

HIEARCHICAL OVERLAY FOR SERVICE COMPOSITION

IN PERVASIVE ENVIRONMENTS

by

APARNA KAILAS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

MAY 2007

ii

ACKNOWLEDGEMENTS

I sincerely thank my thesis supervisor Dr. Mohan Kumar for his guidance,

encouragement and support throughout the course of this thesis work. I would also like

to thank him for providing me the opportunity to be a part of the Pervasive Information

Community Organization (PICO) research group. I thank the thesis defense committee

members Dr. Ramesh Yerraballi and Mr. Mike O�Dell for their valuable inputs.

 I am grateful to my husband, Venu and my brother, Deepak for their encouragement and

support to be all that I can be and to my mother, who always believed in me, even when I

didn�t believe myself.

February 13, 2007

iii

ABSTRACT

HIEARCHICAL OVERLAY FOR SERVICE COMPOSITION

IN PERVASIVE ENVIRONMENTS

Publication No. ______

Aparna Kailas, MS

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Mohan Kumar

The objective of pervasive computing is to allow users to perform their tasks in a

transparent way regardless of device features. Resources on devices should be exploited

to provide services in order to perform user tasks. When there is no exact match for the

user task in the environment, the capabilities of available devices should be combined to

perform the user task. Seamless Service Composition (SeSCo) abstracts device

capabilities as services and leverages existing work on graph algorithms to perform

service composition. A lightweight framework, PerSON (Service Overlay Network for

iv

Pervasive Environments) was developed to provide a service overlay network for the

Pervasive Information Community Organization (PICO) middleware.

In this thesis SeSCo service composition mechanism is implemented on top of PerSON.

The ability of PerSON to construct an ad hoc service overlay network is exploited to

create a hierarchical service overlay using message exchanges that facilitate the

hierarchical order. This thesis develops a mechanism for propagation of services in the

hierarchy. Services at each level are aggregated with services at lower levels of the

hierarchy and requests are resolved by constructing a path in the service aggregation.

Demonstration applications that perform string encryption and decryption are

implemented using the PICO framework. The application problem comprises a matrix

multiplication operation, and the encryption and decryption of matrix data.

SeSCo is extended to include device resources in the service path, so that service

composition will find the set of services hosted by the least resource constrained

devices among all feasible candidates. A combination of device resources is used to

define a suitable length for all services hosted by the device in the service aggregation.

A proof of concept example scenario that uses battery energy has been implemented to

demonstrate resource aware service composition.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT ... iii

TABLE OF CONTENTS ..v

LIST OF FIGURES... viii

LIST OF TABLES ..x

Chapter

 1. INTRODUCTION...1

1.1 Motivation ...1

1.2 Objective ...3

1.3 Contributions ...3

1.4 Thesis Organization ...5

 2. BACKGROUND AND RELATED WORK ..6

2.1 Challenges in pervasive environments..6

2.1.1 Heterogeneity...6

2.1.2 Network Quality...6

2.1.3 Device mobility..7

2.1.4 Reliability ..7

2.2 Service Oriented Computing ..7

vi

2.3 Service Composition..9

2.4 Existing Service Composition mechanisms ..11

2.4.1 Anamika[5]..11

2.4.2 Task Graph Based Application Framework for Mobile Ad
 Hoc Networks[8] ...14

2.4.3 A distributed scheme for autonomous service composition[9]16

2.4.4 Spidernet: An Integrated Peer-to-Peer Service Composition
 Framework[13]...19

2.5 Observations on existing frameworks...21

 3. ARCHITECTURE OF PerSON ...24

3.1 PerSON stack...25

3.1.1 Network layer...26

3.1.2 Device layer ...26

3.1.3 Service layer...27

3.2 Physical network connections ..28

3.3 Overlay network ..28

3.4 Service connection...32

3.5 Message format..34

3.6 PerSON enhancements...37

 4. SERVICE COMPOSITION...39

4.1 Overview of Pervasive Information Community Organization
 (PICO)...39

4.2 Hierarchical Service Overlay ...41

vii

4.3 Service Aggregation...44

4.4 Service Composition..46

 5. PROTOTYPE IMPLEMENTATION...50

5.1 PICO over PerSON..50

5.2 Modified PerSON Architecture ..51

5.3 Hierarchical Service Overlay ...52

5.4 Service Aggregation...56

5.5 Service Composition..59

5.6 Demonstration Application ..63

5.7 Resource Aware Service Composition ...72

5.7.1 Parameters of Interest ...73

5.7.2 Implementation ..74

5.7.3 Application...75

5.7.4 Assumptions and Limitations ...77

5.7.5 Results ...77

 6. CONCLUSION AND FUTURE WORK ...80

 REFERENCES..81

 BIOGRAPHICAL INFORMATION ...84

viii

LIST OF FIGURES

Figure Page

 3.1 PerSON architecture[14] ..25

 3.2 PerSON stack ..25

 3.3 IP network connections..28

 3.4 Query propagation in PerSON ...29

 3.5 Device table...30

 3.6 Route table...30

 3.7 Result message route ...31

 3.8 Service table ..32

 3.9 Service connection...33

 3.10 Message Formats : (a) Query, (b) Result, (c) Connect Request,
 (d) Close Request, (e) Success Response, (f) Error Response,
 (g) Data..36

 4.1 Latch Protocol Message Exchange ..43

 4.2 Sample Device Hierarchy ..43

 4.3 Service Aggregation ...46

 4.4 Search and Service zones in the hierarchical service overlay..........................47

 4.5 Service Composition for a Request ..48

 5.1 System Architecture...51

 5.2 PerSON Architecture ...52

ix

 5.3 Device Record ...55

 5.4 Add Service message format ..56

 5.5 Remove Service message format..58

 5.6 Invalid SID message format ...59

 5.7 Query message � query as Service Graph...60

 5.8 Result message format ...61

 5.9 Alphabet to number mapping ...63

 5.10 Encryption Query..64

 5.11 Test Hierarchy ...66

 5.12 Available services ...67

 5.13 Consolidated Service Graph at PDA ..67

 5.14 Consolidated Service Graph at Laptop ...68

 5.15 Encryption Service path ...68

 5.16 Sequence diagram for Encryption Application ...70

 5.17 Test Case Consolidated service graph on Laptop...75

 5.18 Test Case Consolidated service graph with resource degradation76

 5.19 Remaining battery energy with time...78

 5.20 Energy savings for Resource Aware Service Composition79

x

LIST OF TABLES

Table Page

 3.1 PerSON message types ..34

 3.2 PerSON message format ..35

 4.1 Device Classification Chart[3]...41

 5.1 PerSON message types for Latch Protocol ...55

1

CHAPTER 1

INTRODUCTION

Mark Weiser introduced pervasive computing as an environment saturated with

computing and communication ability and yet so integrated with users that it disappears

into the background [16]. A user in a pervasive environment should be able to perform

tasks without worrying about the computing involved.

1.1 Motivation

With the proliferation and multiplicity of devices that perform similar tasks, there is a

need to dynamically bind one of several or a combination of devices offering the same

service in the environment as opposed to specifying a host that can provide a service. A

device should be able to search for and combine capabilities in the environment

effectively.

Service Oriented Computing (SOC) which is commonly used in the web services

domain defines device capabilities as services [1]. SOC can be applied to the pervasive

computing environment [3] to provide support for seamlessly combining different

device capabilities. Device features being exported as services; they can be advertised,

discovered and utilized in a uniform way. The user tasks will require a number of

resources possibly spread over the network. With service oriented architectures, user

requirements can be fulfilled by locating services that match the need.

2

Some service discovery mechanisms, for example the discovery mechanism used in

Bluetooth [5, 14, 18] try to find an exact match for the required service, but there might

not always be an exact match in the environment. Pervasive environments are subject to

short switched on periods and device mobility. The availability of services is therefore

dynamic. In such cases, user queries should not rely on pre-existent services but rather

use services that can be combined dynamically using existing services in the

environment. Service Composition is the process of creating customized complex

services from existing basic services [1].

In the current environment, collaboration of devices requires significant human

intervention to configure devices. The service composition mechanism should be able to

minimize the user role as much as possible. The users express their requirements to the

service composition system, and from there on the service composition mechanism

should take care of identifying resources and configuring their interoperability.

Current service composition efforts use a task graph oriented approach [8, 9, 13]. A task

graph is intuitive and can leverage existing work in graph algorithms. The service

request is given in the form of a graph with the nodes representing the services required

to fulfill the request and the links between the nodes representing application data flow.

The service composition mechanisms however attempt to discover exact matches to the

requested services (nodes in the graph) [8, 13]. There is no effort at interleaving

different device services to satisfy the service request.

As devices get smaller and more mobile, their computing power, storage capacity and

amount of energy that can be stored are constrained. The current task graph oriented

3

approaches use alternatives merely to handle service unavailability [8, 9, 13]. When the

environment is well conditioned, service composition should have the ability to choose

devices based on criteria like battery power and bandwidth, to avoid straining the

resources of already constrained devices. When dynamic resource availability is

considered, choosing the least resource constrained device implies that the required

service will be available longer, reducing the chances of failure.

1.2 Objective

Seamless Service Composition (SeSCo) addresses the problem of service composition

by adopting a service oriented computing approach [3]. SeSCo abstracts device features

as services and uses graph algorithms to compose user requests. This thesis seeks to

implement SeSCo on the middleware framework, Pervasive Information Community

Organization (PICO) [7]. SeSCo is implemented over an existing implementation of

PICO over a lightweight framework, Service Overlay Network for Pervasive

Environments (PerSON) [14]. PerSON has been developed to provide a service overlay

network for PICO. This thesis extends SeSCo to handle resource availability changes in

devices, thus enabling service composition choices that seek to conserve device

resources.

1.3 Contributions

• Implementation of Seamless service composition (SeSCo)

o Implementation of Hierarchical Service Overlay using message exchanges

between devices - an improvised version of the earlier proposed Latch Protocol.

o Developed a mechanism for propagation of services up the device hierarchy.

4

o Implementation of service aggregation at each device of level 1 and above.

o Implementation of query resolution with the request being propagated up the

hierarchy in case of failure at local device.

• Integration of Seamless Service composition over PerSON (Service Overlay

Network for Pervasive Environments).

• A prototype for a string encryption and decryption application is implemented using

PICO services for demonstration of SeSCo.

• Resource aware service composition is designed and developed as an extension to

Seamless Service Composition. A proof of concept application that uses battery

strength is used to demonstrate resource aware service composition

The efficiency obtained by merging messages with route information in PerSON is

exploited here. The route information allows the shortest path to the service to be

determined, along with alternate routes in case of failure. The hierarchical service

overlay network is joined by every incoming device. Proxies to handle service

discovery and composition are determined dynamically by the latch protocol. Proxies

allow resource constrained devices to offload service discovery and composition work

to less resource constrained devices. Service composition consists of choosing suitable

services that executed one after the other to accomplish the user task. While choosing

these services, device resources are considered so that services on the least resource

constrained devices are chosen. Resource aware service composition proposes regular

messages that let a device have a resource view of those devices for which it is the

5

proxy. The resource view enables the device make optimal service choices while

composing for a request.

1.4 Thesis Organization

The challenges in pervasive environment, service oriented computing, service

composition, details of some of the existing frameworks and their limitations are

discussed in Chapter 2. The architecture, service discovery and connection process and

message formats of the PerSON framework are described in Chapter 3. The overview of

PICO middleware and Seamless Service Composition (SeSCo) [3] are discussed in

Chapter 4. The implementation details of SeSCo and its enhancements, PerSON

improvements and additions to support SeSCo, the proposed resource aware service

composition and the demonstration application are discussed in Chapter 5. The thesis is

concluded in Chapter 6, along with some ideas for future work.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

Pervasive computing envisions technology so integrated with users that it disappears

into the background [16]. The possibility of technology disappearing in the background

has increased with the proliferation of a variety of devices along with high availability

of communication infrastructure [12]. To accomplish the objective of disappearing

technology, heterogeneous devices should be able to communicate with each other

efficiently with minimal user interaction. The practical realization of pervasive

computing is hindered by a number of challenges [2, 12].

2.1 Challenges in pervasive environments

2.1.1 Heterogeneity

There may be different types of devices, with the resources varying due to limitations of

weight and size. While static devices might have infinite resources say in terms of

energy, many battery-operated resources will have to conserve energy. The necessity to

conserve energy will affect device capabilities, restricting them to those operations that

use as less energy as possible.

2.1.2 Network Quality

With the advent of new networking technologies like Wireless LAN, Bluetooth,

Infrared etc., there is no unique way that devices connect to each other. The presence of

different kinds of networks results in variations in network quality. Network quality or

7

available bandwidth should be considered while choosing services for fulfilling the

service request.

2.1.3 Device mobility

Devices in a pervasive environment have varying mobility rate. The resulting

environment will be dynamic with the services availability varying as devices move in

and out of the environment.

2.1.4 Reliability

Many of the devices in the pervasive environment will be battery operated rather than

being connected to a static power supply. Thus the devices will have short switched on

period, and are vulnerable to system overloading. So service composition should

consider power availability when deciding which services to use in fulfilling the service

request.

Heterogeneous devices will be required to interact seamlessly, despite wide differences

in hardware and software capabilities [2, 12]. A transparent mechanism to discover and

use device capabilities is necessary. Service oriented computing, which defines device

capabilities as services can be applied to pervasive computing, thus providing support to

identify and use device capabilities as services to handle a user task [3].

2.2 Service Oriented Computing

The basic premise of Service Oriented Computing is to use services as the building

blocks to facilitate the development of applications [1].

In the web domain, services are offered by service providers; service providers

implement the services, supply the service descriptions and provide technical and

8

business support to users of the services. The services provide a distributed computing

scenario that facilitates intra and cross enterprise applications. Service descriptions

advertise service capabilities, behavior and QOS parameters like cost and performance

metrics (for instance, response time), which are used by service aggregators in selection

and composition of services.

The service composition layer uses individual services to compose more composite

services. The services are then published and can be used as to build much more

composite services. Some composite services may provide services to the composition

function by [15]:

• Controlling execution of the services and the data flow among them.

• Monitoring events of the component services and publish higher level composite

events

• Ensuring that the composite service has inputs that match those of its component

services and works according to a defined set of business rules.

• Deriving QOS including cost.

The SOA includes a management layer. The management layer manages deployment of

services and applications, provides statistics that will help evaluate the service, delivers

notifications when a particular decision point is reached or a certain activity is

completed and manages open service marketplaces.

Open service marketplaces while functioning as much of the vertical domains do, allow

business to be conducted electronically and aggregate distributed service

demand/supply. These marketplaces advertise products and services, provide business

9

transaction and negotiation, related financial services, service certification in terms of

QOS, rate services based on parameters like turnaround time and negotiate and enforce

Service level agreements.

An URL identifies web services which use open Internet standards. Interactions are

SOAP calls using XML data content. Interface descriptions are typically written using

WSDL (Web Services Definition Language). Directory services that contain these

descriptions are defined using UDDI (Universal Description Discovery and Integration)

standard. The directory services let enterprises discover required services and their

details. Service composition uses these web services to compose other services.

Typically BPEL4WS (Business process execution language for web services) is used to

describe these composite services [1].

2.3 Service Composition

When a required service is not available in the environment, the available services in

the environment should be used to compose the required service. Service Composition

creates new services using existing services [1]. Service composition mechanisms have

been classified as [11]:

1. Proactive Composition and Reactive Composition

Pro-active composition refers to offline composition of available services. The

compound services are pre-composed before the user makes a request. The services

used in such a context are usually stable and run on a resource-rich platform. Proactive

composition is used on a large scale on the internet.

10

Reactive refers to dynamic composition, created only when a request comes in from a

user. Reactive composition requires some sort of entity to take the responsibility of

composing the request. The use of a central entity is particularly useful when the

entities are typically unstable.

2. Mandatory-composite services and Optional-composite services

Mandatory services refer to those subcomponents that are required for execution of the

composite service, and a correct result can be obtained only if all the subcomponents

execute successfully. Example is a service that calculates averages of stock values.

Optional-composite services do not require participation of all the subcomponents.

Examples are connectors between service components that can be used to optimize data

transfer through a variable bandwidth line.

Existing web service composition mechanisms compose services offered on the wired

network infrastructure. These usually rely on a centralized server that discovers

individual services, registers them and composes them into composite services when

required. The web services domain is comparatively more stable with no constraints on

resource requirements. These however cannot be directly used in a pervasive computing

environment [5].

In pervasive computing, services need to be provided considering challenges of

resource mobility, availability and the other factors listed above. Devices with a short

switched-on period together with mobility, and ad-hoc connections make the network

connection highly unreliable.

11

Some wireless service discovery schemes are limited by the range in which they can

operate; for instance, Bluetooth has a range of 10m. These types of discovery

mechanisms restrict devices to those in the vicinity of the device. As a result the search

for possible matches that can be found for a request becomes restrictive. The devices in

the geographical proximity can be used, although multiple hops away in network terms.

With the proliferation and multiplicity of devices that perform similar tasks, we need to

move from specifying a specific host to provide a service, to dynamically binding to

one of the several devices offering the same service in the environment. Dynamic

binding will also allow user queries to not rely on pre-existent services but rather use

services that can be combined dynamically using existing services in the environment.

Centralized mechanisms are popular in wired environments. The problem with

centralized mechanisms is that when the centralized entity fails, the whole infrastructure

fails. Along with mobility changes that change the topology, and dynamically changing

resource availability, a centralized system cannot be adaptive to these failures. To

handle the above challenges, distributed schemes are positioned to perform better than

centralized schemes in such environments [3, 5, 8, 9].

2.4 Existing Service Composition mechanisms

2.4.1 Anamika[5]

Anamika proposes a semi-distributed architecture with reactive service composition. A

broker capable of executing on any node is used in this scheme. The individual broker is

selected based on various parameters like resource availability, proximity etc. The

broker composes the request and is responsible for handling the execution of the

12

composed request and the various error conditions that could arise during composition

and execution.

The service discovery layer encompasses the protocol used to discover services in the

environment. Service discovery is primarily peer-to-peer service discovery and service

descriptions are cached. Each device has a service manager that lets local services

register themselves and advertises these services to other nodes. Services are described

using DAML+OIL. The advertisements from other devices are cached

The service composition layer is responsible for managing the discovery and integration

of services into complex services. This architecture proposes two schemes for broken

selection, described later. The broker arbitration and delegation module supports one of

the two.

The service execution layer is responsible for the execution of the composed service.

The layer takes care of optimizing the cost of executing a service. A Fault Recovery

module is part of the service execution layer that is responsible for handling service

unavailability and node failures.

Dynamic Broker Selection

When a request comes in for composition, a broker is chosen to carry out the

composition and execution of the request. The selection is based on parameters like

power of the platform, number of services in the vicinity, stability etc. In some cases,

the originator itself might be the broker. The broker sends the request to its neighbors,

13

which then forward the request. When the broker cannot discover all the services, an

error is returned.

During execution of the request, the broker sends back checkpoints to the client. The

client maintains a cache of the result so far. If the broker fails, the client detects the

failure using the absence of checkpoints. The client reconstructs the unexecuted part of

the query into a new request and repeats the process again.

Distributed Brokering Technique

Another technique used to improve the dynamic brokering scheme is to distribute the

brokering to different entities. The module selects a broker for the initial set. The

criterion is similar to that used for the dynamic brokering scheme. Here the emphasis is

the vicinity of services required immediately. Hence, if the requester finds service in its

vicinity, the broker does limited composition and execution of the services available.

Once that is done, the broker returns the partial set to the requester and selects another

broker to do a subset of the remaining composition. The current broker then returns the

final composition result to the client. The checkpoints in this scheme are propagated

from different brokers. Each broker keeps track of the source and the source knows

which broker is currently handling the request. If the client does not get any results for a

reasonable amount of time, a composition request is issued with the remaining

composition.

14

2.4.2 Task Graph Based Application Framework for Mobile Ad Hoc Networks[8]

This is a Task Graph (TG) based framework for application development and execution

in Mobile Ad-hoc Networks (MANETs). The task is decoupled from the host allowing

an application to use any of the multiple hosts available in the network. Hierarchical

composition is supported, with devices grouped together and treated as a single unit,

enabling new composite services to be offered.

A network of mobile devices is described as a graph. Each device is associated with a

set of attributes � static as in resolution of a digital camera or dynamic as in the location

of the camera. A node is a representation of a device or a collection of devices that has

certain attributes and offers a service. An edge is an association between two nodes that

satisfies attributes for performing a task. A complex task is divided into sub-tasks. An

atomic task is an indivisible task.

The task graph is described as (VT, ET), where VT is the set of nodes required to fulfill

the task and ET is the set of edges that describe the execution flow. An instantiation of

the task graph is a path in the device graph. Each node in the task graph is the instance

of the node required to fulfill the task. When the instance of the node becomes

unavailable, node re-instantiation chooses another suitable device.

This framework assumes the existence of a controller node that takes care of

instantiating and re-instantiating services. The application instantiation process consists

of:

15

Discovery: The controller broadcasts a TASK-QUERY with the required nodes. A

device that is receiving the query for the first time, broadcasts the query. A device that

can satisfy any of the nodes returns a TASK-QUERY-ACK to the controller.

Selection: The controller selects one among the possible instances. The criteria used

here is to minimize the average path length. A TASK-INSTANTIATE message goes

from the controller to the selected nodes.

Connection: Each selected node is notified of its parent and child. A request-reply

message passes between all parents and their children. When all the nodes have been

contacted, the controller is informed.

Mobility management of devices is managed by periodic exchange between the selected

nodes and the controller. TASK-CONTROLLER-HELLO is sent from the controller to

all selected nodes and possible nodes till the selection is complete. Each node sends

TASK-DEVICE-HELLO to the controller. Each node also sends a TASK-NEIGHBOR-

HELLO to its parent and child nodes. Any device receiving the hello packets has to

acknowledge to the sender. If the sender does not receive a reply within a designated T

seconds, then the recipient is deemed unreachable.

The type of node that is unavailable determines the action to take. If the node is:

Controller (Case B): Sender assumes that the application has been aborted and goes to

an idle state

16

Node instance (Case C): Controller attempts to re-instantiate the instance and restarts

the discovery phase.

Neighbor node instance (Case A): The controller is informed so that the node can be re-

instantiated if needed.

Possible node instance: Controller drops the node from the list of possible instances.

The following metrics are used to describe the task graph instantiation:

Average Dilation is the average length of the paths over all edges of the task graph.

Lower dilation implies lesser hops.

Time to Instantiate a task graph is the time from the start of the discovery phase to the

end of the selection phase.

Time to Re-instantiate is the time taken to rediscover and re-select a new device when

an existing instance becomes unreachable.

Effective Throughput is the ratio of average number of application data units received at

the destinations and the number of application data units actually sent.

2.4.3 A distributed scheme for autonomous service composition[9]

This proposes an autonomous distributed service path selection scheme for building

directed service graphs for composition. A distributed media overlay network based on

a peer-to-peer network of physical overlay nodes (ONodes) organized as a Media

Overlay Network (MONet) is used. Each of these physical overlay nodes consists of

one or more media ports.

17

Description Scheme

The description scheme describes the hierarchical relationship between elements of a

media endpoint by classifying an element into four object classes:

• User - user level, for example preferred language

• App - application level, for example available codecs

• Dev - device level, for example video resolution

• Ifc - network interface level, for example bit rates.

A media description may consist of many instances of each class. A media description

with one object of each class e.g., {application, device, network interface} is called

irresolvable. Media descriptions have to be broken down into irresolvable forms in the

service path. An element may exist in more than one class but in general an element is

classified according to the lowest class in which it is a constraint.

A MediaPort (MP) has a set of irresolvable endpoint descriptions to describe the input

and another set to describe the output ports. As long as one mediaport can receive the

output of another mediaport, they can be chained together in the service path. A node is

complete if, during the execution of the service graph routing algorithm, there is a

completed path from the source for all outputs. A node has to be complete before it can

be considered for the service graph.

Transformations and media adaptation is required to eliminate mismatches between

what the client can accept and the media available. As the service path is built, all

18

alternates are checked to eliminate these mismatches for each end point. The process is

repeated through several iterations until you get a complete service path for all sub-

flows or no service path is found. All possible matches are ordered based on the

number of mismatches, to determine the optimal path.

Three heuristics are used to construct these service graphs:

1. Compatible is used to determine if an input port can receive a media flow in its

current state.

2. Adapt generates description of the result of applying the media port on the media

flow.

3. Useful determines desirability of an operation. A positive result is returned if the

differences post-operation is less than that started with.

Using these, the service path construction algorithm determines if a media port should

be in the service path or not.

Service Discovery

Service discovery is peer-to-peer based. The service discovery process consists of

finding services at each successive hop in the routing algorithm. Three permutations

were tried: global directory service, limited scope broadcast, and directed path search.

Global directory

In the global directory media discovery approach, a centralized directory of MPs is

assumed, for instance based on UDDI.

19

Scope-limited flooding

Scope limited flooding is a peer-to-peer search technique by which a peer floods a

scope limited search query to all of its neighbors on the MONet. The query is then

propagated to its neighbors. The search query has an associated time to live (TTL) that

determines if the search query should be propagated.

Path directed search

Media routing works within the constraint of end-to-end delay, especially real time

application. So only those paths that bring the media stream closer to the media client

are considered.

Service Graph Routing

The service graph routing is a state based depth first search. Nodes once selected, select

their successors based on heuristics that consider if a node has all the required inputs

(complete), if the successor produces any useful transformation towards the end media

content. Each path that results from choosing an initial node is a candidate path,

irrespective of whether the path results in a complete media port or not. The final path is

chosen based on lowest latency.

2.4.4 Spidernet: An Integrated Peer-to-Peer Service Composition Framework[13]

The Spidernet system is a quality aware service composition middleware deployed in

wide-area networks. Spidernet creates a P2P service overlay, where each peer provides

a number of service components. Each service is described in terms of the quality

20

parameters of its input and output. The service also has associated quality parameters

such as delay that are used to decide service component matches.

The service request is given in the form of a function graph with the nodes representing

the services required to fulfill the request and the links between the nodes representing

application data flow. The attributes on the nodes indicate the required QoS. The

function graph also indicates dependencies and commutation links. A commutation link

indicates that the composition order can be exchanged.

Service Discovery is decentralized and is based on the Pastry distributed hash table

(DHT) system. The function name is mapped to a key in the hash table and the service

component�s static meta-data (like location, input QoS, output QoS) are stored against

the key. All functionally duplicate service components share the same key, and the

DHT system stores the meta-data list of service components on the same DHT assigned

peer.

When a peer wants to discover a list of service components for a given function name,

the same secure hash function is used on the name and a query message is sent. The

query is then routed to the assigned peer by the DHT system. The peer then returns the

list to the requesting peer.

For a service composition request, the application sender invokes the Bounded

composition probing (BCP) protocol. The protocol consists of the source first

generating a probe, which includes the function graph and the user�s QoS/resource

requirements. A probing budget, that defines how many probes can be used for a

composition, and a probing quota, which defines the number of duplicated service

21

components to probe for a required service, dictates how extensive the probe is going to

be. Each peer processes a probe independently using local information like QoS and

resource availability and allocates required resources temporarily. The allocation of

resources is soft and expires after a certain timeout. The peer decides the next hop nodes

based on the function graph. Depending on the probing budget and quota, the most

suitable candidates for the next hop function are selected, the probe is updated with the

peer�s resources and QOS states and sent out. When all the nodes in the function graph

are matched, the probing messages are sent to the source. The source then initiates a

service session with the selected peers.

Spidernet adopts a proactive approach to failure recovery. Backup graphs are

maintained for the service session, and in case of failure, Spidernet switches to one of

the backup service graphs. These backup graphs are maintained by sending periodic

probes to maintain liveness and resource/QoS conditions.

2.5 Observations on existing frameworks

Service composition done a priori is suitable for the web domain. Due to the dynamic

nature of the environment, services might not be available all the time. Available

services in the environment should be used to dynamically construct complex services.

A centralized service composition mechanism will not be effective as the topology is

always changing, and the network connectivity is not constant.

Some service composition approaches discussed in Section 2.4 use a task graph based

approach. A task graph based approach can leverage existing work in graph algorithms.

22

The schemes discussed in 2.4 use a request template and try to find an exact match for

each of the nodes in the template. An absence of matches for any of the nodes is flagged

as an error. There is no effort at building a composite service for each of the nodes

using available services.

The scheme described in section 2.4.2 is controller-based and hence prone to problems

of central node of failure. There are also a lot of liveness messages sent between the

nodes, which will reduce available network bandwidth. In low bandwidth conditions

there is the possibility that data passing between nodes will be affected due to these

periodic messages. These could potentially be regarded as node failures and lead to a

multitude of re-instantiations.

In Anamika, the broker selection process uses a lot of resources. If the requester is a

mobile phone with a limited battery life, thrusting on it the work of broker arbitration

might run the battery down. The caching of results is also not effective in an

environment where devices are memory constrained, for instance requiring a mobile

phone to cache results while parsing a word document into a printable form. The

selection of the broker considers resource availability. The scheme however deals with

ad hoc networks and does not consider wired infrastructure which might have more

stable devices.

In the scheme described in section 2.4.3 each node discovers the next node in each of

the paths. All these paths are considered as candidates, and then the final path is

selected. Whichever node chooses the final path, whether the requesting node or some

other device, might be resource-constrained and unable to save and consequently

23

choose one of these paths. There is also no mechanism to narrow down the space of

possible paths based on any criteria.

Spidernet broadcasts the request to the device peers, each of which composes the

request independently. Such a scheme wastes resources, particularly in the worst case

when all the paths returned from the peers are the same. The type of devices and their

resource availability is also not considered in this scheme. A cell phone might not have

the resources to handle service composition.

Any scheme in the pervasive computing environment will have to handle device

mobility. Some of the schemes use periodic messages/checkpoints to handle mobility.

While periodic messages are guaranteed to detect device unavailability, the scheme

should also ensure that the periodic messages would not use up network bandwidth in a

low bandwidth condition.

24

CHAPTER 3

ARCHITECTURE OF PerSON

This chapter discusses the details of the Service Overlay Network for Pervasive

Environments (PerSON) [14] framework. The PerSON stack is discussed in 3.1 and the

physical network connections in 3.2. The overlay network in PerSON is discussed in 3.3

and the service connections created as a result of the overlay network are discussed in

3.4 and the message format is discussed in 3.5.

The PerSON framework creates a service overlay network, among devices with

different computing capabilities. PerSON uses the ability to connect to different types

of networks, for instance a laptop able to connect to a wireless LAN as well as to a

Bluetooth device. The service discovery process can be used without considering how

the devices connect to each other.

The service overlay of PerSON is shown in Figure 3.1. As shown, the laptop, cell

phone and PDA are connected through different physical networks. The laptop and cell

phone connect through Bluetooth and the laptop and PDA through wireless LAN. In

PerSON, the service overlay network facilitates the cell phone to access a service that is

available on the PDA. The laptop acts as the conduit for any exchanges between the cell

phone and the PDA. Service discovery and composition are abstracted by the PerSON

layer.

25

Figure 3.1 PerSON architecture[14]

3.1 PerSON stack

Figure 3.2 shows the different layers of the PerSON stack.

Figure 3.2 PerSON stack

Services Applications

Network

Device

Service

Service Connections

Device

Resolver

Discoverer

Remote
Service Table

Route Table

Device Table
Inquiries

Local Services

Service Listeners

Bluetooth

IP4
Network Connections Network Connections

Bluetooth
Wireless LAN

Cell phone

Laptop
PDA

Bluetooth Wireless LAN

PerSON overlay network

Client Service

Client Service

RFCOMM

PerSON

Application

RFCOMM UDP / IP UDP/IP

PerSON

Service

PerSON

26

The PerSON stack is implemented by every device that is part of the service overlay.

The stack includes the network, device and service layers.

3.1.1 Network layer

The networks that the device can connect to are implemented by this layer. Each device

has a unique device identifier that is used to identify the device during service

discovery, composition and execution. The unicast and broadcast capabilities of the

network layer are used to exchange messages with the other devices.

3.1.2 Device layer

The device layer uses the network layer to communicate with other devices for service

discovery, composition and execution. The device layer receives all messages and sends

the messages onto the entity handling the message or on to the child devices connected

to the device.

The device forwards messages to the resolver so that the device table can be updated

with the physical addresses corresponding to the device id, and the time the sending

device will still be active. The device chooses the network connection to use for

sending outbound messages.

The services hosted by the device are registered. These are maintained in the local

services table, with the unique service identifier used as the key. A new service

connection is spawned by the device when a request for the service is received. The

service connection is used for message and data exchanges between the service and the

client.

27

The discoverer is used to find the required services. When the application requests the

discoverer for a service, the discoverer sends out a query message. The query is a

broadcast to all devices on all the networks to which this device is connected. The

service request is a textual description, used for name matching against local services

available on the device. The scope of the service discovery is restricted by the hop count

specified by the device when the discoverer broadcasts the query.

The query message is processed by the resolver. The resolver matches the request with

services that the device hosts. These services are only those that are currently accepting

requests. A string compare is performed on the active service list and any match is sent

as a reply messages to the client.

If the service discovery returns a match, the device sends the message to the client. The

resolver forms the reply message with the SID of the service that satisfies the request,

and sends the reply to the client. At the client side the message is first sent to the

resolver, which updates the service information in the service table. The reply message

is then sent to the discoverer corresponding to the request, which passes on the SID to

the application that sent the request.

3.1.3 Service layer

The user defined services and applications are part of the service layer. The service

layer uses the device layer functions. The discoverer is used to find services and service

connections are used to connect to a service. Once a service connection is created

successfully, the service layer uses the connection for further communication with the

service.

28

3.2 Physical network connections

A device may have the ability to connect to different networks. For example, a laptop

able to connect to the Bluetooth network as well as to the wireless LAN. The network is

used to broadcast as well as unicast messages. IP and Bluetooth networks are supported

by the current implementation of PerSON.

Figure 3.3 IP network connections

Suppose, device A and device B connect through the wireless LAN. Query messages

are broadcast on a specified port on the local network. The IP address of the device is

included in the query message. The IP address is stored in the device table by the

resolver and is used when actually sending the message. The device B receiving the

query message uses UDP to send a reply to the query.

3.3 Overlay network

The overlay network in PerSON is created to facilitate service provisioning. Route

information is used to facilitate service discovery. The route information is part of every

message exchange, so additional route discovery messages are not required.

D
evice BD

ev
ic

e
A

Network Network

Device Device

Broadcast query message

Unicast response message

29

Figure 3.4 Query propagation in PerSON

PerSON uses flooding limited by scope to propagate the service discovery query. The

absence of service directories, make PerSON insusceptible to a central point of failure.

All devices process the query message, and those that act as a bridge between networks

forward the queries in their local networks.

Consider the network in Figure 3.4 that comprises of five different networks. Devices S,

A, B, C, D, E all belong to the same network 1. A and G belong to network 3 with A

acting as a bridge between 1 and 3. B and F belong to network 2, with B as a bridge

between 1 and 2. F and I are part of network 4, with F as bridge between networks 2

and 4. G and H are part of network 5, with G as bridge between networks 3 and 5. E

and J are part of network 6; E does not act as bridge between the networks it belongs to.

Device S sends a query for a specific service with a scope of 2. The query is broadcast

in the local network of S. The devices A, B, C, D, and E all process the query and

devices A and B forward the queries to the network they belong to, other than network

S

B

E
C

A

D

F
1

1

1

1

1

2
G2

I

II
III

H

I

IV

V

J

30

1. Device E is not a bridge so it does not forward the query. Devices G and F process

the query but do not forward it, as the query is now out of scope.

Whenever a device sends out a query, its device id (DID) and physical network address

are added to the message. Every device that receives the query message, updates its

device table using the DID as the key. Every time a device needs to send a message to

another device, the device is looked up in the device table and the physical address of

the device is retrieved to send the message. Each record in the device table contains the

DID, available time and the physical address of the neighboring device.

Figure 3.5 Device table

In the network in Figure 3.4, if device G has a match to the query sent by S, G reverses

the route in the query and knows that the reply has to be routed through device A. Each

route record contains the list of all intermediate devices to use for each device, with its

DID as the key.

Figure 3.6 Route table

DID RLEN List of DIDs of intermediate devices

1 byte 16 bytes RLEN * 16 bytes

DID Available Time Physical Address

8 bytes 16 bytes N bytes

31

Device G stores the route for device S as A-S. When sending the reply, the resolver in

device G specifies the whole route in the message. At the device layer, the DID of

device S is used to retrieve the first hop, in this case device A and set as the initial

destination in the message. Device A on receiving the message, checks if it is the final

destination. As the final destination is device S, A forwards the message to device S.

 If device G is unsuccessful in sending the message to the next destination device A, an

error is returned to the device layer. All routes that include device A are cleared from

the device table. The device tries to send the message using an alternative route. If there

are no more routes, then the message is dropped.

In effect, device S and G are connected in the service overlay network. When device S

receives the result message, S retrieves the DID of device G along with its physical

address in the message and stores it in the device table. It saves the route information to

G in the route table, reversing the route if G is in a different physical network or storing

it as the final destination if G is part of the same physical network. Device S updates the

remote service table with the result sent by G.

Figure 3.7 Result message route

S

A G

Physical Network

Result message route

Overlay network

32

In PerSON, each record in the service table contains the SID, service available time, the

DID of the device which provides the service and a textual service description.

Figure 3.8 Service table

The application on device S that initiated the service query is sent the SID to call, by the

discoverer. The application asks the device layer to connect to the SID. The device layer

retrieves the DID of the device providing the service. The first available device on the

route to the device is obtained from the route table. A request to connect message is

sent to the first destination A, to be forwarded to device G.

3.4 Service connection

The creation of a service and the process of discovering and accessing the service are

shown in Figure 3.9. The service on device G is specified by SID, textual description,

and the available time. The service is registered with the device layer, indicating that the

service is ready to receive any requests. The service discovery query messages and

connection requests are handled by device layer.

SID Available Time Service Description

8 bytes 16 bytes N bytes

DID

16 bytes

33

Figure 3.9 Service connection

The application requests the device layer to discover the service request described by a

textual description of the service. The service request (query) is broadcast by the

network layer. The query is propagated by every device that acts as a bridge between

physical networks, limited by scope. When device G receives the query, G matches the

query with the local services. If the service is accepting requests, a result message is

Read
Message

(local CID)

MSG

Send Message
(remote CID, MSG)

Data Message (remote CID, MSG)
MSG

Close
Connection

(remote CID) Request Message (CLOSE, remote CID)

Accept
Connections

(SID)
Query Message (Service Request Graph)

Result Message (SID, Available Time, Service Description) Connect
Service (SID)

Request Message (CONNECT, SID, local CID)
New

Connection
(remote CID)

Response Message (remote connection id, local
connection id) Service

Connection
(remote CID)

Data Message (remote connection id, MSG)

Create Service

Service
Layer

Device
Layer

Service
Layer

Device
Layer

Device G Device S

Send
Message

(remote CID,
MSG)

Close
Connection
(local CID)

Discover
Service

34

sent with description of the service, SID and time for which the service is available. The

device layer on device S processes the message and informs the application. The

application now asks the device layer to connect to the specified service. A connect

request is sent by the device layer, with the local connection identifier used by the

application. The device layer on device G forwards the connect request to the service,

which creates a service connection and sends a response to device S. On getting the

response, the device layer notifies the application, which then starts sending data.

If there is no service that satisfies the request, the device S waits for a timeout and

resends the query. This process is repeated until device S receives a result.

3.5 Message format

The messages in PerSON are in the format shown in Table 3.10. The header field has

+person+ and the footer �person-. The message type field indicates the type of message

and is one byte long.

Table 3.1 PerSON message types

0 Query
1 Result
2 Request
3 Response
4 Data

The hop count field is one byte long and specifies number of hops that the message has

passed through to the device. RLEN is the length of the route that the message has to

take for the final destination. The route field specifies the DIDs of the devices,

including source and destination. As each device forwards the message, it�s DID is

35

added to the route field. The address specifies the address of the next device to send to.

For an IPv4 network, the address is 6 bytes long. The first four bytes contain the IP

address and the last two, the port number.

Table 3.2 PerSON message format

Header 8 bytes +person+
Message Type 1 byte Message type

Hop Count 1 byte Current number of hops
RLEN 1 byte Length of the route
Route RLEN * 16 bytes List of DID in the route

Address N bytes Physical Address of previous device
Available Time 8 bytes Available time of the device

DLEN 2 bytes Length of data
Data DLEN bytes Data

Footer 8 bytes -person-

The available time is 8 bytes long and specifies the time for which the sending device is

available. The available time is used to clear the device table when the time expires and

there are no connections to the device. The DLEN field specifies length of the data and

is 2 bytes long. The data field contains the message to be sent.

When a device forwards the query, the hop count and RLEN are incremented by 1 and

the DID of the device is added to the route field. When forwarding from one network to

another, the message is forwarded to all devices in the network from which the message

did not originate.

 The format of the different messages is as shown below:

36

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3.10 Message Formats : (a) Query, (b) Result, (c) Connect Request, (d) Close Request, (e)
Success Response, (f) Error Response, (g) Data

The query message specifies the scope of the query, which specifies the number of hops

that the query can be forwarded to. It also specifies the query id, and the request. For a

Data Message

2 bytes (DLEN � 16) bytes

Local CID

Remote CID

1 byte 2 bytes

1

SID remote CID

16 bytes 1 byte 2 bytes

0

SID Available Time Service Description

8 bytes 16 bytes (DLEN - 2 -16 - 8) bytes

Query ID

2 bytes

Scope Text Description

1 byte (DLEN -3) bytes

Query ID

2 bytes

Remote CID

2 bytes 2 bytes

Local CID Response Code

1 byte

Remote CID

2 bytes 2 bytes

Local CID 0

1 byte

37

text description of the request, the query is name matched to the local and children

services. The result message consists of the query id, followed by an array of service

data. The service data includes the service id, available time and a text description of

the service.

The request message specifies the service id and the remove connection id, when the

client requests connection to a service. When the client wants to close the connection,

the request message contains the service connection to close.

The response message indicates the local cid to send the message to and the remote cid

that indicates the application that sent the message. The 2nd byte indicates if it is a

success or an error message.

The data message indicates the service connection that the data has to be sent to, along

with the data.

3.6 PerSON enhancements

When there is more than one match to a request, the client should be able to receive all

the matches, so that there are alternatives in case of a failure. In the initial version of

PerSON, the at most one feature is implemented. So the discoverer handles a single SID

instead of a list of SIDs. The discoverer is now modified to return a list of SIDs to

inquiry. The inquiry module has been modified to receive a list and send the list onto

the client. Every client could now attempt a connection to the first SID in the list. In

case of a failure, the client could iterate through the list of matches, until there is a

successful connection to a service.

38

The current version of PerSON has no distinction between services offered by the

device and queries initiated by it. This distinction is now added to improve aesthetics.

39

CHAPTER 4

SERVICE COMPOSITION

This chapter discusses Seamless Service Composition (SeSCo) [3], which is a task

based composition scheme based on a hierarchical service overlay. SeSCo applies

Service Oriented Computing [1, 15] that is popular in the web services domain. The

basic premise of Service Oriented Computing is to use services as the building blocks to

develop applications [1]. Pervasive Information Communities Organization (PICO)

middleware is employed to use resources as services. An overview of PICO is

described in section 4.1. The rest of the chapter describes the various aspects of the

proposed Seamless Service Composition (SeSCo) mechanism [3].

4.1 Overview of Pervasive Information Community Organization (PICO)

PICO [7] is a middleware for pervasive computing. PICO abstracts device resources as

services. PICO creates dynamic and static communities of these services. The basic

constructs of PICO are:

a. Devices - abstract representation of a device. Represented by the tuple C={H,F},

where H is the set of characteristics like memory, F is the functional feature of the

device like printer features like B/w printing, color printing etc.

b. Delegents - software entities corresponding to services that represent device features

as in printer features above. These are represented as {M, R, S} where

40

M: set of modules used to build the delegent

R: set of rules that control transition from one module to another.

S: set of services provided

In a streetlamp device, a camera on the streetlamp may include modules to capture

images and detect events. The rules specify the transitions that take place on various

events and the service it provides may be surveillance.

c. Communities - logical organization of a number of delegents to accomplish a

complex task. Described as P = {U, G, E} where

U: set of members in the community

G: set of goals that the community achieves

E: set of operational characteristics like cost, current load etc.

The PICO middleware has three different versions that can be used on devices.

Resource constrained devices use a minimal version of the stack, the second version,

though complete, can be used on mobile devices and the complete version is used on

resource-rich infrastructure based services. Resource-rich devices can be used to host

delegents on behalf of resource-constrained devices.

The PICO service layer includes:

a. an advertisement manager to send, collect and respond to advertisements,

b. a service aggregator to store received service advertisements and

c. a composition manager that computes composite services from the aggregated

services.

41

In static environments, it is enough to be assigned a proxy prior to operation. But in a

pervasive environment, as devices move in and out of the community, it is not possible

to assign a proxy prior to device setup. The identification of a proxy has to be dynamic.

SeSCo creates a hierarchical service overlay to handle the heterogeneity as well as

mobility of devices in the environment. Device levels are used to classify the devices, to

provide a mechanism for devices to identify suitable proxies and choose the best among

those available.

4.2 Hierarchical Service Overlay

There are four different levels of classification for the devices. Table 4.1 shows the

different device levels, the corresponding PICO middleware versions and the features.

Table 4.1 Device Classification Chart[3]

Level PICO
middleware
version

Features Examples

0 None Features exported through delegents on
Level-2 or Level-3 devices, No native
personalization support

Sensors, legacy
printers

1 Minimum Community member, cannot act as
proxy for any other device

Cell phone, mote
sensors, smart
printers

2 Complete Community member, can act as proxy
for any other device, Resource rich and
possibly mobile

Laptops, PDAs

3 Complete Community member, can act as proxy
for any other device, Resource rich and
possibly mobile

Servers, PCs

Devices with no additional facilities for software installation are classified as L0, for

e.g. a legacy printer. There is usually a device of higher level that hosts the services of a

L0 device. L1 devices can host one or more delegents. These devices are resource

42

constrained and cannot host proxies for other devices, for example cell phones and

sensors. L2 devices have higher resource availability than L1. They are mobile, can host

a number of services and act as proxies for other devices, for instance laptops. L3

devices are the same as L2 devices but static, for instance PCs. These devices have

minimal resource constraints and have a high degree of availability.

Latch Protocol

The Latch protocol defines the process of building the hierarchical overlay given the

different device levels. The service layer of the PICO middleware sends out these latch

messages. Every device on startup sends out a LATCH_HELLO message in all the

networks it is connected to. The message includes the device level. The other devices

inspect the LATCH_HELLO message and compare their device level to the level in the

LATCH_HELLO message. If the device A is a higher level device, then it can act as a

parent to the other device B. Device A sends a LATCH_INVITE to device B. Device B

sets the parent and returns a LATCH_ACK. Device A adds the device B as a child. If

the device A is a lower level device, it could latch on the other device B. Device

A sends a LATCH_REQ to device B. Device B adds device A as a child and returns a

LATCH_ACK. Device A on receiving a LATCH_ACK sets the parent as device A.

Same level devices send a LATCH_SIBLING message to the other device. Both

devices add the other as a sibling. The sequence of messages is as shown in Figure 4.1.

43

Figure 4.1 Latch Protocol Message Exchange

The liveness of a device in the hierarchy is checked with a periodic LATCH_HELO

message. When new services are added, updates are sent up the hierarchy, using

LATCH_ADD message and when services are no longer available, updates are sent

using LATCH_REM message.

The result is a parent-child-sibling relationship as shown in Figure 4.2. The hierarchy

culminates at a level 3 device, with all level 3 devices communicating as siblings.

Figure 4.2 Sample Device Hierarchy

Printer
L0

PC
L3

Laptop
L2

Mote Sensor
L1

Cell
phone

L1

Cell
phone

L1

PDA
L2

Mote Sensor
L1 Sensor

L0

LATCH_HELLO

Level 3 Level 2 Level 1 Level 2

LATCH_HELLO
LATCH_HELLO

Inspect

LATCH_SIBLING
Add

Sibling

Inspect
Add

Sibling

LATCH_REQ

Add child
LATCH_ACK

Set Parent

LATCH_INVITE Set Parent

LATCH_ACK

Inspect

Add
Child

44

Each of the lower level devices uses a higher level parent as a proxy. The higher level

parent being less resource constrained than its children helps them in advertisement,

service discovery and composition. A device of level 0 has to be associated with a

higher level device for its services to be advertised. Any device of level greater than 1

can act as a proxy for a level 0 device. For e.g. a PC with a connected printer can

advertise a printing service. By maintaining the hierarchy, differences in device

capabilities can be made transparent to applications that operate in the environment.

Service Representation

A service is described as a graph that transforms one form of input to another form. The

service graph is a directed graph described as Gs = {Vs, Es} where Vs is the set of

vertices in the graph and Es is the set of nodes representing parameters in the graph.

One can define vertex functions that specify name, location of service, cost of using the

service, quality etc, and edge functions that specify type of parameters, size of

parameters etc. As services come up on each device, the device sends the service graph

to its parent. The parent consolidates its service graphs and those of its children into a

consolidated service graph.

4.3 Service Aggregation

As services come up locally the device sends its service graphs to the parent. It also

sends any services that the children have in turn passed to the device. The parent

aggregates the service graphs based on inputs and outputs. Given two graphs

45

Gp1 = {Vp1, Ep1} where Vp1 is set of nodes that represent modules that accept an input

and transform it into another type and Ep1 is set of edges representing the data flow

from one node to the other.

Gp2 = {Vp2, Ep2} where Vp2 is the set of nodes representing modules that accept an

input and transform it into another type and Ep2 is set of edges representing the data

flow from one node to the other. Each of these graphs is transformed as follows:

a. parameters are represented as nodes

b. edges represent services that transform one node to another.

When the graphs have been transformed into the desired graph format, they are

aggregated into a consolidated service graph.

Figure 4.3 shows a number of service graphs and the resulting aggregate graph. Service

A converts a to j and j to n. Service B converts d to k and k to c. The other services C,

D, E, F transform their input parameters similar to A and B. While adding a service to

the consolidated graph the inputs and outputs of the individual service graphs are

represented as nodes. An edge between two nodes represents the service. Consider

service A, which converts from a to n. The consolidated graph has a node a and

another node n, and the edge between these nodes is the service A.

46

Figure 4.3 Service Aggregation

4.4 Service Composition

To describe service composition, the following are defined in the hierarchical service

overlay:

Service Zone: This includes all services available through a device and its children.

Search Zone: This is essentially the service zone of a device. But if the device is L0 or

L1, then the search zone is the same as the parent�s search zone. Composition starts

from the search zone of the device extending upwards to higher layers of the hierarchy.

Figure 4.4 shows the service and search zones within the hierarchy in Figure 4.2.

Consolidated Service Graph

A

D

n d
j f d

a n
a j n

B

d c
d k c

E

c e
n g e

C

b c
b n c

F

n
n j

a
n

A

j

d
D e

E

c

B

b

C

F

47

Figure 4.4 Search and Service zones in the hierarchical service overlay

In SeSCo, we assume that the user task or application requirement is given in the form

of a request graph. The request graph is either part of the application or the application

is capable of mapping the request onto a graph. The request graph denotes the

individual services required to accomplish a task. The request graph is also a directed

attributed graph similar to the service graph. So it is represented as GR = {Vr, Er} where

Vr is the set of services that are needed to satisfy the request. The set of services is the

sequence in which the services need to be executed to fulfill the request. Each node

could also specify cost, quality parameters, device requirements etc. Er is the set of

edges representing the lines of data communication between the services. Each edge

could also specify quality parameters like required data rate for an audio stream.

L0
PC
L3

L2

L1

L1L1

L2

L1 L0

Search Zone Service Zone

48

Every device first tries to find an exact match, either with its local services or with the

services that its children host. When there is an exact match, the matching service is

used for the service in the request graph. When there is no exact match, a composite

service needs to be constructed to achieve the same result as is required in the request

graph. In the service graph, a node n1 is found matching the input of the service in the

request graph, and another node n2 that produces the same output as the service. The

shortest path from n1 to n2 is used to provide the same service as the service under

consideration in the request graph. Figure 4.5 illustrates this using the consolidated

service graph in Figure 4.3. To compose for the request, a path from a to j is first

composed followed by the path from j to c.

Figure 4.5 Service Composition for a Request

If one or more services cannot be composed in the local service zone, the search zone is

expanded to include the parent�s service zone. The search zone is expanded to the

higher layers of the hierarchy as required. When a level 3 device is not able to compose

the request either, the request is passed on to its siblings. The siblings are also level 3

devices and hence will know about all the services in their service zone.

Request

b c
a j c

Request Graph

Result of Composition

A

F

a

j

c

n

D

B

d

49

Distance between the requesting application and those that provide the service be as less

as possible. The hierarchical structure has a level 3 device at most two hops away. The

hierarchical overlay supports finding a service as close as possible to the requesting

application, as the service zone recursively expands from the requester�s service zone to

a level 3 device�s service zone. The expansion of the service zone ensures that the

service providers are as close as possible to the requester.

The node attribute function associates attributes of the service with each node. The

vertex attributes of the request graph can be matched against those in the consolidated

service graph and the composed service can be picked to ensure the best possible

quality.

Updating Aggregation

The liveness of the devices in the hierarchy is checked with a periodic

LATCH_HELLO message. A parent detects the absence of a child by the missing

LATCH_HELLO messages. The services offered by the device are removed from the

service graph. The missing services are propagated up the hierarchy by sending a

LATCH_REM message to the parent. When a new device comes into the network, it

sends its services to the parent. The new services are propagated up the hierarchy by

sending a LATCH_ADD message.

50

CHAPTER 5

PROTOTYPE IMPLEMENTATION

PerSON (Service Overlay Network for Pervasive Environments) creates a service

overlay network on top of different physical and logical networks, facilitating

connections between clients and service providers [14]. The service discovery process

in PerSON broadcasts the request to all devices in every network that the device is

connected to. Any device that has an exact match to the name of the request sends a

reply. For example, a service �UI� would not be a match for a request for �UIService�.

Support for service composition is provided by SeSCo developed on top of the existing

implementation of PerSON. The reference implementation extends existing work of

PerSON developed in Java. The J2SE version of PerSON is used on laptops and

desktops. The J2ME version can be executed in mobile phones and PDAs. This chapter

details the implementation of SeSCo, its enhancements and the PerSON additions to

support SeSCo.

5.1 PICO over PerSON

PerSON provides the overlay network for PICO. The system architecture of PICO over

PerSON is shown below in Figure 5.1.

51

Figure 5.1 System Architecture

The device abstraction is implemented on top of PerSON�s device layer and the

delegents represent services, applications and device capabilities. Each device has an

associated pc.xml that has a set of parameters for the device � the type of device, the

device id, level of the device and the IP address. When the device abstraction is

initialized, it starts the device and passes the device id to use in all communication and

the IP address when initializing the IP network. The associated level of the device

indicates whether it can act as a proxy for devices which are relatively more resource

constrained in the hierarchical service overlay discussed in Chapter 4.

5.2 Modified PerSON Architecture

Figure 5.2 shows the modified PerSON architecture. The shaded portions show the

modifications done on the original PerSON architecture. The route table is now sorted

according to the path length. The router forwards messages either to the parent or its

children depending on the destination of the message. The service aggregation and

service composition modules are part of the service composition mechanism

implemented on PerSON. The changes are described in detail in the later sections.

Device

Device Abstraction

PerSON Network

TCP/IP

Service

Delegent

Application/Services

PerSON

PICO

52

Figure 5.2 PerSON Architecture

5.3 Hierarchical Service Overlay

There are four different levels of classification for the devices. The device level

assignment follows Table 4.1 in Chapter 4. The file pc.xml file specifies the level of the

device, which is sent to the device by the device abstraction on start up. The latch

protocol defines the message exchange between the devices in the community to form

the hierarchical service overlay.

Latch Protocol

The device sends a LATCH_HELLO message on initialization. The general format is

�LATCH_HELLO: <device Level>�. The resolver on a receiving device retrieves the

TCP+ UDP
IP

Bluetooth

Service Connections

Services Applications

DeviceRouter

Resolver

Discoverer

Network

Device

Service

Network Connections Network Connections

Local Services

Service Table

Route Table

Device Table

Remote Services

Child List

Sibling List

Parent

Service
Aggregation

Service
Composition

Latch
Protocol

Inquiry

53

device level from the message and compares its level to the level in the

LATCH_HELLO message. The device sets the parent, children or siblings as the case

may be, and sends appropriate latch responses to form a hierarchical overlay.

Consider a device A that initiates the latch protocol. A higher level device B receives

the message and processes it. Device B can act as a parent to device A, as its level is

higher than A. B sends a LATCH_INVITE message to device A. Device A sets the

parent to the highest level device that it receives a LATCH_INVITE from. If the highest

level device is B, device A sets the parent to B. Device A then sends LATCH_ACK to

device B. Device B adds A as a child. Each of the lower level devices uses the higher

level parent as a proxy. Hence the necessity to latch onto the most stable and hence the

highest level device that it can find.

Consider a device C, which is a lower level device than A. On receiving the

LATCH_HELLO message from A, device C checks if it already has a parent. If C does

not have a parent, it sets A as its parent and sends a LATCH_REQ message to A.

Device A adds C as a child and returns a LATCH_ACK to C. If device C has a parent,

then it ignores the LATCH_HELLO message from A.

A device D at the same level as A sends a LATCH_SIBLING after adding A as its

sibling. A too adds device D as its sibling. The formats of the LATCH_INVITE,

LATCH_REQ and LATCH_ACK messages are similar to the LATCH_HELLO

message.

The sending of the LATCH_ACK message signifies the end of the latch protocol. A

Hierarchy Devices structure is used to maintain information about the device,

54

particularly whether the device is alive. The proposed version of SeSCo does not keep

track of the device liveness. Here we define a device as alive if it is active. The

receipient of the LATCH_ACK message sets the sending device as the parent/child and

marks it alive. The alive field is used when the latch protocol has to be re-initiated due

to a service failure, or a query message response failure.

SeSCo proposes sending of LATCH_HELLO messages at regular intervals to check

liveness of the devices in the hierarchy. The implementation does not use this

mechanism. The liveness of the device is important only when a query has to be

processed.

The latch protocol is reinitiated to check liveness when there is no reply to the query

within an application defined period of time. The device sets the parent and all the

children as dead and re-initiates the latch protocol. If the parent is alive, the steps in the

latch protocol are carried out and the device resends the query. If the device does not

receive a reply from the parent within a period of time, the parent is set to null and latch

protocol is reinitiated. The timed LATCH_HELLO message takes stock of the devices

in the hierarchy. A child receiving a LATCH_HELLO from its parent will send a

LATCH_REQ. The parent sets the child as alive. At the end of timeout, the parent

checks its list of children and weeds out those that have not replied.

When the device is not active anymore, say because its battery ran out of power, a

LATCH_REMOVE is sent to its parent and children before shutting down. At the

receipt of a LATCH_REMOVE a parent device removes the device from its list of

55

children. At the child, the parent is set to null and the latch protocol initiated again. The

format of the remove message is similar to the hello message.

PerSON Enhancements

In PerSON, the format of the device record now includes the device level of each device

stored in the device table. The changed format is shown in Figure 5.3

Figure 5.3 Device Record

The earlier version of PerSON broadcasts the service query messages. The current

version of PerSON broadcasts LATCH_HELLO and any responses to it are unicast.

The query message and other related messages are all unicast. Two new message types

have been added to the existing types to handle latch messages. The new message types

are shown in Table 5.1.

Table 5.1 PerSON message types for Latch Protocol

5 Latch_Hello LATCH_HELLO message
6 Latch LATCH_HELLO response

PerSON constructs an overlay network based on service provisioning [14]. Service

discovery is merged with route discovery, by piggybacking the route information in the

service discovery message. The earlier version of PerSON does not use every message

to keep track of the devices in the network. Every message exchange contributes route

DID Available Time Physical Address

8 bytes 16 bytes N bytes

Level

1 byte

56

information to the device. In the current version, every message is forwarded to the

resolver to update the device and route tables. The time availability of the device is

updated when a message is received, and the available time is used to remove the device

entries in the route and the device table.

In the previous version, any new route information is added to the route table without

considering if the new route is the shortest to the device. In the current version, the

route table is sorted. So a message from the device directly, is the first entry in the route

table. The sorted route table guarantees that every time a message has to be sent to the

device, the route is always the shortest.

When the connection to a device fails, there is no corrective action to ensure that the

device and route table reflect the failure. In the current version, the device entries in the

route and device tables are removed.

5.4 Service Aggregation

As services come up on each device, the device sends out a Service message to its

parent with the task graph of the service. The Service message is a description of the

service as a XML file. The service message is handled by the resolver at the parent. A

Service message type has been added to PerSON to handle these messages. The

message format for adding a service is shown in Figure 5.4.

Figure 5.4 Add Service message format

Service Graph

1 byte N bytes

0

57

When the device finds a parent, the device sends the consolidated graph describing all

the services provided by itself and its children to the new parent node. The parent

constructs a consolidated service graph with its local services along with those hosted

by its children. The service message is propagated up the hierarchy so that the level 3

device at the top of the hierarchy will have knowledge of all the devices in its service

zone.

The aggregated graph is a union of the consolidated service graph and each new graph

that is added to it. Algorithm 1 shows the algorithm for service graph aggregation into

the consolidated service graph.

Algorithm 1: Service Aggregation Algorithm

Input: G, Consolidated Service Graph Gc

Output: Gc

1: Pin = input Parameter (G) , Pout = output Parameter (G)

2: If isNode(Pin ,Gc) = false then

3: addNode (Gc, Pin)

4: end if

5: if isNode(Pout ,Gc) = false then

6: addNode (Gc, Pout)

7: end if

8: inNode = getNode(Gc, Pin)

9: outNode = getNode(Gc, Pout)

10: if isEdge(inNode,outNode, G) = false

11: edge = addEdge(inNode,outNode, G)

58

12: attributes(edge) = attributes(G)

13: endif

14: P [] = Intermediate Outputs (G)

15: for every element e in P[]

16: if isNode(e ,Gc) = false then

17: addNode(e, Gc)

18: end if

19: outNode = getNode(Gc, e)

20: if isEdge(inNode, outNode, G) = false

21: edge = addEdge(inNode, outNode, G)

22: attributes(edge) = attributes(G)

23: endif

When the service is no longer accepting requests, the device sends a remove service

message to its parent. The remove service message is also sent when the service starts

handling a request. The remove service message is propagated up the hierarchy so that

every parent has an updated picture of its service zone. The format of the remove

service message is shown in Figure 5.5.

Figure 5.5 Remove Service message format

Service Graph

1 byte N bytes

1

59

The parent removes the edges corresponding to the service in the consolidated service

graph. If any of the nodes corresponding to the service parameters no longer have any

incoming or outgoing edges, these nodes are also removed from the consolidated

service graph.

If the device receives a reply, but is unable to connect to the service, it sends an invalid

service id message to the parent. The invalid service id message also results in the

service being removed from the consolidated service graph. The format of the invalid

SID message is shown in Figure 5.6.

Figure 5.6 Invalid SID message format

5.5 Service Composition

This thesis implements the concept of search and service zones. SeSCo specifies that

only a device of level greater than 1 will search within its service zone. This thesis starts

the service composition process from the local service zone for every device of level 1

and higher. In case of a level 0 device, the device needs a higher level device to act as a

proxy for any communication. So its search zone will start from its parent�s service

zone.

In SeSCo, we assume that the user task or application requirement is given in the form

of a request graph [3]. In this thesis, the request is part of the application. The request

graph denotes the individual services required to accomplish a task. The request graph

Service Graph

1 byte N bytes

2

60

is also a directed attributed graph similar to the service graph. The definitions of the

request graph are specified in Chapter 4.

The format of the query part of the PerSON message is shown in Figure 5.7.

Figure 5.7 Query message � query as Service Graph

An extra field to indicate graphical description or a textual description has been added.

The format of the textually described query is similar to Figure 5.7 with Text indicated

instead of Graph. The Text query type supports the query format of the earlier version

of PerSON.

The requesting device tries to find a feasible path for every node in the query, in its

service zone. In case of a failure to find a suitable match, the request is sent to the

parent. The parent tries to compose for the query, and sends it to its parent in case of a

failure. The request is thus propagated till the top of the hierarchy. When a level 3

device is reached and the device is unable to compose a path, the request is sent to its

siblings to search in their service zone.

Any device that composes a path for the request sends a result message to the

requesting device. The resolver forms the reply message with the SIDs of the services

that fulfill the request, and sends the message to the client. The list of SIDs is the

sequence of services that called one after another will satisfy the request. The earlier

version of the reply message did not include a list of services, and it did not indicate any

Scope Request Graph

1 byte (DLEN -4) bytes

Query ID

2 bytes

Graph

1 byte

61

DID as the replying device always hosts the service. The format of the result message is

shown in Figure 5.8.

Figure 5.8 Result message format

At the client side the message is first sent to the resolver, which updates the service

information in the service table. The message is then sent to the discoverer

corresponding to the request, which passes on the list of SIDs to the application that

sent the request. The sequence of events follows the sequence diagram shown in Figure

3.9. The application calls each of the services in sequence and passes the result of

execution of a service to the next service in the list.

When a requesting device does not receive a reply to its query within a timeout, the

parent and children are marked as dead and the latch protocol is reinitiated. The details

are discussed in detail as part of the Hierarchical Service Overlay discussion in section

5.3.

PerSON Enhancements

Every service record in the service table now has an associated graph that describes the

inputs, outputs and the general flow of data in the service. The earlier version of

PerSON specified a name that described the service.

SID Available
Time

Service Description

8 bytes 16 bytes (DLEN - 42) bytes

Query ID

2 bytes
Array of services

DID

16 bytes

62

The format of the query message now includes a graph instead of a textual description

of the request. Using a graphical description allows for finding better matches to the

required service instead of mere text comparison.

The propagation of services up the hierarchy results in situations where the applications

might not know how to connect to the service. Every parent will need to pass on

connection requests down its hierarchy so that the device providing the service can be

reached. Every request for a service that a parent does not provide is now forwarded to

its children to be resolved.

Given the hierarchical service overlay, a request might need to be propagated till the top

of the hierarchy. When the request reaches the top of the hierarchy the device might not

know how to send a reply to the device that originated the query. The reply is sent down

the hierarchy to the child device that sent the query to the device. The reply is then

forwarded down the hierarchy finally reaching the device that originated the query.

The result message has been modified to include the DID of the device that provides the

service. In the earlier version of PerSON, the DID was not required as the device

providing the service would send the result. In the current version the device that

composes the request might not provide the service. The DID is used to identify the

device to contact for the service.

The earlier implementation of PerSON made an implicit assumption that the device

originating the query will not host the service required. The current version makes the

service connection process transparent to whether this device or some other device hosts

the service.

63

5.6 Demonstration Application

The prototype implements a string encryption and decryption application using

matrices, inverse of matrices and matrix multiplication. The process maps every

alphabet to a set of two numbers as follows:

a b c d e f G h I j k l m

0 0 0 0 0 0 0 0 0 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3

n o p q r s T u V w x y z

1 1 1 1 1 1 2 2 2 2 2 2 2

4 5 6 7 8 9 0 1 2 3 4 5 6

Figure 5.9 Alphabet to number mapping

The encryption process maps every alphabet into a set of two numbers as shown above.

So a string �serv� will be mapped to �19051822�. The string of codes is converted to a

matrix form of

 The matrix has its 1st row left shifted three times. The resulting matrix is multiplied

with a key, for example, to generate the encrypted message bytes. The

encrypted data is saved as a stream of bytes. The flow of data is as shown:

3

4

-2

-3

1

9

0 1

5 8

2

2

64

Figure 5.10 Encryption Query

The decryption process converts the stream of encrypted bytes into a matrix form and

then multiplies the matrix with the inverse of the key. The resulting matrix has its 1st

row right shifted three times and each column is mapped to the alphabet list shown

above. The flow of data will be the reverse of Figure 5.10.

Test Environment

A Dell laptop with two USB wireless LAN adapters and two Sharp Zaurus 5500 PDAs

are used to form the PICO community. The modules of the encryption and decryption

process are distributed among the devices. The laptop has 2.66 GHz Intel Pentium

processor with 512 MB of RAM. The operating system is Windows XP professional

Encode

String

Code
String

Convert
To

Matrix

Integer
Matrix

Left Shift
Top row

Encrypt

Matrix
Multiplication

Integer
Matrices

Encoded
Data Bytes

Left Shifted
Integer Matrix

65

and the JVM is J2SE version 1.5. The Sharp Zaurus PDA has 206 MHz Intel

StrongARM system on chip processor with 64 MB of RAM. The operating system is

embedded Linux and the JVM is Insignia�s Jeode, compatible with Personal Java

Profile version 1.2. The devices communicate using an ad hoc wireless LAN. One of

the IP addresses on the Laptop is a level 3 device, with the other two devices simulating

a PDA and a Cell phone. Sharp Zaurus PDAs are level 1 devices and are used as cell

phones.

A prototype for an encryption and decryption application is implemented using services

developed on the PICO middleware framework. The encryption application puts in a

query for encryption of a string. Given a string of alphabets, the string is encrypted into

an encoded stream of bytes. The string is first converted into a coded string where each

alphabet in the original string is translated into a set of two numbers. The code is

converted into a matrix; the top row of the matrix is left shifted three times and then

multiplied with the key to get the encrypted stream of bytes. The encrypted data is then

stored into a file by the application. The decryption application reads the stored file of

encoded bytes. The decrypted bytes are converted into a matrix and multiplied with the

inverse of the key. The inverse is stored statically in the service that calls the matrix

multiplication service. The decoded matrix has the top row right shifted three times and

each column is mapped to the alphabets using Figure 5.9.

Implementation

When a device is started, the different networks supported by PerSON are initiated. The

TCP/IP networks open a UDP socket and wait for incoming messages. The device layer

66

comes up and sends out a LATCH_HELLO message. Other devices in the vicinity send

appropriate latch responses and the device is added to the existing device hierarchy.

Figure 5.11 shows the test device hierarchy thus formed. The PDA has two of the cell

phones latched on to it. The PDA and the third cell phone are latched onto the laptop.

Figure 5.11 Test Hierarchy

As services on each device are started, the service layer requests the device layer to

open and accept new service connections. The various functions of the encoding

function are distributed among the five devices. Figure 5.12 shows the different services

available in the environment. The notation used to describe the services is �<service

name> : <service id> : <device that hosts the service>�.

Cell A
Cell B

PDA

Cell C

67

Figure 5.12 Available services

When the encryption application is started, say on Cell B, it sends an encryption query

to the parent, PDA. The query is sent using UDP on the IP network to the parent. The

parent sees if it can find a path for the request shown in Figure 5.10. The consolidated

graph at the PDA is shown in Figure 5.13.

Figure 5.13 Consolidated Service Graph at PDA

String To Matrix: 3: Cell A

Code: 1: Cell B

Left Shift: 7: PDA

Left Shift
Left Shifted
Integer Matrix

Integer
Matrix

Code

Alphabet
String

Code
String

Convert To
Matrix

Integer
Matrix

Code
String

Matrix to String: 5: Cell C

Matrix As
String

Code
String

Integer
Matrix

Float Matrix Multiplication: 4:
Laptop

Multiply

Encrypted
Data Bytes Float

Matrices

Integer To Float Matrices: 6:
Laptop

Integer
Matrices Integer To

Float
conversion

Float
Matrices

Matrix
Encryption

Integer
Matrices

Code
String

Matrix Encryption: 2: PDA

Alphabet
String

Code
String

1

Integer
Matrix

5

Integer
Matrices

2

7

Left Shifted
Integer
Matrix

5

68

As the figure shows, there is a path from alphabet string to code string. The part of the

query that left shifts the top row of the matrix and the part that uses the code string to

return a set of integer matrices to be multiplied are also available, but there is no path to

convert a code string to an Integer Matrix. The rest of the query cannot be composed.

The query is propagated to the PDA�s parent, the laptop. The consolidated service graph

at the laptop is shown in Figure 5.14.

Figure 5.14 Consolidated Service Graph at Laptop

As the figure shows, the query can be composed completely. The laptop sends the list of

SIDs and the DIDs of the devices that host these services to the requesting device, Cell

B. If the encoding application does not receive a reply within a timeout, the application

informs the device, which initiates the latch protocol. The complete path is shown in

Figure 5.15.

Figure 5.15 Encryption Service path

Alphabet
String

Code
String

1: Cell B

Integer
Matrix

Integer
Matrices

2: PDA

7:PDA

Left Shifted
Integer
Matrix

5:Cell C
3: Cell A

Float
Matrices

6: Laptop

Encrypted
Data

4: Laptop

Alphabet
String

Code
String

1

Integer
Matrix

5

Integer
Matrices

2

7

Left Shifted
Integer
Matrix

53
3

Float
Matrices

6

Encrypted
Data

4

69

The reply message is unicast to Cell B using UDP over IP. The encryption application

establishes a service connection to the first SID in the list, i.e. Service 1 on Cell B,

sending it a string of alphabets. The service 1, Code maps the string of alphabets into a

set of two numbers. The string of numbers is sent to Service 3, String to Matrix on Cell

A that converts the string into an integer matrix. The integer matrix is sent to Service 7,

Left Shift which shifts the top row of the integer matrix three times. The left shifted

integer matrix needs to be sent to service 2 Matrix Encryption on the PDA, but as it

accepts only a code string, the integer matrix is first sent to service 5, Matrix to String

on Cell C to be converted into a string of numbers and then forwarded to service 2. The

integer matrices returned by service 2, Matrix Encryption need to be multiplied. The

integer matrices are first converted into float matrices using service 6, Integer to Float

Matrices and then sent to service 4, Float Matrix Multiplication to be multiplied. The

encrypted bytes are returned to the encryption application, which stores the bytes in a

file code.txt to be used by the decryption application.

When the encryption application fails to connect to any SID on the list within a timeout,

the query is resent to the parent, the PDA. The parent is also informed the particular

SID cannot be connected to. The parent removes all the service edges corresponding to

the SID. The sequence diagram for the execution of the encryption application is shown

in Figure 5.16.

70

Figure 5.16 Sequence diagram for Encryption Application

Cell B Laptop

Find String to Encoded
Data Service

Compose
List of SIDs, DIDs
[1, 3, 7, 5, 2, 6, 4]

Call SID 1 �serv�
�serv� to �19051822�

Connect to SID 3

Send [1 0 1 2]
 9 5 8 2

Connect to SID 5
Send [2 1 0 1]
 9 5 8 2

Receive [22190518]

Receive [1 0 1 2]
 9 5 8 2

Send �19051822�

Connect to SID 7

Create Left Shift: 7
Service

Cell C PDA Cell A

Create Matrix to
String: 5
Service

Create Matrix
Encryption: 2,
Left Shift: 7
Service

Create Float Matrix
Multiplication: 4,
Integer to Float
Matrices: 6 Service

Find String to Encoded
Data Service

Receive [2 1 0 1]
 9 5 8 2

Connect to SID 2

Send [22190518]
Receive [3 -2] [2 1 0 1]
 4 -3 9 5 8 2

Connect to SID 6

Send [3 -2] [2 1 0 1]
 4 -3 9 5 8 2

Receive [3.0 -2.0] [2.0 1.0 0.0 1.0]
 4.0 -3.0 9.0 5.0 8.0 2.0]

Connect to SID 4

Send [3.0 -2.0] [2.0 1.0 0.0 1.0]
 4.0 -3.0 9.0 5.0 8.0 2.0

Receive [-12-19-7-11-16-27-1-2]
Store into file

Execute Encryption
Application

Create Code: 1
 Service

71

When the Decryption application is started, it sends a query to its parent. The parent

sees if it can find a path from a node of encrypted data bytes to an alphabet string node.

The application reads the encrypted data bytes from the file �code.txt�. The device that

finds a feasible path returns the list of SIDs to the application. The application connects

to the Decode Byte Array service and sends the encrypted data bytes to the service. The

service returns two matrices - one is the inverse of the key used for encryption and the

other is the encrypted data bytes in matrix form. These matrices are sent to the service

Integer to Float Matrices to convert the integer matrices into float matrices. These float

matrices are sent to the Float Matrix Multiplication service that multiplies the matrices

and returns a stream of bytes. The stream of bytes is converted into matrix form by the

service Byte Stream to Matrix and sent to the Right Shift service. The Right Shift service

shifts the top row of the matrix thrice. The matrix is sent to the service Decode that The

maps each column in the matrix to an alphabet, thus forming the string of alphabets.

The sequence of service connections in the execution of the Decryption Application is

similar to that shown in Figure 5.16.

As each service accepts a connection request, the service is removed from the list of

active services maintained in the device layer. A remove service message is sent to the

parent. The parent removes the edges corresponding to the service from the

consolidated graph. When two requests are started simultaneously, the path in the

consolidated graph is returned for the first processed request. As the second request is

72

processed, the laptop cannot compose the request. The application resends the query

after a timeout.

5.7 Resource Aware Service Composition

SeSCo does not take device resources into account when performing service

composition. In the consolidated service graph, the service lengths have a default length

of 1. The process of finding the shortest path is a breadth first search of the different

edges from the input parameter node towards the output parameter node.

This thesis proposes a mechanism to use device resources while performing service

composition. The mechanism will help make a better decision thus avoiding burdening

devices that are resource constrained.

The process of creating and maintaining the hierarchy remains the same. Each device

sends its services on startup and lets its parent know when the service is no longer

available. The proposed mechanism enables dynamic assignment of service lengths in

the consolidated graph based on the availability of resources. The service composition

process performs the shortest path algorithm on the consolidated service graph, than a

mere breadth first search.

Each device observes the changing state of its resources like load on CPU, remaining

battery percentage and memory consumption. The device evaluates the importance of

each resource and appropriately determines a length to be assigned to all its active

services. The service length is sent to the parent, which assigns the length to all the

services corresponding to the device in its consolidated graph. When a request comes

73

in, the shortest path algorithm will choose the shortest service path. The device could

also choose to not advertise its services beyond a tolerance level.

5.7.1 Parameters of Interest

The dynamic assignment of service lengths lets the service composition choose an

optimal service path among those available. The different parameters that could be of

interest to the device are as follows:

CPU load: CPU is an important factor that contributes towards a device�s ability to

accept service requests. Based on the number and nature of current requests, the CPU

load can vary with time. For a node performing at peak capacity, any additional work

will mean more latency towards the request execution. The CPU load also influences

how much power is being consumed on the device. For a higher CPU load, the power

consumption is higher.

Memory: A parent assists a child in service advertising, discovery and composition,

many a time taking over these tasks for the child (level 0 device attached to a higher

level device). Though a higher level device does have significantly more storage space,

the limit on memory could introduce delays and CPU load. The increase in CPU load

in turn increases battery usage. When there is a choice between two devices, one with

lower memory than the other, the optimal choice would be to use the higher memory

device, if it is not being used.

Battery power: The pervasive environment will have a number of battery constrained

devices. Battery energy will be an important resource to conserve. As a device acts as a

parent to many children, the ability to service requests will reduce drastically.

74

In performing resource aware service composition, these factors could be parameters to

determine the length of the service in the consolidated graph. Each of these parameters

is multiplied with a suitable factor that determines importance of the parameter to the

device. For instance battery power to a laptop might be less important to a laptop than

to a PDA, whereas as compared to battery power, CPU load might be less important to a

PDA than to a laptop. Based on the computed value, an appropriate length is assigned to

all the services hosted by the device.

5.7.2 Implementation

Each device has a file �pc.xml� associated with it. The file specifies parameters like

device level and IP address. For resource aware service composition, the file specifies

weight for the different parameters, the lengths corresponding to different levels of net

resource availability and tolerance levels below which the services are not advertised.

The net availability of these resources is determined at regular intervals. When the

calculated net availability results in a change in length, the new length is sent to the

parent. A latch message, LATCH_RESOURCE is sent to the parent with the format

�LATCH_RESOURCE: <length>�. The parent sets the length of the edges

corresponding to the services hosted by the device to the value sent and forwards the

message to the parent. The resource message is propagated till the root device of the

hierarchy.

A proof of concept with only battery percentage considered is implemented on the

prototype. The weight corresponding to battery is 100. An energy detector thread runs

at regular intervals and reads the remaining battery percentage. Different resource

75

availability levels are specified in �pc.xml� as high and low. The application checks for

the values in between as medium level values. The �pc.xml� file also specifies lengths

to use for the different resources values. Currently these are lengths of 1 for a high

value, 6 for a medium value and 15 for a low value.

5.7.3 Application

The demonstration application is described in Section 5.6. Two instances of the Integer

to Float Matrices application are added. Cell C, PDA and the laptop now have instances

of the service. Consider another service that takes Integer matrices and performs matrix

multiplication to return the encrypted data. Let the new service be service 8 provided by

the PDA.

The battery values on the laptop and the PDA are all at full battery percentage. The

battery on Cell C is allowed to degrade until it is low. The consolidated service graphs

with the appropriate lengths are shown in Figure 5.17.

Figure 5.17 Test Case Consolidated service graph on Laptop

The notation used is the <service, service length>. The encryption application is

initiated on Cell B. The request is sent to the PDA to be resolved. The PDA cannot

Alphabet
String

Code
String

1,1

Integer
Matrix

5,15

Integer
Matrices

2,1

7,1

Left Shifted
Integer
Matrix

5,15
3,1

3,1

Float
Matrices

6: Cell C, 15

Encrypted
Data

4,1

6: Laptop, 1

6: PDA, 1

8, 1

76

compose the request and the request is sent to the laptop. The shortest path algorithm is

run on the consolidated service graph on the laptop. For constructing the path from the

node Integer Matrices to node Encrypted Data, service 8 on the PDA is chosen as it is

the shortest.

The battery on the PDA is allowed to degrade to a medium level; the service length of

service 8 is set to 6 in the consolidated graph as a result. The consolidated graph with

the changed service lengths is shown in Figure 5.18.

Figure 5.18 Test Case Consolidated service graph with resource degradation

The encryption application is initiated on Cell B. The request is sent to the PDA to be

resolved. The PDA cannot compose the request and the request is sent to the laptop.

The shortest path algorithm chooses the path from the node Integer Matrices to the node

Encrypted Data consisting of service 6 with service 4, both on the laptop. The

combined length of the shortest path is 2 compared to that of the direct path which is 6.

While choosing from among the available services for service 6, the service on the

laptop has a length of 1, that on Cell C is 15 and that on the PDA is 6. The shortest path

algorithm chooses the service on the laptop as it is the lowest among all the choices.

6: Laptop, 1

Alphabet
String

Code
String

1,1

Integer
Matrix

5,15

Integer
Matrices

2,6

7,6

Left Shifted
Integer
Matrix

5,153,1
3,1

Float
Matrices

6: Cell C, 15

Encrypted
Data

4,1 6: PDA, 6

8, 6

77

While comparing this scheme with SeSCo without resource awareness, SeSCo would

have chosen the direct service 8 from the node Integer Matrices to the node Encrypted

Data. The algorithm being a breadth first search will try to find the route that is the

shortest, in this case service 8 of length 1, with the alternate being service 6 followed by

service 4 of length 2. The PDA having lesser battery strength than the laptop would

have been a poor choice when the alternate path has the lesser battery constrained

laptop. Resource aware service composition thus enables SeSCo to choose the least

resource constrained devices among all available choices.

5.7.4 Assumptions and Limitations

One of the assumptions while measuring the energy consumed is that all the energy is

spent only in execution of task. It assumes that other system applications running in the

background do not consume significant energy.

5.7.5 Results

In the scenario described in section 5.7.3, the user wishes to compose an encryption

request. There is a choice between using the integer matrices multiplication on the PDA

and float matrix multiplication that includes converting integer to float matrices. There

are three alternatives available for the integer to float matrices conversion � on the

PDA, Cell C and the laptop. Cell C has a low battery condition and the PDA has a

medium battery condition.

In resource aware service composition, when the request is sent to the laptop it chooses

the combination of Integer to Float Matrices conversion on the Laptop with Float

matrices multiplication on the Laptop. In SeSCo, the service composition mechanism

78

chooses Integer Matrix multiplication on the PDA. The energy degradation on the PDA

when using resource aware service composition is measured and compared with the

energy degradation when using SeSCo. The PDA continues to work as the parent for

Cell B and Cell C. The remaining battery energy on the PDA is periodically recorded

for a sequence of five requests composed and executed in the device hierarchy.

The plot shows the percentage remaining battery energy over time as the set of requests

is composed and executed when SeSCo is used and when resource aware service

composition is used.

Figure 5.19 Remaining battery energy with time

79

We see that when the set of tasks have been completed, the remaining battery energy in

resource aware service composition is about 50% and that is SeSCo is less than 30%.

This gives battery power savings of about 20% when using resource aware service

composition over SeSCo.

This plot shows the energy savings of resource aware service composition over SeSCo

as time progresses.

Figure 5.20 Energy savings for Resource Aware Service Composition

As mentioned before, savings of about 20% is achieved using resource aware service

composition.

80

CHAPTER 6

CONCLUSION AND FUTURE WORK

The thesis implements the service composition mechanism SeSCo on PICO using the

PerSON framework. The initial version of PerSON implemented a trivial service

discovery mechanism, based on textual matching of service descriptions. Service

discovery is improved by including graphical descriptions of services and requests to

make better matches and compose services in case of no exact matches. This thesis

implements the hierarchical service overlay on top of PerSON, new message formats

and device and route table changes to support the overlay. The prototype is

demonstrated using an encryption and decryption application. The work on SeSCo is

extended to monitor resources like battery, CPU and memory. The status of these

resources could be considered during service compositions, so that these resources are

conserved in already resource constrained devices. The prototype uses the encryption

and decryption application and battery values on devices to demonstrate the resource

aware service composition.

The future work includes support for offloading service execution from resource

constrained devices onto other devices. Adjusting devices levels based on resource

availabilities on the device will be implemented on PerSON. Service composition can

also be made more optimal by considering how well the service worked for a previous

query, thus taking service feedback into consideration for future request resolutions.

81

REFERENCES

[1] M. P. Papazoglou, D. Georgakopoulos. Service-oriented computing: Introduction,

October 2003 Communications of the ACM, Volume 46 Issue 10

[2] Flinn, J., SoYoung Park, Satyanarayanan M. Balancing performance, energy, and

quality in pervasive computing. Distributed Computing Systems, 2002.

Proceedings. 22nd International Conference on 2-5 July 2002 Page(s): 217 � 226

[3] Swaroop Kalasapur, Mohan Kumar, Behrooz Shirazi. Composition frameworks:

Seamless service composition (SeSCo) in pervasive environments, November 2005

Proceedings of the first ACM international workshop on Multimedia service

composition MSC '05.

[4] Kalasapur, S.; Kumar, M.; Shirazi, B. Evaluating Service Oriented Architectures

(SOA) in Pervasive Computing, Pervasive Computing and Communications, 2006.

PerCom 2006. Fourth Annual IEEE International Conference on13-17 March 2006

 Page(s): 276 � 285

[5] D. Chakraborty, F. Perich, A. Joshi, T. W. Finin, Y. Yesha. A Reactive Service

Composition Architecture for Pervasive Computing Environments. IFIP Conference

Proceedings; Vol. 234. Proceedings of the IFIP TC6/WG6.8 Working Conference

on Personal Wireless Communications Pages: 53 - 62 , 2002.

[6] S. Kalaspur, M. Kumar, and B.A. Shirazi. Personalized service composition for

ubiquitous multimedia delivery. In WoWMoM 2005. Sixth IEEE International

82

Symposium on a World of Wireless Mobile and Multimedia Networks, 2005, pages

258-263, 2005.

[7] Kumar, M. Shirazi, B.A. Das, S.K. Sung, B.Y. Levine, D. Singhal, M. PICO:

a middleware framework for pervasive computing. IEEE Pervasive Computing,

July-Sept 2003, Volume 2, Issue 3 Pages 72-79.

[8] W. Ke, P. Basu, and T.D.C. Little, "A Task Graph Based Application Framework

for Mobile Ad Hoc Networks," in Proc. IEEE ICC 2002, New York, NY, April-

May 2002.

[9] S. Herborn, Y. Lopez, A. Seneviratne. Composition frameworks: A distributed

scheme for autonomous service composition. Proceedings of the first ACM

international workshop on Multimedia service composition MSC '05

[10] Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, Timothy Finin, �Service

Composition for Mobile Environments�, Conditionally accepted, Journal on Mobile

Networking and Applications (MONET), Special issue on Mobile Services

[11] Dipanjan Chakraborty, Anupam Joshi, "Dynamic Service Composition: State-

of-the-Art and Research Directions", Technical Report TR-CS-01-19. CSEE.

UMBC. December 2001.

[12] Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE

Personal Communications, 8(4): 10-17, Aug 2001.

[13] X.Gu, K.Nahrstedt and B.Yu, �Spidernet: An integrated peer-to-peer service

composition framework�, in HPDC 2004: Proceedings of the 13th IEEE

83

International Symposium on High performance Distributed Computing, 2004,

pp.110-119.

[14] K. Senthivel, PerSON - A framework for service overlay network in pervasive

environments, Masters Thesis, The University of Texas at Arlington, TX,

Spring2006.

[15] M.P. Papazoglou, Service-Oriented Computing: Concepts, Characteristics and

Directions, in WISE 2003: Proceedings of the Fourth International Conference on

Web Information Systems Engineering, 2003. Volume, Issue, 10-12 December

2003 Pages: 3 � 12.

[16] Weiser, M. The Computer for the 21st Century. Scientific American, 265(3),

September 1991 Pages 94-104.

[17] Z. Maamar, Q. Sheng, B. Benatallah. Selection of Web Services for

Composition Using Location of Provider Hosts Criterion. CAiSE 2003 Workshop

Proceedings 15th Conference on Advanced Information Systems Engineering.

Ubiquitous Mobile Information and Collaboration Systems.

[18] www.bluetooth.com

[19] J. Robinson, I. Wakeman, T.Owen. Scooby: middleware for service composition

in pervasive computing ACM International Conference Proceeding Series; Vol. 77

Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc

computing 2004 Pages: 161 - 166

84

BIOGRAPHICAL INFORMATION

Aparna Kailas received her Bachelor of Engineering in Computer Science and

Engineering from Bangalore University, India in 1999. She has been working with

Wipro Technologies, India in their automotive electronics division since 1999. She

started her Masters in Computer Science and Engineering in 2005. Her research

interests include pervasive computing, mobile computing, vehicle networks and

applications in the automotive electronics domain.

