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ABSTRACT

ON THE EXISTENCE OF TOTALLY REFLEXIVE MODULES

KRISTEN ANN BECK, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: David A. Jorgensen

In this manuscript, we investigate the existence of non-free totally reflexive

modules over two classes of commutative local (Noetherian) rings.

First, we demonstrate existence over a class of local rings which are defined

by Gorenstein homomorphisms. Among the corollaries to this result, we recover a

theorem of Avramov, Gasharov, and Peeva [12] concerning the existence of non-free

totally reflexive modules over local rings with embedded deformations. We also give

a general construction for a class of local rings which satisfy the hypotheses of our

theorem, and we show it is able to produce rings without embedded deformations.

The second focus of this work is to give necessary conditions for the existence

of a non-free totally reflexive module with a Koszul syzygy over a local ring for which

the fourth power of the maximal ideal vanishes. We characterize the Hilbert series

of such a ring in terms of the Betti sequence of the module. These characterizations

extend similar results of Yoshino [50] concerning the same existence question over

local rings for which the cube of the maximal ideal is zero. In particular, we consider

necessary conditions for the existence of certain asymmetric complete resolutions,

which are known to exist by work of Jorgensen and Şega [31].
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CHAPTER 1

INTRODUCTION

Auslander and Bridger first introduced totally reflexive modules in the late

1960s as a tool for defining Gorenstein dimension [2, 5], referring to such modules as

having G-dimension zero. It was not until 2002 that Avramov and Martsinkovsky

[13] coined the modern name. Indeed, by calling the modules ‘totally reflexive,’

one emphasizes the fact that these modules form a certain subclass of the reflexive

modules. Totally reflexive modules have important applications even away from their

connection to Gorenstein dimension. However, in order to sufficiently understand

how totally reflexive modules fit into the bigger picture, it is wise to first view them

in light of this connection.

As it turns out, Gorenstein dimension is a natural generalization of projective

dimension. That is, the G-dimension of any module is always bounded above by

its projective dimension, with equality holding only for modules of finite projective

dimension. This bound, which is easily justified by the fact that every finitely gener-

ated module is (trivially) totally reflexive, allows for the generalization of two famous

results.

First of all, recall that the Auslander-Buchsbaum formula [7, Theorem 3.7]

characterizes the (finite) projective dimension of a finitely generated module over a

local ring as the difference between the depth of the ring and that of the module.

More general than this, the Auslander-Bridger formula [5, Theorem 4.13] provides a

refinement which moreover strengthens the Auslander-Buchsbaum formula: it asserts
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that the (finite) G-dimension of a module is characterized as the same difference.

Another generalization afforded by Gorenstein dimension is through the classi-

fication of Gorenstein local rings. Specifically, a local ring is Gorenstein if and only if

each of its finitely generated modules has finite G-dimension; in fact, it is enough to

know that the residue field possesses this property. This result, due to Auslander [2],

extends the famous characterization of regular local rings by Auslander and Buchs-

baum [6] and Serre [42], which is given analogously in terms of projective dimension.

These interesting generalizations might cause one to ask whether the results

of classical homological algebra can be stated analogously in terms of Gorenstein

dimension; that is, by using resolutions by totally reflexive modules in place of those

by projective modules. This question was first asked by Holm in [26]. The area of

research which employs this technique — wherein projective resolutions are replaced

by resolutions by ‘more general’ modules — is known as relative homological algebra,

and was pioneered by Enochs and Jenda [21,22].

Aside from their connection to Gorenstein dimension, totally reflexive modules

are also significantly useful in their own right. Take, for example, the fact that

any non-trivial totally reflexive R-module M is naturally equipped with a ‘doubly-

infinite minimal free resolution’, call it C (cf. Section 2.4 for details). By using such

a resolution in place of an arbitrary minimal free resolution of a module, one can

construct the so-called Tate (co)homology groups.

Êxt
i

R(M,N) := Hi (HomR(C, N))

T̂or
i

R(M,N) := Hi (C⊗R N)

As is clear from the construction, Tate (co)homology provides ‘twice as much’ in-

formation as does absolute (co)homology, in the sense that the resulting groups are

Z-graded (cf. [13] for details).
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Quite possibly the most influential application of totally reflexive modules in

current research is in regards to characterization of simple singularities among ar-

bitrary complete local rings. Auslander proved in [3] that every complete Cohen-

Macaulay local ring which has only finitely many isomorphism classes of indecom-

posable maximal Cohen-Macaulay modules is an isolated singularity. Furthermore,

this approach has been generalized to the level of Gorenstein representation type: in

[19], Christensen, Piepmeyer, Striuli, and Takahashi demonstrate that if a complete

local ring has a finite (but positive) number of isomorphism classes of non-free inde-

composable totally reflexive modules, then the ring is a simple singularity. In fact,

their result generalizes the results of Auslander, Huneke, Leuschke, and Wiegand for

rings of finite Cohen-Macaulay type [4, 28, 34], and this generalization reinforces the

similarity in behavior between a totally reflexive module over an arbitrary local ring

and a maximal Cohen-Macaulay module over a Gorenstein local ring.

One very transparent class of totally reflexive modules is the class of those that

arise in the wake of an exact pair of zero divisors, cf. [24]. While such totally reflexive

modules may seem trite, their existence implies the existence of infinite families of

non-isomorphic non-free indecomposable totally reflexive modules. This fact was

recently shown by Holm [27] in the case that the exact pair of zero divisors can be

extended to a regular sequence of length three, and it was then significantly extended

by Christensen, Jorgensen, Rahmati, Striuli, and Wiegand [18], who show that such

infinite families of totally reflexive modules can be constructed so as to contain, for

any n ∈ N, a module which is minimally generated by n elements. They furthermore

demonstrate that over an algebraically closed residue field, one can construct, for a

fixed n ∈ N, an infinite family of pairwise non-isomorphic non-free totally reflexive

modules which are each minimally n-generated.

Of course, a much broader question would be the following: Does the existence
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of one non-trivial totally reflexive module necessarily imply the existence of infinitely

many isomorphism classes of non-projective indecomposable totally reflexive mod-

ules? Certainly, an answer to this question has more than existential significance, as

seen in [19]. In particular, Takahashi obtains an affirmative answer to this question

in [46], given the existence of a sufficient prime ideal, and he furthermore shows that

the number of resulting isomorphism classes is uncountable. Moreover, the authors

of [19] also give an affirmative answer over a complete local ring. However, the proofs

contained in [46] and [19] are not constructive; the only constructive results at this

point are from [27] and [18].

Indeed, the above discussion points to the sufficiency and importance of char-

acterizing rings which admit at least one non-trivial totally reflexive module. This

question is quickly answered over non-regular Gorenstein rings; in this case, the totally

reflexive and maximal Cohen-Macaulay modules coincide. It is away from this land-

scape of Gorenstein rings that non-trivial totally reflexive modules are more difficult

to pin down. In fact, Avramov and Martsinkovsky show in [13] that over a non-

Gorenstein ring which is Golod, every totally reflexive module is trivial; specifically,

this includes the class of Cohen-Macaulay rings of minimal multiplicity. Moreover, it

is a simple exercise to show that local rings for which the square of the maximal ideal

is zero share the same property.

However, the literature also contains positive results as to the existence of non-

trivial totally reflexive modules over non-Gorenstein rings. In some sense, the struc-

turally simplest Artinian local rings which satisfy this property are characterized by

the vanishing of the cube of the maximal ideal. In [50], Yoshino characterizes the

Hilbert series, among other invariants, of these rings. Specifically, he shows that the

admittance of a non-free totally reflexive module over such a local ring necessarily

implies that the ring is a Koszul algebra. Furthermore, Takahashi and Watanabe
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[47] use a geometric approach to construct totally reflexive modules from smooth

projective curves of genus at least two. But perhaps the largest class of (possibly

non-Gorenstein) rings which admit non-trivial totally reflexive modules is the class

of local rings which have an embedded deformation. These rings, which can be real-

ized as the quotient of local rings by regular sequences contained in the square of the

maximal ideal, are actually shown to more generally admit modules of finite complete

intersection dimension by Avramov, Gasharov, and Peeva in [12]. In particular, the

results of [12] and [50] are motivating factors for the results herein.

This thesis is a compilation of two of my papers [14,15]; therefore, its contents

are divided accordingly so. Chapter 2 serves as a basic review of concepts and def-

initions that will be used throughout. Excellent sources for additional background

material are [16], [37], and [49]. Results and examples are contained in the remaining

chapters. It should furthermore be noted that the results in Chapter 4 do not rely

on those of Chapter 3.

In Chapter 3, we discuss the existence of totally reflexive modules via certain

Gorenstein homomorphisms. Our main result of the chapter is motivated by a result

of Avramov, Gasharov, and Peeva [12, Theorem 3.2], which establishes the existence

of totally reflexive modules over rings with embedded deformations; such rings are

defined and discussed in Section 3.1. In Section 3.2, we establish the main result,

stated in Theorem 3.2.3, and list its corollaries, among which we demonstrate the

ability to recover [12, Theorem 3.2]. We furthermore demonstrate the novelty of our

result by concluding the chapter with a general construction, in Section 3.3, of rings

which admit non-trivial totally reflexive modules by virtue of Theorem 3.2.3, but do

not have embedded deformations. Section 3.4 concludes the chapter by providing

methods which detect whether a local ring has an embedded deformation.
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Finally, Chapter 4 is concerned with necessary conditions for the existence of

totally reflexive modules over so-called short local rings — that is, local rings for which

the fourth power of the maximal ideal is zero. The results are motivated not only

by the work of Yoshino in [50], but also by an example produced by Jorgensen and

Şega [31] which illustrates the existence of asymmetric complete resolutions over short

local rings. Since, in both of these works, the respective totally reflexive modules are

found to have linear complete resolutions, we begin the chapter with a discussion, in

Section 4.2, of the Poincaré series of finitely generated modules with linear resolutions

which possess a certain duality property. The characterization of the Poincaré series

provided in this section makes up the framework for the results in the sequel of

the chapter. Specifically, we are able to characterize, in Section 4.4, the Hilbert

series of a short local ring which admits a finitely generated module, possessing the

aforementioned duality property, and admitting a linear resolution. We furthermore

give conditions for the existence of certain acyclicity in Section 4.4.3.
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CHAPTER 2

PRELIMINARY CONCEPTS

Throughout, R shall denote a commutative Noetherian ring and M a finitely

generated R-module. The notation (R,m, k) will indicate that R is also local, with

unique maximal ideal m and residue class field k := R/m.

2.1 Homological Techniques

The study of totally reflexive modules is rich in the utilization of homological

algebra. In this section, we will outline merely the concepts needed in the sequel. For

a more thorough treatment of the subject, one should consult [41] or [49].

2.1.1 Free Resolutions

Recall that a sequence of R-module homomorphisms

C : · · · → Cn+2
∂n+2−−−→ Cn+1

∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ Cn−2 → · · ·

is called a chain complex if im ∂i+1 ⊆ ker ∂i for each i ∈ Z. With the convention that

Ci = C−i for each i ∈ Z, one can analogously define the concept of a cochain complex

C : · · · → Cn−2 ∂n−2

−−−→ Cn−1 ∂n−1

−−−→ Cn ∂n−→ Cn+1 ∂n+1

−−−→ Cn+2 → · · ·

of R-modules. Note that any chain complex can be viewed as a cochain complex, and

vice versa. Except for certain cases, we shall work with chain complexes.

Whenever im ∂i+1 = ker ∂i for each i ∈ Z, the comlplex C is said to be acyclic,

or an exact sequence. In general, however, the failure of the complex C to be exact at
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Ci is captured by the non-vanishing of the R-module ker ∂i/ im ∂i+1. This fact leads

to the concept of (co)homology. Specifically, the homology (resp. cohomology) of C

is defined to be the graded R-module given by

H(C) =
⊕
i∈Z

Hi(C) :=
⊕
i∈Z

ker ∂i/ im ∂i+1

=
⊕
i∈Z

Hi(C) :=
⊕
i∈Z

ker ∂i−1/ im ∂i

respectively. Clearly, C is exact if and only if H(C) = 0. Further, C is said to be

exact at n if Hn(C) = 0 (resp. if Hn(C) = 0).

Of all the various uses of exact sequences in the study of homological algebra,

perhaps the most fundamental is the utility of resolutions. In particular, given a

finitely generated R-module M , an exact sequence of R-modules of the form

F : · · · → F3
∂3−→ F2

∂2−→ F1
∂1−→ F0

∂0−→M → 0

where Fi is free for each i ∈ N, is called a free resolution of M over R and is often

denoted (Fi, ∂i). For reasons that will become apparent later, we often omit the

module M when expressing its free resolution; such a resolution is then called deleted.

Clearly, such a resolution of M is not right exact; in fact, its homology is concentrated

in degree zero and is isomorphic to M . When the notation F → M → 0 is used, it

shall be assumed that F is a free resolution of M .

Remark 2.1.1.1. One can more generally define a projective resolution of a module.

However, the results contained in this manuscript are specific to Noetherian local

rings: a setting in which projective and free modules coincide. We therefore choose

to work with the more user-friendly of the two.

It is easy to see that every R-module possesses a free resolution. Moreover,

Nakayama’s Lemma (cf. [37, Theorem 2.2]) guarantees that over a local ring, one can

8



always choose such a resolution in a ‘minimal’ way. In fact, the concept of minimality

applies in more generality to complexes of free modules.

Definition 2.1.1.2. Suppose that

C : · · · → Cn+2
∂n+2−−−→ Cn+1

∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ Cn−2 → · · ·

is a complex of free modules over a local ring (R,m). If ∂i(Ci+1) ⊆ mCi for each

i ∈ Z, then C is said to be minimal. Equivalently, C is minimal if and only if, for

each i ∈ Z, there are no units among the entries of the matrix representing ∂i.

Given a free resolution F = (Fi, ∂i) of an R-module M , it is easy to see that,

for each n ∈ N, the map ∂n naturally factors through the kernel of ∂n−1. In fact,

assuming that F is also minimal, the R-module defined by

Ωn(M) := ker ∂n−1 = im ∂n

is called the nth syzygy module of M , and is simply written Ωn when the module is

understood. With this definition, notice that Ω0(M) = M . Furthermore, we may

now represent F in the following manner.

F : · · · // F3
∂3 //

�� ��

F2
∂2 //

�� ��
AA

0�

F1
∂1 //

AA
0� �� ��

F0
//

AA
0�

M // 0

Ω3 Ω2 Ω1

Remark 2.1.1.3. The concept of a syzygy module is not unique to free resolutions,

but may analogously be defined for acyclic complexes. The nth syzygy module of an

acyclic complex C is often denoted Ωn(C).

In essence, the process of constructing a minimal free resolution of a module

yields information about how far away the module is from being free. If it is possible

to resolve an R-module M in terms of free modules in a finite number of steps, then

9



we say that M has finite projective dimension, and write pdRM < ∞. In general,

however, the projective dimension of an R-module M with minimal free resolution F

is given by

pdRM = sup{n ∈ N | Fn 6= 0}

Since the length of a minimal free resolution of an R-module M is unique, the above

quantity is well-defined. It is easy to see that any free R-module has projective

dimension zero. Furthermore, pdRM is finite if and only if there exists n ∈ N such

that Ωn(M) is a (non-zero) free module. In this case, pdRM = n.

Over a local ring, the minimal free resolution of a finitely generated module is

unique up to isomorphism of chain complexes (see [49] for details). One important

consequence of this fact that is that the ranks of the free modules in any minimal

free resolution are well-defined. Specifically, for a finitely generated module M over

a local ring R with minimal free resolution F→M → 0, we define

βRn (M) := rankFn

to be the nth Betti number of M . When there is no risk of confusion as to the ring (or

the module), we write βn(M) (or simply βn). It is common to express the sequence

of Betti numbers of an R-module M in the form of a power series

PR
M(t) :=

∑
i∈N

βRi (M) ti ∈ ZJtK

called the Poincaré series of M . Furthermore, one often speaks of the Poincaré series

of the residue field of a local ring (R,m, k) as being the Poincaré series of the ring

itself. That is,

PR(t) := PR
k (t).

In general, the Poincaré series of a module with finite projective dimension is

merely a polynomial. For an arbitrary R-module M , however, it is not necessarily

10



even true that PR
M(t) is a rational function; cf. [9, 4.3.10]. For our uses, the Poincaré

series will be utilized extensively in Chapter 4.

2.1.2 Ext and Tor

In order to study the properties of a given module over a Noetherian ring

via homological methods, one ‘replaces’ the module with its free resolution. This

approach is advantageous for two reasons. First of all, free modules are often more

desirable objects with with to work. Furthermore, by representing an R-module with

its free resolution, we are able to consider the action of the derived functors Ext and

Tor on the given module.

To this end let L,M and N be R-modules, and suppose that F = (Fi, ∂i) is a

deleted free resolution of M . Recall that we have induced complexes of R-modules

HomR(F, N) : 0→ HomR(F0, N)
∂∗1−→ HomR(F1, N)

∂∗2−→ HomR(F2, N)→ · · ·

where ∂∗i (f) = f ◦ ∂i for each f : Fi−1 → N and i ∈ N, and

L⊗R F : · · · → L⊗R F2
1⊗∂2−−−→ L⊗R F1

1⊗∂1−−−→ L⊗R F0 → 0

where 1⊗ ∂i acts by `⊗ x 7→ `⊗ ∂i(x) for each i ∈ N.

Since F is not exact (recall that it is deleted), there is no reason to believe that

either of the above complexes will be (right or left) exact. Indeed, this is often the case,

and we define the following derived functors to quantify the respective inexactness.

Definitions 2.1.2.1. Let L,M and N be R-modules, and suppose that F→M → 0

is a deleted projective resolution. Then we define the (co)homology functors

ExtiR(M,N) := Hi (HomR(F, N))

TorRi (L,M) := Hi (L⊗R F)

11



from the category of R-modules to itself, for all i ∈ N.

Remark 2.1.2.2. One can also calculate ExtiR(M,N) by taking the ith cohomology

of the complex HomR(M, I), for any injective resolution 0 → N → I. Likewise,

TorRi (L,M) can be determined by the ith homology of the complex G⊗RM for any

projective resolution G→ L→ 0.

The utility of Ext and Tor for encoding information about rings and their

modules is valuable, to say the least. We illustrate this fact by collecting several very

basic properties of Ext and Tor.

Facts 2.1.2.3. Let M be a finitely generated R-module.

(1) Ext0
R(M,N) ∼= HomR(M,N) for any R-module N .

(2) TorR0 (L,M) ∼= L⊗RM for any R-module L.

(3) ExtiR(M,N) = 0 for all i > 0 and all R-modules N if M is projective.

(4) TorRi (L,M) = 0 for all i > 0 and all R-modules L if M is projective.

(5) If R is local, pdRM = sup{i | ExtiR(M,k) 6= 0} = sup{i | TorRi (M,k) 6= 0}

Remarks 2.1.2.4.

(1) We can say a bit more about (3) and (4) above. Specifically, it is also true that

ExtiR(M,N) = 0 (resp. TorRi (L,M) = 0) for all i > 0 and all R-modules M if

N is injective (resp. if L is flat).

(2) The characterization of projective dimension in (5) above follows from the fact

that, given any complex C of modules over a local ring R, the differentials of

the induced complexes C ⊗R k and HomR(C, k) are trivial. Therefore, letting

F → M → 0 be a minimal free resolution over R, we are able to alternately

define the nth Betti number of M over R in either one of the following manners.

βn(M) := rankFn = dimk ExtnR(M,k) = dimk TorRn (M,k)

12



Many times, the usefulness of the Ext and Tor modules is manifested in their

vanishing. Such is the case in this manuscript. As we shall see in Section 2.4, a

totally reflexive R-module M is defined, in part, by the vanishing of ExtiR(M,R) for

all i > 0. Given a minimal free resolution F = (Fi, ∂i) of M over R, these particular

Ext modules measure the inexactness of the dual complex HomR(F, R). That is, since

HomR(F,R) ∼= F for any free R-module F , we have

HomR(F, R) : 0→ F0

∂ᵀ1−→ F1

∂ᵀ2−→ F2

∂ᵀ3−→ F3 → · · ·

up to isomorphism of chain complexes, where we have slightly abused notation by

writing ∂ᵀi to represent the transpose of the matrix which represents ∂i.

Another concept in which the vanishing of certain (co)homology modules plays

a role is that of flat dimension. While this homological dimension is usually best

understood as the shortest length of a resolution of a module by flat modules, it can

also be defined in the following way.

fdRM = sup{n ∈ N | TorRn (N,M) 6= 0 for all R-modules N}

Since projective (and therefore free) modules are necessarily flat, it follows that flat

dimension is always bounded above by projective dimension. However, over a Noethe-

rian ring, finitely generated projective and flat modules coincide, and so the respective

dimensions do also.

2.2 Graded Rings

The results of Chapter 4 require a bit of knowledge concerning a certain invari-

ant of graded rings: the Hilbert series. In this section, we discuss the concept of a

Hilbert series for a local ring. Indeed, the fact that makes such a construction possi-

ble is that one can impose a grading upon an arbitrary ring by forming the so-called
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associated graded ring. We define such a ring, along with its modules and complexes,

in the next section.

2.2.1 Associated Graded Objects

While associated graded objects can be defined with respect to any nonzero

proper idea of a ring, we shall focus on such constructions with respect to the unique

maximal ideal of a local ring (R,m, k). In this setting, the construction of associated

graded objects exploits the natural m-adic filtration of R.

R ⊇ m ⊇ m2 ⊇ m3 ⊇ m4 ⊇ · · ·

Precisely, the associated graded ring of R with respect to m is defined by

grm(R) =
⊕
i∈N

mi/mi+1

where we adopt the convention that m0 = R. We notice that grm(R)0
∼= k and that⊕

i≥1 grm(R)i ∼= m, so that grm(R) defines a standard graded local ring. Since we

have assumed that R is Noetherian, it follows that grm(R) also is. Furthermore, for

any R-module M , we can define the associated graded module of M with respect to

m by

grm(M) =
⊕
i∈N

miM/mi+1M

which naturally has the structure of a graded grm(R)-module.

Letting C = (Ci, ∂i)i∈Z denote a minimal complex of R-modules, we can also

define the associated graded complex grm(C) of C with respect to m. It is given by

the family of subcomplexes {grm(C)j}j∈Z, where

grm(C)j : · · · → mj−i−1Ci+1

mj−iCi+1

δji+i−−→ mj−iCi
mj−i+1Ci

δji−→ mj−i+1Ci−1

mj−i+2Ci−1

→ · · ·
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such that, for each ` ∈ Z, δj` is the map induced on the restricted map mj−`C` →

mj−`+1C`−1, modulo mj−`+1C`. We furthermore maintain the convention that mn = R

for n ≤ 0. Such a construction is certainly possible by the minimality of C.

Remark 2.2.1.1. An associated graded complex is often referred to as being the ‘linear

part’ of a complex precisely because it filters the non-linear behavior from the differ-

entials. As one would imagine, this sort of a construction does not always preserve

the exactness of a complex. This concept is illustrated in the following example.

Example 2.2.1.2. Let k be a field and consider the local ring R = k[x]/(x3) with

unique maximal ideal m = (x), over which we have the following minimal complete

resolution.

C : · · · // R x2 // R x // R x2 // R x // R x2 // R x // R // · · ·

Passing to the associated graded complex preserves only the linear differentials.

Therefore, grm(C) is represented by the following graded complex

... 0

⊕ ⊕
· · · 0 // m/m2 x // m2/m3 // 0

⊕ ⊕ ⊕
0 // k x // m/m2 0 // m2/m3 // 0

⊕ ⊕ ⊕ ⊕
0 // k

0 // m/m2 x // m2/m3 // 0

⊕ ⊕ ⊕ ⊕
0 // k

x // m/m2 0 // m2/m3 // 0

⊕ ⊕ ⊕
0 // k

0 // m/m2 x // · · ·
⊕ ⊕
0

...

which is clearly not exact. In fact, this complex is not even eventually exact. That

is, there is no such n ∈ Z such that Hi(grm(C)) = 0 for all |i| ≥ n.
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In particular, if F → M → 0 is a minimal free resolution of a module M over

a local ring (R,m), the associated graded complex grm(F) is a minimal (graded) free

resolution of grm(M) over grm(R). Modules M for which grm(F) is exact are the

subject of the following definition.

Definitions 2.2.1.3. LetM be a finitely generated module over a local ring (R,m, k),

and suppose that F → M → 0 is a minimal free resolution. The linearity defect of

M is given by the following quantity

ldR(M) := {n | Hi(grm(F)) = 0 for all i ≥ n}

whenever it is finite. If ldR(M) = 0, then F is said to be a linear resolution M , which

is then called Koszul. However, if 0 < ldR(M) <∞, then F is called eventually linear.

In this case, Ωn(M) is a Koszul module. If it turns out that k is a Koszul R-module,

then R is said to be a Koszul ring.

In the next section, we introduce a widely studied invariant of graded objects.

2.2.2 Hilbert Series

Let V =
⊕

i∈N Vi be a graded vector space over a field k. Then the formal

power series given by

HV (t) :=
∑
i∈N

dimk Vi t
i

is called the Hilbert series of V .

In ring theory, the notion of a Hilbert series is certainly applicable to graded

rings and their modules. In particular, we will be concerned with the Hilbert series of

associated graded rings and modules. For a finitely generated module M over a local

ring (R,m), we will often abuse terminology slightly by referring to the invariants

Hgrm(R)(t) and Hgrm(M)(t) as being the Hilbert series of R and M , respectively. This
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practice should not cause confusion, as the Hilbert series of a local ring (resp. its

module) is widely regarded as the construction with respect to the associated graded

ring (resp. module).

The following well-known fact gives a characterization of the Poincaré series of

a Koszul ring.

Fact 2.2.2.1. Let (R,m) be a local ring. If R is Koszul, then its Poincaré series is

given by the following.

PR(t) =
1

Hgrm(R)(−t)

2.3 Gorenstein Rings

In this section, we discuss concepts which serve to motivate the definition and

properties of a Gorenstein local ring. With the exception of the section which im-

mediately follows, we will suppose that all of our rings are local. It is important to

note, however, that many of the definitions which follow can analogously be stated in

the more general case. For a thorough treatment of such a subject, the reader should

consult [16].

2.3.1 Systems of Parameters

For any prime ideal p of R, we define the height of p, denoted ht p, to be the

supremum of the integers h such that there exists a chain

p = p0 ) p1 ) p2 ) · · · ) ph

of strict inclusions of prime ideals of R. The Krull dimension, which shall henceforth

be referred to as simply the dimension, of the ring R is then defined by the following.

dimR := sup{ht p | p is a prime ideal of R}
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Likewise, if M is an R-module, we analogously define the dimension of M by

dimRM := dim (R/AnnRM) .

Clearly, dimM is always bounded above by dimR.

Suppose that (R,m) is a local ring such that dimR = d. Then a sequence

x = x1, . . . , xd ∈ m is called a system of parameters for R if dim (R/(x)) = 0. (Notice

that when d = dimR, it is not possible for a sequence of fewer than d elements to

possess such a property.) More generally, though, if xn1 , . . . , xn`
is part of a system of

parameters for R, where ` ≤ dimR, then we have dim (R/(xn1 , . . . , xn`
)) = dimR−`.

Any ideal of R which is generated by a system of parameters is called a parameter

ideal of R.

Indeed, if M is a finitely generated R-module with dimM = c, we define a

sequence y = y1, . . . , yc ∈ m to be a system of parameters on M if M/(y)M has

finite length. Notice that when R is viewed as a module over itself, the ring- and

module-theoretic definitions are equivalent.

The following equivalent conditions, which generalize Krull’s principal ideal

theorem [37], can be used to characterize a system of parameters for a local ring.

Fact 2.3.1.1. Let (R,m) be a local ring of dimension d. The following are equivalent.

(1) x = x1, . . . , xd is a system of parameters for R,

(2) m is a minimal prime of (x),

(3) Rad(x) = m,

(4) mn ⊆ (x) for some n ∈ N, and

(5) (x) is m-primary.

Recall that, for a local ring (R,m), the minimal number of generators of m

is called the embedding dimension of R, and is denoted embdimR. By virtue of
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the above Fact, it is straightforward to see that dimR ≤ embdimR. The following

definition addresses the case that arises when equality holds.

Definition 2.3.1.2. Let R be a local ring. If dimR = embdimR, then R is said to

be a regular local ring.

The maximal ideal of a regular local ring is necessarily minimally generated by

a (regular) system of parameters.

The simplest example of a regular local ring of dimension d is the power series

ring R = kJx1, . . . , xdK in d variables. In general, however, regular local rings can be

thought of as precisely those local rings without zero-divisors. This fact is obvious

since the zero ideal of such a ring is certainly not prime. Moreover, we generalize the

concept of a regular local ring in the following section.

2.3.2 Regular Sequences

Let M be an R-module. A non-zero element x ∈ R is said to be M -regular if it

is not a zero-divisor on M . In the same spirit, we say that a sequence x = x1, . . . , xn

contained in R is M -regular if both

(1) xi is not a zero-divisor on M/(x1, . . . , xi−1)M for each 1 ≤ i ≤ n, and

(2) M/(x)M 6= 0.

Indeed, by saying that a sequence is simply regular, we imply that it is regular on the

ring as a module over itself.

Whenever the ring (R,m) is local, the concept of a regular sequence is made

even more simple: not only is condition (2) above guaranteed by Nakayama’s Lemma

[37, Theorem 2.2] as long as (x) ⊆ m, but it is also true that any permutation of a

regular sequence is again regular.
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A local ring which can be realized as the quotient of a regular local ring by an

ideal generated by a regular sequence has special homological properties, which will

be discussed in the sequel.

Definition 2.3.2.1. A local ring R is called a complete intersection ring if there

exists a regular local ring S and an S-regular sequence x such that R̂ ∼= S/(x).

In the more general case that M is a finitely generated module over a Noetherian

ring R, one should note that any M -regular sequence x can always be extended to

a maximal such sequence. Furthermore, the length of a maximal M -sequence is

uniquely determined whenever M is finitely generated. Specifically, let I be a proper

ideal of R such that IM 6= M . Then all of the maximal M -sequences contained in I

have the same length, and this quantity is given by

n = min
{
i | ExtiR(R/I,M) 6= 0

}
.

This invariant is used to define the concept of grade.

Let M and N be finitely generated R-modules. Then the grade of N on M is

defined by

gradeR(N,M) = min{i| ExtiR(N,M) 6= 0}.

Clearly, this quantity is simply the length of a maximal M -regular sequence con-

tained in AnnRN . Often, we will speak of simply the grade of M , which is given by

gradeR(M,R), and we will denote this quantity by gradeRM .

If (R,m, k) is local, then the length of a maximal M -regular sequence contained

in m is an invariant that has important application in the characterization of local

rings. It is given by

depthRM = gradeR(k,M)
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and is called the depth of M in R. Since every M -regular sequence can be extended

to a system of parameters of M , it must always be true that depthRM ≤ dimM .

The situation arising when equality occurs is addressed in the next section.

2.3.3 Cohen-Macaulay Rings

One of the most widely studied classes of local rings are the so-called Cohen-

Macaulay rings. Such rings can be thought of as having maximal depth, and they

have special algebraic-geometric properties.

Definition 2.3.3.1. A finitely generated module M over a local ring R is said to be

Cohen-Macaulay if depthRM = dimM .

As one might guess, a ring which is Cohen-Macaulay as a module over itself is

said to be a Cohen-Macaulay ring. In particular, complete intersection rings (and,

therefore, regular local rings) are certainly Cohen-Macaulay. However, there are

simple examples of Cohen-Macaulay local rings which are not complete intersections;

such a ring is illustrated in the following example.

Example 2.3.3.2. Let R = kJx, yK/(x2, xy, y2). Certainly, R = R̂ cannot be written

as the quotient of a regular local ring by a regular sequence — thus, it is not a

complete intersection ring. However, notice that dimR = 0 = depthR, so that R is

Cohen-Macaulay.

It is easy to modify the ring in the previous example to obtain a ring with

the same depth, but higher dimension. This process yields the ring in the following

example, which is commonly regarded as being the structurally simplest local ring

which is not Cohen-Macaulay.
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Example 2.3.3.3. Let R = kJx, yK/(x2, xy). Clearly, dimR = 1 by virtue of the

(maximal) chain of proper containments m = (x, y) ) (y). Furthermore, notice that

since m does not contain a regular sequence, depthR = 0, and therefore R is not

Cohen-Macaulay.

Indeed, there exists a special class of Cohen-Macaulay local rings which properly

contains the complete intersection rings. This particular class of rings, defined below,

will prove to be an integral part of our discussion of the existence of totally reflexive

modules in the sequel.

Definition 2.3.3.4. Let R be a Cohen-Macaulay local ring. Then R is said to be

Gorenstein if every parameter ideal (x) of R is indecomposable; that is, if there do

not exist ideals I, J of R which properly contain (x), such that (x) = I ∩ J .

As it turns out, Gorenstein rings fit into the following chain of containments of

local rings.

regular ⊆ complete intersection ⊆ Gorenstein ⊆ Cohen-Macaulay

Example 2.3.3.5. Let R be the one-dimensional Cohen-Macaulay local ring given

by R = kJx, y, zK/(x2, xy, y2). Notice that the parameter ideal (z) can be written

(x, z)∩ (y, z), which implies that it is not irreducible. Therefore, R is not Gorenstein.

If R is a zero-dimensional Cohen-Macaulay local ring, we can use an alternate

approach to check whether R is Gorenstein. To this end, recall that the socle of a

local ring (R,m, k) is defined by

SocR := AnnRm.

Certainly, if R is zero-dimensional, then SocR is non-trivial. If R is moreover Cohen-

Macaulay, then it is Gorenstein precisely when dimk SocR = 1. In other words, a
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zero-dimensional Gorenstein ring is simply a Cohen-Macaulay ring with a ‘minimal’

socle.

Remark 2.3.3.6. The above characterization of zero-dimensional Gorenstein rings is

equivalent to Definition 2.3.3.4, assuming the restriction on dimension. Indeed, since

a zero-dimensional local ring R does not have a system of parameters, one can regard

the zero ideal as a parameter ideal of R. If this ideal is indecomposable, then R is

Gorenstein.

Example 2.3.3.7. Let R be the zero-dimensional Cohen-Macaulay local ring given

by R = kJx, yK/(x2, xy, y2). Since SocR = (x, y) has k-vector space dimension two,

R is not Gorenstein. This fact can also been seen by realizing that 0 = (x) ∩ (y) is

not indecomposable.

Remark 2.3.3.8. Indeed, it is possible to check whether a local ring is Gorenstein

with any a priori knowledge of it being Cohen-Macaulay. In fact, a local ring is

generally defined to be Gorenstein if it has finite injective dimension as a module over

itself [16, Definition 3.1.18]. However, in order to avoid making definitions regarding

injective modules and their properties, we have chosen to define Gorenstein rings in

the present setting.

Gorenstein local rings are commonly associated with their nice symmetry prop-

erties. We illustrate two of these now.

(1) Suppose that M is a finitely generated module of finite projective dimension

over a Gorenstein local ring R. Then the minimal R-free resolution of M is

symmetric in regards to the ranks of its free modules. That is,

βi(M) = βn−i(M)
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for all 0 ≤ i ≤ n
2
, where n = pdRM .

(2) Let (R,m, k) be a zero-dimensional Gorenstein ring such that m` = 0 for some

` ∈ N (note that this condition is necessary in order for R to have dimension

zero). Then the Hilbert series of R is a polynomial which is symmetric in its

coefficients. That is,

dimk

(
mi/mi+1

)
= dimk

(
m`−i/m`−i+1

)
for all 0 ≤ i ≤ `.

We conclude our investigation of Gorenstein rings with a discussion of a certain

class of local ring homomorphisms which produce rings which, in some sense, ‘behave

like’ Cohen-Macaulay (resp. Gorenstein) rings.

2.3.4 Cohen-Macaulay Homomorphisms

Definitions 2.3.4.1. A finitely generated module M over a local ring Q is called

perfect if pdQM = gradeQM . Moreover, if ϕ : Q → R is a surjective local ring

homomorphism such that R is perfect as a Q-module, then we say that ϕ is Cohen-

Macaulay.

Indeed, recalling the characterizations of projective dimension and grade in

terms of vanishing of certain Ext modules, the previous definitions imply that M is

a perfect Q-module precisely when the following holds.

min{n | ExtnQ(M,Q) 6= 0} = gradeQM = pdQM = max{n | ExtnQ(M,Q) 6= 0}

Thus, in some sense, we can say that M is a perfect Q-module if the cohomology

Ext∗Q(M,Q) is concentrated in one degree.

Definitions 2.3.4.2. An ideal I of a local ring Q is called Gorenstein whenever
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(1) Q/I is a perfect Q-module, and

(2) ExtgQ(Q/I,Q) ∼= Q

for g = pdQQ/I = gradeQQ/I. Furthermore, a surjective local ring homomorphism

ϕ : Q → R is called Gorenstein if it is Cohen-Macaulay and if kerϕ is a Gorenstein

ideal of Q.

By the above discussion regarding perfect modules, one can conclude that

a surjective local ring homomorphism ϕ : Q → R is Gorenstein precisely when

Ext∗Q(R,Q) ∼= R. In particular, this condition implies that the last non-zero free

module in a Q-free resolution of R has rank one.

Remark 2.3.4.3. Cohen-Macaulay and Gorenstein homomorphisms can be used to

obtain rings which generalize Cohen-Macaulay and Gorenstein rings, respectively.

We shall discuss this further in Chapter 3. However, notice that if ϕ : Q → R is a

Cohen-Macaulay (resp. Gorenstein) homomorphism, R is a Cohen-Macaulay (resp.

Gorenstein) ring exactly when the same is true of Q.

2.4 Total Reflexivity

In this section, we give a careful introduction to the modules with which this

work is concerned. However, before offering definitions and examples, we first give a

basic overview of Gorenstein dimension in order to highlight totally reflexive modules

within the bigger picture.

2.4.1 Gorenstein Dimension

The following definitions are first due to Auslander and Bridger in [5].

Definitions 2.4.1.1. Let M be a finitely generated R-module. A Gorenstein reso-
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lution of M is defined to be an exact sequence

G : · · · → G3
∂3−→ G2

∂2−→ G1
∂1−→ G0 →M → 0

of R-modules such that each Gi is totally reflexive. Furthermore, we define the

Gorenstein dimension (or G-dimension) of M by

G-dimR(M) := min{n ∈ N | Gn = 0 for all Gorenstein G→M → 0}

whenever this quantity is defined. Otherwise, we have that G-dimRM =∞.

Clearly, totally reflexive modules are simply those modules of G-dimension zero.

In fact, such terminology was precisely the way by which totally reflexive modules

were first identified in [5].

We shall see in the next section that finitely generated projective modules are

always totally reflexive. As such, G-dimRM ≤ pdRM , with equality holding only

when pdRM <∞. This fact was shown in [5], and it naturally implies that modules

of finite projective dimension have finite (but positive) Gorenstein dimension, and are

thus not totally reflexive.

Indeed, the close analogy between G-dimension and projective dimension offers

nice extensions of some famous classical results. First of all, G-dimension can be

used to characterize Gorenstein local rings in precisely the same way that projective

dimension characterizes regular local rings [6, 42].

Theorem 2.4.1.2. [2, Section 3.2] Let (R,m, k) be a local ring. The following are

equivalent.

(1) R is Gorenstein.

(2) G-dimRM <∞ for every finitely generated R-module M .

(3) G-dimR k <∞.
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Furthermore, the following characterization, which has come to be known as the

Auslander-Bridger formula, is a natural refinement of the famous Auslander-Buchsbaum

formula [7, Theorem 3.7].

Theorem 2.4.1.3. [5, Theorem 4.13] Let R be a local ring and M a finitely generated

R-module. If G-dimRM <∞, then G-dimRM = depthR− depthRM .

2.4.2 Definitions

In words, totally reflexive modules are homological extensions of reflexive mod-

ules. This is made clear in the following definition.

Definition 2.4.2.1. The R-module M is said to be totally reflexive if each of the

following conditions hold.

(1) The canonical map M → HomR(HomR(M,R), R) is an isomorphism.

(2) ExtiR(M,R) = 0 for all i > 0.

(3) ExtiR(HomR(M,R), R) = 0 for all i > 0.

The R-module HomR(M,R) is commonly called the algebraic dual of M , and

shall be denoted M∗ in what follows. With this notation, notice that the reflexivity

condition M ∼= M∗∗ is among the conditions for total reflexivity. Indeed, vanishing of

the ExtiR(M,R) and ExtiR(M∗, R) for i > 0 provides a homological analog of reflex-

ivity in the sense that it defines an isomorphism between the minimal free resolution

of M and its ‘double dual’.

By their definition, totally reflexive modules possess a sort of ‘doubly-infinite

minimal free resolution’. In order to construct such a resolution, we first consider min-

imal free resolutions F→M → 0 and G→M∗ → 0. The vanishing of ExtiR(M∗, R)
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implies that the sequence 0→M∗∗ → G∗ is exact; thus we obtain an acyclic complex

· · · // F2
// F1

// F0
//

�� ��

G∗0??
/ �

// G∗1 // G∗2 // · · ·

M

with the obvious maps, which is called the complete resolution of M , and denoted

F|G∗. Any complete resolution is a totally acyclic complex — that is, its dual G|F∗

is also exact. Conversely, any syzygy module of a totally acyclic complex is totally

reflexive. Therefore, totally reflexive modules and totally acyclic complexes are really

one and the same concept.

Remarks 2.4.2.2.

(1) Any finitely generated projective module is totally reflexive, and trivially so.

Therefore, it is standard to refer to non-projective totally reflexive modules as

being non-trivial.

(2) Any finitely generated module of (positive) finite projective dimension is not

totally reflexive. To see why, recall that the projective dimension of an R-

module M can be realized as the supremum of the values of i ∈ N such that

ExtiR(M,R) 6= 0.

(3) By virtue of (2), one should note that the complete resolution of a non-trivial

totally reflexive R-module M is necessarily doubly-infinite. That is, it must be

true that pdRM =∞ = pdRM
∗.

2.4.3 Examples

Below, we illustrate the above definitions with a few examples of non-trivial

totally reflexive modules and their respective complete resolutions. Before giving

these examples, however, it is first useful to note that totally reflexive modules are

ubiquitous over Gorenstein local rings. This is made precise in the following fact.
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Fact 2.4.3.1. Over a (non-regular) Gorenstein local ring, a (non-free) finitely gen-

erated module is totally reflexive if and only if it is maximal Cohen-Macaulay.

Example 2.4.3.2. Let (R,m) be local. If a, b ∈ m are such that AnnR(a) = (b) and

AnnR(b) = (a), then M = R/(a) and N = R/(b) are both totally reflexive R-modules,

and their complete resolutions are given by the following.

· · · b // R a // R b //

�� ��

R a //
AA

0� �� ��

R b //
BB

0�

R a // · · ·

M N

Remark 2.4.3.3. The pair a, b exhibited in Example 2.4.3.2 is called an exact pair of

zero divisors. The Hilbert series of short local rings which admit such elements is

discussed at length in [24].

Example 2.4.3.4. LetR = kJx, yK/(x2, y2). Then by virtue of the previous Example,

the modules R/(x) and R/(y) are non-trivial totally reflexive modules. Furthermore,

it is also true that k is a totally reflexive R-module with complete resolution given

by the following.

· · · // R3

 x 0 y

0 y −x


// R2

[
x y

]
// R

xy //

�� ��

R

 x

y


//

CC
1�

R2


x 0

0 y

y −x


// R3 // · · ·

k

In order to gain a complete understanding of what totally reflexive modules

look like, it is perhaps wise to also see examples of finitely generated modules with

are not totally reflexive. First, we illustrate such a module with infinite projective

dimension.

Example 2.4.3.5. Let R = Jx, yK/(x2, xy), and consider the R-module M = R/(y).
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Then a deleted minimal free resolution of M over R can be written

F : · · · → R
x−−→ R

y−−→ R→M → 0

which implies that

HomR(F, R) : 0→ R
y−−→ R

x−−→ R→ · · ·

upon dualization. Since Ext1
R(M,R) = H1(HomR(F, R)) ∼= (x) 6= 0, we see that M is

not a totally reflexive R-module.

Remark 2.4.3.6. Recall from Example 2.3.3.3 that the ring R illustrated in the previ-

ous example is not Cohen-Macaulay (and therefore non-Gorenstein). In fact, since R

has codimension one, we also know that it is Golod [43]. These facts together imply,

by work of Avramov and Martsinkovsky [13], that the only totally reflexive modules

over R are the free modules.

The following example serves to illustrate an abundance of finitely generated

modules which are reflexive, but not totally reflexive.

Example 2.4.3.7. For some n ≥ 3, let R = kJx1, x2, . . . , xnK, and consider the

presentation matrix of k over R.

d =

[
x1 x2 · · · xn

]
By definition, Ω2(k) = ker d. It is easy for one to check that (ker d)∗ ∼= coker dᵀ, and

furthermore that (coker dᵀ)∗ ∼= ker d. Therefore, Ω2(k) is a reflexive R-module, and

it cannot be totally reflexive since pdR Ω2(k) = n− 2 > 0; cf. Remark 2.4.2.2(2).

Remark 2.4.3.8. The previous example serves to illustrate the necessity of conditions

(2) and (3), regarding the vanishing of Ext, in Definition 2.4.2.1. However, the
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overall independence of conditions (1), (2) and (3) is not yet completely understood

over an arbitrary local ring. Indeed, it is known that if R is Gorenstein, any module

which satisfies condition (2) is totally reflexive. In fact, Yoshino [51] has studied

this problem in more generality. Furthermore, Jorgensen and Şega demonstrated the

independence of conditions (2) and (3) in [32]. In particular, they construct a local

ring R which admits a finitely generated reflexive R-module satisfying ExtiR(M,R) =

0 6= ExtiR(M∗, R) for all i > 0. Finally, it is still an open question whether there

exists a finitely generated module over a local ring which satisfies conditions (2) and

(3), but is not reflexive.
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CHAPTER 3

EXISTENCE VIA GORENSTEIN HOMOMORPHISMS

The framework for the main result of this chapter is motivated by the phe-

nomenon apparent in one of the most general class of rings previously known to

always admit non-trivial totally reflexive modules: local rings having an embedded

deformation.

3.1 Embedded Deformations

Definition 3.1.1. A local ring R is said to have an embedded deformation if there

exists a local ring S and an S-regular sequence x ⊆ m2
S such that R ∼= S/(x). The

natural projection S → S/(x) ∼= R is referred to as the embedded deformation.

The existence of non-trivial totally reflexive modules over rings with embedded

deformations was established by Avramov, Gasharov, and Peeva in [12, Theorem

3.2]. In fact, the result in [12] is much more general; it demonstrates the existence of

modules of finite complete intersection dimension over such rings. Thus, the theorem

which follows is actually corollary to the result in [12]. We shall not include the

constructive proof of its authors, but rather show in the following section that that

their result is a direct consequence of our main theorem.

Theorem 3.1.2. [12, Theorem 3.2] Let R be a local ring which has an embedded

deformation. Then there exist non-trivial totally reflexive modules over R.

In order to gain an understanding for the justification of this result, notice that
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whenever S → S/I is an embedded deformation, the ring R = S/I carries some of the

traits of a complete intersection ring; this fact follows because the relations defining

I are regular on the ambient ring S. However, since we only need S to be local, it

is entirely possible to construct such an R which is not a complete intersection, and

therefore is not Gorenstein. Such a situation is illustrated below.

Example 3.1.3. Let R = kJx, y, zK/(x2, xy, z2). To see that R has an embedded

deformation, let S = kJx, y, zK/(x2, xy), and notice that R ∼= S/(z2). Noticing that

dimR = 1 6= 0 = depthR, it follows that that R is not Cohen-Macaulay and therefore

not Gorenstein. Moreover, we have that (z) = AnnR(z), whence R/(z) is a non-trivial

totally reflexive R-module.

3.2 Results

Our goal for this section is to demonstrate a method for generalizing the class of

local rings with embedded deformations in such a way that we preserve the existence

of non-trivial totally reflexive modules. To this end, consider the class of local rings

which are defined by a Gorenstein ideal.

Fact 3.2.1. Any embedded deformation is necessarily a Gorenstein homomorphism.

Proof. Let S be a local ring over which x1, . . . , xn ⊆ m2
S is an S-regular sequence. Fur-

thermore, define R = S/I, where I = (x1, . . . , xn). Clearly, we have that gradeS R =

n = pdS R. Furthermore, the minimal free resolution of R over S is simply the Koszul

complex (cf. [20, Chapter 17]) on x1, . . . , xn. This is enough to imply that the rank of

the last free module in the resolution must be one, and therefore ExtiS(R, S) ∼= R.

Hence, our main result will focus on the existence of non-trivial totally reflexive

modules over the image of a Gorenstein homomorphism. However, we should not
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expect to extend a known result to a landscape endowed with less structure for free. In

order to ensure the existence of totally reflexive modules in the setting of a Gorenstein

homomorphism, we shall moreover assume that the Gorenstein homomorphism can

be lifted to a ring which does, in fact, admit non-trivial totally reflexive modules: a

non-regular Gorenstein ring. In order to obtain the desired result under this setting,

we need the following basic fact concerning the descent of totally reflexive modules

along homomorphisms of finite flat dimension, cf. [17, 5.6(b)].

Lemma 3.2.2. Let Q be a non-regular Gorenstein ring and ϕ : Q → R a local

homomorphism of finite flat dimension. Then R admits non-trivial totally reflexive

modules.

Proof. Since Q is Gorenstein and non-regular, it admits non-trivial minimal totally

acyclic complexes; let C = (Ci, ∂i)i∈Z be such a complex, and consider the totally

reflexive module ΩjC for some j ∈ Z. If fdQR = n, it follows that TorQi (ΩjC, R)

vanishes for all i > n. Letting j vary implies that C⊗QR is exact overR. Furthermore,

[30, Proposition 2.3] provides the isomorphism

HomR(C⊗Q R,R) ∼= HomQ(C, Q)⊗Q R

which in turn implies that one can use the same argument to show that (C⊗Q R)∗ =

HomR(C⊗QR,R) is also exact over R. Therefore, C⊗QR is a totally acyclic complex

over R, and it is non-trivial and minimal since C was. So, for any j ∈ Z, Ωj(C⊗QR)

is a non-trivial totally reflexive R-module.

With this background established, we are now equipped to state and prove our

main theorem.

Theorem 3.2.3. Let ϕ : Q→ R be a Gorenstein homomorphism of local rings whose

kernel is contained in m2
Q. Suppose that there exists a Gorenstein local ring P and
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homomorphism ψ : P → Q of finite flat dimension. Furthermore let S = P/I be such

that

(1) 0 6= I ⊆ m2
P ,

(2) S ⊗P Q ∼= R,

(3) TorPi (S,Q) = 0 for all i > 0, and

(4) gradeP (S, P ) ≥ gradeP (S,Q).

Then there exist non-trivial totally reflexive modules over R.

Proof. Consider the natural projection ϕ′ : P → S = P/I, and the natural map

ψ′ : S → S ⊗P Q ∼= R which acts by s 7→ s ⊗ 1. Then we have the following

commutative diagram of local ring homomorphisms.

P
ϕ′

��

ψ

��
S

ψ′ ��

Q

ϕ
��

R

(3.2.3.1)

We will show that S is a non-regular Gorenstein ring and that fdψ′ <∞, whence the

result will follow from Lemma 3.2.2.

To this end, let F be a minimal free resolution of S over P . Since TorPi (S,Q)

vanishes for each i > 0, a minimal free resolution of R over Q is given by F⊗P Q; in

particular, pdP S = pdQR <∞. Also by the vanishing of TorPi (S,Q) for each i > 0,

we have isomorphisms

ExtiP (S,Q) ∼= ExtiQ(R,Q)

for all i; cf. [30, 2.1(1)]. Now by definition, gradeP (S,Q) = gradeQ(R,Q). This and
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the grade hypothesis now yield the following inequality.

gradeP (S, P ) ≥ gradeP (S,Q)

= gradeQ(R,Q)

= pdQR

= pdP S

Since the reverse inequality holds trivially, we have that gradeP (S, P ) = pdP S, and

so ϕ′ is Cohen-Macaulay. Furthermore, as P is assumed to be a Cohen-Macaulay

ring, it follows that S has the same property.

To show that S is a Gorenstein ring, it is sufficient to show that the rank of

the last nonzero free module in the minimal free resolution F of S over P is one. But

this follows from the fact that F⊗P Q is a minimal free resolution of R over Q whose

last nonzero free module has rank one by assumption.

Next we justify that S is non-regular. By assumption, I = kerϕ′ is contained

in m2
P ; therefore we have mS/m

2
S = mP/(m

2
P + I) = mP/m

2
P . Using the Cohen-

Macaulayness of S along with the Auslander-Buchsbaum formula, we obtain dimP −

dimS = dimP − depthP S = pdP S > 0. Therefore,

µS(mS) = µP (mP ) ≥ dimP > dimS

which certainly implies that S is non-regular.

Finally we show that the map ψ′ has finite flat dimension. Let M be any

S-module. By the vanishing of TorPi (S,Q) for each i > 0, we have isomorphisms

TorSi (R,M) ∼= TorPi (Q,M) for all i. Since Q has finite flat dimension as a P -module,

this homology eventually vanishes. The finite flat dimension of R over S is immediate,

and the result now follows from Lemma 3.2.2.
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Remarks 3.2.4.

(1) The hypotheses given in parts (2) and (3) of Theorem 3.2.3 specify the con-

ditions necessary for the so-called lifting of R to P via Q. Furthermore, it is

common to refer to the P -modules S and Q as being Tor-independent.

(2) Theorem 3.2.3 may be regarded as a sort of ‘ascent’ analogue of [48, Theorem

3.1(2)]. Both results use a similar factorization involving Gorenstein homomor-

phisms, whereas the point of the theorem from [48] is that the hypotheses placed

on ϕ′ descend to ϕ.

We list as corollaries several cases in which Theorem 3.2.3 applies to estab-

lish the existence of non-trivial totally reflexive modules over R. We shall begin by

showing that our result recovers the class of local rings which have embedded de-

formations. Our proof of this result, as well as that of Corollary 3.2.5 below, use

standard constructions of ring homomorphisms, as, for example, seen in [48].

Proof of Theorem 3.1.2. Let ϕ : Q → Q/(x1, . . . , xn) ∼= R define an embedded de-

formation for R, so that x1, . . . , xn is a Q-regular sequence contained in m2
Q. Also

choose a minimal system of generators z1, . . . , ze of mQ and, for 1 ≤ i ≤ n, write

xi =
∑e

j=1 rijzj for some rij ∈ mQ.

Now let ρij, ζj for 1 ≤ i ≤ n and 1 ≤ j ≤ e be indeterminates over Z. If

p = charQ/mQ, set

P = Z[ρij, ζj](p,ρij ,ζj)

and consider the local ring homomorphism ψ : P → Q defined by ρij 7→ rij, and

ζj 7→ zj for all respective i, j. Furthermore, we define χi =
∑e

j=1 ρijζj for each

1 ≤ i ≤ n and let

S = P/ (χ1, . . . , χn) .

It now suffices to show that S satisfies the hypotheses of Theorem 3.2.3.
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First of all, notice that by way of construction, S is a lifting of R to P via Q.

To see this more explicitly, notice that

P/(χ1, . . . , χn)⊗P Q
∼=−→ P ⊗P Q/(x1, . . . , xn)

as P -modules via the mapping given by a ⊗ b 7→ 1 ⊗ ψ(a)b, whence S ⊗P Q ∼= R.

Furthermore, as x1, . . . , xn is Q-regular and χ1, . . . , χn is P -regular, if F is a P -free

resolution of S, then F ⊗P Q yields a Q-free resolution of R. Thus, we obtain Tor-

independence and the desired lifting condition follows.

The required grade inequality is actually a grade equality in this case,

gradeP (S, P ) = n = gradeP (S,Q).

The remaining hypotheses are obvious, and the result follows.

Corollary 3.2.5. Suppose that ϕ : Q→ R is a Gorenstein homomorphism of grade

three. Then there exist non-trivial totally reflexive R-modules.

Proof. By the Buchsbaum-Eisenbud structure theorem (cf. [16, Theorem 3.4.1(b)]),

there exists a (deleted) minimal free resolution of R over Q given by

F : 0→ Q
β−→ Qd α−→ Qd β∗−→ Q→ 0

with d odd, where α = (aij) is skew-symmetric and β = (bj), such that bj is de-

termined by the Pfaffian of the matrix obtained by the deletion of the jth row and

column of α. Notice that β is non-trivial since d is assumed to be odd.

Through a similar process as that in the previous proof, we define a regular

local ring

P = Z[T ](p;T )

where T = {tij |1 ≤ i < j ≤ d} is a set of indeterminates over Z and p = charQ/mQ,

and a local homomorphism ψ : P → Q which acts by tij 7→ aij for each i and j.
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Now consider the d × d matrix over P given by τ = (tij) where tii = 0 and

tji = tij for all i < j. Let σ = (sj) be the d× 1 matrix over P such that sj is defined

by the Pfaffian of the matrix obtained by deleting the jth row and column of τ . If

S is the P -module defined by the cokernel of σ∗, the Buchsbaum-Eisenbud structure

theorem implies that

G : 0→ P
σ−→ P d τ−→ P d σ∗−→ P → 0

is a (deleted) minimal free resolution of S over P . With these defined, notice that

G⊗P Q ∼= F, which implies that R lifts to P via Q. We can now use Theorem 3.2.3

to obtain the desired result.

The next result addresses the case that Q is a Cohen-Macaulay ring. Its proof

uses a corollary to Robert’s ‘new intersection theorem’ (cf. [40]), which we state as a

lemma.

Lemma 3.2.6. [40] Let R be a local ring, and suppose that M and N are finitely

generated Tor-independent R-modules of finite projective dimension over R. If M ⊗R

N is Cohen-Macaulay, then both M and N are Cohen-Macaulay.

Proof. Note that the vanishing of TorRi (M,N) for all i > 0 implies that

pdR(M ⊗R N) = pdRM + pdRN.

By using [16, Corollary 9.4.6] along with the Auslander-Buchsbaum formula, we ob-

tain the following

dimRN ≤ pdRM + dimR(M ⊗R N)

= pdR(M ⊗R N)− pdRN + depthR(M ⊗R N)

= dimR− pdRN

= depthRN
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which implies that dimRN = depthRN . The same proof shows that M is also Cohen-

Macaulay.

Corollary 3.2.7. Let ϕ : Q→ R be a Gorenstein homomorphism of local rings whose

kernel is contained in m2
Q. Suppose that there exists a Gorenstein local ring P and

Cohen-Macaulay homomorphism ψ : P → Q whose kernel is contained in m2
P . If R

lifts to P via Q, then there exist non-trivial totally reflexive R-modules.

Proof. If P is non-regular, then by virtue of the fact that pdP Q and pdQR are both

finite, we have that pdP R is finite as well. Thus Lemma 3.2.2 shows that non-trivial

totally reflexive modules exist over R. The rest of the proof addresses the case that

P is regular.

Let S be a lifting of R to P . First, we want to show that S is a quotient ring of

P , equivalently a cyclic P -module. We have that the induced map P/mP → Q/mQ

is an isomorphism, and therefore

R/mQR ∼= R⊗Q Q/mQ

∼= (S ⊗P Q)⊗Q Q/mQ

∼= S ⊗P Q/mQ

∼= S ⊗P P/mP

∼= S/mPS

which implies that R/mQR ∼= S/mPS as vector spaces over Q/mQ. It follows that

µP (S) = dimP/mP
S/mPS = dimQ/mQ

R/mQR = 1.

Now consider the natural projection ϕ′ : P → S, and the natural local ring

homomorphism ψ′ : S → S ⊗P Q ∼= R which acts by s 7→ s ⊗ 1. Since ψ being

Cohen-Macaulay implies that fdP Q <∞, it is sufficient to show that S satisfies the
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hypotheses of Theorem 3.2.3. To this end, we prove that gradeP (S, P ) ≥ gradeP (S,Q)

and that the kernel of ϕ′ is contained in m2
P .

In order to show the latter, let x ∈ kerϕ′. Then ψ(x) ∈ kerϕ ⊆ m2
Q. Since

the induced map mP/m
2
P → mQ/m

2
Q is injective, it follows that x ∈ m2

P . Now to

show the former, note that Q is Cohen-Macaulay since it is perfect module over a

Cohen-Macaulay ring. This fact, in turn, implies the same property for R. Recall

that Lemma 3.2.6 shows that S must be Cohen-Macaulay as well. Since pdP S <∞,

it follows that ϕ′ is Cohen-Macaulay. This fact and the lifting condition imply the

following equalities.

gradeQ(R,Q) = pdQR = pdP S = gradeP (S, P )

Recalling that vanishing of TorRi (S,Q) for all i > 0 provides us with the equality

gradeP (S,Q) = gradeQ(R,Q) (cf. proof of Theorem 3.2.3), the desired grade condition

is satisfied. We can now apply Theorem 3.2.3 to obtain the result.

In the previous corollary, the assumption that kerψ ⊆ m2
P is essential in obtain-

ing totally reflexive R-modules which are non-trivial. This fact is illustrated through

the following example.

Example 3.2.8. Let k be a field and consider the local rings defined by:

P = kJx, yK Q = kJxK R = kJxK/(x2)

Furthermore, let ψ : P → kJx, yK/(y − x2) ∼= Q and let ϕ : Q → R be the natural

projection maps. Notice that ϕ ◦ ψ : P → R can be alternately factored to obtain
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the following commutative diagram of local rings

P
ϕ′

��

ψ

��
S

ψ′ ��

Q

ϕ
��

R

where S = kJx, yK/(y) ∼= kJxK and ψ′ and ϕ′ are the natural projection maps. Though

S is clearly a lifting of R to P via Q, R does not fit the criteria for Theorem 3.2.3

as kerψ * m2
P . The consequence lies in the fact that Q is regular, and thus all of its

totally reflexive modules are in fact free. The induced R-modules will therefore be

free as well.

Corollary 3.2.9. Let ϕ : Q→ R be a Gorenstein homomorphism of local rings whose

kernel is contained in m2
Q. Suppose that P is a Gorenstein local ring and ψ : P → Q

a local homomorphism of finite flat dimension such that

(1) the induced map mP/m
2
P → mQ/m

2
Q is injective and

(2) the induced map P/mP → Q/mQ is bijective.

If there exists a Cohen-Macaulay lifting of R to P via Q, then there exist non-trivial

totally reflexive R-modules.

Proof. Let S be such a lifting of R to P via Q. Since S is Cohen-Macaulay and the

lifting of R implies that pdP S is finite, we have that S is a perfect P -module. Using

this fact, it is easy to follow the same steps as in the proof of Corollary 3.2.7 to verify

that S satisfies the hypotheses necessary for the application of Theorem 3.2.3.
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3.3 A Class of Examples

In this section we turn our attention to examples of rings which admit totally

reflexive modules by virtue of Theorem 3.2.3. In fact, we are able to construct such

rings with associated Gorenstein homomorphisms of arbitrary grade, which further-

more do not have embedded deformations.

Construction 3.3.1. Let k be a field over which we define indeterminates x =

{x1, . . . , xn} and y = {y1, . . . , ym}. Now let P = k[x,y]m such that m = (x,y) is

the homogeneous maximal ideal over the polynomial ring k[x,y]. Furthermore, let

mx = (x) and my = (y) denote the homogeneous maximal ideals of the polynomial

rings k[x] and k[y], respectively. Now let

fi ∈ Px := k[x]mx 1 ≤ i ≤ r

gj ∈ Py := k[y]my 1 ≤ j ≤ s

each be contained in the square of the respective maximal ideals. If (f1, . . . , fr)P is

a Gorenstein ideal of P and (g1, . . . , gs)P is a perfect ideal of P , then

R = P/(f1, . . . , fr, g1, . . . , gs)P

admits non-trivial totally reflexive modules. Moreover, if (g1, . . . , gs)P is chosen to

be a non-Gorenstein ideal P , then R is a non-Gorenstein ring.

Proof. To justify these claims, let S = P/(f1, . . . , fr)P and Q = P/(g1, . . . , gs)P , and

notice that R ∼= S ⊗P Q. We need to show that S and Q are Tor-independent

P -modules, that gradeP (S, P ) ≥ gradeP (S,Q), and that the projection Q → R

is a Gorenstein homomorphism. These facts are illustrated below. In order to

make notation more concise, we let (f) and (g) denote the ideals (f1, . . . , fr)Px and
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(g1, . . . , gs)Py, respectively. Furthermore, unless otherwise stated, all tensor products

are assumed to be taken over k.

First we show that TorRi (S,Q) vanishes for positive i. Take F → Px/(f) → 0

and G → Py/(g) → 0 to be a free resolutions over Px and Py, respectively. Then

(F⊗Py)m̃ and (Px⊗G)m̃ are free resolutions of S and Q, respectively, over P , where

we define m̃ = mx⊗Py +Px⊗my. To see that S and Q are Tor-independent over P ,

notice that

TorPi (S,Q) = Hi ((F⊗ Py)m̃ ⊗P (Px ⊗G)m̃) ∼= Hi(F⊗G)m̃

where the isomorphism is obtained from [29, 2.2]. Since this homology is isomorphic

to R for i = 0 and vanishes otherwise, we have the lifting of R to P via Q.

Next we establish the grade inequality. As S = P/(f)P is Gorenstein and y is

regular on S, we have that

S/(y)S ∼= Px/(f)

is also Gorenstein; in particular, Px/(f) is perfect as a module over Px. This fact

implies the last of the following equalities.

gradeP (S, P ) = pdP S = pdPx
Px/(f) = gradePx

(Px/(f), Px)

Furthermore, note the following isomorphisms of complexes

HomP ((F⊗ Py)m̃, Q) ∼= HomPx⊗Py(F⊗ Py, Px ⊗ Py/(g))m̃

∼= (HomPx(F, Px)⊗ HomPy(Py, Py/(g)))m̃

∼= (HomPx(F, Px)⊗ Py/(g))m̃

(3.3.1.1)

the second of which is obtained from [29, Proof of Lemma 2.5(1)]. Now since

H (HomPx(F, Px)⊗ Py/(g)) = Ext
pdP S
Px

(Px/(f), Px)⊗ Py/(g)

∼= Px/(f)⊗ Py/(g)
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is nonzero upon localizing at m̃, we have gradeP (S,Q) = gradePx
(Px/(f), Px), and

therefore gradeP (S, P ) = gradeP (S,Q). In particular, the inequality holds.

Finally, we verify that Q → R is Gorenstein. To do this, recall that the van-

ishing of TorPi (S,Q) for i > 0 implies that ExtiQ(R,Q) = ExtiP (S,Q) for all i ∈ N.

Thus,

gradeQ(R,Q) = gradeP (S,Q) = gradeP (S, P ).

Since, furthermore, pdQR = pdP S due to the lifting of R, we have established

that R is a perfect Q-module. To verify that Q → R is Gorenstein, it is enough

check that Ext
pdQR

Q (R,Q) ∼= R. However, this is equivalent to checking the same for

Ext
pdP S
P (S,Q), which is obtained by taking cohomology of (3.3.1.1). To this end, we

obtain the following isomorphism of P -modules.

Ext
pdP S
P (S,Q) ∼= (Px/(f)⊗ Py/(g))m̃

∼= R

Therefore Theorem 3.2.3 establishes the existence of non-trivial totally reflexive

R-modules. In order to check the validity of the final statement, notice that if (g)P is

not a Gorenstein ideal of P , then Q is Cohen-Macaulay but not Gorenstein. Thus, the

rank of the last nonzero free module in (Px ⊗G)m̃ is greater than one. Furthermore,

S ⊗P (Px ⊗G)m̃ → R→ 0

is a free resolution of R over S, and its last nonzero free module must also have rank

greater than one. Since S is assumed to be Gorenstein, we have shown that R cannot

be.

This section concludes with a specific example of a ring which demonstrates

the previous construction, and which, as we shall show in the next section, has no

embedded deformation.
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Example 3.3.2. Let k be a field and define P = k[x1, . . . , x5, y1, . . . , y4]m, where

m = (x1, . . . , x5, y1, . . . , y4) is the homogeneous maximal ideal over the polynomial

ring k[x1, . . . , x5, y1, . . . , y4]. Now consider the local ring R = P/I, where I is defined

by the following seventeen quadratic forms over P .

2x1x3 + x2x3, x1x4 + x2x4, x
2
3 + 2x1x5 − x2x5

x2
4 + x1x5 − x2x5, x

2
1, x

2
2, x3x4, x3x5, x4x5, x

2
5

y2
1, y1y2 − y2

3, y1y3 − y2y4, y1y4, y
2
2 + y3y4, y2y3, y

2
4

We first notice that R ∼= S ⊗P Q, where S = P/J , Q = P/K, and J and K are the

ideals generated by

2x1x3 + x2x3, x1x4 + x2x4, x
2
3 + 2x1x5 − x2x5

x2
4 + x1x5 − x2x5, x

2
1, x

2
2, x3x4, x3x5, x4x5, x

2
5

and

y2
1, y1y2 − y2

3, y1y3 − y2y4, y1y4, y
2
2 + y3y4, y2y3, y

2
4

respectively, over P . This noted, it is clear from the discussion in the previous

construction that R fits the criteria for Theorem 3.2.3, and so we are guaranteed that

it admits non-trivial totally reflexive modules. However, as we will demonstrate in

the subsequent section, R does not have an embedded deformation.

3.4 Embedded Deformations Revisited

The ultimate goal for this section is to develop machinery that will enable us

to prove the following statement.

Proposition 3.4.0.1. The local ring R defined in Example 3.3.2 does not have an

embedded deformation.

The goal is accomplished in the following section by utilizing the homotopy Lie
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algebra of the local ring R. Furthermore, in Section 3.4.2 we establish a relation

between a local ring with an embedded deformation and the Poincaré series of its

completion.

3.4.1 The Homotopy Lie Algebra

In this section, we investigate a method which uses the homotopy Lie algebra of

a local ring to determine if it has an embedded deformation. General theory regarding

such constructions can be found in [35].

Before giving results, we first review some related facts.

If Q→ R is a surjective local homomorphism, there is an induced map π∗(R)→

π∗(Q) on the respective graded homotopy Lie algebras. If, furthermore, Q → R is

an embedded deformation, then the natural map π∗(R) → π∗(Q) is surjective and

its kernel is comprised of the central elements of π2(R); for details, see [8, 6.1] For a

local ring (R,m, k) the universal enveloping algebra of π∗(R) is precisely the graded

k-algebra Ext∗R(k, k). If R is moreover a Koszul algebra, then Ext∗R(k, k) is generated

as a k-algebra by Ext1
R(k, k); for details, see [36, Theorem 1.2].

The following result, which characterizes the algebra generated by Ext1
R(k, k)

for a quadratic ring R, is a special case of a result of Löfwall in [36]. Its proof has

been omitted, but details can be found in [36].

Theorem 3.4.1.1. [36, Corollary 1.3] Let k be a field and define the quadratic k-

algebra R = k[x1, . . . , xn]/(f1, . . . , fr), where

fi =
∑
j≤`

aij`xjx`

with each aij` ∈ k, are homogenous for 1 ≤ i ≤ r. Then the algebra generated by the

degree one elements in Ext∗R(k, k) is given by[
Ext1

R(k, k)
]

= k〈T1, . . . , Tn〉/(ϕ1, . . . , ϕs)
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where, for 1 ≤ i ≤ s, we define

ϕi =
∑
j≤`

cij` [Tj, T`]

such that cij` ∈ k and [Tj, T`] = TjT` + T`Tj for all j ≤ `. Furthermore, the (cij`)j`

form a basis for the solution set to the system of linear equations given by

∑
j≤`

aij`xj` = 0

for 1 ≤ i ≤ r. That is, (cij`)j` forms a basis for the nullspace of the matrix given by:
a111 · · · a1nn

...
. . .

...

ar11 · · · arnn


As a consequence of Löfwall’s result, we are able to consider degree two elements

of the homotopy Lie algebra of a Koszul algebra R as quadratic forms in [Ext1
R(k, k)].

The following result illustrates this process by extending Theorem 3.4.1.1.

Lemma 3.4.1.2. Let k be a field and consider the k-algebras given by

Q = k[x1, . . . , xn]/(f1, . . . , fr)

S = k[y1, . . . , ym]/(g1, . . . , gs)

where, for all 1 ≤ i ≤ r and 1 ≤ j ≤ s, the fi, gj are homogeneous quadratic forms

such that Q and S are finite dimensional and Koszul. If R = Q⊗k S, then R is local

and

π∗(R) ∼= π∗(Q)× π∗(S).

In particular, π∗(R) has nonzero central elements of degree two if and only if either

π∗(Q) or π∗(S) does.
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Proof. Since the polynomials which define Q and S are homogeneous quadratics, we

can express them as

fi =
∑
j≤`

aij`xjx`

for 1 ≤ i ≤ r, and

gi =
∑
j≤`

bij`yjy`

for 1 ≤ i ≤ s. Further, since

R = Q⊗k S ∼= k[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fr, g1, . . . , gs)

we see that Theorem 3.4.1.1 implies

[
Ext1

R(k, k)
]

= k〈T1, . . . , Tn, U1, . . . , Um〉/(ϕ1, . . . , ϕα)

where α = (n + m)(n + m + 1)/2 − (r + s). For simplicity in notation, we let

β = n(n + 1)/2 − r and γ = m(m + 1)/2 − s, so that α = β + γ + nm. With this

established, the first β + γ of the ϕi are given by

ϕi =



∑
j≤`

cij`[Tj, T`] 1 ≤ i ≤ β

∑
j≤`

cij`[Uj, U`] β + 1 ≤ i ≤ β + γ

where cij` ∈ k is defined in such a way that (cij`)j` forms basis for the kernel of the

(r + s)× (β + γ) matrix given by:

a111 · · · a1nn

...
. . .

... 0
ar11 · · · arnn

b111 · · · b1mm

0 ...
. . .

...

bs11 · · · bsmm


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Furthermore, let

σ :
{

(j, `) ∈ Z2 |1 ≤ j ≤ n, 1 ≤ ` ≤ m
}
→ {i ∈ Z|1 ≤ i ≤ nm}

be a bijection; then the last nm of the ϕi are given by

ϕβ+γ+σ((j,`)) = [Tj, U`]

for 1 ≤ j ≤ n and 1 ≤ ` ≤ m. Letting ti (resp. ui) denote the image in Ext1
R(k, k) of

Ti (resp. Ui), it follows that [tj, u`] = [u`, tj] = 0 for every 1 ≤ j ≤ n and 1 ≤ ` ≤ m.

Now it follows that

[Ext1
R(k, k)] ∼= k〈T1, . . . , Tn〉/(ϕ1, . . . , ϕβ)⊗k k〈U1, . . . , Um〉/(ϕβ+1, . . . , ϕβ+γ).

Furthermore as R is assumed to be Koszul, π∗(R) can be viewed as a linear subspace

of the above expression via the natural inclusion π∗(R) ↪→ Ext∗R(k, k). This implies

the result.

Remark 3.4.1.3. The statement of Lemma 3.4.1.2 holds even when Q, S, and R

are local, but not necessarily Koszul. To see this, notice that we have an induced

isomorphism Tor∗R(k, k) ∼= Tor∗Q(k, k)⊗k Tor∗S(k, k) of k-algebras which extends to an

isomorphism of Hopf algebras with divided powers. Moreover, one can show that this

isomorphism is equivalent to an isomorphism of homotopy Lie algebras by considering

the equivalence of the respective categories. (For details, see [1], [38], [44].) Despite

this more general fact, we have chosen to include the machinery of Theorem 3.4.1.1

and Lemma 3.4.1.2 so that we may justify the following result without needing the

rigor which is required of Hopf algebras.

With these mechanisms established, we are now ready to prove the assertion at

the beginning of the section.
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Proof of Proposition 3.4.0.1. It suffices to show that π∗(R) has no non-trivial central

elements of degree 2. By Lemma 3.4.1.2, this condition is equivalent to neither π∗(S)

nor π∗(Q) containing such elements. In [11, Example 2.1 & Section 3], Avramov,

Gasharov, and Peeva prove this condition for π∗(Q), so we only need to show the

result for π∗(S). We shall adopt the same approach as the authors of [11].

As a result of [36, Corollary 1.3], we know that the algebra generated by the

universal enveloping algebra of π∗(S) can be expressed as

[
Ext1

S(k, k)
] ∼= k〈T1, T2, T3, T4, T5〉/I

where I is generated by the following relations.

T1T2 + T2T1, (T1T3 + T3T1)− 2(T2T3 + T3T2), (T1T4 + T4T1)− (T2T4 + T4T2)

T 2
3 + T 2

4 + (T2T5 + T5T2), T 2
3 + (T1T5 + T5T1) + (T2T5 + T5T2)

So it follows that π∗(S) is a graded Lie algebra on the variables t1, t2, t3, t4, t5,

each of degree one, which satisfies the following relations.

[t1, t2] = 0, [t1, t3] = 2[t2, t3], [t1, t4] = [t2, t4]

t
(2)
3 + t

(2)
4 = −[t2, t5], 2t

(2)
3 + t

(2)
4 = [t1, t5]

It is straightforward to see that the following forms a basis of π2(S).

u1 = t
(2)
1 u2 = t

(2)
2 u3 = t

(2)
3 u4 = t

(2)
4 u5 = t

(2)
5

u6 = [t1, t3] u7 = [t1, t4] u8 = [t3, t4] u9 = [t3, t5] u10 = [t4, t5]

Furthermore, we assert that a basis of π3(S) is given by the following.

vi =



[ui+2, t1] 1 ≤ i ≤ 8

[ui−2, t3] 9 ≤ i ≤ 12

[ui−5, t4] 13 ≤ i ≤ 14

[ui−6, t5] 15 ≤ i ≤ 16
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TABLE 3.1

MULTIPLICATION TABLE FOR π3(S)

[ui, tj] t1 t2 t3 t4 t5
u1 0 0 −2v4 −2v5 −4v1 + 2v2

u2 0 0 1
2
v4 2v5 v1 + v2

u3 v1
1
2
v1 0 −2v10 −2v11

u4 v2
1
2
v2 −2v13 0 −1

2
v3 + 4v11

u5 v3 −v3 + 4v11 −2v15 −2v16 0

u6 v4 −1
2
v4 −1

2
v1 −v9 − v6 −v7 + 2v13

u7 v5 −v5 v9 −1
2
v2 −v8 + 4v10

u8 v6
1
2
v6 − 1

2
v9 v10 v13 −v12 − v14

u9 v7
1
2
v7 − 3v13 v11 v14 v15

u10 v8 v8 − 6v10 v12
1
4
v3 − 2v11 v16

For the reader’s convenience, and in order to justify these claims, we include the

above multiplication table for π3(S).

It is clear from this table that the elements v1, . . . , v16 span π3(S). In order

to justify their linear independence, we note that rankk π
3(S) = ε3(S), the third

deviation of S, cf. [9, Theorem 10.2.1(2)]. This quantity can be calculated in terms

of the Betti numbers of k over S as follows.

ε1 = b1

ε2 = b2 −
(
ε1

2

)
ε3 = b3 − ε2ε1 −

(
ε1

3

)(3.4.1.3.1)

(cf. [9, Section 7]). Calculating a minimal S-free resolution of k yields that

PSk(t) = 1 + 5t+ 20t2 + 76t3 + · · ·

which we use to evaluate the expressions in (3.4.1.3.1), and obtain ε3 = 16. Thus,

v1, . . . , v16 is in fact a basis of π3(S).
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Now suppose u =
∑10

i=1 αiui is central in π2(S). Then 0 = [u, t1] =
∑10

i=3 αivi−3

implies that u = α1u1 + α2u2. Furthermore, using the above table yields

0 = [u, t5]

= α1[u1, t5] + α2[u2, t5]

= (−4α1 + α2)v1 + (2α1 + α2)v2

which implies that u = 0. We have therefore proven that π2(S) does not contain

nonzero central elements, and thus R does not have an embedded deformation.

Recalling that (Gorenstein) local rings of codimension at most 3 (resp. 4) have

embedded deformations, we have that the ring defined in Example 3.3.2, in the way

of codimension, the smallest such possible which satisfies the hypotheses of our main

result, yet does not have an embedded deformation.

3.4.2 Completion

In this section, we demonstrate a relation between a local ring with an embed-

ding deformation and the Poincaré series of its localization.

Proposition 3.4.2.1. If R is an equicharacteristic local ring which has an embedded

deformation, then −1 is a double root of PR̂(t).

Proof. Let ϕ : S → R be a surjective homomorphism of local rings such that kerϕ =

(a) ⊆ m2
S for some non-zero-divisor a of S. The Cohen structure theorem ensures

that both R̂ and Ŝ are the homomorphic images of regular local rings; say U and V ,

respectively. In particular, we can choose these rings so that embdimU = embdim R̂

and embdimV = embdim Ŝ. Since a ∈ m2
S, it follows that embdimR = embdimS.
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Furthermore, since R/mR
∼= R̂/mR̂, we see that

mR/m
2
R
∼=
(
mRR̂

)
/
(
m2
RR̂
)
∼= mR̂/m

2
R̂

which, of course, implies that embdimR = embdim R̂. Similarly, we can show that

embdimS = embdim Ŝ. Denote by d the common embedding dimension. Now, let k

be a coefficient field for R. The fact that ϕ is a surjective local ring homomorphism

implies that k is not only a coefficient field for S, but also for R̂ and Ŝ. Further,

by the Cohen structure theorem, k is a coefficient field for U and V . The following

isomorphism henceforth results

U ∼= V ∼= kJx1, . . . , xdK

which yields a commutative diagram of local ring homomorphisms

U

πS

��

πR

��

Ŝ
ϕ̂ // R̂

S

ιS

OO

ϕ // R

ιR

OO

where ιS, ιR, πS, and πR are the canonically defined maps.

Because completion is a faithfully flat functor, ker ϕ̂ ∼= (a)⊗S Ŝ ∼= (̂a). Further-

more, as S is Noetherian, it embeds into Ŝ. Thus, there should be no confusion in

writing ker ϕ̂ = (a), where a is obviously viewed here as an element of Ŝ. Now, take

ã ∈ U to be a preimage of a under πS. By virtue of the fact that a is regular on Ŝ,

we obtain the following isomorphism.

R̂ ∼= Ŝ ⊗U (U/(ã))
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Moreover, since Ŝ and U/(ã) are Tor-independent over U , we have the following

decomposition of the Poincaré series of R̂

PR̂(t) = PŜ(t) · PU/(ã)(t)

(where each of the above Poincaré series is taken to be over U). Now, since Ŝ and

U/(ã) are both rank-zero U -modules, we know that PŜ(−1) = PU/(ã)(−1) = 0.

Remark 3.4.2.2. As the ring R exhibited in Example 3.3.2 can be realized as the

tensor product of Tor-independent modules, it will necessarily follow that −1 is a

double root of PR̂(t) = PR(t). Therefore, one cannot use Proposition 3.4.2.1 to show

that R does not have an embedded deformation. However, it is possible to use the

result to show that neither of the rings S and Q, defined in Example 3.3.2, has an

embedded deformation.
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CHAPTER 4

EXISTENCE OVER SHORT LOCAL RINGS

The results of this chapter are of a very different flavor than those of the previous

chapter. One reason for this difference lies in the fact that the present chapter is

concerned with a much broader question; that is, we are chiefly interested in the

necessary conditions for the existence of totally reflexive modules over short local

rings. Therefore, the established results will characterize the existence of a much

more general class of modules. First, we consider the motivation for this work.

4.1 Motivation

The driving force for the work in this chapter is twofold. First, there is a moti-

vation to better understand the necessary conditions for the existence of asymmetric

complete resolutions. Such resolutions are known to exist, as illustrated by Jorgensen

and Şega in [31]. For the reader’s convenience, we reproduce their example below.

Example 4.1.1. [31, Proposition 2.2] Let k be a field which is not algebraically

closed over a finite field, and choose α ∈ k to have infinite multiplicative order.

Furthermore letting t, u, v, x, y, z be indeterminates over k, each of degree one, we

define the quotient ring R = k[t, u, v, x, y, z]/I, where I is the ideal generated by the

following fifteen quadratic forms.

z2, uz − tx− αuv, u2, zy + vy, uy, y2 − tx− (α− 1)uv,

xz + αvx, ux, xy, x2 − tx− tv,

tz + ty + αvx, tu, ty − vx+ tv, t2 + (α + 1)uv − vy, v2
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Now let d : R3 → R2 be given by the following matrix, with respect to the standard

bases of R3 and R2.  v y 0

x z tv


In [31], the authors demonstrate that M = coker d is a totally reflexive R-module

with a complete resolution F|G∗ having the property that {rankFi} has exponential

growth, whereas {rankGi} is constant. Moreover, the authors demonstrate that R

is a local Gorenstein ring with maximal ideal m = (t, u, v, x, y, z) and is a Koszul

algebra.

The local ring illustrated in the previous example has the property that the

fourth power of the maximal ideal vanishes. Such local rings have been referred to in

the literature [24] as being short, and we shall adopt the same terminology. Indeed,

the existence of totally reflexive modules has been extensively studied over ‘shorter’

local rings. We outline the relevant results below.

Fact 4.1.2. [50, Proposition 2.4] Let (R,m) be a non-Gorenstein local ring with

m2 = 0. Then every totally reflexive module is trivial.

Theorem 4.1.3. [50, Theorem 3.1] Let (R,m) be a non-Gorenstein local ring with

m3 = 0. If R admits a non-trivial totally reflexive module M , then the following hold.

(1) R has the structure of a standard graded ring, and its Hilbert series is balanced;

that is, HR(−1) = 0.

(2) R is a Koszul algebra.

(3) The Betti sequence of M is constant.

Hence, our second source of motivation is to better understand the existence of

non-trivial totally reflexive modules over a local ring (R,m) with m4 = 0. Assuming
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the existence of such a module M over R, we ask the following questions.

(1) Can we characterize the Hilbert series of R (that is, of grm(R))?

(2) Is this Hilbert series necessarily balanced?

(3) What is the possible growth of the Betti sequence of M?

Guided by Theorem 4.1.3(2) and the fact that the ring exhibited in Example 4.1.1 is

Koszul, we restrict our investigation to modules with (eventually) linear resolutions.

The following section addresses the niceties of such modules; first, we set notation

that will be used throughout the remainder of the chapter.

Notation 4.1.4. Let (R,m) be a local ring satisfying m4 = 0. We let

Hgrm(R)(t) = 1 + et+ ft2 + gt3

denote the Hilbert series of R, where e = µ(m) is the embedding dimension of R,

f = µ(m2), and g = µ(m3).

4.2 Linear Resolutions

One particular advantage of studying modules with eventually linear minimal

free resolutions is that their Poincaré series are easy to compute; this is due to a

result of Herzog and Iyengar in [25]. We shall state their result next, and furthermore

include a proof for the reader’s convenience.

Lemma 4.2.1. [25, 1.8] Let M be a finitely generated module with an eventually

linear minimal free resolution over a local ring (R,m). Then there exists q ∈ Z[t]

such that the following holds.

PR
M(t) =

q(t)

Hgrm(R)(−t)(1 + t)dimR
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Proof. Let n = ldR(M), and notice that

PR
M(t) =

n−1∑
i=0

βi(M)ti +
(
PR

Ωn(M)(t)
)
tn

where Ωn(M) is necessarily Koszul. Since PR
M(t) has the desired form if and only if

PR
Ωn(M) does, it suffices to assume that M is Koszul.

Now choose a minimal free resolution F → M → 0. Since F is assumed to be

linear, it follows that grm(F) is a (graded) minimal free resolution of grm(M) over

grm(R). Therefore, we have that PR
M = P

grm(R)
grm(M). Furthermore, as Hilbert series are

additive on short exact sequences, we have that

Hgrm(M)(t) = Hgrm(F0)(t)−Hgrm(F1)(t) +Hgrm(F2)(t)−Hgrm(F3)(t) + · · ·

= Hgrm(R)(t)P
grm(R)
grm(M)(−t)

= Hgrm(R)(t)P
R
M(−t)

where the second equality holds by virtue of the fact that grm(Fi) is a graded free

grm(R)-module, and the sum of the ranks of its components is equal to the ith (total)

Betti number of grm(M), for each i ∈ N. Therefore, we can write

PR
M(t) =

Hgrm(M)(−t)
Hgrm(R)(−t)

.

Recalling that Hgrm(M)(−t) is a rational function with a denominator of (1− t)dimR,

the result now follows.

Moreover assuming that ExtiR(M,R) vanishes for i > 0, we obtain the following

similar characterization of the Poincaré series of M in the variable 1
t
.

Proposition 4.2.2. Let M be a finitely generated module with an eventually linear

minimal free resolution over a local ring (R,m). If ExtiR(M,R) = 0 for all i > 0,

then there exists q ∈ Z[t] such that the following holds.

PR
M(1

t
) =

q(t)

Hgrm(R)(−t)(1 + t)dimR
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Proof. The proof is similar to that of Lemma 4.2.1; however, letting F→M → 0 be

a minimal free resolution, we apply the additivity of the Hilbert series to the exact

sequence HomR(F, R).

Obvious corollaries to the previous two results exist if we assume the ring to

be zero-dimensional. Furthermore, as we will be working over short local rings, this

choice is a natural one.

Corollary 4.2.3. Let M be a finitely generated module with an eventually linear

minimal free resolution over a zero-dimensional local ring (R,m). If ExtiR(M,R) = 0

for all i > 0, then the following hold.

(1) PR
M(t)Hgrm(R)(−t) ∈ Z[t]

(2) PR
M(1

t
)Hgrm(R)(−t) ∈ Z[t]

The desired consequence of Corollary 4.2.3 lies in the fact that if M is a finitely

generated module with an eventually linear minimal free resolution over a short local

ring (R,m), we can explicitly write down a recursion relation for its Betti sequence

{bi} in terms of the Hilbert series Hgrm(R)(t) = 1 + et+ ft2 + gt3 of R. That is,

(4.2.3.1) bi+3 = bi+2e− bi+1f + big

for all i� 0. If, in addition, ExtiR(M,R) = 0 for all i > 0, we also have that

(4.2.3.2) bi = bi+1e− bi+2f + bi+3g

for all i� 0.

Remark 4.2.4. Notice that the recursion relation in (4.2.3.1) implies that any short

local ring which admits a module with an eventually linear minimal free resolution

has a Hilbert series whose general form is given by

Hgrm(R)(t) = 1 + et+ ft2 +

(
bi+1

bi
f − bi+2

bi
e+

bi+3

bi

)
t3
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for i � 0, where {bi} is the Betti sequence of the module. However, by considering

(4.2.3.1) and (4.2.3.2) simultaneously, we are able to do a bit better: we can write

the entire Hilbert series of R in terms of the embedding dimension of R and the Betti

sequence of M . The justification of this claim can be seen in the following fact.

Fact 4.2.5. Let M be a finitely generated module with an eventually linear minimal

free resolution over a short local ring (R,m). Moreover assume that ExtiR(M,R) = 0

for all i > 0. Then the Hilbert series of R is given by

Hgrm(R)(t) = 1 + et+ ft2 + gt3

where  bi −bi+1 bi+2

0 −∆1

bi

∆2

bi



g

f

e

 =

 bi+3

∆3

bi


and

∆1(i, j) = bibj+2 − bi+1bj+3

∆2(i, j) = bibj+1 − bi+2bj+3(4.2.5.1)

∆3(i, j) = bibj − bi+3bj+3

for all i, j � 0.

It is straightforward to see that the ∆` in Fact 4.2.5 are obtained by a simple

row reduction of the system that is directly obtained from (4.2.3.1) and (4.2.3.2).

Furthermore, a characterization of the Hilbert series of R is now entirely dependent

on the possible vanishing of the ∆`, and in general, the growth of the Betti sequence

of M . We address this topic in the following section.
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4.3 The Betti Sequence

There is very little known about the asymptotic behavior of the Betti sequence

of a finitely generated module of infinite projective dimension over an arbitrary local

ring. In particular, an answer to the following question of Avramov remains unknown

in general.

Question 4.3.0.1. [9, 4.3.3] If M is a finitely generated R-module with infinite pro-

jective dimension, is its Betti sequence eventually non-decreasing?

Of course, a negative answer to this question would introduce the possibility of

eventual periodicity of the Betti sequence. We consider this question next.

4.3.1 Periodicity

Our main result for this section will show that Betti sequences associated with

linear resolutions over short local rings cannot have ‘small’ periodicity. We make

this statement precise in Theorem 4.3.1.3 below; first, however, we must consider the

following fact.

Fact 4.3.1.1. Let M be a finitely generated module over a short local ring (R,m),

and denote the Betti sequence of M by {bi}. Then for each ` ∈ {1, 2, 3}, the quantity

∆`(i, j), as defined in (4.2.5.1), vanishes for all i, j � 0 if and only if there exists a

positive integer n|` such that {bi} is eventually periodic of period n.

Proof. Fix ` ∈ {1, 2, 3} and suppose that bibj−`+3 = bi+`bj+3 for all i, j � 0. Choosing

j = i + ` − 3, we see that {bi} eventually satisfies b2
i = b2

i+`, which of course implies

that bi = bi+` for all i� 0. Thus, {bi} is periodic with period

n = min{m | bi = bi+m for all i� 0}
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which clearly must divide `.

Conversely, fix ` ∈ {1, 2, 3} and suppose that there exists some n ∈ Z+ with n|`

such that {bi} is periodic with period n. Then in particular bi = bi+`, and moreover

bibj−`+3 = bi+`bj+3, for all i, j � 0.

Remarks 4.3.1.2.

(1) The assumption that ∆`(i, j) = 0 for all large i, j in the previous Fact is essen-

tial. Note that even the vanishing of ∆`(i, j) for infinitely many choices of i, j

does not imply periodicity of {bi}, unless the sequence is additionally assumed

to be eventually non-decreasing.

(2) The condition that a Betti sequence is not eventually constant is equivalent to

the non-vanishing of ∆1(i, j) for infinitely many i, j.

Theorem 4.3.1.3. Let M be a finitely generated module with an eventually linear

minimal free resolution over a short local ring (R,m). If ExtiR(M,R) = 0 for all

i > 0, then the Betti sequence of M is not eventually periodic of period two or three.

Proof. Let the Betti sequence of M be denoted {bi}. By Fact 4.3.1.1, it suffices to

show that neither ∆2(i, j) nor ∆3(i, j), as defined in (4.2.5.1), can vanish for all large

values of i and j. Since we can assume that {bi} is eventually non-constant, the set

I = {(n,m) ∈ N2 | ∆1(n,m) 6= 0}

has infinite cardinality.

First suppose that ∆2(i, j) = 0 for all i, j � 0, therefore implying that {bi}

eventually has period two. We have

f =
∆3(n,m)

∆1(n,m)
=

bnbm − bn+3bm+3

bn+1bm+3 − bnbm+2

=
bnbm − bn+1bm+1

bn+1bm+1 − bnbm
= −1

for all (n,m) ∈ I, which is absurd.
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Next suppose that ∆3(i, j) = 0 for all i, j � 0, implying that {bi} eventually

has period three. Then

f = −∆2(n,m)

∆1(n,m)
e =

bn+2bm+3 − bnbm+1

bn+1bm+3 − bnbm+2

e =
bn+2bm − bnbm+1

bn+1bm − bnbm+2

e

for all (n,m) ∈ I. If (n, n) ∈ I, then the above expression reduces to f = −e, which

cannot be true. Otherwise, (n, n) /∈ I implies that

∆1(n, n) = bn+1bn+3 − bnbn+2 = bn(bn+1 − bn+2) = 0

so that bn+1 = bn+2. Because the cardinality of I must be infinite, it follows that

(n, n+ 1) = (n, n+ 2) ∈ I. In particular, ∆1(n, n+ 1) 6= 0, which implies that

∆1(n, n+ 1) = bn+1bn+4 − bnbn+3 = b2
n+1 − b2

n 6= 0

whence bn 6= bn+1. Thus, the expression for h2 simplifies to

f =
bn+2bn+1 − bnbn+2

b2
n+1 − b2

n

e =
bn+2

bn+1 + bn
e.

However, since bn+1 = bn+2, the above quantity is an integer if and only if bn = 0,

which is impossible. The result now follows.

4.3.2 Growth Rates

Among the mystery surrounding the Betti sequence of a finitely generated mod-

ule over an arbitrary local ring is the following open question of Avramov.

Question 4.3.2.1. [9, 4.3.7] Does there exist a finitely generated module over a local

ring whose Betti sequence grows subexponentially but superpolynomially?

In other words, it is not yet known whether the growth rate of a Betti sequence

could be strictly bounded between polynomial and exponential rates. It is known

that the Betti sequence of a module cannot grow superexponentially by work of Serre.

Because of this, we cover all possible cases by making the following definitions.
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Definition 4.3.2.2. Let M be a finitely generated R-module. Then the Betti se-

quence {bi} of M is said to have polynomial growth if there exists n ∈ N such that,

for all i� 0,

αin − λi ≤ bi ≤ αin + λi

for some α ∈ R+ and some sequence {λi} of real numbers satisfying λi/i
n → 0.

Definition 4.3.2.3. Let M be a finitely generated R-module. Then the Betti se-

quence {bi} of M is said to have exponential growth (of base a) if there exists

1 < a ∈ R+ such that, for all i� 0,

βai − ρi ≤ bi ≤ βai + ρi

for some β ∈ R+ and some sequence {ρi} of real numbers satisfying ρi/a
i → 0.

Remarks 4.3.2.4.

(1) The literature often refers to such growth rates in the language of complexity

and curvature; cf. [9, 4.2]. While these quantities specify a smallest upper

bound for the asymptotic behavior certain Betti sequences, our definitions above

provide a largest lower bound as well.

(2) Both of the above growth rates have been extensively studied. It is well-known

that over a complete intersection ring, every finitely generated module has a

Betti sequence which grows polynomially. Furthermore, exponential growth of

Betti numbers has been demonstrated in a variety of settings, including over

Golod rings [45], Cohen-Macaulay rings of small multiplicity [23,39], and certain

m3 = 0 local rings [33].

Finally, we define a special type of linear growth which will be of importance

to our results in the next section.
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Definition 4.3.2.5. Let M be a finitely generated R-module. The Betti sequence

{bi} of M is said to be exceptional if

bi+1 − bi = bi+3 − bi+2

for all i� 0.

Remark 4.3.2.6. Clearly, any Betti sequence which is either constant or exactly linear

(ie. bi+1 = bi + α for some α ∈ Z+) is exceptional. However, a sequence such that

bi+1 − bi = bi+3 − bi+2 6= bi+2 − bi+1

for all i � 0 is also exceptional. Though such growth may seem pathological, it has

been discovered to occur, over certain codimension two complete intersections, by

Avramov and Buchweitz [10]. The Betti sequence constructed by the authors of [10]

is strictly increasing. It is unknown whether there exists a not eventually constant

exceptional Betti sequence {bi} such that b2i+1 ≤ b2i for all i� 0.

In the next section, we describe the Hilbert series of a short local ring in terms

of the Betti sequence of its modules.

4.4 The Hilbert Series

The ultimate goal of this section is to investigate necessary conditions on the

Hilbert series of a short local ring in order for the ring to admit certain asymmetric

complete resolutions. However, there is much to be said about the Hilbert series

of such a ring in the more general setting. That is, en route to the study of total

reflexivity over a short local ring R, we shall first consider the existence of an R-

module M having a linear resolution and satisfying the vanishing of ExtiR(M,R) for

i > 0.
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4.4.1 The General Form

Recall that the general form for the Hilbert series of a short local ring (R,m)

which admits a finitely generated module M with an eventually linear minimal free

resolution is given by

Hgrm(R)(t) = 1 + et+ ft2 +

(
bi+1

bi
f − bi+2

bi
e+

bi+3

bi

)
t3

for i � 0, where {bi} denotes the Betti sequence of M . If we furthermore assume

that the Betti sequence of M has either polynomial or exponential growth, we obtain

the following result.

Lemma 4.4.1.1. Let M be a finitely generated module with an eventually minimal

free resolution over a short local ring (R,m). The following hold.

(1) If the Betti sequence of M has polynomial growth, then

Hgrm(R)(t) = 1 + et+ ft2 + (f − e+ 1)t3.

(2) If the Betti sequence of M has exponential growth of base a, then

Hgrm(R)(t) = 1 + et+ ft2 + (af − a2e+ a3)t3.

Proof. Let the Betti sequence of M be denoted by {bi}. First we prove (1). By the

hypothesis, we know that there exists n ∈ N such that, for all i� 0,

αin − λi ≤ bi ≤ αin + λi

for some α ∈ R+ and some sequence {λi} satisfying λi/i
n → 0. We therefore have

the following bound.

g =
bi+1e− bi+2f + bi+3

bi

≤ (α(i+ 1)n + λi+1) f − (α(i+ 2)n − λi+2) e+ (α(i+ 3)n + λi+3)

αin − λi
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Notice that this quantity can be made arbitrarily close to f − e+ 1 for i� 0, and we

can similarly show that g is bounded from below by a quantity that asymptotically

approaches f − e+ 1. Hence Hgrm(R)(t) = 1 + et+ ft2 + (f − e+ 1)t3, which is what

was to be proved.

To show (2), notice that by the hypothesis, there exists an 1 < a ∈ R+ such

that, for all i� 0,

βai − ρi ≤ bi ≤ βai + ρi

for some β ∈ R+ and some sequence {ρi} satisfying ρi/a
i → 0. As in the proof of (1),

we proceed to bound g.

g =
bi+1e− bi+2f + bi+3

bi

≤ (βai+1 + ρi+1) f − (βai+2 − ρi+2) e+ (βai+3 + ρi+3)

βai − ρi
Therefore, g is bounded from above by a quantity that can be made asymptotically

close to af − a2e + a3 for i � 0. The same can be shown for a lower bound of g.

Thus, Hgrm(R)(t) = 1 + et+ ft2 + (af − a2e+ a3)t3, as claimed.

We illustrate the application of the characterizations provided by Lemma 4.4.1.1

in the following examples.

Example 4.4.1.2. Let R = kJw, x, y, zK/(w2, wx, x2, y2, z2) with unique maximal

ideal m = (w, x, y, z), and consider the R-module M = R/(w, x). One can use an

inductive argument to show that the nth map of the minimal free resolution of M

over R is represented by the block diagonal matrix

w x

w x

. . .

w x


n×2n
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with respect to the standard bases of Rn and R2n. It is easy to see that M has a linear

minimal free resolution and that its Betti sequence has exponential growth of base 2.

Thus, we can use Lemma 4.4.1.1(2) to recover the last coefficient of Hgrm(R)(t).

Hgrm(R)(t) = 1 + 4t+ 5t2 + 2t3

= 1 + 4t+ 5t2 +
[
(2)(5)− (22)(4) + (23)

]
t3

The results of Lemma 4.4.1.1 do not assume the vanishing of ExtiR(M,R) for

i > 0, and thus do not utilize the recursion relation in (4.2.3.2). In the next section,

we shall investigate the additional restrictions on Hgrm(R)(t) which arise if we make

this assumption.

4.4.2 Vanishing of Ext∗R(M,R)

The remaining results of this manuscript will heavily depend on the character-

ization in the following result.

Proposition 4.4.2.1. Let M be a finitely generated module with an eventually linear

minimal free resolution over a short local ring (R,m), and suppose that ExtiR(M,R) =

0 for all i > 0. Choose n ≥ ldR(M), and let bn, . . . , bn+3 be consecutive Betti numbers

of M such that bn+1bn+3 6= bnbn+2. Then Hgrm(R)(t) = 1 + et + ft2 + gt3, where the

following hold.

f =
(bn+2bn+3 − bnbn+1)e− (b2

n+3 − b2
n)

bn+1bn+3 − bnbn+2

g =
(b2
n+2 − b2

n+1)e− (bn+2bn+3 − bnbn+1)

bn+1bn+3 − bnbn+2

Proof. It suffices to solve the system of equations in Fact 4.2.5. Notice that the con-

dition that bn+1bn+3 6= bnbn+2 is equivalent to assuming that ∆1(n, n) 6= 0. Therefore,
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we have

f = −∆2(n, n)

∆1(n, n)
e+

∆3(n, n)

∆1(n, n)
=

(bn+2bn+3 − bnbn+1)e− (bn+3bn+3 − bnbn)

bn+1bn+3 − bnbn+2

and

g =
bn+1

bn
f − bn+2

bn
e+

bn+3

bn
.

which imply the result upon simplification.

Example 4.4.2.2. Let R = kJw, x, y, zK/(w2, wx, x2, y2, z2) be as in the previous

example, but consider the R-module M = R/(x). Since Ext1
R(M,R) ∼= R/(w, x) 6=

0, one would not expect Proposition 4.4.2.1 to recover the last two coefficients of

Hgrm(R)(t). Indeed,

f = 5 6= 19

4
=

(b3b4 − b1b2)e− (b2
4 − b2

1)

b2b4 − b1b3

g = 2 6= 3

2
=

(b2
3 − b2

2)e− (b3b4 − b1b2)

b2b4 − b1b3

.

We now consider the characterization in Proposition 4.4.2.1 given certain be-

havior in the Betti sequence. We begin with polynomial growth.

Theorem 4.4.2.3. Let M be a finitely generated module with an eventually linear

minimal free resolution over a short local ring (R,m), and suppose that ExtiR(M,R) =

0 for all i > 0. If the Betti sequence of M has non-exceptional polynomial growth,

then

Hgrm(R)(t) = 1 + et+ et2 + t3.

Proof. By virtue of Lemma 4.4.1.1(1), the Hilbert series of R must take the form

Hgrm(R)(t) = 1 + et+ ft2 + (f − e+ 1)t3.

We will use this fact, along with the statement of Proposition 4.4.2.1, to show that

f = e, thus implying the result.
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Let {bi} denote the Betti sequence of M . Then we have that

g =
bi+1

bi
f − bi+2

bi
e+

bi+3

bi
= f − e+ 1

for i� 0. Solving for f now yields

(4.4.2.3.1) f =

(
bi+2 − bi
bi+1 − bi

)
e− bi+3 − bi

bi+1 − bi

for i� 0. Equating the expressions for f in Lemma 4.4.1.1 and (4.4.2.3.1) implies

(bi+2bi+3 − bibi+1)e− (b2
i+3 − b2

i )

bi+1bi+3 − bibi+2

=
(bi+2 − bi)e− (bi+3 − bi)

bi+1 − bi

whence we obtain the following equation, for all i� 0.

(bibi+2 − b2
i+2 − bi+1bi+3)e− (bibi+2 − bi+2bi+3 − bi+1bi+3)

= (bibi+1 − b2
i+1 − bi+2bi+3)e− (b2

i − bibi+1 − b2
i+3)

One can now factor this equation and arrive at the following

(bi+2 − bi+1)(bi+1 + bi+2 − bi − bi+3)e = (bi+3 − bi)(bi+1 + bi+2 − bi − bi+3)

which again must hold for all large values of i. Now, since we have assumed that {bi}

is not exceptional, it follows that that bi+1 + bi+2− bi− bi+3 does not vanish infinitely

often. To make this precise, let

I = {i ≥ ldR(M) | bi+1 + bi+2 − bi − bi+3 6= 0}.

Therefore,

e =
bi+3 − bi
bi+2 − bi+1

for all i ∈ I. However, substituting this value for e into the the expression for f in
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(4.4.2.3.1) and simplifying, we obtain

f =
bi+2 − bi
bi+1 − bi

(
bi+3 − bi
bi+2 − bi+1

)
− bi+3 − b1

bi+1 − bi

=
bi+3 − bi
bi+2 − bi+1

= e

for all i ∈ I. This, of course, implies the result.

Example 4.4.2.4. Let R = kJx, y, zK/(x2, y2, z2). Then the residue field k :=

R/(x, y, z) is a totally reflexive R-module; in particular, ExtiR(k,R) = 0 for i > 0.

By virtue of the fact that R is a complete intersection ring, we know that the

Betti sequence of k has polynomial growth. Even better than this, as R is Koszul,

we can explicitly write down its Poincaré series as

PR(t) =
1

Hgrm(R)(−t)
=

1

(1− t)3
=
∑
i∈N

(
i+2

2

)
ti = 1

2

∑
i∈N(i2 + 3i+ 2) ti.

Since the Betti sequence of k has quadratic growth, it is not exceptional. Furthermore,

we know that the above resolution must be linear since R is Koszul. We also note

that the Hilbert series of R is given by Hgrm(R)(t) = 1 + 3t+ 3t2 + t3.

Remark 4.4.2.5. The hypothesis in Theorem 4.4.2.3 that {bi} is non-exceptional is

sufficient to obtain a symmetric Hilbert series; however, it is not necessary. We shall

illustrate this fact in the following examples.

Example 4.4.2.6. As in Example 4.4.2.4, let R = Jx, y, zK/(x2, y2, z2). Consider the

totally reflexive R-module M = R/(x) and its minimal free resolution given by

· · · → R
x−−→ R

x−−→ R
x−−→ R

x−−→ R→M → 0

which is certainly linear. Furthermore, as the Betti sequence of M is constant, it is

exceptional. Recall that the Hilbert series of R is symmetric.
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Example 4.4.2.7. Let R = kJw, x, y, zK/(w2, wx, x2, y2, z2), which has an embedded

deformation given by kJw, x, y, zK/(w2, x2, wx) = S → S/(y2, z2) ∼= R. If we define

M = R/(y, z), then one can check that ExtiR(M,R) vanishes for i > 0. Furthermore,

the minimal free resolution of M over R is given by the following.

· · · → R4


y 0 z 0

0 z 0 y

0 0 −y −z


−−−−−−−−−−−→ R3

 y 0 z

0 z −y


−−−−−−−−→ R2

[
y z

]
−−−−−→ R→M → 0

At this point, the Poincaré series of M might be fairly obvious. However, to be

thorough we set P = kJw, xK/(w2, wx, x2) and Q = kJy, zK/(y2, z2), and notice that

P⊗kQ ∼= R and P ∼= M as k-algebras. Therefore, let F→ k → 0 be a minimal Q-free

resolution of k ∼= Q/(y, z). The ranks of the free modules in F are well-understood

since k is the residue field of Q; we demonstrate them in the following Poincaré series.

(4.4.2.7.1) PQ(t) =
1

Hgrm(Q)(−t)
=

1

(1− t)2
=
∑
i∈N

(i+ 1) ti

Furthermore, since Torki (P,Q) = 0 for all i > 0 (cf. Example 3.3.2 for details), F⊗kP

is a minimal free resolution of M over R. We can therefore conclude that the Poincaré

series of M over R is the same as the one given in (4.4.2.7.1). In particular, the Betti

sequence of M is exceptional. Furthermore, recall that the Hilbert series of R is not

symmetric; in fact, we have Hgrm(R)(t) = 1 + 4t+ 5t2 + 2t3.

We now consider the characterization of the Hilbert series of a short local ring

whenever its modules have exponentially growing Betti numbers.

Theorem 4.4.2.8. Let M be a finitely generated module with an eventually linear

minimal free resolution over a short local ring (R,m), and suppose that ExtiR(M,R) =

0 for all i > 0. If the Betti sequence of M has exponential growth of base a, then
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Hgrm(R)(t) = 1 + et+ ft2 + gt3, where

f =

(
a+

1

a

)
e−

(
a2 + 1 +

1

a2

)

g = e−
(
a+

1

a

)
.

Proof. Let {bi} denote the Betti sequence of M . By assumption, for all i � 0 we

have

(4.4.2.8.1) βai − ρi ≤ bi ≤ βai + ρi

for some β ∈ R+ and some sequence {ρi} of real numbers satisfying ρi/a
i → 0.

We shall proceed by bounding the expressions for f and g found in Proposition

4.4.2.1 using (4.4.2.8.1). In the interest of space, we omit the tedious details which

are analogous to those found in the proof of Lemma 4.4.1.1(2). Indeed, we obtain the

following expressions

f =
(a5 − a)e− (a6 − 1)

a4 − a2

g =
(a4 − a2)e− (a5 − a)

a4 − a2

which one can simplify to arrive at the result.

An immediate corollary to the previous result is apparent if we consider the

fact that the expressions for f and g must be positive integers.

Corollary 4.4.2.9. Let M be a finitely generated module with an eventually linear

minimal free resolution over a short local ring (R,m), and suppose that ExtiR(M,R) =

0 for all i > 0. If the Betti sequence of M has exponential growth of base a, then

a = r + s
√
α
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for some non-zero r, s ∈ Q and α ∈ Z+ such that r2−αs2 = 1. In particular, a must

irrational.

Proof. Suppose that a =
p

q
, where p, q ∈ Z+ are relatively prime. Then

p

q
+
q

p
=
p2 + q2

pq
= n

for some n ∈ Z+, which implies that p2 − npq + q2 = 0. Solving for p now yields

p =
nq ±

√
n2q2 − 4q2

2
=
nq ± q

√
n2 − 4

2
.

In order for this quantity to be an integer, it must be true that n = 2, which corre-

sponds to the case that p = q = 1, a contradiction.

Therefore, let r, s ∈ Q and α ∈ R+ \ Q be such that a = r + s
√
α. (The fact

that a can be written in this form is a direct consequence of Theorem 4.4.2.8.) One

can quickly check that

a+
1

a
=
r(r2 − αs2 + 1) + (r2 − αs2 − 1)

√
α

r2 − αs2

whence it follows that r2 − αs2 = 1.

Remark 4.4.2.10. In light of Lemma 4.4.1.1, if one wishes to find a short local ring

which admits linear resolutions and possesses a Hilbert series which is not balanced,

it would be natural to expect the ring to only admit exponentially growing Betti

sequences. In fact, Theorem 4.4.2.8 does not even guarantee that such a Hilbert

series is balanced in the case that the module satisfies the vanishing of Ext condition.

In the following example, we illustrate this scenario.

Example 4.4.2.11. Define local rings S = kJx, y, zK/(x2 − y2, x2 − z2, xy, xz, yz)

and Q = kJu, vK/(u2, uv, v2), with maximal ideals mS = (x, y, z) and mQ = (u, v),
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respectively. Notice that Example 3.3.2 guarantees that the local ring

R := S ⊗k Q ∼= kJu, v, w, x, y, zK/(u2, uv, v2, x2 − y2, x2 − z2, xy, xz, yz)

admits non-trivial totally reflexive modules; in particular, M = R/(x, y, z) is one such

module.

Now, one would assume that the Betti sequence of M over R would coincide

with that of k ∼= S/mS over S. To check this, first note that M ∼= Q as k-algebras.

Further, let F → k → 0 be a minimal S-free resolution. Since Torki (S,Q) vanishes

for i > 0, it follows that F ⊗k Q is a minimal free resolution of M over R. Since S

is a Gorenstein ring satisfying m3
S = 0, the Betti sequence of the residue field k over

S has exponential growth. Therefore, the same must be true of the Betti sequence of

M over R.

Furthermore notice that one can easily check that the Hilbert series

Hgrm(R)(t) = 1 + 5t+ 7t2 + 2t3

of R is clearly not balanced. Also, by using the statement of Theorem 4.4.2.8, we can

recover the base a of the exponential growth of the Betti sequence of M . Indeed,

a =
e− g ±

√
((g − e)2 − 4)

2

=
3±
√

5

2

which implies that a = 3
2

+ 1
2

√
5 > 1.

Remark 4.4.2.12. Indeed, we can generalize the previous example. To this end, let

S = kJx1, . . . , xnK/I and Q = kJy1, . . . , ymK/J where I is generated over kJx1, . . . , xnK

by x2
1−x2

j and xixj for 0 ≤ i < j ≤ n, and where J is generated over kJy1, . . . , ymK by

yiyj for 1 ≤ i ≤ j ≤ n. It is clear to see that S is a Gorenstein local ring with Hilbert

76



series Hgrm(S)(t) = 1+nt+t3, and that Q is a Cohen-Macaulay local ring with Hilbert

series Hgrm(Q)(t) = 1 +mt. Furthermore, as S and Q are Tor-independent over k, the

Hilbert series of R := S ⊗k Q is given by

Hgrm(R)(t) = Hgrm(S)(t) ·Hgrm(Q)(t)

= (1 + nt+ t2)(1 +mt)

= 1 + (n+m)t+ (1 + nm)t2 +mt3

which is only balanced if m = 1 or if n = 2.

We now turn our attention to the existence of R-modules M with linear reso-

lutions which not only satisfy ExtiR(M,R) = 0 for i > 0, but which are also totally

reflexive.

4.4.3 Asymmetric Complete Resolutions

Our ultimate goal for this section is to investigate necessary conditions for a

short local ring to admit certain asymmetric (linear) complete resolutions. However,

our actual results are even more general than this: we only require the existence of

two R-modules, M and N , such that both ExtiR(M,R) and ExtiR(N,R) vanish for

i > 0. It is important for the reader to note that the added condition N ∼= M∗ is not

sufficient to obtain the total reflexivity of M . Indeed, it is also necessary to assume

that M is reflexive, cf. Remark 2.4.3.8.

We begin by considering the sort of asymmetric growth of Betti numbers which

is apparent in the example provided in [31]: polynomial vs. exponential growth.

Theorem 4.4.3.1. Let M and N be finitely generated modules, each with an even-

tually linear minimal free resolution, over a short local ring (R,m). Suppose that

the Betti sequence of M has polynomial growth, and the Betti sequence of N has
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exponential growth of base a. Furthermore assume that ExtiR(N,R) = 0 for i > 0.

Then

Hgrm(R)(t) = 1 + et+ et2 + t3.

Proof. By Lemma 4.4.1.1(1) we know that the Hilbert series of R must be balanced;

that is, Hgrm(R)(t) = 1 + et+ ft2 + (f − e+ 1)t3. Furthermore, since ExtiR(N,R) = 0

for i > 0, we can use the characterization of f in Theorem 4.4.2.8 to obtain

g = f − e+ 1

=

(
a+

1

a

)
e−

(
a2 + 1 +

1

a2

)
− e+ 1

=

(
a− 1 +

1

a

)
e−

(
a2 +

1

a2

)
.

However, Theorem 4.4.2.8 provides g = e−
(
a+

1

a

)
. Equating these expressions for

g, we can solve for e to obtain

e = a+ 1 +
1

a
.

With this value of e, it is now clear that the Hilbert series of R must also be symmetric.

Example 4.4.3.2. Let R and M be as in Example 4.1.1. Though the authors of [31]

did not explicitly state the base a of the exponential growth of the Betti sequence of

M , we are able to use Theorem 4.4.3.1 to recover its value. Indeed, recalling that the

embedding dimension of R is six, we obtain the following quadratic equation in the

variable a.

6 = a+ 1 +
1

a
=⇒ a2 − 5a+ 1 = 0

Solving now yields a = 5
2

+ 1
2

√
21.
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The statement of Theorem 4.4.3.1 is quite interesting. One important applica-

tion of it is summed up in the following remark.

Remark 4.4.3.3. In light of Theorem 4.4.3.1, it is impossible for the ring illustrated

in Example 4.4.2.11 to admit Koszul modules with polynomially growing Betti se-

quences. Notice, in particular, that this implies the ring does not have an exact pair

of zero divisors.

Finally, we state a result which essentially states that asymmetric complete

resolutions with exponential vs. exponential growth cannot occur.

Theorem 4.4.3.4. Let M and N be finitely generated modules, each with an even-

tually linear minimal free resolution, over a short local ring (R,m). Suppose that

ExtiR(M,R) = 0 = ExtiR(N,R) for all i > 0. If the Betti sequences of M and N have

exponential growth of bases a and b, respectively, then a = b.

Proof. Suppose the contrary. By Theorem 4.4.2.8 we have

g = e−
(
a+

1

a

)
= e−

(
b+

1

b

)
which simplifies to yield ab = 1. Since both a and b must be larger than one, we have

reached a contradiction.
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Secrétariat mathématique, Paris, 1967. MR0225844

[3] , Finite type implies isolated singularity, Orders and their applications

(Oberwolfach, 1984), 1985, pp. 1–4. MR812487

[4] , Isolated singularities and existence of almost split sequences, Represen-

tation theory, II (Ottawa, Ont., 1984), 1986, pp. 194–242. MR842486

[5] M. Auslander and M. Bridger, Stable module theory, Memoirs of the American

Mathematical Society, No. 94, American Mathematical Society, Providence, R.I.,

1969. MR0269685

[6] M. Auslander and D. A. Buchsbaum, Homological dimension in Noetherian rings,

Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 36–38. MR0075190

[7] , Homological dimension in local rings, Trans. Amer. Math. Soc. 85

(1957), 390–405. MR0086822

[8] L. L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96

(1989), no. 1, 71–101. MR981738

[9] , Infinite free resolutions, Six lectures on commutative algebra, 2010,

pp. 1–118. MR2641236

80

http://www.ams.org/mathscinet-getitem?mr=0277590
http://www.ams.org/mathscinet-getitem?mr=0225844
http://www.ams.org/mathscinet-getitem?mr=812487
http://www.ams.org/mathscinet-getitem?mr=842486
http://www.ams.org/mathscinet-getitem?mr=0269685
http://www.ams.org/mathscinet-getitem?mr=0075190
http://www.ams.org/mathscinet-getitem?mr=0086822
http://www.ams.org/mathscinet-getitem?mr=981738
http://www.ams.org/mathscinet-getitem?mr=2641236


[10] L. L. Avramov and R.-O. Buchweitz, Homological algebra modulo a regular se-

quence with special attention to codimension two, J. Algebra 230 (2000), no. 1,

24–67. MR1774757

[11] L. L. Avramov, V. N. Gasharov, and I. V. Peeva, A periodic module of infi-

nite virtual projective dimension, J. Pure Appl. Algebra 62 (1989), no. 1, 1–5.

MR1026870

[12] , Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math.

86 (1997), 67–114. MR1608565

[13] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of

modules of finite Gorenstein dimension, Proc. London Math. Soc. (3) 85 (2002),

no. 2, 393–440. MR1912056

[14] K. A. Beck, On the Hilbert series of an m4 = 0 local ring admitting linear com-

plete resolutions (in preparation).

[15] , Existence of totally reflexive modules via Gorenstein homomorphisms,

J. Commut. Algebra (to appear).

[16] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Ad-

vanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.

MR1251956

[17] L. W. Christensen and H. Holm, Ascent properties of Auslander categories,

Canad. J. Math. 61 (2009), no. 1, 76–108. MR2488450

[18] L. W. Christensen, D. A. Jorgensen, H. Rahmati, J. Striuli, and R. Wiegand,

Brauer-Thrall for totally reflexive modules (submitted), available at arXiv:

1008.1737v1.

[19] L. W. Christensen, G. Piepmeyer, J. Striuli, and R. Takahashi, Finite Gorenstein

representation type implies simple singularity, Adv. Math. 218 (2008), no. 4,

1012–1026. MR2419377

81

http://www.ams.org/mathscinet-getitem?mr=1774757
http://www.ams.org/mathscinet-getitem?mr=1026870
http://www.ams.org/mathscinet-getitem?mr=1608565
http://www.ams.org/mathscinet-getitem?mr=1912056
http://www.ams.org/mathscinet-getitem?mr=1251956
http://www.ams.org/mathscinet-getitem?mr=2488450
arXiv:1008.1737v1
arXiv:1008.1737v1
http://www.ams.org/mathscinet-getitem?mr=2419377


[20] D. Eisenbud, Commutative algebra with a view toward algebraic geometry,

Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.

MR1322960

[21] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules,

Math. Z. 220 (1995), no. 4, 611–633. MR1363858

[22] , Relative homological algebra, de Gruyter Expositions in Mathematics,

vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR1753146

[23] V. N. Gasharov and I. V. Peeva, Boundedness versus periodicity over commuta-

tive local rings, Trans. Amer. Math. Soc. 320 (1990), no. 2, 569–580. MR967311
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