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ABSTRACT 

 

CONCURRENT POLYGLOT: AN EXTENSIBLE  

COMPILER FRAMEWORK 

 

Saurabh Satish Kothari, M.S.  

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Nathaniel Nystrom  

We have today crossed the threshold of increasing clock frequencies as the dominant 

solution to faster computing, and it is imperative for software developers to be able to think in 

the concurrent and parallel paradigm. Important still is to equip programmers with the right tools 

to develop concurrent and parallel software.  

Software concurrency is a widely researched area, and many of today’s compilers 

concentrate on compiling for parallelism. However, although concurrent compilers have been 

explored since the 1970s, very few of them exist today that justify multicore environments. For 

instance, gmake [1] supports coarse grained parallelism through the –j option for building 

independent files in parallel. Our effort here brings into perspective a much finer grained 

approach: targeting the abstract syntax tree to extract opportunities for parallel and concurrent 

compilation. 

Polyglot is an extensible compiler framework. It allows the extension of Java in domain-

specific ways into languages that may define their own new constructs. Compilation in Polyglot 

is sequential. The compiler uses only one core, even if additional cores are present. In order to 

fully utilize the power of the underlying hardware, we present here our efforts in making Polyglot 
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concurrent. Parallelization of the compilation process can yield faster compilation times. It also 

presents the correctness and scalability challenges that make this a test bed for experimenting 

with various concurrency models. 

As part of the larger Polyglot project, we evaluate and present here the performance of 

Concurrent Polyglot against benchmarks and compare with the performance of Sequential 

Polyglot. We also present correctness of the output produced by Concurrent Polyglot. 
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CHAPTER 1 

INTRODUCTION 

1.1 Context 

Chip designers have made tremendous progress in the recent years in their quest to 

boost computing power. Much of this progress has been towards the design of parallel 

processing capabilities for reasons that have been studied and researched widely. For example, 

Hwang and Xu [2]  mention computing applications like accurate weather prediction, the human 

genome and computer vision among many others which are complex and require intensive 

computational power.  This power initially came from increasing operating frequencies of 

processors, which was a direct consequence of increasing the number of transistors on a chip. 

Gordon Moore observed this rate of growth in his paper [3] - the number of transistors that can 

be placed on a single chip doubles every eighteen months. While this law may still hold, 

increasing the operating frequencies of processors may not be the solution to increased 

computational power. Grama et al. [4] argue that converting these high frequencies to useful 

operations per second (OPS) is more important. Factors like memory and disk access speeds 

which have not necessarily kept up with this trend of increasing processor frequencies cause 

undesirable overheads and deteriorate computing power. Parallel computing provides one 

approach by which higher frequencies can be converted to useful operations for powerful 

computation. 

Traditional software applications fail to utilize this capacity of modern hardware 

efficiently because they are designed to be sequentially executed on a single processor. 

Harnessing the power of parallel processing for enhanced application performance has been 

the focus of many researchers over the past decade. Evolution of libraries and new 
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programming languages that allow programmers to build parallel applications has been 

tremendous. MPI [5] is one such library for the C programming language. Development of 

libraries does not involve as much effort as developing a whole new programming language. 

One example is the X10 language [6,7]. X10 is a high-level, object-oriented language that has 

powerful features and a large and powerful library to support parallel programming. The focus of 

this thesis is Polyglot, the compiler framework on which X10’s compiler is based. Before the 

work on this thesis began, Polyglot was a sequential compiler that worked to compile source 

files in a series of passes over the abstract syntax tree (AST). Linearization of passes was 

simple: one pass had to run at a time and only after its prerequisite passes had completed their 

work on the AST. In this thesis we explore opportunities for parallelizing this process of 

compilation. This thesis is part of the larger Polyglot project.  

 

1.1.1 Challenges of Parallel programming  

The behavior of concurrent systems is not the same as that of sequential systems. 

Concurrency and parallelism bring new challenges to the forefront that did not exist before. 

Maurice Herlihy and Nir Shavit [8] describe correctness, liveness and safety as being properties 

of concurrent systems that represent these challenges. Correctness is application dependent. 

Some orderings are important and some are not. For example, type checking should have 

completed before any subsequent pass starts. They also describe how liveness guarantees can 

be expressed as blocking and non-blocking in nature. Maintaining progress of each pass is 

important. A pass should not starve or be deadlocked.  Safety ensures that no process 

interferes in the critical sections of any other process. 

Another important aspect of parallel programs is scalability. Parallelizing an application 

may be difficult, but making it scalable is a completely different challenge. Scalability in basic 

terms means that if the underlying hardware increases in the number of processors, the 



 3   
 

performance of the application must increase accordingly with a fixed workload. If the number of 

processors reduces, the performance must reduce accordingly.  

 

1.2 Motivation and Goals 

Our motivation for the work presented here has been to: 

1. Take advantage of parallel architecture to improve compile speed: we believe 

modern parallel architecture with multiple cores on the same machine will help in 

reducing compile times. We want to build a compiler framework that will set standards 

for future compilers to be able exploit the power of parallel hardware.  

2. Experiment with new concurrent programming models such as in X10: X10 

provides a high-level abstraction for parallel programming with a Java like syntax, 

powerful libraries and its programming model specifically aimed at parallel 

architecture. Employing this model in building a concurrent and parallel compiler will 

show how effective the model is in handling the computationally intensive task of 

compilation. 

 

Hence, our goals are: 

With the above motivations in mind, the goals of this thesis are to demonstrate: 

1. Parallelization of the passes over the AST: We want to demonstrate the ability 

of the compiler to run independent passes simultaneously.  

2. Maintenance of correctness, liveness and safety properties of passes over the 

AST: We want to show that by running independent passes at the same time, the 

results of the compilation process are similar to that of the sequential compiler. 

3. Scalability of the Compiler: An important aspect of parallel software is its 

scalability. We want to show that the compiler thus built, will scale effectively with 

hardware. 
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This thesis also contributes towards identifying granularity levels for parallel 

compilation. If parallel tasks are too fine - that is if they perform too little computation - 

performance will suffer because of the extra space and time overhead. On the other hand, if 

tasks are too coarse, concurrency is lost and behavior can be sequential.  

We have experimented here with different task sizes:  

1. Sequential  

2. Source file level  

3. Class definition level  

4. Method level and  

5. Expression level 

We present in this thesis the results of measuring performance with these configurations. 

1.3 Thesis outline 
 

The rest of this thesis is organized as follows. In Chapter 2, we present an introduction 

to the Polyglot framework and a brief overview of the X10 language and its concurrency model. 

In Chapter 3 we will survey the mechanisms used in Concurrent Polyglot, namely: Using futures 

in the abstract syntax tree (AST), shared data structures and synchronization. Chapter 4 

describes our experiments with Concurrent Polyglot. We use various configurations for our 

experiments to set the level of granularity. Chapter 5 examines related work. Chapter 6 

presents possible future work and concludes the contribution of this thesis. 
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CHAPTER 2 

POLYGLOT, X10 AND THE X10 CONCURRENCY MODEL 

 

This chapter is divided into three sections. In the first section we present a brief 

introduction to the Polyglot compiler framework. In the process we will see what Polyglot is, 

what are extensions and how Polyglot can be used to define new Java like languages. We 

explain the concept of extension with an example: extending Java 1.4 by adding the enhanced 

for loop in it.  

In the second section we will then present an overview of the X10 programming 

language. X10 has a powerful concurrency model, and a rich library to support it. Most of the 

work in this thesis is based on this concurrency model and we present an overview here. We 

briefly discuss the relevant concept of futures and the constructs of async and finish. These 

constructs are important as we use them in our mechanics to make Polyglot concurrent. 

The last section presents an overview of the Funicular [10] library for Scala [11], which 

is based on the X10 concurrency model. We have used the Funicular library extensively in our 

work and we consider it the backbone of Concurrent Polyglot. 

 

2.1 Polyglot 

2.1.1 Sequential Polyglot and extensions 

Polyglot is an extensible compiler framework for Java and languages similar to Java. It 

helps in the creation of compilers for languages similar to Java that have domain-specific 

applications. Nystrom et al. [9] define an extension as a domain-specific modification of an 

existing programming language. The original language is called the base language and the 
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modified language is called an extension of the base language. An extension then defines a 

new front end for the compiler. It tells the compiler how to compile new or modified constructs 

written in the extended language and convert them to Java. The compiler spits out Java code as 

the result of compilation. The Java compiler is then invoked on the Java files to compile them to 

byte code.  

2.1.1.1 Job 
A job in Polyglot represents is a compilation unit (or source file). It can be passed to the 

compiler on the command line, or it can be implicitly pulled in for compilation as a result of a 

reference. Suppose there are two classes as shown in Figure 3.1. 

//E.java 
package foo; 
public class E {  
 public static void main(String [] args) { 
  F f = new F(); 
  System.out.println(f.getA()); 
 
 } 
} 
//F.java 
package foo; 
public class F { 
 private int a; 
  
 public F(){ 
  a = 0; 
 } 
  
 public int getA(){ 
  return a;   
 } 
} 

 
Figure 2.1: Example of a Job. Compilation of class F is triggered 

because it is referenced by class E. 
 

E.java is passed to the compiler on the command line. E has a reference to F, hence F gets 

pulled in for compilation.  

 A job also has references to the AST and other data structures. It contains all data that 

is associated with a file that is used by more than one pass. 
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Sequential Polyglot works in a series of passes over the AST to translate files from 

source language to Java. These passes are:  

1. Parsing – parsing is the process of analyzing the tokens of a source program and 

building its structural representation in the form of a tree. This structural representation 

is called the Abstract Syntax tree.  

2. Type initialization – is the process of recording all the type information in the symbol 

table. New classes defined and library classes referenced are pulled in and pushed 

onto the symbol table.  

3. Type checking – is the phase where type compatibility is checked. Java being a 

strongly typed language, it is important that types used in expressions are compatible 

with the types that the expression expects to see. For example, in the assignment 

statement: 

A a = new B(); 

type B must be a subtype of A, assuming both A and B are concrete classes. 

Whether or not this statement is valid will depend on what is recorded in the type 

initialization pass, when information that B is a subtype of A is recorded (or not 

recorded). 

4. Conformance checking - is the phase where conformance rules of the language are 

checked to be followed. For example no two classes can have the same fully resolved 

name. Or no two methods can have the same signature.  

5. Reach checking – This pass checks whether all statements in a scope can be reached 

by all paths of execution. For example, if we have two return statements one after the 

other, the second one will never be reached.  

6. Exception checks – exception checking does extensive analysis on whether all 

exceptions are handled appropriately. All exceptions that are thrown, must be caught in 
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the same scope or in any of the outer scopes. If the current scope doesn’t handle the 

exception, the scope must declare that it throws that exception.  

7. Code generation – is the final stage where the nodes of the AST are translated into 

Java and written to appropriate .java files. Then the files on the command line of the 

compiler are handed to javac to compile the Java files and generate the class files. 

2.1.1.2 Node 
Alfred Aho et al. [10] define an abstract syntax tree as a condensed form of a parse 

tree. Each node of the tree represents a construct from the grammar of the language. 

Concurrent Polyglot’s nodes preserve this definition. Each node has fields that give some 

information about the construct that the node represents. Along with these fields, a node also 

contains a field of the type Ref, which makes it possible to delay its evaluation. 

 

The AST in Polyglot is made up of nodes that are generated by the parser. These 

nodes are represented by a hierarchy of classes. At runtime, nodes are created on demand 

within this hierarchy by the node factory. A scheduler schedules relevant passes to go over the 

AST. Each node accepts a pass in the form of a visitor. The visitor derives necessary 

information and stores it in the node and other relevant data structures like the symbol table. 

This information is used by subsequent passes to derive information relevant to them.  

The use of a parser generator, the node factory and the visitor pattern allow for a 

tremendous ability to change the AST nodes in flexible ways at various stages. For example, 

before the parser generator produces a parser, the grammar of the language can be modified to 

accommodate a new construct like the enhanced for loop for arrays and iterable types, as 

explained in section 2.1.3 of this chapter. The parser generator will then generate AST classes 

acknowledging this change. The node factory can then be modified to produce instances of 

nodes representing this new construct when the compiler runs. Visitors can be told to expect 
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this node while visiting the AST, and be instructed as to what need be done should they 

encounter these nodes. As a result, a new extension to the base language is born. 

 

2.1.2 Extensibility 

As described by Nystrom et al. [9] Polyglot uses PPG, an extensible parser generator, 

which allows defining the modifications to the base grammar of Java. PPG allows adding, 

deleting or modifying existing production symbols for Java. Once these changes to the base 

grammar are defined, new or modified AST nodes can be defined by implementing the Node 

interface and / or extending existing AST nodes.  

The compilation process is a series of passes over the AST. A pass scheduler 

determines the order of these passes over the AST. This order is called a schedule. Flexibility of 

the Polyglot framework allows an extension to choose to add new passes or delete / modify 

existing passes from the original base language schedule. Hence, each extension has its own 

scheduler. The result of all the passes is a translation of the AST to Java source files. These 

files are then passed on to javac for bytecode generation. Thus, a new language extension is 

essentially translated to Java by the compiler. 

2.1.3 An example: The enhanced for loop for Java 1.4 

The concepts explained thus far can be concretized through an example. Suppose we 

want a construct to iterate over all the elements of an array irrespective of its size. The Java 1.4 

specification did not contain a construct for this purpose. Programmers had to use the ugly for 

loop, determining the size of the collection each time and writing extra lines of code to manage 

bounds. Using index variables to iterate over arrays and collections was error prone if the 

bounds of the collection or array were violated. Java 1.5 introduced the enhanced for loop for 

Java. 

The base language of the Polyglot framework is Java 1.4. To demonstrate the extensibility of 

this framework, we present here the EFor extension for Java 1.4 which essentially plugs the 
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enhanced for loop feature into Java 1.4. The following sub-sections are the steps involved in 

creating this extension. 

 

2.1.3.1 Extension of the PPG for EFor 

PPG [11] is a parser generator for extensible grammars based on the CUP parser 

generator [12]. We use the newext script provided in the Polyglot distribution to generate all the 

files required for the extension. To extend the base grammar, we then modify the PPG file 

generated by the script to define new productions as shown in Figure 2.2: 

non terminal EFor foreach_statement;                                       //1 
//2 

start with goal;                                                             //3 
//4 

foreach_statement ::=                          //5 
FOR:n LPAREN formal_parameter:a COLON expression:b RPAREN:d    //6 

statement:c       //7 
{: RESULT = parser.nf.EFor(parser.pos(n, d), a, b, c); :};   //8 

//9 
foreach_statement_no_short_if ::=                          //10 
FOR:n LPAREN formal_parameter:a COLON expression:b RPAREN:d    //11 

statement_no_short_if:c      //12 
{: RESULT = parser.nf.EFor(parser.pos(n, d), a, b, c); :};   //13 

extend statement ::= foreach_statement:a {:  RESULT = a;  :};             //14 
extend statement_no_short_if ::=      //15 

foreach_statement_no_short_if {: RESULT = a; :};              //16 
 

Figure 2.2: Listing of the PPG grammar for the enhanced for loop 
 

Here EFor is the newly defined non terminal, denoted by foreach_statement. The node class 

representing this should also have the same name. It extends the existing statement non 

terminal as defined by the last two productions listed on lines 14 and 15. Lines 5 through 13 

have two productions which result in the EFor loop.  Hence, we have defined how the enhanced 

for loop will be structured grammatically. It is exactly same as the enhanced for loop in Java 1.5. 
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2.1.3.2 Defining new AST nodes 

The next step is to define the node interface for the EFor non terminal. The enhanced 

for is a looping statement, hence we extend from the existing construct interface Loop. We 

define the rewrite() method which will translate the source code into valid Java code as shown 

in Figure 2.2. 

public interface EFor extends Loop{ 
 

Node rewrite(EForTypeSystem typeSystem,  
NodeFactory nodeFactory) throws SemanticException;  

 
} 

Figure 2.3: Listing for the EFor interface 
 

We then implement this interface with a class EFor_c. This class has two important methods: 

• public Node typeCheck(ContextVisitor tc) throws SemanticException {} 

This method type checks the EFor node by accepting a context visitor. Consider the 

example shown in Figure 2.3. 

int [] intArray = new int [10];   //1 
for(int eachInt: intArray){   //2 
}             //3 

Figure 2.4: Example of an enhanced for loop 
  

typeCheck then ensures that the type of the local to the right of the colon on line 2 is an 

iterable or an array type. It also checks if the local to the left is the same as the type that 

can be contained by the iterable or array defined by the local to the right. In the 

example above, we check if intArray is an array or an iterable. And then check if eachInt 

is of type int (same as intArray’s elements). 

• public Node rewrite(EForTypeSystem ts, NodeFactory nf) throws SemanticException;

  

This is the implementation of the method we defined in the EFor interface. It contains 

code that converts the enhanced for loop to a normal for loop of Java 1.4, thus allowing 
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the programmer to use the enhanced for loop without worrying about violating 

boundaries of arrays or iterable types. The rewrite method takes care of the bounds of 

the array and sizes of the iterable types.  

 

2.1.3.3 Scheduling the passes 

The next step in the extension process is to schedule the passes over the source AST. 

We write this in the ExtensionInfo.java class created by the newext script. We call our scheduler 

the EForScheduler. It extends the default JLScheduler, which is the scheduler for the Java base 

language. Our scheduler inserts the rewrite pass between the typechecked and the 

reassembleAst passes as shown in Figure 2.4: 

static class EForScheduler extends JLScheduler { 
 EForScheduler(ExtensionInfo extInfo) { 
        super(extInfo); 
    } 
 
    public List<Goal> goals(Job job) { 
        List<Goal> goals = super.goals(job); 
 
        List<Goal> result = new ArrayList<Goal>(); 
 
        for (Goal g : goals) { 
        //insert rewrite between typechecked and reassembleAst 
            if (g == ReassembleAST(job)) 
                result.add(Rewrite(job)); 
            result.add(g); 
        } 
 
        return result; 
    } 
 
    public Goal Rewrite(final Job job) {  
        TypeSystem ts = job.extensionInfo().typeSystem(); 
        NodeFactory nf = job.extensionInfo().nodeFactory(); 

  Goal g = new VisitorGoal("Rewrite", job, new     
EForTranslator(job, ts, nf)).intern(this); 

        return g; 
    } 
} 

Figure 2.5: Listing of the scheduler for EFor 
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This completes the implementation of the enhanced for loop. To run the compiler with 

this new structure, we hand the files passed to Main on the command line onto the start method 

along with an instance of the above scheduler as shown in Figure 2.5: 

public static void main(String[] args) { 
   polyglot.main.Main polyglotMain =  

new polyglot.main.Main(); 
 
    try { 

polyglotMain.start(args,  
new polyglot.java5.efor.ExtensionInfo()); 

    } 
    catch (polyglot.main.Main.TerminationException e) { 
              System.err.println(e.getMessage()); 
              System.exit(1); 
    } 
} 

Figure 2.6: Listing of Main method of the EFor extension 
 

Hence, Java 1.4 is now enabled with a new feature of the enhanced for loop. 

The last step – scheduling the passes over the AST – is the most important one with 

respect to concurrency. The compiler is structured as a set of goals, e.g. Typechecked(file) etc. 

Goals have dependencies – goals that must be evaluated before the pass for this goal is run. 

For example InitializeTypes(file) must run before Typechecked(file). As we shall see, to 

parallelize, we can make the passes concurrent, as long as dependencies remain satisfied. 

 

2.2 X10 

X10 is a high-level, object-oriented language that has powerful features and an 

extensive library to support parallel and concurrent programming. Saraswat et al. [6] describe 

how the X10 programming model is based on the key idea of Partitioned Global Address Space 

(PGAS). They also describe how the PGAS makes it possible for global asynchrony between 

light weight threads, which are called activities. Activities are spawned at places. A place can be 

thought of as being a set of processors on a node with local memories. Places allow work global 

work distribution. In our work presented here, we only consider concurrency and not distribution. 
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2.2.1 X10 Concurrency model 

X10’s concurrency model is central to the work in this thesis and we present it here. At 

the core of X10 is the concept of places. In a cluster of computers, a place can be thought of as 

a node made up of a processor and memory local to it. Each activity is spawned at some place 

and it can access data that is local only to its place. To be able to access data that is at a place 

other than their own, activities must spawn new activities at that place to read and convey that 

data for them. 

When an activity X spawns a new activity Y, X decides whether or not to wait for the 

new activity Y to complete its task. The new activity Y may or may not convey back or receive 

messages from the parent activity X. To make all this possible, X10 has several constructs that 

support concurrency [6]. We review some relevant ones here. 

2.2.1.1 async 

Concurrent execution of instructions is achieved with the async construct. async S  

makes a new activity that executes statement S. async returns as soon as this new child activity 

is spawned, to resume execution of the parent activity. It is similar to the fork() operation in C, 

but only to the extent that a new activity is spawned.  

Console.OUT.println(“Sum: “ + add(array)); 
async Console.OUT.println(“Product: “  

+ multiply(array)); 
for(x in array) Console.OUT.println(a); 

 

Figure 2.7: Example use of the async construct in X10 
 

As illustrated in Figure 2.6 the main activity spawns a new activity to multiply the 

numbers in a single dimension array after completing the call to add. The new activity created 

starts off, and the main activity moves on to printing the numbers in the array, it does not wait 

for multiply to complete. Note that all the activities here act upon the same data, but do not 

modify anything in it. They just produce different results. 
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2.2.1.2 finish 

Suppose now that in the previous example for some reason we want the multiplication 

to complete before the numbers in the array are printed. X10 provides this ordering of 

instructions through the finish construct. finish S spawns a new activity that executes the 

statement S, but unlike async, it waits till all the activities spawned by S terminate.  

Console.OUT.println(“Sum: “ + add(array)); 
finish{ 

async Console.OUT.println(“Product: “  
+ multiply(array)); 
} 
for(x in array) Console.OUT.println(a); 
 

Figure 2.8: Example usage of the finish construct in X10 
 

As illustrated in Figure 2.7, the async spawns off a new activity for multiplying the numbers in 

the array and the finish waits till this activity completes to move onto the for-loop displaying the 

numbers in the array. 

 

2.2.1.3 Futures 

Futures are a way of handing over the responsibility of computing the result of an 

expression to another activity. Once this responsibility is handed over the parent activity is 

allowed to demand that value at any time. If the value hasn’t been computed yet, the parent 

activity stalls until it receives the value. Futures thus provide on demand access of non-local 

data. Futures are similar to the async construct, in that they evaluate a value asynchronously. 

The value of the data can be demanded at any time by forcing the future, which makes it 

different from asyncs. 

To understand the concept of futures better, suppose that we want to find the sum of a 

million integers stored in an array of ints. Also suppose that we have a cluster with 100 

machines or places. We decide to do this task using the scan and reduction technique as 

explained by Hwang [2]. An activity can be spawned off at each place, and handed the task of 
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adding up 10000 of the numbers each. This can be done by spawning a future at each place. 

Then when the sum from each place is needed, the future can be forced, and the result 

obtained and passed onto the next stage. 

 

2.3 The Funicular library 

The Funicular library [13] is an implementation of X10’s support for concurrency in the 

Scala programming language. It leverages the Fork/Join framework [14] for Java. Fork/Join 

framework for Java is based on the idea of recursively splitting up a task into independent sub 

tasks and computing their results in parallel and then combining all the results to form the result 

for the original task. 

In our implementation, we have used the constructs provided by the Funicular library 

extensively. This has enabled us to control and modify the granularity of parallelism as desired. 

In the next chapter we present the mechanisms of how this has been done. Thus the objective 

of this thesis for fine grained parallelism is achieved by building on the X10 concurrency model 

with the help of the Funicular library. 

The Polyglot framework stared off and has continued to build versions of 

implementations in the Java language. For incorporating concurrency, it would have been very 

tedious to re-implement it in X10 only for using X10’s support for concurrency. One of the 

collective objectives of this project was to be able to use the original code base. X10 and Scala 

have similar syntax. Scala also has good interoperability support for Java code. Odersky et al. 

[15] describe the interoperability of Scala with Java. This drove the idea to build the Funicular 

library which we have used to bridge the gap between X10’s concurrency model and Java.  

We mainly have used the following constructs provided by the Funicular library.  

1. async 

2. finish  

3. future 
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These constructs have the exact same meaning as they do in X10. They follow the same syntax 

and semantics as explained earlier in this chapter.  

2.4 Conclusion 

This chapter has established a basis of the workings of Concurrent Polyglot. We 

explained what the Polyglot framework is. We then explained what extensibility means and how 

it is achieved in the Polyglot framework. We examined the implementation of one extension, the 

enhanced for loop for Java 1.4. Next we gave an overview of the X10 programming language 

and its concurrency model and how the Funicular library leverages the fork/join framework for 

Java to provide a similar concurrency model. 

In the next chapter we examine how these constructs of the concurrency model are 

used to build the mechanisms by which Polyglot exploits parallelism opportunities for compiling 

source code.    
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CHAPTER 3 

MECHANISMS 

USING FUTURES IN THE AST, SHARED DATA STRUCTURES 

AND SYNCHRONIZATION 

 

With the background on Polyglot, X10’s concurrency model and the funicular library in 

the previous chapter we now present the mechanisms used in Concurrent Polyglot. We go 

beyond the file level and explore how the compilation process can be parallelized on the level of 

the Abstract Syntax Tree and its nodes.  

Concurrency and parallelism bring new challenges to the forefront that did not exist in 

the sequential compiler. Communication between concurrent processes and the use of shared 

data structures makes concurrency and parallelism complex issues. This complexity gives rise 

to the need for maintaining correctness of data, synchronization of processes that access these 

data, liveness of these processes, and mutual exclusion of these processes. Therefore, we 

present in this chapter the shared data structures between the parallel components of polyglot. 

We also present how X10’s concurrency model along with Java’s concurrency model and data 

structures have been used in order to achieve synchronization and ensure the liveness, 

correctness and safety properties. 

  

3.1 Granularity 

The amount of work that is done between synchronizations of concurrent tasks is called 

the granularity of parallelism. Granularity is a deciding factor in performance. When small 

amounts of work is done between synchronizations it is termed fine grained parallelism and 
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when relatively larger amounts of work is done between synchronizations, it is termed coarse 

grained parallelism. One can see then that in finer grained parallelism communicating too often 

leads to an increased overhead and performance can deteriorate. On the brighter side, fine 

grained parallelism provides for better workload distribution. Similarly, coarse grained 

parallelism reduces communication overhead but also creates problems in workload balancing 

and in some cases concurrency can be lost. One goal of this thesis is to show that parallelism 

can be achieved at the fine grained level of the abstract syntax tree. In the following sections we 

describe how this is done. 

 

3.2 AST and parallelism 

The first phase of a compiler is the parser. If there are no syntax errors, the parser 

generates an abstract syntax tree, a tree representation of the compilation unit. This tree is 

passed to subsequent phases of the compiler for them to traverse and make their changes on it. 

Each phase is called a pass of the compiler. After all phases are complete, Polyglot produces 

Java code equivalent to the source code as the final result. 

The abstract syntax tree is made up of nodes which represent syntactic constructs of 

the programming language. Each pass of the compiler deduces new information about the tree 

nodes and stores it into data structures that may be shared with other passes of the compiler.  

 

3.2.1 Goals, Parallel compilation and Parallel AST passes 
 

As mentioned in Chapter 2, Polyglot compiles files by scheduling passes over the abstract 

syntax tree. In the sequential version, each pass is executed after its previous pass has 

completed. Each pass has a goal [16] to reach and a set of prerequisite goals, that must be 

reached before that pass can begin. If a pass completes, we say it has reached its goal.  
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The first two goals, Parsing and Type initialized setup information used by subsequent 

goals. Conformance checking and Exceptions checked are independent of each other and are 

both dependent on the Type checked goal. Code generation should always happen after the 

program goes through all checks. Figure 3.1 shows the relationship between individual goals in 

the architecture of Concurrent Polyglot. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overall architecture of Concurrent Polyglot  
 

Parse and Type initialized goals are run in a separate finish block to ensure that they 

complete before any other pass starts execution. For each job passed to the compiler on the 

command line, a new activity is spawned that works on this first phase. Once all the jobs given 
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to the compiler on the command line are brought to the Types initialized goal, the compiler Type 

checks them. Type checking loops over all jobs passed on the command line, and all new jobs 

that are identified during the Type checking phase. When all jobs are at the Type checked goal, 

a new activity is spawned to run Conformance check and Exceptions check goals for each job 

independently. Reach check goal is a prerequisite to Exceptions checked goal, so Exceptions 

checked goal runs the Reach check goal first. After both these goals complete, Code generate 

goal is run independently for each job in a new activity. Hence, passes over the AST are made 

parallel for individual files. Multiple jobs specified on the command line are also compiled in 

parallel, making AST passes concurrent overall. 

The following sub-sections explain concepts that have been used to in realizing the overeall 

architecture described in Figure 3.1. 

3.2.1.1 Refs 
A Ref represents a reference to an object of any arbitrary type T. Each node has a Ref 

set by the node itself on the request of a visitor (a pass of the compiler) to a ‘resolver’ that will 

evaluate the node. This resolver is either a Future or a LazyRef.  

When the resolver is a LazyRef it does not spawn any new thread to evaluate the node. 

In fact, the thread that requested the value itself evaluates the node and updates its value. This 

is the sequential way of evaluating nodes. 

A Ref can be set multiple times, usually over various passes on the AST. Mutual 

exclusion between the threads that set the ref is achieved through Locks as described later in 

this section. 

LazyRefs are similar to Futures (explained next) except that a new thread of execution 

is not spawned and they do not start until they are forced. Once a LazyRef is created, it waits to 

be executed, which is done by calling force on it. Just like in Futures, LazyRef will return a value 

only when it is asked for through the get method. If the result of the computation is not available, 

the caller is blocked until the result is available. 
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3.2.1.2 Futures 
Futures are the essence of simultaneous evaluation of AST nodes in Concurrent 

Polyglot. To understand futures, it is easy to think of them as light weight threads for 

asynchronous computation. When the resolver for a Ref is a Future type it is a new activity  

instance, pointed to by the future field of the Ref_c class. The get method in the Ref first checks 

if the ref has been computed. If it has, it returns that value. If not, it forces the future, i.e. it 

spawns a new execution thread and waits for its completion. When the new thread completes, 

the ref’s future is updated to hold that value. If someone had called for the evaluation, the result 

is returned to that entity. 

Each Ref has a future associated with it, which evaluates the ref when needed. This 

future is of type SettableFuture, described next. 

3.2.1.3 Settable Futures 
A SettableFuture supports the idea that a Ref can be evaluated more than once. Each 

of these evaluations must return a value that is greater than the old one in some predefined 

order. SettableFuture extends the functionality of the Future construct from the Funicular library, 

which was explained in the previous chapter. It adds fields for bookkeeping purposes and a set 

method which allows it to be set. Hence, as the name of this type suggests, the future of a 

settablefuture can be set to point to an instance of type callable, which is defined in the 

java.util.concurrent [17] library.  

When the instance of a future that the settablefuture holds is forced, it is evaluated and 

returns the result of this evaluation to the thread who forced it. We call this type of a future a 

delayed future, because its evaluation is delayed to until when it is required. 

The java.util.concurrent [17] library provides the method force on futures. We use the 

Funicular library’s Force construct to wrap around the java.util.concurrent library’s force which 

provides extra exception handling mechanism. 
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3.2.1.4 Resolution of Refs 
 Refs are used by visitors to a node in the AST to evaluate them. Resolution of a Ref 

happens every time a visitor requests the resolution for a node. As an example, consider a node 

that represents a field access, which is a node of type Field_c in the AST. The Type Initializer 

visitor traverses the AST and sets Refs of each node. When it reaches the Field_c node, it sets 

the Ref to a Future or a LazyRef (depending on the task size selected, which is explained in 

Chapter 4). When the Type checker visitor visits the Field_c node, it requests the evaluation of 

that node by forcing either the Future or the LazyRef. If a Future is forced, non-local 

computation takes place, which could cause a similar sequence of events if a new type is 

encountered when new classes are loaded. Hence the Ref set by Type initializer is resolved by 

the Type checker. 

 

3.3 Shared Data Structures and Synchronization 

Multiple passes over the AST derive varied information that needs to be communicated 

across passes. We present here the shared data structures that make this communication 

possible. We have used concurrent data structures like ConcurrentHashMap provided by the 

java.util.concurrent [17] library extensively for this purpose. ConcurrentHashMap fully supports 

concurrency for reads and writes and hence makes ideal storage equipment for our needs. 

The presence of multiple threads doing multiple tasks and simultaneously modifying 

shared data necessitates the synchronization between these threads. We present 

synchronization mechanisms for Concurrent Polyglot used in this section.  

Synchronization in Concurrent Polyglot is needed at two levels: 

1. Access to shared data structures like the symbol table presented in this section 

needs to be synchronized.  Mutual exclusion between threads that modify data is 

necessary so as not to corrupt data being modified, and to present correct data when it 

is read. Synchronized access to these data structures guarantees correctness of data 

at any given time.  
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2. Evaluation of a Future is considered its critical section. Given this and the fact that the 

future can be updated multiple number of times necessitates that the evaluation of the 

Future is synchronized. Mutual exclusion between activities that update the value of the 

future is achieved through the use of Locks. Every activity that wants to modify the 

value or read the value of a future, must obtain the lock on the future before doing so. 

We have extensively used here Locks that are provided by the Funicular library as a 

wrapper around ReentrantLocks in the java.util.concurrent [17] concurrency library. 

 

In sequential compilation the symbol table is fully built when lookups happen. 

Unlike that, in concurrent processing of the AST by various passes, situation may arise 

when a particular symbol may be looked up by a pass and not yet be entered into the 

symbol table. Seshadri et al. [18] have explored this problem and call it the Do not 

Know Yet (DKY) problem, which means that when a symbol is looked up it may still not 

be in the table and may be potentially entered at a later stage. One of the solutions they 

proposed for this problem is that the lookup process / thread / activity block till the 

symbol is installed in the table. The approach we use in Concurrent Polyglot is to 

evaluate symbols on-demand, using LazyRefs and Futures. This is the approach we 

have implemented in Concurrent Polyglot. When a symbol is not found in the cache, the 

activity which is looking up the symbol is blocked and a new activity is spawned (by 

means of the async construct) to install the symbol in the cache. If the symbol is not 

found by the new activity, it simply unblocks the original one which then reports an 

error.  

Following is a description of the shared data structures we have used: 

3.3.1 ImportTable  

The import table serves as a name resolver specific to a source file. It has a cache in 

which it stores names that are already resolved. This prevents future lookups from going to the 
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disk. The cache is a map from short names to long names. For example the String class is 

mapped with an entry:  

{String=Some(java.lang.String)} 

Hence, the import table has the additional responsibility of converting short names to their long 

forms, when needed. 

Multiple futures working on different parts of the sub-tree corresponding to the source 

file may want to look up names at the same time. To support this we have synchronized access 

to the import table’s cache which is a ConcurrentHashMap of names to classes found. For 

example, suppose two unrelated methods met1 and met2 are being type checked at the same 

time by futures f1 and f2. They both reference an object of the same type E. Assuming class E 

exists, and assuming that f1 and f2 almost simultaneously try looking up E in the import table, 

either of f1 or f2 are allowed to go first. Let’s say f2 got to go first, and it doesn’t find E in the 

import table, it does what’s necessary to look up the class and then caches it in the import table. 

f1 goes next and finds E in the import table and doesn’t have to do anything more. Hence, 

linearizability between accesses to the cache is achieved by using the synchronized structure 

provided by Java’s concurrency library. 

 

3.3.2 CachingResolver   

The caching resolver caches results of other resolvers, so future lookups don’t have to 

go to disk. For example, import tables that are specific to source files get cached here. Future 

passes don’t have to go back to disk to look up information that was already resolved by a 

previous pass. This technique is called memoizing.  

The cache is a map from a name to a Boolean. The Boolean indicates whether a 

previous pass was successful at resolving the symbol represented by the name. If the Boolean 

is set, then future passes don’t have to go to disk for resolving symbols. 
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As explained above, more than one future at a time may want to access information this cache 

hold. This calls for synchronization of the access methods to the cache. In addition the cache 

itself is a ConcurrentHashMap of names to objects that are resolved. 

 

3.3.3 SystemResolver 

System resolver extends the behavior of the Caching resolver in that it is the main 

resolver for fully qualified names. It uses the import tables cached by the caching resolver to 

resolve fully qualified names. 

The system resolver maintains a package cache in addition to the cache maintained by 

the caching resolver. The package cache is a map from name to Boolean that tells whether a 

particular name is the name of a package or not. For example, Figure 3.2 shows the state of the 

map during one of the passes over the dacapo benchmark [19] source code: 

{ 
java.lang=true, Harness=false,  
java=true, dacapo=true,  
java.lang.Object=false 

} 

Figure 3.2: State of the SystemResolver’s cache  
 

This says that java.lang is a package and so is java and dacapo. Harness and 

java.lang.Object are not packages. Harness is name of the harness class for the benchmark. 

When a particular name is not found, it is added to the cache. This makes it important to 

synchronize access to the package cache. Look-ups and update to the cache are synchronized 

and correctness is guaranteed through the use of the synchronized structure. In addition, like 

the caching resolver, the cache is itself a ConcurrentHashMap of name to Boolean. 

  

3.3.4 TypeSystem 

The TypeSystem object serves as a factory for types, methods, classes, fields etc., 

including all Java types. Each type that is defined gets cached in the TypeSystem. It maintains 
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a SystemResolver which resolves names as explained above. The Types system does not 

synchronize access to its data structures explicitly. It’s all done implicitly by the data structures 

themselves. 

The type system has many responsibilities which include creating instances of constructors, 

fields, methods, local instances and initializers. It also maintains legal flags for all these types of 

objects and helps in checking if the flags in a program are correctly applied to the corresponding 

entities.  

The following data structures are part of the symbol table. Instances of these classes 

are created once for the corresponding entity they represent. For example, a class will have one 

ClassDef object created for it by the TypeSystem. Objects thus created get cached and are 

shared between futures. New information that is derived by passes gets stored in these objects 

to be read by passes that care for that information. 

The need for synchronizing access to these objects is clear. More than one activity, 

possibly from different passes may need access to the objects at the same time. It could be 

either for writing newly derived information or just to read old information. Modifying old 

information is crucial from the view point of the futures that may need that information at a later 

point of time. We have synchronized all access methods in these objects that modify their state.  

 

3.3.5 ClassDef 

Classes that are defined in the source and parsed by the compiler end up being 

represented as instances of ClassDef.  

The ClassDef has access methods that change the state of the object. These methods 

have been synchronized. 
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3.3.6 ConstructorDef 

A ConstructorDef instance holds the definition of a constructor of a class. It wraps the 

ConstructorInstance class that holds type information for the constructor and hence provides 

synchronized access to this type information. 

 

3.3.7 FieldDef 

The FieldInstance class contains type information of a field in a class. The FieldDef 

provides synchronized access to this information. It also provides synchronized access to the 

initializer of the FieldDef. 

 

3.3.8 InitializerDef 

Each field or local must be initialized before it can be used. An InitializerDef is a 

wrapper around the InitializerInstance which holds type information for Initializers. InitializerDef 

then provides synchronized access to this type information. 

 

3.3.9 MethodDef 

Similar to the above definitions, a MethodDef is a wrapper around a MethodInstance 

that contains type information of a source method. It provides synchronized access to this type 

information. 

 

3.3.10 LocalDef 

A local is a variable defined inside the scope of a procedure. The procedure can be a 

method or a constructor or any other legal block. As all the above definitions, a LocalDef serves 

as a wrapper around a LocalInstance which holds the type information of a local’s definition. 

Thus it provides synchronized access to this type information. 
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3.3.11 Ref_c 

As explained previously a ref represents a reference to an instance of any arbitrary type 

T. Each node of the AST has a Ref which represents the node. The ref can be updated multiple 

number of times. The request to these updates can be triggered to happen simultaneously. 

Each new update must update the value of the ref to a greater value from the previous one, by 

some predefined order. To maintain correctness we synchronize the update procedure. Locks 

have been used to provide for mutual exclusion of process that try updation of the ref. A ref that 

is being updated has a callable (through the virtue of a future) that is in the process of 

evaluating the value of the ref. Hence, it needs to lock the ref till it can be updated with the value 

that is computed, and exclude all other updates during that time. This scheme provides for 

correctness as well. 

Concurrent processing involves dealing with problems of mutual exclusion, starvation 

and producer-consumer problems. Mutual exclusion of activities is ensured through the use of 

Locks. Producer-consumer problems like installing of a symbol after its lookup fails can arise 

very often. This is avoided through the use of the synchronized construct and blocking till a 

looked up value is available. A pretypecheck pass ensures that no activity blocked on a lookup 

will ever be blocked unreasonably i.e. the activity knows that the symbol will be installed in the 

lookup table. Progress of activities is guaranteed and hence starvation is guaranteed not to 

happen, by ensuring there are enough number of worker threads, that eventually serve blocked 

threads and unblock them. 

 

 

3.4 Conclusion 

This chapter has explained the mechanisms that have been employed to make Polyglot 

concurrent. The most important of these mechanisms are the Futures and LazyRefs. Extensive 
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use of the robust framework provided by the funicular library’s implementation of the X10 

concurrency model has made these mechanisms possible.  

In the next chapter we present experiments we conducted to measure the performance 

of the compiler.   
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CHAPTER 4 

EXPERIMENTS 

The previous chapter introduced the instruments with which Polyglot has been made 

concurrent. In this chapter we present the experiments we carried out with Concurrent Polyglot. 

In a parallel system, scalability is important. The aim of this chapter is to demonstrate how 

Concurrent Polyglot scales with processing power. This chapter is organized in four sections. In 

the first section we explain what scalable software is and present the setup of the experiments – 

the hardware and the tools used to measure performance. The second section presents the 

metrics that have been measured in the experiments. The third section explains the input to the 

experimental setup and the variation on this setup. The fourth section presents the results 

obtained. The final section concludes the chapter. 

 

4.1 Setup of Experiments 

The testing framework for our experiments has been setup on shared memory 

multiprocessor system. The Fermat server at The University of Lugano, Switzerland was used 

to test the compiler. The server is a Quad-Core Intel Xeon with eight cores and 8GB RAM. We 

used the processor affinity command taskset [20] to be able to choose the number of cores to 

use for each run. 

4.2 Metrics Measured 

Our experiments involved measuring the performance of the compiler in terms of the 

following metrics: 

1. Time taken for execution, in milliseconds  

2. Number of Futures created  
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3. Number of LazyRefs created 

The above two metrics are further classified into categories depending on the level at 

which futures are used. We explain it in the following section. 

4. Size of the initial ASTs – in terms of the number of nodes created. 

5. Number of files compiled – so we can see how the compiler scales vs. the size of the 

program and compare it to the sequential compiler. 

The results will provide us with detailed insight about the behavior of Concurrent 

Polyglot. By analyzing the results we will further be able to make improvements to the 

performance of the compiler. 

4.3 Input to the experimental setup 

Our experiments were performed to:  

1. Increase the workload and increase the number of processors to see how the compiler 

scales with respect to size of input. 

Along with varying the size of the input, we have created variations in the task size to study 

the behavior of the compiler as it goes away from being sequential to being concurrent and 

fine grained. To be able to control the task size, we have included a command line option to 

the compiler ‘-usefuturesat’ which tells the compiler at what level of the abstract syntax tree 

it must use futures to evaluate nodes. The following are possible: 

1. Sequential - Using futures nowhere, and using LazyRefs everywhere 

2. Source file level - Using futures at the source file level, and the others LazyRefs 

3. Class definition level - Using futures at the class and all higher levels, and the 

others LazyRefs 

4. Method level  - Using futures at the method and all higher levels, and the others 

LazyRefs 

5. Expression level - Using futures across the span of the abstract syntax tree, 

and no LazyRefs 
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It must be noted that all of the above are implemented with independent passes over the AST 

being concurrent.  Hence the first one, Sequential, is sequential only with respect to the way 

Refs are resolved. 

Our workload is the DaCapo benchmark [21,19] suite. The DaCapo benchmark suite 

contains many computation intensive programs, which pull in many standard Java libraries and 

hence serves as a good workload to measure the performance of the compiler. We used the 

DaCapo base drivers and the Antlr source code (which is part of the benchmark suite) to test 

the compiler. 

4.4 Correctness of output 
Concurrent Polyglot preserves the semantics of the program being compiled. We have 

verified this by a diff between the outputs of Sequential Polyglot and Concurrent Polyglot. Some 

of the results we obtained are shown in the figures that follow.  

 

Figure 4.1 Diff of Harness.java (DaCapo base) produced by Concurrent Polyglot (left) with  
that produced by Polyglot (right). 
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Figure 4.2 Diff of Token.java (DaCapo base) produced by Concurrent Polyglot (left) with  
that produced by Polyglot (right). 

 

In Figure 4.2 and 4.3, the extra lines of code at the end of the output by Polyglot are the 

serialized type information, needed for separate compilation for language extensions. We have 

switched off the generation of this in Concurrent Polyglot, as seen at the right in the figure. Also, 

we have switched on the fully qualified name generation in Concurrent Polyglot, as is seen in 

the differences in the two figures. 

4.5 Results 

4.5.1. DaCapo Base [21] 

We first compiled the DaCapo benchmark’s base files (15 files) to measure the performance of 

the compiler on an Intel Core 2 Duo with 4GB RAM first. The following tables and charts show 

the results we obtained. 

 

 

 

 



 35   
 

Table 4.1 Average compile time (ms) for Dacapo Base with 2 cores 

Procs =2 Files = 15 

    

 

All File Class Method None 

 

18040 18899 16070 15982 15639 

 

16130 21775 14019 14328 14811 

 

18768 23553 16558 16422 21635 

 

19779 25021 15872 19336 19568 

 

20918 25030 17968 20433 20208 

 

21225 25169 18316 20895 19790 

 

21272 24444 18045 20357 23225 

 

20305 26827 19442 22106 21303 

 

21908 25291 19457 20874 22260 

 

21198 26539 20024 20509 20169 

 

21222 26204 20366 22089 20230 

Average 20272.5 24985.3 18006.7 19734.9 20319.9 

 

The times shown in all tables here were obtained by running the compiler on the same input 

eleven times. The first time obtained is excluded from calculating the averages, so we don’t time 

the runtime compiler, the JIT.  

 

 

Figure 4.3 Graph showing run times of the initial test on DaCapo base files 
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As seen in the graph in Figure 4.3, a coarse grain size (task size File) performs worst. The other 

task sizes perform more or less equally well.  

4.5.2 DaCapo Antlr 
The performance of the compiler with larger workloads makes the difference of using Futures at 

the expression level (at all nodes in the AST) more apparent.  

Parallelizing passes and using Futures to resolve each node of the AST, distributes the work of 

compiling the files on the command line more evenly among different threads available to the 

compiler. The only sequential part to the compilation process is then the Type Check goal. Type 

Check necessitates sequential execution  because new Types could be added to the symbol 

table while type checking a file. New jobs could be identified during the process, and to keep the 

DKY problem from happening, this phase is sequentially executed. 

Table 4.2 and Figure 4.4 show the runtimes of compiling the Antlr benchmark (with 152 files) in 

the DaCapo benchmark suite. 

Table 4.2 Average compile time (ms) for Antlr with 8 cores 

Procs = 8 Time in ms  Files = 152 

   
Task Size: All File Class Method None 

 

203304 300019 276476 347798 327621 

 

192133 286816 281726 372093 359431 

 

196762 294798 269606 372929 360544 

 

192868 275671 273114 363495 357863 

 

189588 277744 276190 373790 359475 

 

189300 268900 282838 361941 357550 

 

186379 274095 273813 374929 347653 

 

187030 274138 262681 371982 357195 

 

184477 284203 262334 370718 350727 

 

185738 261199 276483 381381 350970 

 

188000 265152 262748 372084 352905 

Average: 189227.5 276271.6 272153.3 371534.2 355431 
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Figure 4.4 Graph showing run times for compiling the Antlr benchmark 
 

As seen Figure 4.4, using Futures at all levels in the AST proves to be better than the other task 

sizes with increasing workload. It should be noted that all these levels also have parallelized 

passes. 

 

Table 4.3 Number of Nodes, Futures and LazyRefs created compiling Dacapo Base  

Files Compiled = 15 
Number of Nodes 
created 

Number of lazyRefs 
created 

Futures 
Created 

All-futures 25152 0 86137 

FileLevel 25172 122141 15 

ClassLevel 25172 122009 147 

MethodLevel 25172 121022 927 

None 25172 122156 0 
 

Table 4.3 shows the number of futures and lazyRefs created along with the number of nodes 

created when compiling the DaCapo [19] base. These numbers are specific to the workload and 

remain constant over multiple runs. 
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CHAPTER 5 

RELATED WORK 

 

In this chapter we present work that has been done in the past and is similar to ours. We 

have learned from the experiences, concepts and techniques authors in the past have shared. 

 

5.1 Early work on FORTRAN compilers 

Concurrent compilers have been researched since the early 1970s. These early efforts 

concentrated mostly on the lexical analysis phase of the compiler. Krohn [22] mentions about 

work by Lincoln [23]  in showing how lexical analysis can be performed on vector processors 

[24].  Krohn [22] demonstrates techniques for parallel code generation on Fortran like compilers. 

This early work talks about the decision to make syntactic and semantic analysis table driven. It 

then proposes to make these tables ‘sets of parallel vectors’. Early in the evolution of parallel 

computing, it recognized the importance of shared data structures in concurrent processing of 

source programs. Our approach too is similar in ways of maintaining shared data structures, 

which was presented in the third chapter. 

The method suggested by Krohn [22] targets the code generation phase of the compiler. It 

first identifies statements which are not dependent on the order of evaluation of arithmetic 

expressions. The code for such statements is emitted first. Each class of these statements is 

evaluated in parallel. For example, all RETURN statements are processed in parallel. In the 

next stage, code for all arithmetic expressions is generated. And in the final stage, code for 

assignment statements is generated.  
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5.1.1 Dearth of Parallel Compilers 

Despite a long history of parallel architectures and concurrent software, there have 

been surprisingly few parallel compilers. Part of the problem is complication of writing 

concurrent software. gmake [1] for example provides the –j option for parallelizing the build 

process. It compiles many files in parallel and thus makes the build process faster. Java and 

Java like languages have traditionally had compilers that are sequential in nature. Parallel 

compilers for Java that exist today mostly only exploit parallelism on the file level. Concurrent 

Polyglot proposes and demonstrates that parallel compilation of Java and extensions of Java on 

a much finer grain level is possible. Concurrent Polyglot also maintains the extensibility property 

that it inherits from the original sequential version. Hence, domain-specific Java like languages 

based on Polyglot’s extension mechanism can now have parallel compilers. 

Seshadri et al [18] propose an approach that splits the input stream into independent 

streams based on scopes for parallel compilation and relies largely on the concept of Do not 

Know Yet (DKY) for symbol lookups. Worton et al [25] implement this technique for the 

Modula2+ compiler. We use a similar approach as presented in Chapter 3. 

 

5.2 Targeting syntax trees 

Krohn [22] also mentions about work by Baer and Bovet [26] on parallel evaluation of 

arithmetic expressions by extracting a syntax tree: operations at the same level can be 

evaluated in parallel. For example, the expression  

   

t = ((x + y) + (z*w)) / r 

 

can be seen as a syntax tree as in Figure 5.1. 
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1         = 
2                            /     \      
3        t         / 
4                                                /    \  
5                                                 +        r 
6                                                                  /    \ 
7                                                                +      * 
8                              / \     / \ 
9                x   y  z  w          
    

Figure 5.1 Syntax tree for the expression t = ((x + y) + (z*w)) / r 
  

As can be seen in this example, expressions at the same level, say 7 can be evaluated 

in parallel, because they do not depend on each other.  

Baer and Bovet’s work [26] could be considered a milestone for concurrent compilation, 

for they recognized the opportunities to exploit parallel evaluation of the syntax tree. We use a 

similar approach here in keeping the idea of the syntax tree to exploit opportunities for parallel 

compilation. 

 

5.3 Granularity on the function level 

Gross et al. [27] demonstrate parallel compilation of functions on a cluster of computers 

infrastructure. They exploit the fact that programs written in Warp with different functions for the 

distributed memory architecture can be compiled in parallel. This was one of the earliest 

attempts at aiming for the distributed memory model and supported fine grained concurrency at 

the function level.  

They explain the structure of Warp programs as being modular and being inherently based on 

the architecture of the machine. A Warp program has modules that have sections which 

describe the set of operations for a processing element. Hence, each section is executed by a 

processing element, and multiple sections are executed in parallel. Sections contain functions 

which are independent of functions in other sections and execute simultaneously with them. 



 41   
 

This inherent hierarchical structure is exploited for parallel compilation of functions. The 

hierarchy is described to consist of three levels: 

1. Master or Modular level 

2. Section level 

3. Function level 

Each level has independent processes that compile the level independent of other processes. 

Processes at each level are forked by processes at their parent level. The parent level process 

is blocked until all forked children complete execution.  

We use a similar idea of compilation at a fine grained level and in exploiting the hierarchical 

structure of programs. We go beyond the function level to be able to compile nodes of the AST 

in parallel. We have also demonstrated how this grain size (or task size) can be controlled to be 

set to different levels, even assigning a level to be able to run in a complete sequential mode. 

 

 

. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

In the first section of this chapter we present our conclusions with our work on this 

thesis. In the second section, we present possible future work. 

 

6.1 Conclusion 

The primary motivations of this thesis were to take advantage of parallel architecture to 

improve compile speed and to experiment with new concurrent programming models such as in 

X10. We have successfully demonstrated the use of X10 concurrency model, as presented in 

the third chapter of this thesis. We also showed in the fourth chapter the improvements in the 

compile times we achieved. Although, there is a huge overhead in using futures on the AST, we 

were able to demonstrate the control of task size, to experiment on various combinations of the 

number of cores / CPUs used and the task size. It still remains to be seen as to which 

combinations are the best and to generalize that in the use of Concurrent Polyglot.  

We were successful in achieving the goals of this thesis which were: 

1. Parallelization of the passes over the AST – as demonstrated in the third chapter 

2. Maintenance of correctness, liveness and safety properties of passes over the AST – 

as demonstrated in the third and fourth chapters 

3. Scalability of the Compiler – as demonstrated in the fourth chapter, with increasing 

workloads and the number of processors used (in some proportion to each other), 

concurrent polyglot performs much better than the sequential version. 
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6.2 Future work 

The work on Concurrent Polyglot was proposed to be in three phases: 

1. Refactoring the original sequential polyglot framework to make fine grained goals 

possible and to identify shared data structures. 

2. Parallelization of compilation process making use of the X10 concurrency model. 

3. Optimization to improve performance. 

Concurrent polyglot at its current stage has gone through the first two main phases of 

development. The initial goal of making polyglot concurrent and working has been achieved. 

The challenges of concurrency and parallelism have been surpassed and we have been able to 

demonstrate that the compiler behaves much like the sequential version in preserving 

correctness and progress of all passes of the compiler.  

The results we have obtained during our experiments with various workloads still leave 

much to be desired. We have identified the following future work for making Concurrent Polyglot 

a robust and reliable extensible compiler framework: 

6.1.1 Optimizations 

Rigorous optimizations need to be made to harness the full power of concurrent and 

parallel computer architecture. Currently there is a heavy overhead during the startup 

phase of the compiler which undermines all the benefits of concurrency (as was seen in 

the fourth chapter). Towards this we propose optimizations to be able to: 

i) Control number of futures  

Factors need to be identified to control the number of futures created. 

Uncontrolled growth in the number of futures makes it difficult to manage them. 

They bear a high overhead on memory too, making the memory requirements 

of concurrent polyglot unacceptable as compared to the sequential version. 

This can result in realistic changes and drastic improvements in compilation 

time reduction can be achieved. 
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ii) Memory Usage 

Profile and identify classes that tend to instantiate more often than required and 

identify root causes and implement solutions for this problem. 

iii) Removing Reflections based dispatch.  

As opposed to Sequential Polyglot, Concurrent Polyglot uses reflections based 

dispatch (of visitors over the AST). This results in a higher compile time. 

Removing reflections based dispatch would mean a tradeoff between 

performance and ease of extensibility, which then brings out the need to work 

on deciding a good balance between the two. 

 

6.1.2 Features 

We suggest work on the following features to make Concurrent Polyglot an attractive 

compiler framework for developers:  

i) Support for Java 5 (maybe even the current version of Java) 

ii) Applying the ideas of polyglot to run-time compilers 

The ideas of parallelized passes and using futures at various levels can be 

used in run-time compilers to achieve better JIT compile times. 

iii) Using concurrency in language extensions 

Currently, only the Java Language Compiler of the Polyglot framework has 

been made concurrent and has simultaneous passes. We intend to extend this 

functionality to all extensions within the Polyglot Compiler Framework. We will 

need to refactor the functionality from being inherent in the Java Language 

pass scheduler into higher level classes.  
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