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ABSTRACT

TIME DEPENDENT QUEUING MODELS OF THE NATIONAL AIRSPACE

SYSTEM

Chatabush Roongrat, PhD

The University of Texas at Arlington, 2010

Supervising Professor: Jay M. Rosenberger

Air transportation in the US system has dramatically changebe past few
decades. The National Airspace System (NAS) has incrdéqagirgome congested. A
high volume of air traffic demand is one of the major challenfitise NAS. However,
air traffic is very difficult to study due to many uncentées involved. It is important
that we be able to understand the relationship under uncertainties dugation
operations, precision of navigation and control, and traffic flow efiicy. Many
gueuing models have been studied to better understand and quantifiethigseships.
In the past decade, most queuing network models assume thatrimarieames and
service times are exponentially distributed and stationaryhwhay not be suitable for
all scenarios. These queuing models are time invariant andskaeeal drawbacks. In

particular, they do not account for increases and decreases in dehandre
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commonly observed in the NAS throughout a day. Previously, the NASd&s
studied and analyzed by using traditional Makovian queues. However, olmservat
from simulations of real traffic data reveal that the intersal time and service time
probability distributions cannot be represented by exponential probabgibgity
functions. The Coxian distribution is a phase-type distribution thagamed special
importance in the research on queuing networks. In this studgrasewmethods of
fitting Coxian distribution to data together with different timepeledent queuing
models of the NAS are developed and discussed.

In the past few decades, Coxian distributions have become imgikyasiore
popular. The probability distribution functions for inter-arrival tinsesdice times of
airspace systems cannot be represented by traditional probdisirijpution functions.
In the first part of this dissertation, we describe differalgforithms to fit Coxian
distributions to the service times of major Air Traffic Ceste8everal fitting methods
are developed and discussed. Finally, we compare and evaluatenétbsels by using
the mean square error (MSE) and the number of phases in the distribution.

In the second part of this dissertation, we discuss a practicabaabpifor
modeling the NAS with time-dependent Coxian queues. Time-depeQdgjit)/C./s
gueuing models of the National Airspace are developed in which theamniteal
distribution is a time-dependent piece-wise constant Coxian randoablearand the
service time distribution is a Coxian random variable. We desaribalgorithm for

calibrating aCn)(t)/Ci/s queuing model from simulated data of an Air Route Traffic

Vil



Control Center and an algorithmic approach to determine averagsuras of the

gueues. Finally, we give future directions for studying such queuing models.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Air transportation in the US system has dramatically changéldeirpast few
decades. The National Airspace System (NAS) has incrdéqagirgome congested. A
heavy volume of air traffic demand is one major challenge of\ih8. NASA Ames
reported [72], “The current air traffic demand on the US natiomapace frequently
exceeds its available capacity, due to a large number afrdacicluding bad weather,
over-scheduling by the airlines, national security, and affidraontrol equipment
outages.” Over the next ten years, projections reveal an ingreasetraffic demand
[30]. Moreover,travel and business in the aviation industry are expected to grow. By
the year 2015, the number of passengers that United States Auli8gs carry will
double [36].

The Federal Aviation Authority [37] noted, “According to the Genérahtion
Manufacturer’'s Association (GAMA) statistics for 2000, operatiahgeneral aviation
(GA) airports with [Federal Aviation Administration (FAA)] coal towers totaled
approximately 50,000 aircraft operations per day. Aircraft landingsdapartures have
increased steadily with more than 11.5 million reported for 2001.” TineT raffic
Control System has dramatically changed from 1935-2000 as showguire Hi.1. The

amount of user demand on the NAS is quickly exceeding the resobaehe period
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of January through June 2000, delays increased by 13.6 percent froantbdime
period in 1999 [36]. In June alone, delays increased 20 percent. From Mayhtitbyg
2000, delays increased 6.8 percent from 1991 and totaled more than 86,684 [21]. An
increasing demand for air travel is one of the most challengiolglems in US air
transportation. In the next 15 years, the annual air traffic iVthés expected to grow
about 3-5% [30]Figure 1.2 shows the Airspace Concept Evaluation System (ACES)
simulation of U.S. traffic demand in 2022. Today the aerospace indadgad with
rapidly growing demand the leads to heavy air traffic. Withim U.S. airspace, more

than 40,000 commercial flights operate in a typical day [17].

' " NTAWA%0 )
55 = “E"‘
2

Figure 1.1: Air Traffic Control System Expansion



Figure 1.2: Simulated U.S. Traffic Demand in 2022 using the Airspace Concept
Evaluation System (ACES)
Sourcehttp://lvams.arc.nasa.gov/activities/aces.html

Therefore, an efficient and effective air traffic manageinsgstem is vital to the
U.S. transportation infrastructure. The inflation adjusted gross stanproduct (GDP)
has increased by 62 percent due to deregulation in the airline ynduste 1978 [50].
The US Department of Transportation [29] said, “In this same mewod, total
scheduled passenger air transportation has increased by 186tpandi total airfreight
ton miles have increased by 289 percent. Since 1997, flight delays hawe be
significantly increased. These trends are expected to continue. Inal9i9@, delays in
the U.S. cost industry and passengers $4.5 billion.”

However, air traffic is very difficult to study due to many ertainties involved.
It is important that we be able to understand the relationship undertainty. Many
gueuing models have been studied to improve delay problems. In the pastdesade

gueuing network models assume that inter-arrival times and setwviws are
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exponentially distributed and stationary, which may not be suifablall scenarios.
These queuing models are time invariant and have several drawbacks. Ingrathieyl
do not account for increases and decreases in demand that are corobsamed in
the National Airspace System (NAS) throughout a day. PreviousyNAS has been
studied and analyzed by using traditional Makovian queues. The observations
simulations of real traffic data, however, show that the intéredrand service time
distributions do not follow an exponential probability density functionhingast few
decades, Coxian distributions have become increasingly more pophkrCoxian
distribution is a phase-type distribution that has gained spequriance in research
on queuing networks. In this study, methods of fitting a Coxian diswibta air traffic
data are developed. The Coxian parameters obtained by the develbpgdrféthods
are used to mod€n(t)/Ci/s queues of the NAS.

Figure 1.3 illustrates the&Cy(t)/Ci/s queue procedure. In this study, we
developed MATLAB code to extract inter-arrival time and servioee distributions
from the FACET simulation. The inter-arrival times are €itt@th our developed fitted
Coxian distribution method called tRandom Sample Metha@ad RSMwithin each time
period. In addition, service time distributions are also fitted WR8M. These steps,
calledcalibration, calibrate a model from data. Once queuing parameters are dbtaine
the queuing models will be appropriately revised based upon what ifriesenEhis
procedure will only used by NASA for studying precision and retog effects and
other uncertainties such as weather. Then, the next procedueniserate states and

determine the state probability vector. The algorithm to deterthastate probabilities
4



is developed and will be discussed more in specific details in chpidese steps are
calledqueuing analysisLastly, we have to validate our model to check whether or not
the model is accurate. In this study, we validate our developednguewndel with the
FACET simulation.

From Figure 1.3, notice that the red boxes indicate major contributiotissof
study. The several methods of fitting data to Coxian distributialata are discussed in
detail in chapter 3. Moreover, we also develop an algorithm to deterpmobability
state vectors, which is discussed in chapter 4.

1.2 Research Overview/Contributions

Although air traffic queuing models have been extensively studiedaover
decade, most research on queuing models focuses on steadylatid@ian queues
with time invariant inter-arrival and service time distributiorlawever, real world
gueuing systems vary with time. There are many time-dependent p&reaosuch as
rush hour or periodicity. Moreover, traditional Markovian queues, which assuene
arrival times and service times follow the exponential dist@mtdo not seem to fit
with real data. In our research, the objective is to develop morgasecqueuing
models by implementing time dependent Coxian queuing models of thenalat
Airspace System.

Chapter 3 describes different algorithms to fit Coxian distiomstito the service
time data of major Air Traffic Centers. We develop sevatahd methods. Fitting a

Coxian phase-type distribution to data can be done by maximizing the log likelihood.
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This method has been extensively studied in the literature [2, 61, 62, 63, 64]
Furthermore, a fitting procedure for phase-type distributions has Heveloped by
using an expectation maximization algorithm [76].

Many researchers have performed the method of moments to fiEakian
distribution. According to Schmickler and Johnson [54, 55], the method of moments
matching has been developed to match the moments of a mixture arigErl
distributions. Moreover, differences between the moments matchiaghgger method
with the maximum likelihood method were discussed in Lang [&]alrhe third group
of algorithms is based on least squares estimation. The bpsmstes method was to
estimate the model parameters in Faddy [60]. In this reseaecbpompare and evaluate
fitting methods by using the goodness of fit based on the mearesguar (MSE) and
the number of phases in the distribution.

In chapter 4 of this dissertation, we discuss a practical agprfoaagnodeling
the NAS with time-dependent Coxian queues. Various studies of timadigpajueues
are on the Markovian queud(t)/M/s. For example, Lee [10] studied design of time-
dependent telecommunication systems with infinite servers. Runneitbbyg46]
developed a renewal theory for Markov-dependent random variablesudg tgte
waiting-time of a single-server queue with Markov-dependent-artéral times. Green
et al. [51, 52] studied effects of non stationary on multi-serverkdd@n queuing
systems. Furthermore, Jennings et al. [66] observed time-depegdtmhs when the

arrival rate changes very rapidly relative to the service times.



Moreover, the Coxian queues in most literature, are time imtafar example,
Bertsimas [22] used the Coxian distribution and generalizatiorhadebf stages
introduced by Erlang to achieve the solution of queuing system. Nedjtstudied a
special class of probability distributions with rational Laplacandforms. Also,
numerical investigations of queuing systems involving this specss dfdistributions
can be found in Neuts [59]. Moreover, Marie [75] studied the queuehlgmgbability
distribution of a single server queue with a Coxian service iloision and
exponentially distributed inter-arrival times with a state-deat arrival rate. Herzog
et al. [81] obtained numerical results for a single server quetle state-dependent
arrival and service rates, and assumed that the inter-aimes as well as the service
times follow a Coxian distribution.

Therefore, in this research we propose time-depen@ggft)/Ci/s queuing
models of the National Airspace. The time-dependent Coxian queuds\aieped in
which the inter-arrival distribution is a time-dependent piece-wizestant Coxian
random variable, and the service time distribution is Coxian randorabiea We
describe an algorithm for calibratingGa(t)/Ci/s queuing model from simulated data
of an Air Route Traffic Control Center and an algorithmic approtcldetermine
average measures of the queues. Thg(t)/Ci/s queue has not yet been studied in any
literature. Finally, in chapter 5, we discuss conclusions and give futureiexten$ our

research.



CHAPTER 2
BACKGROUND AND RELATED LITERATURE

2.1 Overview of the National Airspace System

The FAA [36] reports, “The National Airspace System (NAS)h#d tUnited
States is one of the most complex aviation systems in the vaoddconsists of
thousands of people, procedures, facilities, aircraft, control fasilitprocedures,
navigation and surveillance equipment, analysis equipment, decision suppeithedol
enables safe air travel in the United States.” The US aesjgadivided into 21 large
areas calledenters each of which is divided intsectors[72] as shown in Figure 2.1

below.

Figure 2.1 Topology for a Center Level Queuing Network Model for the NAS



The National Airspace System (NAS) Plan was announced in Jah982yby
the Federal Aviation Administration (FAA) [36]. The plan improved aviationmaipns
tremendously such as better flight service stations, more advayséems for Air
Traffic Control (ATC), and faster communication. Furthermore, betenputers and
software were developed that reduced the number of flights. Accotdlitige FAA
[36], “The NAS requires 14,500 air traffic controllers, 4,500 aviatioetgahspectors,
and 5,800 technicians to operate and maintain services. It has moa9tB80 airports
and 600 air traffic control facilities. In all, there are 41,000 Noj®rational facilities.
In addition, there are over 71,000 pieces of equipment, ranging fromsggtams to
communication relay stations.” Each day, about 50,000 flights use NA&Kes on
average [36].

Many mathematical models of air traffic flow have been stubiethe National
Aeronautics and Space Administration (NASA) and the FAA [72, 73]. ANAempts
to develop the analysis methodologies to improve air traffic flowaddition, the
design of the NAS has been studied in Beach and Connolly [53], Cald®gIHinds
and Kiesler [68], Orasanu and Salas [43], Rasmussen et alRddértson et al [77],
and Smith and Geddes [70]. Those studied include a design of decisiont snakiog
in aviation environment. Wickens and Hopkins [21, 82] studied human factors in ai
traffic control. Moreover, Kerns et al [50], Billings [18], Laclard Klein [8] primarily

focused on the design of the traffic flow management system within the NAS.
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2.1.1 NAS System
Air Traffic Control Sysstem Command Center (ATCSCC):

The Air Traffic Control System Command Center (ATCSCC), opmral since
1994 and headquartered in Herndon, Virginia, is in charge of managiraiy ttnaffic
flow within the NAS [37]. The ATCSCC takes action implementgrgund delay
programs, fight cancellations when unforeseen events occur that areatnbalance
between air traffic demand and capacity. These actions reeluce congestion and
delays thus facilitating maximum use of the NAS.

Air Traffic Controlling Facilities (ATC):

The primary concern of the 21 Air Traffic Control Command Cer{®RsTCC)
in the NAS is to separate and control the movement of airendifin a specified
airspace. Each of the 21 ARTCC located in the 21 centers in theetd@oys 300 or
more controllers, who guide aircraft towards their destination, retteaft around
bad weather, and keep them safe from mid-air accidents.

Terminal Radar Approach Control (TRACON):

These centers are located near airports and cover airspacgeahile radius or more.
If they are located within the 50-mile radius, they might corttrel airspace of other
airports as well. The Terminal Radar Approach Control (TRAC@NEgsponsible for
the arrival sequencing at the airports. Air Traffic Managenf@TM) decision support
tools have shown the capability to increase the arrival trdffleughput of TRACON

facilities without impacting the air traffic controller workbism [89]. NASA Ames

Research Center and the FAA are developing decision support taehisas trajectory
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prediction algorithms, to aid the tactical control of TRACONvateéure traffic [20].
Jung [88] states, “The Expedite Departure Path (EDP) is aidecupport tool that
provides the TRACON traffic management coordinators with depabraffec loading,
scheduling information and radar controllers with advisories foicedechanagement of
terminal area departure traffic.”

Control Tower:

The surface traffic is managed by control towers (airapptrations on the
ground) and within a specified airspace around the airport. The ctmtret plays an
important role in managing proper spacing between aircraft taking off anddandi
2.1.2 Future ATM Concepts Evaluation Tool (FACET)

At NASA Ames Research Center, Moffett Field, California, theure Air
traffic management Concepts Evaluation Tool (FACET) was develdg@dBy using
actual air traffic data from the FAA, FACET analyzes flight plan route and predicts
trajectories for the climb, cruise and descent phases of fogleach aircraft type [71].
NASA Ames Research Center developed the FACET simulation for limgd&TM.
The purpose of FACET is to provide better evaluation of advanced ATMeptsand
enable users to keep track of flight plans.

Developed as an accurate complex model of air traffic flow prodt&QET is
a simulation model of the US airspace [49]. FACET simulatetsadfic based on flight
plans and allows the user to analyze congestion patterns oediffe¥ctors and centers
by propagating the trajectories of proposed flights forwardnie §37]. Extensively

used by the FAA, NASA and industry (over 40 organizations and 5000 ,USAGET
12



can be used to both simulate and display air traffic or provide stpigstics on
recorded data [1].

In our study, we developed approaches for extracting inter-aemnd service
time distributions using the FACET simulation of the air traffata. Figures 2.2 and
2.3 show FACET snapshots of air traffic over the United States rori5a2005 at

12:19 a.m. UTC and on July 10, 2006 at 2:45 p.m. EST, respectively.

uture ATM Concepts Evaluation Tool (FACET)
Animation Simulation Airspace Aircraft Applications Help

OIRERNEEC FIEEE

Figure 2.2 A FACET snapshot of air traffic over the United States on Jan 15, 2005 at
12:19 a.m. UTC
Sourcehttp://www.nasa.gov/vision/earth/improvingflight/FACETSQOY .html
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Figure 2.3 AFACET snapshot of air traffic over the United States on July 10, 2006 at
2:45 p.m. EST/ 11:45 a.m. PDT
Sourcehttp://www.nasa.gov/vision/earth/improvingflight/FACETSOY.html

2.2 Overview of Queuing Models

Queuing models have been studied over the past several decades. d@deues
gueuing systems have been widely studied in research since thel@éphone systems
were introduced. Queuing theory was known with the work of A. K. Ertz#nthe
Copenhagen Telephone Company in 1900s [38]. Erlang developed important
knowledge in tele-traffic engineering. Queuing applications haedly grown in
many branches including telecommunications, computer sciencesafiic tontrol,
logistics, and manufacturing.

Queuing networks are used widely to analyze computer, communication,
manufacturing and transportation systems [80]. Smith et al [48] Y& 1957, Jackson
published an analysis of a multiple device system where in each device abotaenar

more parallel servers and jobs could enter or exit the systgmhere.”Furthermore,
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Jackson further studied open and closed systems with dependent smtesca 1963
[42]. The special case of closed queuing systems has also sbephfied [83].
Different queuing models and non-Poisson service distributions havedbeeloped
[28]. Moreover, the product-form solutions of queuing networks application heeme
studied the design and modeling of facilities with over four decades befor|18b].

Many authors have studied Makovian queues with finite capacityedwer,
many practical situations to understand the transient behavior of qusystegn were
studied by CohenKabayashi and Duda [4, 33, 47]. Kimura et al. [78, 79] derived
diffusion approximations for various queue characteristics @l/&/1/N system. By
using a diffusion process with a reflecting boundary for the heaffict case, the
transient approximations were investigated for the single sease [33, 38, 39].
Moreover, Choi and Shin [13] studie/G/m system with transient diffusion
approximation with infinite capacity.
2.2.1 Time-Dependent Queues

The evolution of a real-world queuing system varies with tinmvéver, most
gueuing models in the past decade have been dedicated to time-homogeodelss
In practice, there are many time-dependent phenomena, such as rustorhour
periodicity, which they fail to capture.

Most real-world queuing systems exhibit some sort of time-depebdéavior,
including time-varying arrival and service rates. Kenneth [74] obser‘However,
analysis of the time-dependent behavior of even the sili)éM(t)/cc queuing system

requires numerical integration of an infinite number of diffeedsdifference equations
15



for general, real-valued and integral arrival/service-fatections.” An analysis of
mobile cellular telecommunication system design has extensivetytime-dependent
gueuing networks with infinite-servers [1@tewart and Mari¢87] discussed a review
of time-dependent queuing networks with infinite-servers. Furthernfwanenburg
[45, 46] studied the waiting-time process of a single-server eqweith Markov-

dependent inter-arrival times and negative exponential services.

Jennings et al [66] observed that the time-dependent nature démyerforms
well when the arrival rate changes very rapidly relativdéoservice times. Some non-
stationary effects on multi-server Markovian queuing systemgiaea in Green et al.
[51,52], which assumed that at each time point steady stathisvad, and used the
instantaneous arrival ratét), for the mean arrival rate at timheln addition, there has
recently been much interest in the solution of time-dependent quewbtemps by
numerical integration [15, 31, 69].

2.2.2 Queuing Network by Enumeration of States

Haverkort and Knottenbelt [16, 84] performed approaches that search a
exhaustive state space. Those approaches can be used to utikzetonage and/or
distributed hardware in an efficient way to represent the siadee [32, 67]. The
Champman-Kolmogorov equation based state enumeration will be refqQuirhe
solution process if the inter-arrival and service time distributemesnot exponential

[34].
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2.3 Overview of the Coxian Distribution

The Erlang distribution was introduced from the study of phasésl@éphone
systems by Erlang [7]. Then, Cox [23, 24] generalized the ofaBgang distributions
and studied probability distributions as mixtures of Erlang distributién€oxian
distribution was first introduced by Cox [23, 24]. This distribution idely used in
many science and engineering applications.

Neuts [59] stated that the time to absorption of a finite Markovnciai
continuous time that represents in a stochastic model can beergpreas the Coxian
phase-type distribution. There is one absorbing state or phase, and the stpobeesis
starts in transient state. Coxian distributions have become meptant because of
their universality: the Coxian distribution can approximate anyriloigion function
closely [90]. The Coxian distribution is the most general form ophase-type
distribution that results from a system of one or more sequences, or phases.

2.3.1 Fitting Coxian Distribution to Data

It is very difficult to fit distributions or real data to theoXian phase-type
distribution according to many reports in the literature [26]. Ont@inajor problems
of fitting phase type distributions occurs because the functions arénear [9].
Because it is not possible to find an exact solution, a numetgaitam is required
[58]. Methods of estimation, methods of maximum likelihood, methods of entam
(moment matching) and the least squares method are methods thdigeavstudied
earlier. These three methods have been widely used for fittiagtoldhe phase-type

distribution. The maximum likelihood method has been developed for marg. ye
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Fitting a Coxian phase-type distribution to data can be done bymazag the log

likelihood. This method has been extensively studied in much literafar example,
Bobbio and Cumani [2] applied the maximum likelihood method to maginaiz
combining linear program function. The minimum likelihood was usedaoid{ [61,

62, 63] and Faddy and McClean [64] to study Nelder Mead algorfumhermore, a
phase-type distribution fitting procedure was developed by using pectation

maximization algorithm [76].

Many researchers have performed the method of moments tGokian
distributions. According to Schmickler and Johnson [54, 55] the method of m®me
matching is developed to match the moments of a mixture of gedigstributions.
Moreover, the comparison between the moments matching parameter nmwéthdae
maximum likelihood method is discussed in Lang and Arthur [9]. Tilvd group of
algorithms is based on least squares estimation. The leastssmeth®d has been used
to estimate the model parameters in Faddy [60]. Even though, miamptd have been
performed by researchers, these approaches have limitdtigractice, the method of
moments is considered the least accurate method when the origitrddution is
unknown [11].

2.3.2 Coxian Queuing Model

The Coxian distribution is a special case of a phase-typgbdisdn. It has
gained special importance in the research on queuing networks. B@eds often
require distribution functions of random quantities that have rationahtaptansforms

[28]. This queuing network method was name after the authors [41]. fhaséties
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might be the inter-arrival times or service times of a queuirtwork. Moreover,
Coxian distributions have been widely used in queuing applications and pgiieda
probability models. According to Cox [25], “Coxian phase-type distrouis a more
specific method that represents real air traffic data s;gecial type of Markov model.”
An approach adopted for deriving queuing results using more generahintat and

service time distributions is to approximate these procesgeErlang or Coxian
distribution [85, 86].

Various studies of queuing models with Coxian distributions haverepented
in the literature. In particular, Herzog et al. [81] obtained nurakresults for a single
server queue with state dependent arrival and service rates,iragdtat the inter-
arrival times as well as the service times follow a Qoxstribution. Marie [75]
studied the queue-length probability distribution of a single serverequéh a Coxian
service distribution and a Markovian time-dependent arrival rates. dipproach was
obtained using a recursive technique, which was based on the notioncohthigonal
throughput. Marie's model was extended to several servers ageeésorStewart and
Marie [87] using numerical techniques. Bertsimas [22] used thea@alstribution and
generalization method of stages introduced by Erlang to achieveotbgon of a
gqueuing system. Finally, a special class of probability Oistions with rational
Laplace transforms, which are related to finite Markov chaireseveconsidered by
Neuts [57]. Also, a special class of distributions can be foundeantdN[59] with

gueuing system numerical investigations.
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CHAPTER 3

FITTING COXIAN DISTRIBUTION TO AIR TRAFFIC DATA

3.1 Introduction

As mentioned previously, simulations of real traffic data reviea the inter-
arrival time and service time distributions cannot be represenye@éxponential
distribution random variables. The Coxian distribution has gained maetiatt to
many researchers due to its universality: any distributiondeaapproximated closely
by Coxian distribution. Literature on fitting the Coxian distributian data was
described in the previous chapter.

In this chapter, we describe different algorithms to fit Coxisstributions to the
service time data of major Air Traffic Centers. We develos# fitting methods. We
compare and evaluate fitting methods by using the mean squaréM8B) and the
number of phases in the distribution. We begin the chapter with theptiescof the
Coxian distribution in section 3.2. In section 3.3, the methods of fittingpxaa@
distribution to data are presented. Finally, the experimental seardt discussed in

section 3.4.

3.2 Coxian Distribution

The description of the Coxian distribution here is from Menon eB4l. [The

phases of the Coxian distribution are characterized by the foljoparameters. Let;,
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M2...un be the service rates of anphase Coxian distribution. The transition

probabilities for transitioning to the next phase are denotea,l®s...a,.; as shown in

1-a; 1-a ;

Figure 3.1 The Coxian Distribution

Figure 3.1.

1-a

HereQis a fi +1) x (h +1) matrix that represents the transition rate matrix for
ann-phase Coxian distribution, which can be given by

[T
S P (3.1)

Let o be a state probability vector of the Coxian distribution. rLdbe the number of
exponential phases associate with statesr,, and let staten +1 be the absorption
state.T is an x n matrix corresponding to the exponential phases afg is then x1

column vector corresponding to the absorption state.

i an | a-a)n
_ 1-a)u
ILIZ a?/jz _ 2 2
T= —u, au, o= | - a,) u, (3-2)
" a1<71/'lk—1 (1_ ak,1)ﬂk71
- g L H, _

Hence, the moments of the distribution can be calculated by
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EX™) = (—1™)m! (aT ™e),m = 1,2,.. (3.3)

The density function of the Coxian distribution of the Laplaaasform can be given

by the following equation [3.4]:

N n i
F(s) = ;An w] |7 L (3.4)
where,
A, = ayg.ay...0,_1 (3.5)
b,=1-a, (3.6)

3.3 Methods of Fitting a Coxian Distribution to Data

Previously, we fitted am-phase Erlang distribution to the inter-arrival and service
time data obtained from the FACET simulation. However, thphase Erlang
distribution fitted poorly to the inter-arrival and service time dattasome centers.
Consequently, we develop different fitting methods that imptbedfit to data. In this
section, we describe several methods to fit a Coxian distibto the service time data
of major air traffic centers. We then compare and evalinse methods by using the
mean square error (MSE) and the number of phaseseirdigitribution. Nonlinear
Optimization, Fitting Histogram, and Random Sample Method acesisd in sections

3.3.1, 3.3.2, and 3.3.3, respectively.
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3.3.1 Nonlinear Optimization Method

Fitting a Coxian distribution to data involves identifying the servetes: and

the continuation probabilities. In this section, we describer@nlinear optimization
method by matching the moments of the distribution with the ddtae.nonlinear
optimizationmethod is our first approach to fit data with the Coxian digiob. In our
implementation of the nonlinear optimization method, we used\NENIIN, which is an
optimization routine in MATLAB to find a minimum of constrainetbn-linear
functions.
3.3.1.1 Nonlinear Optimization Algorithm

The following steps were used to fit data by using the nomlimatiamization method.

1. We began the fit witlm initial phases of Erlang distribution.

2. We weighted the objective. The differences in lower momemss more
penalized than those of higher moments because the losreents are more
descriptive of a probability distribution than higher momentshe Tevised
objective essentially created a sequential goal program.

3. Subsequent Coxian distribution parameters were initialized bsetld the
previous distribution and the continuation probability of thalfphase at close
to zero.

4. The error in the fit was thSE
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Table 3.1 Comparison of Mean Square Error (MSE) amahibdéer of Phase&) between
Erlang and Coxian Distribution fit for each center

Center Fitted Method
Nonlinear
Optimization Erlang
ID Name MSE k MSE K
1 'Albuquerque’ 0.025331 6 0.037093 2
2 'Atlanta’ 0.013714 6 0.013714 1
3 'Boston’ 0.021343 2 0.021343 2
4 'Chicago’ 0.016379 3 0.016379 2
5 'Cleveland' 0.015167 5 0.015167 2
6 'Denver’ 0.015422 7 0.011788 1
7 'Fort Worth' 0.009603 5 0.009603 2
8 'Houston' 0.048014 4 0.003407 1
9 'Indianapolis’ 0.017635 3 0.017635 2
10 'Jacksonville' 0.014748 7 0.014748 2
11 'Kansas City' 0.002361 4 0.002361 2
12 'Los Angeles' 0.015301 8 0.015301 1
13 'Memphis' 0.00902 7 0.00902 2
14 'Miami' 0.031226 3 0.031226 2
15 'Minneapolis' 0.007984 2 0.007984 1
16 'New York' 0.009733 4 0.009733 2
17 'Oakland' 0.02913 5 0.02913 2
18 'Salt Lake City' 0.013672 7 0.013672 1
19 'Seattle’ 0.009755 3 0.009755 2
20 'Washington DC' 0.021013 4 0.021013 2

From Table 3.1 we observed that the nonlinear optimizaticthadedoes not
improve MSE compared to fitting the data to the Erlang distribationost centers. We
believe this occurs because of the initialization of the nonlinpimization method
with n initial Erlang phases. We also observed that at the Albuquerque cémer,

nonlinear optimization method with= 6 gives a lower MSE value compared to fitting
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the data with the Erlang distribution with = 2. Notice that the accuracy of the
nonlinear optimization fit can be further improved by increqiie number of phases.
3.3.2 Fitting Histogram Method
The nonlinear optimization method does not give us a biiteompared to
fitting the data to an Erlang distribution. In this section, we initeda fitting
histogram method. This method has been previously studitekifiterature [90]. In
this method we fit a Coxian distribution to the individual bin okaarated histogram
from the data.
3.3.2.1 Fitting Histogram Method Algorithm
1. Generate a histogram from the given data.
2. For each bin of the histogram, fit it witkkghased Erlang distribution.
3. Set the transition probabilities of Kaghases within each bin to be 1.

4. Set the transition probability from one bin to the next bivetas follows:

Figure 3.2 Example of Data Histogram
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The mean phase length of bin 1 can be calculated as

_@2xk)
H = a+b

(3.7)

where k =the number of phases in each bin
a = the minimum value of bin 1
b = the maximum value of bin 1

The probability of transitioning from bin 1 to bin 2 candadculated as

A, =(1—hy) (3.8)

where h; = the height (frequency) of bin 1.

The mean phase length of bin 2 can be calculated as

_(2%k)
M2 = e (3.9)

where ¢ =the maximum value of bin 2.

The probability of transitioning from bin 2 to bin 3 candadculated as

h
Ayz=(1- _Zhl) (3.10)

1
where h, = The height (frequency) of bin 2.
Therefore, according to above calculation we can obtai€txéan parameters

to fit the data to a Coxian distribution as follows:
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Figure 3.3 Coxian distribution by using the fittimgtogram method

From Figure 3.3, each node represents a histograriMarihen fit data with the
Coxian distribution. However, if we zoom in to each bin bldblen we can see that

each bin consists &fphases. Using the Erlang distribution, our mean value is:

P =y = o = g = (3.11)

NI

whereA = service time.

The transition probability within each bin is 1.

Figure 3.4k-phased Erlang Distribution
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Figure 3.5 Comparison of fitting histogram method by usinfgidintk values at
Boston center
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Figure 3.6 Comparison of fitting hi;:g;rgaDlmgiaod by usinfgdintk values at Miami
Center
Figures 3.5 and 3.6 illustrate the Coxian distributions fittedetwice time
distributions obtained from FACET. The red dotted line repitssz Coxian distribution
fit to data withk = 2 (the total number of Coxian phases in this experinwgrdle to 30

bins x 2 phases for each bin = 60 phases). The bkleeddine represents a Coxian
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distribution fit to data withk = 4 (total number of Coxian phases in this experiment
equals to 30 bins histogram x 4 phases for each bin ph86es). Finally, the green
solid line represents a Coxian distribution fit to data With6 (total number of Coxian
phases in this experiment equals to 30 bins histogram x €epliar each bin = 180
phases).

From the above figures, we observed that if we incrdesaumber of phases
in the bin, then the better we fit the Coxian distribution to #@a.dEven though the
fitting histogram method fit data almost perfectly to the histogtam total number of
phases is way too large for use in practice.

3.3.3 Random Sample Method (RSM)

Two different fitting methods were discussed in the previsactions. The
nonlinear optimization method does not give lower MSE valuegpaced to fitting the
data to an Erlang distribution. On the other hand, the fittingdvsto method gives us
a good data fit with low MSE but with a very large numiigphases compared to other
methods.

In this section, a random sample method (RSM) will be inteduRSM is a
quick and powerful method that gives a very good fit tod&a with both low MSE
and few phases. The RSM algorithm steps and an exanipbewliscussed in sections

3.3.3.1 and 3.3.3.2, respectively.
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3.3.3.1 RSM Algorithm

1. Start with iteration) = 1
2. Let X' be the data set at iteratipn
3. Fit data setX'to an ErlangK, x) distribution

4. From data seX ' subtract each data point with a random sample from an

exponential distribution with mean parameter

5. Remove negative data points frof

6. Sety =u anda to be the size of data s¥t’ divided by the size of data set
X,
7. Setj=j+1
8. If the size of data seX ' < g, then stop otherwise go back to step 3.
3.3.3.2 Random Sample Method Example
In this section we demonstrate a small example of fitting déa RSM.
Consider data given in Table 3.2 to be the original data $kisiexample. For iteration
1, the first step is to fit the data given in Table 3.2 witiedang distribution withu
parameter equal to 0.048 as shown in Figure 3.7. Thresultract random samples
from an exponential distribution with mean paramater 0.048 from each data point.
The new data set can be shown in Table 3.3. The lasofths method is to set the
Coxian parameter; to equal to 0.048 and the transition probabdityo the size of the

new data set of iteration 2 as given in Table 3.3 divided égitte of the original data
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set of iteration 1 as given in Table 3.2. In this cageés equal to 30/30 = 1. The Coxian

parameters after the first iteration can be shown in Fig8te 3

Table 3.2 Data set for iteration 1

Index Value Index Value
1 10.5 16 24.5
2 34.5 17 4.5
3 19.5 18 3.5
4 197.5 19 36
5 225 20 28.5
6 35.5 21 35
7 12 22 10
8 28.5 23 4
9 325 24 21.5

10 56.5 25 32
11 58.5 26 41.5
12 80 27 26.5
13 545 28 17
14 36 29 445
15 14 30 45,5

IFW

0.02

150 200

Senvice Time Distribution

Figure 3.7 Fitted Erlang distribution with= 0.048 for iteration 1
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Table 3.3 Data set after remove negative data point atioteda

Index Value Index Value
1 8.568735 16 22.56873
2 32.56873 17 2.568735
3 17.56873 18 1.568735
4 195.5687 19 34.06873
5 223.0687 20 26.56873
6
7
8
9

33.56873 21 1.568735
10.06873 22 8.068735
26.56873 23 2.068735
30.56873 24 19.56873
10 54.56873 25 30.06873
11 56.56873 26 39.56873
12 78.06873 27 24.56873
13 52.56873 28 15.06873
14 34.06873 29 42.56873
15 12.06873 30 43.56873

Figure 3.8 The Coxian parameters for iteration 1
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Now let the data set given in Table 3.3 be the datdor this iteration 2. Tt
basic concept is to fit this data set to an Erldisgribution withu parameter equal i
0.0507 as shown in Figure 3.9. Then we subrandom sampleSom the exponentie
distribution with mean parametu = 0.0507 from each data point. The new data se
be shown in Table 3.4. Notice that, some of tha gaints are egative values, whic
are removed out from the data set. Therefore, ewr data set for the next iteration
given as Table 3.5.

IFW

0.03

0.026

0.015

0.005

100 150 200

Serice Time Distribution

Figure 3.9 Fitted Erlang distribution wiu = 0.0507 for iteration
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Table 3.4 Data set after subtracting exponential randoia@iat iteration 2

Index Value Index Value
1 -24.9566 16 -10.9566
2 -0.95662 17 -30.9566
3 -15.9566 18 -31.9566
4 162.0434 19 0.54338
5 189.5434 20 -6.95662
6 0.04338 21 -31.9566
7 -23.4566 22 -25.4566
8 -6.95662) 23 -31.4566
9 -2.95662 24 -13.9566
10 21.04338 25 -3.45662
11 23.04338 26 6.04338
12 44,54338 27 -8.95662
13 19.04338 28 -18.4566
14 0.54338 29 9.04338
15 -21.4566 30 10.04338§

Table 3.5 New data set for iteration 3

Index Value
162.0434
189.5434
0.04338
21.04338
23.04338
4454338
19.04338
0.54338
0.54338
6.04338
9.04338
10.04338

=
RIEIB|o|o|N|o|ua| s |wine
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Figure 3.10 The Coxian parameters for iteration 1 and 2

The final step of this iteration is to set the Coxian parametdo equal to
0.0507, and the transition probabildéy can be calculated as 12/30 = 0.4. The Coxian
parameters after the first and second iterations can benshowigure 3.10. We
continue doing these same steps until the size of the dagallis small; then we stop.

The final Coxian parameters in this example can be showigume 3.11.

a=1 a,=04 a; = 0.25

1a,=0.

ST NN

Figure 3.11 The final Coxian distribution

3.4 Experimental Results

Several fitting methods were developed and discussed ehrltbis section, we
compare and evaluate a variety of fitting methods by usiegnikan square error

(MSE) and the number of phases in the distribution. Theltsesf fitting different
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methods to service time data at the Miami and Albuquerquierseare given in Figures
1 and 2, respectively.

Figures 3.12 and 3.13 represent the comparison of M8Eh& total number of
phaseskK) for each of the fitting methods. The results show that R884 a good fit to
the service time data at the Albuquerque and Miami centgrasidg this method, we
get low MSE values and fewer phasé&¥ ¢ompared to the nonlinear optimization
method and the fitted histogram method at both centers. Ewvemtth the fitted
histogram method gives the lowest MSE value, it requires B@8gs, which is not

really practical.

Miami
0.035 Erlang
Nonlinear
0.03 Optimization
0.025
W 0.02 _Flttlng
g Histogram
0.015 (60 phases) # Method
0.01 & RSM Fitting
) Histogram (300
0.005 pﬁdbeﬁ
0
0 50 100 150 200 250 300 350
Total Number of Phases (K)

Figure 3.12 Comparison of different fitting Coxian distributiogtinods to service time
data at the Miami Center
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Figure 3.13 Comparison of different fitting Coxian distributioetihods to service time

data at the Albuquerque Center

Notice that at the Miami center, fitting service time data with theimear
optimization method does not improve the MSE value comparditting data to an

Erlang distribution. As discussed earlier, we believe this scdgcause of the

initialization of the nonlinear optimization method with an initigdhase Erlang.

From our experimental results, we can conclude that the RSMquick and
powerful method that yields a lower MSE and fewer phagespared to other methods.

This method will be used for fitting time dependent inter-arriae Cpqt)/Ci/s

gueuingmodels, which will be discussed in chapter 4.
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CHAPTER 4
TIME-DEPENDANT QUEUING MODELS OF THE NATIONAL AIRSRCE
SYSTEM

4.1 Introduction

The real world queuing models have arrival rate andcerate vary with time.
In this chapter we present time dependant queuing modédlseohational airspace
system. In section 4.2, we describe an algorithm for céhlgr&,,(t)/Ci/s queuing
model. The state enumeration technique is discussed in sdc3iofrurthermore, we
present an algorithmic approach to determine averageunesasf the queues in section
4.4. Finally, we validate time dependant queuing models vAET simulation.
4.1.1. Problem Description

In our study, we developed approaches for extracting-amteval and service
time distributions using the FACET simulation for June 1-7726fChe air traffic data.
We make the following assumptions:
Assumption 1: It is possible to un-truncate the arrival data.
Assumption 2: The set of times representing fundamental elangthe inter-arrival

distribution is 24 one-hour time periods.

Assumption 3: The service time distribution does not chandeeamains stable for the

entire time horizon.
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The first step to calibrate @y (t)/Ci/s queuing model was to extract inter-
arrival and service time data from the FACET simulation. Véa tiitted 24 one-hour
inter-arrival time periods and service time data to Coxiatmiloligion by using RSM as
discussed in chapter 3.

Furthermore, we applied the state enumeration technique #orqtieuing
solution. The steady state solution can be obtained by integtagnMarkov process

equation®= Qx until steady state is reached. More specific details will be sksclin

the next section. Finally, an algorithmic approach is usedieti@rmine average
measures of the queues. The average measures cabtadeed by calculating the
probability state vector for each time period.

4.2 Calibrating a Time Dependant Queuing Model

In this section, we describe an algorithm for calibratir@,ga(t)/Ci/s queuing
model in which the service distribution is a Coxian random bkrjsand the inter-
arrival distribution is a time-dependent piece-wise constaxiaBorandom variable
from FACET data.

4.2.1. Calibrating Queuing Parameters

4.2.1.1 Estimating Arrival Rates

Using seven days of FACET data, we developed MATL&d8le to extract
network arrivals that include both external sources and #iraraving from other

centers within the network callegtwork arrivalsdirectly from FACET. LetX,,...,X

be a set of independent Coxian random variables of thearnteal time at different
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periods throughout the day. In this study, we assuemguals to 24 one- hour time
period. Then, the inter-arrival time & time-dependent piece-wise constant Coxian

random variablegiven by equation (4.1)

X, t>t>t,
X, t,>t>t
M M

X g>txg,

X (t) = (4.1)

For each time period, we then fitted inter-arritethes to a Coxian distribution.

However, fitting a Coxian distribution to the dataolves identifying the rateg: and

the continuation probabilities. We discussed RSM to fit a Coxian distribution hwit
data in chapter 3.

4.2.1.2 Estimating Service Rates

Like estimating arrival rates, we developed MATLABde to extract the time
that an aircraft takes to cross a specific cemtbich is referred to aservice timeThe
service time distributions are also fitted by RSM.

4.3 Queuing Network by Enumeration of States

The Champman-Kolmogorov equation based state emtimewill be require
for the solution process if the inter-arrival anervice time distributions are not
exponential [34]. The continuous time long run hétof a Markov process can be

described as

) = Qx(t) (4.2)
where x(t) is a probability vector [92]. The valxg(t rgpresents the probability of the

system being in statewherei = 1,...n . Let Q(t) be thenxnmatrix. This matrix is
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called theinfinitesimal generator matribor the transition rate matrixfor a Markov

process. Consider a queue with arrival ratend service rate: for all nodes in the
gueuing system. The Markov process in steady-steeimple have
xQ=0 (4.3)
Here x is the stationary probability vector where is the steady-state

probability that the system is in statd he vectorx can also be obtained from equation
(4.3). The normalizing condition can be calculasdollow
x(i)=1 (4.4)
i=1
The steady state solution can be obtained by iategy Equation (4.2) until steady state
is reached.

As discussed above, by integrating= Qx, the steady state solution to the
Markov process can be reached. The transient snkittan also be obtained by using

this method. Using the matrix exponeft the solution of time in variant system

solution can also be obtained.
4.3.1 State Enumeration

As discussed in Sengupta and Tandale [91], tladysis of a queue with a
Coxian arrival process distribution and a Coxiarvise time distribution withs servers
can be represented in Figure 1.7. L&f, ucz, ..., uem be the service parameters with an
m-phase Coxian distribution, and &t,, acy,...., acm be the transition probabilities of

the arrival process. We refer to this agemerato. Furthermore, the&,/Ci/s queue
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service node can be represented bkphase Coxian, with service parametgegs,
N2, -- -+, Nk, @Nd transition probabilitiegys, ana,. ..., ank In this study, we assume that
the service node hasidentical servers, each of which has the samefggarameters.

The C,/Ci/s queuing system can be represented by Figure 4.1.

Coxian k—Phase Node, s Servers

Coxian m-Phase Generator

@ ag, @ %,
Queue
1—ag, 1 —ag, 1

Departure

/ F

Figure 4.1C,/Ci/s Queue

In this study, the&,/Ci/s queuing system state can be defined by (1)asegof
the arrival process or generator, (2) the numbeteofs in service node, and (3) the
number of servers in the same phase of service.nddd a be the phase of the
generator, leb be the number of items in service, and ¢gtc,,...,cx be the number of
servers in phases 1,2, .k,, Therefore, the state of the system can be repes$dy the
sequencear : b(cy, ¢y, ....,C). The total number of servers in phases 1,X% at,a service

node can be given as [91]:
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(4.5)

Here we want to illustrate the queuing state systatim 2 generator phases, 3 servers,

each with 3 service phases. In this example, theergéor is in phase 2, and the

maximum number of items in service is 4. Table ghaws the possible states of such

queue.

Table 4.1 Enumerated States @¥Cs/3 Queue with Generator in Phase 2 ard4
Items in Service [91]

Index State Index State Index State Index State
0 2:0(0,0,0) 8 2:2(1,10) 16 2:3(1,2,0) 24 2:4(1,0,2)
1 2:1(0,0,1) 9 2:2(2,0,0) 17 2:3(2,0,1) 25 2:4(1,1,1)
2 2:1(0,1,0)) 10 2:3(0,03) 18 2:3(2,1,0) 26 2:4(1,2,0)
3 2:1(1,0,0) 11 2:3(0,1,2) 19 2:3(3,0,0) 27 2:4(2,0,1)
4 2:2(0,0,2)] 12 2:3(0,2,1) 20 2:4(0,0,3) 28 2:4(2,1,0)
5 2:2(0,1,1) 13 2:3(0,3,0)) 21 2:4(0,1,2) 29 2:4(3,0,0)
6 2:2(0,2,0)) 14 2:3(1,0,2) 22 2:4(0,2,1) 30 1:0(0,0,0)
7 2:2(1,0,1)] 15 2:3(14,1,1) 23 2:4(0,3,0) .

a b (c,cy,...

1. A phase change in the arrival node or generator

4.3.1.1 State Transitions

, &) above can be defined as following events:

The transitions of &,/Ci/s queue which we described as sequence

2. An aircraft arrival into the service node or depegtfrom the generator

3. An aircraft departure from the service node.

Each transition is described in detail.
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¢ Phase Change in Arrival node (Generator)

Let uG be the service rate in the process of generatingraval with anm-
phase Coxian distribution, and laG be the transition probability in phasevhere
i=1,...m The transition rate can be given p¢aG when the generator changes from
thephasd to phas€i+1). The state transition of a phase change in theaamode can
be given by

a<a+l (4.6)

e Arrival into Service Node
An arrival event occurs when an aircraft departing from teegator moves to
be served at a service node. The transition raieGs(1 - aG) wherei = 1,...,m
represents the phase of the arrival node from wiielaircraft departs. An event occurs
in which an aircraft departs from phassand returns back to phase 1. This event is
given by:

a<l 4.7)

The number of aircraft in service is incrementedbg, which is given by

beb+1 (4.8)
If the number of aircraft in service is less thha humber of available server in current

state, then the arriving aircraft is immediatelyvee by an idle server, which is given
by

C, <« C +1 (4.9)

If the number of aircraft in service is greaterrtla@ equal to the number of available

servers, then aircraft has to wait in the queud,sanonlyb is incremented as in (4.8).

44



e Departure from the Service Node
When an aircraft leaves the server from a servim#genthedeparture event
occurs. LetuN be the service rate of server in service nodghnphase wherg =

1,...k Let aN; be the transition probability at service node. Ttrentransition rate for

thejth phase can be simply given b, (1-aN, ), when the aircraft depart from service

node.

Cj <~ CJ' _1 (410)

The number of aircraft in service can be also givgn

b«b-1 (4.11)

4.3.1.2 Total Number of States
Let N(n) be the total number of states in which thereaaraostn aircraft in the

system. Then isl(n) as described in Sengupta and Tandale [91]:

mZn: P(i, k) n=0,...,S

N(n) = (4.12)

m{z P(i,K+(n-9 R s B{} B S.
i=0
whereP(i, k)is the number of ways thlahonnegative integers sumitavhich is given

by

(4.13)

ThenP(i, k) can be written as
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PG,k =[ik+_k1_ 1] (4.1

Hence, we have

PGk = (E+ kj (4.15)

The total number of states is obtaimggubstituting (4.15) in (4.12)

n+k
m(k j n=0,.....S
(4.16)

N = (5+ K ](s+k-1
S+ S+ K-
m[(n_S)JFT}(k-l J nN= §S......

4.4 Determining Probability State Vector

The research in this section was previously desedrin Menon et al. [93]. We
described how enumeration of states can be uséthvaCr(t)/Ci/s queuing network.
The enumeration of states methodology solves fersteady state value of, where

x(i)is the probability that the system is in staté-urthermore, the approach to
determine average measures of the queues is déscuBse transition matriQ(t) can
be written as given in equation (4.16) due to tieegrwise time dependent inter-arrival
time of aCn)(t)/Ck/s queuing model.

Q t>txt,
Q t>t>t
M M

Q >t

Q(t) = (4.17)
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This shows that the transition rate matrix varigbjch can lead to the steady
state probabilities not existing. However, we stduld like to calculate certain average
measures based upon the probabilities of each statetime horizon using equation
(4.18), whereM (x) is a measure based upon the state probability mectmd M is the

average of the measure over time.

j M (x(1)) dt
fo

tl _to

(4.18)

M =
Equation (4.18) can be rewritten to determine thierage state probability
vectorx for each time periodi=1,...] and an average measum for each time

period using equation (4.19) due to the linearityn@any standard queuing model

measures with respect to the state probabilityorect

Z(ti —E_l)MiX

M =i (4.19)

tI _to

How to calculate; for each time periog, Vi =1,....1 will be discussed. By

integrating numerically using the ODE 45 in MATLABguation (4.20) shows how to

calculate the state probability vector over timéadiewing
x() =N t1,), Vie[ty,1).Vi=1,..., (4.20)
For a sufficiently small & >0,x(t; —¢ )and X(t; ) represent probability state
vectors of two different state spaces at a givemetti. Because this can lead to a

significant calculation complicationx(t;),vi=1,.....] will be redefined by two
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different vectors. Le" (t,) and x™ (t,) be the state probability vectors at tityia state
spaces associated with periods,t,,,)andt ,,t;), respectively for each time
t, Vi=1....1 -1. Variablesx(t, pndx(t, )are redefined ag" (t,) andx™ (t,;) , as shown

in equation (4.20), to further specify notation.

X (1) =% (1), Vi=l,...,l (4.21)

An algorithm to calculate the probability vectorr feach time period

X ,Vi=1,..... is given by the following steps.
Step 1: Leti =1 and assume&” (t,) is given.
Step 2: Findx™ (t;) and X, using integration.
Step 3: I <I, then projectx” (t;) into the state space of peric[Iqj,ti+1) to find x* (t;)
and goto step 2.

Even though state vector(t,) may not have existed, the algorithm assumes

that it is given in Step 1. The time very earlytive morning before most aircraft have

entered the airspace,, and some time very late in the evening after raostaft have
already left the airspace, , are implicit values. It is possible that the titnecan be set
to exactly one day after timg State vectorx™ (t,) can be assumed to be the steady-
state probability associated with, because the airspace is generally emptying in the

time perioc{tH,tI ) The steady-state probability can be determineddbying Q x= 0
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andlx=1. Using the same projection method in step 3, areproject this steady state
probability into the state space of perib(q tl) to find x" (t,) .
4.4.1 Projection Algorithm

An approach for projecting the probability vecter(t;)to vector x*(t;)as in
step 3 is shown in this section. Vectorgt,)and x™ (t;) will be rewritten asx™ andx”
to simplify notation. The sets of the states of ithter-arrival distribution the Coxian
queue associated with time perioffs, ,t,)andlt,,t..,) will be defined asA-andA*
respectively, and the set of states of the custemeservice in the Coxian queues will

be defined asS. Let x; (X;) be the associated component of vectofx™ for)each

statei € A" ori € A"and each statee S .
The projection algorithm is described below.
Step 1:Determine the probability state vector of the irderval distribution . For

each statel e A~ seta; =) x; .
jeS

Step 2:Determine the probability state vector of the irterival distributiona ™. Solve

the goal programming problem in (4.21) in which pagameter@<w, <w, <.....

minidi +¢
i=1
stilla"T)")—-il(e (T)'+wd —wc =0 Vi=12,..
Zai+ -1 (4.22)
ieA*
a 20 Vie A
d,c >0 Vi=1.2,...
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Step 3:Determine the probability state vecx”. For each staté € A" and each state

jeSsetx =a > X .

ieA”

51_02 X
y
’A‘ ’A‘ ’/\‘ ’A‘ ’/—\‘ ’A‘
SN =N N L= N N
V- 4 o\ S o\ S o\ S o\ S o\ S o\
=7 I8, fof 30, faf B, fay I8, faf 30, fof Ay
i 7 i i Vi i i \ 7
X0 Xi XZ . . . XZ24
L 1 L 1 1 1 i
i i 51 i 51 O] i
o1 &l Q7 &l ul al ul Q222 !
“wiou we W . LY . o
i
. . . . . _d
GP GP GP GP GP -
__’
/

Figure 4.2 Steps for determining probability steector at each time ped
Figure 4.2 shows the steps for determining the giodity state vector. The vectxy, is
the steadystate probability associated w Q24 that can be determined by solviQasx
= 0 and1x = 1. In order ¢ find X, we can project this steady state probability ihie
state space of initial timgeriodt, using the projection methatiscussed in steg. We

then continue to integrate and project for eacle fop@ariod

4.5 ValidatingTime-Dependent Queuing Models with FACET

We attempt to develop the queuing mc with Coxian interarrival time dstributions
and Coxian servicéme distribution. However, the model sufferétbm an enormou
state space.Consequently,in this study we employ a tim#ependent Coxia
distribution for the intemrrival time distribution, and a Mkiovian distributiol for the

service time distributionUsing the Coxian distribution intexrival distributionhas a

limited increase in the state sp.
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4.5.1 Center Level Study

The En(t)/M/s queuing models were studied earlier in Menon .€€4]. In this
section, we compare results of Bgy(t)/M/s and Cqn(t)/M/s with those of the FACET
simulation. Results for the expected number ofraft in the NAS based upon the
major center-level network are given in Figures thBugh 4.8, which show the
average number of aircraft in the system for eackhe two queuing models. The

average numbers of aircraft are obtained from natérg Xt) = Qx(t) equation at each

time period until steady-state reached. The reteddine, labeled ErlangFit, represents
a queuing model with time-dependent Erlang interak time distributions and a
Markovian service time distribution. The blue dashee, labeled CoxianFit, represents
a queuing model with time-dependent Coxian interal time distributions and a
Makovian service time distribution. The purple lirepresents the averaged FACET
simulation for June 1-7, 2007. We simply calculdwte average number of aircraft from
FACET by counting the number of aircraft at a gatar center every 30 second time
step, and then we take the average of the totabeuwf aircraft for every 1 hour time
period.

The results show that the bolnq(t)/M/s and Cy(t)/M/s models perform well
until the 13" time period with the exception of the first periofithe day. This can be
attributed to the fact that the models assume tti@iumber of aircraft are periodic,
which is not necessarily apparent in FACET. Wedwaithat this is due to initialization
within FACET. Finally, we also observe that from™#me period, the results of the

Cm(t)/M/s models estimate the FACET simulation better tha@ tesults of the
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Em@(t)/M/smodel. Therefore, we can conclude that the Coxistniloution gives a more

accurate national airspace queuing model than gudastribution.

Atlanta Center
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Figure 4.3 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at the Atlanta Center
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Figure 4.4 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at the Chicago Center
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Washington DC Center
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Figure 4.5 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at the Washington DC Center
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Figure 4.6 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at the New York Center

53



Fort Worth Center
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Figure 4.7 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at the Fort Worth Center
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Figure 4.8 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at the Los Angeles Center
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4.5.2 Cell Level Study

We define the US. boundaries by specifying latitase longitude with 1.5-
degree-by-1.5-degree as@ll. Moreover, we assumed that the dimension of tHasce
squared. We then compare results for models of ¢eks that included the major
airports ATL, DFW, JFK, LAX, and ORD. The result®aiven in Figures 4.9 through
4.13, which show the average number of aircrafthe system for each of the two
gueuing models. The dark red solid line represeelilscapacity which is the number of
server in the queue. MATLAB code is developed toaet cell level information from
FACET including capacity.

We observe that the results of g (t)/M/s model, and th€,(t)/M/s model
fit the FACET simulations very well in most airpgruntil time period 13 with the
exception of the first period of the day as disedsabove. These results are consistent
with those in previous section. Notice that, ateimeriod 19 at LAX, the average
number of aircraft of thémy(t)/M/s model is over LAX’s capacity and the FACET
simulation results. On the other hands, usingGhg(t)/M/s model was actually more
accurate. Moreover, we also again observe thatheall resultsCy,(t)/M/s model are
more accurate than the results of Hagy(t)/M/s model compared with FACET. Again,
consistent with those in previous section, we aamclude that the Coxian distribution
gives more accurate queuing model than the Erlatglaition.

The summary of results is shown in Table 4.1. Thlkelet compared each
distribution fitted with the MSE value for majorrters and cells level. From those

tables the averaged MSE values of Coxian fittedadntained by take the average of
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MSE for every time period. Notice that, MSE valgenmuch lower for the Coxian
distribution than the Erlang distribution at bo#mter and cell level. Hence, the results
of the compared MSE value for each distritbutiom esnsistent with the results in the
previous section. Therefore, we can conclude tittatd air traffic data to the Coxian

distribution improves the accuracy of queuing maxfehe NAS.

ATL

B0

8]
o
T

L]
L

i
[}
T

[an]
o
T

Awerage Mumber of Planes
]
=
T

= Capacity
— EACET

""""" ErlangFit
=== CoxianFit

=y
[}
T

0 I 1 I 1
a g 10 14 20 24

UTC Time

Figure 4.9 Time-dependent queuing models versusEHA&eraged for June 1-7, 2007
at ATL.
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Figure 4.10 Time-dependent queuing models versisEHAaveraged for June 1-7,
2007 at DFW.
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Figure 4.11 Time-dependent queuing models versudHAaveraged for June 1- 7,
2007 at JFK.
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Figure 4.12 Time-dependent queuing models versuisEHAaveraged for June 1-7,
2007 at LAX.
ORD
ED T T T T
50 F -

e
[}
T

m— Capacity
—FACET

[an]
o
T

Average Mumber of Planes
]
=
T

""""" ErangFit
10F === CoxianFit -
D | 1 | 1
0 5 10 15 20 25
UTC Time
Figure 4.13 Time-dependent queuing models versisEHAaveraged for June 1-7,
2007 at ORD.
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Table 4.2 Average MSE values between Coxian arehBrtlistribution at cell and

center level

e Cerdan Erlang | Coxian
ZFW |0.121475| 0.0553 Sew llonsessal aioisa
AtlDCt 8-12352,: g'gﬁgi JFK | 0.035781| 0.018289
S\T d o 0ir0e LAX |0.050239 | 0.017288

. . RD .021728 | 0.0092
2 [ossaars[oosonrs| | -ORD (002172800092
chicago | 0.088319 | 0.035221 . .

4.5.3 Period Length Analysis

The analysis ofEny(t)/M/s and Cn(t)/M/s in sections 4.5.1 and 4.5.2 was
performed with 1 hour 24 time periods. However, bleret al. [93] discussed using
periods that were not necessarily one hour andl églength. By using the Markovian
steady-state analysis within each time period, Ha@stion discusses an analysis of
different period lengths dflarkovian Time-Dependent queue (M(t)/M/Figure 4.14
illustrates the compared results of Markovian sgeathte and Markovian time-
dependent queuing models in which the time peribdd durations of one hour
(denoted 1 segment), two hours (denoted 2 segnfent)hours (denoted 4 segment),

and six hours (denoted 6 segment).
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US. AirSpace

B AVG.(Planes) 1 segment
B AVG.(Planes) 2 segment

H AVG.(Planes) 4 segment

Average Number of Plane

B AVG.(Planes) 6 segment

CenterlD

Figure 4.14 Results for the Queuing Models for &iint Time Period Lengths at Each
Center.

Notice that, the average number of aircraft inaedasith shorter time periods in
most cases. The largest difference occurs in €&8tén which the average number of
aircraft varied by 2.8 in the steady-state model 216 in the time-dependent analysis.
4.5.4Long-Run Convergence Analysis

This section was described previously in Menonlef98]. In the analysis of
the Coxian and Erlang queues, the time-dependedeimare only integrated over a 24
one hour periods. The initial starting vector loé tfirst period is a projection of the
steady-state vector of the final period. Howevee, initial starting vector may not be
representative of an appropriate starting vectdomg-run conditions if the final period
does not reach steady state. Furthermore, a paltenigrepresentation in the starting
vector may trickle into subsequent periods. Thigtiee analyzes the queues over 96
one-hour periods and compares them to those oweeffist 24 hours. Figure 4.15

displays the average number of aircraft when camsig 24 versus 96 hours.
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Figure 4.15 Results for queuing models over 24 sigarsus 96 hours for each center.
The results reveal that performance in the firsth2drs is very similar to the
entire 96 hours. Therefore, we can conclude thdbpring a long run queuing analysis
is unnecessary. The analysis of 24 hr time pemgpas as accurate queuing model as the
long run analysis. However, in this section theglonn convergence analysis is
performed only with Markovian queues. The analgdisong run period convergence

with a Coxian queue would be a very interestingreiresearch topic.
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CHAPTER 5
CONCLUSION AND FUTURE RESEARCH

In this dissertation, we described several fitti@gxian distribution to data
methods, which are 1) Nonlinear Optimization 2}ik@ Histogram and 3) Random
Sample. The nonlinear optimization method, whicledugshe method of moment
technique, did not give us a better fit comparedfitiing the data to an Erlang
distribution. Therefore, we introduced a fittingstaigram method [90]. In this method,
we fitted a Coxian distribution to the individuahlof a generated histogram from the
data. Even though the fitting histogram method d#éta almost perfectly to the
histogram, the total number of phases was wayaagelfor use in practice. Last but not
least, we developed a random sample method (RSkiphws a quick and powerful
method. RSM gave a very good fit to the data wathbow MSE and few phases. This
method was used for fitting time dependent interal time Cy(t)/Ci/s queuing
models in chapter 4. We discussed a practical agprdor modeling the NAS with
time-dependent Coxian queues. Time-depend&ni(t)/Ci/s queuing models of the
National Airspace were developed in which the nateival distribution is a time-
dependent piece-wise constant Coxian random vatiaBhd the service time
distribution is a Coxian random variable. We ddssli an algorithm for calibrating a
Cmv(t)/Ci/s queuing model from simulated data of an Air Routaffic Control Center

and an algorithmic approach to determine averagesumes of the queues. We
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attempted to develoBm(t)/Ci/s however Cy(t)/M/s was used in this study due to the
uncontrollable state space when we used Coxianiceertime distributions. We

compared ourCny(t)/M/s queues withEqnq(t)/M/s models, which were previously
studied. Furthermore, we also validated both of queuing models with the FACET
simulation. We observed that the overall resultshefC,(t)/M/s models were more

accurate than the results of tifgq(t)/M/s models when compared with FACET.
Therefore, we concluded that the Coxian distributgives more accurate queuing
models than the Erlang distribution.

Finally, theC, (t)Cyw/S queuing model in which the inter-arrival distrilout is a
time-dependent piece-wise constant Coxian randormabla, and the service time
distribution is a time-dependent piece-wise corts@oxian random variable might be
one of the interesting topic of future researche Thore sophisticate@mq(t)Cuqy's
gueuing model would likely be a more accurate regmeation of the real world systems
with uncertainties like weather.

As discussed earlier in section 4.5.4, a long-ranvergence analysis with the
Coxian gqueuing model is another topic of our futtegearch. The results of a long-run
convergence analysis with the Markovian queue coatp86 time periods with 24 time
periods and gave similar results. In this study omdy used the default capacity in
FACET. However, there are lots of different modfs the capacity of a cell. This

would be our future work to study the effects gbaeity on the approach.
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