.  Though these coupled 

HJ equations are difficult to solve, and may not even have analytic solutions, we show how to 

tune the NN so that the approximate solutions are learned online.  The next assumption is 

made. 

 Assumption 6.2.  For each admissible control policy the nonlinear Bellman equations 

(6.14), (6.35) have smooth solutions 0iV ≥ . 

 To solve the Bellman equations (6.35), approximation is required of both the value 

functions 
iV  and their gradients /i iV δ∂ ∂ .  This requires approximation in Sobolev space [4]. 

6.5.1 Critic neural network 

 According to the Weierstrass higher-order approximation theorem [4] there are NN 

weights iW  such that the smooth value functions iV are approximated using a critic NN as  

( ) T
i i i i iV Wδ φ ε= +   (6.42) 

with : n h
iφ →ℝ ℝ  the critic NN activation function vectors and h the number of neurons in the 

critic NN hidden layer.  The NN approximation error iε  converges to zero uniformly as h → ∞ . 

 Assuming current weight estimates ˆiW , the outputs of the critic NN are given by

 

ˆ ˆ T
i i iV W φ=  (6.43) 

 Then, the Bellman equation (6.35) can be approximated at each step k as  

ˆ( , , , )

ˆ ( ( ) )

i

i

i

T T T
i i i i i i ii i i ii i j ij j

j �

T i
i i i i i i ij j j H

i j �

H W u u Q u R u u R u

W A d g B u e B u e

δ δ δ

ϕ
δ

δ

−
∈

∈

= + +

∂
+ + + − =

∂

∑

∑
  (6.44) 

 It is desired to select ˆiW  to minimize the square residual error 

1
1 2 i i

T
H HE e e=  (6.45) 
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 Then ˆ
i iW W→  which solves (6.44) in a least-squares sense and 

iHe  becomes small.  

Theorem 6.5 gives a tuning law for the critic weights that achieves this. 

 

6.5.2 Actor neural network and online solution 

 Define the control policy in the form of an action neural network which computes the 

control input (6.36) in the structured form 

11
2

ˆˆ ( )

T
T i

i � i i ii i i �
i

u d g R B W
ϕ
δ

−
+ +

∂
= − +

∂
 (6.46) 

where ˆi �W +  denote the current estimated values of the ideal NN weights iW .  Define the actor 

NN estimation errors as ˆ
i i iW W W= −ɶ and ˆ

i � i i �W W W+ += −ɶ . 

 The next results show how to tune the critic NN and actor NN in real time at each node 

so that equations (6.35) and (6.36) are simultaneously solved, while closed-loop system stability 

is also guaranteed. Simultaneous solution of (6.35) and (6.36) guarantees that the coupled HJ 

equations (6.20) are solved for each node i.  System (6.8) is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set nS R⊂ so that for all 
0
x S∈  there exists a bound B 

and a time 
0

( , )T B x  such that ( )x t B≤  for all 
0

.t t T≥ +  

 Select the tuning law for the i
th
 critic NN as 

1 1
42

2 11
4

ˆ ˆ ˆ ˆ[
ˆ (1 )

ˆ ˆ( ) ]

i

T Ti
i i i i i i ii i i � i i �

i ii

T

j jT T T
j j j � j jj ij jj j j �

j jj �

E
W a a W Q W DW

W

d g W B R R R B W

σ
σ δ δ

σ σ

ϕ ϕ

δ δ

Τ
+ +Τ

− −
+ +

∈

∂
= − = − + +

+∂

∂ ∂
+ +

∂ ∂∑

ɺ

 (6.47) 

where ˆ ˆ( ( ) )

i

i
i � i i i i i � ij j j �

i j �

A d g B u e B u
ϕ

σ δ
δ

+ + +
∈

∂
= + + −

∂ ∑  

and the tuning law for the i
th
 actor NN as 
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1

2 1

1ˆ ˆ ˆ ˆ ˆ{( )
4

1 ˆ ˆ( ) }
4

ii

T
T i �

i � i � i i � i i � i i i � i
si

TT
j jT T Ti �

i � j j j j jj ij jj j
s j jj �

j i

W a F W F W DW W
m

W d g W B R R R B
m

σ
σ

ϕ ϕσ
δ δ

+
+ + + + + +

− −+
+

∈
≠

= − − −

∂ ∂
− +

∂ ∂∑

ɺ

 (6.48) 

where 1( )

T
Ti i

i i ii i
i i

D x B R B
ϕ ϕ
δ δ

−∂ ∂
≡

∂ ∂
, ( 1)

i

T
s i � i �m σ σ+ +≡ + , 0, 0i i �a a +> >…  and 0, 0i i �F F +> >…  

are tuning parameters. 

  Theorem 6.5. Online Cooperative Games.  

 Let the error dynamics be given by (6.8), and consider the cooperative game 

formulation in (6.15). Let the critic NN at each node be given by (6.43) and the control input be 

given for each node by actor NN (6.46).  Let the tuning law for the i
th
 critic NN be provided by 

(6.47) and the tuning law for the i
th
 actor NN be provided by (6.48) and assume 

/ ( 1)T
i � i � i � i �σ σ σ σ+ + + += + is persistently exciting and 0iiQ > .  Then the closed-loop system 

state, the critic NN errors iWɶ , and the actor NN errors i �W +
ɶ are uniformly ultimately bounded. 

Proof: The proof is similar to the previous chapter.   

 ■ 

 Remark 6.1. Theorem 6.5 provides algorithms for tuning the actor/critic networks of the 

N agents at the same time to guarantee stability and make the system errors ( )i tδ  small and 

the NN approximation errors bounded. Small errors guarantee synchronization of all the node 

trajectories. 

 Remark 6.2.  Persistence of excitation is needed for proper identification of the value 

functions by the critic NNs, and nonstandard tuning algorithms are required for the actor NNs to 

guarantee stability. It is important to notice that the actor tuning law of every agent needs 

information of the critic weights of all his neighbors. 

 Remark 6.3.  NN usage suggests starting with random, nonzero control NN weights in 

(6.46) in order to converge to the coupled Riccatis solution.  However, it should be noted that 

convergence is more sensitive to the persistence of excitation in the control inputs than to the 



 

 147

NN weight initialization.  If the proper persistence of excitation is not selected, the control 

weights may not converge to the correct values. 

 Remark 6.4.  The issue of which inputs to use for the critic and actor NNs needs to be 

addressed.  According to the dynamics (6.8), the value functions (6.13), and the control inputs 

(6.19), the NN inputs at node i should consist of its own state, the states of its neighbors, and 

the co-states of its neighbors.  However, in view of (6.26) the co-states are functions of the 

states.  In view of the approximation capabilities of NN, it is found in simulations that it is 

suitable to use as the NN inputs at node i its own state and the states of its neighbors. 

 The next result shows that the tuning laws given in Theorem 6.5 guarantee approximate 

solution to the coupled HJ equations (6.20) and convergence to the Nash equilibrium. 

 Theorem 6.6. Convergence to Cooperative Nash Equilibrium. 

 Suppose the hypotheses of Theorem 6.5 hold. Then: 

a. ˆ ˆ ˆ( , , , ),i i i i iH W u u i �δ − ∀ ∈ are uniformly ultimately bounded, where 

 11
2

ˆˆ ( )

T
T i

i i i ii i i
i

u d g R B W
ϕ
δ

− ∂
= − +

∂
 

That is, ˆiW converge to the approximate cooperative coupled HJ-solution. 

b. ˆ
i �u + converge to the approximate cooperative Nash equilibrium (Definition 6.2) for 

every i . 

 Proof: The proof is similar to the one in chapter 5 but is done only with respect to the 

neighbors (local information) of each agent and not with respect to all agents. 

 Consider the weights ˆ ˆ,i i �W W + to be UUB as proved in Theorem 6.5.   

a. The approximate coupled HJ equations are ˆ ˆ ˆ( , , , ),i i i i iH W u u i �δ − ∀ ∈ . 

2 11
4

ˆ ˆ ˆ ˆˆ ˆ( , , , ) ( , )

ˆ ˆ( )

T T i
i i i i i i i i i i ii i i i

i

T
T Ti i

i i i i ii i i
i i

H W u u H W W Q W A

d g W B R B W

ϕ
δ δ δ δ δ

δ

ϕ ϕ
δ δ

− −

−

∂
≡ = +

∂

∂ ∂
− +

∂ ∂
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2 1 1 11 1
4 2

ˆ ˆ ˆ ˆ( )
i

i i

T T
j j jT T T Ti

j j j j jj ij jj j j i ij j jj j j HJ
j j jij � j �

d g W B R R R B W W e B R B W
ϕ ϕ ϕϕ

ε
δ δ δδ

− − −

∈ ∈

∂ ∂ ∂∂
+ + + −

∂ ∂ ∂∂∑ ∑  

where ,
iHJ iε ∀ are the residual errors due to approximation.  

 After adding zero we have 

2 11
4

2 1 2 11 1
2 2

2 1 11
4

ˆ ˆ( , ) ( )

ˆ( ) ( )

( )

T
T T Ti i i

i i i i i i i i i i ii i i
i ii

T T
T T T Ti i i i

i i i i ii i i i i i i ii i i
i i i i

T
j jT T

j j j j jj ij jj j j
j jj

H W W W A d g W B R B W

d g W B R B W d g W B R B W
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ϕ ϕ ϕ
δ δ

δ δδ

ϕ ϕ ϕ ϕ
δ δ δ δ

ϕ ϕ

δ δ

−
−

− −

− −

∈

∂ ∂ ∂
= − − +

∂ ∂∂

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂

∂ ∂
− +

∂ ∂

ɶ ɶ ɶ

ɶ ɶ 2 1 11
2

2 1 1 11
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2 2
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i i
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∂ ∂ ∂∂
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∂ ∂ ∂∂

∂∂ ∂
− −

∂∂
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∑ ∑

∑ɶ ɶ 1 ˆ

i

T
jTi

ij j jj j j
ji j �

e B R B W
ϕϕ
δδ

−

∈

∂

∂∂ ∑

11
2
ˆ

i

T
jT Ti

i ij j jj j j
ji j �

W e B R B W
ϕϕ
δδ

−

∈

∂∂
−

∂∂ ∑  (6.49) 

 But  

ˆ ,i i iW W W i= − + ∀ɶ .  (6.50) 

 After taking norms in (6.50) and letting maxi iW W< one has   

max
ˆ
i i i i i i iW W W W W W W= − + ≤ + ≤ +ɶ ɶ ɶ  

 Now (6.49) with sup
iHJ iε ε< becomes 
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( )
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 2ε+  (6.51) 

 All the signals on the right hand side of (6.51) are UUB and convergence to the 

approximate coupled HJ solution is obtained for every agent.   

b. According to Theorem 6.5, ˆ ,i � iW W i+ − ∀ are UUB. Then it is obvious that ˆ ,i �u i+ ∀ give the 

approximate cooperative Nash equilibrium (Definition 6.2). 

 ■
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6.6 Simulations 

 This section will show the effectiveness of the online approach described in Theorem 

6.5 for two different cases. 

 Consider the three-node strongly connected digraph structure shown in Figure 36 with a 

leader node connected to node 3. The edge weights and the pinning gains are taken equal to 1. 

Every node is a second order system. 

 

Figure 36. Communication Graph. 

  

 Select the weight matrices in (6.9) as 

11 22 33

1 0

0 1
Q Q Q

 
= = =  

 
, 11 12 134, 1, 1,R R R= = = − 31 22 23 33 32 214, 9, 1, 9, 1, 1R R R R R R= − = = = = = a

nd 1 2 31, 2d d d= = = . 

 Since the value is quadratic in the Linear Quadratic Regulator (LQR) case, the critic 

NNs basis sets were selected as the quadratic vector in the agent’s components and the 

neighbors’ components. The systems below are of second order then we can write for every 

agent  

      
1 11 12δ δ δ =   , 2 21 22δ δ δ =   , 3 31 32δ δ δ =    

 Thus the NN activation functions are 
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2 2 2 2
1 1 3 11 11 12 12 31 31 32 32( ,0, ) 0 0 0φ δ δ δ δ δ δ δ δ δ δ =    

2 2 2 2
1 1 2 11 11 12 12 21 21 22 21( , ,0) 0 0 0φ δ δ δ δ δ δ δ δ δ δ =    

2 2 2 2 2 2
3 1 2 3 11 11 12 12 21 21 22 22 31 31 32 32( , , )φ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ =    

6.6.1 Velocity and Position regulated to zero 

 For the graph structure shown above consider the following node dynamics 

 

1 1 1

2 2 2

3 3 3

2 1 2

4 1 1

2 1 2

4 1 3

2 1 2

4 1 2

x x u

x x u

x x u

−   
= +   − −   

−   
= +   − −   

−   
= +   − −   

ɺ

ɺ

ɺ

 

 The graphical game is implemented as in Theorem 6.5. Persistence of excitation was 

ensured by adding a small exponential decreasing probing noise to the control inputs. Figure 37 

shows the critic parameters for every agent. Figure 38 shows the evolution of the states for the 

duration of the experiment.  

 

Figure 37. Critic parameters. 
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Figure 38. Evolution of the system states. 

 

6.6.2 All nodes synchronize to the leader node 

 For the graph structure shown above consider the following node dynamics 

 

1 1 1

2 2 2

3 3 3

0 1 2

1 0 1

0 1 2

1 0 3

0 1 2

1 0 2

x x u

x x u

x x u

   
= +   −   

   
= +   −   

   
= +   −   

ɺ

ɺ

ɺ

 

 The graphical game is implemented as in Theorem 6.5. Persistence of excitation was 

ensured by adding a small exponential decreasing probing noise to the control inputs. Figure 39 

shows the critic parameters for every agent and figure 40 shows the synchronization of all the 

agents to the leader behavior.  
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Figure 39. Critic parameters. 

 

Figure 40. Synchronization of all the agents to the leader.
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CHAPTER 7 

ONLINE ADAPTIVE LEARNING OF OPTIMAL CONTROL SOLUTIONS USING INTEGRAL 

REINFORCEMENT LEARNING 

7.1 Introduction 

 In this chapter we use Reinforcement Learning (RL) methods, specifically a new 

Integral Reinforcement Learning (IRL) approach, to provide an online learning solution to 

optimal control problem that does not require knowledge of the system drift dynamics. Integral 

reinforcement learning (IRL) was first introduced in [91], [92] to provide a practical means of 

applying reinforcement learning to continuous-time systems. The algorithm that we introduce 

herein is conceptually based on the Policy Iteration (PI) technique of chapter 2. 

 This chapter is concerned with developing approximate online solutions, based on PI, 

for the infinite horizon optimal control problem for continuous-time (CT) nonlinear systems.  We 

present an online integral reinforcement algorithm that combines the advantages of the 

algorithm in chapter 2 and [92]. These include simultaneous tuning of both actor and critic 

neural networks (i.e. both neural networks are tuned at the same time) and no need for the drift 

term in the dynamics [92].  Simultaneous tuning idea was first introduced by [98], [99] and has 

been the idea of recent chapters in the area, however in most of these chapters the authors 

either designed model-based controllers [21] or used dynamic neural networks to identify the 

nonlinear plant [16]. Our algorithm avoids partial knowledge of the plant and uses only two 

neural networks by designing a hybrid controller as in [92].  

 The contributions in this chapter are i) provide a new online  continuous time algorithm 

that converge to the solution of HJB and Bellman equation without solving them, ii) partial need 

of dynamics, and iii) update actor and critic neural networks simultaneously in real time.  
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 The chapter is organized as follows. Section 7.2 provides the formulation of the optimal 

control problem followed by the general description of neural network value function 

approximation (VFA). Section 7.3 introduces the online synchronous integral reinforcement 

learning algorithm for the actor and critic networks based on PI.  Results for convergence and 

stability are given.  Section 7.4 presents simulation examples that show the effectiveness of the 

online integral reinforcement learning algorithm. 

7.2 Optimal control problem and the policy iteration algorithm 

7.2.1 Optimal control and the continuous time HJB equation 

Let the system dynamics be described by the differential equation
  

( ) ( ( )) ( ( )) ( ( ))x t f x t g x t u x t= +ɺ ; 0(0)x x=  (7.1) 

with state ( ) nx t ∈ℝ , ( ( )) nf x t ∈ℝ , ( ( )) n mg x t ×∈ℝ  and control input ( ) mu t U∈ ⊂ R . We assume 

that (0) 0, (0) 0f g= = , ( ) ( )f x g x u+  is Lipschitz continuous on a set nΩ ⊆ R  that contains the 

origin. We assume that the dynamical system is stabilizable on Ω , i.e. there exists a continuous 

control function ( )u t U∈  such that the system is asymptotically stable on Ω , and that 

( ) ( )f x g x u+  is Lipschitz continuous on Ω . 

 Define the infinite horizon integral cost 

0

0

( ) ( ( ), ( ))V x r x u dτ τ τ
∞

= ∫   (7.2) 

where ( , ) ( ) Tr x u Q x u Ru= +  with ( )Q x  positive definite, i.e. 0, ( ) 0x Q x∀ ≠ >  and 

0 ( ) 0x Q x= ⇒ = , and m mR ×∈R  a positive definite matrix.   

 Definition 7.1. [4] (Admissible policy) A control policy ( )xµ  is defined as admissible 

with respect to (7.2) on Ω , denoted by ( )µ ∈Ψ Ω , if ( )xµ  is continuous on Ω , (0) 0µ = , ( )xµ  

stabilizes (7.1) on Ω  and 0( )V x  is finite 0x∀ ∈Ω .  
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 For any admissible control policy ( )µ ∈Ψ Ω , if the associated cost function  

0

0

( ) ( ( ), ( ( )))V x r x x d
µ τ µ τ τ

∞

= ∫  (7.3) 

is 1C , then an infinitesimal version of (7.3)is 

0 ( , ( )) ( ( ) ( ) ( )), (0) 0T
xr x x V f x g x x Vµ µµ µ= + + =  (7.4) 

where xV
µ  denotes the partial derivative of the value function V µ  with respect to x .  (Note that 

the value function does not depend explicitly on time). Equation (7.4) is a Lyapunov equation for 

nonlinear systems which, given a controller ( ) ( )xµ ∈Ψ Ω , can be solved for the value function 

( )V xµ  associated with it. Given that ( )xµ  is an admissible control policy, if ( )V xµ  satisfies (7.4)

, with ( , ( )) 0r x xµ ≥ , then ( )V xµ  is a Lyapunov function for the system (7.1) with control policy 

( )xµ .  

 The optimal control problem can now be formulated: Given the continuous-time system  

(7.1), the set ( )µ ∈Ψ Ω  of admissible control policies and the infinite horizon cost functional 

(7.2), find an admissible control policy such that the cost index (7.2) associated with the system 

(7.1) is minimized.   

 Define the Hamiltonian of the problem  

( , , ) ( ( ), ( )) ( ( ( )) ( ( )) ( ))T
x xH x u V r x t u t V f x t g x t u t∇ = +∇ +  (7.5) 

the optimal cost function *( )V x  satisfies the HJB equation  

*

( )
0 min [ ( , , )]x

u
H x u V

∈Ψ Ω
= ∇   (7.6) 

where x

V
V

x

∂
∇ ≡

∂
is disabused here as a column vector. 
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 Assuming that the minimum on the right hand side of (7.6) exists and is unique then the 

optimal control function for the given problem is  

* 1 *( ) ( )T
xu x R g x V−= − ∇   (7.7) 

 Inserting this optimal control policy in the Hamiltonian we obtain the formulation of the 

HJB equation in terms of *
xV  

* * 1 * *1
0 ( ) ( ) ( ) ( ) , (0) 0

4

T T T
x x xQ x V f x V g x R g x V V−= +∇ − ∇ ∇ =  (7.8) 

This is a necessary and sufficient condition for the optimal value function [53]. For the linear 

system case, considering a quadratic cost functional, the equivalent of this HJB equation is the 

well known Riccati equation. 

 In order to find the optimal control solution for the problem one only needs to solve the 

HJB equation (7.8)for the value function and then substitute the solution in (7.7) to obtain the 

optimal control. However, solving the HJB equation is generally difficult as it is a nonlinear 

differential equation, quadratic in the cost function, which also requires complete knowledge of 

the system dynamics (i.e. the system dynamics described by the functions ( ), ( )f x g x  need to be 

known). The next section provides the policy iteration algorithm and the value function 

approximation of the critic network. 

 

7.2.2 Policy iteration  

 Policy iteration is an iterative method of reinforcement learning [16] for solving (7.8), 

and consists of policy improvement based on (7.7) and policy evaluation based on (7.4).  

 In the actor/critic structure the Critic and the Actor functions are approximated by neural 

networks, and the PI algorithm consists in tuning alternatively each of the two neural networks. 

 The critic neural network is tuned to evaluate the performance of the current control 

policy. 
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 Policy Iteration Algorithm: 

 Step 1. Given policies ( ) ( )i xµ , solve for the value 
( )

( ( ))
i

V x tµ  using 

( )

( )

( ) ( )
0 ( , ( )) ( ) ( ( ) ( ) ( ))

(0) 0

i

i

i T i
xr x x V f x g x x

V

µ

µ

µ µ= + ∇ +

=
 (7.9) 

 Step 2. Update the control policy using 

( )( 1)

( )

argmin[ ( , , )]
ii

x
u

H x u Vµ +

∈Ψ Ω
= ∇   (7.10) 

which explicitly is  

( )( 1) 11
2

( ) ( )
ii T

xx R g x Vµ + −= − ∇   (7.11) 

 To ensure convergence of the PI algorithm an initial admissible policy (0) ( ( )) ( )x tµ ∈Ψ Ω  

is required. It is in fact required by the desired completion of the first step in the policy iteration: 

i.e. finding a value associated with that initial policy (which needs to be admissible to have a 

finite value and for the nonlinear Lyapunov equation to have a solution). The algorithm then 

converges to the optimal control policy * ( )µ ∈Ψ Ω  with corresponding cost *( )V x . Proofs of 

convergence of the PI algorithm have been given in several references. See [4], [13], [15], [30], 

[35], [63], [92]. 

 Policy iteration is a Newton method. In the linear time-invariant case, it reduces to the 

Kleinman algorithm [44] for solution of the Riccati equation, a familiar algorithm in control 

systems.  Then, (7.9) become a Lyapunov equation. 

 A major problem with this formulation of PI for CT systems is that the full system 

dynamics must be known as both f(x) and g(x) appear in the Bellman equation (7.9). 

7.2.3 Value function approximation (VFA) 

 A practical method for implementing PI for CT systems is presented in this section.  

This involves two aspects: value function approximation (VFA) and integral reinforcement 



 

 159

learning (IRL). The critic NN is based on value function approximation (VFA). Thus, assume 

there exist weights 1W  such that the value ( )V x  is approximated by a neural network as 

1( ) ( ) ( )TV x W x xφ ε= +   (7.12) 

where ( ) : n �xφ →R R  is the activation functions vector, N the number of neurons in the hidden 

layer, and ( )xε  the NN approximation error. It is known that ( )xε  is bounded by a constant on a 

compact set.  Select the activation functions to provide a complete basis set such that ( )V x  and 

its derivative 

1
TV
W

x x

ε
φ

∂ ∂
= ∇ +

∂ ∂
  (7.13) 

are uniformly approximated.  According to the Weierstrass higher-order approximation theorem 

[4], such a basis exists if ( )V x  is sufficiently smooth. This means that, as the number of hidden-

layer neurons � → ∞ , the approximation error 0ε →  uniformly. 

 

7.2.4 Integral reinforcement learning 

 The PI algorithm given above requires full system dynamics, since both f(x) and g(x) 

appear in the Bellman equation (7.9).  In order to find an equivalent formulation of the Bellman 

equation that does not involve the dynamics, we note that for any time 0t  and time interval T 

the value function (7.3)  satisfies 

0

0 0

0

( ) ( ( ), ( ( ))) ( )

t

t t T

t T

V x r x x d V xµ µτ µ τ τ −

−

= +∫  (7.14) 

 In [92] it is shown that (7.14) and (7.9) are equivalent, i.e., they both have the same 

solution.  Therefore, (7.14) can be seen as a Bellman equation for CT systems.  Note that this 

form does not involve the system dynamics.  We call this the integral reinforcement learning 

(IRL) form of the Bellman equation. 
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 Therefore, by using a critic NN for VFA, the Bellman error based on (7.14) becomes 

[92] 

( ) 1 1( ) ( ( )) ( ( ))

t

T T T
B

t T

Q x R d W x t W x t Tµ µ τ φ φ ε
−

+ + − − =∫  (7.15) 

 We define the integral reinforcement as  

( )( )

t

T

t T

p Q x R dµ µ τ
−

= +∫  (7.16) 

 Now (7.15) can be written as  

1 ( ( ))T
B p W x tε φ− = ∆  (7.17) 

where ( ( )) ( ( )) ( ( ))x t x t x t Tφ φ φ∆ ≡ − − . 

 Under the Lipschitz assumption on the dynamics, this residual error is bounded on a 

compact set.  Moreover, in [4] it has been shown that, under certain assumptions, as the 

number of hidden layer neurons � → ∞ , one has 0Bε → . 

 

7.3 Online integral reinforcement learning algorithm with synchronous tuning of actor and critic 
neural networks 

  

 Standard PI algorithms for CT systems are offline methods that require complete 

knowledge on the system dynamics to obtain the solution (i.e. the functions ( ), ( )f x g x  in (7.1) 

need to be known). In order to change the offline character of PI for CT systems, and thus make 

it consistent with online learning mechanisms in the mammal brain, we present an adaptive 

learning algorithm that uses simultaneous continuous-time tuning for the actor and critic neural 

networks and does not need the drift term ( )f x  in the dynamics.  We term this online integral 

reinforcement learning algorithm. 
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7.3.1 Critic NN and Bellman equation solution 

 The weights of the critic NN, 1W , which solve (7.15) are unknown. Then the output of the 

critic neural network is  

1
ˆ ˆ( ) ( )TV x W xφ=   (7.18) 

where 1Ŵ  are the current known values of the critic NN weights.  Recall that ( ) : n �xφ →R R  is 

the activation functions vector, with N the number of neurons in the hidden layer. The 

approximate Bellman error is then 

( ) 1 1 1
ˆ ˆ( ) ( ( )) ( ( ))

t

T T T

t T

Q x u Ru d W x t W x t T eτ φ φ
−

+ + − − =∫  (7.19) 

which according to (7.16) can be written as  

1 1
ˆ ( ( ))TW x t e pφ∆ = −   (7.20) 

 It is desired to select 1Ŵ  to minimize the squared residual error 

1
1 1 12

TE e e=   (7.21) 

 Then 1 1
ˆ ( )W t W→ .  We select the tuning law for the critic weights as the normalized 

gradient descent algorithm  

( )
( )1 1 12

( ( ))ˆ ˆ[ ( ) ( ( )) ]

1 ( ( )) ( ( ))

tT
T T

T
t T

x t
W a Q x u Ru d x t W

x t x t

φ
τ φ

φ φ −

∆
= − + + ∆

+ ∆ ∆
∫

ɺ
 (7.22)  

Note that the data required in this tuning algorithm at each time are ( )( ), ( )t p tφ∆ . 
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Define the critic weight estimation error 1 1 1
ˆW W W= −ɶ  and substitute (7.15) in (7.22) and, with the 

notation ( ) ( ) / ( ( ) ( ) 1)t t t tφ φ φ φΤ∆ = ∆ ∆ ∆ + and 1 ( ) ( )T
sm t tφ φ= + ∆ ∆ , we obtain the dynamics of the 

critic weight estimation error as 

1 1 1 1( ) ( ) ( ) B

s

W a t t W a t
m

ε
φ φ φΤ= − ∆ ∆ + ∆ɺɶ ɶ  (7.23) 

 Though it is traditional to use critic tuning algorithms of the form (7.22), it is not 

generally understood when convergence of the critic weights can be guaranteed. In this 

chapter, we address this issue in a formal manner.  To guarantee convergence of 1Ŵ  to 1W , the 

next Persistence of Excitation (PE) assumption is required. 

 Note that:  

( ( )) ( ) ( )

t t

t T t T

x t x xd f gu dφ φ τ φ τ
− −

∆ = ∇ = ∇ +∫ ∫ɺ  (7.24) 

 It is obvious to see from (7.20) that the regression vector ( )tφ∆ must be persistently 

exciting to solve for 1Ŵ in a least squares sense.  

 Persistence of Excitation (PE) Assumption.  Let the signal ( )tφ∆
 
be persistently 

exciting over the interval [ , ]t T t− , i.e. there exist constants 1 0β > , 2 0β > , 0Τ >  such that, for 

all t, 

1 0 2( ) ( )

t

t T

S dβ φ τ φ τ τ βΤ

−

Ι ≤ ≡ ∆ ∆ ≤ Ι∫  (7.25) 

  

 Remark 7.1. Note that, as � → ∞ , 0Bε →  uniformly [4]. 

 

 



 

 163

7.3.2 Action NN and online adaptive optimal control 

 The policy improvement step in PI is given by substituting (7.13)into (7.7)as 

11
12

( ) ( )T Tu x R g x Wφ−= − ∇   (7.26) 

with critic weights 1W  unknown.  Therefore, define the control policy in the form of an action 

neural network which computes the control input in the structured form 

11
2 22

ˆ( ) ( )T Tu x R g x Wφ−= − ∇   (7.27) 

where 2Ŵ  denotes the current known values of the actor NN weights. 

 Based on (7.8) and (7.15), define the approximate HJB equation  

11 1 1

1
( ) ( ) ( ) ( ( ))

4

t

T T
HJB

t

Q x W D x W x d W x tε τ φ
−Τ

 
− − + = ∆ 

 ∫  (7.28) 

with the notation 1
1( ) ( ) ( ) ( ) ( )T TD x x g x R g x xφ φ−= ∇ ∇ , where 1W denotes the ideal unknown 

weights of the critic and actor neural networks which solve the HJB. 

 We now present the main Theorems, which provide the tuning laws for the actor and 

critic neural networks that guarantee convergence to the optimal controller along with closed-

loop stability. The next notion of practical stability is needed. 

 Definition 7.2. [50] (UUB) A time signal ( )tζ is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set nS ⊂ ℝ so that for all (0) Sζ ∈ there exists a bound B and a 

time ( , (0))T B ζ  such that ( )t Bζ ≤  for all 0 .t t T≥ +   

 Theorem 7.1. Let tuning for the critic NN be provided by 

( )
11 1 1 2 22

( ( )) 1ˆ ˆ ˆ ˆ( ( )) ( )
4

1 ( ( )) ( ( ))

tT
T T

T
t T

x t
W a x t W Q x W D W d

x t x t

φ
φ τ

φ φ −

 ∆   = − ∆ + +   + ∆ ∆  
∫

ɺ
 (7.29) 
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where 2( ( )) ( )

t

t T

x t f gu dφ φ τ
−

∆ = ∇ +∫  and assume that ( )tφ∆
 

is persistently exciting (which 

means 2u is persistently exciting). Let the actor NN be tuned as 

( )
( )

1
12 2 2 2 1 1 2 2 14 2

( ( ))ˆ ˆ ˆ ˆ ˆ( ( )) ( )

1 ( ( )) ( ( ))

T
T

T

x t
W a F W F x t W a D x W W

x t x t

φ
φ

φ φ

∆
= − − ∆ −

+ ∆ ∆

ɺ
 (7.30) 

 Then the closed-loop system state is UUB, the critic parameter error 1 1 1
ˆW W W= −ɶ  and 

the actor parameter error 2 1 2
ˆW W W= −ɶ  are UUB. 

 Proof: 

 The convergence proof is based on Lyapunov analysis. We consider the Lyapunov 

function 

1 1
1 1 1 2 2 2

1 1
( ) ( ) ( ) ( )

2 2

T T
L t V x tr W a W tr W a W

− −= + +ɶ ɶ ɶ ɶ  (7.31) 

With the chosen tuning laws one can then show that the errors 1Wɶ  and 2Wɶ  are UUB and 

convergence is obtained. The chapter has the same form with the one in chapter 2.  

  ■ 

 Theorem 7.2. Optimal solution. Suppose the hypotheses of Theorem 7.1 hold. Then:  

a. ( )1 1 1
ˆ ˆ ˆˆ ˆ ˆ( , , ) ( ) ( ( )) ( ( ))

t

T T T
HJB

t T

H u W x Q x u Ru d W x t W x t Tε τ φ φ
−

≡ + − + − −∫   

is UUB, where 11
12
ˆˆ ( ) ( )T Tu R g x x Wφ−= − ∇  . That is, 1Ŵ  converge to the approximate HJB solution. 

b. 2
ˆ ( )u x  converges to the optimal solution, where 11

2 22
ˆˆ ( ) ( )T Tu R g x x Wφ−= − ∇ . 

 Proof:  

a. Consider the weights 1Wɶ , 2Wɶ  to be UUB as proved in Theorem 7.1. 
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( )1 1 1
ˆ ˆ ˆˆ ˆ ˆ( , , ) ( ) ( ( )) ( ( ))

t

T T T
HJB

t T

H u W x Q x u Ru d W x t W x t Tε τ φ φ
−

≡ + − + − −∫
 

 After adding zero we have 

( )1 1
1 1 1 1 1 1 1 1 14 2
ˆˆ( , , ) ( ) ( ) ( ( )) ( ( ))

t

T T T T
HJB

t T

H u W x W D x W W D x W d W x t W x t Tε τ ϕ ϕ
−

≡ − − − + −∫ ɶ ɶ ɶ ɶ ɶ  

 By taking norms in both sides and taking into account that sup HJB
x

ε ε
∈Ω

<  and letting 

1 1maxW W< . 

2
1 1

1 1 1 1 1max 1 14 2
ˆˆ( , , ) ( ) ( ) ( ( ( )) ( ( )) )

t

t T

H u W x W D x W W D x d W x t x t Tε τ ϕ ϕ
−

 ≡ + + + + − 
 ∫ ɶ ɶ ɶ (7.32)

 

 All the signals on the right hand side of are UUB. So 1
ˆˆ( , , )H u W x is UUB and 

convergence to the approximate HJB solution is obtained.   

b. According to Theorem 7.1 and equations  (7.26)and, (7.27), 2u u−  is UUB because 

2 1Ŵ W− is UUB. 

 So 2 ( )u x  gives the optimal solution. 

 This completes the proof.  

 ■ 

 Remark 7.2. The positive tuning parameters 1F , 2F are selected appropriately to ensure 

stability. 

 

7.4 Simulation results 

 To support the new synchronous online integral reinforcement learning algorithm for CT 

systems, we offer two simulation examples, one linear and one nonlinear.  In both cases we 

observe convergence to the actual optimal value function and control. In these simulations, 
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exponentially decreasing noise is added to the control inputs to ensure PE until convergence is 

obtained. 

7.4.1 Linear system example 

 Consider the continuous-time F16 aircraft plant with quadratic cost function used in [85] 

1.01887 0.90506 0.00215 0

0.82225 1.07741 0.17555 0

0 0 1 1

x x u

− −   
   = − − +   
   −   

ɺ   

where Q  and R  in the cost function are identity matrices of appropriate dimensions and 

0.01T = . In this linear case the solution of the HJB equation is given by the solution of the 

algebraic Riccati equation (ARE).  Since the value is quadratic in the LQR case, the critic NN 

basis set ( )xφ  was selected as the quadratic vector in the state components.  Solving the ARE 

gives the parameters of the optimal critic as *
1 [1.4245    1.1682   -0.1352 1.4349   -0.1501 0.4329]TW = . 

 The integral reinforcement algorithm is implemented as in Theorem 7.1.  PE was 

ensured by adding a small probing noise to the control input.  Figure 41 shows the critic 

parameters, denoted by 

 1 1 2 3 4 5 6
ˆ [ ]Tc c c c c cW W W W W W W=   

converging to the optimal values. In fact after 250s the critic parameters converged to 

1
ˆ ( ) [1.4279    1.0193   -0.1473 1.4462   -0.1376 0.4330]TfW t =   

 The actor parameters after 300s converge to the values of 

2
ˆ ( ) [1.4279    1.0193   -0.1473 1.4462   -0.1376 0.4330] .TfW t =  

 The actor NN is given by 

1

2 1

3 11
2 22

2

3 2

3

2 0 0

0
0

0
ˆˆ ( ) 0 ( )

0 2 0
1

0

0 0 2

T

T

f

x

x x

x x
u x W t

x

x x

x

 
 
  
  =−   
     
 
 
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 The evolution of the system states is presented in Figure 42.  One can see that after 

250s convergence of the NN weights in both critic and actor has occurred.  This shows that the 

probing noise effectively guaranteed the PE condition.   

 

Figure 41. Convergence of the critic parameters to the parameters of the optimal critic. 

 

Figure 42. Evolution of the system states for the duration of the experiment. 
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7.4.2 Nonlinear system example 

 Consider the following affine in control input nonlinear system, with a quadratic cost 

constructed as in [64] 

2( ) ( ) ,x f x g x u x R= + ∈ɺ  

where 

  

1 2

3 3
1

2
3 2

2 2 1
2

11 1
1 0

0
( ) ,  ( ) ,

cos(2 ) 2 cos(2.2 ) 25 ( )

x x

f x g x
x x x x

x
x x x

x

− + 
  

= =   + +− − − + + +   
 

 

 One selects 
1 0

, 1
0 1

Q R
 

= = 
 

and 0.01T = . 

 The optimal value function is 

  * 4 2
1 2

1 1
( )

4 2
V x x x= +  

the optimal control signal is 

 * 31
1 1 22

( ) (cos(2 ) 2)u x x x x= − + +  

 One selects the critic NN vector activation function as 

2 2 4 4

1 2 1 2
( ) [         ]x x x x xφ =  

 Figure 43 shows the critic parameters, denoted by 

1 1 2 3 4
ˆ [ ]Tc c c cW W W W W=  

 After the simulation by using the integral reinforcement learning algorithm we have 

 
1
ˆ ( ) [0.0033    0.4967    0.2405    0.0153]T

f
W t =  

 The actor parameters after 80s converge to the values of 

2
ˆ ( ) [0.0033    0.4967    0.2405    0.0153]TfW t = . 

 The actor NN is given by 
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3
1 11

2 232 3
1 1 2 2

0 2 0 4 0 ˆˆ ( ) ( )
cos(2 ) 2 0 2 0 4

T

f

x x
u x W t

x x x x

  
=−   

+ +     
 

 The evolution of the system states is presented in Figure 44.  One can see that after 

80s convergence of the NN weights in both critic and actor has occurred.  This shows that the 

probing noise effectively guaranteed the PE condition. 

 Figure 45 shows the 3-D plot of the difference between the approximated value 

function, by using the online algorithm, and the optimal one. This error is close to zero. Good 

approximation of the actual value function is being evolved. Figure 46 shows the 3-D plot of the 

difference between the approximated control, by using the online integral reinforcement learning 

algorithm, and the optimal one. This error is close to zero.  

 

Figure 43. Convergence of the critic parameters to the parameters of the optimal critic. 
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Figure 44. Evolution of the system states for the duration of the experiment. 

 

 

Figure 45. Error between the optimal and approximated value function. 

 



 

 171

 

Figure 46. Error between the optimal and the approximated control input. 

 

7.5 Conclusion 

 In this chapter we have proposed a new adaptive algorithm which solves the 

continuous-time optimal control problem for affine in the inputs nonlinear systems. The 

importance of this algorithm relies on the partial need of dynamics, only ( )g x is needed, the 

simultaneous tuning of the actor and critic neural networks and the convergence to HJB and 

Bellman equation solution without solving these equations. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 In this thesis have been developed online learning algorithms which use reinforcement 

learning ideas to solve games and optimal control problems by tuning simultaneously all the 

critic and actor neural networks and by measuring the states or input/output data.  

 This thesis considers three classes of dynamical systems. The first one is the linear 

continuous-time system, the second one is the affine in control nonlinear continuous-time 

system and the third one is the linear discrete-time system. 

 The new results presented herein are: 

1. An online adaptive optimal controller to solve the continuous-time infinite horizon 

optimal control problem by tuning the critic and actor neural networks simultaneously. The 

algorithm converges to the solution of Hamilton-Jacobi-Bellman equation without solving it. 

2. An online gaming algorithm to solve the zero-sum game problem, by tuning the critic, 

actor and disturbance neural networks simultaneously. The algorithm converges to the solution 

of Hamilton-Jacobi-Isaacs equation without solving it. 

3. An online adaptive control algorithm based on policy iteration to solve the 

continuous-time multi player non zero sum game with infinite horizon for linear and nonlinear 

systems. Every player has his own actor/critic structure and the algorithm tunes all N actor/critic 

neural networks at the same time. The algorithm converges to the solution of coupled Hamilton-

Jacobi equations and coupled Riccati equations for nonlinear and linear systems respectively 

without solving them. 

4. Reinforcement learning methods which require only output feedback and yet 

converge to an optimal controller. 

5. Policy iteration and online learning solution is developed for graphical games. 
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6. Online adaptive learning algorithm (synchronous policy iteration) that uses integral 

reinforcement learning and does not need any knowledge on the drift dynamics. 

Convergence and stability proofs are provided for all the aforementioned algorithms.  

The following are some of the directions for continuation of this work 

1. Extend the idea of online adaptive learning algorithm with integral reinforcement 

learning to zero and non-zero sum games. 

2. Adaptive optimal controllers for nonlinear systems that use only output feedback. 
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APPENDIX A 

PROOFS 
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Proofs for Chapter 2 

Proof for Technical Lemma 2.2 Part a:  

 This is a more complete version of results in [36], [87]. 

 Set 0
H

ε = in (2.26). Take the Lyapunov function  

1

1 1 1

1

2

T
L W a W

−= ɶ ɶ                                                        (A.1) 

 The derivative is 

1 1 1 1

TL W Wσ σ Τ= −ɺ ɶ ɶ  

 Integrating both sides 

1 1 1 1

1 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )

t T

t

t T

T

t

L t T L t W W d

L t T L t W t t t d W t

σ τ σ τ τ

τ σ τ σ τ τ τ

+
Τ Τ

+
Τ Τ

+ − = −

+ = − Φ Φ

∫

∫

ɶ ɶ

ɶ ɶ
 

1 1 1 1 3
( ) ( ) ( ) (1 2 ) ( )L t W t SW t a L tβΤ= − ≤ −ɶ ɶ

 
  So 

1 3
( ) (1 2 ) ( )L t a L tβ+Τ ≤ −                                          (A.2) 

  Define
1 3

(1 2 )aγ β= − .  By using norms we write (A.2) in terms of 
1

Wɶ as
 

 

2 2

1 3

1 1

1 3

1 1
( ) (1 2 ) ( )

2 2

( ) (1 2 ) ( )

W t T a W t
a a

W t T a W t

β

β

+ ≤ −

+ ≤ −

ɶ ɶ

ɶ ɶ

 

  ( ) ( )W t T W tγ+ ≤ɶ ɶ                                                          

  Therefore  

|| ( ) || || (0) ||kW k WγΤ ≤ɶ ɶ                                              (A.3) 
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i.e. ( )W tɶ decays exponentially.  To determine the decay time constant in continuous time, 

note that 

|| ( ) || || (0) ||kTW k e Wα−Τ ≤ɶ ɶ   (A.4) 

where kT ke α γ− = .   

 Therefore the decay constant is 

1 3

1 1
ln( ) ln( 1 2 ).aα γ α β= − ⇔ = − −

Τ Τ
                 (A.5) 

This completes the proof.                                            

 ■ 

Proof for Technical Lemma 2.2 Part b:  

 Consider the system 

( ) ( ) ( )

( ) ( ) ( )T

x t B t u t

y t C t x t

=


=

ɺ
                                                    (A.6)  

 The state and the output are  

( ) ( ) ( ) ( )

( ) ( ) ( )

t T

t

T

x t T x t B u d

y t T C t T x t T

τ τ τ
+

+ = +

 + = + +

∫  (A.7) 

 Let ( )C t be PE, so that  

 1 2( ) ( )

t T

T

C

t

I S C C d Iβ λ λ λ β
+

≤ ≡ ≤∫ .                      (A.8) 

 Then, 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t T

T T

t

t T

T

t t

t T

T

t

t T

T

C

t t

y t T C t T x t C t T B u d

C y C B u d d

C C x t d

C y C B u d d S x t

λ

λ

τ τ τ

λ λ λ τ τ τ λ

λ λ λ

λ λ λ τ τ τ λ

+

+

+

+

+ = + + +

 
− =  

 

 
− =  

 

∫

∫ ∫

∫

∫ ∫
 

1
( ) ( ) ( ) ( ) ( ) ( )

t T

T

C

t t

x t S C y C B u d d

λ

λ λ λ τ τ τ λ
+

−
   

= −   
   
∫ ∫

 

 Taking the norms in both sides yields

 

1 1
|| ( ) || || ( ) ( ) || || ( ) ( ) ( ) ( ) ||

t T t T

T

C C

t t t

x t S C y d S C C B u d d

λ

λ λ λ λ λ τ τ τ λ
+ +

− −
   

≤ +    
   

∫ ∫ ∫

 
1 1

2 2
1

1

1

|| ( ) || ( ) ( ( ) ( ) ) ( ( ) ( ) )

( ) ( ) || ( ) ( ) ||

t T t T

T T

t t

t t

T

C

t t

x t C C d y y d

S C C d B u d

β λ λ λ λ λ λ

λ λ λ τ τ τ

+ +
−

+Τ +Τ
−

≤ Ι

  
+  

  

∫ ∫

∫ ∫

 

2 2

max

1 1

|| ( ) || || ( ) || || ( ) ||

t T

t

x t y B u d
β δβ

τ τ τ
β β

+Τ
≤ + ⋅∫

   

(A.9) 

where δ is a positive constant of the order of 1.  Now consider   

1 1 1
( ) .W t a uσ=ɺɶ

  

(A.10) 

 Note that setting H

s

u y
m

ε
= − +  with output given 

1 1

Ty Wσ= ɶ  turns (A.10) into (2.26). Set 

1 1 1 1
,  , ( )B a C x t Wσ σ= = = ɶ

 
so that (A.6) yields (A.10).  Then,   

max max

H

s

u y y
m

ε
ε≤ + ≤ +                                 (A.11) 

since 1
s

m ≥ .  Then, 

1 1|| ( ) || || ( ) || || ( ) || || ( ) ||

t T t T

t t

� B u d a u dτ τ τ σ τ τ τ
+ +

≡ ⋅ = ⋅∫ ∫  



 

 178

1 max max 1( ) || ( ) ||

t T

t

a y dε σ τ τ
+

≤ + ∫  

   

1/ 2 1/ 2

2

1 max max 1
( ) || ( ) || 1

t T t T

t t

a y d dε σ τ τ τ
+ +   

≤ +    
   
∫ ∫  

 By using (A.8),

 
1 max max 2
( )� a y ε β≤ + Τ                                      (A.12) 

 Finally (A.9) and (A.12) yield, 

( ){ }2

1 max 2 1 max max

1

( ) .W t y a y
β

δβ ε
β

Τ
 ≤ + + 

ɶ         (A.13) 

This completes the proof.                                

 ■ 

Proof of Theorem 2.2. 

 The convergence proof is based on Lyapunov analysis. We consider the Lyapunov 

function 

1 1

1 1 1 2 2 2

1 1
( ) ( ) ( ) ( ).

2 2

T T
L t V x tr W a W tr W a W

− −= + +ɶ ɶ ɶ ɶ      (A.14) 

 With the chosen tuning laws one can then show that the errors 
1

Wɶ  and 
2

Wɶ  are UUB 

and convergence is obtained.  

 Hence the derivative of the Lyapunov function is given by 

1 1

1 1 1 2 2 2
( ) ( ) T TL x V x W W W Wα α− −= + +ɺ ɺɺ ɺ ɶ ɶ ɶ ɶ

1 2
( ) ( ) ( )

V
L x L x L x= + +ɺ ɺ ɺ   (A.15) 

 First term is, 

1
11 1 2 1 2

1 1ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
2 2

T T T T
V x W f x D x W x f x g x R g x Wφ ε φ−   

= ∇ − +∇ − ∇   
   

ɺ

 

  
Then

 

11 1 2 1

1 ˆ( ) ( ) ( ) ( )
2

T
V x W f x D x W xφ ε 

= ∇ − + 
 

ɺ
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 ( )1 11 1 1 1 2 1 1 1

1 1ˆ( ) ( ) ( ) ( )
2 2

T T T
W f x W D x W W W D x W xφ ε= ∇ + − − +  

   

1 11 1 1 2 1 1 1

11 1 1 2 1

1 1
( ) ( ) ( ) ( )

2 2

1
( ) ( )

2

T T T

T T

W f x W D x W W D x W x

W W D x W x

φ ε

σ ε

= ∇ + − +

= + +

ɶ

ɶ
 

where 

   1

1 1 2

1 ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
2

T T T
x x x f x g x R g x x Wε ε ε φ− 

≡ = ∇ − ∇ 
 

ɺ  

 From the HJB equation 

    11 1 1 1

1
( ) ( ) ( ) .

4

T T

HJBW Q x W D x W xσ ε= − − +  

 Then 

1 1 1 1 1 2 1

1 1
( ) ( ) ( ) ( ) ( ) ( )

4 2

T T

V HJBL x Q x W D x W W D x W x xε ε= − − + + +ɺ ɶ
1 1 2 1

1
( ) ( ) ( ).

2

T

VL x W D x W xε≡ + +ɺ ɶ                   

 (A.16) 

Second term is, 

( )

( )

1

1 1 1 1

1 2
11 1 1 2 1 2 22

2 2

2
1 2 1 2 1 2 1 1 1 1 12

2 2

1ˆ ˆ ˆ( )
41
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4 41
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α

σ
α α σ

σ σ

σ
σ σ ε
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−
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=

 
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 +
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+

ɺɺ ɶ ɶ

ɶ

ɶ
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2
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4 41

T T T T T

HJB
T
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σ

σ σ ε
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+

ɶ  
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1 1 1
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2 2 41

1
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4

T
T T T T T T

T

T

HJB

W W x f x W D x W W D x W W D x W

W D x W x

σ
φ
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( )
2

1 11 1 1 2 1 2 22
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2 41

T T T T T

HJB
T

W f x x W W D x W W D x W x
σ

φ ε
σ σ

= − ∇ + + +
+

ɶ ɶ ɶ ɶ ɶ . 
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( )
2

1 1 2 1 2 1 22

2 2

1
( ( ) ( ))

41

T T T

HJB
T

L W W W D x W x
σ

σ ε
σ σ

= − + +
+

ɺ ɶ ɶ ɶ ɶ  

( )
2

1 1 2 1 22

2 2

1
( )

4 1

T T

T
L W W D x W

σ

σ σ
= +

+

ɺ ɶ ɶ ɶ           (A.17) 

where 

   

( )
( )2

1 1 2 12

2 2

( )
1

T T

HJB
T

L W W x
σ

σ ε
σ σ

= − +
+

ɺ ɶ ɶ  

   
1 2 2 1

( )T T HJB

s

x
W W

m

ε
σ σ

 
= − + 

 
ɶ ɶ . 

 Finally by adding the terms (A.16) and (A.17) 

1 1 1 1 1 2 1

1 1
( ) ( ) ( ) ( ) ( ) ( )

4 2

T T

HJBL x Q x W D x W W D x W x xε ε= − − + + +ɺ ɶ

( )
12

1 2 1 2 1 2 2 2 22

2 2

1
( ( ) ( ))

41

T T T T

HJB
T

W W W D x W x W W
σ

σ ε α
σ σ

−+ − + + +
+

ɺɶ ɶ ɶ ɶ ɶ ɶ  

1 2 2
11 1 2 2 2 2 1 2 1 1 1 2 1 1 1

1 1 1ˆ( ) ( ) ( ) ( ) ( )
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T T
T T T T

V

s s
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m m

σ σ
ε α −= + + − + + −

ɺɺ ɺɺ ɶ ɶ ɶ ɶ ɶ  

2 2
2 1 2 1 2 1 2 1

1 1 ˆ ˆ( ) ( )
4 4

T T
T T

s s

W D x W W W D x W W
m m

σ σ
+ +ɶ ɶ ɶ            (A.18) 

 where 2

2

2 2 1
T

σ
σ

σ σ
=

+
and 

2 2
1T

s
m σ σ= + . 

 In order to select the update law for the action neural network, write (A.18) as 

1 21
11 1 2 2 2 2 1 2 1 14

2 2 2

2 1 1 1 2 1 1 1 2 1 1 2

1ˆ ˆ ˆ( ) ( ) ( ) ( )
2
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T
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m
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m m m

σ
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σ σ σ

− 
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 

+ − +

ɺɺ ɺɺ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

 

and we define the actor tuning law as 

( )2 2 2 2 1 2 1 1 2 1

1ˆ ˆ ˆ ˆ ˆ( ) .
4

T T
W FW F W D x W m Wα σ 

= − − − 
 

ɺ
 (A.19) 
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 This adds to Lɺ  the terms 

   
2 2 2 2 1 2 1

2 2 1 2 2 1 2 1 1

ˆ ˆ

( ) ( )

T T T

T T T

W FW W F W

W F W W W F W W

σ

σ

−

= − − −

ɶ ɶ

ɶ ɶ ɶ ɶ
 

   
2 2 1 2 2 2 2 1 2 1 2 1 2 1

T T T T T TW FW W FW W F W W F Wσ σ= − − +ɶ ɶ ɶ ɶ ɶ ɶ . 

 Overall  

1 1 1 1 2 2 1 1

2 2 2

2 1 1 2 1 1 1 2 1 1 1 2 1 1 2

2 2 1 2 2 2 2 1 2 1 2 1 2 1
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T T T HJB
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s
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s s s
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m

W D x W W D x W W W D x W W W D x W W
m m m

W FW W FW W F W W F W
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ε σ σ ε

σ σ σ

σ σ

 
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+ − − +

ɺ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

 (A.20) 

 Now it is desired to introduce norm bounds.  It is easy to show that under the Facts 

     ( )21
1 min 1 22
( ) ( )

x x xf g
x b b x b b b R W Wε ε φε σ< + + ɶ  

 Also, since ( ) 0Q x >  there exists q such that ( )Tx qx Q x< for x∈Ω .  It is shown in [4] 

that 
HJB

ε  converges to zero uniformly as N increases.   

 Select 0ε >  and 
0
( )� ε  such that sup HJB

x

ε ε
∈Ω

< . Then, assuming 
0
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2

x

Z W

W

σ Τ

 
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(A.20) becomes 
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21 1 1
1 2 1 2 1 1 1 min2 4 2
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D F F DWm W b b b R
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Define
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1
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(A.22) 
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σ σ
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2 21

1 1 1 min2

1
( ) || || ( )

4 x x gc W D x W b b b Rε ϕε σ= + +  

Let the parameters be chosen such that 0M > . Now (A.21) becomes 

     

2

min
( )L Z M d Z cσ ε< − + + +ɺ ɶ ɶ

 

Completing the squares, the Lyapunov derivative is negative if  

2

2

min minmin

.
2 ( ) ( )4 ( )

Z

d d c
Z B

M MM

ε
σ σσ

+
> + + ≡ɶ       (A.23) 

 It is now straightforward to demonstrate that if L exceeds a certain bound, then, Lɺ  is 

negative.  Therefore, according to the standard Lyapunov extension theorem [42], [50]  the 

analysis above demonstrates that the state and the weights are UUB. 

 This completes the proof.                                               

                                                                                        ■ 
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Proofs for Chapter 3 

Proof for Theorem 3.2: The convergence proof is based on Lyapunov analysis. 

 We consider the Lyapunov function 

 1 1 1
1 1 1 2 2 2 3 3 3

1 1 1
( ) ( ) ( ) ( ) ( ).

2 2 2

T T T
L t V x tr W a W tr W a W tr W a W

− − −= + + +ɶ ɶ ɶ ɶ ɶ ɶ   (A.24) 

 The derivative of the Lyapunov function is given by 
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1 1 1 2 2 2 3 3 3( ) ( ) T T TL x V x W W W W W Wα α α− − −= + + +ɺ ɺ ɺɺ ɺ ɶ ɶ ɶ ɶ ɶ ɶ   (A.25) 

 First term is, 
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 Second term is, 
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 By adding the terms of (A.26) and (A.27) we have 
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where 2
2

2 2 1T

σ
σ

σ σ
=

+
and 2 2 1T

sm σ σ= + . 

 In order to select the update law for the action neural networks, write (A.28) as 
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 Now define the actor tuning law as 
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1ˆ ˆ ˆ ˆ ˆ( )
4

T T
W F W F W D x W m Wα σ 

= − − − 
 

ɺ
  (A.29) 

and the disturbance tuning law as 

 ( )3 3 4 3 3 2 1 1 3 12

1ˆ ˆ ˆ ˆ ˆ( )
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T T
W F W F W x W m Wα σ

γ
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  

ɺ
.   (A.30) 

 This adds to Lɺ  the terms 
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2 2 1 2 2 2 2 1 2 1 2 1 2 1 3 4 1 3 4 3 3 3 2 1 3 3 2 1
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ+ − − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ   

   (A.31) 

 Now it is desired to introduce norm bounds.  It is easy to show that under the Facts 3.1 

 ( ) ( )2

2 21 1
1 min 1 2 1 32 2
( ) ( )

x x x x xf g kx b b x b b b R W W b b b W Wε ε φ ε φγ
ε σ< + + + +ɶ ɶ  

 Also since ( ) 0Q x > there exists q such that ( )Tx qx Q x< locally. It is shown in [3], [5] that 

HJIε  converges to zero uniformly as N increases.  
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 Select 0ε >  and 0 ( )� ε  such that sup HJIε ε< . Then assuming 0� �> and writing in 

terms of  2 1

2

3

x

W
Z

W

W

σ Τ

 
 
 =  
 
  

ɶ
ɶ

ɶ

ɶ

, (A.31) becomes

 

2

2 2 2 21 1
1 1 1 1 1 min 122 2

1 1
( ) ( ) || || ( ) || ||

4 4
x x x xg kL W D x W E x W b b b R W b b bε ϕ ε φγ

ε σ
γ

< + + + +ɺ  

 ( )

( )2

1 1
1 1 1 3 1 12 2 2

1 1
1 1 1 2 1 1 1 12 8

1 1
3 1 1 4 1 1 1 12 2 8

0 0 0

1 1
0

8 8

1
0 0

8

1
0 0

8

T

s s

T

T

s

T

s

qI

I F DW F W
m m

Z Z
F DW F DW m mW D
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ɶ    (A.32) 

 Define 
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      (A.33) 
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2

2 2 2 21 1
1 1 1 1 1 min 122 2
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( ) ( ) || || ( ) || ||

4 4
x x x xg kc W D x W E x W b b b R W b b bε ϕ ε φγ

σ
γ

= + + +   

 Let the parameters 1F , 2F , 3F and 4F be chosen such that 0M > . To justify this, the 

matrix M is written in compact form as 

23

32 33

0 0

0

0

q

M I M

M M

 
 =  
  

                                                   (A.34) 

where in order to be positive definite the following properties  must hold 

a) 0q >  

b) 0I >  

c) Shur complement for I is  

   1
22 23 33 32 0D I M M M−= − >                                 (A.35) 

 22D  can be made positive definite by selecting 2 1 4 3,F F F F≫ ≫ , since 1W is bounded above 

by maxW . 

  Now (A.32) becomes 

 

2

min ( )L Z M d Z cσ ε< − + + +ɺ ɶ ɶ
 

 Completing the squares, the Lyapunov derivative is negative if  

 
2

2
min minmin

.
2 ( ) ( )4 ( )

Z

d d c
Z B

M MM

ε
σ σσ

+
> + + ≡ɶ    (A.36) 
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 It is now straightforward to demonstrate that if L exceeds a certain bound, then, Lɺ  is 

negative.  Therefore, according to the standard Lyapunov extension theorem [50] the analysis 

above demonstrates that the state and the weights are UUB. 

 To show this from (A.24), one has,   

2 2 2 2 2 22 2
min 1 2 3 max 1 2 3

1 2 3 1 2 3

1 1 1 1 1 1
( ) ( )

2 2 2 2 2 2
P x W W W L P x W W W

a a a a a a
σ σ+ + + ≤ ≤ + + +ɶ ɶ ɶ ɶ ɶ ɶ

   (A.35) 
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   ≤ ≤
   
   
   
      
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 (A.37) 

 Equation (A.37) is equivalent to

 

 min 1 max 2( ) ( )T TZ S Z L Z S Zσ σ≤ ≤ɶ ɶ ɶ ɶ
 

 Then  

 
2 2

min 1 max 2( ) ( )S Z L S Zσ σ≤ ≤ɶ ɶ .  
 

 Therefore, 

2
2

1 2
max 2 2

min minmin

( )
2 ( ) ( )4 ( )

d d c
L S

M MM

ε ε
σ

σ σσ

 
+ + > + +  

 

              (A.38) 

implies (A.36). 

 Note that condition (A.36) holds if the norm of any component of Zɶ exceeds the bound, 

i.e. specifically Zx B> or 2 1 ZW Bσ Τ >ɶ or 2 ZW B>ɶ  or 3 ZW B>ɶ  [42]. 

 Now consider the error dynamics and the output as in Technical Lemmas 3.1, 3.2 and 

assume 2σ is persistently exciting  
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1 1
11 1 2 2 1 1 2 2 1 2 3 32 2 2

( )
4 4

T THJI

s s s

a a
W a W a W D x W W W

m m m

ε
σ σ σ

γ
Τ= − + + − Εɺɶ ɶ ɶ ɶ ɶ ɶ   

 2 1
Ty Wσ= ɶ .   (A.39) 

Then Theorem 3.1 is true with  

 
2 2 12 1

1 max 2 32

1 1 1

4 4

T

s s s s

D
W W W

m m m m

σ
ε ε

γ

Ε
> > − +ɶ ɶ ɶ  (A.40) 

This provides an effective practical bound for 2 1
T
Wσ ɶ .  

This completes the proof. 

  ■ 

Proofs for Chapter 4 

Proof for Theorem 4.2: The convergence proof is based on Lyapunov analysis. 

 We consider the Lyapunov function 

1 1 1 1
1 2 1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 1
( ) ( ) ( ) .

2 2 2 2

T T T TL t V x V x W a W W a W W a W W a W− − − −= + + + + +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ        (A.41)  

where 1( )V x and 2( )V x are the approximate solutions to (4.10) and are given by (4.25) and (4.26) 

respectively. 

 The time derivative of the Lyapunov function is given by 

  1 1 1 1
1 2 1 1 1 2 2 2 3 3 3 4 4 4( ) ( ) ( ) T T T TL x V x V x W a W W a W W a W W a W− − − −= + + + + +ɺ ɺ ɺ ɺɺ ɺ ɺ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ             (A.42)  

  Next we will evaluate each one of the terms of ( )L xɺ . First term is, differentiating (4.25), 

and adding and subtracting 1 2 2

1
( )

2

TW E x W and 1 1 1

1
( )

2

TW D x W  

1 1
1 1 1 1 3 2 4 1 11 1 3 22 2 4
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= ∇ − − +∇ − ∇ − ∇   

   

= ∇ + − + − − − +

ɺ

ɺ

1 1 1 1 3 1 2 4 1

1 1
( ) ( ) ( )

2 2

T T TW W D x W W E x W xσ ε= + + +ɶ ɶ ɺ  
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where 

1
2 1 22 2( ) ( ) ( )T TE x x kR k xφ φ−≡ ∇ ∇ , 1 1 1 2( )( )x f gu kdσ φ= ∇ + + , 1

1 1 11 1( ) ( ) ( ) ( ) ( )T TD x x g x R g x xφ φ−≡ ∇ ∇ and 

1 1( ) ( )Tx xε ε= ∇ɺ 1 1
11 1 3 22 2 4

1 1ˆ ˆ( ) ( ) ( )
2 2

T T T Tf x g x R g x W kR k Wφ φ− − 
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 
  (A.43) 

 From  (4.23) we have 
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 Similarly for the second term 
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 From (4.24) 
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 Then we add 1( )V xɺ and 2( )V xɺ  
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where  
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 Using the tuning law (4.42) for the first critic and the definitions for the parameter errors 

(4.41), the third term becomes 

1
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 Finally by rearranging and grouping the terms  

 13
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where 1
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3
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+
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T

sm σ σ= + . 

 Similarly by using the tuning law (4.43) for the second critic and the definitions for the 

parameter errors (4.41), the fourth term becomes 
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2 2 2 4 2 4 3 1 11 21 11 1 32

4 4
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where 2
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2 4 4 1
T

sm σ σ= + . 

 Finally we need to add the terms of (A.45), (A.46) and (A.47), but in order to select the 

update laws for the action NNs, we group together the terms  of 3Wɶ  and 4Wɶ that are multiplied 

with the estimated values (two last terms) 
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 In order for the last two terms to be zero we define the actor tuning law for the first 

player as 
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and the second player’s actor tuning law is defined as 
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s s

W a F W F W D x W W k x R R R k x W W
m m

σ σ
σ φ φ− −= − − − − ∇ ∇

ɺ
 

 But this adds to Lɺ  the following terms 

3 2 1 3 2 3 3 1 3 1 3 1 3 1 4 4 2 4 4 4 4 3 4 2 4 3 4 2
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ− − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  
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Overall 

1

2

1 11 1
1 1 1 11 1 1 2 2 22 12 22 2 24 4

1 11 1
2 1 1 11 21 11 1 1 2 2 22 2 24 4

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T T T T T T T
HJB

T T T T T T T
HJB

L x Q x W g x R g x W W k x R R R k x W

Q x W g x R R R g x W W k x R k x W

ϕ ϕ φ φ ε

φ φ φ φ ε

− − −

− − −

= − − ∇ ∇ − ∇ ∇ +

− − ∇ ∇ − ∇ ∇ +

ɺ

1 2

1 2

1 3 3 1 1 2 4 4 2 2

( ) ( )
( ) ( ) ( ) ( )

HJ HJT T T T

s s

x x
W W x W W x

m m

ε ε
σ σ ε σ σ ε+ − + + + − + +ɶ ɶ ɶ ɶɺ ɺ

1 1 3 1 2 4 2 1 3 2 2 4

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

T T T TW D x W W E x W W E x W W D x W+ + + +ɶ ɶ ɶ ɶ

1 2 1

13 4 3
1 2 4 1 2 1 3 2 2 2 22 12 22 2 4 1

1 1 1
( ) ( ) ( )

2 2 2

T T T
T T T T T T

s s s

W E x W W W EW W W k x R R R k x W W
m m m

σ σ σ
φ φ− −+ + − ∇ ∇ɶ ɶ ɶ ɶ ɶ ɶ

2 1 1

1 4 3 3
1 1 11 21 11 1 3 2 3 1 1 1 3 1 1 1

1 1 1
( ) ( ) ( ) ( )

2 4 4

T T T
T T T T T T

s s s

W g x R R R g x W W W D x W W W D x W W
m m m

σ σ σ
φ φ− −− ∇ ∇ + −ɶ ɶ ɶ ɶ ɶ

1 1

13 3
3 1 3 1 4 2 22 12 22 2 2 1

1 1
( ) ( ) ( )

4 4

T T
T T T T T

s s

W D x W W W k x R R R k x W W
m m

σ σ
φ φ− −+ + ∇ ∇ɶ ɶ ɶ ɶ

1 1

1 13 3
4 2 22 12 22 2 2 1 4 2 22 12 22 2 4 1

1 1
( ) ( ) ( ) ( )

4 4

T T
T T T T T T T T

s s

W k x R R R k x W W W k x R R R k x W W
m m

σ σ
φ φ φ φ− − − −− ∇ ∇ + ∇ ∇ɶ ɶ ɶ

2 2

4 4
4 2 2 2 4 2 2 2

1 1
( ) ( )

4 4

T T
T T

s s

W D x W W W D x W W
m m

σ σ
+ −ɶ ɶ ɶ

2 2

14 4
4 2 4 2 3 1 11 21 11 1 1 2

1 1
( ) ( ) ( )

4 4

T T
T T T T T

s s

W D x W W W g x R R R g x W W
m m

σ σ
φ φ− −+ + ∇ ∇ɶ ɶ ɶ ɶ

2 2

1 14 4
3 1 11 21 11 1 1 2 3 1 11 21 11 1 3 2

1 1
( ) ( ) ( ) ( )

4 4

T T
T T T T T T T T

s s

W g x R R R g x W W W g x R R R g x W W
m m

σ σ
φ φ φ φ− − − −− ∇ ∇ + ∇ ∇ɶ ɶ ɶ

3 2 1 3 2 3 3 1 3 1 3 1 3 1 4 4 2 4 4 4 4 3 4 2 4 3 4 2
T T T T T T T T T T T TW F W W F W W F W W F W W F W W F W W F W W F Wσ σ σ σ+ − − + + − − +ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (A.48) 

 Now it is desired to introduce norm bounds. It is easy to show that under the Facts 4.1 

equations (A.43) and (A.44) become 

( ) ( )1 1 1 1 2

2 21 1
1 min 11 1 3 min 22 2 42 2
( ) ( ) ( )

x x x x xf g kx b b x b b b R W W b b b R W Wε ε φ ε φε σ σ< + + + +ɶ ɶɺ  

( ) ( )2 2 1 2 2

2 21 1
2 min 11 1 3 min 22 2 42 2
( ) ( ) ( )

x x x x xf g kx b b x b b b R W W b b b R W Wε ε φ ε φε σ σ< + + + +ɶ ɶɺ  

 Also since 1( ) 0Q x > and 2( ) 0Q x > there exists 1q and 2q such that 1 1( )
Tx q x Q x< and 

2 2( )
Tx q x Q x< for x∈Ω . 
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 Select 1 0ε > , 2 0ε >  and 0 1( )K ε , 0 2( )K ε  such that 
1 1sup HJ

x

ε ε
∈Ω

<  and 
2 2sup HJ

x

ε ε
∈Ω

< . Then 

assuming 0K K> and writing in terms of  

3 1

4 2

3

4

x

W

Z W

W

W

σ

σ

Τ

Τ

 
 
 
 =  
 
 
  

ɶ

ɶ ɶ

ɶ

ɶ

and known bounds (under Facts 4.1), 

(A.48) becomes 

2 21 11 1
1 1 11 1 2 2 22 12 22 2 14 4

2 21 11 1
1 1 11 21 11 1 2 2 22 2 24 4

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T T T

T T T T T

L x W g x R g x W k x R R R k x

W g x R R R g x W k x R k x

ϕ ϕ ϕ ϕ ε

ϕ ϕ ϕ ϕ ε

− − −

− − −

= ∇ ∇ + ∇ ∇ +

+ ∇ ∇ + ∇ ∇ +

ɺ

1 2 2 1 2 21 1

2 2 2 21 1 1 1
min 11 1 min 22 2 min 11 1 min 22 22 2 2 2
( ) ( ) ( ) ( )

x x x x x x x xg k g kb b b R W b b b R W b b b R W b b b R Wε φ ε φ ε φ ε φσ σ σ σ+ + + +

 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

T

m m m m m

m m m m m

Z m m m m m Z

m m m m m

m m m m m

 
 
 
 −
 
 
  

ɶ ɶ

1

2

3

4

5

d

d

Z d

d

d

 
 
 
 +
 
 
  

ɶ   (A.49) 

Where the components of the matrix M are given by  

   

11 1 2

22 33

1
44 2 1 1 1 1 1 1 1 11 21 11 1 2 2

1
2 2 1 11 21 11 1

1
( ( ) ( )

8

( ) ( ) )

T T T T T T

T T T T

m q q

m m I

m F DW m mW D g x R R R g x W m

m W g x R R R g x

φ φ

φ φ

− −

− −

= +

= =

= − + +∇ ∇

+ ∇ ∇

 

   

1
55 4 2 22 12 22 2 1 1

1
1 1 2 22 12 22 2 2 2 2 2 2 2

1
( ( ) ( )

8

( ) ( ) ( ) ( ) )

T T T T

T T T T T T

m F k x R R R k x W m

mW k x R R R k x m W D x D x W m

φ φ

φ φ

− −

− −

= − ∇ ∇

+ ∇ ∇ + +

 

   

1

42 1 1 1 24

1 1

2 8

T

s

m F DW m
m

= − − =  

   

1 1

1
52 2 22 12 22 2 2 2 1 25

1 1
( ) ( )

8 4

T T T T

s s

m k x R R R k x W E W m
m m

φ φ− −= − ∇ ∇ − =  

2 2

1 1
43 1 11 21 11 1 1 1 11 21 11 1 1 34

1 1
( ) ( ) ( ) ( )

4 8

T T T T T T T

s s

m g x R R R g x W g x R R R g x W m
m m

φ φ φ φ− − − −= − ∇ ∇ − ∇ ∇ =  
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2

53 3 2 2 53

12 21 31 13 32 23 41 14 51 15 54 45

1 1
( )

2 8

0

T

s

m F D x W m
m

m m m m m m m m m m m m

= − − =

= = = = = = = = = = = =

 

and the components of vector D are given 

   

1 2

1

1

2

2

1

2

3

( )
x x f

HJ

s

HJ

s

d b b b

d
m

d
m

ε ε

ε

ε

= +

=

=

 

 
11

21
4 2 1 1 3 1 1 1 1 2 min 11 1 1 1 12

1
1 11 21 11 1 1 2 2

1 1 1
( )

2 2 4

1
( ) ( )

4

x x

T T
g

T T T T

d F W F W DW EW b b b R DW m W

g x R R R g x W m W

ε φσ σ

φ φ− −

= − + + + −

− ∇ ∇
 

 

21

5 4 2 3 4 2 2 2 2 1

2 11
min 22 2 2 2 2 2 22 12 22 2 2 1 12

1 1

2 2

1 1
( ) ( ) ( ) ( )

4 4x x

T

T T T T T
k

d F W F W D W E W

b b b R D x W m W k x R R R k x W m Wε φ

σ

σ φ φ− −

= − + +

+ − − ∇ ∇
 

Define 

2 21 11 1
1 1 11 1 2 2 22 12 22 24 4

( ) ( ) ( ) ( )T T T T Tc W g x R g x W k x R R R k xϕ ϕ ϕ ϕ− − −= ∇ ∇ + ∇ ∇

2 21 11 1
1 1 11 21 11 1 2 2 22 24 4

( ) ( ) ( ) ( )T T T T TW g x R R R g x W k x R k xϕ ϕ ϕ ϕ− − −+ ∇ ∇ + ∇ ∇

1 2 2 1 2 21 1

2 2 2 21 1 1 1
min 11 1 min 22 2 min 11 1 min 22 22 2 2 2
( ) ( ) ( ) ( )

x x x x x x x xg k g kb b b R W b b b R W b b b R W b b b R Wε φ ε φ ε φ ε φσ σ σ σ+ + + +

 

 According to Facts 4.1 c is bounded by maxc , and D is bounded by maxD which can be 

expressed in terms of the bounds given there. 

 Let the parameters be chosen such that 0M > . To justify this, the matrix M is written in 

compact form as 

1 2

2 23

32 33

0 0

0

0

q q

M I M

M M

+ 
 =  
  

  (A.50) 

where in order to be positive definite the following properties (Lewis, Syrmos, 1995) must hold 

a) 1 2 0q q+ >  
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b) 2 0I >  

c) Shur complement for 2I is 1
22 2 23 33 32 0D I M M M−= − >  which hold after proper selection of 

1F , 2F , 3F and 4F . 

d) Schur complement for 33M is 1
33 33 32 2 23 0D M M I M−= − > which hold after proper selection 

of 1F , 2F , 3F and 4F . 

 Now (A.49) becomes 

2

min max max 1 2( )L Z M D Z cσ ε ε< − + + + +ɺ ɶ ɶ
 

 Completing the squares, the Lyapunov derivative is negative if 

 
2

max max max 1 2
2

min minmin

.
2 ( ) ( )4 ( )

Z

D D c
Z B

M MM

ε ε
σ σσ

+ +
> + + ≡ɶ     (A.51) 

 It is now straightforward to demonstrate that if L exceeds a certain bound, then, Lɺ  is 

negative.  Therefore, according to the standard Lyapunov extension theorem the analysis above 

demonstrates that the state and the weights are UUB [42], [52].  

 Note that condition (A.51) holds if the norm of any component of Zɶ exceeds the bound, 

i.e. specifically Zx B> or 3 1 ZW Bσ Τ >ɶ or 4 2 ZW Bσ Τ >ɶ  or 3 ZW B>ɶ  or 4 ZW B>ɶ .  

 Now consider the error dynamics and the output as in Chapter 2 and assume 3σ and 

4σ are persistently exciting. Substituting (4.23), (4.24) in (4.31) and (4.32) respectively we 

obtain the error dynamics 

1

1 1

1
1 1 3 3 1 1 3 3 1 32

( )
4

HJ T

s s

a
W a W a W D x W

m m

ε
σ σ σΤ= − + +ɺɶ ɶ ɶ ɶ 11

4 2 22 12 22 2 42
( )

4

T T T T

s

a
W R R R k x W

m
φ φ− −+ ∇ ∇ɶ ɶ

11
1 2 4 2 2 22 12 22 2 42

( ( ) ( ) )
2

T T T T T

s

a
W E x W W R R R k x W

m
φ φ− −+ − ∇ ∇ɶ ɶ

1 3 1y Wσ Τ= ɶ  

and 
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2

2 2 2

12 2
2 2 4 4 2 2 4 4 2 4 3 1 11 21 11 1 32 2

( ) ( ) ( )
4 4

HJ T T T T T

s s s

a a
W a W a W D x W W g x R R R g x W

m m m

ε
σ σ σ φ φΤ − −= − + + + ∇ ∇ɺɶ ɶ ɶ ɶ ɶ ɶ

2

12
3 1 2 3 1 11 21 11 1 12

( ( ) ( ) )
2

T T T T T

s

a
W EW W g x R R R g x W

m
φ φ− −+ − ∇ ∇ɶ ɶ

2 4 2y Wσ Τ= ɶ  

 Then Theorem 4.1 is true with 

1

1 1 1 1 1

12 2
3 1 2 2 22 12 22 2

1 max 3 1 4 4 1

1 1 ( ) 1 ( ) ( ) 1

4 2 4

T T T T

s s s s s

D E x k x R R R k x
W W W W W

m m m m m

σ φ φ
ε ε

− −∇ ∇
> > + + +ɶ ɶ ɶ ɶ

1

1
2 22 12 22 2

2 4

1 ( ) ( )

2

T T T

s

k x R R R k x
W W

m

φ φ− −∇ ∇
− ɶ  

and 

2

2 2 2 2 2

12 2
4 2 1 1 11 21 11 1

2 max 4 2 3 3 2

1 1 ( ) 1 ( ) ( ) 1

4 2 4

T T T T

s s s s s

D E x g x R R R g x
W W W W W

m m m m m

σ φ φ
ε ε

− −∇ ∇
> > + + +ɶ ɶ ɶ ɶ

2

1
1 11 21 11 1

1 3

1 ( ) ( )

2

T T T

s

g x R R R g x
W W

m

φ φ− −∇ ∇
− ɶ  

 This provides effectival bounds for 3 1
TWσ ɶ  and 4 2

TWσ ɶ . 

 This completes the proof.  

 ■ 
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