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ABSTRACT 

 

NONLINEAR FINITE ELEMENT ANALYSIS OF COLUMNS 

 

Rajkiran Muppavarapu, M.S. 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor: Dr. Kent L. Lawrence 

In many engineering applications structural components are considered to be beams or 

columns subjected to a range of external loads such as dead weight, wind, temperature 

changes etc.  

In this work a mathematical model has been developed for a sports lighting tower 

considering it to be a cantilever beam with large deformation. The concept of non-linear P-Delta 

analysis is applied to the column. Using this model, a tower analysis tool was developed in 

MATLAB. Using this tool various design alternatives can be examined to evaluate their 

suitability to a particular task. 

A number of example problems from the available literature were solved in ANSYS. The 

MATLAB program developed here is referred to as the NLFC program and it gave the same 

results as these test cases, and this process was used to evaluate the validity of the tower 

analysis tool. 
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CHAPTER 1 

INTRODUCTION 

Among the various numerical methods available, finite element method is very popular 

and widely used. It is perhaps the most sophisticated tool for solving engineering problems. 

When the structures have complicated shapes the conventional methods fail to give accurate 

solutions and also it is quite uneconomical and time consuming. Almost any structure having 

any shape and made of any material can be analyzed by the finite element method. Such an 

advantage is not available with other methods. 

Finite element analysis has now become an integral part of computer aided engineering 

(CAE) and is being extensively used in the analysis and design of many complex real life 

systems. While it started off as an extension of matrix methods of structural analysis it was 

initially perceived as a tool for structural analysis alone, its applications now range from 

structures to bio mechanics to electromagnetic field problems. Simple linear static problems as 

well as highly complex nonlinear transient dynamic problems are effectively solved using the 

finite element method. The field of finite element analysis has matured and now rests on 

rigorous mathematical foundation. In preprocessing we build the model by defining geometry, 

specifying element type, defining material properties, creating mesh, applying loading and 

boundary conditions. In post processing we can extract results such as displacements, stresses 

etc., time history relation wherever applicable and graphical representation of the results [1]. 

1.1 Literature Review 

1.1.1 Methods of Analysis 

Structural analysis can be divided into two groups, analytical methods and numerical 

methods. Analytical methods cannot easily be used for complex structures and so numerical 

methods must be used.  
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The numerical methods of structural analysis can be divided into two types: (1) 

numerical solutions of differential equations for displacements and stresses and (2) matrix 

methods based on discrete element idealization.[2] 

In the first type, the equations of elasticity are solved for a given structural configuration 

by using the finite difference techniques or by direct numerical integration. This method involves 

mathematical approximation of differential equations.  

The second method, matrix methods, is a concept that is used to replace the actual 

continuous structure by a mathematical model made up of structural elements of finite size with 

known elastic and inertial properties that can be expressed in matrix form.  

In matrix methods, particles are of finite size and shape and are referred to as structural 

elements. The analysis of the entire structure is done by analyzing the assembly of the 

structural elements. When the size of these elements is decreased, the deformational behavior 

of the mathematical model (under some restrictions) converges to that of the continuous 

structure. 

There are two types of matrix methods: (1) the displacement method (stiffness method), 

where displacements are the unknowns, and (2) the force method (flexibility method), where 

forces are unknowns. In both these methods the analysis can be considered as a combination 

of individual unassembled structural elements into an assembled structure in which conditions 

of equilibrium and compatibility are satisfied.  

1.1.2 P-Delta Analysis 

Using the geometric stiffness matrix is a method to include the secondary effects in the 

static and dynamic analysis of all types of structural systems [3]. In civil structural engineering 

this method is referred to as P-Delta analysis. This type of analysis is based on a more physical 

approach. For example, in building analysis the lateral movement of a story mass to a deformed 

position generates second-order overturning moments. This additional overturning moments on 

the building are equal to the sum of the story weights ‘P’ times the lateral displacements ‘Delta’. 
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For structures where the weight is constant during lateral motions, the P-Delta problem 

can be linearized. The solution is also obtained directly and exactly without iteration. This 

method does not require iteration since the total axial force that is applied at each story level is 

equal to the weight of the building above that level and it remains constant even when lateral 

loads are applied. 

 

 

Figure 1.1 Overturning Loads Due to Translation of Story Weights[8] 

The vertical cantilever type structure shown in the Figure 1.1 best illustrates the basic 

problem. 

1.1.3 Stiffness matrix for 2D tapered beams 

1.1.3.1 Two-dimensional Arbitrarily Oriented Beam Element Elastic Stiffness Matrix 

The stiffness matrix for an arbitrarily oriented beam element, as shown in Figure 1.2, is 

in a manner similar to that used for the bar element. The local axes ẋ and ẏ are located along 

the beam element and transverse to the beam element, respectively, and the global axes x and 

y are located to be convenient for the total structure.[4] 
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Figure 1.2 Arbitrarily Oriented Beam Element[4] 

 

For a beam element the transformation matrix is defined as: 

                                  T = 



















−

−

100000

0CS000

000100

0000CS

                                        (1.1) 

The axial effects are not included yet. Here, C=cosθ and S=sinθ. 

The global stiffness matrix for a beam element that includes shear and bending 

resistance is as follows: 

 

where 

‘E’ is Young’s modulus, 

‘I’ is principal moment of inertia about the z axis, 

 ‘L’ length of the element, 
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Now, including the axial effects in the element with the shear and principal bending 

moment effects, the transformation matrix is expanded to: 

                                      T = 



























−

−

100000

0CS000

0SC000

000100

0000CS

0000SC

                                    (1.3) 

The analysis of a rigid plane frame can be done by using the stiffness matrix equation. 

A rigid plane frame is defined as a series of beam elements rigidly connected to each other; that 

is, the original angles made between elements at their joints remain unchanged after 

deformation. Furthermore, moments are transmitted from one element to another at the joints. 

Hence, moment continuity exists at the rigid joints. In addition, the element centroids, as well as 

the applied loads, lie in a common plane. 

 

where 

‘E’ is Young’s modulus, 

‘I’ is principal moment of inertia about the z axis, 

‘A’ cross-sectional area of the element, 

‘L’ length of the element, 

‘θ’ angle of orientation of element w.r.to global coordinate axes. 
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Now to apply the above method of constructing stiffness matrix for a tapered beam 

element; the element is broken down into smaller sections. The section properties for each of 

these elements are taken from the point on the true tapered beam that corresponds to the 

midpoint of a given piece.[5] 

 

Figure 1.3 Linear tapered I-beam broken up into 4 smaller uniform segments[5] 

 

Using this procedure the tip deflection results are compared to various cases with 

number of segments ‘n’. The table 1.1 shows the convergence as the number of segments 

increases. 

Table 1.1 Tip displacement error for number of segments used to approximate tapered 
cantilever[5] 
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1.1.3.2 Geometrical Stiffness Matrix 

The elastic stiffness matrix is calculated as shown in the previous section. When large 

deflections are present, the equations of force equilibrium must be formulated for the deformed 

configuration of the structure. This means that the linear relationship ‘F=KD’ between the 

applied forces ‘F’ and the displacements ‘D’ cannot be used. However, because of the presence 

of large deflections, strain-displacement equations contain nonlinear terms, which must be 

included in calculating the stiffness matrix.[3] 

                                                                          K = KE + KG                                                                                 (1.5) 

The geometric stiffness matrix is given by: 

     KG = Faxial/L 



























−

−−−

−

−

15/2^L210/L030/2^L10/L0

10/L5/6010/L5/60

000000

30/2^L10/L015/2^L210/L0

10/L5/6010/L5/60

000000

      (1.6) 

where 

‘Faxial’ is the axial nodal force, 

‘L’ is length of the element. 

1.1.4 Second moment of area for any cross section defined as polygon 

The second moment of are of a polygon can be calculated by adding up the individual 

contributions of each segment of the polygon[6]. 

 

Figure 1.4 Cross Section of the Sports Lighting Tower 
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For this problem, each segment is a triangle. The number of triangles is equal to the 

number of sides of the polygon. Two corners of each triangle segment are on the perimeter of 

the polygon and the third corner is the origin of the polygon. The following are the equations to 

calculate the second moments of area of the polygon: 

Ix = 
12

1
∑

=

n

1i

( y
2

i + yi yi+1 + y
2

i+1) ai 

                                            Iy = 
12

1
∑

=

n

1i

( x
2

i + xi xi+1 + x
2

i+1) ai                                                          (1.7) 

Ixy = 
24

1
∑

=

n

1i

( xi yi+1 + 2 xi yi + 2 xi+1 yi+1 + xi+1 yi) ai 

• ai = xi yi+1 – xi+1 yi is twice the area of the elementary triangle, 

• index ‘i' passes overall ‘n’ points in the polygon, which is considered closed, i.e. point 

‘n+1’ is point 1. 

According to these formulae the points defining the polygon are in anticlockwise order. 

For a clockwise defined polygon these formulae will give negative values. 

1.1.5 Volume of frustum 

The portion of a solid that lies between two parallel planes that are cutting it is called a 

frustum. 

 

Figure 1.5 Examples: Pentagonal and square frusta 

The volume of a pyramidal frustum where the bases are n-sided polygons is: 

                                      V = 
12

nh
(a

2
1 + a

2
2 +a1 a2) cot 

n

180
                                         (1.8) 
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where  

‘a1’ and ‘a2’ are the sides of the bottom and top of the frustum respectively, 

‘h’ is the height of the frustum. 

1.2 Project Motivation 

Light steel structures have been extensively used as being the most effective in 

practical application. The main advantages of this kind of structures are the effective use of 

materials and quick erection as well as their good characteristics. Over the past two decades, 

solution of the buildings with tapered frames, manufactured from high tensile strength steel, 

have become a standard. Their contours are quite close to the bending moment diagram, so the 

cross-section is effectively utilized. Analysis of such kind of frames is rather complicated and not 

widely investigated. This concept can be applied to a range of structures in various fields.[10] 

The results of buckling analysis for a tapered column under the combination of an axial 

force and a bending moment cannot be obtained just by adding the solutions obtained for those 

loads acting separately because this dependency is non-linear. 

A FEM stability analysis of tapered beam columns by Sapalas, Samofalov and 

Saraskinas was done in 2004.[10] In this a theoretical and a numerical analysis of tapered 

beam columns subjected to a bending moment and an axial force was conducted. Critical forces 

were calculated by using a correction factor. 

The analysis of tapered members are covered in many textbooks on structural analysis, 

e.g., Przemieniecki.[2] The analysis involves lengthy calculations for each member. The 

alternative is to use methods such as finite element method, where the member is represented 

by a number of segments and the stiffness matrix for the segments are superimposed to 

produce the stiffness matrix for the whole member. Because of current digital computer 

capacities the increase in the number of equations due to the process of member discretization 

is not disadvantageous. The disadvantage is the huge amount of input data required, especially 

in the case of large structures. 
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1.3 Project Objectives 

There are three main objectives in this project: 

• To reduce the amount of input data required to analyze large structures.  

• To reduce the number of steps in analyzing the structure. 

• To develop a robust tool in MATLAB to analyze a large structure, by using the 

methods mentioned above. 

A sports lighting tower as shown in Figure 1.6, will be analyzed to find the deformations 

and stresses under wind loading and self weight. The tower has polygonal cross section.   

 

Figure 1.6 A Sports Lighting Tower[11] 

The thesis will have the following sections: 

• Chapter 2: NLFC Program Setup and Verification 

• Chapter 3: Discussion of Results 

• Chapter 4: Conclusion and Future Work 
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CHAPTER 2 

NLFC PROGRAM SETUP AND VERIFICATION 

2.1 NLFC Program Setup 

The first step in the program is to input the number of sides of the regular polygon. The 

position of the nodes is decided upon and divided into the number of segments as required. 

From the position of nodes, a loop is written to calculate the length of each element. Using the 

length of each element, the taper ratio and the thickness of each element; the radius of the 

circumcirlce and incircle of the n-polygon at each node is calculated. 

2.1.1 Geometry 

Each element is in the shape of a frustum. Now, using the radius of the circumcircle and 

incircle at each node, the length of each side of the polygon is found using the following 

formula: 

                                                   S = Radius x sin (pi/n)                                              (2.1) 

where  

‘n’ is the number of sides of the polygon. 

The volume of each element in the shape of a frustum is calculated using the following 

formula, as mentioned in chapter 1. 

                                             V = 
12

nh
(S

2
1 + S

2
2 +S1 S2) cot 

n

180
                                (2.2) 

Using the volume of each element the weight of each element is calculated by using the 

formula: 

                                                                Weight = Volume x Density                                      (2.3) 

The self weight of each element is a part of the axial load. The axial load at each node 

is equal to the sum of the axial load at all the nodes above that particular node. The axial load at 
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the nodes due to structural parts such as light fixtures etc., of the actual structure is also added 

to this.  

Next the second moment of area at each node with respect to different axes is 

calculated according to section 1.1.4 of Chapter 1. For this, the coordinates of the polygon at 

each node are to be calculated. This is done generating a polygon in MATLAB by using the 

radius of the circumcircle and limiting the number of points to the number of sides of the 

polygon. The following command is used to generate the circle: 

                                                                t = linspace (0,2*pi,n+1)                                           (2.4) 

Then each coordinate is calculated using the angle at which each point was used to 

make the circle, using the following formula: 

X = Radius x sin (t) 

                                                   Y = Radius x cosine (t)                                             (2.5) 

A total of ‘n+1’ sets of coordinates are generated but the first set of coordinates is the 

same as the ‘n+1’th set. 

2.1.2 Wind Loading 

The effect of wind forces on the structure is calculated. The wind forces are lateral 

loads on the structure. The calculation of wind loads is done as per ASCE 7-02 code for 

cantilevered structures classified as other structures. 

There are various constants that need to be calculated to get the wind forces acting on 

each element. The first is ‘Kz’, velocity pressure exposure coefficient at height ‘z’. the formula to 

calculate ‘Kz’ is as follows:  

If Z < 15 then:  Kz = 2.01*(15/Zg) ^ (2/α) 

                                      If Z >= 15 then:  Kz = 2.01*(Z/Zg) ^ (2/α)                               (2.6) 

where ‘Z’ is the height of the element above the ground.  

‘Zg’ and ‘α’ are called terrain exposure coefficients. These values can be obtained in Table 2.1. 
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Table 2.1 Terrain Exposure Constants 

 
Exposure Category α Zg (ft) 

B 7.0 1200 

C 9.5 900 

D 11.5 700 

 

The next constant is ‘Kzt’, the topographic factor. For the problem here the topographic 

factor is ‘1’ i.e. the topographic factor does not play a role in the wind forces. The third constant 

is ‘Kd’, the wind directionality factor. The value of the constant can be determined from the table 

below. 

Table 2.2 Wind Directionality Factor, Kd 
 

Structure Type Kd 

Square 0.90 

Hexagon 0.95 

Round 0.95 

 

The velocity of the wind in miles per hour is ‘V’. The next constant is ‘qz’. The formula is 

as follows: 

                                         qz = 0.00256 x Kz x Kzt x Kd x V^2 x I                                  (2.7) 

The net design wind forces are obtained from the following formula: 

                                                 F = qz x G x Cf x D (lb/ft)                                            (2.8) 

where  

‘G’ is the gust factor. The gust factor the structure is given as 1.14.  

‘Cf’ is drag coefficient and is obtained from the following table. 
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Table 2.3 Force Coefficients, Cf 

 

Cf for h/D values of Cross-section Type of Surface 

1 7 25 

Square All 1.3 1.4 2.0 

Square All 1.0 1.1 1.5 

Hexagonal or Octagonal All 1.0 1.2 1.4 

Round Moderately smooth 0.5 0.6 0.7 

Using all the above equations and constants the magnitude of the wind load on each 

element is calculated. This uniform distributed load on each element is converted into nodal 

lateral forces and moments.  

 

Figure 2.1 (a) Cantilever Beam Subjected to a Uniformly Distributed Load and (b) The 
Equivalent Nodal Force System[4] 

 
At all nodes the following sign conventions are used:  

1. Moments are positive in the counterclockwise direction. 

2. Rotations are positive in the counterclockwise direction. 

3. Forces are positive in the positive y direction. 

4. Displacements are positive in the positive y direction. 

The formulae to calculate the value of these nodal loads resulting from a uniformly 

distributed load on the beam element are as follows: 

F = w L / 2 

                                                           M = w L
2
 / 12                                                    (2.9) 

 

where 
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‘w’ is the uniformly distributed load  

‘L” is the length of the beam element. 

2.1.3 Global Stiffness Matrix 

The next step is to calculate the stiffness matrix for each element using the procedure 

mentioned in section 1.1.3 of Chapter 1. The global stiffness matrix for the entire structure is 

then assembled from all the individual element stiffness matrices. 

The force matrix is assembled from the nodal forces calculated in each direction. The 

first three rows and first three columns of the global matrix are eliminated as they represent the 

first node for which all degrees of freedom are constrained. The nodal deformations are 

calculated from the following formula: 

                                                        D = inv (Kg) x Fmat                                                                      (2.10) 

where  

‘D’ is the nodal deformation matrix,  

‘Kg’ is the modified global matrix   

“Fmat” is the force matrix. 

The resulting deformation matrix represents the deformation in global coordinates. 

Using this matrix the deformations for each node along with the stiffness matrix for each 

individual element are used to back calculate the nodal forces such as bending moment etc., in 

the local system.[7] 

For large deformations of the body, the stress in the cross-section is calculated using 

an extended version of Euler-Bernoulli beam bending theory formula. First the following 

assumptions must be made: 

1. Assumption of plane sections - before and after deformation the considered section of 

body remains flat (i.e. is not distorted). 

2. Shear and normal stresses in this section that are perpendicular to the normal vector of 

cross section have no influence on normal stresses that are parallel to this section. 
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Large bending considerations should be implemented when the bending radius ρ is 

smaller than ten section heights h: 

ρ < 10h 

With those assumptions the stress in large bending is calculated as: 

                                                 σ = 
A

Faxial
 + 

A

M

ρ
 + 

Ix'

M
y 

y+ρ

ρ
                                 (2.11) 

where 

‘Faxial’ is the normal force 

‘A’ is the section area 

‘M’ is the bending moment 

‘ρ’ is the local bending radius (the radius of bending at the current section) 

Ix' is the area moment of inertia along the x axis, at the y place  

‘y’ is the position along y axis on the section area in which the stress σ is calculated 

When bending radius ρ approaches infinity and y is near zero, the original formula is 

back: 

                                                        σ = 
A

Faxial
 + 

I

My
                                               (2.12) 

As a result of rotation of the element there will be a contraction of the element. These 

deformations are called fictitious deformations, when applied together with linear analysis will 

give the correct results for large deflections.  

 

Figure 2.2 Fictitious Deformations νφ on a bar element[3] 
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The formula to calculate fictitious deformation is: 

                                                          νφ = 
l2

1−
(u4 – u2)

2                                                                     
(2.13) 

2.2 NLFC Program Verification 

A series of simple example problems based on a cantilever beam were created. The 

solutions were obtained by theoretical calculations. The problems were solved using the NLFC 

program. The example problems were also solved using ANSYS. The results obtained from the 

program and ANSYS were compared to the results from theoretical calculations. The different 

example problems are as follows: 

1. Cantilever beam (single element) subjected to a point load at the free end. 

2. Cantilever beam divided into 2 elements subjected to a point load at the free end. 

3. Cantilever beam (single element) subjected to uniformly distributed load. 

4. Cantilever beam divided into 2 elements subjected to uniformly distributed load. 

5. Cantilever beam divided into 3 elements subjected to uniformly distributed load and self           

weight. 

6.  ANSYS – VM 34 – Bending of a Tapered Plate      (Beam) 

7.  ANSYS – VM 5 – Laterally Loaded Tapered Support    Structure. 

8. ANSYS – VM 136 – Large Deflection of a Buckled Bar. 

 

 

 

 

 

 

 

 

 



 18 

 

 

CHAPTER 3 

RESULTS 

3.1 Verification Problems 

For the verification problems 3.1.1, 3.1.2, 3.1.3, 3.1.4 and 3.1.5 all the data was chosen 

arbitrarily. 

3.1.1 Cantilever beam (single element) subjected to a point load at the free end 

Assumptions: 1 element, Length = 360 in, P = 1000 lb, I = 100 in
4
, E = 3x10

7 
psi 

 

Figure 3.1 Cantilever Beam – Concentrated Load P at the Free End 

Theoretical Calculations: 

• δmax = PL
3 
/3EI 

δmax = 

100x7^10x3x3

3^360x1000−
 = -5.1840 in. 

• θ = PL
2 
/2EI 

θ = 
100x7^10x3x2

2^360x1000−
 = -0.0216 rad. 

Table 3.1 Comparison of Results for Problem 3.1.1 

 δmax (in) θ (rad) % error δmax % error θ 

From Theory -5.1840 -0.0216 NA NA 

ANSYS -5.1840 -0.0216 0.0 0.0 

NLFC -5.1840 -0.0216 0.0 0.0 
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The maximum deformation and slope values obtained from ANSYS and NLFC match 

with the values obtained from theoretical calculations. 

3.1.2 Cantilever beam divided into 2 elements subjected to a point load at the free end 

Assumptions: 2 elements, Length = 360 in, P = 1000 lb, I = 100 in
4
, E = 3x10

7 
psi

 

 

Figure 3.2 Cantilever Beam – Concentrated Load P at the Free End (2 elements) 

 

Theoretical Calculations: 

• δmax = PL
3 
/3EI 

δmax = 

100x7^10x3x3

3^360x1000−
 = -5.1840 in. 

• θ = PL
2 
/2EI 

θ = 
100x7^10x3x2

2^360x1000−
 = -0.0216 rad. 

• δmid length = PX
2 
x (3L-X) /6EI 

      δmid length = 
100x7^10x3x6

)180360x3(x2^180x1000 −−
 = -1.62 in. 

• θ mid length = PX
 
x (2L-X) /2EI 

      θ mid length = 
100x7^10x3x2

)180360x2(x180x1000 −−
 = -0.0162 rad. 
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Table 3.2 Comparison of Results for Problem 3.1.2 

 
δmid length 

(in) 

θ mid length 

(rad) 
δmax (in) θ (rad) 

% error 

δmax 
% error θ 

From 

Theory 
-1.62 -0.0162 -5.1840 -0.0216 NA NA 

ANSYS -1.62 -0.0162 -5.1840 -0.0216 0.0 0.0 

NLFC -1.62 -0.0162 -5.1840 -0.0216 0.0 0.0 

 

The percentage error in the deformation and slope values obtained from ANSYS and 

NLFC when compared with the values from theoretical calculation is 0.0%. 

3.1.3 Cantilever beam (single element) subjected to uniformly distributed load 

Assumptions: 1 element, Length = 360 in, W = 1 lb/in, I = 100 in
4
, E = 3x10

7 
psi

 

 

 

Figure 3.3 Cantilever Beam – Uniformly distributed load ω 

 

Theoretical Calculations: 

• δmax = WL
4
 /8EI 

δmax = 
100x7^10x3x8

4^360x1−
 = -0.6998 in. 

• θ = PL
3 
/6EI 

θ = 
100x7^10x3x6

3^360x1−
 = -0.0026 rad. 
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Table 3.3 Comparison of Results for Problem 3.1.3 

 δmax (in) θ (rad) % error δmax % error θ 

From Theory -0.6998 -0.0026 NA NA 

ANSYS -0.6998 -0.0026 0.0 0.0 

NLFC -0.6998 -0.0026 0.0 0.0 

 

 

The maximum deformation and slope values obtained from ANSYS and NLFC match 

with the values obtained from theoretical calculations. 

3.1.4 Cantilever beam divided into 2 elements subjected to uniformly distributed load 

Assumptions: 2 elements, Length = 360 in, W = 1 lb/in, I = 100 in
4
, E = 3x10

7 
psi

 

 

 

Figure 3.4 Cantilever Beam – Uniformly distributed load ω (2 elements) 

Theoretical Calculations: 

• δmax = WL
4
 /8EI 

δmax = 
100x7^10x3x8

4^360x1−
 = -0.6998 in. 

• θ = PL
3 
/6EI 

θ = 
100x7^10x3x6

3^360x1−
 = -0.0026 rad. 

• δmid length = WX
2
 x (6L

2
 – 4LX + X

2
) /24EI 

      δmid length = 
100x7^10x3x24

)2^180180x360x42^360x6(x2^180x1 +−−
 = -0.2479 in. 
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• θ mid length = WX x (3L
2
 – 3LX + X

2
) /6EI 

      θ mid length = 
100x7^10x3x6

)2^180180x360x32^360x3(x180x1 +−−
 = -0.0023 rad. 

 

Table 3.4 Comparison of Results for Problem 3.1.4 

 
δmid length 

(in) 

θ mid length 

(rad) 
δmax (in) θ (rad) 

% error 

δmax 

% error 

θ 

From 

Theory 
-0.2479 -0.0023 -0.6998 -0.0026 NA NA 

ANSYS -0.2479 -0.0023 -0.6998 -0.0026 0.0 0.0 

NLFC -0.2479 -0.0023 -0.6998 -0.0026 0.0 0.0 

 

 

The percentage error in the deformation and slope values obtained from ANSYS and 

NLFC when compared with the values from theoretical calculation is 0.0%. 

3.1.5 Cantilever beam divided into 3 elements subjected to uniformly distributed load and self           

weight as axial load 

Assumptions: 3 elements, L = 180 in, W = 1 lb/in, I = 100 in
4
, E = 3x10

7 
psi 

 

Figure 3.5 Cantilever Beam – Uniformly distributed load ω and Self Weight as the Axial 
Load at each node 

 

Both linear and non-linear analysis was carried out in ANSYS and the NLFC program. 

 



 23 

Table 3.5 Comparison of Results for Problem 3.1.5 

 ANSYS (linear) NLFC (linear) 
ANSYS (non-

linear) 

NLFC (non-

linear) 

δy node 2 (in) -0.6269 -0.6269 -0.6267 -0.6261 

δx node 2 (in) 0.009 0.009 0.002 0.009 

θ node 2 (rad) -0.0062 -0.0062 -0.0062 -0.0061 

δy node 3 (in) -1.9829 -1.9829 -1.9849 -1.9802 

δx node 3 (in) 0.0012 0.0012 0.0014 0.0012 

θ node 3 (rad) -0.0084 -0.0084 -0.0084 -0.0084 

δy node 4 (in) -3.5429 -3.5429 -3.5464 -3.5380 

δx node 4 (in) 0.0012 0.0012 0.0014 0.0012 

θ node 4 (rad) -0.0087 -0.0087 -0.0088 -0.0087 

 

 3.1.6 ANSYS – VM 34 – Bending of a Tapered Plate (Beam) 

A tapered cantilever plate of rectangular cross-section is subjected to a load F at its tip.  

Find the maximum deflection δ and the maximum principal stress σ1 in the plate. 

Assumptions: E = 30x10
6
 psi, υ = 0.0, L = 20 in, d = 3 in, t = 0.5 in, F = 10 lbs 

 

(a) 

 

(b) 

Figure 3.6 Tapered Cantilever Beam Element. (a) Problem Sketch , (b) Finite element 
Model Beam 44[12] 



 24 

 For the beam elements, the area and Y dimension of the beam are not used and are 

input as 1.0. Node 12 is arbitrarily located at Z = 1.0 in order to define the orientation of the 

beam. The problem is also solved using tapered sections beam elements (BEAM188). 

 

 Table 3.6 Comparison of Results for Problem 3.1.6  

 Theory 
ANSYS 

BEAM 44 

ANSYS 

BEAM 188 
NLFC Program 

Max. End 

Deflection (in) 
-0.042667 -0.043109 -0.042792 -0.042667 

Stress Max. (psi) 1600.00 1600.00 1599.966 1600.00 

 

 

• The percentage error in maximum end deflection by using BEAM 44 element in 

ANSYS is 1.04%. 

• The percentage error in maximum principle stress by using BEAM 44 element 

in ANSYS is 0.0%. 

• The percentage error in maximum end deflection by using BEAM 188 element 

in ANSYS is 0.29%. 

• The percentage error in maximum principle stress by using BEAM 188 element 

in ANSYS is 0.002%. 

• The percentage error in maximum end deflection by using the NLFC program is 

0.0%. 

• The percentage error in maximum principle stress by using the NLFC program 

is 0.0%. 
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3.1.7 ANSYS – VM 5 – Laterally Loaded Tapered Support Structure 

A cantilever beam of thickness t and length   has a depth which tapers uniformly from 

d at the tip to 3d at the wall. It is loaded by a force F at the tip, as shown. Find the maximum 

bending stress at the mid-length (X = l) and the fixed end of the beam. 

 

Figure 3.7 Cantilever Beam Problem Sketch[12] 

 

Two different solutions are obtained. The first solution uses lower order PLANE 42 

elements and the second solution uses higher order PLANE 82 elements. The 2 inch thickness 

is incorporated by using the plane stress with thickness option. Poisson’s ratio is set to 0.0 to 

agree with beam theory. 

Table 3.7 Comparison of Results for Problem 3.1.7 

 Theory 
ANSYS 

PLANE 42 

ANSYS 

PLANE 82 
NLFC Program 

Stress at mid-

length (psi) 
8333 8163.656 8363.709 8333.333 

Stress at fixed 

end (psi) 
7407 7151.096 7408.980 7407.407 
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• The percentage error in stress at mid length by using PLANE 42 element in 

ANSYS is 2.03%. 

• The percentage error in stress at fixed end by using PLANE 42 element in 

ANSYS is 3.46%. 

• The percentage error in stress at mid length by using PLANE 82 element in 

ANSYS is 0.37%. 

• The percentage error in stress at fixed end by using PLANE 42 element in 

ANSYS is 0.03%. 

• The percentage error in stress at mid length by using the NLFC program is 

0.004%. 

• The percentage error in stress at fixed end by using the NLFC program is 

0.006%. 

 

3.1.8 ANSYS – VM 136 – Large Deflection of a Bar 

A slender bar of cross-sectional height h, and area A, fixed at the base and free at the upper 

end, is loaded with a buckling load F. Determine the displacement (∆X, ∆Y, Θ) of the free end. 

E = 30 x 106 psi, l = 100 in, A = 0.25 in2, h = 0.5 in, F = 39.13 lb. 

 

 

Figure 3.8 Buckled Bar Problem Sketch[12] 
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Table 3.8 Comparison of Results for Problem 3.1.8 

 
ANSYS 

BEAM 3 
NLFC Program 

Max. End 

Deflection y-

direction (in) 

-0.5217 x 10^-3 -0.5218 x 10^-3 

Max. End 

Deflection x-

direction (in) 

0 0 

Slope (rad) 0 0 

 

• The percentage error in end deflection in y-direction by using the NLFC 

program is 0.019% when compared to ANSYS. 

• The percentage error in end deflection in x-direction by using the NLFC 

program is 0.0% when compared to ANSYS. 

• The percentage error in slope at the free end by using the NLFC program is 

0.0% when compared to ANSYS. 
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3.2 Nonlinear Analysis of a Sports Lighting Tower  

The non-linear column problem chosen here is that of a sports lighting tower. The 

design data was provided by Keystone Industries, LP.[11] 

The design data is as follows: 

Pole height: 120 ft 

Pole bottom diameter: 30.00 in 

Taper: 0.140 in/ft 

Column shape: 18 sided polygon 

The whole column is divided into 3 shafts in the following manner: 

Table 3.9 Shaft Design Data 

Section No. OD. Top (in) OD. Bottom 

(in) 

Thickness 

(in) 

Design-

Length (ft) 

Overlap (ft) 

1 14.075 20.500 0.188 45.893 - 

2 19.664 24.500 0.250 34.542 3.2917 

3 23.475 30.000 0.313 46.607 3.7500 

 

Material properties: 

Young’s modulus: 2.900E7 psi, 

Yield stress: 65000.00 psi 

Poisson ratio: 0.3 

Weight: 490 lb/ft
3 

 

Load case factors: 

Gust factor for structure: 1.14 

Important factor: 1.00 

Drag coefficient: 0.58 
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Direction of structure weight: X 

Wind velocity in x-direction: 0.00 mph 

Wind velocity in y-direction: 90.00 mph 

Wind velocity in z-direction: 0.00 mph 

There are other applied concentrated loads because of the light structures that are 

applied at different nodes. 

3.2.1 Non-linear analysis of Tower in ANSYS and NLFC 

A Beam 3 element is used in ANSYS. The same problem is solved using the NLFC 

code developed. These results are compared with the data provided by Keystone Industries, 

LP. 

Table 3.10 Comparison of Nodal Deformation in y-direction 

Nodal 
Position (ft) 

nodal deformation y-
direction from given data 

(in) 

ANSYS nodal 
deformation 

y-direction (in) 

NLFC nodal 
deformation 

y-direction (in) 

0.0000 0.0000 0.0000 0.0000 

5.0000 -0.1801 -0.1898 -0.1856 

10.000 -0.7201 -0.76092 -0.7434 

15.0000 -1.6255 -1.7219 -1.6817 

20.0000 -2.9014 -3.0805 -3.0086 

25.0000 -4.5528 -4.8434 -4.7321 

30.0000 -6.5843 -7.0162 -6.86 

35.0000 -8.9999 -9.6033 -9.3992 

42.8570 -13.5782 -14.364 -14.085 

46.6070 -16.0582 -16.87 -16.559 

50.0000 -18.467 -19.264 -18.9284 

55.0000 -22.3998 -23.143 -22.7784 

60.0000 -26.785 -27.505 -27.1277 

65.0000 -31.6184 -32.342 -31.9738 

70.0000 -36.8926 -37.646 -37.3106 

74.1070 -41.5459 -42.299 -42.007 

77.3990 -45.4472 -46.164 -45.9178 

80.0000 -48.6456 -49.3 -49.0972 

85.0000 -55.1713 -55.664 -55.5618 

90.0000 -62.1574 -62.496 -62.5257 

95.0000 -69.5533 -69.742 -69.9392 

100.000 -77.2937 -77.335 -77.738 
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104.0000 -83.6772 -83.6 -84.1986 

105.0000 -85.2928 -85.186 -85.8377 

107.0000 -88.5425 -88.377 -89.1382 

110.0000 -93.4521 -93.196 -94.1311 

113.0000 -98.389 -98.043 -99.158 

115.0000 -101.689 -101.28 -102.521 

116.0000 -103.34 -102.9 -104.204 

119.0000 -108.297 -107.77 -109.257 

120.0000 -109.95 -109.39 -110.942 

 

 

Figure 3.9 Deformation in y-direction 

1. The percentage error in deformation in y-direction at the free end by using ANSYS 

when compared to the given data is 0.509%. 

2. The percentage error in deformation in y-direction at the free end by using NLFC when 

compared to the given data is 0.902%. 

Table 3.10 – continued 
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Table 3.11 Comparison of Slope at Nodal Positions 

Nodal 
Position (ft) 

Slope from given data 
(rad) 

ANSYS  
Slope 
(rad) 

NLFC  
Slope 
(rad) 

0.000 -9.3511E-10 0.0000 0.0000 

5.0000 -0.0059 -0.0063 -0.0061 

10.000 -0.0119 -0.0127 -0.0124 

15.0000 -0.0181 -0.0193 -0.0188 

20.0000 -0.0243 -0.0260 -0.0254 

25.0000 -0.0306 -0.0327 -0.032 

30.0000 -0.0370 -0.0396 -0.0388 

35.0000 -0.0434 -0.0466 -0.0457 

42.8570 -0.0536 -0.0543 -0.0535 

46.6070 -0.0565 -0.0571 -0.0564 

50.0000 -0.0617 -0.0606 -0.0600 

55.0000 -0.0692 -0.0687 -0.0683 

60.0000 -0.0767 -0.0767 -0.0766 

65.000 -0.0841 -0.0846 -0.0848 

70.000 -0.0914 -0.0923 -0.0929 

74.1070 -0.0972 -0.0967 -0.0976 

77.3990 -0.1002 -0.0993 -0.1004 

80.0000 -0.1046 -0.1021 -0.1033 

85.0000 -0.1126 -0.1103 -0.1120 

90.0000 -0.1199 -0.1177 -0.1199 

95.0000 -0.1262 -0.1241 -0.1269 

100.000 -0.1313 -0.1293 -0.1327 

104.0000 -0.1343 -0.1323 -0.1363 

105.0000 -0.1349 -0.1328 -0.1369 

107.0000 -0.1358 -0.1338 -0.1381 

110.0000 -0.1368 -0.1347 -0.1392 

113.0000 -0.1373 -0.1353 -0.1400 

115.0000 -0.1375 -0.1355 -0.1402 

116.0000 -0.1376 -0.1355 -0.1403 

119.0000 -0.1377 -0.1356 -0.1404 

120.0000 -0.1377 -0.1356 -0.1404 

 

1. The percentage error in slope at the free end by using ANSYS when compared to the 

given data is 1.525%. 

2. The percentage error in slope at the free end by using ANSYS when compared to the 

given data is 1.961%. 
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Table 3.12 Comparison of Nodal Deformation in x-direction 

Nodal 
Position (ft) 

nodal deformation x-
direction from given data 

(in) 

ANSYS nodal 
deformation 

x-direction (in) 

NLFC nodal 
deformation 

x-direction (in) 

0.0000 0.0000 0.0000 0.0000 

5.0000 0.0008 -0.0061 -0.0003 

10.000 0.0020 -0.0143 -0.0029 

15.0000 0.0037 -0.0269 -0.0102 

20.0000 0.0062 -0.0467 -0.0249 

25.0000 0.0100 -0.0770 -0.0496 

30.0000 0.0154 -0.1202 -0.0874 

35.0000 0.0229 -0.1795 -0.1411 

42.8570 0.0397 -0.3032 -0.2575 

46.6070 0.0500 -0.3743 -0.3256 

50.0000 0.0610 -0.4461 -0.3945 

55.0000 0.0808 -0.5745 -0.5180 

60.0000 0.1057 -0.7358 -0.6757 

65.0000 0.1362 -0.9335 -0.8714 

70.0000 0.1729 -1.1705 -1.1087 

74.1070 0.2081 -1.3917 -1.3325 

77.3990 0.2391 -1.5819 -1.5260 

80.0000 0.2658 -1.7405 -1.6880 

85.0000 0.3240 -2.0809 -2.0362 

90.0000 0.3916 -2.4727 -2.4404 

95.0000 0.4680 -2.9134 -2.8984 

100.000 0.5524 -3.3972 -3.4052 

104.0000 0.6245 -3.8089 -3.8400 

105.0000 0.6430 -3.9144 -3.9519 

107.0000 0.6805 -4.1278 -4.1789 

110.0000 0.7374 -4.4523 -4.5251 

113.0000 0.7949 -4.7803 -4.8761 

115.0000 0.8334 -5.0000 -5.1117 

116.0000 0.8527 -5.1100 -5.2297 

119.0000 0.9105 -5.4404 -5.5844 

120.0000 0.9298 -5.5506 -5.7026 

 

• The data given seems to have left out the nodal deformation resulting from nonlinear 

analysis. 

• The percentage error will be compared here taking ANSYS values as reference. 
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• The percentage error in deformation in x-direction at the free end by using the NLFC 

program is 2.74%. 

 

 

 

 

Figure 3.10 Interpretation of Beam Deformation 
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Table 3.13 Comparison of Bending Stress in Each Element 

Element No. 
Bending Stress 

Given data 
(ksi) 

Bending Stress 
ANSYS 

(ksi) 

Bending Stress 
NLFC 
(ksi) 

1 43.1145 37.694 43.113 

2 42.7238 37.410 42.981 

3 42.2764 37.091 42.820 

4 41.7650 36.735 42.606 

5 41.1811 36.327 42.308 

6 40.5150 35.849 41.908 

7 39.7554 35.291 41.385 

8 40.5150 25.031 28.304 

9 39.7554 18.226 22.041 

10 23.0272 24.162 29.384 

11 43.6500 38.098 45.038 

12 42.1794 36.785 43.467 

13 40.5006 35.270 41.609 

14 38.5813 33.520 39.426 

15 36.3843 22.658 27.134 

16 34.3414 16.542 20.124 

17 21.3738 21.288 26.233 

18 39.5380 33.473 37.795 

19 35.2136 29.407 32.904 

20 30.2256 24.683 27.286 

21 24.4564 19.167 20.841 

22 17.7618 12.487 14.950 

23 11.6491 7.7724 13.240 

24 10.3465 6.5240 9.916 

25 7.6694 4.6970 6.289 

26 4.6080 2.5821 3.529 

27 2.2676 1.3042 2.114 

28 1.2972 0.3428 1.279 

29 0.8004 0.0405 0.159 

30 0.0052 0.0026 0 

 

1. The maximum bending stress occurs at an elevation of 48.30 ft and element 11. The 

percentage error in maximum bending stress by using ANSYS when compared to the 

given data is 12.72%. 
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2. The maximum bending stress occurs at an elevation of 48.30 ft and element 11. The 

percentage error in maximum bending stress by using NLFC when compared to the 

given data is 3.18%. 

Table 3.14 Comparison of Axial Stress in Each Element 

Element No. 
Axial Stress 
Given data 

(ksi) 

Axial Stress 
ANSYS 

(ksi) 

Axial Stress 
NLFC 
(ksi) 

1 -0.4093 -2.8196 -2.8157 

2 -0.4004 -2.6113 -2.6089 

3 -0.3916 -2.4099 -2.4092 

4 -0.3828 -2.2155 -2.2167 

5 -0.3740 -2.0283 -2.0315 

6 -0.3653 -1.8484 -1.8537 

7 -0.3566 -1.6760 -1.6835 

8 -0.3479 -1.0832 -1.0903 

9 -0.3635 -0.7668 -0.7733 

10 -0.3549 -0.9550 -0.9649 

11 -0.3466 -1.3871 -1.4049 

12 -0.3244 -1.2567 -1.278 

13 -0.4088 -1.1355 -1.1605 

14 -0.3889 -1.0240 -1.0527 

15 -0.3817 -0.6662 -0.6892 

16 -0.3747 -0.4674 -0.4864 

17 -0.3680 -0.5842 -0.6117 

18 -0.4715 -0.8715 -0.9207 

19 -0.4692 -0.7952 -0.8502 

20 -0.4671 -0.7311 -0.7917 

21 -0.4661 -0.6802 -0.7462 

22 -0.4666 -0.6409 -0.7115 

23 -0.4687 -0.5069 -0.5637 

24 -0.3738 -0.4656 -0.5231 

25 -0.3736 -0.3340 -0.3763 

26 -0.2752 -0.2335 -0.2641 

27 -0.1221 -0.1373 -0.1553 

28 -0.1159 -0.1228 -0.1408 

29 -0.0561 -0.0575 -0.0667 

30 -0.0001 0 0 
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1 The maximum axial stress is 2.8196 ksi and occurs in element 11 by using ANSYS. 

2 The maximum axial stress is 2.8157 ksi and occurs in element 11 by using the NLFC 

program. 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1 Advantages of the NLFC Program 

The NLFC program is a very robust tool. This can be determined from the results and 

comparisons shown in Chapter 3. The process of analyzing a column or beam like structure 

from start to finish is faster than ANSYS, as all the calculations such as loads, moments etc. are 

done within the program. The program can be easily modified to work with any kind of structure 

such as an aeroplane wing, just by generating an aerofoil design instead of a regular polygon as 

in the program. 

4.2 Limitations of the NLFC Program 

The NLFC program can be used for regular polygons only. The program uses the 

concept of tapered beams by approximating the properties of each element to the properties of 

the element at the geometrical centre. The program needs to be modified to analyze 3D 

structures. 

4.3 Discussion of Results of the Sports Lighting Tower 

The NLFC program shows excellent agreement in deformation in y-direction, slope and 

bending stresses with the data provided by Keystone Industries, LP. The most serious 

disagreement with the given data comes in from deformation in x-direction results from ANSYS. 

For nodal deformations in x-direction the data given seems to have left out the nodal 

deformation resulting from nonlinear analysis. 

 

4.4 Future Work 

The results show that there are certain advantages to using the NLFC program. 

However, these advantages can be increased and the errors reduced by implementing a 3 
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dimensional approach and also calculating the element properties along the length. The ability 

to generate and analyse irregular polygons can also be considered.  
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APPENDIX A 
 
 

NLFC CODE FOR COLUMN ANALYSIS 
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clear all 
clc 

  
% calculation of load due to self weight 

  
n = 18; 
NE=30; 
NN=NE+1; 
w=0.2836; 

  
L1 = [0 5 10 15 20 25 30 35 42.857 46.607]; 
L2 = [0 3.75 7.143 12.143 17.143 22.143 27.143 31.25 34.542]; 
L3 = [0 3.2917 5.893 10.893 15.893 20.893 25.893 29.893 30.893 32.893 

35.893 38.893 40.893 41.893 44.893 45.893]; 

  

  
OD=zeros(1,NN); 
ID=zeros(1,NN); 
h=zeros(1,NE); 

  
for i=1:9 
    h(1,i) = (L1(i+1)-L1(i))*12; 
end 

  
for i=10:16 
    h(1,i) = (L2(i-7)-L2(i-8))*12; 
end 

  
for i=17:NE 
    h(1,i) = (L3(i-14)-L3(i-15))*12; 
end 

  

  

  
for i=1:8 
       OD(i) = 30-(0.14*L1(1,i)); 
       ID(i) = 29.374-(0.14*L1(1,i)); 
end 

  
for i=9:10 
       OD(i) = 24.5-(0.14*L2(1,i-8)); 
       ID(i) = 29.374-(0.14*L1(1,i)); 
end 

        

  
for i=11:15 
       OD(i) = 24.5-(0.14*L2(1,i-8)); 
       ID(i) = 24-(0.14*L2(1,i-8)); 

             
end 
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for i=16:17 
    OD(i) = 20.5-(0.14*L3(1,i-15)); 
    ID(i) = 24-(0.14*L2(1,i-8)); 
end 

     
for i=18:NN  
    OD(i) = 20.5-(0.14*L3(i-15)); 
    ID(i) = 20.124-(0.14*L3(i-15)); 
end 

      

  
for i=1:NN 
    Aod(1,i) = OD(1,i)*sin(pi/n); 
    Aid(1,i) = ID(1,i)*sin(pi/n); 
end 

  

  
for i=1:NE 
        Vod = 

(n*h(1,i)/12)*(Aod(1,i)^2+(Aod(1,i)*Aod(1,i+1))+Aod(1,i+1)^2)*cot(pi/n

); 
        VOD(1,i)=Vod; 
end 

  
for i=1:NE 
        Vid = 

(n*h(1,i)/12)*(Aid(1,i)^2+(Aid(1,i)*Aid(1,i+1))+Aid(1,i+1)^2)*cot(pi/n

); 
        VID(1,i)=Vid; 
end 

  

  
for i=1:NE 
    Vol(1,i)=VOD(1,i)-VID(1,i); 
end 

  
Fxw=zeros(NE,1); 
Fxw(10,1)=-188; 
Fxw(22,1)=-1044; 
Fxw(24,1)=-1044; 
Fxw(25,1)=-783; 
Fxw(26,1)=-783; 
Fxw(28,1)=-522; 
Fxw(29,1)=-522; 

  
weight = zeros(1,30); 

  
for i=1:NE 

     
    weight(1,i) = -sum(Vol(i+1:end))*0.2835; 
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end 

  
Weight=weight'+Fxw; 

  

  
%area moment of inertia 

  
for i=1:NE 
    od(i) = ((OD(1,i+1)+OD(1,i))/2); 
end 

  
for i=1:NE 
    id(i) = ((ID(1,i+1)+ID(1,i))/2); 
end 

  
for i=1:NE 

     
    OA(1,i) = (n/2)*(od(i)/2)^2*(sin(2*pi/n)); 
    IA(1,i) = (n/2)*(id(i)/2)^2*(sin(2*pi/n)); 

     
end 

  
Area=(OA-IA); 

  
% Bod = od*sin(pi/n); 
% Bid = id*sin(pi/n); 
% AOD = Bod/2; 
% AID = Bid/2; 

  
t = linspace(0,2*pi,n+1);  
s=0;  
r=0;  

  
A = 0; 

  
for j=1:NE 

     
    IX(1,j) = 0; 
    IY(1,j) = 0; 
    IXY(1,j) = 0; 
end 

  
for j=1:NE 
for i=1:n 

     

         
    or = od(1,j)/2;  
    X = or*sin(t)+r;  
    Y = or*cos(t)+s;   
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    X(n+1) = X(1); 
    Y(n+1) = Y(1); 

    
    A(i) = (X(i)*Y(i+1) - X(i+1)*Y(i))/2; 
    A = A + A(i); 

    
    IX(1,j) = IX(1,j) + (Y(i)^2 + Y(i)*Y(i+1) + Y(i+1)^2)*A(i)/12; 
    IY(1,j) = IY(1,j) + (X(i)^2 + X(i)*X(i+1) + X(i+1)^2)*A(i)/12; 
    IXY(1,j) = IXY(1,j) + 

(X(i)*Y(i+1)+2*X(i)*Y(i)+2*X(i+1)*Y(i+1)+X(i+1)*Y(i))*A(i)/24; 

    
    end 
end 

                                   

                       
a = 0; 

  
for j=1:NE 

     
    ix(1,j) = 0; 
    iy(1,j) = 0; 
    ixy(1,j) = 0; 
end 

  
for j=1:NE 
for i=1:n 

     

     
    ir = id(1,j)/2;  
    x = ir*sin(t)+r;  
    y = ir*cos(t)+s;   

                         
    x(n+1) = x(1); 
    y(n+1) = y(1); 

    
    a(i) = (x(i)*y(i+1) - x(i+1)*y(i))/2; 
    a = a + a(i); 
    ix(1,j) = ix(1,j) + (y(i)^2 + y(i)*y(i+1) + y(i+1)^2)*a(i)/12; 
    iy(1,j) = iy(1,j) + (x(i)^2 + x(i)*x(i+1) + x(i+1)^2)*a(i)/12; 
    ixy(1,j) = ixy(1,j) + 

(x(i)*y(i+1)+2*x(i)*y(i)+2*x(i+1)*y(i+1)+x(i+1)*y(i))*a(i)/24; 

     
    end 
end 

  
Iy = -(IY-iy); 
Ix = -(IX-ix); 
Ixy = -(IXY-ixy); 

  
% calculation of wind forces 
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Kzt = 1.00; 
Kd = 0.95; 
I = 1; 
G = 1.14; 
Cf = 0.58; 
alpha = 9.5; 
Zg = 900; 
V = 90; 

  
for k=1:NE 
HH(k)=(sum(h(1:k))/12)-5; 
end 

  
for i=1:NE 
    if (HH(i))<15 
             Kz(i,1) = 2.01*(15/Zg)^(2/alpha); 
    else 
             Kz(i,1) = 2.01*(HH(i)/(12*Zg))^(2/alpha); 
    end 
end 

  
Qz = 0.00256*Kz*Kzt*Kd*V^2*I; 

     
UDL = (Qz.*G*Cf.*(od/12)')/12; 

  
F2=zeros(NE,1); 
F3=zeros(NE,1); 

  
for i=1:(NE-1) 

          
    F2(i)= (-UDL(i,1)*h(1,i))/2+(-UDL(i+1,1)*h(1,i+1))/2; 

  
end 

  
F2(end)=(-UDL(end)*h(end)/2); 

  
Fyw=zeros(NE,1); 
Fyw(10,1)=193.1; 
Fyw(22,1)=1049; 
Fyw(24,1)=1056; 
Fyw(25,1)=796.7; 
Fyw(26,1)=801.2; 
Fyw(28,1)=537.1; 
Fyw(29,1)=540; 

  
Fy = (F2-Fyw); 

  
for i=1:(NE-1) 

          
     F3(i)= (UDL(i,1)*h(1,i)^2)/12-(UDL(i+1,1)*h(1,i+1)^2)/12;      
end  
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F3(end)=(UDL(end)*h(end)^2/12); 

  
F=zeros(3*NE,1); 

  
for i=1:3:3*NE 
    for j=(i+2)/3 

         
    F(i)=Weight(j); 

     
    end 
end 

  
for i=2:3:3*NE 
    for j=(i+1)/3 

         
    F(i)=Fy(j); 

     
    end 
end 

  
for i=3:3:3*NE 
    for j=i/3 

         
    F(i)=F3(j); 

     
    end 
end 

  

  
% calculation of element stifness matrix 

  
E = 2.9e7; 
% deg = 0; 
% C = cos(deg*180/pi); 
% S = sin(deg*180/pi); 

  
for i=1:NE 

     
    S(1,i)=((OD(1,i+1)/2)-(OD(1,i)/2))/(h(1,i)^2-((OD(1,i)/2)-

(OD(1,i+1)/2))^2)^0.5; 
    C(1,i)=1-S(1,i)^2; 

     
end 

  
for i=1:NE 

     
    ke = 

(E/h(1,i))*[(Area(1,i)*C(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*S(1,i)^2) 

(Area(1,i)-12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i)  (-

6*Iy(1,i)/h(1,i))*S(1,i) -



 46 

(Area(1,i)*C(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*S(1,i)^2) -(Area(1,i)-

12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i)  (-6*Iy(1,i)/h(1,i))*S(1,i); 
        (Area(1,i)-12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i) 

(Area(1,i)*S(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*C(1,i)^2) 

(6*Iy(1,i)/h(1,i))*C(1,i) -(Area(1,i)-

12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i) -

(Area(1,i)*S(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*C(1,i)^2) 

(6*Iy(1,i)/h(1,i))*C(1,i); 
        (-6*Iy(1,i)/h(1,i))*S(1,i) (6*Iy(1,i)/h(1,i))*C(1,i) 4*Iy(1,i) 

(6*Iy(1,i)/h(1,i))*S(1,i) (-6*Iy(1,i)/h(1,i))*C(1,i) 2*Iy(1,i); 
        -(Area(1,i)*C(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*S(1,i)^2) -

(Area(1,i)-12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i) 

(6*Iy(1,i)/h(1,i))*S(1,i) 

Area(1,i)*C(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*S(1,i)^2 (Area(1,i)-

12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i)  (6*Iy(1,i)/h(1,i))*S(1,i); 
        -(Area(1,i)-12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i) -

(Area(1,i)*S(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*C(1,i)^2) (-

6*Iy(1,i)/h(1,i))*C(1,i) (Area(1,i)-12*Iy(1,i)/h(1,i)^2)*C(1,i)*S(1,i)  

(Area(1,i)*S(1,i)^2+12*(Iy(1,i)/h(1,i)^2)*C(1,i)^2) (-

6*Iy(1,i)/h(1,i))*C(1,i); 
        (-6*Iy(1,i)/h(1,i))*S(1,i) (6*Iy(1,i)/h(1,i))*C(1,i) 2*Iy(1,i) 

(6*Iy(1,i)/h(1,i))*S(1,i) (-6*Iy(1,i)/h(1,i))*C(1,i) 4*Iy(1,i)];  

  

   
  Ke(:,:,i) = ke; 

   
end 

  

  
% assembly of global stiffness matrix 

  
NN = NE+1; 
NE2 = 3*NN; 

  
for i=1:NE2 
    for j=1:NE2 
        kg(i,j)=0; 
    end 
end    
for k = 1:NE; 
    kk = 3*(k-1); 
    for i=1:6 
        for j=1:6 
            kg(kk+i,kk+j) = kg(kk+i,kk+j)+Ke(i,j,k); 
        end 
    end 
end 

  
Kg=kg(4:NE2,4:NE2); 

  
for i=1:NE 
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    kax = (weight(1,i)/h(1,i))*[0 0 0 0 0 0; 
        0 6/5 h(1,i)/10 0 -6/5 h(1,i)/10; 
        0 h(1,i)/10 (2/15)*h(1,i)^2 0 -h(1,i)/10 (-h(1,i)^2)/30; 
        0 0 0 0 0 0; 
        0 -6/5 -h(1,i)/10 0 6/5 -h(1,i)/10; 
        0 h(1,i) (-h(1,i)^2)/30 0 -h(1,i)/10 (2/15)*h(1,i)^2]; 

  

   
  Kax(:,:,i) = kax; 

   
end 

  
for i=1:NE2 
    for j=1:NE2 
        kp(i,j)=0; 
    end 
end    
for k = 1:NE; 
    kk = 3*(k-1); 
    for i=1:6 
        for j=1:6 
            kp(kk+i,kk+j) = kp(kk+i,kk+j)+Kax(i,j,k); 
        end 
    end 
end 

  
Kp=kp(4:NE2,4:NE2); 

  
Ktot=Kg+Kp; 

  
D = Ktot\F; 

  
DDefx=D(1:3:end); 
Defy=D(2:3:end) 
Slope=D(3:3:end) 

  
ddefx=zeros(NE,1); 

  
for i=1 

     
    ddefx(i,1)=((Defy(1))^2)/(2*h(1,i)); 

     
end 

  
for i=2:NE 

     
    ddefx(i,1)=((Defy(i)-Defy(i-1))^2)/(2*h(1,i)); 

     
end 
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Defx=zeros(NE,1); 

  
for i=1:NE 

     
    Defx(i,1)=-sum(ddefx(1:i)); 

     
end 

  
Defx 

  
Bstress = zeros(NE,1); 
Astress = zeros(NE,1); 

  
for i=1 

     
    qw=Ke(:,:,i)*[0; 0; 0; DDefx(i); Defy(i); Slope(i)]; 

     
    Bstress(i,1) = ((qw(6)*od(i)/2)/Iy(i)) + qw(5)/Area(i); 

     
    Astress(i,1) = qw(4)/Area(i); 

     

     
end 

     

     
for i=2:NE 

     
    qw=Ke(:,:,i)*[DDefx(i-1); Defy(i-1); Slope(i-1); DDefx(i); 

Defy(i); Slope(i)]; 

     
    Bstress(i,1) = (qw(6)*od(i)/2)/Iy(i) + qw(5)/Area(i); 

     
    Astress(i,1) = qw(4)/Area(i); 

     

     
end 

  
Bstress 
Astress 
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