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ABSTRACT 

 

ISSUES ON FINITE ELEMENT MODELING OF LAMINATED COMPOSITE STRUCTURES 

 

Farhan Alamgir, M.S 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Wen S. Chan 

 Composite structures have been used widely in aviation industries and civil construction 

field because of their high specific stiffness, high specific strength and directional dependent 

properties. When using finite element method to analyze these structures, special attention of 

modeling is required. This thesis addresses the effect of layer stresses and displacements of a 

laminate under loading due to element meshing, boundary constraints and material properties 

used in modeling of composite structures. This study also includes the investigation of the 

magnitude and location of the layer peak stresses on modeling the laminate with a hole. It is 

concluded that special characteristics of composite structures such as 

symmetrical/unsymmetrical and balanced/unbalanced laminate configurations need to be 

considered in the application of finite element method to composite structures. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of composite materials in Structural Applications 

 Composites are materials made from two or more constituent materials with 

significantly different physical or chemical properties which remain separate and distinct at 

the macroscopic or microscopic scale within the finished structure. One of the materials is 

discontinuous and stiffer and stronger called the reinforcement, whereas the less stiff material is 

called the matrix. 

Advanced composite are becoming more widely used as an alternative to metallic 

structures. Since boron and graphite fibers were first developed in the early 1960‟s, application 

of advanced composites in military aircrafts have accelerated rapidly. The basic advantage of 

using composite materials over metals is in their high strength to weight and stiffness to weight 

properties, which have great potential for reducing structural weight.  

Applications of composites have been extended widely to the aircraft, marine, 

automotive, sporting goods, biomedical industries, civil constructions and many other fields. 

Increasing use of composite in structures are also required an understanding of their structural 

responses and failure mechanisms. Unlike isotropic materials, composite structures exhibits 

complicated anisotropic behavior, such as tension/shear coupling and tension/bending coupling 

as well as bending twisting coupling.   Although the history of using composite materials is very 

old, stress analysis of composite structures is relatively new. Composite structure is often made 

by laminating the composite layers (so-called “lamina”) together with the different fiber 

orientation according to the requirement of load. The lamina in general, is a thin layer and is 
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inherent of not isotropic structural behavior. A theory of laminated plate, so-called “classical 

lamination theory”, was developed in 1960s in analyzing the stress/strain of each lamina.  This 

theory assumes that the state of stress within each lamina of a multidirectional laminate is 

planar. However this assumption is not true in the vicinity of free edge. The variation in material 

properties between layers of laminated composites can produce significant inter-laminar 

stresses. This inter-laminar stress is three dimensional even in a very thin plate. Hence, 

analyses using lamination plate theory, which assumes a plane stress condition, is not 

applicable in the neighborhood of the free edge. 

In short, analysis of composite structures requires knowledge of anisotropic elasticity. 

Most problems involving composite structures do not admit exact solution; therefore finite 

element method is used to find approximate but representative solutions.  

This method is a well developed numerical tool available today for predicting the 

response of composite structures. Throughout the year, the scope of finite element analysis has 

always been closely related to the advancement of computers and computational techniques. 

The development of advanced super computers and even affordable personal computers 

provide effective resources to solve complicated problems. 

1.2 Finite element modeling of composite structures  

 Finite element (FE) analysis is an alternative approach to solve the governing equations 

of any structural problem. Classical (continuum) methods of stress analysis can be applied 

satisfactorily for solving structural problems to some extent. These analyses are based on the 

application of the equations of equilibrium and compatibility, together with the stress-strain 

relations for the material, to produce governing equations which must be solved to obtain 

displacements and stresses. There is always some assumptions that must be made before the 

solution can be effected. In case of composites generally two common theories, namely 

Classical plate theory (CLT) and First order shear deformation plate theory ( FSDT) are used.  

These theories are not always applicable for all structural problems. If the geometry of 
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the structural problem is not simple, say it moves away from a plain rectangular plate to one 

containing cut-out, the governing equations become increasingly complicated and require ever 

more sophisticated mathematical techniques to solve them.  As a result the adoption of FE 

analyses is quite obvious. 

The FE method consists of dividing the structure to be composed of discrete parts, 

which are then assembled in such a way as to represent the distortion of the structure under 

specified loads. Each element has an assumed displacement field. The FE method was initially 

developed for isotropic materials and the majority of the elements available (“in library”) in any 

software package would be for such materials. To apply the technique to composites requires 

special attentions.  

Extensive research has been done using FEM technique on analyze composite 

structures with and without a cutout. Among the book publications, Reddy and Ochoa [1] was 

the first textbook focused on composite laminate analysis by using finite element method. 

Several bench mark examples have been demonstrated. Recently, Strong [2] in his book 

discussed the special issues that must be considered when using the finite element method to 

analyze composite materials and structures. Barbero [3] focused on the composite analysis by 

using ANSYS. In those books, some of special issues in modeling composite structures were 

still not addressed.  

Since most of composite structures are the thin compared to the other dimensions of 

the structures, it is logically to model the structures using 2-dimensional plate or shell element. 

Because of the different properties of each layer, the properties used in the plate or shell 

element are often obtained the smeared in-plane properties buy using lamination theory. In 

doing so, the inter-laminar stresses which exit near the free edge are not able to directly obtain. 

In order to obtain a full state of stresses, stacking three-dimensional element (for example, brick 

element) with one or two elements representing a ply of composite materials are often 
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conducted. However, an accurate three dimensional analysis introduces a larger number of 

degree of freedom resulting in enormous memory and computational time requirement. 

Because of thin layer, maintaining a proper aspect ratio of finite element results in an increased 

number of elements in the model. As a consequence, layering brick elements through the 

thickness of relatively thin plates leads to very ill-conditioned sets of equations. This makes the 

program very expensive to run. It is also impractical to consider individual lamina, which are 

located far from the region of interest. Hence a group of laminas are often lumped together into 

a single layer of an equivalent 0
0
 layer to reduce the size of the problem in finite element 

analysis. In doing so, the use of effective moduli for replacing the lumped heterogeneous 

medium by an equivalent homogeneous material is required. 

A number of methods have been reported in the literature for computing the effective 

moduli of a laminate.  The in-plane elastic constants were obtained from Classical Lamination 

Theory. But the effect of curvature and shear deformation on the effective moduli was ignored if 

un-symmetric and un-balanced lamias were lumped together. Chen and Chan [4] proposed a 

method for calculating equivalent properties of the lumped layer to account those coupling 

effects. Later, Lin, al. et. [5] developed an expression for equivalent thermal expansion 

coefficients of lumped layer in laminated composites.  

Many works have been done modeling a laminate with a hole. Because of symmetry of 

loading and global laminate configuration, a quarter or half structure of the entire laminate was 

often taken for model. These symmetry conditions violate the symmetry of material axis.   

The main purpose of this thesis is to discuss the special issues that must be considered 

when using the FE method to analyze composite materials and structures.  

1.3 Issues considered in this study  

While modeling of a composite material structure special consideration should be made 

on material selection, or choosing material constants, meshing technique, boundary conditions, 
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modeling dimensions (1- dimension, 2-dimension or 3-dimension), lay-up properties of 

composites. 

 As composite materials are inherently anisotropic  it needs four properties young‟s 

modulus in fiber directions, young‟s modulus transverse to the fiber direction , in plane shear 

modulus and in plane poisons ratio. So selecting a proper element that supports all the material 

property issues of a composite material is of a prime consideration.  

 Composites have directional properties. It is designed to exploit an improvement in 

mechanical properties. Both the constituent present in a composite has distinct characteristics 

which develops the continuum of the structure. So accuracy of the FEM solution largely 

depends on the choice of mesh. If the selected mesh violates the symmetry of the problem, the 

resulting solution will be less accurate than one aligned with the symmetry of the problem. This 

is the so-called effect of the geometric isotropy. If triangular element is used for meshing, as it is 

suitable for representing any geometrical complexity because of their complete polynomial 

representation, geometrical anisotropy may arise. That may leads to an erroneous stress 

analyses of the composite model. 

Boundary condition is another issue that needs special consideration. Unlike isotropic 

materials, depending on its layup (symmetric or un-symmetric, balanced or unbalanced) 

composite may behave in a unconventional way when load is applied. For an example, if simple 

tension load is applied on a cantilever beam made of isotropic material, the displacement is 

always in load direction, but for a composite material the type of deflection may vary depending 

on the layup. So if there is an out-of-plane deflection it is not recommended to constrain the 

degree of freedom at that direction. So boundary condition plays a special role while modeling a 

composite material. 

Special consideration should be taken depending on the modeling dimensions and 

layup of a composite material. 
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1.4 Objective of the thesis 

The main purpose of the thesis is to investigate the special issues that are needed to 

pay special attention when using finite element method in analyzing composite structures. The 

particular issues illustrated through the examples taken from the particular problems. This study 

is not intended to compare the types of elements used in modeling composite structure but to 

emphasize the effect of the results due to the issues described in the previous section. It is 

believed that those issues were not widely pointed out in composite structure modeling. 

1.5 Outline  of the thesis 

 Chapter 2 is a review of constitutive equations of laminated structures. Mainly the 

development of stiffness matrix of a laminate is described, followed by a brief review of 

Classical plate theory and laminated beam equations with rectangular and curved sections. 

 Chapter 3 presents the Finite element meshing techniques, geometrical isotropy and 

auto meshing. 

Chapter 4 presents One-dimensional, two dimensional and three-dimensional 

modeling. 

   The effect of the stress results due to the boundary conditions on finite element 

modeling is discussed in Chapter 5. 

Conclusions and recommendation drawn from this study are included in Chapter 6.  
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CHAPTER 2 

REVIEW OF CONSTITUTIVE EQUATIONS OF LAMINATED STRUCTURES  

In structural applications, composite materials are used in the form of thin laminates 

which are constructed by stacking multiple laminas together. Instead of analyzing layer by layer 

stress individually, the mid- plane of laminate is selected as a reference plane. Then the in-

plane structural properties of each ply are transferred into this plane. This type of analysis 

method is called “Lamination Theory”. This chapter reviews the lamination theory that has been 

used to calculate the ply stress and strain for a given laminated plate. Extension of the 

lamination theory to a straight and curved beam is also reviewed. 

 

2.1 Stiffness matrix of anisotropic materials  

Classical Lamination theory describes the stress and deformation hypothesis to 

analyze the behavior of laminated plate. By the use of this theory, we can consistently precede 

from the basic lamina to the end result the structural laminate. The whole process is one of 

finding effective and reasonably accurate simplifying assumptions that enable us to reduce our 

attention from a complicated three dimensional elasticity problem to a solvable two dimensional 

mechanics of deformable bodies‟ problem. 

To calculate the mechanical properties of composites it is convenient to start by 

considering a composite in which all the fibers are located in one dimension (unidirectional 

composite). This basic building block can then be used to predict the behavior of continuous 

fiber multidirectional laminates. The following figure 2.1 is showing a laminated plate. A k
th
 layer 

represents a lamina at z distance from the mid plane.
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Figure 2.1 k
th 

layer of a Composite Laminated Plate 

We will first discuss the stress –strain behavior of an individual lamina and express the 

equation for the k
th
 lamina of a laminate. We have the following assumptions: 

1. Each layer (Lamina) of the laminate is quasi homogeneous and orthotropic 

2. The laminate is thin; this means the lateral dimension is much larger than its 

thickness. So Plane Stress condition is used. 

3. All displacements are small compared with the thickness of the laminate 

Using these assumptions the problem is now a two dimensional problem. Now similar 

to the above figure this plate like entities are often constructed by assembling layers (or lamina 

or plies), usually unidirectional, one on top of another, the direction of fibers normally being 

changed from layer to layer. Consequently there will be layers for which the fibers are no longer 

aligned with the applied stresses. These are termed as rotated layers and can be said that they 

are subjected to off-axis loading.  
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Figure 2.2 Fiber orientation and co-ordinate transformation 

The above fig 2.2 shows the co-ordinate system of a single lamina. The global 

coordinate system is represented by x-y and Fiber coordinate system is represented by 1-2 

direction where 1 is parallel to the fiber direction and 2 is transverse to the fiber direction. The 

stress-strain relations in the principle material coordinates in 1-2 direction for a lamina under 

plane stress are, 
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Where, [Q] is called the reduced stiffness matrix and the values of different element of 

[Q] matrix are as follows, 
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 The stiffness matrix  
yx

Q
   for a lamina with fiber rotation of an arbitrary angle θ with 

respect to global axis can be obtained by rotating the stiffness matrix of a 0
0
 lamina   21Q , as 
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shown in the following equation. 
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It should be noted that [Q16] and [Q26] are zero but 
 

16
Q

 and 
 

26
Q

 are non zero except θ=0
0
 

and 90
0
. 

Now the stress-strain relationship in principle material direction is known. The reduced 

stiffness matrix [Q] in the global and local co-ordinate system is also known. So stress strain 

relationship for any layer in global coordinate system can be written as, 

   
kthyxkthyx

kthxy
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x
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2.2 Mid Plane Strain and Curvature of a Laminate  

Since a Laminate contains multiple directions of laminas, it is convenient to choose a 

reference plane of the given Laminate. Then, structural behavior of the laminate can be referred 

to that of this plane. In lamination Theory the mid Plane of a laminate is chosen as the reference 
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plane. 

 

 

   

 
Figure 2.3 Laminated plate. 

 
Let displacement functions of the mid plane of the laminated composite plate  are 

     yxwwyxvvyxuu ,,,,, 000000   as shown in the above figure 2.3.  So the 

displacement of any point such as point B in the figure can be written as, 
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So stress at any point in the laminate can be obtained by, 
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Now we can define, 
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And, 
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Equation 2.6 represents the mid plane strain and equation 2.7 represents the mid plane 

curvature. Combining equation 2.6 and equation 2.7 we can write in short, 

     






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
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yx
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y

x

xy
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y

x
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










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

























0

0

0

0

      (2.8) 

Equation 2.8 represents the strain of lamina at a distance z from the mid plane in terms 

of mid-plane strain and curvature. Substituting equation 2.8 into equation 2.3 we find, 

      







kthkthyx

kthxy

y

x

zQ 


















0
     (2.9) 

So, if we know the mid-plane strain and curvature and the distance of the layer from the 

mid-plane , then we can find the layer stress. Hence, the stress at any given layer can be 

obtained from the mid-plane strain and curvature of the laminate. The following section will 

discuss how to find the mid-plane strain and curvature from the applied load. 

2.3 Constitutive Equation of a Laminate  

The total forces and moments applied on the laminated plate is equal to the total 

internal forces and moments in the laminate. The following figure shows the definition of 

moments and loads in lamination theory. The resultant forces and moments per unit width of the 

laminate can be obtained by integrating the stresses of each ply through the thickness. 
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Figure 2.4 Loads and moments on a composite laminated plate. 

The sum of forces and moments of each layer per unit width of laminate can be given 

by the following equations, 
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      (2.10) 

And, 
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M

M

M
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x
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k
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
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      (2.11) 

Substituting equation 2.9 in the above equations (2.10 and 2.11) we obtain, 
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       
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And, 
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    (2.13) 

In the above equations, hk and hk-1 are the coordinate of the k
th
 layer as illustrates in the 

following figure 2.5. From the figure it can be seen that the distance of each layer always 

calculated from the mid-plane. For an example if the k
th
 layer is considered then the distance is 

hk which has been calculated from the mid-plane of the laminate. The [A], [B] and [D] matrix 

plays a vital role in stress analysis and predicting the behavior of composite. The [A] matrix is 

called the extensional stiffness matrix. [B] matrix is called the coupling stiffness matrix as it 

contributes in the coupling effect in response to different kind of load. [D] matrix is called the 

bending stiffness. 
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Figure 2.5 Layer orientation of a composite plate. 

 

Combining equation 2.12 and equation 2.13 we get, 





























 0

DB

BA

M

N
       (2.14) 

From this equation mid-plane strain and curvature can easily be found. Putting those 

values in equation 2.5 stresses at any layer can be calculated. The structural characteristics of 

[A], [B] and [D] matrices have been extensively studied before [6].  
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2.4 Laminated beam theory of Rectangular Cross-section 

All complicated structures are in fact collection and combination of simple structural 

members. Such a simple structural member is a flat beam. The foundation of the beam analysis 

is based upon the moment-curvature relationship along the longitudinal axis of the beam. This 

approach used for laminated composite beam is not different from the isotropic beam. However, 

in evaluation of the moment-curvature relationship, so-called the bending stiffness of the beam, 

laminated composite beam possesses a unique behavior that is different from the isotropic 

beam. This section will discuss on the axial and bending stiffness of the flat beam. 

 

2.4.1 Axial Stiffness 

The axial stiffness of a material means the resistance of that structure to deform along 

the loading direction. It is a proportional constant that relates the applied force and its strain 

response. From equation 2.14 we can write, 




















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




M

N

DB

BA
10




       (2.23) 

Or, 



























M

N

db

ba
T



 0

       (2.24) 

From the compliance matrix shown in the above equation 2.24 assuming all the loads 

are zero (Ny =Nxy=Mx=My= Mxy=0) and applying only Nx the first equation of the system 

becomes, 

xx Na .11

0          (2.25) 

0

11

xx

a

w
N 









        (2.26) 
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











11a

w
Ax         (2.27) 

In composites, an equivalent Young‟s Modulus is equal to the inverse of a11 multiplied 

by the total height of the laminate. From equation 2.25 

 

haha
Na

x

xx

1111

011

0 1~1~
.  x

x E      



     (2.28) 

it. on action stress average the is 
x

 and laminate the of thickness the is h   where          ~  

Therefore, the axial stiffness can be written as, 

11

~

a

w
Ax  xEA        (2.29 a) 

 

2.4.2 Bending Stiffness 

The bending stiffness of a material is defined as the resistance of that structure from 

bending. It is a proportional constant that relates the bending moment and its induced curvature. 

It can be written as, 

xxx DM .  

Applying analogous approach as equation 2.28 the bending stiffness can be written as, 

I
ha

ID smeared
x

11

1~
 xE       (2.29 b) 

 

2.5 Laminated Rectangular cross section beam considering stacking sequence  

Beams are the primary structural members that carry bending loads. The axial stiffness 

and bending stiffness of composite beam depends on the deformation of the configuration of the 
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cross section. The configuration deformation is affected by the width of the beam. Hence in 

order to perform the analysis, narrow and wide beams need to be considered separately. Wide 

and narrow refer to the aspect ratio of the cross section that is the ratio of the cross section 

width to height. The following are a brief review of the work published in Ref. [7]. 

2.5.1 Narrow Beam 

A narrow beam has a small width to height ratio. For a narrow beam the axial strain 

distribution give rise to deformation of the cross section in the transverse direction because of 

the poison‟s ratio effect. For a narrow beam the load Nx and the moment Mx acting on the axial 

direction are only considered. The loads and the moments in the other directions are neglected. 

 

Figure 2.6 Narrow Beam 
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Substituting  0 xyyxyy MMNN  in Equation 2.24 give the following 

equation, 

xxx MbNa .. 1111

0   

xxx MdNb .. 1111   

0

2

111111

11 . xx
bda

d
N 


        (2.30) 

xx
bda

a
M .

2

111111

11


        (2.31) 

From equation 2.30 the axial stiffness can be obtained since Nx is the axial force per 

unit width acting on the composite. Therefore substituting  
w

N
N x

x   in equation 2.30 

we get axial stiffness, 

2

111111

11~

bda

wd
A x

narrow


       (2.32) 

Similarly from equation 2.31 we get, 

2

111111

11~

bda

wa
D x

narrow


       (2.33) 

There is a significance difference between the smeared property bending stiffness and 

the narrow beam bending stiffness. The smeared property approach bending stiffness does not 

account the stacking sequence in consideration. The smeared property approach considers 

only the equivalent Young‟s modulus and multiplied it with the inertia of the cross section, 

therefore the effect of stacking sequence on the bending stiffness is not taken into account. This 

ignorance is acceptable if the laminate is very thin and the distance of the ply location from the 
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reference axis of bending is relatively large. However, if the laminate is very thick and the 

distance from the bending axis very small, the stacking sequence will have a significant effect 

on the bending stiffness.  

2.5.1 Wide Beam 

 Wide beam generally act like a Plate. It does not show distortion of the cross section 

like that of a narrow beam except for the outer edge. A wide beam is a beam which has a high 

width-height ratio as Shown in figure 2.6. As a result of this, curvature ky and kxy are restrained. 

It should be noted that the deformed configuration is intended to enhance the restrained effect 

of the beam cross-section. 

 

Figure 2.7 Wide Beam 

Substituting 000  xyyxyy  in Equation 2.14 gives the 
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following equations, 

xxx BAN  .. 11

0

11 
 

xxx DBM  .. 11

0

11 
 

Writing these Equations in matrix form we get, 
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xx M
BDA

A
.

2

111111

11


        (2.35) 

Rearranging Equation 2.34, it is possible to relate the axial force per unit width and the 

axial strain, 

0

11

11
2

11 . xx
D

B
AN 








       (2.36) 

Substituting 
w

N
N x

x   in equation 2.36 we find, 











11

11
2

11
D

B
AwA x
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      (2.37) 

Rearranging Equation 2.35 we get, 











11

11
2

11
A

B
DwD x
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      (2.38) 
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Where, w is the width of the laminate. 

2.6 Laminated  beam theory with curved cross section 

The following is a brief review of constitutive equations of a laminated curved beam 

which is derived by Nyugen [8].  

 

Figure 2.8 Curved Beam. 

 

Let ρρ‟ be the mid axis of the beam. The differential element  at k
th
 layer from the mid 

axis is mn  . Then the elongation after deformation can be written as  

  .dzR         (2.15) 

The deformation can also be described in terms of the mid-plane strain    and their 

curvature k, 

)( 0   zdR        (2.16) 
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Combining equation 2.15 and 2.16, 

  


 z
zR

R
0       (2.17) 

For simplicity, the stress   at kth layer can be approximated by, 

kkk Q ,,,           (2.18) 

The resultant force and moment per unit width, Nθ and Mθ are obtained as, 
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Explicitly, 
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(2.20) 

Combining the equations, 
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Or, 
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Where, A , B  , D  are extensional, coupling and bending stiffness along the θ 

direction respectively. 
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 CHAPTER 3  

 
 FINITE ELEMENT MESHING  

 The accuracy of finite element solution depends on the choice of the mesh. If the 

selected mesh violates the symmetry of the problem, the resulting solution will be less accurate 

than one aligned with the symmetry of the problem. This is called the effect of geometrical 

isotropy. Triangular mesh can be used for analysis because of their complete polynomial 

representation to the corresponding order and their flexibility in representation of geometric 

complexity. However, it has been known that geometrical anisotropy arises with this element. 

Reddy [9] pointed out that triangular element has fewer lines of symmetry when compared with 

rectangular element. This effect may be more significant for application of laminated structures. 

Chan and Chen [10] has shown the effect of Geometric Isotropy on a [0/90]s laminate under 

uniformly distributed load. 2D layered elements were used for their study. The effect of this 

geometric isotropy can be reduced if higher number of element is used or higher order element 

is used. Here a Symmetric layup of [±45/0/90]s under tension case were tested. Three different 

kind of mesh with approximately same element number and same boundary conditions were 

used and compared with closed form solution. The closed form equations are stated below. 

 

x

x

Nyax
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yxv
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xayxu
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





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11

2
),(

2
,

      (3.1) 

The following figure will show the Type of mesh that has been used for this analysis. 

Point to be noted that the figure a with a quad mesh satisfy the criteria of geometric isotropy, 

Figure b with a free triangular mesh partially satisfy the geometric isotropy and figure c with 
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triangular mapped mesh does not satisfy the geometric isotropy at all, because the 

models symmetry line is parallel to the diagonal line connecting point 2 and 4.  

 

Figure 3.1 Different kind of mesh 

The geometry of all the models in above figure 3.1 is 0.25*0.25 inch
2
. The displacement 

results at point 3 have been tabulated in the flowing table.  

Table 3.1 Results for a 3D Plate with Different Mesh Type 

10
-4 

Mesh a Mesh b Mesh c Closed-form 

equation result 

u 0.29441 0.29441 0.29441 0.29441 

v -0.088258 -0.088258 0.088258 -0.088258 

 

From the above analysis much difference is not observed because the number of 

element taken was sufficient. More over a shell 99 element with 8 node and after degenerated 6 
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node was used. Chen [8] has show that for a constant strain triangular element the effect of 

geometric isotropy plays a vital role. 

In finite element analyses meshing always plays a great roll. It‟s been always a difficult 

question for designers to answer that –what will be the appropriate mesh size. Actually there is 

no definite answer to that question. In case of composite the care that should be taken during 

modeling is even more. The criteria that should be considered while modeling a composite can 

be summarized as follows, 

 Choosing proper mesh size: the mesh should not be so fine that it becomes very 

expensive to run on the other hand it should not be so coarse that the result of the 

solution comes incorrect.  

 Aspect ratio is very important while doing the 3d composite model 

 Special care should be taken while doing meshing where there is a geometrical 

discontinuity. 

3.1 Choosing proper mesh size 

 To describe the effect of mesh size on finite element solution we take a simple 

plate with a hole and meshed it with mapped mesh. The SHELL99 layer element of ANSYS was 

used to model a symmetric layup of [±45/0/90]s with a hole.. Results were taken for far field and 

maximum stress in each layer. Mesh 1 is the coarsest mesh and mesh 3 is the finest mesh. A 

comparison of the lamination theory is also given. In these models, the mesh with geometrical 

isotropy was maintained. 

To create the mesh, the area near the circular cut out was subdivided into smaller 

areas. And a line set attribute was selected per line. All the areas were glued together to create 

the whole geometry. The composite plate geometry is 5 inches by 2 inches.  The following 

figure will show the meshing technique for mesh near the cut-out section 
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Figure 3.2 Circular cut-out. 

 

The next figure (3.3) will show the meshes that have been used in these analyses. The 

meshes were created by mapped meshing. Mesh 1 has the lowest number of elements. Mesh 2 

has higher element number than Mesh 1, and mesh 3 has the highest element numbers. Same 

boundary conditions were applied for the three dimensional models. Symmetric lay-up of 

[±45/0/90]s were used for this analysis. The laminate with a symmetric and balanced layup 

gives no shear coupling and no bending/twisting effect. Stress results were taken away from the 

hole because the objective was not to capture the stresses at the close vicinity of the whole, 

rather to see the effect at a point away from the whole in presence of a discontinuity in the 

model. The results are listed below in Table 3.2.  
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Figure 3.3 Different Mesh size. 
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Table 3.2 Mesh size results for a 2D Plate with a hole 

2D full model of  layup [±45/0/90]s results using shell 99 element 

 Mesh 1 Mesh2 Mesh 3 CLT (Base Line) 

 
x  y  xy  x  y  xy  x  y  xy  x  y  xy  

45 
638 367 420 630 368 416 633 366 417 633 366 417 

-45 
638 367 -420 630 368 -416 633 366 -417 633 366 -417 

0 
2591 -10 0 2522 -8 0 2559 -9 0 2559 -9 0 

90 
177 -745 0 172 -690 0 174 -724 0 174 -724 0 

90 
177 -745 0 172 -690 0 174 -724 0 174 -724 0 

0 
2591 -10.3 0 2522 -8 0 2559 -9.4 0 2559 -9.4 0 

-45 
638 367 -420 630 368 -416 633 366 -417 633 366 -417 

45 
638 367 420 630 368 416 633 366 417 633 366 417 

 

 From the table it is clearly seen that the stress results obtained from the three quite 

different meshes give insignificant difference for the stress at the location away from the hole 

region.  

 

3.2 Auto mesh 

  Mapped mesh is always preferred while doing a composite model, because it 

agrees with the geometrical symmetry of the material. Here an example is sited to compare a 

mapped mesh with a free mesh. Quad element of Shell 99 is used again for these analyses. 

Total no of element for the free mesh was 1715 and mapped mesh was 2050. 
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Figure 3.4 Free versus Mapped mesh. 
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Table 3.3 Free versus mapped Mesh for a 2D Plate with a hole  

 Free Mesh  Mapped Mesh CLT (Base Line) 

x  y  xy  
x  y  xy  

x  y  xy  

45 
627.5 367 414 633 366 417 633 366 417 

-45 
630.5 370 -418 633 366 -417 633 366 -417 

0 
2520 -7.5 -0.2 2559 -9 0 2559 -9 0 

90 
172.3 -690 -0.2 174 -724 0 174 -724 0 

90 
172.3 -690 -0.2 174 -724 0 174 -724 0 

0 
2520 -7.5 -0.2 2559 -9.4 0 2559 -9.4 0 

-45 
630.5 370 -418 633 366 -417 633 366 -417 

45 
627.5 367 414 633 366 417 633 366 417 

 

From the table it is clear that the mapped mesh gives better results compared with the 

results by classical lamination theory. This is because in mapped mesh geometrical symmetry 

of the model is preserved. 

  

3.3 Aspect ratio 

Aspect ratio of finite element is another important issue that has to be considered while 

modeling composite structure. By nature composite layers are very thin.  Hence, it is not 

practical to keep a small aspect ratio in modeling a composite laminate because of limited 

computer capacity.  The aspect ratio is defined as..  

tply
 Ratio Aspect


        (3.2) 

Where,   and tply are defined  in figure 3.5.    is the larger dimension on the laminate 
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Figure 3.5 Aspect Ratio 

 
To investigate the stress effect due to the aspect ratio of finite element, a symmetric 

lay-up of [±45/0/90]s was used for this analysis. Table 3.4 lists ply stresses obtained from the 

model with different aspect ratio. The aspect ratio has been calculated from the equation 3.2.It 

can be easily observed from the table that the results converges with the lower aspect ratio. It 

should be noted that unlike aspect ratio of 5, the stress of +45 and – 45 plies for aspect ratio, 25 

are not identical. This is because only four elements were allowed in the model. Hence, the 

stresses are strongly influenced by the presence of the edge stress. 
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5
 

Table 3.4 Aspect Ratio Results for a Flat Plate 

 

 

 
25

tply
 Ratio Aspect
  17

tply
 Ratio Aspect
  10

tply
 Ratio Aspect
  5

tply
 Ratio Aspect
  

 
x  y  xy  x  y  xy  x  y  xy  x  y  xy  

45 
606 356 409 620 369 438 640 375 428 634 362 418 

-45 
522 302 -351 613 352 -401 634 368 -418 634 368 -418 

0 
2670 -13.71 -1.38 2593 -6 -3 2545 -9 -1 2562 -11 0 

90 
171.23 -759 0 135 -709 0.4 174 -728 0.8 174 -719 0.8 

90 
171.23 -737 0 135 -727 0.4 166 -729 0.2 174 -719 1.3 

0 
2670 -13.71 0 2556 -9 0.4 2585 -7 0.9 2562 -11 0 

-45 
686.4 412 -462 666 399 -447 634 367 -418 634 368 -418 

45 
606 332 403 627 366 413 622 356 407 634 362 418 
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CHAPTER 4 

ONE-DIMENSIONAL, TWO DIMENSIONAL, THREE-DIMENSIONAL MODELINGS  

A structure can be divided into elements which can be one dimensional (beam), two 

dimensional (plate) or three dimensional (brick) elements. These types of elements are often 

selected based upon the preferred structural configuration and its interested structural 

response. Generally in finite element, if the one dimension of the model is ten times greater 

than the other shell element should be chose instead of solid and if two dimension of the model 

is ten times greater than the other beam element should be preferred. But because of the 

anisotropic nature of composite mostly composites are modeled by two dimensional element 

containing all the layers and occasionally in three dimension by stacking a 3D element of each 

layer through the thickness. 

Since composite layers are very thin, using a 3D model for a composite structure 

requires a large computing capacity because of the aspect ratio requirement of 3D elements. 

On the other hand using a 2D model requires smearing of laminate properties. As a result inter 

laminar response will be ignored. Hence selection of a 2D or a 3D element depends on whether 

the response of the inter-laminar behavior is needed. A brief discussion on Elements that can 

be used for composite modeling is given below. 

Shell elements can be imagined as collapsed solid elements, which have negligible 

through thickness stress values. Since some edges are absent in shell elements, generally 

more degrees of freedom (rotational degrees of freedom) are defined for nodes of a shell 

element. For some specific applications, instead of solid elements SHELL99 can be used 

depending on geometrical considerations. SHELL 91 is used with nonlinear applications such 

as large strain, sandwich construction or plasticity. SHELL181 is a 4-node element. It is not 

always preferred in composite modeling since highly nonlinear behavior exists. In using 
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SHELL99, layered configuration can be modeled by specifying the layer properties such as 

material properties, orientation angle, layer thickness and number of integration points per layer. 

 

Table 4.1 Elements with composite capability in Ansys 

Elements Description 

SHELL 99 Linear Layered Structural Shell Element 

SHELL 91 Nonlinear Layered Structural Shell Element 

SHELL 181 Finite Strain Shell 

SHELL 281 Finite Strain Shell 

SOLSH190 3D Layered Structural Solid 

SOLID 46 3-D Layered Structural Solid Element 

SOLID 185 3-D Layered Structural Solid Element 

SOLID 186 3-D Layered Structural Solid Element 

SOLID 191 Layered version of SOLID 95 

SOLID 95 Has composite capabilities 

SHELL 63 Can be used for composite 

SOLID 65 3D reinforced concrete solid element 

BEAM 188 Finite strain Beam 

BEAM 189 Finite strain Beam 

 

For SOLID 46 and SHELL 99 element types of ANSYS, constitutive matrices can be 

defined with an „infinite number of layers‟ opportunity. Within layered configuration, SHELL 63, 

SHELL 91, SHELL 181 and SHELL 63 elements of ANSYS permit sandwich construction using 

one layer and real constants. It is possible to model ply drop-off, by using SHELL 181, SHELL 

91 and SHELL 99 elements, by the method of node offsetting. Shell 99 is an eight node Linear 
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Layered Structural Shell Element, which can be used to model composite structures up to 250 

layers. Beyond this value, using a user-input constitutive matrix, more than 250 layers can be 

modeled. It does not support some nonlinear properties that SHELL 91 supports, but it has 

smaller computational time. Shell 99 has eight nodes: four corner nodes and four mid side 

nodes. Each node has six degrees of freedom: translations in three directions and rotation 

about three axes. An average or each corner thickness can be defined explicitly, which gives a 

bi-linearly varying thickness over the area of the layer, with the thickness input at the corner 

node locations. Inter laminar shear stresses can be calculated. Elastic properties, layer 

orientation and density are the user-defined material properties. Stress stiffening and large 

deflections are supported. The element coordinate system for Shell99 is right handed. Positive 

x-axis of the element coordinate system is defined by the direction from „node I‟ to „node J‟ 

(Figure 4.1) of the each element. The first layer is defined as the bottom layer, on negative z 

direction. Angle of fiber orientation is defined as the angle from x-axis to a direction, rotated 

toward y-axis of element coordinate system.  

 

Figure 4.1 Shell 99 Element Coordinate system 

 In this study, SHELL99 was selected for two-dimensional model, SOLID186, for three-
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dimensional model and BEAM188 for one dimensional modeling. SOLID186 can be used in 

both layered and non-layered options. Non-layered option was used here. The beam elements 

are based on Timoshenko beam theory, which is a first order shear deformation theory: 

transverse shear strain is constant through the cross-section; that is, cross-sections remain 

plane and undistorted after deformation. BEAM188 allows change in cross-sectional inertia 

properties as a function of axial elongation. By default, the cross-sectional area changes such 

that the volume of the element is preserved after deformation. BEAM188 does not account for 

coupling of bending and twisting at the section stiffness level. The transverse shears are also 

treated in an uncoupled manner. This may have a significant effect on layered composite and 

sandwich beams if the layup is unbalanced. The beam elements are based on Timoshenko 

beam theory which is a first order shear deformation theory- Transverse shear strain is constant 

through the cross section, which means cross-section remains plane and undistorted after 

deformation. 

A composite layer requires four basic material constants to fully describe its structural 

behavior, namely modulus of elasticity in fiber direction E1, modulus of elasticity transverse to 

the fiber direction E2, in- plane shear modulus G12, and in-plane poison ratio v12. There are 

generally two ways to supply these material data to FEM software such as ANSYS. Moduli of 

the lamina or laminate stiffness are two typical inputs as material data. 

 The one-dimensional beam requires the modulus of composite layer along the 

axis of the beam. However, a composite layer is inherent two-dimensional properties. Hence, 

the equivalent  modulus for the beam element is often used. 

 For a layered element, SHELL99, the input of the material constants can be either in 

matrix form or layer form by using KEYOPT(2).  For the input in matrix form, the matrices, A, B, 

D must be computed outside of the ANSYS program or from a prior ANSYS run using 

KEYOPT(10).  In the layer input of the material constants, the layer fiber orientation and 
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stacking sequence are directly input in the software for most common FEM codes. The code will 

then calculate the equivalent material constants for the entire laminate by using classical 

lamination theory. 

In modeling thick composite structures, 3D elements are usually preferred because the 

geometry of such structure is more solid than plate like. However for a thin laminate, three 

dimensional state of stress exists in the neighborhood of free edge such as a cutout edge and 

near the edge of the laminate. In this case a 3D model must be used. 

 The detailed modeling techniques of 1D, 2D and 3D models used in this thesis has 

been described in Appendix A. 

4.1 One Dimensional Modeling  

 Using one-dimensional model for a composite structure, the equivalent properties are 

calculated and incorporate them as a one dimensional element. The conventional method of 

doing that is by following equations: 
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        (4.1) 

Where a11, a12 a22, a66 and t are the compliance components and thickness of laminate 

used for SHELL99. Chen and Chan [10] found that using the calculated equivalent properties 

obtained by this conventional method in finite element modeling results in a significant error in 

the ply stress prediction for laminate with an unsymmetrical and unbalanced layup but 

insignificant error for symmetric and balanced laminate. Their suggested equations for 
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equivalent properties for a general laminate [10]   are listed as follows, 

            

 

    (4.2) 

 

 

 

 

 

 

 

 

 

 

An example of a simple supported beam with a symmetric layup of [±45/0/90]s and a 

unsymmetrical layup of [±45/0/90]2T is used to study the maximum beam deflection by using two 

different methods of equivalent property in the finite element model. Figure 4.2 illustrates the 

geometry and the loading condition of the beam. Both conventional and modified methods of 

calculating equivalent properties have been used in the ANSYS analysis. The results of the 

deflection were compared with the closed form solution shown in equation 4.3.  

xD

PL
v

.48

3

max          (4.3) 

Where, the bending rigidity Dx was calculated by the method shown in equation 2.38. 
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Figure 4.2 Simply Supported Beam. 

The composite material properties used for this analysis is shown below, this material 

property has been used for all the models in this thesis. 

Table 4.2 Material properties used in this Study 

 Properties value 

E11 21.75 msi 

E22=E33 1.595 msi 

v12=v13, v23 0.25,0.45 

G12=G13  , G23 0.8702 msi,  0.5366 msi 

t 0.005 inch 

 

The equivalent properties of the laminates calculated by two methods are listed in Table 

4.3.  As indicated, two methods give exactly the same results for the symmetric and balanced 
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laminate, but a significantly different result for unsymmetrical and balanced laminate. 

 

 Table 4.3 Equivalent modulus  

Equivalent 

properties 

Ex Msi Ey Msi vxy  Gxy Msi 

[±45/0/90]s conventional 8.4915 8.4915 0.2998 3.2665 

Modified 8.4915 8.4915 0.2998 3.2665 

[±45/0/90]T Conventional 8.0859 7.4745 0.3508 2.905 

Modified 8.4915 8.4915 0.2998 3.2665 

 

The following table shows the maximum deflection of the beam results obtained from 

FEM solution. The results have been compared with a closed form solution. As the FEM model 

is one dimensional the equivalent properties from the above table has been used to define the 

material properties.  

Table 4.4 Conventional method versus Modified method 1D FEM beam deflection 

 equivalent properties by 

conventional method 

equivalent properties by 

modified method 

 Closed form solution 

Laminate 

stacking 

sequence 

Symmetric, 

Balanced 

[±45/0/90]s 

Un-

symmetric, 

Balanced 

[±45/0/90]T 

Symmetric, 

Balanced 

[±45/0/90]s 

Un-

symmetric, 

Balanced 

[±45/0/90]T 

Symmetric, 

Balanced 

[±45/0/90]s 

Un-

symmetric, 

balanced 

[±45/0/90]T 

displacement 0.024875 0.026118 0.024875 0.024875 0.02490 0.02510 

 

It can be seen from table above that for a symmetric laminate the conventional and the 

modified method both agree with the closed form solution, but for an Un-balanced laminate the 
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conventional method does not agree with closed form solution.  

4.2 Two and Three Dimensional Modeling  

For an isotropic plate, a full,  a half or even a quarter model are selected for two 

dimensional analysis by taking advantage of  symmetry condition of loading and geometry of 

the structure.  No matter what type of modeling was used, the result agrees well among all of 

the models. However, this may not be true for modeling a composite structure. To address this 

issue, the symmetric layup of [±45/0/90]s and an un-symmetric layup of [±45/0/90]2T were used 

in this study. 

Material properties are same as indicated in Table 4.1. The following table will show the 

geometric of the models. 

Table 4.5 Geometry of 2D full model and 2D quarter model 

Geometry in inch 2D full model 2D quarter model 

Plate without hole 0.5*0.5 0.25*0.25 

 

A simple tension load has been applied to the geometry described in the above table. 

Table 4.6 lists the normalized stress results of each ply for the laminate under tension. As 

indicated, all of the models give no difference in stress results for a symmetric and balanced 

laminate without hole.  

 

 

 

 

 

 

Figure 4.3 Plate in tension load 
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Table 4.6 Comparison between 2d Symmetric full model and quarter model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symmetric layup (Stress normalized) 

 CLT 2 D Full model 2D quarter model 

 
x  y  xy  x  y  xy  x  y  xy  

45 0.633 0.366 0.417 0.633 0.366 0.417 0.633 0.367 0.417 

-45 0.633 0.366 -0.417 0.633 0.366 -0.417 0.633 0.367 -0.417 

0 2.559 -0.009 0 2.559 -0.009 0 2.559 -0.009 0 

90 0.174 -0.724 0 0.174 -0.724 0 0.174 -0.724 0 

90 0.174 -0.724 0 0.174 -0.724 0 0.174 -0.724 0 

0 2.559 -0.009 0 2.559 -0.009 0 2.559 -0.009 0 

-45 0.633 0.366 -0.417 0.633 0.366 -0.417 0.633 0.367 -0.417 

45 0.633 0.366 0.417 0.633 0.366 0.417 0.633 0.367 0.417 

4
5
 

farhan
Rectangle



46 

 

Table 4.7 Comparison between 2d Un- Symmetric full model and quarter model 

 

4
6
 

Un-symmetric layup (Stress normalized) 

 CLT 2 D Full model 2D quarter model 

 x  y  xy  x  y  xy  x  y  xy  

45 0.478 0.073 0.205 0.478 0.073 0.205 0.472 0.067 0.197 

-45 0.642 0.266 -0.396 0.642 0.266 -0.396 0.653 0.276 -0.407 

0 2.925 -0.050 -0.005 2.925 -0.050 -0.005 2.931 -0.05 -0.007 

90 0.186 -1.130 0.0 0.186 -1.131 0.0 0.186 -1.131 -0.001 

45 0.664 0.373 0.442 0.664 0.373 0.442 0.651 0.360 0.427 

-45 0.586 0.323 -0.362 0.586 0.323 -0.362 0.603 0.340 -0.381 

0 2.445 0.009 0.016 2.445 0.009 0.016 2.449 0.009 0.013 

90 0.166 -0.202 0.021 0.166 -0.202 0.021 0.167 -0.202 0.018 

farhan
Cloudy
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Table 4.7 lists the normalized stress of each ply for an un-symmetric layup analyzed by 

a full and a half finite element models of ANSYS. The results of laminate analysis by lamination 

theory are also included in the table for comparison. It is shown that only the stress results by 

2D full model agree with the results obtained from classical lamination theory. However, the 

results obtained by a quarter-model show a slight difference from the results by classical 

lamination theory for an unsymmetrical laminate. It is well known that an unsymmetrical 

laminate subjected to a tension load gives an induced out-of-plane displacement. When a 

quarter-model is used, an out-of-plane displacement along the symmetrical edges of the model 

was suppressed. Hence, a quarter-model is not a truly representative of a unsymmetrical 

laminate under tension.  

 

4.3 Full and Quarter of Three- Dimensional Models 

It is known that a plane stress condition is enforced when a two-dimensional analysis is 

employed. That means, the stresses in z-direction are ignored. Since the state of the stress 

near free edge region is three-dimensional, a three-dimensional analysis is needed. Moreover, if 

the inter-laminar stresses are of interest for laminate under loading, a three-dimensional 

analysis is required. In conducting three-dimensional analysis, a plane strain condition is used. 

The following describes the stress effect of laminate with and without hole subjected to a 

tension load.  Tables 4.8 and 4.9 summarize the normalized stress of each ply for laminate with 

a symmetric and unsymmetrical layup, respectively. A results obtained by a full 2D model is 

also included for comparison. The location of the ply stresses selected for the comparison is 

away from the edge to avoid the edge stress effect. Table 4.8 indicates that there is a negligible 

stress result difference between 2D model and 3D full model. This difference is contributed to 

the plane stress condition used in 2D model and the plane strain condition used in 3D model. 

There is also a negligible stress difference between 3D full model and quarter model. However, 

the stress difference between +45 and – 45 ply is observed. The results in Table 4.9 indicate 
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that a non-negligible difference of the ply stresses among all of the models. It is clearly shown 

that an induced bending for unsymmetrical laminate under tension is more produced in all of the 

models. 

 

Table 4.8 Comparison between 3d Symmetric full model and quarter model (Plate without Hole) 

 

 

 

 

 

 

 

Symmetric layup (Stress normalized) 

 2D Full model 3 D Full model 3D quarter model 

 
x  y  xy  x  y  xy  x  y  xy  

45 0.633 0.366 0.417 0.634 0.362 0.418 0.625 0.357 0.412 

-45 0.633 0.366 -0.417 0.634 0.368 -0.418 0.637 0.368 -0.420 

0 2.559 -0.009 0 2.562 -0.011 0 2.579 -0.01 0 

90 0.174 -0.724 0 0.174 -0.719 0 0.176 -0.739 0 

90 0.174 -0.724 0 0.174 -0.719 0.001 0.176 -0.735 0 

0 2.559 -0.009 0 2.562 -0.011 0 2.577 -0.010 0 

-45 0.633 0.366 -0.417 0.634 0.368 -0.418 0.637 0.367 -0.419 

45 0.633 0.366 0.417 0.634 0.362 0.418 0.622 0.358 0.406 
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Table 4.9 Comparison between 3D Un- Symmetric full model and quarter model (without hole)  

 

4.4 Full and Quarter 0f Two- Dimensional Models of Laminate with a Hole 

A laminated plate of 5 inch*2 inch has been used with a circular hole at the center of 

diameter 0.25 inch. First a 2 dimensional model will be discussed. The maximum ply stresses of 

a laminate with a hole obtained from a 2D model are shown in Figure 4.10. 

 

 

 

 

 

 

 Un-symmetric layup(Stress normalized) 

 2D Full model 3 D Full model 3D quarter model 

 x  y  xy  
x  y  xy  

x  y  xy  

45 0.478 0.073 0.205 0.481 0.071 0.206 0.520 0.132 0.248 

-45 0.642 0.266 -0.396 0.637 0.257 -0.389 0.618 0.278 -0.374 

0 2.925 -0.050 -0.005 2.935 -0.50 -0.004 2.810 -0.036 -0.002 

90 0.186 -1.130 0 0.186 -1.145 0 0.181 -0.9 -0.001 

45 0.664 0.373 0.442 0.660 0.369 0.438 0.698 0.367 0.485 

-45 0.586 0.323 -0.362 0.587 0.325 -0.364 0.615 0.382 -0.405 

0 2.445 0.009 0.016 2.434 0.010 0.015 2.283 0.026 0.011 

90 0.166 -0.202 0.021 0.165 -0.189 0.020 0.156 -0.258 0.027 
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Table 4.10 Comparison between 2d Symmetric full model and quarter model 

Symmetric layup (Plate with a hole) 

 2 D Full model 

(Stress normalized) 

2D quarter model  

(Stress normalized) 

θ max

x
 

 

max

y  max

xy  max

x  max

y  max

xy  

45 2.781 2.286 2.468 1.923 1.122 1.270 

-45 2.781 2.286 2.468 2.781 2.286 2.468 

0 7.731 0.082 0.229 7.731 0.082 0.229 

90 0.528 2.607 0.229 0.528 2.607 0.229 

90 0.528 2.607 0.229 0.528 2.607 0.229 

0 7.731 0.082 0.229 7.731 0.082 0.229 

-45 2.781 2.286 2.468 2.781 2.286 2.468 

45 2.781 2.286 2.468 1.923 1.122 1.270 

 

From the above table, it can be seen that the stress variation in the 2D quarter model 

and full model for +450 and - 450 plies for laminate with a hole. It is reminded that the peak 

stress always occurs at the location of the edge of the hole where the fiber is tangential to the 

hole. The quarter model of 2D shown in the above table is taken in the first quadrant of the 

laminate. The tangential location of +450 ply to the edge of the hole is out of the model domain. 

Hence, the peak stress of this ply is not a truly representative value.  A comparison of the 

normalized peak stress results in global direction and fiber direction is also tabulated in Table 

4.11. It can be seen from the table that for angle plies the fiber directional stress is higher. For 

zero degree layup the stress value does not change because for zero degree fiber direction is 
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actually in x direction. For a 2D model the location of peak stress for +45 and -45 degree are 

respectively at -45 degree and +45 degree from the x axis. For 00 ply it makes 900 and for  900  

it makes 00 with x axis. It should also be noted that in table 4.11 the 900 y directional peak 

stress is actually showing compression. 

Table 4.11 2D Symmetric full model normalized stress in x-y direction and fiber direction 

Symmetric layup (Plate with a hole) 

 2 D Full model (x-y) 2 D Full model (1-2) 

θ max

x  max

y  
max

xy  
max

1  max

2  
max

12  

45 2.781 2.286 2.468 4.983 0.358 0.400 

-45 2.781 2.286 2.468 4.983 0.358 0.400 

0 7.731 0.082 0.229 7.731 0.82 0.229 

90 0.528 2.607 0.229 2.607 0.528 0.229 

90 0.528 2.607 0.229 2.607 0.528 0.229 

0 7.731 0.082 0.229 7.731 0.082 0.229 

-45 2.781 2.286 2.468 4.983 0.358 0.400 

45 2.781 2.286 2.468 4.983 0.358 0.400 

 

Table 4.12 lists the normalized stress for laminate with an un-symmetric layup. The 

normalized stress values are shown in global x-y coordinate system for both full model and 

quarter model. The peak stress results of a full and a quarter 2D models are listed. As 

expected, significant difference of the results are observed between a full and a quarter model. 

This attributes the additional moment is enforced to a quarter model to suppress the induced 
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curvature due to unsymmetrical behavior. 

Table 4.12 Comparison between 2d Un- Symmetric full model and quarter model 

Un-Symmetric layup (Plate with a hole) 

 2 D Full model 

(Stress normalized) 

2D quarter model 

(Stress normalized) 

 
max

x  max

y  max

xy  max

x  max

y  max

xy  

45 2.296 1.775 1.963 1.550 0.579 0.786 

-45 2.628 2.127 2.304 2.608 2.097 2.272 

0 7.982 0.229 0.226 8.570 0.249 0.221 

90 0.542 3.131 0.246 0.544 3.367 0.235 

45 3.161 2.621 2.844 2.085 1.320 1.471 

-45 3.057 2.544 2.744 2.903 2.432 2.624 

0 8.071 0.154 0.339 7.164 0.164 0.278 

90 0.588 1.869 0.370 0.488 1.824 0.292 

 

For a symmetric layup, (table 4.10) it was seen that the difference between 2D full 

model and quarter model was only at 45
0
 lamina. But for an un-symmetric layup (4.12) it can be 

seen that there is stress difference in all the lamina. Because of the un-symmetric layup there 

exists a coupling effect to extension loading. And this has been restrained by the quarter model 

boundary constraint. As a result quarter model is incapable of showing an actual result. 

Table 4.13 shows the maximum stress result comparison between a full 2D and a 

quarter 2D for an un-symmetric layup in fiber direction. 
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Table 4.13 Comparison between 2d Un- Symmetric full model fiber direction results 

Un-Symmetric layup (Plate with a hole) 

 2 D Full model 

(Stress normalized) 

2D Full model 

(Stress normalized) 

 
max

x  max

y  max

xy  max

1  max

2  max

12  

45 2.296 1.775 1.963 3.986 0.325 0.495 

-45 2.628 2.127 2.304 4.649 0.310 0.471 

0 7.982 0.229 0.226 7.982 0.210 0.226 

90 0.542 3.131 0.246 2.816 0.542 0.246 

45 3.161 2.621 2.844 5.733 0.376 0.402 

-45 3.057 2.544 2.744 5.542 0.445 0.379 

0 8.071 0.154 0.339 8.072 0.134 0.339 

90 0.588 1.869 0.370 1.578 0.588 0.370 

 

Result summary: From the above tables (4.10-4.13), it is seen that for the symmetric 

layup no bending is induced as the layer stresses in the top layers from mid-plane are the mirror 

image of the bottom layers. However, bending is induced in the un-symmetric layup. 

The hole at the middle of the plate will take an elliptical shape due to tension loading. 

The following figure will show the deformation of the hole due to tension loading. The x and y 

coordinate values have been obtained from the FEM geometry. 
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Figure 4.4 Deformation of 2d plate with a hole full model 

From the above figure, the new origin is at (0.124795,0) after deformation. The 

following table will show the location of maximum stresses for the layers of symmetric laminate 

from the table 4.10. 

Table 4.14 Location of maximum stress for 2d symmetric full model 

layup 
x

y1tan   

45 -68.58 

-45 68.58 

0 90 

90 90 
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Figure 4.5 maximum stress of 2d plate with a hole full model 

From the above figure and table it can be clearly concluded that the maximum stress 

always happen to tangential to the fiber direction. Now for a quarter model the origin is not 

displaced from its location because a symmetric constraint is applied. The deformation of the 

model is shown in the following figure. The value of the coordinate point after deformation has 

been obtained from the FEM model. 

 

Figure 4.6 Deformation of 2d plate with a hole quarter model 
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For a quarter model in the first quadrant, it is seen that the positive 45 degree x 

directional maximum stress does not assume the same value as a full model. More over the 

position of the maximum stress is at 90 degree. Whereas for a full model the x directional 

maximum stress for a positive 45 degree layer is at negative 68.58 degree. On the other hand 

the maximum x directional stress value and location remain same for the negative 45 degree 

lamina for both quarter and full model. To describe this phenomenon the resultant location has 

been tabulated first. The following table will show the resultant location of the maximum stress 

angle for a quarter model in the first quadrant. 

Table 4.15 Location of maximum stress for 2d symmetric quarter model 

Layup 
x

y1tan   

45 90 

-45 68.50 

0 90 

90 90 

 

From the above figure and table it is clearly seen that for positive 45
0
  lamina the 

location of the maximum stress in x direction (loading direction) is at 90
0
  and from table 4.10 it 

is seen that the maximum stress value for x direction differs from the full model value. From the 

full model it has been also confirmed that maximum stress always occurs tangential to the fiber 

direction but the tangential location for a positive 45
0
  layer is not present in the quarter model 

because of the symmetric constrained applied in the quarter model. That is why the maximum 

stress is assuming a nearest point which is 90
0
 and the value of the x directional maximum 

stress is much lower than the full model value. Figure 4.8 describe the effect more elaborately. 
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Figure 4.7 Maximum stress of 2d plate with a hole quarter model 

 

 

Figure 4.8 Maximum stress of 45 degree lamina in with a hole 2D quarter model 

The similar effect is for y directional maximum stress of + 45
0
 lamina. The other laminas 

with 0
0
, 90

0
, - 45

0
 fiber direction shows same result as in full model. In the boundary condition 
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chapter it will be shown that for a quarter models in different quadrant the + 45
0
 and negative 

45
0
 stress result is swapped. 

For as un-symmetric layup the full model and quarter model result for maximum stress 

is quite different. This effect has been discussed in the earlier section with a 2d plate without a  

hole model. In brief as symmetric constrained is applied in quarter model, it is actually 

restraining the curvature. As a result the result for 2d quarter model and full model varies much.  

The following table will show the result of a plate with a hole model in 3 D space. A 

plate of 5 inch*2 inch has been used with a circular hole at the center of diameter 0.25 inch. 

Each layer has a ply thickness of 0.005 inch. 

Table 4.16 Comparison between 3d Symmetric (with hole) full model and quarter model 

 3 D Full model 

(stress normalized) 

3D quarter model 

(stress normalized) 

θ max

x  
max

y  
max

xy  
max

x  
max

y  
max

xy  

45 2.320 1.707 1.929 1.868 1.245 1.236 

-45 2.484 1.909 1.000 2.436 1.873 2.333 

0 
9.965 

0.403 0.790 10.259 0.294 0.827 

90 0.837 3.217 0.698 0.901 3.130 0.689 

90 0.837 3.217 0.698 0.901 3.130 0.689 

0 
9.965 

0.403 0.790 10.259 0.294 0.827 

-45 
2.484 1.909 

1.000 2.436 1.873 2.333 

45 2.320 1.707 1.929 1.868 1.245 1.236 

 

 



 

59 

 

 From table 4.16 it can be seen that there is a noticeable difference in 45
0
 lamina. 

Because the peak stress location for 45
0
 laminate is out of the quarter model geometry. There is 

also a difference in the stress result of other lamina because of the edge stress effect. As there 

is a discontinuity in the geometry and peak stress is considered the difference is more than that 

of an un-nothced result. 

 The next table will show the fiber directional peak stress result for a plate with a hole 

symmetric layup. 

Table 4.17 3d Symmetric full model stress in fiber direction 

Symmetric layup (Plate with a hole) 

 3 D Full model 

(stress normalized) 

3 D Full model 

(stress normalized) 

θ max

x  
max

y  
max

xy  
max

1  
max

2  
max

12  

45 2.320 1.707 1.929 3.921 0.543 0.670 

-45 2.484 1.909 1.000 4.538 0.879 0.617 

0 9.965 0.403 0.790 9.965 0.403 0.790 

90 0.837 3.217 0.698 3.217  0.837 0.698 

90 0.837 3.217 0.698 3.217 0.837 0.698 

0 9.965 0.403 0.790 9.965 0.403 0.790 

-45 2.484 1.909 1.000 4.538 0.879 0.617 

45 2.320 1.707 1.929 3.921 0.543 0.670 
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For a 2D model (Table 4.11) it was shown that the fiber directional result for ±45
0
 was 

same for a symmetric layup .But for 3D model there is a variation because an inter-laminar 

stress is acting at the edge. The location of the peak stress is shown in the flowing table. 

Table 4.18 Peak stress location of 3D symmetric full model in fiber direction 

layup 
x

y1tan   

45 -48 

-45 46 

0 90 

90 0 

 

It can be seen from the table that for [±45] lamina the peak stress occurs at a tangential 

location. For 0
0
 lamina it occurs at 90

0
 which is the tangential location for 0

0
. For 90

0
 lamina the 

peak stress is actually a compression and it also occurs at a tangential location. The following 

table will show the 3D full model and quarter model result for an un-symmetric layup. Same like 

symmetric layup there is a large variation of stress result for 45
0
 lamina. As has been discussed 

before there is a bending induced (it can be seen that for un-symmetric layup the to 0
0 
lamina 

has a higher stress value that the bottom 0
0
 lamina. This proves that there is a bending present) 

for un-symmetric layup which has been restrained by the symmetric constraint in a quarter 

model. So there exists a variation of result in the other laminas. For an un-symmetric layup for 

3d model the bending effect is less than the bending effect for a 2D model. Because a 2D 

model is softer than a 3D model (2D model uses a reduce stiffness matrix). But the 2D model 

does not count for the edge effect and inter-laminar stress. 
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Table 4.19 Comparison between 3d Un- Symmetric full model and quarter model (with hole) 

 3 D Full model 

(Stress normalized) 

3D quarter model 

(Stress normalized) 

 
max

x  max

y  max

xy  
max

x  max

y  max

xy  

45 2.117 1.459 1.676 1.967 1.176 1.245 

-45 2.520 1.912 2.410 2.568 1.951 2.444 

0 10.128 0.396 0.812 10.849 0.328 0.827 

90 0.899 3.906 0.690 0.981 3.940 0.676 

45 2.581 2.059 2.155 1.686 1.121 1.107 

-45 2.452 1.888 2.359 2.289 1.763 2.209 

0 9.652 0.414 0.810 8.927 0.267 0.734 

90 0.740 2.079 0.675 .742 2.790 0.611 
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Figure 4.9 Deformed shape of a 3d plate with hole 
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Table 4.20 Comparison between 3d Un- Symmetric full model in fiber direction 

Un-Symmetric layup (Plate with a hole) 

 3 D Full model 

(Stress normalized) 

3D full model 

(Stress normalized) 

 
max

x  max

y  max

xy  
max

1  max

1  max

21  

45 2.117 1.459 1.676 3.405 0.573 0.623 

-45 2.520 1.912 2.410 4.554 0.886 0.639 

0 10.128 0.396 0.812 10.128 0.395 0.812 

90 0.899 3.906 0.690 3.906 0.899 0.690 

45 2.581 2.059 2.155 4.402 0.479 0.634 

-45 2.452 1.888 2.359 4.497 0.854 0.601 

0 9.652 0.414 0.810 9.652 0.414 0.810 

90 0.740 2.079 0.675 0.2079 0.739 0.675 

 

Table 4.21 Peak stress location of 3D un-symmetric full model in fiber direction 

layup 
x

y1tan   

45 -53 

-45 57 

0 90 

90 0 
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From the table 4.16 it was seen that for a symmetric full model the stresses above the mid 

plane is a mirror image of stresses below the mid plane. As a result no bending is induced for a 

symmetric lamina when axial load is applied. On the other hand bending is induced in an un-

symmetric layup. For a quarter symmetric model (table 4.16), the result varies from symmetric 

full model for a 45 degree lamina. The reason is already been described in 2d model result. In 

brief the reason behind this variation in 45 degree lamina is a symmetric constraint has been 

applied in the quarter model. As 45 degree lamina stress is different in symmetric full model and 

quarter model, unlike 2d model it affects the stress result in other laminas too because of the 

inter laminar stress is considered in a 3d model. This stress effect is not big for a thin lamina as 

a result the effect of stress variation of 45 degree lamina on other lamina is very small. In case 

of thick lamina the effect will be more pronounced. The resultant location of the maximum stress 

in x direction for different lamina is shown in the following figure. 

 

Figure 4.10 Maximum stress of 3d plate with a hole full model (x directional load) 

From the above figure it is clearly seen that the maximum stress always occurs tangential to the 

fiber direction. The following table will show the value of maximum stress location angle with 



 

64 

 

respect to x axis. 

Table 4.22 Location of maximum stress for 3d symmetric full model and quarter model 

Layup 
x

y1tan   
x

y1tan   

45 -53.24 90 

-45 58.47 58.26 

0 90 90 

90 90 90 

 

The following figure will show the x directional maximum stress location for different lamina 

of a 3D symmetric quarter model. It is seen from the figure that the + 45
0
 layer x directional 

peak stress is in a 90
0
 angle with x axis. The tangential location of a + 45 degree lamina where 

the peak stress supposed to  occur, is out of the geometry of a first  quadrant As a result the 

maximum stress assumes a location 90
0
 with respect to x axis. 

 

Figure 4.11 Maximum stress of 3d plate with a hole quarter model (x directional load) 
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4.5 Lumping layer Theory 

Because of the aspect ratio issue discussed in the mesh chapter it requires a large 

number of elements for a composite three dimensional model. Such a large number of element 

will result in cost, computational time. So there should be some way to minimize cost and time. 

As a result lumping layer theory was developed. Chan and his students [4] have done 

numerous amount of work in this field. As a discussion of finite element issues, lumping layer 

theory should also need to be summarized in this dissertation. In order to discuss the lumping 

layer effect a [±45/0/90]s layup has been used, The equivalent property table is shown below, 

Table 4.23 Equivalent Property Table for Lumped Layers 

[±45/0/90]s 10
6 

Ex Msi Ey Msi vxy  Gxy Msi 

[±45] lumped, 

[ō/0/90]s 

Conventional 2.6252 2.6252 0.5084 2.4934 

Modified 3.0439 3.0439 0.7490 5.6628 

[±45/0] 

lumped. 

[ō¯/0/90]s 

Conventional 4.6428 2.5886 0.6118 2.4396 

Modified 9.3985 4.0706 0.6973 4.0653 

  

Both the conventional method and modified method [4] has been used to calculate the 

equivalent properties of the lumped layers. I can be seen from the above table that the 

conventional equivalent properties are different from the modified method. The variation is more 

significant for an unbalanced laminate. In this thesis only [±45] laminate results for stress has 

been considered. The stress value for the lumped [±45] layers and the other layers has been 

tabulated in the following table. The result is compared to the classical lamination theory 

analysis of the full model. It is seen from the table that for a not lumped layer the present 

modified method gives better result. 
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Table 4.24 Lumping Layer Technique Table 

 Lumped(present method) Not lumped Lumped(conventional method) 

 
x  y

 xy
 x

 y
 xy

 x
 y

 xy
 

45 Lumped Lumped 
Lumped,0 634 362 418 

Lumped Lumped Lumped 

-45 Lumped Lumped Lumped,0 634 368 -418 Lumped, Lumped Lumped 

0 2560 -9 0 2562 -11 0 2909 22 0 

90 175 -716 0 174 -719 0.8 206 -366 0 

90 175 -716 0 174 -719 1.3 206 -366 0 

0 2560 -9 0 2562 -11 0 2909 22 0 

-45 Lumped Lumped Lumped,0 634 368 -418 Lumped, lumped lumped 

45 Lumped, 
Lumped Lumped, 634 362 

418 Lumped lumped lumped 

 

In the following table the stress of the lumped layer has been recovered by using the 

conventional method and Modified method. The layer stress recovery technique has been 

modified by Chan and his students [8]. It can be clearly seen from the table that the modified 

method gives better result in comparison to the conventional method. This is because, in 

conventional method the curvature effect and the shear correction was not included. But for an 

un-symmetric and unbalanced lamina these effects plays a vital role. In the table below the 

[±45] layers have been lumped together. This is an Un-symmetric layup. So shear is induced. 

This effect has been taken care of in the modified method. 
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Table 4.25 Lumping Layer Recovery Technique Table 

 Stress Recovery 

Lumped(present method) 

Not lumped Stress Recovery 

Lumped(conventional method) 

 
x  y  xy  x  y  xy  x  y  xy  

45 634 359 418 
634 362 418 824 559 577 

-45 634 359 -418 
634 368 -418 824 559 -577 

0 2560 
-9 0 2562 -11 0 

2909 22 0 

90 175 
-716 0 174 -719 0.8 

206 -366 0 

90 175 
-716 0 

174 -719 1.3 206 -366 0 

0 2560 
-9 0 2562 

-11 0 2909 22 0 

-45 634 359 -418 634 368 -418 824 559 -577 

45 634 359 418 634 362 418 824 559 577 
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CHAPTER 5 

BOUNDARY CONDITIONS  

In this chapter effect of boundary constraints on the ply stresses will be discussed. In 

modeling, symmetric conditions of structures made of isotropic materials are usually enforced. . 

However, symmetric conditions of structures made of anisotropic materials must be considered 

the symmetry of materials axis.  

5.1 Structural Response of 2D model 

 A 2D quarter-model of a laminate with different kind of layups (symmetric/un-symmetric 

and balanced/unbalanced) is used to study the symmetric constraint effects on the result of 

finite element analyses of composite materials. A composite laminate under tension load is 

used in this study. This method was done on balanced/unbalanced laminate by Chen [5]. It‟s 

been extended to symmetric/unsymmetrical laminate. The displacement of the laminate were 

obtained by the elasticity method and given as,  

 
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2
,

      (5.1) 

As indicated in Table 5.1, the FEM results of symmetric and balanced laminate agree 

well with the elastic solution. It is aware that a smeared property from ANSYS was used in 

stress calculations. Hence, for a symmetrical laminate, the material axis is symmetric. As a 

result, the quarter model will give the same results as a full model which is expected to be the 

same from the results calculated by closed form solution.  However, there is a big difference for 

the symmetric but unbalanced laminates. There is also difference in unsymmetrical but 
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balanced laminate. This is because additional forces and moments were induced when 

symmetrical constraints were enforced. 

Table 5.1 Comparison of Normalized Displacement 

Lay ups 10-6 Point A 

(x=0.25 y=0.25) 

Point B 

(x=0 y=0.25) 

Point C 

(x=0.25 y=0) 

Eqn Fem Eqn Fem Eqn Fem 

symmetric 
[±45/0/90]s u 29.411 29.4 0 0 29.4 29.4 

v 8.83 8.83 8.83 8.83 0 0 
Un-symmetric 

[±45/0/90]t u 31.71 31.3 0.8 0 30.9 30.4 

v 10.06 10.5 10.85 11.3 0.8 0 
Balanced  

[±45]2s u 82.1 82.1 0 0 82.1 82.1 

v 61.5 61.5 61.5 61.5 0 0 
unbalanced 

[452]2s u 76.1 85.8 36.3 0 112.4 129 

v 67.5 57.8 31.2 15.0 36.3 0 

 
5.2 Maximum stress of laminate with hole by full 3D and a quarter 3D 

Stress effects due to boundary constraints in a 3d model also depend on laminate configuration 

and the principle material axis. A symmetrical graphite/epoxy laminate of [±45/0/90]s with a 

rectangular cross section  and a hole at the center under tensile load was used to study this 

effect using quarter and full models. Table 5.2 lists the result comparison for layer stresses 

obtained by a quarter and full 3D model. Since no bending is induced for the symmetrical 

laminate under tension, only half of laminate stresses are presented. The table indicates that 

the corresponding stress components, σx and σy of 45
0
 and -45

0
, respectively are not the same. 

As indicated in the table the results in the quarter 3D model has bigger difference than from the 

full 3D model. 
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Table 5.2 Stress distribution to show symmetric constraint effect 

 Full 3D(solid) Quarter  3D (solid) 

x  y  xy  
x  y  xy  

45 2320 1707 1929 1868 1245 1236 

-45 2484 1909 1000 2436 1873 2333 

0 9965 403 790 10259 294 827 

90 837 3217 698 901 3130 689 

 

For the laminate with a circular cut out the stress effect is more pronounced for angle 

plies than an un-notched model. Figure 5.1 will show the difference of the maximum stress at 

450 and -450 plies of [±45/0/90]s laminate under tension obtained from a quarter and full model, 

respectively. It also indicates that the maximum stress occur at different locations. It is well 

known that for an isotropic plate with a hole the maximum stress at the edge of the hole 

obtained by FEM is not different between a quarter and a full model. 

 

Figure 5.1 Stress Concentration Comparisons Of Quarter and Full 3D Model. 
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 It is clear from the above figure that there is a considerable amount of difference in 

stress in angle ply in a three dimensional quarter model. The results in the figure were shown 

for a quarter models in the first quadrant. 

 
5.3 Effect of boundary constraints locations 

Figures 5.2 and 5.3 show the stress contours of the +45
0
 and -45

0
 ply in the same 

laminate in the different quadrants of 2D model, respectively.   As indicated, the stress contour 

of the +45
0
 ply shown in Fig. 5.2  is in the anti-symmetrical position in the quadrant positions. 

The stress contours in -45
0
 ply at 2

nd
 quadrant is the same as the stress contour of +45

0
 ply in 

the first quadrant. 

 

 
 

Figure 5.2 2D quarter model maximum stress in x direction for positive 45 degree layer 
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Figure 5.3 2D quarter model maximum stress in x direction for negative 45 degree layer 

 
The numerical values of the normalized maximum stresses are listed in Table 5.3.  

From the above table it can be seen that for the quarter-model in all four quadrant, the 00 and 

the 90
0
 results are same for a symmetric layup of two dimensional quarter model. The figure 

shows that the maximum stress value for these layers occurs at 90
0
 which is at tangential to the 

fiber direction.



 

 

7
3
 

Table 5.3 2D quarter swap effect (Stress normalized) 

                                                             

 

2 D Symmetric layup (Plate with a hole) 

 2 D Full model first quad second quadrant 3rd quadrant 4th quadrant 

θ max

x  max

y  max

xy  
max

x  max

y  max

xy  
max

x  max

y  max

xy  
max

x  max

y  max

xy  
max

x  max

y  max

xy  

45 2.781 2.286 2.468 1.923 1.122 1.270 2.781 2.286 2.468 1.923 1.122 1.270 2.781 2.286 2.468 

-45 2.781 2.286 2.468 2.781 2.286 2.468 1.923 1.122 1.270 2.781 2.286 2.468 1.923 1.122 1.270 

0 7.731 0.082 0.229 7.731 0.082 0.229 7.731 0.082 0.229 7.731 0.082 0.229 7.731 0.082 0.229 

90 0.528 0.742 0.229 0.528 0.742 0.229 0.528 0.742 0.229 0.528 0.742 0.229 0.528 0.742 0.229 

90 0.528 0.742 0.229 0.528 0.742 0.229 0.528 0.742 0.229 0.528 0.742 0.229 0.528 0.742 0.229 

0 7.731 0.082 0.229 7.731 0.082 0.229 7.731 0.082 0.229 7.731 0.082 0.229 7.731 0.082 0.229 

-45 2.781 2.286 2.468 2.781 2.286 2.468 1.923 1.122 1.270 2.781 2.286 2.468 1.923 1.122 1.270 

45 2.781 2.286 2.468 1.923 1.122 1.270 2.781 2.286 2.468 1.923 1.122 1.270 2.781 2.286 2.468 
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But for the angle plies the results are varying. To be specific for the angle plies the 

results are exactly same only in the respectively diagonal quadrants. This is because by 

applying symmetric constraint in a sense the fiber orientation is also being changed. The 

following figure will describe the effect. It will be shown from the figure that positive 45 degree 

fiber orientation becomes a negative 45 degree orientation in a quarter model if the model is 

done in the second or fourth quadrant. This is the reason behind the swapping effect of stress in 

the angle ply in a quarter model. 

 

 
Figure 5.4 45 degree layup in full model becomes - 45 degree in 2

nd
 quadrant quarter model 

 

The same effects also appears in 3D quarter models. The results are presented in Figures 5.5 

and 5.6 as well as in Table 5.4.   
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Figure 5.5 3D quarter model maximum stress in x direction for positive 45 degree layer 

 

 

 

Figure 5.6 3D quarter model maximum stress in x direction for negative 45 degree layer 
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Table 5.4 3D quarter swap effect 

3D Symmetric layup (Plate with a hole) 

 3 D Full model first quad second quadrant 3rd quadrant 4th quadrant 

θ max

x  max

y  max

xy  max

x  max

y  max

xy  max

x  max

y  max

xy  max

x  max

y  max

xy  max

x  max

y  max

xy  

45 2.320 1.707 1.929 1.868 1.245 1.236 2.275 1.674 1.892 1.868 1.245 1.236 2.275 1.674 1.892 

-45 2.484 1.909 1.000 2.436 1.873 2.333 1.744 1.191 1.158 2.436 1.873 2.333 1.744 1.191 1.158 

0 9.965 0.403 0.790 10.259 0.294 0.827 10.968 0.403 0.808 10.259 0.294 0.827 10.968 0.403 0.808 

90 0.837 3.217 0.698 0.901 3.130 0.689 0.796 3.338 0.676 0.901 3.130 0.689 0.796 3.338 0.676 

90 0.837 3.217 0.698 0.901 3.130 0.689 0.796 3.338 0.676 0.901 3.130 0.689 0.796 3.338 0.676 

0 9.965 0.403 0.790 10.259 0.294 0.827 10.968 0.403 0.808 10.259 0.294 0.827 10.968 0.403 0.808 

-45 2.484 1.909 1.000 2.436 1.873 2.333 1.744 1.191 1.158 2.436 1.873 2.333 1.744 1.191 1.158 

45 2.320 1.707 1.929 1.868 1.245 1.236 2.275 1.674 1.892 1.868 1.245 1.236 2.275 1.674 1.892 
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5.4 Curved beam with symmetric layup [±45/0/90]s 

 This section discusses the stress effect due to the curvature of the laminate. A curved 

beam of [+45/-45/0/90]s laminate subjected to tension is used for this study. Figure 5.7 shows a 

deformed shape for a 3D model of the curved beam. As expected, an induced bending is 

observed when applied a tension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 3D Curved Beam 

Table 5.5 lists the stress results of the curved beam with difference curvatures.  When 

curvature is increased the curved beam will start behaving like a flat plate. It can be seen from 

the table that for an increased curvature the zero degree x directional stress is decreased. It is 

observed that the bending effect induced by the curvature will start to diminish with increasing 

curvature. 

Table 5.6 shows the aspect ratio effect for a curved beam. The aspect ratio has already 

been discussed in chapter 3. It‟s been shown that for composite three dimensional models, 

aspect ratio plays a vital role. For a curved beam the aspect ratio effect is more than in the flat 
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plate model. The table shows that the lower the aspect ratio, the better is the result.  

Table 5.5 Curvature effect for 3d curved beam FEM model 

R= 0.15 σx σy τxy 

45 710 398 463 

-45 713 379 -476 

0 2897 -40 8 

90 193 -955 6 

90 192 -506 5.3 

0 2870 11 4.6 

-45 703 413 -469 

45 686 358 463 

R= 0.5 σx σy τxy 

45 656 382 379 

-45 604 402 -385 

0 2704 -20 1.42 

90 181.517 -693 1.07 

90 179 -698 1.38 

0 2620 -7 0 

-45 667 402 -449 

45 656 382 443 

R= 5 σx σy τxy 

45 642 373 420 

-45 638 369 -419 

0 2612 -11 0 

90 177 -735 0 

90 176 -717 0 

0 2591 -9.2 0 

-45 651 376 -429 

45 644 370 422 
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Table 5.6 curved beam aspect ratio comparison 

R=0.58 Model 1 

No of element 12800 

 

15
005.0

075.0


plyt


 

Model 2  

No of element 19200 

10
005.0

05.0


plyt


 

 

 

Model 3  

No of element 43200 

66.6
005.0

0333.0


plyt


 

 
σx σy τxy σx σy τxy σx σy τxy 

45 618 328 395 641 354 416 669 386 448 

-45 627 343 -400 647 365 -419 677 403 -453 

0 2689 -7 1 2708 -7 0 2705 -2 0 

90 183 -619 1 185 -673 0 185 -715 0 

90 186 -882 1 186 -762 0 186 -872 0 

0 2732 -16 1 2750 -15 0 2746 -18 0 

-45 645 348 -411 660 362 -425 689 396 -458 

45 648 355 412 663 369 427 694 408 460 

 

A comparison of 2D and 3D models of a curved beam is illustrated in Table 5.7.  It is 

shown that the 2D curved beam result agrees more to classical lamination theory analysis than 

a three dimensional model.  Both CLT and two dimensional FEM models assume the  plane 

stress condition. But the expression of constitutive equation for the curved beam does not take 

into account the effect of Poisson‟s ratio. So there exists some variations in two dimensional 

and lamination theory for a curved beam analysis. This variation between CTL and two 

dimensional FEM model was not seen in the case of a flat plate  analysis because for a flat 

plate lamination theory analysis Poisson‟s ratio was included. 
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Table 5.7 2D and 3D curved beam comparison 

R=0.58 CLT 3D model 

 

2d Model 

 
σx σy τxy σx σy τxy σx σy τxy 

45 616 357 406 641 354 416 626 362 412 

-45 622 360 -410 647 365 -419 630 366 -416 

0 2537 -9 0 2709 -7 0 2538 -9 0 

90 174 -724 0 185 -673 0 174 -718 0 

90 176 -730 0 186 -762 0 174 -719 0 

0 2603 -9 0 2750 -15 0 2543 -10 0 

-45 644 373 -424 660 362 -425 627 361 412 

45 650 376 428 663 369 427 631 366 -416 

 

Table 5.8 lists the stress results of the curved beam using  a 3 dimensional full model 

and a quarter model. It can be seen that the half model results varies much from the full model. 

This is because a symmetric constraint is applied for the half model. The reason has been 

already discussed in the boundary condition chapter. 

Table 5.8 3D curved beam full versus quarter model comparison 

R=0.58 
3D full model 

3D half model  

 
σx σy τxy σx σy τxy 

45 641 354 416 626 311 410 

-45 647 365 -419 680 358 -457 

0 2709 -7 0 2725 -1 10 

90 185 -673 0 196 -636 11 

90 186 -762 0 186 -733 5 

0 2750 -15 0 2758 -25 -6 

-45 660 362 -425 645 339 -416 

45 663 369 427 620 352 420 
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CHAPTER 6 

CONCLUSION  

This thesis addresses the issues that need special attention when using the finite 

element method in analyzing composite structures. Applying experiences on working finite 

element analysis in isotropic materials to laminated composites should be undertaken with care. 

It is our intent to address the effect of the composite ply stresses due to element meshing, 

boundary constraints and 2D versus 3D used in the modeling a composite structure.  

Examples used in this study indicates special characteristics of composite structures 

such as symmetrical versus unsymmetrical laminate configurations and presence of edge stress 

need to be considered in application laminate configurations of finite element method to 

composite structures. The following address specific effects on stress results of finite element 

analysis on the issues mentioned before: 

1. Element Meshing 

The convergence of the ply stress due to the element aspect ratio is more pronounced 

for 00 ply than for the other angle ply. The element aspect ratio plays more important role on the 

ply stress for curved beam than for flat beam if the same type of element is used.  

2. Boundary Constraints 

Enforcing boundary constraints for symmetry needs to consider both structural 

configuration and material axis.  

In 2D model, a full or a quarter model for symmetric and unsymmetrical laminate 

without a hole gives none or insignificant difference in the ply stress result. However, a quarter 

2D model for unsymmetrical laminate with a hole gives significant difference than the results 

from a full 2D model.  
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For a laminate with a hole, a full and a quarter 3D models give significant different 

values of the peak stress. Moreover, using a quarter 2D or 3D model fails to predict the right 

location of the peak stress. 

3. 2D versus 3D Model 

The full 3D model of laminate without a hole gives lower in-plane stress than the 2D 

does, in particular at the edge of the laminate. A full 3D and full 2D model give a significant 

peak stress of each ply for laminate with a hole.    

It is concluded that modeling a composite structure requires understanding the 

structural characteristics of composites.    
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APPENDIX A 

FEM MODELS USED IN THE THESIS 
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ANSYS 11.0 has various solid elements like SOLID 182, SOLID 82, SOLID186, SOLID 

45 etc. It is very important to choose proper element type for accurate results. SOLID 186 is a 

20 node element with three degrees of freedom in each node. It is a higher order 3D element 

with quadratic displacement behavior. Since the stress field near the hole exhibits a high stress 

gradient, the higher order 3D element is a better candidate for analysis. Hence, SOLID 186 is 

chosen for the three dimensional finite element modeling. As Solid 186 was used for plate with 

a single hole model, we have used the same element for without hole model.  

In process of doing the 3d modeling of a plate with a hole the first thing to do is to 

choose elements. Plane 183 and solid 186 were used here. Then material properties for 

orthotropic material were described. 2d geometry of the plate with single hole was created. The 

whole geometry was created in separate area and the area was glued together. This was done 

to create more dense mesh near the hole.   

Local coordinate systems were created according to the lay-up of the composite material. For 

my co ordinate system z axis will remain same as global coordinate. X axis and y axis will be 

along the fiber direction 1 and 2 respectively. It is to be noted that plane 183 cannot be used for 

curved beam models. The reason behind this is that it does not have the rotational degree of 

freedom that is necessary to model a curved beam. Any type of shell element can be used for 

that purpose. In the curved beam model in this thesis a Shell 99 element has been used for the 

curved beam surface. The following table will show the coordinate number designation and their 

angle of rotation with respect to global x coordinate. These coordinates in the three dimensional 

model will represent the fiber orientations. 
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Table A.1 Fiber orientation angle with respect to global x axis 

designation Rotation angle in degree 

11 0 

12 15 

13 30 

14 45 

15 60 

16 75 

17 90 

18 -15 

19 -30 

20 -45 

21 -60 

22 -75 

23 -90 

 

Then the whole area was selected and extruded with the thickness of single layup 

which is 0.005 inch and with the respective layup designation (if the lamina should be 45 deg of 

fiber direction the designated local coordinate system will be 14).During the extrusion SOLID 

186 element was used. And after extrusion the 2d area underneath was deleted. In a similar 

fashion the whole geometry was created. The following figure will show the flow diagram of the 

modeling process. 
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 Figure A.1 Modeling technique flow diagram for 3D plate. 
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Two Dimensional Plate with a hole modeling will be discussed in the following section. 

A plate with a hole modeling technique will be discussed here of a layup of [±45/0/90]s. The 

geometry  is 5inch*2inch*0.04 inch; circle diameter of 0.25 inch.  For FEM model the element 

type used is Shell 99 layered element. After selecting the element the real constant set should 

be defined. In this set number of layer and the layer thickness will be defined. Ansys allows 

creating up to 250 layers. Here 8 layers were selected with given layup. For an example if the 

fiber direction is such that the 1 direction is 45 degree angled with the global coordinate, then 

the input will be 45 in degree. After defining the real constants the material constant should be 

defined. In this thesis an orthotropic material property(E11=21.75e6, E22=1.595e6=E33, 

ν12=0.25=ν13, ν23=0.45, G12=0.8702e6=G13, G23=0.5366e6, thickness of ply=0.005) has 

been used. Then  the key points were created and through the key points areas were created. 

And created the solid circle(r=0.125) and subtract the circle from the areas.  Then all the areas 

were glued  together  and mesh of proper choice was generated. After meshing it is to be 

ensured that all the elements have same element coordinate system. Now the geometry is 

ready to apply load and boundary conditions. The following figure will show the key points and 

the areas of a plate with a single hole. 

 

Figure A.2 Key points and Areas of a plate with a hole 2D model. 

The following figure will show the step by step flow diagram of the modeling process. A 

flow model of a plate with a single hole has been shown here. An un-notched model can also be 

generated in the same manner. 



 

88 

 

 

Figure A.3 Plate with a hole 2D model 
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In this section a three dimensional Curved beam modeling Process will be discussed. 

This modeling is more challenging then the 3D or 2D flat plate modeling. It is not possible to use 

PLANE 183 8 node element because it does not have any shear properties. So FEM modeling   

a shell element and a solid 186 element has been used. To model the curved surface PROE 

wildfire has been used. Ansys is used for creating the three dimensional geometry. In PROE  a 

Curved surface with a radius of 0.58 inch was created. Here  s=R* θ , and the length of the 

beam is L=6*s. After creating the curved surface it was imported to Ansys as an IGS file. It was 

defined as a Shell element and was mapped meshed. The whole plate area was offset 8 times 

with a offset distance of 0.005 inch along the normal to the plate. At the center of the circle of 

the curve that constitutes the beam all the local coordinate system was defined. Each plate was 

extruded with the corresponding local coordinate designation and SOLID186 element along the 

normal of the plate and then the area underneath was deleted. 

The following figure will show the step by step process of a three dimensional cuved 

beam modeling technique. It is to be noted that for a curved beam the aspect ratio effect if of 

much concern in comparison to a flat plate modeling. So while modeling a proper aspect ratio 

and element size has to be chosen. While importing the IGS file in Ansys much care is needed. 

Ansys numbering control option is of a great help in order to minimize the node numbers and 

key point numbers. 
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Figure A.4 Three dimensional Curved Beam 
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This section will describe the modeling technique of a two Dimensional curved beam. For two 

dimensional Curved Beam modeling a layered element, which consists of all the layers through 

the laminated thickness, is commonly used. For modeling of the curved beam  SHELL99 

layered element was used. The material constants, the layer fiber orientation and stacking 

sequence are directly input in the software (Ansys 11). A curved surface with accurate curvature 

was created by PROE and then transferred to the fem software as IGS file format. Then the 

curved surface was meshed using the SHELL99 element. 
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APPENDIX B 

 

LAMINATION THEORY PROGRAM WRITTEN IN MATLAB FOR FLATE PLATE AND  

CURVED BEAM
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ABD MATRIX FORMULATION FUNCTION 

 

 

 

 

function [ABDMat]=abd(E1,E2,G12,v12,tply,n,theta) 

%clc; 

s11=1/E1;  s12=-v12/E1; s16=0; s21=s12; s22=1/E2; s26=0; s61=s16; 

s62=s26; s66=1/G12; 

  

S=[s11 s12 s16; 

    s21 s22 s26; 

    s61 s62 s66]; 

  

Q=inv(S);%this will give q11 q12 q13.......same for all laminate 

;gives 1 and 2 dimension values.  

   

%///////////now we will calculate the Qbar matrix for all laminate and 

keep 

%them in a 12/3 matrix 

  

L=0;% L will have discrete value 0,4,9,13... 

QBAR=zeros(3*n,3); 

%PART1 assembling total QBAR matrix for whole lamina 

for    i=1:n 

     

    m1=cos(-theta(i)*(pi()/180)); 

    n1=sin(-theta(i)*(pi()/180)); 

    m2=cos(theta(i)*(pi()/180)); 

    n2=sin(theta(i)*(pi()/180)); 
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    Tsigmatheta=[m1^2 n1^2 2*m1*n1; n1^2 m1^2 -2*n1*m1;-m1*n1 m1*n1 

m1^2-n1^2]; 

    Tepsilontheta=[m2^2 n2^2 m2*n2; n2^2 m2^2 -n2*m2;-2*m2*n2 2*m2*n2 

m2^2-n2^2]; 

  

                Qbar=Tsigmatheta*Q*Tepsilontheta; 

 

                                for j=1:3 %row 

                                            for k=1:3%column 

    

                                                    

QBAR(j+L,k)=Qbar(j,k);%QBAR is taking the value of Qbar Q11 Q12 Q13 

                                            end 

                               end             %Q21 Q22 Q23 

  

  

                                

                                

  

L=L+3;%go to the next lamina 

end 

  

%///////////////////////upto this section i have stored my whole qbar 

%matrixin a 12/3 matrix 

 

%PART2 

  

  

h=zeros(n+1,1);%a single column matrix of 5 zero element 

  

L=0; 

t=0; 
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for    i=1:n+1 

        h(i)=(L-(n/2))*tply;%h1 is the lowest lamina A=Q*(h1-h2) 

        L=L+1; 

end   

  

%///////////////////////////////////Coordinate difining is 

%finished/////////////////////// 

  

  

%PART3 THE A B D MATIX 

  

A=zeros(3,3);%defining a 3/3 matrix whose components are zero 

  

B=zeros(3,3);%defining a 3/3 matrix whose components are zero 

  

D=zeros(3,3);%defining a 3/3 matrix whose components are zero 

  

t=n+1;%t=5,4,3... 

L=0; 

for k=1:n  

    for   i=1:3 

        for   j=1:3 

                A(i,j)=A(i,j)+QBAR(i+L,j)*(h(t)-h(t-1)); 

                B(i,j)=B(i,j)+(1/2)*QBAR(i+L,j)*(h(t)^2-h(t-1)^2); 

                D(i,j)=(D(i,j)+(1/3)*QBAR(i+L,j)*(h(t)^3-h(t-1)^3)); 

        end 

    end 

  

L=L+3; 

t=t-1; 
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end 

 

%///////////////////////////////////////////////////////////////// 

ABD=zeros(6,6); 

L=3; 

for i=1:3 

    for j=1:3 

         

        ABD(i,j)=A(i,j); 

    end 

end 

  

  

for i=1:3 

    for j=1:3 

        ABD(i,j+L)=B(i,j); 

        ABD(i+L,j)=B(i,j); 

    end 

end 

  

  

for i=1:3 

    for j=1:3 

         

        ABD(i+L,j+L)=D(i,j); 

    end 

end 

  

  

ABDMat=zeros(6,6); 
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a=[A zeros(3,3);zeros(3,6)]; 

b=[zeros(3,6);B zeros(3,3)]; 

c=[ zeros(3,3) B;zeros(3,6)]; 

d =[zeros(3,6) ;zeros(3,3) D]; 

ABDMat=(a+b+c+d); 

 

 

 

 

 

. MID PLANE STRAIN CALCULATION FUNCTION 

 

 

%mid plane strain and kuravature 

function [strn]=midplane(E1,E2,G12,v12,tply,n,theta,NM) 

NMM=[NM(1);NM(2);NM(3);NM(4);NM(5);NM(6)]; 

  

ABDMat=abd(E1,E2,G12,v12,tply,n,theta)%calling function abd 

strn=ABDMat\NMM; 

 

 

 

. STRESS CALCULATION 

 

 

clc; 

%%PART1 

% define  material properties 

E1=21.75e6;  E2=1.595e6; G12=0.8702e6; v12=0.25; tply=0.005;n=8; 

s11=1/E1;  s12=-v12/E1; s16=0; s21=s12; s22=1/E2; s26=0; s61=s16; 

s62=s26; s66=1/G12; 
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%define layup and load 

theta=[+45;45;-45;-45;90;90;0;0]; 

NM=[40;0;0;0;0;0]; 

  

%find strain and curvature(k)at mid plane 

midstr=midplane(E1,E2,G12,v12,tply,n,theta, NM); 

  

% Calculate ABD matrix from the abd funtion 

ABDMat=abd(E1,E2,G12,v12,tply,n,theta); 

abdmat=inv(ABDMat); 

%segrigating a,b,c matrix 

a=zeros(3,3); 

b=zeros(3,3); 

d=zeros(3,3); 

for i=1:3 

    for j=1:3 

        a(i,j)=abdmat(i,j); 

        b(i,j)=abdmat(i,j+3); 

        d(i,j)=abdmat(i+3,j+3); 

    end 

end 

  

%%%PART 1 finished------------------------------------------------ 

  

%% Finding QBAR matrix for all layers: PART 2 

S=[s11 s12 s16; 

    s21 s22 s26; 

    s61 s62 s66]; 

  

Q=inv(S);  

  

L=0;% L will have discrete value 0,4,9,13... 
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QBAR=zeros(3*n,3); 

%NOTE:PART2 assembling total QBAR matrix for whole lamina 

for    i=1:n 

     

    m1=cos(-theta(i)*(pi()/180)); 

    n1=sin(-theta(i)*(pi()/180)); 

    m2=cos(theta(i)*(pi()/180)); 

    n2=sin(theta(i)*(pi()/180)); 

     

     

    Tsigmatheta=[m1^2 n1^2 2*m1*n1; n1^2 m1^2 -2*n1*m1;-m1*n1 m1*n1 

m1^2-n1^2]; 

    Tepsilontheta=[m2^2 n2^2 m2*n2; n2^2 m2^2 -n2*m2;-2*m2*n2 2*m2*n2 

m2^2-n2^2]; 

  

                Qbar=Tsigmatheta*Q*Tepsilontheta; 

  

                        for j=1:3 %row 

                             for k=1:3%column 

    

                                    QBAR(j+L,k)=Qbar(j,k); 

                             end 

                        end             

  

                                

L=L+3;%go to the next lamina 

end 

  

%///////////////////////upto this section i have stored my whole qbar 

%matrixin a 12/3 matrix 

%Finished PART 2 

%% LAYER DISTANCE FROM MID PLANE 
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%PART3: Defining layer distance from midplane 

h=zeros(n+1,1); 

L=0; 

t=0; 

for    i=1:n+1 

        h(i)=(L-(n/2))*tply;%h1 is the lowest lamina A=Q*(h1-h2) 

        L=L+1; 

end   

  

%///////////////////////////////////Coordinate difining is 

%finished(Part3)/////////////////////// 

  

  

eps_0=zeros(3,1); 

kapa=zeros(3,1); 

  

%% LAYER STRESS CALCULATION 

  

%for 45 deg layer 

Qbar_45=zeros(3,3); 

for i=1:3 

    for j=1:3 

        Qbar_45(i,j)=QBAR(i,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_45= Qbar_45*eps_0+h(9)*Qbar_45*kapa 

  

%%for neg45 deg layer 

Qbar_neg45=zeros(3,3); 

for i=1:3 
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    for j=1:3 

        Qbar_neg45(i,j)=QBAR(i+3,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_neg45=Qbar_neg45*eps_0+h(8)*Qbar_neg45*kapa 

  

%%for 0 deg layer  

Qbar_0=zeros(3,3); 

for i=1:3 

    for j=1:3 

        Qbar_0(i,j)=QBAR(i+6,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_0=Qbar_0*eps_0+h(7)*Qbar_0*kapa 

  

%%for 90 deg layer 

Qbar_90=zeros(3,3); 

for i=1:3 

    for j=1:3 

        Qbar_90(i,j)=QBAR(i+9,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_90=Qbar_90*eps_0+h(6)*Qbar_90*kapa 

  

%%for Sec90 deg layer 

Qbar_sec90=zeros(3,3); 
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for i=1:3 

    for j=1:3 

        Qbar_sec90(i,j)=QBAR(i+12,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_sec90=Qbar_sec90*eps_0+h(5)*Qbar_sec90*kapa 

  

%%for Sec0 deg layer 

Qbar_sec0=zeros(3,3); 

for i=1:3 

    for j=1:3 

        Qbar_sec0(i,j)=QBAR(i+15,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_sec0=Qbar_sec0*eps_0+h(4)*Qbar_sec0*kapa 

  

%%for Secneg45 deg layer 

Qbar_secneg45=zeros(3,3); 

for i=1:3 

    for j=1:3 

        Qbar_secneg45(i,j)=QBAR(i+18,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_secneg45=Qbar_secneg45*eps_0+h(4)*Qbar_secneg45*kapa 

  

%%for Sec45 deg layer 
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Qbar_sec45=zeros(3,3); 

for i=1:3 

    for j=1:3 

        Qbar_sec45(i,j)=QBAR(i+21,j); 

    end 

eps_0(i)=midstr(i); 

kapa(i)=midstr(i+3); 

end 

Str_sec45=Qbar_sec45*eps_0+h(3)*Qbar_sec45*kapa 

%finish 
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