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ABSTRACT 

 
DESIGN OPTIMIZATION USING AUGMENTED LAGRANGIAN PARTICLE SWARM 

OPTIMIZATION 

 

 Chethan Shivappa Thenehalli, M.S.  

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Bo Ping Wang 

 Engineering optimization problems normally include multiple, non-trivial, non-linear 

constraints. Traditionally gradient based optimization methods were used to solve these types 

of problems because of their high computational efficiency. But they generally require continuity 

of the optimization problem and the computation of derivatives and tend to get trapped in local 

minima. Hence non gradient based, evolutionary algorithms (EA) which are based on heuristic 

and stochastic nature and do not require continuity of the design space of the optimization 

problem and increase the probability to find a global optimal solution, therefore are becoming a 

popular choice in recent years. 

 This work uses evolutionary algorithm based method called Augmented Lagrangian 

Particle Swarm Optimization (ALPSO). Note that Particle Swarm Optimization (PSO) technique 

was developed to solve unconstrained problem. An extended non-stationary penalty function 

approach, Augmented Lagrange Multiplier Method is used for constraint handling The ALPSO 

algorithm is robust and reliable technique for solving Engineering optimization problem.  

The capability of ALPSO is demonstrated by solving extension-twist coupling problem in 

composite laminate design. Besides verification of previously known optimal design computed 
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by sequential quadratic programming method, ALPSO also generates new global optimal 

designs. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 Engineering optimization problems often require solving design problems 

involving number of disciplines. Nevertheless, including all the disciplines increases the number 

of design variables which in turn increases the complexity of the problem. This motivated the 

rise of multidisciplinary design optimization (MDO). MDO incorporates all relevant disciplines (all 

types of constraints) simultaneously and seeks superior global optimum as compared to other 

gradient based methods which and tend to get trapped in local minima. 

 Engineering optimization problems normally include multiple, non-trivial, non-linear 

constraints. These types of non linear problems can be formulated by  

                        minimize ( ),
x

f x  ∈ ∩ ,x ID IF   ⊆ ,nID IR
                                                 (1.1)                                            

Subject to linear and non linear constraints 

                                        =( ) 0,g x   →: ,e
mng IR IR

                                                        (1.2)
 

                                          ≤( ) 0,h x  →: imnh IR IR                                                          (1.3) 

Where f  is the nonlinear objective function, which is to be minimized with respect to design 

variables x . IF represents the feasible region, ID the search space which is additionally 

bounded by simple bounds 

                                                         l ux x x≤ ≤ .                                                            (1.4) 

The solution to above type of nonlinear problem can be addressed by gradient based 

optimization methods which are fast and have high computational efficiency. But they generally 

require continuity of the optimization problem and the computation of derivatives and tend to get 
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trapped in local minima. Hence non gradient based, evolutionary algorithms (EA) which are 

based on heuristic and stochastic nature are becoming a popular choice in recent years. This 

type of algorithm generally does not require continuity of the design space of the optimization 

problem and increase the probability to find a global optimal solution. 

1.2 Scope of study 

 The focus of this thesis is the study of the use of simple structure of the basic Particle 

Swarm Optimization (PSO) technique which was introduced by Kennedy, Eberhart and Shi in 

1995. And combines the PSO technique with an extended non-stationary penalty function 

approach, called Augmented Lagrange Multiplier Method (ALPSO), for constraint handling 

where ill conditioning is a far less harmful problem and the correct solution can be obtained 

even for finite penalty factors. The ALPSO algorithm is robust and reliable technique for solving 

Engineering optimization problem. After demonstrating the use of ALPSO to solve simple 

numerical constrained optimization examples, ALPSO is used to find the optimal ply angles of 

composite laminates with extension twist coupling. 

Composite laminates can be tailored through arrangement of each ply’s fiber orientation angle 

(referred to as ply angles) to have desired elastic properties. Through this arrangement desired 

coupling between in-plane and out-of-plane deformation modes can be achieved to meet 

performance requirements. Among the achievable coupling is Extension Twist coupling which 

has its applications in rotor blades to change the angle of attack with a change in rotor speed. 

From previous work the optimal ply angles for Extension Twist coupling were obtained using 

Sequential Quadratic Programming (SQP). Since objective function and constraints are highly 

nonlinear and SQP is gradient based method, there exist multiple local global solutions that 

could be better design than those obtained from previous work. This work focuses on exploring 

other global optimum solution. 
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CHAPTER 2 

LITERATURE REVIEW 

 The Particle Swarm Optimization was first studied and introduced by Kennedy and 

Eberhart in 1995 [1]. The basic Particle Swarm Optimization (PSO) is inspired by the collective 

intelligence of swarms of biological populations (swarm) like schools of fish or swarm of insects 

or bird flocks. These populations exhibit a collective co-ordinated behavior which adapts 

according to its environment.  It combines self experiences with social experiences of the 

population that have previously been discovered. They implemented the PSO algorithm to find 

an effective optimization solution for non linear function. 

A Modified Particle Swarm Optimizer was introduced by Eberhart and Shi [2]. 

Introduced a inertia weight parameter to the original particle swarm optimizer to enhance the 

performance of PSO and increase the chances to find the global optimum within the given set of 

iterations. 

Kai Sedlaczek and Peter Eberhard [3] introduced Augmented Lagrangian Particle 

Swam Optimization to solve constrained optimization problems. Using Augmented Lagrangian 

method with PSO to convert constrained optimization problem into series of unconstrained 

optimization problems. 

Eberhart and Shi [5] performed studies on the effect of the swarm size on the 

convergence behavior and quality of solution using PSO algorithm. They found the swarm size 

has very less influence on the PSO algorithm and determined the feasible range of swarm size 

to produce better optimal solution. 

Bergh [7] derived a simple inequality condition for the inertia factor parameter by 

analyzing the dynamic behavior and stability of PSO algorithm that would result in guaranteed 

the convergence.  



 

4 

 

 

Winckler, S. J. [9] developed asymmetric stacking sequence of laminates that could 

ensure shape and stability with changes in temperature or moisture called Hygrothermal 

stability. 

Weaver [10] developed a class of laminates that had minimum of seven plies that had 

asymmetric stacking sequence to ensure Hygrothermal stability by enforcing the coupling 

stiffness matrix to zero. 

Chen [12] studied the necessary and sufficient conditions for a Hygrothermally stable 

laminate. He identified four conditions that correspond to making the two axial non-mechanical 

stress resultants equal and making the remaining non-mechanical stress and moment 

resultants zero to yield zero nonmechanical curvatures. 

Haynes, Armanios [4] developed a new class of stacking sequence that ensures the 

Hygrothermal curvature stability of the laminates with Extension-twist Coupling. 

Aditya, Wang [13] obtained optimal design of Hygrothermally Stable Laminates with 

Extension-Twist Coupling by Ant Colony Optimization. 
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CHAPTER 3 

 
AUGMENTED LAGRANGIAN PARTICLE SWARM OPTIMIZATION 

 
3.1 The Basic Particle Swarm Algorithm 

The basic Particle Swarm Optimization (PSO) is inspired by the collective intelligence of 

swarms of biological populations (swarm) like schools of fish or swarm of insects or bird flocks. 

These populations exhibit a collective co-ordinated behavior which adapts according to its 

environment.  It combines self experiences with social experiences of the population that have 

previously been discovered. Therefore, it is a population-based algorithm which is based on 

heuristic and stochastic nature.  

 

Figure 3.1 Pictures of schools of fish and bird flocks  
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The population (a group of designs) is referred to as the swarm, which consists of 

individual particle (a design). Each particle has a position and a velocity associated within a 

particular design space. The position of each particle is determined by the value of respective 

design variable ' 'x . The current position of the particle is updated by the velocity vector of that 

particle for every iteration. In the numerically implementation, the trajectory of the −i th particle 

at iteration +1k  is updated as: 

                                
+ += + ∆1 1k k k

i i ix x x                                                         (3.1) 

Where 
k

ix is the current particle position, 
+1k

ix  is the updated particle position and 

+∆ 1k

ix  is the velocity update equation, which is given by 

        
1 , ,

1 1, 2 2,( ) ( )k k k best k k k best k k

i i i i i i swarm ix w x c r x x c r x x+∆ = ∆ + − + −                  (3.2) 

Where 
,best k

ix  is the best previously obtained position of the particle and 
,best k

swarmx    

is the best position in the entire swarm at the current iterationk . 1 ,

k

ir and 2 ,

k

ir are random 

numbers uniformly distributed between [0,1] and this represents the stochastic nature of the 

algorithm. 

The term −,

1 1, ( )k best k k

i i ic r x x represents best particle’s self experience and the term  

−,

2 2, ( )k best k k

i swarm ic r x x the social experience of the particles. Therefore the terms 1c and 2c

represent cognitive experience factor and social experience factor. The termw  represents 

inertia factor. Together all the terms simulate the behavior of entire swarm population. Fig 3.1 

illustrates PSO particle position and velocity update. 

It should be noted that equation (3.1) is similar to design variable updating in any 

gradient based method. However there is a big difference while in gradient based method, ix∆
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is always required to be in descending direction. This means at the new design, the objective 

function should be reduced. In PSO, ix∆  is given by equation (3.2), regardless whether it is in 

descending direction or not. This means the new solutions generated by PSO may not be 

always better than the old solution. This is the mechanism for PSO to avoid being trapped to a 

local minimum. The premium we pay for this desired outcome is more functional evaluations are 

required for PSO than gradient based method. 

 

              

 

Figure 3.2 Schematic representation of PSO particle position and velocity update. 
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For ease of reference, all the terms used are defined as shown below 

  
k

ix      value of current position of the particle   

  
+1k

ix    updated value of the particle position       

 

+∆ 1k

ix   is the velocity update equation given by equation (3.2) 

  W        value of inertia factor parameter, during this work the value was taken a constant value 

of 0.9. 

1c , 2c    values of cognitive factor parameter, during this work the value were taken a constant 

value of 0.8. 

,best k

ix   value of best previously obtained position of the particle. 

,best k

swarmx    value of best position in the entire swarm at the current iteration. 

 
Using equations (3.1) and (3.2) as explained above and applying it to a set of particles 

n , the PSO algorithm can outlined as followed: 

[Step 1]  Set iteration count = 0k . Initialize n  particles with randomly chosen positions 
k

ix and 

velocities ∆ k

ix  within the limits of design space. 

[Step 2] Evaluate the corresponding objective values and determine 
,0best

ix  and
,0best

swarmx . 

[Step 3] Update velocity equation (3.2) and particle position equation (3.1). Evaluate the 

objective function values at each corresponding position. Update iteration count to +1k . 

Determine best particle of the iteration
,best k

ix and best particle in the swarm 
,best k

swarmx  .  

[Step 4] Compare the best particle in the swarm with respect to best particle generated through 

each iteration and update the best position for each particle. 
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[Step 5] If the termination criterion is satisfied, stop the algorithm with 
,best k

swarmx  as solution. If the 

iteration count k  crosses the specified limit maxk  terminate the algorithm with failure. 

[Step 6] Repeat the steps 3-5 until the specified convergence criterion is satisfied. 

 

The accuracy of the solution of the algorithm mainly depends on cognitive, social and 

inertia parameters. The inertia weight parameter w  is considered to important in determining 

the convergence behavior. Inertia weight parameter is used to control the impact on the current 

velocity from previous velocities and thus helping the tradeoff between global and the local 

exploration abilities of swarm. Assigning a large inertia weight supports exploration of global 

search behavior of the swarm. But using, a smaller value results in search of smaller areas of 

design space. Hence to obtain better results a proper value of inertia weight should be selected 

such that it provides balance between global and local areas search of the design space. Two 

approaches have been proposed for the proper selection of inertia factor. The first approach is 

called linear approach which was proposed by Eberhart and Shi [2], in this approach the inertia 

weight decreases linearly after each iteration depending on maximum number of iterations and 

maximum and minimum value of inertia parameter. 

                                    +

−
= − max min

1 max

max

k

w w
w w k

k
                                                     (3.3)  

The second approach is called dynamic approach, proposed by Groenwold and Venter 

Fourie [8]. In this approach the value inertia weight decreases by fraction wf  if there is no 

enhancement in the solution after certain number of iterations. 

                                                          + =1k w kw f w                                                         (3.4) 

Where the value of wf  varies between 0 and 1. According numerical experiments the 

dynamic approach has better convergence rate as compared to linear approach. But the optimal 
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value of convergence of inertia weight parameter is mainly dependent on the problem. In many 

cases premature convergence produces inferior local solution which is highly unwanted in 

solving multimodal optimization problem. Bergh [7] formulated a simple inequality condition 

which guaranteed convergence. 

                                                      > + −
1 2

1
( ) 1

2
w c c                                                      (3.5) 

3.2 Methods for constraint handling 

The PSO technique is very efficient in solving global unconstrained optimization 

problems. But to solve constrained problems using PSO different approaches have been 

proposed to cope with the constraints. One of the classic method used for solving constrained 

optimization problems is penalty method. 

3.2.1 The Penalty Function Method 

Penalty Method transforms the constrained problem into series of unconstrained 

problems. The objective function of the constrained problem is replaced by penalty function. 

The penalty function is formed by adding a penalty parameter and a measure of violation of the 

constraints to the original objective function. The design search space of constrained problems 

consists of two types of points. One is feasible points that satisfy all the constraints and the 

other is unfeasible points that violates atleast one of the constraints. The measure of violation of 

the constraints is non zero for unfeasible points and is zero for feasible points. 

The penalty functions are mainly categorized into two types. First one is called 

stationary penalty function that uses fixed penalty values for the entire minimization process. 

The second type is called non-stationary penalty function, in which the penalty values are 

dynamically modified during the minimization process. The results obtained from the non-

stationary penalty method are often to be exceptional as compared to the ones obtained from 

the stationary penalty method. For this type of penalty function very large penalty parameters 

are required for convergence. This could lead to numerical difficulty.      
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3.2.2 Augmented Lagrangian Multiplier Method  

The Augmented Lagrangian Multiplier method circumvents the problem of large penalty 

parameters of penalty function. This method adds an additional term which is the product of 

Lagrange multiplier and constrained function, the objective function combined with the terms 

included Lagrange multiplier is called Lagrangian function. The Lagrange function is similar to 

penalty method which transforms the constrained optimization problem into unconstrained 

optimization problem. The Lagrangian function is given by 

                               λ λ λ +
= =

= + +∑ ∑
1 1

( , ) ( ) ( ) ( )
e e

e

m m

i i j m j

i j

L x f x g x h x                         (3.6)                  

Where λ  is the Lagrange multiplier, ( )f x  is the objective function, ( )g x  and ( )h x

are equality and inequality constraints violation respectively. 

The solution 
∗x  to constrained problem with the correct set of multipliers λ∗

 is a stationary 

point ofL . But 
∗x  is not necessarily a minimum of Lagrange functionL . To convert the solution 

∗x  from stationary point to minimum, the Lagrange function is augmented using quadratic 

extension. 

                         λ λθ θ
+ +

= =

= + +∑ ∑ 2

,
1 1

( , , ) ( ) ( ) ( )
e i e im m m m

A p i i p i i
i i

L x r f x x r x                                 (3.7) 

 

with  

          

,

( ), 1(1) ,

max ( ), , 1(1) .
2e

i e

i i
i m e e i

p i

g x i m

h x i m m m
r

θ λ
−

= 
 

 = −  = + +  
   

                                       (3.8) 
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From the gradient based optimization problems, the term 
λ−

,2
i

p ir
 in equation (3.8) is 

selected to have continuous derivatives 
∂
∂
AL

x
 at x̂ , where λ− = − ,

ˆ( ) / 2
ei m i p ih x r . The 

Lagrange function differs from penalty function due to addition of Lagrangian multipliers. In this 

method, each constraint infeasibility is penalized separately by the use of a vector of positive 

penalty factors pr . It can be shown that there exist finite constraint penalty factors pr in the 

solution
∗x of the Lagrange function and thus of the original constrained problem. But the proper 

values of Lagrange multipliers λi and penalty factor parameter pr are unknown and are always 

problem dependent and thus the solution of the Lagrange function cannot be computed by 

single unconstrained minimization of equation (3.7)  but a sequence of unconstrained sub 

problems  with subsequent updates of λi  and 
pr . The update scheme of Lagrange multipliers 

based on the solution x
ν∗

of the stationary condition of the ν − th  sub-problem. It holds for

ν ν∗≈x x . 

 

ν

ν ν νθ θ
λ θ ε

+ +

= = =

 ∂ ∂∂
+ + = ≈ ∂ ∂ ∂ 
∑ ∑ ,

1 1

( ) ( )( )
2 ( ) 0.

e i e im m m m

i i
i p i i

i i x x

x xf x
r x

x x x
             (3.9) 

            

The Lagrange multiplier can be formulate by comparing equations (3.9) and (3.6) 

 

                                                    
ν ν νλ λ θ+ = +1

,2 ( )i i p i ir x                                                (3.10) 
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3.3 Augmented Lagrangian Particle Swarm Optimization 
 

By combining the Augmented Lagrangian Multiplier method as illustrated in section 

(3.2.2) with particle swarm optimization as explained in section (3.1). Since the appropriate 

Lagrange multipliers λ∗
and penalty factor p

r are unknown and a sequence of unconstrained 

problems as shown in equation (3.7) must be solved sequentially. This method involves solving 

of unconstrained minimization with respect to x before enforcing any update of the Lagrange 

multipliers and penalty factors. The Augmented Lagrangian Particle Swarm Optimization 

algorithm is outlined as follows: 

[Step 1]  Set iteration count = 0k ,ν = 0 . Initialize   particles with randomly chosen positions 

and velocities   within the limits of design space.  

[Step 2] Initialize Lagrange multiplier parameter λ =0 0and penalty factor parameter =0

0p pr r . 

Evaluate the equation (3.7) using the initialized particle positions. 

[Step 3] solve unconstrained problem using PSO algorithm steps from 2 to 6 as shown in the 

section (3.1) for a given set of iterations, maxk . If the termination criterion is satisfied, stop the 

algorithm with
ν ν

ν λ λ∗ ∗= = =
,
,best

swarm
x x x . Ifν ν> max , the algorithm stops with failure. 

[Step 4] Update parameters 
pr and λ according to equation (3.10). 

[Step 5] Repeat the steps 3 to 5 until the termination criterion is satisfied stop the algorithm with   

as solution. If the iteration count crosses the specified limit terminate the algorithm with failure. 

 

The penalty factor is updated using heuristic update scheme to get stationary and 

minimum point at
∗x . The value of penalty factor ,p ir is increased if the intermediate solution of 

the ν − th sub-problem is not closer to the −i th constraint than the previous solution 
ν−1x  of 



 

14 

 

 

ν −1th problem. On the contrary if the −i th constraint condition is satisfied with respect user 

defined tolerance limit. It is formulated according the following conditions given below 

          

ν ν ν ν

ν ν ν

ν

−

+

 > Λ >∈
 
 = >∈
 
 
 

1

,

1

, ,

,

2 | ( ) | | ( ) | | ( ) | ,

1
| ( ) | ,

2

,

p i i i i g

p i p i i g

p i

r if g x g x g x

r r if g x

r else

    

                                                                                                                            = 1(1) ,ei m  

ν ν ν ν

ν ν ν

ν

−
+

+
+ +

+

 > Λ >∈
 
 = >∈ 
 
 
 

1

,

1

, ,

,

2 | ( ) | | ( ) | | ( ) | ,

1
| ( ) | ,

2

,

e

e e

e

p j m j j j h

p j m p j m j h

p j m

r if h x h x h x

r r if h x

r else

                              (3.11) 

                                                                                                                         = 1(1) ,ij m  

 

Where h∈  and g∈ user defined tolerances for constraints violation. 

Generally the large values of do not change the stationary conditions of equation (3.7) 

but decreasing the value of the corresponding penalty factors is important in estimation of 

accurate and convergence of Lagrange multipliers within limited number of iterations. The lower 

bound on the penalty factors results in improved convergence of Lagrange multipliers. To 

ensure that their magnitude is effective in creating a measurable change, this lower bound is 

calculated using the following  

                                                          
λ

=
∈,

,

| |1

2
i

p i

g h

r                                                       (3.12) 

The other parameter that is problem dependent and is unknown is swarm size. If the 

swarm size is small then it increases the probability of premature convergence to a local 

minimum and decreases the search in the global design space. On contrary if the swarm size is 
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large, it increases the computational time and cost by increasing the number of function 

evaluations. Since the problem is solved as sequence of unconstrained problems it increases in 

computation time and cost. Eberhart and Shi performed studies on the effect of the swarm size 

on the convergence behavior and quality of solution using PSO algorithm [5]. It was determined 

from their study that the swarm size has very less influence on the PSO algorithm if the swarm 

size falls in reasonable range. The optimal swarms range if from 30 to 40 particle range. 

 

 

 

Figure 3.3 Plot representing Local and global extrema
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Figure 3.4 Plot of flow chart representing ALPSO algorithm 
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3.4 Numerical Examples 

 To illustrate the use of ALPSO to solve constrained optimization seven constrained 

benchmark problems [3] are solved in this section. The problems are defined in the appendix A 

and B. Table 3.1 summarizes the results of these problems in Appendix A. For comparison, 

problems 3 to problem8 are chosen from [11], where evolutionary strategy was used to solve 

the constrained problems. The number of particles, dimension search space and optimal 

function value are tabulated from column 2 through 4. For all the benchmark problems the 

inertia factor was a constant value of  = 0.9 and the cognitive and social factor parameter  were 

set a constant value of 0.8. The constraint tolerance  was set to . All the problems were solved 

using ALPSO algorithm described in the section 3.3. Matlab was used to implement the 

algorithm. 

Table 3.2 Results of benchmark problems from Appendix A 
 

Problem Number of Particles Dimension of the 
search space 

Optimal Value of 
the Objective 

function 

1 30 2 13 

2 30 2 0.00173 

3 30 2 -0.096 

4 30 2 -6962 

5 30 2 0.75 

6 30 3 -1 

7 100 5 -30530 
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Figure 3.5 Plot of Objective function vs. iterations of Problem 1 Appendix A 
 

 
  

 Figure 3.6 Plot of Constraint function vs. number of iterations of Problem 1 Appendix A 
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Figure 3.7 Plot of Objective function vs. number of iterations of Problem 5 Appendix A 

 
 

Figure 3.8 Plot of Objective function vs. number of iterations of Problem 5 Appendix A 
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Figure 3.9 Plot of Rosenbrock function R over a design space, Appendix A 

 
 

Figure 3.10 Plot of optimal value of unconstrained Rosenbrock function R, Appendix A 
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Figure 3.11 Plot of Griewank function G over a design space, Appendix A 

 

 
Figure 3.12 Plot of optimal value of unconstrained Griewank function G, Appendix A 
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Using ALPSO benchmark problem from [17] and [18] were solved and results are 

tabulated in table 3.2. The number of particles, dimension search space and optimal function 

value are tabulated from column 2 through 4. For all the benchmark problems the inertia factor 

was a constant value of w = 0.9 and the cognitive and social factor parameter 
1, 2c c were set a 

constant value of 0.8. The constraint tolerance ∈ ,g h
was set to

−410 . All the problems were 

solved using ALPSO algorithm described in the section 3.3. Matlab was used to implement the 

algorithm. Similar results as ALPSO are reported in the references [17] and [18]. 

Table 3.3 Results of benchmark problems from Appendix B 

 

Problem Number of Particles Dimension of the 
search space 

Optimal Value of 
the Objective 

function 

1 100 7 680.7 

2 30 3 0.0127 

3 30 3 2.236 
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Figure 3.13 Plot of Objective function vs. number of iterations of Problem 1 Appendix B 
 

 
 

Figure 3.14 Plot of Objective function vs. number of iterations of Problem 1 Appendix B 
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Figure 3.15 Plot of Objective function vs. number of iterations of Problem 3 Appendix B 
 

 
 

Figure 3.16 Plot of Objective function vs. number of iterations of Problem 3 Appendix B 
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CHAPTER 4 

 
APPLICATION OF ALPSO FOR SOLVING OPTIMAL DESIGN PROBLEM 

 Composite laminates can be tailored through arrangement of each ply’s fiber orientation 

angle (referred to as ply angles) to have desired elastic properties. Through this arrangement 

desired coupling between in-plane and out-of-plane deformation modes can be achieved to 

meet performance requirements. Among the achievable coupling is Extension Twist coupling 

which has its applications in rotor blades. For example, extension twist coupling has its 

applications in wind turbine blades by adjusting the twist distribution to achieve angle of attack 

that maintains desired optimal speed. This can also be used in tilt rotor blades to adjust twist 

distribution which can be used to increase efficiency of vertical and forward flight.  

The stacking sequence determines the stability of the laminates. Symmetric stacking 

sequence ensures the Hygrothermal curvature stability of the laminates. Hygrothermal stability 

ensures structural stability of the laminates against any out-plane deformations because of 

environmental conditions. Bending twist coupling is achievable in both symmetric and 

asymmetric layups and has its application in swept forward wing aircraft which increases the 

divergence speed.   

4.1 Hygrothermal Stability conditions 

 According to Classical Laminate Theory (CLT) [6] the constitutive equation describes 

the stiffness matrix of a laminate plate. The resultant forces and moments are functions of the 

in-plane strains and curvatures and are shown below as follows 
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Where , , , ,xx yy xy xx yyN N N M M and xy
M are the stress resultants and

ε ε γ κ κ, , , ,xx yy xy xx yy and κxy are the strains and curvatures. The stiffness coefficient are 

given as 

                                 = −
=

−∑ ( ) 1

1

( )
n

ij kij k k

k

A Q h h  

                                = −
=

−∑ 2 2
( ) 1

1

1
( )

2

n

ij kij k k

k

B Q h h                                                 (4.2) 

                               = −
=

−∑ 3 3
( ) 1

1

1
( )

3

n

ij kij k k
k

D Q h h  

Where ( )ij kQ and kh represent the transformed reduced stiffness and height relative 

to the laminate midplane for the 
thk ply respectively. The non mechanical stress resultants are 

shown as follows 
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Where { }α β,
k

are the transformed in-plane thermal and moisture expansion 

coefficient for the 
thk ply. H represents hygral quantities and T  represents the thermal 

quantities, the number of plies in the laminate is n . The stiffness and thermal coefficient 

transformations for specially orthotropic lamina are given by   

          [ ]σ ε σ ε

− −

 
 
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                        { } { }ε ε
α β α β
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− −

 
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Where the engineering strain and stress transformation matrices are given by 
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σ
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2

[  ]= 2

c s cs
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T                                           (4.5) 

Where θ= sins , θ= cosc and θ  is the fiber orientation angle. 

Substituting equations (4.4) and (4.5) into equation (4.3) and simplifying the equations we get 

the following expression for the non mechanical in plane forces and shears and out-of-plane 

moments and curvatures. 

                                  ( )
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Where  

               α β α β
∆ ∆
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4.2 Derivation of Hygrothermal conditions 

Hygrothermal stability can be achieved by having the out-of-plane curvatures 

κ κ, ,xx yy and κ xy equal to zero for any change in temperature and moisture and neglecting 

mechanical loads. This is represented as shown below 
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Using (4), the necessary and sufficient conditions to ensure hygrothermal stability 

conditions are as shown below. 

Condition A 

Equal non-mechanical stress resultants and zero non-mechanical shear and moment resultants,  

                                                   =( , ) ( , )T H T H

xx yyN N  

                            = = = =( , ) ( , ) ( , ) ( , ) 0T H T H T H T H

xy xx yy xyN M M M
   

                                  (4.12)     

The conditions of equation (4.12) are satisfied when 
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Condition B 

The coupling stiffness matrix is zero, i.e. 

                                                            = 0ijB                                                                   (4.14) 

The conditions of equation (4.12) are satisfied when 
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The Hygrothermal stability conditions obtained are material independent. This gives 

various advantages like providing material independence in the preliminary design and material 

independence provides robustness against the variability in elastic constants and coefficient of 

thermal and moisture expansion. 

4.3 Extension Twist Coupling of Hygrothermally stable laminates 

From [4], Extension Twist Coupling is a type of deformation behavior of laminates under 

loading. It is produced by an axial in plane load induces a change in twist curvature of the 

laminate structure. 

Actually the extension twist coupling occurs due to axial stress that causes shearing 

strains in off axis plies that are positioned at some non zero distance from the mid plane. The 

shearing forces are induced in these plies because they are constrained by bonding of plies 

above and below them. Due to the shear force acting through the mid plane, induces a moment 

about laminates axis therefore causing twist.  
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In this section, a constrained optimization is carried out to determine the stacking sequence of 

Hygrothermally stable laminate with extension twist coupling with a set number of plies. The 

results obtained are compared with the previous determined optimal solutions. 

The optimization process objective function is formulated by expressing the twist rate as 

a function of applied nominal stress. The objective function is evaluated for given set of 

iterations and each time the twist rate is calculated using CLT.  

Solving equation (4.1), the curvatures and mid plane strains can be calculated as  
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Where the non mechanical deformations are calculated as  

         

 

α α α β β βε
α α α β β βε
α α α β β βγ
β β β δ δ δκ
β β β δ δ δκ

κ β β β δ δ δ

   
   
   
     

=     
   
   
   
      

22

11 12 13 11 12 16

21 22 23 12 22 26

31 32 33 16 26 66

11 12 16 11 12 16

12 22 26 12 26

16 26 66 16 26 66

xx xx

yy yy

xy xy

xx xx

yy yy

xy xy

N

N

N

M

M

M










( , )T H

                                 (4.17) 

 

The twist rate in laminated composite strip, ϕ , due to a nominal axial stress, σ0 , 

alone can be calculated as  

                                                   ϕ β σ κ= + ( , )

16 0

1
( )

2

T H

xy
nt                                                    

(4.18) 
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Where t and n denote the thickness and number of plies respectively 

Since the optimizer search stable laminates, the non mechanical curvature in equation 

(4.18) is zero, recommending the objective function to be minimized as 

                                                         θ β= = − 2

16({ : 1... })kg k n                               (4.19) 

4.4 Implementation and Results for Extension Twist Coupling 

Augmented Lagrangian Particle Swarm Optimization (ALPSO) was used to obtain the 

optimal stacking sequence. The equations (4.12) and (4.13) are used fulfill the Hygrothermal 

stability, since equations (4.14) and (4.15) exclude any extension twist coupling. MATLAB 7.6.0 

was used for implementing the ALPSO algorithm. 

Although the Hygrothermal stability conditions are material independent but the 

extension twist coupling is material dependent. The T300/976 graphite/epoxy material system 

[4] was used. The optimization was performed for laminates with five through ten plies. The 

optimized stacking sequence for laminates with extension twist is tabulated in Table (4.1) 
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Table 4.1 Extension Twist coupling of constrained laminates 

Number of 
Plies 
n  

Stacking sequence 
Obtained through 

ACO 

Stacking sequence 
Obtained through 

ALPSO 

Stacking 
sequence 
Obtained 

through SQP 

5-Ply [-1.1564 /0.0671 

/0.6255/ 1.2275 /-

0.6878] 

[0.2339 /-1.0905 

/1.699 /-2.0548 /-

0.2056] 

[-58.7 /11.4 /45 

/78.6 /-31.3] 

6-Ply [0.4013 /-1.0639 /-

0.8576 /0.821 

/1.2397 /-0.2942] 

[1.2863 /-0.3812 /-

0.6187 /0.8086 

/0.5628 /-1.1023] 

[21.2 /-63.8/-

48.7 /48.7 /63.8 

/-21.2] 

8-Ply [-0.3803 /1.3048 

/1.2306 /1.1094 /-

1.2001 /0.6697 /-

1.4152 /0.3965] 

[1.3842 /-0.4341 /-

0.5928 /4.3011 

/0.9485 /-1.2638 

/1.7878 /0.4199] 

[-21.5 /72.1 

/57.9/-29.6 

/29.6 /-57.9/-

72.1 /21.5] 

10-Ply [-0.3520 /1.2962 

/1.2316 /-0.6559 

/1.0142 /-1.0189 /-

1.1471 /0.4908 

/0.3956 /-1.3298] 

[1.2393 /1.2064 /-

3.5557 /-0.5605 /-

0.771 /0.9176 /-

2.3502 /8.1411 /-

1.3605 /0.5018] 

[16.2 /-69.0 /-

65.3 /31.8 /42.1 

/-42.1/-31.8 

/65.3 /69.0 /-

16.2] 

 

The new designs obtained through ALPSO algorithm are compared with previous 

designs and robustness of all the design solutions was computed by perturbing the ply angles 

from -2 to 2 degrees. The histogram of the perturbed designs of objective function and sum of 

squared constraints functions are as shown below. The left side of the page contains 

histograms from the previous designs and the right side of the page contains histograms from 
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the new designs generated from ALPSO method. It can observed that both solutions are robust.

  

Figure 4.1 Robustness of Objective function of 5-Ply E-T coupling Laminate 
 
 

  
 

Figure 4.2 Robustness of sum of squared constraints functions of 5-Ply E-T coupling Laminate 
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Figure 4.3 Robustness of Objective function of 6-Ply E-T coupling Laminate 
 

 

 
Figure 4.4 Robustness of sum of squared constraints functions of 6-Ply E-T coupling Laminate 
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Figure 4.5 Robustness of Objective function of 8-Ply E-T coupling Laminate 
  

 
Figure 4.6 Robustness of sum of squared constraints functions of 8-Ply E-T coupling Laminate 
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Figure 4.7 Robustness of Objective function of 10-Ply E-T coupling Laminate 
 

 

Figure 4.8 Robustness of sum of squared constraints functions of 10-Ply E-T coupling Laminate 
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4.5 Bending Twist Coupling of Hygrothermally stable laminates 

From [4], Bending twist is a type of deformation behavior of laminates which results in a 

proportional twist caused by bending moment induced on the structure. It is created when the 

resultant, xxM , produces an equipollent distributed axial stress through the thickness of the 

laminate, which in turn produces an average axial load in each lamina. The shear action is 

created in orthotropic laminas, when the axial force is applied. A twisting moment is created in 

the laminate by the resultant shear forces acting in each ply at some non zero distance from the 

midplane. The resultant moment is positive, if the plies above the midplane are in compression 

and while the plies below the midplane are in tension, meaning that a generally orthotropic 

lamina above the midplane will produce the opposite shear effect as if it is positioned below the 

midplane. Hence, the unidirectional off-axis laminates will produce a significant level of bend-

twist coupling.  

In this section, a constrained optimization is carried out to determine the stacking 

sequence of Hygrothermally stable laminate with bending twist coupling with a set number of 

plies.  

The optimization process objective function is formulated by expressing the twist rate as 

a function of applied moment resultant. Same CLT assumption is used as extension twist 

coupling that the resulting laminate will be flat and that useful deformation range of these 

laminates validates using a linear theory. Using equations (4.16) and (4.17) the twist rate can be 

calculated as  

                                           ϕ ϕ κ= + ( , )

16

1
( )

2

T H

xx xy
M                                                 (4.20) 

The optimizer searches the Hygrothermally stable laminates, the non-mechanical 

curvature in equation (4.20) is zero, resulting in objective function given by 

                                         θ δ= = − 2

16({ : 1... })kg k n                                                (4.21) 
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4.6 Implementation and Results for Bending Twist Coupling 

Augmented Lagrangian Particle Swarm Optimization (ALPSO) was used to obtain the 

optimal stacking sequence. Four sets of conditions were used consecutively during the 

optimization of a given laminate: 1) no constraint on hygrothermal stability, 2) the constraints of 

condition A of equations (4.12) and (4.13), 3) the constraints of condition B of equations (4.14) 

and (4.15), 4) a constraint to a unidirectional laminate. The T300/976 graphite/epoxy material 

system [4] was used. The optimization was performed for laminates with two through ten plies. 

The optimized stacking sequence for laminates with bending twist is tabulated in Table (4.3) 
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Table 4.2 Bending Twist coupling of constrained laminates 

Number of Plies 
n  

Stacking sequence 
Obtained through 

ACO 

Stacking sequence 
Obtained through 

ALPSO 

Stacking 
sequence 

Obtained through 
SQP 

4-Ply 
symmetric 

[-50.53/ 39.45/ -

50.53/ 39.45] 

[-50.53/  39.44/-

50.53/ 39.44] 

[-24.3/ 65.7/ -

24.3/ 65.7] 

5-Ply 
symmetric 

[-54.20/ 50.17/ -

1.9194/ -54.20/ 50.17] 

[-42.75/ 28.90 /-

96.58/ -42.75/ 28.90] 

[27.8/ -76.7/  

24.4/ 27.8/ -76.7] 

6-Ply 
 

[-21.05 / 61.14  / 

52.22  -51.89/ -53.46   

/ 26.55] 

[50.04/ -27.20/ -

40.17/ -219.16/-

76.19/ 5.35] 

[-87.0/ -18.0 / 3.2  

/51.1 /72.4 /-

38.6] 

7-Ply 
symmetric 

[61.15/ -59.22/ 0.77   

/0.75 /61.15 /-59.22    

/0.77] 

[-44.91/ 15.16/  75.12/ 

-104.87 /-44.91/ 

15.16/ 75.12] 

[33.6/ -88.5/ 

33.6/ 88.5/ 33.6/ 

-88.5/ 33.6] 

8-Ply 
 
 
 
 
 
 
 

[49.26/ -51.30/ -

43.29/ 33.13/ -28.77/   

57.25/ 45.29/ -48.69] 

[13.45/ 85.12/ -30.41/ 

316.50/ -128.12/-

110.91/ -46.30/ -3.16] 

[25.6/ 23.0/ -

67.0/-64.4/ 25.6/ 

23.0/-67.0/ -64.4] 

 
 

 
              9-Ply 

symmetric 

 

[42.84/ -28.51/ -

70.37/ 35.55/ -70.36/ 

42.84/ -28.51/ -70.37/   

35.55  ] 

 

[-79.58/ -4.40/ 43.73/  

129.35/ -136.26/ -

79.58/ -4.40/ 43.73/ 

129.35] 

 

[26.7 / 26.1 / -

74.6/-66.9 /  23.2 

/ 26.7 /26.1 /74.6 

/-66.9] 

10-Ply 
symmetric 

[-53.05/ 51.58/ 2.56/  

-83.94/ 2.5783/ -53.0/ 

51.58/ 2.56/ -83.94/    

2.57] 

[-3.38/ 225.09/ -59.6/ 

270.59/ -419.66/ -

3.38/ 225.09/ -59.6/ 

270.59/-419.6] 

[-28.2 /-27.8 

/78.0/75.0 /24.3 

/-28.2 /-27.8/78.0 

/75.0 /24.3] 
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The new designs obtained through ALPSO algorithm are compared with previous 

designs and robustness of all the design solutions was computed by perturbing the ply angles 

from -2 to 2 degrees. The histogram of the perturbed designs of objective function and sum of 

squared constraints functions are as shown below. The left side of the page contains 

histograms from the previous designs and the right side of the page contains histograms from 

the new designs generated from ALPSO method. 
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Figure 4.9 Robustness of Objective function of 4-Symmetric Ply B-T coupling Laminate. 

 

 
 

Figure 4.10 Robustness of sum of squared constraints functions of 4-Symmetric Ply B-T 
coupling Laminate 
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Figure 4.11 Robustness of Objective function of 5-Symmetric Ply B-T coupling Laminate. 

 
Figure 4.12 Robustness of sum of squared constraints functions of 5-Symmetric Ply B-T 

coupling Laminate 
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Figure 4.13 Robustness of Objective function of 6-Symmetric Ply B-T coupling Laminate. 

Figure 4.14 Robustness of sum of squared constraints functions of 6-Symmetric Ply B-T 
coupling Laminate 
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Figure 4.15 Robustness of Objective function of 6 Ply B-T coupling Laminate. 

 

Figure 4.16 Robustness of sum of squared constraints functions of 6 Ply B-T coupling Laminate. 
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Figure 4.17 Robustness of Objective function of 7-Symmetric Ply B-T coupling Laminate. 

 
Figure 4.18 Robustness of sum of squared constraints functions of 7-Symmetric Ply B-T 

coupling Laminate. 



 

 

 

47

 
Figure 4.19 Robustness of Objective function of 8-Symmetric Ply B-T coupling Laminate. 

 

Figure 4.20 Robustness of sum of squared constraints functions of 8-Symmetric Ply B-T 
coupling Laminate 
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Figure 4.21 Robustness of Objective function of 9-Symmetric Ply B-T coupling Laminate. 

 
Figure 4.22 Robustness of sum of squared constraints functions of 9-Symmetric Ply B-T 

coupling Laminate. 
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Figure 4.23 Robustness of Objective function of 10-Symmetric Ply B-T coupling Laminate. 

 

Figure 4.24 Robustness of sum of squared constraints functions of 10-Symmetric Ply B-T 
coupling Laminate 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

                         In Design optimization, the objective function and constraints are usually highly 

nonlinear and non-convex leads to the possibility of existence of multiple local global solutions. 

Since the Sequential Quadratic Programming (SQP) is a gradient based method the chances of 

converged solution getting trapped into local minima is high. To get global optimal solution, one 

can use SQP with multiple starting point and select the best solution. This approach is used in 

previously used used Extension Twist couplings design to get near global optimal. In this thesis, 

the ALPSO algorithm discovered new global optimal design which satisfied terms of objective 

function and constraints. The ALPSO algorithm was found to be robust and reliable technique 

for solving Engineering optimization problem. ALPSO method is one of the most effective 

method for solving constrained optimization problem due to its capacity to enforce constraints 

as compared to other methods like penalty method. 

The ALPSO algorithm efficiency can be improved in many ways. The search behavior 

of the ALPSO algorithm is very sensitive to inertia weight and social parameters. During this 

work the inertia factor was selected to be a constant value and studies have shown that for a 

better efficiency and convergence of the solution towards the global value the inertia factor has 

to be dynamically or linearly varied adjusting according to the algorithm. One of the major 

disadvantage of PSO algorithm is the computational cost as it evaluates the function during 

each given set of iterations. Hence selecting the swarm size plays an important role in 

determining the computation time. In this work the population size of the swarm was selected to 

be 30, the optimal range of swarm size for efficient convergence rate is 20 to 60 and depends 

on problem.  
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One of the ways to reduce the computing time is to initialize the particles to be in the 

feasible region and randomly initialized particles are not always in the feasible region. In this 

work randomly initialized particles was used for initial generation. Hence initializing particles 

over a uniform design space within the feasible region may decrease the computation time and 

increase the rate of convergence of the optimal solution. Reducing the design search space 

after each iteration can also be implemented to increase the rate of convergence convergence. 

This work implements Augmented Lagrangian Method (ALM) with Particle Swarm Optimization 

(PSO) to solve constrained optimization problem. The ALM method can also be implemented 

with other Evolutionary Algorithms (EA) to find the global optimum. 
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APPENDIX A 

EXAMPLES OF PROBLEMS1 
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The Rosen Brook function R, the Griewank function as well as test problems 1 to 7 

used in chapter 3 are given here for completeness. For further information can be referred from 

[7], [11] 

                                     = − + −2 2

2 1 1 ( ) 100( ) (1 )Rf x x x x  

                                            − ≤ ≤ =10 10, 1,2ix i  

                    
   

= + − +   
   

2 2 1 2
1 2

1
  ( ) ( ) cos cos 1

4000 1 1

x x
Gf x x x  

                                           − ≤ ≤ =10 10, 1,2ix i  

Problem 1             = +2 2

1 2  ( ) ( )f x x x  

                             = − =1 1( ) 3 0g x x  

                             = − ≤1 2( ) 2 0h x x  

                          − ≤ ≤ =10 10, 1,2ix i  

Problem 2           
   

= + − +   
   

2 2 1 2
1 2

1
( ) ( ) cos cos 1

4000 1 1

x x
f x x x  

                          
= − =

= − ≤
1 1

1 2

( ) 3 0

( ) 2 0

g x x

h x x
 

                        − ≤ ≤ =10 10, 1,2ix i  

Problem 3        
π π−

=
+

3

1 2

3

1 1 2

sin(2 ) sin(2 )
  ( )

( )

x x
f x

x x x
 

                         
= − + ≤

= − + − ≤

2

1 1 2

2

2 1 2

( ) 1 0

( ) 1 ( 4) 0

h x x x

h x x x
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                              ≤ ≤1 0.1 10,x ≤ ≤20 10x  

Problem 4         = − + −3 3

1 2  ( ) ( 10) ( 20)f x x x  

                         
= − − − − + ≤

= − + − − ≤

2 2

1 1 2

2 2

2 1 2

 ( ) ( 5) ( 5) 100 0

( ) ( 6) ( 5) 82.81 0

h x x x

h x x x
 

                         ≤ ≤113 100,x ≤ ≤20 100x  

Problem 5        = + −2 2

1 2 ( ) ( 1)f x x x  

                        = − =2

1 2 1 ( ) 0g x x x  

                       − ≤ ≤ 1 1,ix =1,2i  

Problem 6    
− − − − − − −

=
2 2 2

1 2 3(100 ( 5) ( 5) ( 5) )
  ( )

100

x x x
f x  

                      = − + − + − − ≤2 2 2

1 2 3( ) ( ) ( ) ( ) 0.0625 0jh x x p x q x r  

                      ≤ ≤0 10,ix  =1,2,3i  

                     =, , 1,2......,9,p q r = 31,2,......,9j  

Problem 7   = + + −2

3 1 5 1 ( ) 5.3578547 0.8356891 37.293239 40792.141f x x x x x  

= + +1 2 5 1 4( ) 85.334407 0.0056858 0.0006262h x x x x x − − ≤3 50.0022053 92 0x x

= − − −

+ ≤
2 2 5 1 4

3 5

( ) 85.334407 0.0056858 0.0006262

0.0022053 0

h x x x x x

x x

= + + +

− ≤
3 2 5 1 2

2

3

( ) 80.51249 0.0071317 0.0029955

0.0021813 110 0

h x x x x x

x

= − − − −

+ ≤
4 2 5 1 2

2

3

( ) 80.51249 0.0071317 0.0029955

0.0021813 90 0

h x x x x x

x
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= + + +

− ≤
5 3 5 1 3

3 4

( ) 9.300961 0.0047026 0.0012547

0.0019085 25 0

h x x x x x

x x

= − − − −

+ ≤
6 3 5 1 3

3 4

( ) 9.300961 0.0047026 0.0012547

0.0019085 20 0

h x x x x x

x x
 

≤ ≤1 78 100,x ≤ ≤233 45,x ≤ ≤27 45ix  = 3,4,5i  
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APPENDIX B 
 

EXAMPLES OF PROBLEMS 2 
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Benchmark constrained problem from [11] and [12] 
 
 

Problem 1        = − + − + + − + +2 2 4 2 6 2

1 2 3 4 5 6( ) ( 10) 5( 12) 3( 11) 10 7f x x x x x x x  

 

                                     + − − −4

7 6 7 6 74 10 8x x x x x  

 

                       = − + + + + + ≤2 4 2

1 1 2 3 4 5  ( ) 127 2 3 4 5 0,g x x x x x x  

 

                       = − + + + + − ≤2

2 1 2 3 4 5  ( ) 282 7 3 10 0,g x x x x x x  

 

                        = − + + + − ≤2 2

3 1 2 6 7 ( ) 196 23 6 8 0,g x x x x x  

 

                        = + − + + − ≤2 2 2

4 1 2 1 2 3 6 7 ( ) 4 3 2 5 11 0g x x x x x x x x  

 

                         Where − ≤ ≤10 10ix =( 1,...,7)i  
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3 2 1( ) ( 2)f x x x x  

                        = − ≤
3

2 3
1 4

1

( ) 1 0,
71785

x x
g x

x
 

                       
−

= + − ≤
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2

2 1 2
2 3 4 2

2 1 1 1

4 1
( ) 1 0

12566( ) 5108

x x x
g x

x x x x
 

 

                       = − ≤1
3 2

2 3

140.45
( ) 1 0,

x
g x

x x
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= − ≤1 2
4( ) 1 0,

1.5

x x
g x  

 

                      ≤ ≤ ≤ ≤ ≤ ≤1 2 30.05 2,0.25 1.3,2 15.x x x  
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Problem 3           = − + +1 2 1 2( , , ) 2f x x y y x x  

 
                           s.t.       

                           

− − =

− + + ≤

≤ ≤

∈

1 2

1 2

1

2exp( ) 0
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0.5 1.4

{0,1}
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