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ABSTRACT

NUMERICAL ANALYSIS OF THE INTERACTION BETWEEN A

DETONATION WAVE AND COMPRESSIBLE HOMOGENEOUS

ISOTROPIC TURBULENCE

Monika Chauhan, M.S.

The University of Texas at Arlington, 2011

Supervising Professors: Dr. Luca Massa and Dr. Frank Lu

A numerical study was performed to investigate the effect of preshock turbu-

lence on detonation wave properties. A direct numerical simulation was performed on

the chemically reactive Navier–Stokes equations using a Runge–Kutta scheme and a

fifth-order WENO spatial discretization. A simple one-step chemical kinetics model

was used in the study.

The main objective of the research is to examine the behavior of the turbulence

when subjected to a strong shock with heat release. The evolution of the turbu-

lent Mach number, lengthscales (Taylor microscale and Kolmogorov scale), turbulent

kinetic energy, Reynolds stress, auto-correlations with heat release and activation

energy is examined. Shock–turbulence interaction have been the subject of research

for over the decades but there is no significant study that has yet been made on

Detonation–Turbulence interaction. This research is helpful in practical applications

such as safe handling of the fuels, promoting detonations for detonation engines etc..

v



The results show a marked influence of preshock perturbations on the post-

shock statistics. Detonation–Turbulence interaction resulted in higher amplifications

of turbulence statistics and parameters like turbulent Mach number, turbulent length

scales (i.e. Taylor microscale, Kolmogorov length scale etc.), turbulent kinetic en-

ergy, velocity fluctuations, auto-correlations etc. The detonation event triggers a

self-excited instability, evidenced by the velocity fluctuations and further by space-

time correlation functions. Also, the alteration to the limit cycle structure supported

by unstable waves close to their critical points is highlighted. The effect of reactiv-

ity and fluid acceleration in the postshock region are examined by comparison with

the non-reactive analog. The possibility that significant forcing can lead to hot-spot

formation is investigated by considering temperature probability distribution func-

tions in the reaction zone. The separate effect of vortical and entropic fluctuations is

considered.
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CHAPTER 1

INTRODUCTION

The interaction of a detonation wave and homogeneous isotropic turbulence is

concerned with the unsteady coupling between the convected turbulence structures

and a detonation wave. The dynamics of the interaction is expected to reveal the role

of the turbulent field on detonation stability, the occurrence of spinning and gallop-

ing detonations, and how the rapid heat release affects the turbulence. The preshock

turbulent field is compressible, isotropic and chemically homogeneous whereas the

postshock field is strongly nonhomogeneous due to the rapid axial straining and the

nonlinear interaction between turbulence and heat release. In general, the interaction

between turbulence and heat release affects many combustion processes. In particu-

lar, detonation structures interact with a turbulized preshock field both during the

initiation [6] and the propagation phases [16] of flame acceleration to detonation.

There are various sources where turbulence ahead of the detonation wave can occur,

such as in turbulent boundary layers [26], ridges in obstacle laden pipes [10], shock–

flame interactions [24], and detonation waves in continuous spin detonation engines

[5].

Fundamental understanding of shock–turbulence interaction remains limited,

despite decades of efforts. To gain insight, the interaction of a normal shock wave

propagating past an isotropic turbulent field has been studied. Basing on shock–

turbulence interaction, the present study extends into the problem to detonation–

turbulence interaction. Detonation–turbulence interaction differs from shock–turbulence

interaction in many ways, but the basic difference between the two is the role of the
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chemical induction region in the amplification of convected turbulence in the form of

vortical structures. The detonation–turbulence interaction process differs from the

non-reactive shock–turbulence analog because of three reasons: exothermicity, the

presence of a length scale associated with detonation, and the presence of natural

(intrinsic) fluctuations of the unstable detonation front.

Direct numerical simulation was used to solve for the detonation–turbulence

interaction. In this simulation, a single-step irreversible Arrhenius chemical reaction

was used for simplicity. The present work studies the reactivity effects of preshock

turbulence on the integral length scales, Taylor microscales, one-dimensional energy

spectra, variances, probability density functions, etc., in the postshock region. The

complex interaction requires that the dynamics of the small fluid-mechanics scales

and the detonation scales be properly captured. For solving the chemically reactive

compressible Navier–Stokes equations for a perfect gas, we have used the Runge–

Kutta scheme with fifth-order WENO (weighted essentially non-oscillatory) spatial

discretization for shock capturing and for computing the turbulence away from the

shock. This method is implemented using parallelized Fortran codes run on several

machines housed at TACC (Texas Advanced Computing Center) located in Austin,

Texas.



CHAPTER 2

DESCRIPTION AND HISTORY BACKGROUND

2.1 Brief Description of Detonation – Turbulence Interaction

Detonation–turbulence interaction is a complex phenomenon which is investi-

gated in the present work using direct numerical simulation. Examples where such an

interaction may occur include detonation waves interacting with a turbulent boundary

layer resulting from the gas dilatation in closed pipes, ridges in obstacle laden pipes,

shock–flame interactions and in continuous spin detonation engines. Understanding

of this phenomenon is beneficial in different industries, such as the safe handling of

fuels and in promoting detonations for detonation engines.

Not much has yet been done in studying detonation–turbulence interaction due

to its complexity. Lately, studies were carried out using linear interaction analysis

(LIA). Direct numerical simulation [36] was conducted using the WENO scheme with

an approximate Riemann solver with a third-order Runge–Kutta scheme for time

discretization. A numerical study [34] was performed where the effect of the preshock

turbulence on the detonation wave properties was investigated. This study showed

that there is a marked influence of the preshock perturbations on the postshock

statistics. The significance of forcing, either vortical or entropic, was also investigated.

The study showed that hot spots form due to the nonuniform temperature field.

The interaction of the detonation wave with a convected field of a weak turbu-

lence was studied in detail by Ribner et al. [19] where the effect of chemical release

on the rms fluctuations downstream of the detonation was examined as a function

of Mach number. The greatest changes occur around the Chapman–Jouguet Mach

3
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number due to the effect of exothermicity. Ribner et al. concluded that the one-

dimensional power spectrum displays the Kolmogorov decay and is unaffected by the

exothermicity. This conclusion was based on the assumption that the reaction zone

thickness is much smaller than the turbulence length scales while in actuality the

induction zones can be quite large. Recently, a numerical study was performed in

which receptivity analysis, energy spectra, probability distribution functions, etc., for

the reactive and non-reactive analog are compared [33].

2.2 Detonation

A detonation wave is one of a class of propagating combustion waves, the other

being deflagration. Essentially, a detonation wave is a shock wave, that is, a super-

sonic wave that is sustained by the chemical energy released following shock compres-

sion. In short, detonation is a supersonic flow phenomena comprising a shock front

followed by a reaction. In detonation, two modes of initiation exist: a slow mode

known as thermal initiation in where there is a transition from deflagration, and a

fast mode which is brought by an ignition blast or strong shock wave. Detonation is

obtained by a sequence of events like the development of turbulence in the mixture,

compression of combustion waves which leads to shocks and later to a detonation.

A one-dimensional theory for detonations was first formulated by Chapman

and Jouguet. The Chapman–Jouguet (CJ) theory states that the solution from inte-

grating the conservation equations is obtained only by assuming the detonation wave

as steady, planar and one-dimensional [13], despite the fact that detonation front is

multi-dimensional. Chapman and Jouguet established the conditions that the flow

behind the supersonic detonation is locally sonic. The point on the reactive hugoniot

is the tangent from the initial state and is known as the upper CJ point. A lower

CJ point also tangent to the reactive hugoniot is the complementary CJ deflagration
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point. It can be noted that despite the success of the CJ theory in modeling detona-

tion, the theory does not account for the time required for the combustion process.

Subsequently, Zel’dovich, von Neumann and Döring separately proposed a more re-

alistic one-dimensional model where the planar shock is followed by a reaction zone,

initiated after an induction delay [17].

Experimental observations of detonation wave propagation in a tube have shown

that when steady-state detonation structures are fully established, the flow structure

and the energy release at the wave front are periodic at one mode frequency which

is inversely proportional to a cell length. Two-dimensional simulations [14] revealed

the dynamics of the cellular detonation front including triple points, transverse waves

and unreacted pockets in detail. In unstable detonations, cellular structures are

supported by the periodic collision of decaying transverse waves. Other experimental

observations found that for large tube diameters, a limiting size is reached for the

detonation cell size [13]. Hence, the solid walls play a marginal role in determining

the cell size, and computations with periodic boundary conditions can be used to

predict the width of patterns recorded on soot foils. In the present work, detonation

structures interact with a turbulent preshock field during the propagation phase [16].

Dou et al. [11] performed a numerical, three-dimensional study of the influence

of transverse waves on the heat release zone and on the pattern of quasi-steady det-

onation fronts. They determined that the triple points generated by the motion of

transverse waves causes the detonation front to become locally over-driven and form

“hot spots” where chemical reaction is enhanced by the coupling of high pressure

and high velocity flow. Austin [2] linked the disruption of the regular, periodic, limit

cycle structure, and the formation of hot spots in unstable detonations to the mixture

effective activation energy.
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Detonation is unexplored mainly in the area of detonation instability due to

its complexity. In our research, we have studied the detonation wave and turbulence

interaction to comprehend this instability, spinning and galloping detonations.

2.3 Compressible Homogeneous Isotropic Turbulence And Previous Research

Turbulence has often been called the last unsolved problem of classical physics.

There are many fascinating theoretical issues while the importance of turbulence in

many applications and in nature ranging from engineering to geophysics and astro-

physics is evident. Turbulence has been systematically examined numerically, ex-

perimentally and computationally for more than a century. A number of important

insights in the understanding of turbulence is still elusive such as the lack of fully sat-

isfactory theories of such basic aspects as transition and the Kolmogorov k−5/3 spec-

trum . One example of the intractability of turbulence is the seemingly easy problem

of predicting the evolution of freely decaying, homogeneous turbulence. Freely decay-

ing turbulence means that it is free from mean shear or any body force which might

maintain and shape the turbulence [8]. The decay of freely evolving two-dimensional

isotropic turbulence was studied by Lowe [30] who discussed Batchelors classical the-

ory which states that the kinetic energy is the only invariant of the flow that predicts

the integral scale growth and showed that periodic boundary conditions impose mir-

ror image, long-range correlations of velocity and vorticity. Also, Lowe concluded

that these correlations have the potential to influence the dynamical behavior of the

turbulence as well.

The main difference between compressible and incompressible turbulent fluc-

tuations, is that in incompressible flows, the full solution is contained solely in the

velocity field because the pressure is nothing but an enslaved Lagrange multiplier. In

compressible turbulence, the above statement is no longer valid because pressure is
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now an autonomous variable and at least one additional physical variable is required

for describing the solution.

For the present study, the extra complication arises in the compressibility where

the pressure and likewise the density are coupled with the velocity terms. A full

solution of the Navier–Stokes equations is sufficient to resolve the turbulence if an

adequate fine mesh resolution and proper time increments are used. These would

require extremely large computations which can be done through direct numerical

simulation (DNS). DNS does not resort to any turbulence model to compute the

turbulence length scales.

Rogallo [43] extended DNS methods used for isotropic turbulence to homo-

geneous turbulence in an incompressible fluid. He compared results against linear

theory and experiment for shear, strain, irrotational strain, rotation effects of mean

shear and relaxation toward isotropy following axisymmetric strain, which also helped

in evaluating several turbulence models. His results and corresponding conclusions

set the standard for DNS of homogeneous turbulence. It is important to capture

the whole range of spatial and temporal scales of the turbulence where spatial scales

can be resolved using the computational mesh from the smallest dissipative scales

to the integral scale associated with the motions containing the kinetic energy [38].

Jamme et al. [20] investigated the complete description of turbulence behavior across

the shock and the influence of the incoming turbulence on the interaction. They

computed the fluctuating vorticity variances and showed that the baroclinic torque

is responsible for the production of transverse vorticity. In the vorticity entropy case,

there is a greater reduction in the transverse Taylor microscale and the integral scale

compared to the longitudinal Taylor microscale where no significant changes occur.

DNS of the interaction of a Mach 1.5 shock wave with a turbulent shear flow showed

that the sign and magnitude of the correlation between the velocity and the temper-
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ature fluctuations have a crucial influence on the kinetic energy amplifications across

the shock. Crespo et al.[7] observed that the magnitude during the interaction of the

velocity cross-correlation u′v′ is decreased.

2.4 Previous Research on Shock–Turbulence Interaction

The non-reactive analog, shock–turbulence interaction, has been the subject of

several theoretical [19, 15], numerical [28, 20, 12, 40] and experimental [1, 49] in-

vestigations. A large portion of past numerical work was done while comparing the

inviscid linear interaction analysis (LIA) with nonlinear Navier–Stokes computations.

Lee et al. [28] analyzed the nonreactive coupling and found that nonlinear computa-

tions agree well with LIA theory [42]. While linear analysis provides useful estimates

of the amplification of vorticity fluctuations across the shock, it misses the strong

nonlinear dynamics of the energized and highly anisotropic vorticity downstream of

the front. Numerical simulation results presented by Rawat and Zhong [40] indicated

that transverse vorticity fluctuations are significantly enhanced across the shock and

amplifications increased with the increasing Mach number. Taylor microscales were

seen to be reduced just behind the shock after which streamwise microscales rapidly

evolve. For turbulent Mach number of approximately 0.1, the nonlinear amplification

factor for transverse microscales agrees well with the LIA results.

Jackson’s analysis [19] of detonation–turbulence interaction was inadequate to

provide the detonation lengthscale associated with the heat release which was later

considered in [32]. The latter study found that there is a strong dependency of

the transfer functions on the perturbation wave number through the ratio between

fluctuation wavelength and reaction half length. This phenomenon is absent in shock–

turbulence interactions. Although linear analysis provides useful insights, it fails to

correctly represent the system dynamics near natural frequencies. LIA [35] of the
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reactive case was done by assuming that the reaction zone thickness is much smaller

than the turbulence lengthscale. Jackson et. al. therefore, neglected both the effect

of detonation structure and of intrinsic scales. They concluded that exothermicity

affects the interaction of convected isotropic weak turbulence by amplifying the rms

fluctuations downstream of the detonation. The significant effect of exothermicity on

the Mach number has been noticed; specifically the greatest changes happen around

the CJ condition. Turbulent kinetic energy and spanwise vorticity fluctuations per-

sistently amplified upon the passage through a shock wave and that the spanwise

Taylor microscale persistently diminished while considering the highly compressible

turbulence in the shock–turbulence interaction [18].



CHAPTER 3

GOVERNING EQUATIONS AND NON-DIMENSIONAL FORM

3.1 Governing Equations

3.1.1 Navier–Stokes Equations

The compressible fluid motion is described by the governing equations which are

non-dimensional conservative form of the continuity, momentum and energy equations

in Cartesian coordinates. Therefore, the time-dependent, three-dimensional equations

in Cartesian form that describes the conservation of mass, momentum, and total

energy of a fluid are given by

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0 (3.1)

∂

∂t
(ρui) +

∂

∂xj

(ρuiuj + pδij − σij) = 0, i = 1, 2, 3 (3.2)

∂Et

∂t
+

∂

∂xj

(Etuj + ujp+ qj − uiσij) = 0 (3.3)

where ρ is the density, p is the thermodynamic pressure, ui is the velocity component

in the ith direction, xj and t are the independent variables denoting three-dimensional

Cartesian coordinates and time respectively and δij is the Kronecker delta which is

given by

δij =

 0 if i ̸= j

1 if i = j

The viscous stress tensor σ for a Newtonian fluid and heat flux vector q are given by

10
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σ =
µ

Re

(
∇u⃗+ ∇u⃗T − 2

3
I3,3∇ · u⃗

)
(3.4)

q⃗ = − γ

γ − 1

µ

RePr
∇T, (3.5)

where I3,3 is the 3 × 3 identity matrix. The dynamic viscosity used in the above

equations is given by the simple power-law relation

µ/µg =

(
T

T0

)0.7

. (3.6)

3.1.2 The Euler Equations

The Euler equations are the conservation equations neglecting the transport

terms found in the Navier–Stokes equations above, namely,

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0 (3.7)

∂

∂t
(ρui) +

∂

∂xj

(ρuiuj + pδij) = 0, i = 1, 2, 3 (3.8)

∂Et

∂t
+

∂

∂xj

(Etuj + ujp) = 0 (3.9)

An Euler code was used to verify and validate different cases and techniques with the

subsequent Navier–Stokes equations.

3.2 Single-Step Chemistry

The important characteristics of the propagation of detonation waves can be suffi-

ciently described by a simple, single-step chemistry model. In the single-step mecha-
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nism between two perfect gases X and Y, reaction rate r(T ) is given by the Arrhenius

law which shows the dependence on temperature T through the relation

r(T ) = K0 exp

(
−Ẽ
T

)
(3.10)

where K0 is the pre-exponential factor which is also known as the rate constant that

sets the temporal scale of the reaction and Ẽ is the non-dimensional activation energy.

The fluid is assumed to be a perfect gas, that is,

p∗ = ρRT ∗ (3.11)

where R is the specific gas constant, p∗, R and T ∗ are non-dimensional parameters.

After implementing the single-step chemistry, the governing equations in con-

servative form can now be written as

∂ρ

∂t
+

∂

∂xj

(ρuj) = 0 (3.12)

∂

∂t
(ρui) +

∂

∂xj

(ρuiuj + pδij − σij) = 0, i = 1, 2, 3 (3.13)

∂Et

∂t
+

∂

∂xj

(Etuj + ujp+ qj − uiσij) = 0 (3.14)

∂ρλ

∂t
+

∂

∂xj

(ρλuj + ρJj) = (ρ− ρλ)r(T ), (3.15)

The mass diffusion velocity J⃗ in equation (3.15) is given by

J⃗ = − ν

RePrLe
∇λ (3.16)

where ν = µ/ρ is the kinematic viscosity.
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The variable λ is the reaction progress, where λ = 0 and 1 are the unburnt state

and the completely burnt state respectively. The total energy of the fluid is defined

as the sum of the internal energy and the kinetic energy and is given by

Et =
P

γ − 1
+ ρ

(
u2

i

2
− Q̃λ

)
(3.17)

where Q̃ is the non-dimensional heat release so that the term Q̃ρλ denotes the non-

dimensional chemical energy released as heat during the burning process.

The single-step mechanism for detonation waves was validated by Oran et al.

[23] by simulations of flame acceleration and deflagration-to-detonation transition in

a large obstructed channel filled with a stoichiometric methane–air mixture. Exper-

imental data were used to qualitatively compare the simulation results. Moreover,

single-step kinetics has been employed in many numerical studies for simplicity and for

capturing the main effects of chemical nonequilibrium without being bogged down by

computational complexities. The effect of this simplified chemistry on the detonation–

turbulence interaction is mainly on the coupling between the fluid mechanics scales

(i.e, convective, turbulent and eigenvalue)and the chemical scales represented by the

eigenvalues of the source term Jacobian.

3.3 Non-Dimensional Form Of Equations

The non-dimensional form is needed to independently vary the characteristic

parameters, namely, the Mach number M , the Reynolds number Re and the Prandtl

number Pr. Taylor microscales of the flow upstream of the shock are used for non-

dimensionalization except for cases where there is no incoming turbulence, namely

the unforced cases. Simulation of the incoming homogeneous isotropic turbulence

is carried out temporal simulation in a periodic box where initial flow variables are
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the random velocity fluctuations with the prescribed spectra. Velocity fluctuations,

temperature and upstream fluid density ρ∗ are selected to non-dimensionalize all the

flow variables and functions. The nondimensional parameters are:

x∗i =
xi

L
, t∗ =

t
L

V∞

, µ∗ =
µ

µ∞
, ρ∗ =

ρ

ρ∞
, (3.18)

T ∗ =
T

T∞
, e∗ =

e

V 2
∞
, u∗i =

ui

V∞
, p∗ =

p

ρ∞V 2
∞

(3.19)

For the reactive terms, the non-dimensionalized parameters are given by

Q∗ =
Qρ∞

P∞
, E∗ =

Eρ∞

P∞
, K∗

0 = K0
L

V∞
(3.20)

In the above equations, the non-dimensionalized parameters are denoted by ∗ and

freestream conditions are denoted by ∞.

The free stream Mach number M∞ and the Reynolds number Re are given by

M∞ =
V∞√
γRT∞

(3.21)

ReL =
ρ∞V∞L

ν
(3.22)

where L is is selected by taking the wave length of the first overtone equal to the

Taylor microscale before the temporal decay, i.e. L = 2πλTD. Since, temporal decay

decreases the microscale by a factor of approximately 0.68, so that in non-dimensional

units L = 2πλTD/λ0 ≈ 9.2.



CHAPTER 4

COMPUTATIONAL SET UP AND BOUNDARY CONDITIONS

4.1 Schematic of Computational Flow Set-up

To study the interaction of a detonation wave with compressible homogeneous isotropic

turbulence, a schematic of computational flow is created as shown below in Fig. 4.1.

The governing equations are solved in a three-dimensional domain size with a square

transverse section (y − z) and periodic boundary conditions at the x − y and x − z

planes. The computational structure is uniform in the transverse directions but is

non-uniform in the streamwise direction, so that points are clustered in the vicinity

of the shock.

x

y

Shock Non−Reflective Boundary

x = 0

Figure 4.1. Computational set-up.

15



16

4.1.1 Computational Grid

All computations are performed on a 500 × 101 × 101 grid with stretching

mapping in the x-direction where the transformation from the computational to the

physical space ξ → x is assigned in a piecewise polynomial form x = P(ξ) of order

p. This analytical transformation is designed to cluster points around the shock

wave. The computational domain extends to ξ ∈ [ξ1ξ2], the shock is at ξ0 = 0,

and the mapping has the property that P(ξi) = ξi, i = 0, 1, 2. The upper limit

ξ2 > 0 corresponds with the shock location where the progress of reaction becomes

larger than 1 × 10−8, while the fixed value ξ1 = −3 is considered for the lower limit.

The analysis is mainly focused on the postshock conditions. Therefore, the grid is

maintained uniform and fine immediately after the shock by assigning

P(ξ1) = ξ1, P(ξ2) = ξ2 (4.1)

dP
dξ

(ξ1) = 3,
dP
dξ

(ξ2) = 2 (4.2)

dP
dξ

(ξ0) = 0.1,
dP
dξk

(ξ0) = 0, k = 2, . . . , 5. (4.3)

The transformed computational mapping is shown in Fig. 4.2. The domain which

0 5 10 15

0

5

10

15

ξ

x

0 5 10 15
0

0.5

1

1.5

2

ξ

d 
x/

 d
ξ

Figure 4.2. Computational mapping stretched along the streamwise direction.
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is extended in the direction perpendicular to the mean shock front is Ly = Lz = L =

9.1961 where L is selected by taking the wavelength of the first overtone equal to the

Taylor microscale before the temporal decay, that is, L = 2πλTD. Temporal decay

decreases the microscale by a factor of approximately 0.68, so that in non-dimensional

units L = 2πλTD/λ0 ≈ 9.2.

4.1.2 Grid Resolution

DNS of isotropic turbulence requires that the viscous dissipation be fully re-

solved. Larsson and Lele [25] mentioned severe grid requirements for the simulation

of shock–turbulence interaction when using high-order WENO methods. Hence, for

Reλ = 40, they suggested 153 × 106 allocation points. It has been observed that

the streamwise and transverse vorticity components change differently at the shock

after considering the approximate scaling of the Kolmogorov length scale. A decrease

in the Kolmogorov scale is also observed. This change is quite obvious due to the

compressive nature of the shock and it has an effect on the necessary grid resolution.

Hence, resolution for the postshock viscous dissipation requires at least 2.5 times as

many grid points as needed for resolving the preshock dissipation in every direction.

DNS of detonation–turbulence interaction is more tractable that shock - turbu-

lence interaction from the standpoint of grid resolution because the large increase in

postshock temperature leads to an increase in the viscosity coefficient proportionally

as given by equation(3.6). Also, due to heat release, the larger postshock Mach num-

ber weakens the coupling between the dilatation-dominated region near the shock

and the vorticity-dominated region further the downstream. There is no upstream

propagation of disturbance because of the limit of unit overdrive and also become the

flow is supersonic. Therefore, only downstream dissipation of vorticity scales has a

weak effect on the region near shock.
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For the low heat release case [33], grid resolution for the three-dimensional

viscous problem was carried out with vortical inflow forcing. The coarse grid was

stretched for 500×101×101 configuration; the fine grid was 500×151×151 with the

same stretching having approximately double the total number of collocation points

as the coarse one. Both coarse and fine grids featured 125 points in the reaction

half length due to the mapping. All results for density, longitudinal and transverse

velocity, and temperature variances [33]are shown in Fig. 4.3. The figure shows a good

level of convergence of velocity, density and the temperature variances against the grid

size for the problem. Therefore, after this analysis, the stretched 500×101×101 grid

with component-wise WENO-LF reconstruction was selected as a proper candidate

for the three-dimensional viscous analysis discussed in next chapter.

5 10 15
0

0.05

0.1

0.15

X−X
s

σ ρ

 

 

5 10 15
0

1

2

X−X
s

σ u

 

 

5 10 15
0

1

2

X−X
s

σ v

 

 
Fine
Coarse

Fine
Coarse

Fine
Coarse

Figure 4.3. Convergence of velocity, density and the temperature variances against
the grid size.

4.2 Implementation Of Boundary Conditions

Nonreflective boundary conditions are implemented at the subsonic outflow

boundary while supersonic inflow conditions are implemented at the inflow boundary.
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4.2.1 Inflow Boundary Conditions

The conditions at the inflow [33, 28, 31, 27] are implemented by imposing the

fluid state on the supersonic inflow side. The turbulent velocity field upstream of

the shock wave is isotropic, and the mean flow is uniform. The shock wave is sta-

tionary in the mean. Turbulence immediately upstream of the shock is realizable,

fully-developed and well characterized. All flow variables are specified at the inflow

boundary only. The coordinate system (x, y, z) is such that mean stream is aligned

in the longitudinal direction. The incoming flow is assumed to consist of a “frozen”

turbulent field which is convected by the mean across the inflow boundary. Turbulent

fluctuations are superposed onto the mean field at the inflow boundary where these

turbulent fluctuations are obtained from the single realization of a separate temporal

simulation of decaying turbulence as mentioned below in the procedure. Temporal

simulation is advanced in time until the flow field is developed.

Since the inflow ”turbulence” is artificial, the flow takes some distance to evolve

into a realistic turbulent flow. Hence, the computational domain upstream of the

shock is taken as sufficiently long so that turbulence interacting with the shock wave

is taken as a realistic flow with the velocity derivative skewness that would range

between −0.4 and −0.5. Essentially, the flow is decomposed into a mean and a per-

turbation part where the perturbation is evaluated by the temporal decay of homoge-

neous isotropic compressible turbulence in a cuboidal set up with periodic boundary

conditions. The behavior of the initial spectrum is Gaussian and symmetric with the

kinetic energy density given by

ε(k) =

16

√
2
π exp

(
−2k2

k2
0

k4

)
k5

0

, (4.4)
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where k0 is the wavenumber of the maximum kinetic energy density whose value is

equal to 6π/L, where L is the size of the periodic computational box; that is, k0

is three times the wavenumber of the first overtone (L = 2πλTD). The numerical

algorithm used in the present investigation was validated by comparing the isotropic

turbulence decay against experimental and computational literature [36]. This study

also demonstrated a good match with the measurements obtained with k0 = 6π/L.

The temporal decay simulation is started with a solenoidal velocity field △ u =

0, zero pressure and density fluctuations, a turbulent Mach number Mt = 0.235, and

a fluctuation Reynolds number Reλ ≡ ρ0urmsλ/µ0 = 100. The temporal evolution

is stopped when the velocity derivative skewness Su ≡ (∂u1/∂x1)3/(∂u1/∂x1)2
3/2

stabilizes close to the value of −0.5 [31]. Spatial realization is used to model the

inflow boundary conditions corresponding to the t = 3 solution, for which the inflow

turbulent Mach number Mt = 0.235. Time-decayed turbulence is rescaled so that

the length and velocity scales are the Taylor micro-scale λ and the velocity rms

respectively.

4.2.2 Outflow Boundary Conditions

Non-reflecting boundary conditions are implemented at the subsonic outflow

boundary conditions. The flow behind the shock is subsonic; therefore, it is necessary

to ensure that the flow does not generate acoustic reflections from the outflow bound-

ary conditions. A sponge layer is used in the boundary conditions in the streamwise

direction to suppress wave reflections.

4.3 Scales

The following scales are used in detonation–turbulence interaction: the rms of

the longitudinal velocity at the inflow urms,0, the inflow Taylor microscale λ0 based
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Table 4.1. Input parameters for the simulations

Parameter

Grid Size N 500 × 101 × 101
Reynolds Number based on the Taylor microscale Re 100
Kinematic viscosity µ 0.1
Turbulent Mach number M 0.235
Specific heat ratio γ 1.2
Prandtl Number Pr 0.7
Lewis Number Le 1
Overdrive f 1
Max allowable Courant number CFL 0.9
Desired Courant number CFL 0.3
Freestream Mach number (low heat release) M 4
Freestream Mach number (high heat release) M 5.5
Nondimensional low heat release Q 19.18
Nondimensional high heat release Q 38.57
Activation energy for low heat release E 12
Activation energy for high heat release E 20

on the dissipation function, the preshock unperturbed density ρ0, and the specific gas

constant R. For the case where there is no incoming turbulence, called the non-forced

or natural detonation case, the above choice of scales is maintained. In linear analysis

of detonation instability [35], the growth rate eigenvalue and associated eigenfunctions

are reported with a slightly different choice of scales. Here, the reaction half length

L1/2 and the preshock pressure p0 were used instead of λ0 and urms,0. The reaction

half length is defined as the distance from the lead shock to where the one-dimensional

ZND solution reaches a progress of reaction equal to one half. Table 4.1 summarizes

the all of the required parameters used for the simulation for the different cases.



CHAPTER 5

NUMERICAL ALGORITHM

5.1 Numerical Algorithm

The compressible, reactive Navier–Stokes equations for a perfect gas with spe-

cific heat ratio of γ = 1.2 are solved using a numerical algorithm that is third-order

in time and fifth-order in space. A fifth-order accurate WENO (weighted essentially

non-oscillatory) scheme [3, 39, 45] is used to evaluate the inviscid spatial derivatives

and first-order Lax-Friedrichs fluxes are used for the building block for higher-order

derivative approximations. Time discretization is obtained using a third-order Runge–

Kutta scheme.

5.1.1 Fifth-Order WENO Scheme—Finite Volume WENO Method

The first WENO scheme was constructed by Liu et al. [46] in the 1994 for a

third-order, one-dimensional finite volume. The main idea behind the use of WENO

schemes is to combine linearly lower order fluxes or reconstruction to obtain a higher

order approximation [46]. WENO uses the idea of adaptive stencils to automatically

achieve high-order accuracy and non-oscillatory property near discontinuities. WENO

schemes are based on local characteristics decompositions and flux splitting to avoid

spurious oscillatory behavior. For multi-dimensional space, WENO schemes were con-

structed by Jiang and Shu [21] with a general framework for the design of smoothness

indicators and nonlinear weights. These schemes are designed based on the success-

ful ENO schemes by Harten et al. in 1987. These schemes are very successful in

problems containing both shocks and complicated smooth solution structures, such

22
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as compressible turbulence simulations (similar to the present study), aeroacoustics,

convection-dominated problems, Hamilton–Jacobi equations etc.

An important class of homogeneous, hyperbolic equations is known as conser-

vation equations [126]. The general form of such an equation in three-dimensional

space is qt + f(q)x + g(q)y + h(q)z = (q) (3.12) where q(x; y; z; t) is a vector of

conserved variables.

General non-linear hyperbolic form of conservation equations in three-dimensional

space is given by

qt + f(q)x + g(q)y + h(q)z = ψ(q) (5.1)

where q(x, y, z, t) is a vector of conserved variables. For one-dimensional scalar

conservation laws, Eq. (5.1) simplifies to

ut + f(u)x = 0 (5.2)

Many numerical methods have been developed to solve the above equation. For

example, global Lax–Friedrichs (LF) flux splitting [21] discretizes space into uniform

intervals of size ∆x. Denoting xj = j∆x, the spatial operator of WENO schemes [4],

which approximates −f(u)x at xj, takes the conservative form

L = − 1

∆x
(f̂j+ 1

2
− f̂j− 1

2
), (5.3)

where f̂j+ 1
2

is the numerical flux and approximates h(xj+ 1
2
) to a high order with

h(x) implicitly defined by

f(u(x)) = − 1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ) dξ (5.4)
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Assume f(u) ≥ 0 for all u in the range. Therefore, a general flux f(u) can be

split into two parts either globally or locally, that is,

f(u) = f+(u) + f−(u) (5.5)

where df(u)+/du ≥ 0 and df(u)−/du ≤ 0. We can just define

f±(u) =
1

2
(f(u) ± αu) (5.6)

where α = max | f ′(u) | and the maximum is taken over the whole relevant range of u.

All of the above procedure is the global Lax–Friedrichs (LF) flux splitting approach.

f̂+
j+ 1

2

and f̂−
j+ 1

2

are the numerical fluxes obtained from the positive and negative parts

of f(u). Thus, we have

f̂j+ 1
2

= f̂+
j+ 1

2

+ f̂−
j+ 1

2

(5.7)

When f̂+
j+ 1

2

and f̂−
j+ 1

2

are reconstructed by the WENO method, the Runge–

Kutta method can be used to solve the ODE Eq. (5.2).

For discretizing the inviscid terms, two approaches are used. One performs

the WENO reconstruction of the flux function using the component-wise approach

[3]. Another approach uses characteristics decomposition [41]. Both approaches does

dimension-by-dimension reconstruction but for inviscid simulations. Characteristic

decomposition takes approximately twice the time as component-wise discretization.

Therefore, it is less advantageous for three-dimensional, large-scale simulations.

The dimension-by-dimension reconstruction approach is used to solve the multi-

dimensional problem. This reconstruction is carried out mainly by using the WENO

fifth-order scheme. WENO methods have been developed to provide robust shock
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capturing in compressible turbulence fluid flow and to avoid excessive damping of the

fine-scale flow features such as turbulence.

For a multidimensional, chemically reactive algorithm, the right eigenvector

matrix Rm is necessary to project flux components onto the characteristic space be-

cause of the presence of multiple eigenvalues which is equal to the flow velocity. The

following form of the right eigenvector matrix is considered in the present research:

Rm =



1 0 0 0 1 1

u 0 0 0 u− a a+ u

v 1 0 0 v v

w 0 1 0 w w

1
2

(
−2λQ̃+ u2 + v2 + w2

)
v w −Q̃ H0 − au au+H0

λ 0 0 1 λ λ


, (5.8)

where H0 is the total enthalpy. The first four columns correspond to the eigenvalue

u, while the last two correspond to u− a and u+ a, respectively.

All the viscous fluxes or terms of the compressible Navier–Stokes equations are

discretized using fourth-order central finite differencing schemes [44]. This scheme is

designed to be within that of the fifth-order WENO scheme. This central differencing

scheme achieves the maximum order of accuracy in the stencil.

For the simulation of shock and homogeneous turbulence interaction, shock-

fitting and shock-capturing methods [37, 22, 28] have been used. Shock fitting [40]

algorithms treat the shock interface sharply without any dissipation. Hence, they are

compatible with low dissipation schemes used for DNS of turbulent flow. At the same

time, they have the problem that the shock surface, which is assumed sharp, must be

smooth (continuous) and single valued, whereas shock-capturing methods are more
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suitable to evaluate problems with large shock front deformations and high preshock

Mt values. Nonetheless, shock capturing methods also have some major drawbacks,

namely, the reduction of the accuracy of the scheme near the discontinuity, and the

presence of spurious oscillations near the shock that pollute the accuracy of evaluated

statistical quantities, amongst others.

After careful consideration of all the drawbacks and advantages, the shock cap-

turing (WENO) scheme with the global Lax–Friedrichs flux splitting method was

used. This method was validated against the linear theory of the detonation insta-

bility growth with particular emphasis on the formation of spurious oscillation at the

front. This shock capturing approach is required to be high-order accurate throughout

the computational domain to properly simulate the evolution of turbulence.

5.1.2 Time Discretization—Third-Order Runge–Kutta Scheme

Time advancement is performed using the compact storage, third-order Runge–

Kutta scheme in the present simulation. This semi-discrete time discretization scheme

is given by

ut = L(u) (5.9)

which is discretized in time by a non-linearly stable, third-order Runge–Kutta time

discretization version as follows [47]:

u(1) = un + △tL(un) (5.10a)

u(2) =
3

4
un +

1

4
u(1) +

1

4
△tL(u(1)) (5.10b)

u(n+1) =
1

3
un +

2

3
u(2) +

2

3
△tL(u(2)). (5.10c)
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/noindent Third-order accuracy in the Runge–Kutta scheme is shown by eval-

uating u(n+1) Eq. (5.10) above in terms of u(n) where n corresponds to the value of u

at the old time, n+ 1 corresponds to the value of u at the new time and L = ∂u/∂t.



CHAPTER 6

TEST CASES AND VALIDATIONS

6.1 Test Cases for Detonation–Turbulence Interaction

Simulation for detonation–turbulence interaction and shock–turbulence inter-

action are done to compare them while considering the one-dimensional detonation

structure with unit overdrive f = 1, specific heat ratio γ = 1.2, Prandtl number

Pr = 0.72 and Lewis number Le = 1. The heat release parameter (or purely a

detonation parameter) Q is independent of the inflow turbulence and is given by

Qρ∞

p∞
=
γ(f 2 − 2fM2

∞ +M4
∞)

2f(γ2 − 1)M2
∞

, (6.1)

/noindent A simplification is afforded by letting f = 1 (the Chapman–Jouguet

condition) and yields the relationship

Q ≡ Q̃

p0/ρ0

=
Q̃

γM2
t

=
γ (M2 − 1) 2

2 (γ2 − 1)M2
, (6.2)

where Q̃ is an interaction parameter which depends on the inflow turbulence unlike

Q which is independent of the inflow turbulence. The turbulent Mach number Mt is

given by

Mt ≡
urms√
γ p0

ρ0

(6.3)

28
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Since, all calculations are in the shock reference frame, thus M > 1 is the deto-

nation Mach number. For all the cases and calculations, the ratio of the detonation-

to-turbulent lengthscale is kept constant and unitary namely:

N =
L1/2

λ0

= 1 (6.4)

The Reynolds number based on the acoustic velocity and the reaction half

length is given by

ReL1/2
≡

√
p0ρ0L1/2

µ0

=
ReλN√
γMt

(6.5)

For N = 1, Mt ≈ 0.2 and Reλ which is small enough to allow for the numerical

simulation of detonation–turbulence interaction problem, ReL1/2
≈ 200. Equation

(6.5) shows that an increase in N leads to a proportional increase in ReL1/2
, which

will require a larger domain size and increased computational requirements as well,

see section 6.2.

As shown in Table 6.1 and later discussed in detail, the study consists of a

low and a high heat release category. The non-reactive Case IV, that is, the shock–

turbulence interaction case, is also classified as a low heat release case for convenience.

/noindent Table 6.1 summarized all the required parameters for the both low

and heat release case.

6.1.1 High Heat Release Case

In this category, M = 5.5 and, correspondingly, the heat release parameter

Q = 38.57 from equation(6.2). The activation energy E = 20 is considered on the

basis of a numerical and analytical study [32] done for the detonation structures

that are longitudinally stable, that is, stable to one-dimensional perturbations. This
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Table 6.1. Description of all the cases considered in the present study

Case Low heat release

I Non-forced low heat release
II Entropy-forced low heat release case
III Vorticity-forced low heat release case
IV Non-reactive low heat release

High heat release

V Non-forced high heat release
VI Entropy forced high heat release case
VII Vorticity forced high heat release case

Table 6.2. Parameters for low and high heat release

M Q E

High heat release 5.5 38.57 20
Low heat release 4 19.18 12

is because longitudinal instability gives rise to axial motion of the mean shock front

and galloping waves [48], which complicate the evaluation of the ensemble average as a

space–time mean at fixed axial distances from the shock. The longitudinal instability

boundary divides the E–Q quarter plane into two regions as shown in the figure 6.1

[33] for γ = 1.2 and f = 1. The activation energy is responsible for the changes

observed in the induction time with the post shock temperature in von Neumann

conditions (∂ln τi/ lnTps)f=1 where τi is the induction time and Tps is the postshock

temperature [35]

For the high heat release category, three cases were considered, namely, non-

forced, entropy forced and vorticity forced. For vortical forcing, three-dimensional

isotropic velocity perturbations evaluated at constant pressure, density and λ are

obtained from the decay of the homogeneous turbulence. For entropy forcing, the
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Figure 6.1. Longitudinal instability boundary for the detonation structures for both
the high and low heat release case (γ = 1.2 and unit overdrive f = 1).

vortical waves are nullified in favor of entropy waves which are obtained by using

the Morkovin scaling [29]. Entropy forcing features density perturbations evaluated

at constant pressure, velocity and λ. Density perturbations in the constant pressure

inflow are related to the isotropic turbulence velocity perturbations by

ρ′

ρ̄
= (γ − 1)M2u

′

ū
. (6.6)

Also, temperature fluctuations in the constant pressure inflow are given by



32

ρ′

ρ̄
= −u

′

ū
(6.7)

/noindent Thus, density perturbations are opposite to those of temperature

perturbations in a constant pressure field. Finally, the non-forced simulation corre-

sponds to conditions obtained by removing incoming turbulence so that only natural

instability fluctuations are present in the postshock field.

6.1.2 Low Heat Release Case

The second category considered is the low heat release where the inflow Mach

number M = 4 and, correspondingly, the heat release parameter Q = 19.18. The

activation energy E = 12 was chosen on the same basis as that above for the high

heat release case. For low heat release, four simulations were performed: reactive

with vortical forcing, reactive with entropic forcing, non-reactive and non-forced.

Here, the non-reactive case corresponds to shock–turbulence interaction and is added

unlike for the high heat release case. The same conditions and methods are applied

for the reactive (vorticity and entropy forced) and non-forced case as for the high

heat release cases.

6.2 Verification/Validation

All the above test cases for the high and low heat release are validated against

linear and inviscid growth rate results while considering all the numerical methods,

approaches and conditions for the problem. The following parameters are kept con-

stant γ = 1.2, f = 1, E = 12, Q = 19.18 and kL1/2 = 1, where k is the spatial

frequency constant for all the cases. The verification and validation are as follows:

Case I: LF component-wise approach is used to solve the Euler equations on a

stretched grid of dimensions 500 × 101.
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Case II: Same LF component-wise approach as for Case I to solve the Euler equa-

tions on a stretched grid but of different dimensions 1000 × 201.

Case III: WENO-LF component-wise is used to solve the Navier–Stokes equations

on a stretched grid of dimensions 500×101 with Reynolds number ReL1/2
= 150.

Case IV: WENO-LF characteristic-wise approach is used to solve the Navier–Stokes

equations on a stretched grid of dimensions 500 × 101 with Reynolds number

ReL1/2
= 150.

Case V: Same approach is implemented as for Case IV (WENO-LF characteristic

wise), but for solving the Euler equations instead of the Navier–Stokes equations

on the same stretched grid size.

The results of the verification and validation [33] for the first four cases are

shown in Fig. 6.2. In the figure, the solid line represents the maximum value of the v

velocity component perturbation for the linear, inviscid analysis and the broken lines

represent the nonlinear analysis. Thin broken lines represent the maximum value of

the cross-wise sine transform of the computed solution while the thick ones represent

the spatial maximum of the ”u” velocity perturbation.
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Figure 6.2. Linear and non-linear instability growth from a normal mode solution for
the all four different cases I, II, III and IV.
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From the analysis of the first four cases, it is concluded that for three-dimensional

viscous simulations, the discretization error is small compared to the linearization er-

ror for the grid and the stretching conditions. Also, viscosity has a marginal effect

on the instability as well as on the nonlinear evolution.

Case I and case V involve two different types of reconstruction strategies,

namely, one for component-wise and other for characteristic-wise. Inviscid solutions

[33] obtained from both cases are shown in the figure 6.3. A large difference between

the maximum of the y sine transform and spatial maximum is noticed in the Fig. 6.3.

It is concluded that there are more severe spurious oscillations in the characteristic

reconstruction strategy which lead to significant loss of the accuracy in the simula-

tion. But this conclusion is antithetical to one-dimensional detonation simulations

showing accuracy improvements as a result of characteristic reconstruction.
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Figure 6.3. WENO reconstruction strategies effect on the growth of normal mode
disturbances for Cases I and V.



CHAPTER 7

RESULTS AND ANALYSIS

This chapter examines the evolution of the rms of the velocity (the square

of which is called the variance) and the spatial auto-correlation of the longitudinal

velocity fluctuations for the detonation–turbulence interaction.

7.1 Space–Time Ensemble Averaging

In general, space–time ensemble averaging can be used to provide statistical

descriptions of random data. The velocity fluctuations at a given point in space x⃗

and time t in a turbulent flow is given by ui(x⃗, t), where u is a random variable. Given

a large number of identical conditions so that u
(n)
i (x⃗, t) in each of them is identically

distributed, then the ensemble averaging of u
(n)
i (x⃗, t) is given by

⟨ui(x⃗, t)⟩ = Ui(x⃗, t) ≡ lim
N→∞

1

N

N∑
n=1

u
(n)
i (x⃗, t) (7.1)

where Ui(x⃗, t) is the ensemble averaged value of ui(x⃗, t) with the independent

variables x⃗ and t.

Velocity fluctuations u′i(x⃗, t) are considered as a random variable. They are

given by

u′(x⃗, t) = u(x⃗, t) − U(x⃗) (7.2)

From above relationship, the average of the velocity fluctuation for a stationary field

is zero, that is,

⟨u′⟩ = 0 (7.3)

36
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However, the ensemble average of the square of the velocity fluctuations called the

velocity variance and denoted by var[u] or ⟨u′2⟩ is not zero, where

var[u(x⃗)] ≡ ⟨(u′(x⃗, t)2⟩ = ⟨[u(x⃗, t) − U(x⃗)]2⟩ = lim
N→∞

1

N

N∑
n=1

u2
n − U

2
(7.4)

A proper estimate of averages requires a large ensemble. In practice, one strives to

obtain large datasets and Eq. (7.4) is now rewritten as

var[u(x⃗)] = ⟨u2(x⃗)⟩ − U2 (7.5)

The standard deviation of u(x⃗, t) is the square root of the variance, namely,

σu(x⃗) = +
√

var[u(x⃗)] (7.6)

The standard deviation is also known as the rms value. For a weakly stationary dis-

tribution, the mean and the standard deviation (or variance) are constant. Second

order moment minus the square of the first order moment (mean) gives the ensemble

mean which is called as first moment and also, called as the second central moment of

u due to the implication that the mean has been subtracted off before squaring and

averaging. Variance is also called as the standard deviation of the random variable

u. Further, of interest in statistical studies of turbulence are the the third and fourth

standardized central moments of the velocity derivatives (skewness and kurtosis re-

spectively), given by

Su = ⟨(∂u/∂x)3/[(∂u/∂x)2]3/2⟩ (7.7)

K = ⟨(∂u/∂x)4/[(∂u/∂x)2]2⟩ (7.8)
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Temporal decay simulation is started with a solenoidal velocity field ∇ · u⃗ = 0,

zero pressure and density fluctuations, a turbulent Mach number Mt = 0.235, and a

fluctuation Reynolds number

Reλ ≡ ρ0urmsλ

µ0

= 100 (7.9)

The fluctuation Reynolds number is plotted in the upper left panel of Fig. 7.1

against the nondimensional time t.
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Figure 7.1. Fluctuation Reynolds number, evolution of Su, and the ratio of length
scales △x/η and L/L11 are plotted against the non-dimensional time urms/λt=0.



39

The temporal decay of the isotropic turbulent field is stopped when the velocity

derivative skewness Su stabilizes close to the value of −0.5 [31]. The evolution of Su is

plotted against non-dimensional time t = urms/λt=0 in the bottom-right panel of Fig.

7.1. The ratio between the uniform grid spacing △x and the Kolmogorov length scale

η and the ratio between the computational box size L and the integral length scale

L11 are also shown against the non-dimensional time in the right top plot and bottom

left respectively to validate our assumptions. The above considerations satisfy all the

typical requirements for the resolution of the small scales and the spatial correlations,

that is, △x/η < π/1.5 ≈ 2.1 and L/L11 > 2π/0.8 ≈ 7.85.
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Figure 7.2. Time decay of homogeneous, isotropic turbulence starting from a
solenoidal field (Mach number and one-dimensional energy spectrum).

As can be seen in Fig. 7.2, when t = 3, Mt = 0.235. Spatial realization [33]

is used to model the inflow boundary conditions using data from this instant. Ac-

cordingly, the decayed turbulence is rescaled; length and velocity are rescaled to the

Taylor microscale λ and the velocity rms respectively. This process is carried out by

advecting the random spatial realization by assuming frozen dynamics.
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The longitudinal energy spectrum is given by

Φu(kx) =
∑
ky ,kz

Fkx,ky ,kz(u
′)Fkx,ky ,kz(u

′)∗ (7.10)

where Fk⃗ is the three-dimensional Fourier transform.

The right side of Fig. 7.2 shows the longitudinal energy spectrum. The thick

line in the right indicates the Kolmogorov k(−5/3) law.

7.2 Analysis of Velocity Variances/Root Mean Square Velocity

The velocity variance u′2 is an important parameter of the statistical measure for

the turbulent flow. The preshock turbulent field is homogeneous and isotropic which

can be characterized by the velocity variances or the rms value, such as urms =
√
u′2

, the Taylor microscale based on the dissipative function λ0, the preshock turbulence

unperturbed density ρ0 and the gas constant R. The flow Reynolds number is based

on the acoustic velocity and the reaction half length L1/2 and given by

ReL1/2
≡

√
p0ρ0L1/2

µ0

=
ReλN√
γMt

(7.11)

where N = 1 is the ratio of the reaction half length and the Taylor microscale. Flow

Reynolds number is set to ReL1/2
= 200.

Mt ≡ urms/
√
γp0/ρ0 (7.12)

Mt is the turbulent Mach number which is set to 0.235 and

Reλ ≡ ρ0urmsλ/µ0 (7.13)
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Table 7.1. Half-length L1/2 for different simulations.

Case L1/2

I Non-forced low heat release 1.840
III Vorticity-forced low heat release 1.542
V Non-forced high heat release 1.963
VI Entropy-forced high heat release 1.889
VII Vorticity-forced high heat release 2.312

is the Reynolds number based on the Taylor microscale which is equal to 100. The

reaction half-length supported by turbulent inflow L1/2 is estimated and evaluated

using the mean profile distance between λ = 10−3 and λ = 0.5. The reaction half-

length for the different cases are listed in Table 7.1.

Intrinsic and forced fluctuations significantly affect the mean flow structure.

The ratio of the intrinsic-to-forced length scales mainly depends on the nondimen-

sional parameter N as defined earlier. If N varies from unity then it will have a

strong effect on the scales behind the detonation structures [33]. Using the Rankine–

Hugoniot theory and conditions, the jump across the shock is lower than that pre-

dicted for all the above reactive and non-reactive cases as shown in the figures below

of velocity variances. This phenomenon is the due to the consequence of both shock

front motion and the corrugation which are consistent with the mean shock profiles

in all the cases. Forced and non-forced spectra show marked differences in the re-

sponses of reactive and nonreactive configurations to the inflow turbulence. These

differences are investigated in detail by analyzing the variances of the fluctuation

using space–time ensemble averaging as discussed above in section 7.1 at fixed dis-

tances from the shock. The rms velocity fluctuations downstream of the detonation

wave (urms, vrms, wrms) are considered for the seven different cases. The velocity

fluctuations are ensembled averaged for {n = 100, 200, 1} .
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7.2.1 Low Heat Release Cases

In these cases, the interaction is analyzed where the inflow turbulence Mach

number equals to M = 4 with the heat release parameter Q = 19.18 and activation

energy E = 12. Four different simulations are analyzed for the low heat release case:

non-forced, vorticity-forced, entropy-forced and non-reactive.

7.2.1.1 CASE I: Non-Forced Low Heat Release Case

This case is for the non-forced interaction where there is no initial turbulence.

Thus, only natural instability fluctuations are present in the postshock field. The

shock location is approximately at X = 0 where X is the streamwise distance nor-

malized by the reaction half-length because there is no incoming turbulence. Since

the flowfield is globally nonstationary, ensemble averaging of (u′, v′, w′) is done at

each X location for {n = 100, 200, 1} datasets to yield (urms, vrms, wrms). In other

words, the computations generated an ensemble of 100 datasets. At each X location,

100 datasets, starting from the 100th one, is averaged to obtain u⃗rms. Figure 7.3

shows the spanwise rms velocity distributions.

The figure shows a rapid increase in urms just ahead of the mean shock location,

resulting in a departure from isotropy. This increase is more rapid in the streamwise

direction than the spanwise directions due primarily to the longitudinal instability of

the shock front. It can be seen that isotropy is maintained in the spanwise plane. The

streamwise fluctuations decay rapidly after the shock and a return to isotropy occurs

around X = 1.5. Despite the return to isotropy, significant velocity fluctuations

remain even to the exit of the computational domain.
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Figure 7.3. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
non-forced, heat release case (M = 4).

7.2.1.2 CASE II: Entropy-Forced Low Heat Release Case

In this case, vortical waves are nullified in the favor of entropy waves which are

obtained by using Morkovin scaling Eq.(6.1). This case features a density pertur-

bation evaluated at constant pressure, constant velocity and a constant λ. Entropy

forcing leads to the increase in the reaction half-length L1/2. The rms velocity distri-

bution for this case is shown in Fig. 7.4. The longitudinal distance is normalized by

the Taylor microscale of the incoming turbulent field.

Similar observations as for the nonreactive Case I can be made of the rms

velocity distributions. There is a statistically insignificantly higher value of vrms after

the shock. The rms distribution shows a rapid return to isotropy and a residual level

of disturbances remain at the exit of the computational domain.

7.2.1.3 CASE III: Vorticity-Forced Low Heat Release Case

In this case, vortical waves are propagated by the decay of the initial, homo-

geneous, isotropic turbulence at M = 4. This vortical forcing consists of the three-
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Figure 7.4. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
entropy-forced, low heat release case (M = 4).

dimensional isotropic velocity perturbations at constant pressure, constant density,

and constant λ. For this case, L1/2 = 1.542. The rms velocity components are plotted

in Fig. 7.5.
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Figure 7.5. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
vorticity-forced, low heat release case (M = 4).
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Similar trends as for Cases I and II are observed in this figure. However, due

to the presence of an initial fluctuating vorticity field, the incoming rms velocity

distribution is not negligible but has a value just under unity. The postshock rms

velocity distribution returns to the initial, quiescent level of around unity at X ≈ 2.

This rapid decay is attributed to the fact that vorticity forcing is weaker than entropy

forcing and thus does not affect the postshock perturbation dynamics as much.

7.2.1.4 CASE IV: Non-Reactive Case

This case is simply the more widely studied shock–turbulence interaction. Sig-

nificant differences are observed between this case and Cases I–III that involve heat

release. The rms velocity distribution is shown in Fig. 7.6. The transverse rms behav-

ior in either the y or z direction is exactly the same. The longitudinal rms velocity

peak is less than the reactive cases discussed previously. Moreover, the peak ap-

pears ahead of the mean shock location. This has been observed because there is no

chemical activity involved in the simulation and also due to the decay of the sub-

critical acoustic wave (Sub-critical acoustic waves are the waves which are damped

in the postshock far-field region) which is followed by the viscous dissipation. Local

maxima in the figure (7.6)is also observed due to the above mentioned effects.

7.2.2 High Heat Release Cases

7.2.2.1 CASE V: Non-Forced High Heat Release Case

The rms velocity distributions are shown in Fig. 7.7. Compared to the low heat

release cases, the peak value of urms is now about 8.5 compared to under 7. The rms

values drop from the peak very rapidly, leveling off at about X = 3. The downstream
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Figure 7.6. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
non-reactive case (M = 4).

rms values are higher than the low heat release case and remain till the exit of the

computational domain. The return to isotropy happens later at about X = 10.
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Figure 7.7. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
non-forced high heat release case (M = 5.5).
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7.2.2.2 CASE VI: Entropy-Forced High Heat Release Case

The rms velocity distributions are shown in Fig. 7.8. Unlike the unforced case,

the peaks decay more slowly. The transverse rms velocity fluctuations are isotropic

but the entire rms distribution does not attain isotropy until X ≈ 5. This is later

than the unforced case. For the high heat release case at M = 5.5, entropic pertur-

bations are more effective in reducing the peak intensities compared to the vortical

perturbations as observed in the later case. It is also more effective in reducing the in-

tegral scales and the longitudinal velocity fluctuations associated with the detonation

instability and the postshock transverse fluctuations.

Entropic forcing leads to an increased probability of high temperature fluid in

the reaction zone; therefore, possibility of formation of hot spots at higher activation

energy is higher than the low heat release case.
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Figure 7.8. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
entropy-forced, high heat release case (M = 5.5).
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7.2.2.3 CASE VII: Vorticity-Forced High Heat Release Case

The rms velocity distributions are shown in Fig. 7.9. Vorticity forcing ahead

of the wave tends to reduce the region of heat release with more significant effect

especially for the low heat release case while comparing with the high heat release

case.
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Figure 7.9. RMS of velocity perturbations (u′, v′, w′) along the X direction for the
vorticity-forced, high heat release case (M = 5.5).

Jamme et al. [20] investigated turbulence behavior across a shock and the in-

fluence of the incoming turbulence on the interaction. They computed fluctuating

vorticity variances and showed that the baroclinic torque is responsible for the pro-

duction of transverse vorticity. More reduction in the transverse Taylor microscale

and the integral scale is observed compared to the longitudinal Taylor microscale

where there is no significant changes occur in the Fig. 7.10. Strong influence of

preshock density fluctuations are observed on the postshock perturbation dynamics

[31]. In Figure 7.10, longitudinal and transverse velocity fluctuations for different

inflow Mach number and parameters are shown (all the simulation cases).
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Figure 7.10. Transverse and longitudinal velocity perturbations for different inflow
the (x, y, z) directions for each simulation.

In Fig. 7.10, both the low and high heat release cases are shown along with

the different inflow perturbations. The dotted line represents vortical and entropy

forcing, solid line represents the non-reactive case and dashed lines represents the

non-forced case for two different in flow mach number.

The longitudinal and transverse velocity Taylor microscales λ1 and λ2 are also

examined both for the high and low heat release cases to help in the understanding

of the velocity perturbations presented in Fig. 7.10. The Taylor microscales λ1 and

λ2 are defined by

λ1 =

√
u′2

(∂u′/∂x)2
, λ2 =

√
v′2

(∂v′/∂y)2
(7.14)
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while the local turbulent Mach number is given by

Mt =

√
|u⃗| − |u⃗|

2√
γp/ρ

, (7.15)

In the analysis, we also compared and analyzed the effect of low and high

turbulent Mach number at M = 0.1 and M = 0.235 respectively on the velocity

fluctuations as shown in the figure 7.11.
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Figure 7.11. Comparison of effects of the low and high turbulent Mach number on
the velocity perturbations at Mach number M = 4.
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From the discussion above, it can be concluded that the non-reactive case ex-

hibits a drop in the rms velocity immediately after the shock followed by recovery due

to the pressure work. Entropic fluctuations also lead to a larger Mt immediately after

the shock compared to the vortical fluctuations [33] . Reactivity strongly reduces

the turbulent Mach number immediately after the shock while the addition of inflow

fluctuations weakly affects the Mt in the reactive case as shown in Fig. 7.11.
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7.3 Averaged Space-Time Auto-Correlation

The preshock turbulent field is homogeneous and characterized by velocity fluc-

tuations. In the DNS [7] of the interaction of Mach 1.5 shock wave with turbulent

shear flow, where it was concluded that the sign and magnitude of the correlation

between the velocity and the temperature fluctuations have a crucial influence on the

kinetic energy amplifications across the shock. Massa et.al. [35] applied linear anal-

ysis to detonation–turbulence interaction, as a natural extension of previous shock–

turbulence interaction analysis. A selective wave amplification was found which is

based on the ratio of the turbulence lengthscale and the reaction half length. The

decay of freely evolving two-dimensional isotropic turbulence was studied by Lowe

and Davidson [30] where they showed that periodic boundary conditions impose mir-

ror image, long range correlations of velocity and the vorticity. Also they concluded

that these correlations have the potential to influence the dynamical behavior of the

turbulence. The autocorrelation function of stationary random data describes the

general dependence of the values of a parameter of the dataset at one time on the

values of the same parameter at another time. The discrete version of the autocor-

relation coefficient which is the autocorrelation function normalized by the variance

for the random variable u′i can be written as

ru′u′(x) ,
∑

i u
′
i
2

u′2
∈ {−1, 1} (7.16)

The auto-correlation function is simply a two-point correlation function, ru′u′(x) =

⟨ux(x)ux(x + r)⟩. Autocorrelation [8] helps in differentiating between the small and

large scale eddies in turbulence, and is preferable to one-dimensional, scalar functions,

such as ux.
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Table 7.2. Nine different locations in the streamwise direction for the autocorrelation
for all the seven simulations

Location ID Grid Location Distance from the shock normalized by λ

1 2 16.0927
2 64 11.3377
3 127 6.7859
4 189 3.4199
5 251 1.6249
6 313 0.8538
7 376 0.3526
8 438 −0.1330
9 500 −3

The correlation coefficients at selected streamwise locations are ensemble aver-

aged. One hundred correlation coefficients at nine selected streamwise locations are

ensemble average, in a similar manner as that used for obtaining the averaged rms ve-

locities discussed previously in sections 7.2.1 and 7.2.2. The nine locations are shown

in Table 7.2. There is clustering near the shock location due to the steeper gradients

that were see in the rms velocity distribution. One point is chosen ahead of the shock

for reference. In Table 7.2, the grid location refers to the streamwise grid points of

which there are 500. These grid point locations are referenced to a distance from the

shock, normalized by the Taylor microscale λ ahead of the interaction, except for the

nonforced cases where normalization is by the reaction half-length.

7.3.1 Low Heat Release Case

7.3.1.1 CASE I: Non-Forced Low Heat Release Case

Figure 7.12 shows the autocorrelation coefficients for the nine locations starting

from the top left and ending at the bottom right. The autocorrelation ahead of the

interaction shows a circular shape but evolves into a diamond shape downstream of
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the interaction. It is thought that the diamond shape arises from the imposition

of periodic and reflecting boundary conditions on the lateral boundaries [9]. The

boundaries create transverse waves that are present due to the square or rectangular

boundaries and that are usually visualized as cellular structures. Thus, one expects a

correlation arising from these structures. As to be expected, slightly negative regions

occur further from the peak but the autocorrelations decay to zero further away may

be!

Figure 7.12. Autocorrelation coefficients of u′ for the non-forced low heat release case
(M = 4).
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7.3.1.2 CASE II: Entropy-Forced Low Heat Release Case

Figure 7.13 shows an extremely small correlation peak upstream of the inter-

action that grows due to shock interaction. As in Case I, the autocorrelation takes

on a diamond shape but in this case the major axis is horizontal. No reasons can be

offered at the moment as to why the orientation is different between Cases I and II.

Figure 7.13. Autocorrelation coefficients of u′ for the entropy-forced low heat release
case (M = 4).
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7.3.1.3 CASE III: Vorticity-Forced Low Heat Release Case

The autocorrelation coefficients for this case are shown in Fig. 7.14. Due to

the presence of initial fluctuations ahead of the shock, the autocorrelation shows a

larger circular shape than in Case II. Downstream of the shock, the autocorrelation

appears squarish at X = 0.3526 but becomes smeared and slightly irregular further

downstream. However, further downstream, the autocorrelation takes on a vertical

diamond shape.

Figure 7.14. Autocorrelation coefficients of u′ for the vorticity-forced low heat release
case (M = 4).
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7.3.1.4 CASE IV: Non-Reactive Case

As can be seen in Fig. 7.15, for the nonreactive case, the autocorrelation struc-

tures do not change their shape, remaining roughly circular even after passing through

the shock location. The correlations grow in size due to the increased disturbance

from the shock interaction but shrink further downstream as the turbulence decays.

Obviously, without chemical reactions and the introduction of transverse waves, the

autocorrelation does not distort to a diamond shape.

Figure 7.15. Autocorrelation coefficients of u′ for the nonreactive case (M = 4).
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7.3.2 High Heat Release Case

7.3.2.1 CASE V: Non-Forced High Heat Release Case

Figure 7.16 shows the autocorrelation coefficients for this case. Since the

preshock environment has no turbulence, the autocorrelation coefficient should the-

oretically be a delta function. It is shown here as a small dot. However, due to the

high heat release, the diamond shape is more evident when compared with the similar

low heat release case (Fig. 7.12). The autocorrelation remains substantial even at the

exit of the computational domain indicating that the disturbances remain strong.

Figure 7.16. Autocorrelation coefficients of u′ for the nonforced high heat release case
(M = 5.5).
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7.3.2.2 CASE VI: Entropy-Forced High Heat Release Case

From Fig. 7.16, the autocorrelation structure is similar to that of the low heat

release case. The circular shape indicates that the incoming entropic disturbances

are sufficiently strong to mask the effects of the transverse waves.

Figure 7.17. Autocorrelation coefficients of u′ for the entropy-forced high heat release
case (M = 5.5).
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7.3.2.3 CASE VII: Vorticity-Forced High Heat Release Case

In this case, Fig. 7.18 shows that the correlations start from a circular shape

before the shock but change to a diamond shape. The vorticity disturbances are

weaker than the entropic ones. Therefore, the correlations of the transverse waves

are sufficient to distort the shape to a diamond one.

Figure 7.18. Autocorrelation coefficients of u′ for the vorticity-forced high heat release
case (M = 5.5).



CHAPTER 8

TACC VISUALIZATION

Resources from the Texas Advanced Computing Center (TACC) were used for

the computations whose results are discussed here. TACC resources were also used for

visualizing the data. Energy dissipation and vorticity are two important descriptors of

small-scale motion which represents the intensity of straining and rotation. Therefore,

there behavior is important in both fundamental studies of turbulence as well as in

the modeling of combustion or dispersion problems. Enstrophy E is defined as the

integral of the vorticity ω(x, t) squared given a velocity field as,

E = ω2 (8.1)

where ω⃗ = ∇×u⃗ is the vorticity. Enstrophy can provide insight into vortex stretching,

which is an important process in turbulent flows. Vortex stretching is given by ω⃗ ·∇u⃗

and is strictly a three-dimensional phenomenon. For two-dimensional flow, there is no

vortex stretching term and the one non-zero component of vorticity evolves as a con-

served scalar. Because of the absence of vortex stretching, two-dimensional turbulence

is qualitatively different from the three-dimensional turbulence. Three-dimensional

enstrophy is plotted by using the TACC visualization package “VisIT” and support

team (led by Mr. Makoto Sadahiro). Visualizations are made in tetrahedrized volume

rendering of the iso-surface values of the enstrophy with the onion-peeling option as

shown in the below figures.

The above figures (8.1, 8.3) shows that regions of intense vorticity (red iso-

contours) and energy dissipation (blue/green volume rendering) occur in organized
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Figure 8.1. TACC visualization showing vortex lines for the vorticity-forced high heat
release case.

structures. In particular, large vorticity tends to concentrate in long but thin tubes

surrounded by large dissipation.
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Figure 8.2. Vortical structures changing with movement of flow with respect to shock
location for the non - forced high heat release case (Mach number M = 5.5).
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Figure 8.3. Enstrophy for the vorticity-forced high heat release case (M = 5.5).



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

The present research is a numerical study of the interaction between a detona-

tion wave and compressible, homogeneous, isotropic turbulence. The study is con-

ducted with the detonation wave propagating at either Mach 4 or 5.5, corresponding

to low and high heat release respectively. The detonation–turbulence interaction pro-

cess differs from the non-reactive shock–turbulence analog because of three reasons:

exothermicity, the presence of a length scale associated with the detonation structure,

presence of natural (intrinsic) fluctuations of the unstable detonation front and the

role of induction region in the amplification of convected vortical structures. How-

ever, not much work has been done to study the former interaction. Other than the

low and high heat release, no initial forcing, entropic forcing and vortical forcing were

considered, thereby resulting in six cases. A seventh case is also studied which is of

shock–turbulence interaction. The cases were analyzed assuming homogeneity and

isotropy in the crosswise planes. At each plane, an ensemble of 100 datasets were av-

eraged to obtain rms velocities and autocorrelation coefficients. For high heat release,

entropic perturbations are more effective in reducing the peak intensities compared

to vortical perturbations. Entropic forcing increases the probability of high temper-

ature fluid in the reaction zone which causes the formation of hot spot at the higher

activation energy compared to the vortical forcing in the same conditions. Signif-

icant diamond shape detonation structures are observed in the auto-correlation for

the entropic forced cases due to the lateral boundary conditions.
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From the velocity variance analysis for the different cases, a different rms dis-

tributions are observed. It is also noticed that velocity perturbations reduce the

peak intensities but not shifting the peak intensities when comparing the low heat,

high heat and non-reactive cases. Longitudinal velocity variances strongly enhanced

and then drops back whereas for the transverse velocity variances, it also enhanced.

Both longitudinal and transverse velocity variances drop back and return to isotropy.

Amplification increases with increasing Mach number for both vortical and entropic

fluctuations. Heat release effect (either low or heat heat release) increase the fluc-

tuations in the reaction zone and decrease the intensity in the far-field. Further

analysis of the data will be undertaken. These include an examination of the cross-

correlations which will provide further statistical understanding of the turbulent field

when subjected to straining and heat release. The effect of shock straining and heat

release on the evolution of turbulence will require an understanding of the evolution

of the enstrophy, the third derivative of the velocity fluctuation and an accounting

of the turbulence energy budget. For the last, spectral analysis will be performed.

Variation of the non-dimensional parameter N will be helpful in understanding the

relative effects of heat release and preshock turbulence on the postshock turbulence.

The development of large eddy simulations is also contemplated. Together with real-

istic chemistry, a computational tool will be available for studying practical problems

of interest such as in the development of continuous detonation engines and in blast

mitigation, amongst others.
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