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ABSTRACT

IONIC LIQUIDS IN ANALYTICAL CHEMISTRY AND
CALIX[4]JARENE CHEMISTRY OF

NO, GASES

Eranda Wanigasekara, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Daniel W. Armstrong

Application of ionic liquids (ILs) in analytical chemistry can be numerous. The
use of ILs in analytical techniques including gas chromatography (GC), electrospray
ionization mass spectrometry (ESI-MS), capillary electrophoresis (CE), high
performance liquid chromatography (HPLC), solid phase microextraction (SPME) and
spectroscopy have attracted great attention of scientific community in the past few
decades. Many advancements in this field are due to the development of multiply
charged, multifunctional ionic liquids.

This dissertation mainly consists of two parts. The first part focuses on the use
of new, structurally diverse, chemically robust ionic liquids for GC, SPME and ESI-MS
applications. Within this section, highly thermally stable GC stationary phases with

unique selectivities developed using ILs will be discussed. The design and synthesis of

vi



new, flexible linear tricationic ILs will also be discussed. The use of these flexible
tricationic ILs as ion pairing reagents in ultra-high sensitive detection of dianionic
species in the positive mode of ESI-MS will be presented. Finally, development of a
new IL-based silica-bonded polymeric material for SPME-GC headspace and direct
immersion analysis will be discussed.

The second part of this dissertation focuses on the use of calix[4]arene-based
supramolecular architectures for the complexation of NO, gases. These calix[4]arene-
NO" complexes which were prepared by reacting calix[4]arene derivatives with
environmentally toxic nitrogen dioxide (NO,) gas, were then simply reduced for cleaner

generation of medicinally important nitric oxide (NO) gas.
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PART ONE

IONIC LIQUIDS IN ANALYTICAL CHEMISTRY



CHAPTER 1
INTRODUCTION

1.1 General Introduction to lonic Liquids

lonic liquids (ILs) are a class of liquid compounds which are solely composed of
ions."?® These ions often consist of a bulky organic cationic group and an inorganic or
organic anionic group. Typical cations are based on imidazolium, pyridinuim,
phosphonium, pyrolidinium or ammonium groups or their derivatives. Common anions
include halides (X7), nitrate (NOj37), cyanide (CN"), tetrafluoroborate (BF,),
hexafluorophosphate (PFe), trifluoromethanesulfonate (TfO7) and
bis[(trifluoromethyl)sulfonyllamide (NTf,") (see Figure 1.1). Although diverse
chemistries can be used to form different types of ILs, their successful utilization
remains a challenging task.

The term “room temperature ionic liquid” (RTIL) is used to classify ILs which
exist in the liquid state at or below ambient temperatures. The first RTIL,
ethylammonium nitrate (mp 12 °C), was reported by Paul Walden in 1914.* However
there are reports indicating that the first IL was discovered in 1888 by Gabriel and
coworkers.® It has been proposed and shown that these ILs can be used in place of
volatile and non-eco friendly organic solvents which are used extensively in chemical
manufacturing processes.®® During the past few years, ionic liquids have attracted
much attention from academic and industrial community due to their remarkable
physicochemical properties.®® As a result, there has been an exponential growth in the

number of articles published related to ionic liquids.'*"'
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Figure 1.1 Common cationic groups and anions of ionic liquids.

Cations: 1, Imidazolium; 2. Pyridinium; 3. Phosphonium, 4. Pyrrolidinium, 5. Tetraalkyl
ammonium; 6. Halides (Chloride, Bromide, lodide); 7. Nitrate; 8. Cyanide, 9.
Tetrafluoroborate; 10. Hexafluorophosphate; 11. bis(trifluoromethanesulfonyl)imide

lonic liquids are often considered as “designer solvents.” This is because the
unique properties of ILs (solvating power, miscibility with water and other solvents,
viscosity, polarity, density, thermal stability, electrochemical window, conductivity,
surface tension, flammability, etc) can be tuned by choosing an appropriate cation and
anion combination.’?*?" These unique physicochemical properties make ILs superior to
conventional molecular liquids in that the tailoring of the properties of molecular
solvents are limited or more often nonexistent.

1.2 lonic liquids in Separation Science

ILs are widely considered as alternatives to classical organic solvents and have

been applied in many fields of chemistry such as organic synthesis, electrochemistry,

liquid-liquid extraction and catalysis for clean technology and polymer synthesis.?**?



Similarly the unique properties of ILs have made them favorable for few separation
science applications as well. During the past decade, ILs have been used extensively
as highly thermally stable gas chromatographic (GC) stationary phases, liquid
chromatographic (LC) stationary phases and mobile phase additives in capillary
electrophoresis (CE) and LC.***°
1.2.1 lonic Liquids in Gas Chromatography

1.2.1.1 Monocationic lonic Liquids

In 1959, Barber et al. used stearates of divalent manganese, cobalt, nickel,
copper, and zinc as liquid phases in gas chromatography. This was the first example of
using salts as GC stationary phases in the literature.*’ Here, separations of amines,
alcohols and ketones were achieved with relatively low but acceptable efficiencies.
Then in 1982, ethylammonium nitrate (mp 12 °C) and 1-ethylpyridinium bromide (mp
110 °C) were introduced as GC stationary phase by Pacholec and Poole.’*% The
operating ranges for ethylammonium nitrate and ethylpyridinium bromide phases were
40-120 °C and 110-170 °C respectively. These GC phases showed acceptable
selectivities for polar and H-bonding analytes. However they suffered from poor column
efficiencies and low thermal stabilities. In addition, these phases did not perform as
well with non-polar analytes as they showed no significant retention for hydrocarbons.

In 1999 Armstrong et al. developed the first imidazolium-based monocationic
ionic liquid stationary phase for GC.*® Initial studies were carried out based on the 1-
butyl-3-methylimidazolium  [BuMIm] cation combined with chloride (CI),
hexafluorophosphate (PFs) and tetrafluoroborate (BF,) anions. Retention and
separation behaviors of these new [BuMIm] IL GC phases were compared with several
commercial GC phases. It was found that these IL phases exhibit an unusual selectivity
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with a “dual-nature.” That is they can separate polar compounds as if they were polar
phases and non polar compounds as if they were non polar phases. This study
suggested the potential of using imidazolium-based ILs as multi-modal separation
media (see Figure 1.2). Four years later, in 2003 Anderson and Armstrong introduced
benzylimidazolium-based ILs as GC stationary phases which were thermally stable,
nearly up to 260°C.* Figure 1.3 shows the change in thermal stabilities depending on
the counter anion of the IL system. Relative thermal stabilities of these ILs were
affected by the type of anions and the order of stability is as follows: PFg > NTf, = BF,
> AsFg > I, Br, CI. 1-benzyl-3-methylimidazolium triflate (BeMIM-TfO) and 1-(4-
methoxyphenyl)-3-methylimidazolium triflate (MPMIM-TfO) have shown the highest
thermal stabilities out of the series investigated (see Figure 1.3).

These new ILs produced GC phases with efficiencies (determined by retention
of naphthalene at 100 °C) of 1900-2800 plates per meter. The polarities and solvation
parameters of these monocationic ILs were characterized by
Rohrschneider-McReynolds constants and according to the Abraham solvation
parameter model.** The new benzylimidazolium-based IL phases gave symmetrical
peak shapes and good peak efficiencies for both polar and non polar analytes in
general. Also, two of these new phases (BeMIM and MPMIM) were shown to yield
rapid separations with different selectivities and retention orders for complex mixtures
(isomeric sulfoxides, poly chlorinated benzenes, etc) when compared to commercial
GC phases such as DB-5 (5%-phenyl-methylpolysiloxane). In addition the “dual-nature”

of the phases was also observed.



Figure 1.2 Chromatograms comparing the retention and separation of eight
compounds.

Separated on the same size GC columns (15 m x 0.25-mm i.d.) and under identical
conditions (isothermal @ 100 °C). Column A (left) is a commercial DB-5 column, and
Column B (right) utilizes the ionic liquid [BuMIm][PF¢] as the stationary phase. The test
compounds are: 1, butyl acetate; 2, n-heptanol, 3, p-dichlorobenzene, 4, o-cresol, 5,
2,5-dimethylphenol, 6, n-dodecane, 7, 4-chloroaniline, and 8, n-tridecane. Reproduced
with permission from reference 46.
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Figure 1.3 Thermal volatilization plots for various monocationic ILs.

Here RTILs include BMIM (1-Benzyl-3-methyl), BBIM (1,3-dibutyl), BeMIM (1-Benzyl-3-
methyl), BeHIM(1-Benzyl-3-hexyl), MPMIM, BMIM-CI (~145°C), BMIM-TfO (~175°C),
BMIM-PF; (~170°C), BBIM-CI (~180 °C), BMIM-NTf; (~185 °C), BeHIM-PF¢ (~200
°C), BeMIM-TfO (~220 °C), and MPMIM-TfO (~250 °C). Reproduced with permission
from reference 44.
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1.2.1.2 Dicationic lonic Liquids

Unlike monocationic ILs, geminal dicationic ionic liquids consist of two cationic
groups (imidazolium, phosphonium, pyridinium, pyrrolidinium, etc) tethered together
with a straight or branched chain alkane.’®**> Anderson et al. in 2005 reported the use
of thirty nine dicationic ionic liquids as GC phases and characterized them by using the
Abraham solvation parameter model. It has been shown that the thermal stabilities of
these dicationic ILs are greater than those for many of the monocationic ILs. A
comparison of the thermal stabilities of these dicationic ILs and monocationic ILs are
shown in Figure 1.4.

The use of tricationic ILs, a third generation of ILs as GC stationary phases,
their new separation capabilities, selectivities towards specific analyte types and
stationary phase characterization using linear solvation energy relationship (LSER) will

be discussed in subsequent chapters.
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Figure 1.4 Thermal stability curves for geminal dicationic ILs.

The plot illustrates the fact that the geminal dicationic ionic liquids (D-G) have thermal
stabilities much higher than those of conventional ionic liquids (A-C). (A) 1-Butyl-3-
methylimidazolium chloride (BMIM-CI); (B) BMIM-PF;; (C) BMIM-NTf,; (D) 1,9-
Bis(butylpyrrolidinium-1-yl)nonane Cgy(bpy),—NTfy; (E) 1,9-Bis(3-methylimizadolium-1-
yh)nonane Co(mim),—NTf,; (F) 1,12-Bis(3-benzylimidazolium-1-yl)dodecane
Ci2(benzim),—NTf,; (G) 1,9-Bis(methylpyrrolidinium-1-yl)nonane Co(mpy),—NTf,.
Reproduced with the permission from reference 56.

1.2.2 Characterization of IL-based GC Stationary Phases
Recently, significant research efforts have been made towards the development

of methods to determine polarities of solvents including ionic liquids. Solvent polarity



plays a major role in organic synthesis affecting product ratios, product yields, reaction
rates, reaction pathways, and also in catalysis, extractions, and chromatographic
separations.***”®! In 1979 Reichardt introduced an empirical solvent polarity parameter
model based on solvatochromism.®> Here the shift of absorption maxima of
solvatochromic dyes were measured for solvents with different polarities. Then, an
empirical solvent polarity model was derived by correlating the absorption maxima of
the solvatochromic dye which was used to evaluate the solvent of interest. Most
commonly used solvatochromic probes include Reichardt's dye, Nile Red,
dansylamide, pyrene, and 1-pyrenecarbaldehyde.®®*’

In 1999 Armstrong et al. successfully developed an inverse GC method which
used the Rohrschneider-McReynolds polarity parameters to characterize ionic liquids.*°
In ionic liquid GC stationary phases, the thin liquid coating is considered the solvent
and the analytes which are separated by this phase is known as solutes. In the
Rohrschneider-McReynolds method that was used to characterize IL-based GC
phases utilized a total number of five probe solutes.*® These are: benzene, n-butanol,
2-pentanone, nitropropane and pyridine. Each probe molecule undergoes specific
interactions with the liquid phase (solvent). For example, benzene which is a soft base
in the gas phase can interact with the liquid stationary phase via -1 interactions and
therefore act as an indicator for the solvent’s 1-bonding ability. Similarly n-butanol
indicates the hydrogen bonding ability of the chromatographic phase. Use of 2-
pentanone, which has an intermediate polar character, indicates the polarizability and
dipolar character of the stationary phase. Nitropropane, a strongly polar aprotic
molecule, represents retention behavior due to the electron donor, electron acceptor,
and dipolar character of the phase. Pyridine, being a strong proton acceptor and a

9



polar molecule, indicates the acidic nature of the liquid stationary phase.
Rohrschneider-McReynolds constants of ionic liquid GC phases were determined by
using squalane as the reference stationary phase.®® The empirical solvent polarity
values were obtained by averaging the Rohrschneider-McReynolds constants of each
probe molecule to get a single polarity parameter. For all ionic liquids this average
value falls in the same constricted range.®®” Thus two ionic liquids may have a similar
“polarity parameter,” yet produce very different results when they are used in
applications such as solvents for organic synthesis, in extractions or as GC stationary
phases. The major drawback of using this method to characterize IL-based GC
stationary phases is that it only uses five probe molecules which is not sufficient to fully
elucidate the complex interaction capabilities of IL-based GC phases. Therefore this
single parameter solvent polarity method was deemed not comprehensive for the
characterization of ionic liquids.

1.2.2.1 Abraham’s Linear Solvation Energy Relationship (LSER)

Linear Solvation Energy Relationship (LSER) is a mathematical model based
on linear regression analysis. This was developed by Abraham et al. and is now the
most widely accepted method for the characterization of gas chromatographic phases
or liquid chromatographic stationary phases.>***®*"° This method uses large pool of
probe molecules (>25) which can interact with the ionic liquid stationary phase through

various types of interactions. The LSER is given by eq 1:

logk'=c+eE+sS+aA+bB+1IL ...c.ccoovvevenn. (1)
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Where,

E = excess molar refraction A

S = dipolarity/ polarizability Solute descriptors
A = hydrogen bond acidity

B = hydrogen bond basicity

L = gas-hexadecane partition coefficient J

k’= retention factor of the analyte

¢ = system constant A

e = 11- and n-electron interaction

s = dipole type- interaction >Solvent descriptors

a = hydrogen bond basicity (Determined by Multiple

b = hydrogen bond acidity Linear Regression Analysis)

| = dispersion force J

The solute descriptor values are evaluated and available in the literature.>* The use of
this LSER to characterize novel IL-based GC stationary phases will be discussed in
later chapters.

1.3 lonic liquids in Electrospray lonization Mass Spectrometry

1.3.1 Electrospray lonization Process

The concept of electrospray has been known about for over a hundred of years,
but it was not until 1937 that its significance to science was understood.”’ Later, in
1965 Dole et.al demonstrated the use of electrospray ionization (ESI) to ionize intact
chemical species (a dilute polymer solution) and this is considered to be the first
example of the use of ESI. Subsequently, 20 years later John Fenn demonstrated that
the ESI technique can be used to ionize large biomolecules which could be analyzed
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by mass spectrometry. This work lead John Fenn to win the Nobel Prize in 2002.”
Nowadays, electrospray ionization mass spectrometry (ESI-MS) has become a
versatile research tool which has shown great potential in all fields of chemistry
including analytical chemistry.”*"® ESI-MS is considered as a soft ionization technique
that will produce fewer fragments of the molecule during the electrospray process. ESI-
MS has proven to be an effective tool in analyzing large biomolecules, peptides,
proteins, biopolymers and inorganic ions. In the ESI-MS process, a high voltage (x2-5
kV) is applied to the spray needle which is kept in a coaxial flow of nitrogen which is
the nebulizing gas. This creates a fine liquid aerosol consisting of very small droplets,
each of which carries many excess charges at its surface. Once the solution containing
analyte molecules is pumped through this spray needle with a low flow rate (0.1-100
ML), a high voltage causes analyte charging typically due to their acid/base properties.
The electrospray voltage can be either positive or negative. In the positive mode,
anionic species are attracted to the positively charged needle and the cationic species
are repelled away from the needle tip. This process causes the formation of a “Taylor
cone” which contains an excess of either positively or negatively-charged ions
depending on the operating ion mode.® A schematic representation of the ESI process

is shown in Figure 1.5.
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Figure 1.5 Schematic of the electrospray ionization process. Reproduced with
permission from reference 80.

At a certain point, where the coulombic repulsion of the surface charge of the
solution that comprises the Taylor cone is equal to the surface tension of the solvent,
also referred to as the Rayleigh limit, droplets containing either excess positive or
negative ions detach from the spray tip as a fine mist which is referred as the spray jet.
After that, the detached charged droplets move from atmospheric pressure towards the
high vacuum regions (1x10° Torr) through a high voltage gradient. During this

migration naked ions are generated according to either of the two widely accepted

|81,82 I 72,83

mechanisms; the ion evaporation mode and/or the charge residue model.
According to the charge residue model, charge density of the droplet is increased due
to the evaporation of the solvent which causes droplets to be disintegrated into smaller
droplets which eventually consist of single ions. According to the ion evaporation
model, increased charge density due to the solvent evaporation eventually causes
coulombic repulsion to overcome the liquid’s surface tension, resulting in a release of

single ions from the droplet surface.
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1.3.2 Anion Analysis by Electrospray lonization Mass Spectrometry

High sensitive detection of anions is important in many areas of chemistry such

84-87 88-91 92-102

as beverage and food industry, soil analysis, environmental analysis,

103

water quality ™ and many others. A number of analytical techniques have been

developed for anion analysis including ion  chromatography,?®”104108

88,89,109-111 88,90,110,112-114

spectrophotometry, capillary electrophoresis, electrochemical

methods (conductometry, amperometry, potentiometry),’’>""®

and flow injection
analysis.'®"® These detection techniques may or may not include a separation
method prior to the analysis.

Numerous research efforts have been put forward by scientists to use ESI-MS
in the analysis of anions in a continuous effort to improve sensitivity,3¢:949%:98:100.101,108,120-
26 In general, anionic species are analyzed in the negative mode. However many
inorganic anions have masses that fall below the low mass cutoff of the instrument and
are unidentified in the negative ion mode. In addition, negative mode analysis has few
inherent disadvantages such as poor spray stability and lower sensitivities.'?" '
Typically charged solvent clusters and other interfering low mass ions give rise to
higher background noise in lower mass regions. Negative ion mode is also more prone
to corona discharge than the positive mode.®’ These corona discharges cause higher
background noise which will lower the sensitivities. Reversed phase solvents such as
water, methanol and acetonitrilie are known to increase corona discharge in the
negative mode thereby limiting the use of LC-MS for anion analysis. However use of

halogenated solvents (CH,Cl,, CHCI;) and gases (SFs) are known to act as electron

scavenging media which can make the analyte signal more stable."®
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Recently, Martinelango et al. described a method of using dicationic IL-based
ion pairing reagents to detect perchlorate ions (ClO4) present in environmental
samples.’” This analysis was performed in the positive mode of ESI-MS. The
dicationic ion paring agent was allowed to complex in solution with perchlorate anions
(see Figure 1.6). Then this complex mass was monitored using the SIM (Selected lon
Monitoring) mode. Instead of detecting ClO, in the negative ion mode, it can now be
detected at a higher mass range in the positive mode of ESI-MS where less noise is
observed. Therefore this technique gives improved detection limits and higher

sensitivities.'?°

H e ' @
D193}t1omc ton Perchlorate anion @
pairing reagent

Complex

Figure 1.6 Dicationic ion pair association with CIO, ion to form the complex

Later this technique was employed by Soukup et al. to detect a series of
organic and inorganic anions with much higher sensitivities compared to the negative
ion mode. For example, thiocyanate (SCN") could not be detected in the negative mode
(injected 14.3 ng) but was detected in the positive mode after complexing it with a
dicationic ion pairing reagent. This detection was achieved with a higher sensitivity
even when the injected amounts were ten times less than that used for the negative
127

mode analysis (see Figure 1.7).
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Later in 2006, Armstrong and coworkers extended this technique to detect
doubly-charged anions using IL-based trigonal tricationic ion pairing reagents.'?®
Several synthesized tricationic IL-based salts were successfully evaluated as ion

pairing reagents for detecting dianionic species in the positive mode of ESI-MS.
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Figure 1.7 Comparison of the chromatographic separation and sensitivity of five anions
detected in the (A) positive and (B) negative SIM modes.

The mass injected in B is 10x that of A for SCN, TfO, and BZSN; 5x for PFOA; and the
same for NTf,. The mass injected in Ais 1.43 ng SCN, 9.92 ng TfO, 1.16 ng BZSN,
0.68 ng NTf,, and 1.30 ng PFOA. The column (Cyclobond I) was equilibrated for 15
min with 100% water with a linear gradient to 100% MeOH beginning at 3 min and

complete at 9 min. The flow rate was 300 yL/min. In A, the dicationic salt solution (40
MM in MeOH) was added post column at 100 uL/min whereas in B it is methanol only.
SCN, thiocyanate; TfO, triflate; BZSN, benzenesulfonate; PFOA, perfluorooctanoic
acid; NTf,, trifluoromethanesulfonimide. Reproduced with permission from the
reference 127.

However, the tricationic ion pairing agents used in this study had rigid trigonal
structures. In the previous dicationic ion pairing study it had been determined that
flexibility was a desired structural feature of good ion pairing agents.'® Thus, more

flexible tricationic ion pairing reagents were synthesized and tested for their efficacy to
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bind dianions in comparison to the rigid counterparts. It was expected that the
structural flexibility would play a role in gas phase ion association. Unlike rigid trigonal
structures, linear tricationic IL-based salts have more conformational freedom to pair
with anionic species, in both solution and in gas phase. Synthesis and use of these
linear tricationc IL-based salts as ion pairing reagents in anion analysis will be
discussed further in the following chapters. Figure 1.8 illustrates rigid trigonal and linear

tricationic ion association with dianionic species.
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(B)

Figure 1.8 Schematic representations of ion pairing of dianionic species (A) with
trigonal tricationic IL-based reagents and (B) with flexible linear tricationic reagents.

(Trications are represented in blue and dianion is represented in red.)
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1.4 lonic liquids as Novel Coating Materials for Solid Phase Microextraction (SPME)

1.4.1 Sample Preparation in Chemical Analysis

The main steps involved in a chemical analysis and sample preparation are
shown in Figure 1.9. Sample preparation is a very important step and the first step is
the sample collection from the appropriate source. The next step is sample
preservation. Preservation prevents the degradation of analytes of interest present in
the collected sample. Although complete preservation is practically impossible, a
significant reduction of degradation or contaminations can be minimized by using

standard sample preservation methods available in the literature.”""®

Main steps in a chemical analysis Main steps in sample preparation

Figure 1.9 Main steps in a chemical analysis (left) and sample preparation (right)."*

After the sample collection and proper preservation, the next step is the sample
preparation.’ Most samples are not ready to be introduced into the analytical
instrument directly after collection. Biological and environmental samples have to be

properly prepared prior to the analysis.
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For example, in pharmacokinetics and pharmacodynamics (PK/PD) of a blood
plasma sample, direct injection is impossible because of the high background matrix
signals. The pharmaceutically active ingredients first have to be extracted from the
plasma and then subjected to further analysis.

Commonly used sample extraction techniques can be divided into two main
categories, namely classical and modern techniques. Extraction techniques such as
liquid-liquid, liquid-solid, membrane and protein precipitation are considered to be
classical methods where as solid phase extraction (SPE), solid phase microextraction
(SPME), accelerated fluid extraction (AFE), supercritical fluid extraction (SFE) and
microwave assisted extraction (MAE) techniques are classified as modern extraction
methods.

SPME is one of the fastest growing solvent-free sample preparation techniques.
Figure 1.10 illustrates the classification of solvent-free sample preparation methods.
1.4.2 Introduction to Solid Phase Microextraction

Although multi-dimensional techniques such as gas chromatography-mass
spectrometry (GC-MS) have improved separation and quantification, the sample
preparation step is still the most time consuming step in a chemical analysis. Classical,
liquid-liquid extraction type sample preparation techniques often use a significant
volume of organic solvents. SPME simplifies the sample preparation step and is a
solventless technique. SPME was invented in 1989 by Janusz Pawliszyn, a scientist

from University of Waterloo, Canada.
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Figure 1.10 Classification of solvent-free sample preparation techniques. '

In the SPME process, the amount of extraction solvent (extraction phase) is
very small compared to the sample volume. As a result, exhaustive removal of analytes
to the extracting phase does not occur, rather an equilibrium is established in between
the sample matrix and the extracting phase.

1.4.2.1 Theory and overview of SPME

Solid phase extraction is driven by a non equilibrium process. However SPME
process is a multiphase equilibrium process.™® "% Theory has been developed to
understand the principle process of SPME by applying basic fundamentals of
thermodynamics and mass transfer. Effective use of theory minimizes the number of
experiments to be carried out during an analysis.”® Both thermodynamic and kinetic

parameters have been assessed when developing the theory for multiphase equilibria
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that exist in the SPME process."® Development of theoretical models for the SPME
process was reported by Pawliszyn and coworkers in 1992."%°

There are three main equilibria that exist in SPME process which are shown in

Figure 1.11.
_ Kp=CJCy
//
Fiber —
Headspace |
| K= G/C
Aqueous \ "\ ')
\
\
AN
e Kfs = Cf/cs

Figure 1.11 Three main equilibria exist in a typical SPME process.

Here K= distribution constant between fiber and the sample, Ks= distribution constant
between headspace and the sample, Ky= distribution constant between fiber and the
head space, C;, Cs and C;, represent the concentration of the analyte in fiber, sample

and in headspace respectively.

Using the distribution constants it was shown that amount of an analyte

adsorbed by the fiber coating n, can be written as:

n= KszhsCOVS
KesVe + KpsVi + Vg

(2
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Where,

n = amount of analyte adsorbed by the coating

Co = initial concentration of analyte in the sample

Kss = distribution constant of the analyte between coating and sample matrix

Kns = distribution constant of the analyte between the headspace and sample

matrix

V¢ = volume of the coating

V, = volume of the sample

By assuming that the vial containing the sample is fully filled with the aqueous
phase and the headspace volume is negligible, then the KV}, term is zero. Therefore
equation 2 can be written as:

_ Krs Ve CoVg
KesVe + Vg

~(3)

If the volume of the aqueous sample V; is much larger than the volume of the
extracting stationary phase V; then the V; > K;V; . Therefore the equation 3 can be
written as:

Therefore, when the sample volume is much higher than the volume of the

extracting phase, the amount extracted does not depend on the volume of the sample.

23



1.4.2.2 SPME device and operation
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Figure 1.12 Common components present in a typical SPME device (a) and the
configuration of the SMPE needle (b).

(Source: http://www.sigmaaldrich.com/etc/medialib/docs/promo/Bulletin/1/basic-spme-
sept-09.Par.0001.File.tmp/basic-spme-sept-09.pdf, Accessed: 08-08-2010)
Typical components present in a SPME device are shown in Figure 1.12. There are
two main steps in an SPME process. The first step is the extraction of the analyte from
the sample. The second step is the desorption process. Extraction can be performed
on solid, liquid or gaseous sample matrices.’*'""** During the desorption process, the
extracted analytes are released from the fiber coating into a separation device, typically
a gas or liquid chromatograph. Figure 1.13 illustrates the extraction and desorption

process for a SPME-GC system.
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Figure 1.13 Extraction and desorption procedure for a SPME-GC system.
(Source: http://www.sigmaaldrich.com/etc/medialib/docs/promo/Bulletin/1/basic-spme-
sept-09.Par.0001.File.tmp/basic-spme-sept-09.pdf, Accessed: 08-08-2010)

1.4.2.3 Commonly used coating materials in SPME

During the past decade quite a few coating materials have been introduced by
various commercial and academic sources.'**'’ The chemical nature of the analyte of
interest determines the suitable coating material for an efficient analysis. These fibers
are available in thicknesses ranging from 7-100 pym."® The most commonly used fiber
in headspace SPME analysis is polydimethylsiloxane (PDMS)."*¢'*® Fibers coated with

polyacrylate are more suitable for analyzing polar compounds.'*®'%"%" Other available
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fiber coatings composed of PDMS and divinylbenzene (DVB) mixtures and
polyethylene glycol (PEG) and C-18 derivatized silica."*?

1.4.2.4 lonic liquid-based coating materials for SPME

PDMS and PDMS/DVB type coating materials are thermally stable to 400 °C."*®
High thermal stabilities, high viscosities and ability to undergo multiple solvation
interactions are some of the unique and interesting properties of ionic liquids. Due to
these unique properties, ILs can be used as viable and useful coating materials for
SPME. The first application of ILs as SPME coating materials was introduced in 2004
by Liu et al. Liu and coworkers used a 1-octyl-3-methyl imidazolium PFs monocationic
ionic liquid as the coating material for the SPME fiber. This disposable IL coating was
developed for the headspace extraction of benzene, toluene, ethylbenzene, and
xylenes (BTEX) in paints. After that, Anderson and coworkers introduced dicationic

polymeric IL-based coating materials'**

which were more thermally stable and durable
when compared to monocationic type IL coatings. Scheme 1.1 and Figure 1.14
illustrate the synthesis and the morphology of the polymeric ionic liquid. This polymeric
IL-based SPME phase has been used in the headspace extraction of esters.**

Even though these coated polymeric IL materials were more stable than
monocationic IL coatings, their use in direct immersion extractions were limited. This is
because the polymeric ILs can be dissolved in immersing solvents and they give rise to
higher levels of bleeding when exposed to high temperature GC inlet. We have
developed a polymeric IL material that is covalently bonded to silica that can be used in
both headspace and direct immersion experiments with minimal bleeding at inlet
temperatures up to 250 °C. The development of silica bonded polymeric IL will be

discussed in Chapter 4.
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Scheme 1.1 Synthesis of the polymeric ionic liquids evaluated as SPME coatings.

(a) The vinyl-substituted IL monomer is prepared by the reaction of 1-vinylimidazole

with the corresponding haloalkane followed by free radical polymerization to form the

linear polymer. (b) Metathesis anion exchange is used to exchange the halide anion
with the NTf,™ anion. Reproduced with permission from reference 154.

AUE INTG SLOMW FPHOT

Figure 1.14 Scanning electron micrographs of a 100-uym inner diameter bare fused
silica support (A) and various angles of the fused silica support coated with the
poly(ViDDIm™ NTf,") polymeric IL (B-D).

The estimated film thickness is approximately 12—18 ym. Reproduced with permission
from reference 154.
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1.5 Organization of Dissertation

This dissertation consists of two parts. First part consists of studies towards synthesis
of new ionic liquids, ionic liquid-based materials and their uses in analytical chemistry.
The second part consists of studies of calix[4]arene-based supramolecular
architectures that can entrap and release NO, gases.

Chapter 2 examines the use of trigonal tricationic ILs as potential GC stationary
phases. Since these ILs show very high thermal stabilities, they can be used as GC
stationary phases over a wide range of temperatures. Chapter 3 describes the
synthesis of new flexible linear tricationic ILs and their physiochemical properties.
These newly synthesized linear tricationic ILs are used as new flexible ion pairing
reagents in the detection of dianionic species in the positive mode of ESI-MS.
Improved detection limits for dianion analysis was observed and the results are
discussed in Chapter 4.

Chapter 5 examines a new ionic liquid-based bonded polymeric phase
developed for solid phase microextraction (SPME). This polymeric coating material is
the first example of a polymeric ionic liquid chemically attached to silica gel. Binding
chemistry of the new SPME coating material and its applications are discussed in this
chapter.

Chapters 6, 7, and 8 discuss calix[4]arene-based supramolecular approaches
to entrap NO, gases and cleaner generation of medicinally important nitric oxide (NO)

using calix[4]arene-based nitrosonium complexes.
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CHAPTER 2
TRIGONAL TRICATIONIC IONIC LIQUIDS: A NEW GENERATION OF GAS
CHROMATOGRAPHIC STATIONARY PHASES
2.1 Abstract

Trigonal tricationic ionic liquids (ILs) are a new class of ILs that appear to be
unique when used as gas chromatographic stationary phases. They consist of four
core structures; 1. A = mesitylene core, 2. B = benzene core, 3. C = triethylamine core,
and 4. D = tri(2-hexanamido)ethylamine core; to which three identical imidazolium or
phosphonium cationic moieties were attached. These were coated on fused silica
capillaries and their gas chromatographic properties were evaluated. They were
characterized using a linear solvation parameter model and a number of test mixtures.
Based on the literature, it is known that both monocationic and dicationic ionic liquids
possess almost identical polarities, solvation characteristics, and chromatographic
selectivities. However some of the trigonal tricationic ILs were quite different. The
different solvation parameters and higher apparent polarities appear to generate from
the more rigid trigonal geometry of these ILs as well as their ability to retain positive
charges in relatively close proximity to one another in some cases. Their unique
selectivities, retention behaviors and separation efficiencies were demonstrated using
the Grob mixture, a flavor and fragrance test mixture, alcohols/alkanes test, and FAME
isomer separations. Two ionic liquids C1 (methylimidazolium substitution) and C4 (2-
hydroxyethylimidazolium substitution) had higher apparent polarities than any known

ionic liquid (mono, di and tricationic ILs) or commercial stationary phases. The tri(2-
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hexanamido)ethylamine core IL series proved to be very interesting in that it not only
showed the highest separation efficiency for all test mixtures, but it also is the first IL
stationary phase (containing NTf, anions) that eliminates peak tailing for alcohols and
other H-bonding analytes. The thermal stabilities were investigated using 3 methods:
thermogravimetric analysis (TGA), temperature programmed gas chromatographic
(TPGC) and isothermal gas chromatographic. The D core series had a high working
temperature range, exceptional selectivities and higher separation efficiencies than
comparable polarity commercial columns. It appears that this specific type of
multifunctional ILs may have the most promising future as a new generation of gas

chromatographic stationary phases.

2.2 Introduction

New types of stationary phases are explored constantly in order to come up
with entities that have better physico-chemical properties in order to provide better
stabilities, selectivities, resolutions and separation efficiencies for qualitative and
quantitative determination of increasingly complex analyte systems. lonic liquids have
attracted much attention recently as stationary phases in gas-liquid chromatography
(GLC) due to the unique properties these compounds seem to possess. These
characteristics include negligible vapor pressure at room temperature, a wide liquid
phase temperature range, good thermal stability, non-flammability, resistance to
decomposition, ability to undergo multiple solvation interactions, ionic conductivity
(>10 S/cm), and large electrochemical windows (>2 V). These properties are highly
desirable for many applications in areas of chemistry, physics, and engineering. Some

of these applications include replacement for volatile organic solvents in organic

1,1565-162 3

synthesis, solvents for high temperature reactions,'® solvents for enzyme
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164-167

catalyzed reactions, electrochemical applications in photovoltaic cells and fuel

175179 and mass

cells,"® "2 high temperature lubricants,'”"" liquid — liquid extractions,
spectrometric applications.”” %' The thermal stability, ability to form multiple
solvation interactions, and low volatility makes them ideal candidates for use in gas
chromatography as stationary phases. In the recent past, ultra stable stationary phases
based on ionic liquids were the focus of many important publications.**#6:526.183-183
Based on the literature it is evident that multifunctional ionic liquids can show greater
thermal stability than most common monocationic ionic liquids in GC applications but
have almost identical solvent properties.*®

However, when multiple cationic moieties are present the ionic liquid tends to
be a solid at room temperature. For the best performance as a gas chromatographic
stationary phase, it is necessary that the ionic liquid be a room temperature ionic liquid
(RTIL). Literature indicates that the highest probability for a multi-functional ionic liquid
to be a room temperature ionic liquid is by incorporating the
bis(trifluoromethanesulfonyl)imide (NTf,) anion.*>*®'8-1%" This anion not only gives low
melting ionic liquids but also shows high thermal stability.**'"'%? These two
characteristics make the NTf,” anion ideal for ILs in GC applications. However, there is
a distinct disadvantage of using this anion. That is, NTf,” containing ILs produces peak
tailing for alcohols and sometimes for other H-bonding analytes. Many different types
of cation combinations have been tested in order to come up with a solution for this
peak tailing and so far these attempts have failed. In this work we introduce another

class of ionic liquids that not only solves this problem but also provides unique

properties and selectivities not found in previously reported ILs. These are trigonal
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tricationic ionic liquids and they are comprised of three positively-charged moieties
linked to a central core.

Since trigonal tricationic ILs are a new class of ionic liquids, it is necessary to
characterize them based on their solvation properties and relative polarity compared to
general monocationic, dicationic ionic liquids and other common organic solvents.
Many methods have been developed over the years for the characterization of ionic
liquid solvation properties.’®*'** Some of the earliest developments include an
empirical solvent polarity scale derived either by a solvent-dependent reaction rate
constant or by the shift in maxima of an absorption or emission band of a
solvatochromic dye or a fluorescent probe dissolved in a particular solvent.'%"!
However, these methods have failed to provide a comprehensive picture of the polarity
of ionic liquids due to the fact that these are single parameter polarity scales and
therefore specific solvent-solute interactions are not taken into account. lonic liquids
can undergo multiple solvation interactions simultaneously such as ionic, dispersive,
dipole-dipole, dipole-induced dipole, H-bond donating, H-bond accepting, -1
interactions and T-nonbonding interactions. Furthermore, ionic liquids may have
complex extended three-dimensional liquid structures and possibly a supramolecular
structure depicted by hydrogen bonding.” Hence, single parameter polarity does not
correlate with the actual chemical environment of the ionic liquid. The next major
development in this field comes with the inverse GLC application of Rohrschneider-
McReynolds process.”® In this method, specific solute-solvent interactions are
evaluated by utilizing 5 probe molecules which are assumed to undergo only specific
types of interactions.*®'**?°! However, due to the use of only one probe molecule per
interaction, statistically the reliability of the values obtained is low.
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The method used for the evaluation trigonal tricationic ILs is the Abraham
solvation parameter model and it is the most comprehensive method available
today.?*6870202203 Thjg js based on a linear free energy relationship. The principle is
similar to Rohrschneider-McReynolds method in that different types of solvent-solute
interactions are evaluated separately. However, instead of one probe molecule, several
probe molecules are used to characterize one interaction parameter increasing the
reliability of the parameter coefficients obtained. The linear solvation energy

relationship is given by equation 1:

logk=c+eE +sS+aA+bB + IL--—-—-——-- Eq(1)

Here, the upper case letters E, S, A, B and L are solute descriptors. E represents
excess molar refraction of the solute at 20 °C, S is solute dipolarity and polarizability, A
is Hydrogen bond acidity, B is Hydrogen bond basicity and L is gas-hexadecane
partition coefficient at 25 °C. Solute descriptor values are evaluated and published in
the literature for a number of solutes.®® The lower case letters are assigned to
characterize different types of interactions between the solutes and the solvent. In this
case the solvent is the ionic liquid acting as the stationary phase. The value of these
coefficients depicts the strength of the interaction. Here e is ™ and non-bonding
electron interactions, s is the ability of the phase to interact with dipolar/polarizable
solutes, a is H-bond donating (H-bond basicity) interactions, b is H-bond accepting
(H-bond acidity) interactions, I coefficient is composed of dispersion forces (positive
contribution) and cavity term (negative contribution) and c is the system constant. For

all the solutes the retention factor k can be calculated chromatographically. These
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values can then be subjected to multiple linear regression analysis (MLRA) to find the
five coefficients and system constant.

2.3 Experimental Procedures and Methods

2.3.1 Materials

Figure 2.1 gives the structures of all the trigonal tricationic ionic liquids those have
been synthesized previously. Detailed synthesis procedure is given elsewhere.’’ All
the probe molecules in Table 2.1 were purchased from Sigma Aldrich. Grob test
mixture, flavor and fragrance mixture and alcohols and alkanes mixture were also
purchased from Sigma Aldrich. The GC capillaries (250 um internal diameter) were
purchased from Supelco. The FAME isomer mixture and the commercial columns
Equity-1701, SUPELCOWAX, and SP-2331 were graciously donated by Supelco.

2.3.2 Methods

For the determination of solvation parameter the ionic liquids were coated using static
coating technique on salt treated fused silica capillary (5m x .25mm). In this method,
the IL was dissolved in dichloromethane to obtain 0.25% (w/v) coating solution and this
was injected from one end of the capillary. The capillary tube was kept inside a water
bath at 40 °C. After that, one end of the capillary was sealed while the solvent was
evaporated from the other end under high vacuum conditions. Finally the coated
columns were flushed with helium gas and conditioned overnight from 30 to 120 °C at 3
°C/min. Efficiencies of the 12 IL columns were determined by using naphthalene at 100

°C and were higher than 2000 plates m™.
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Figure 2.1 Structures of trigonal tricationic ionic liquids used in this analysis.

For the determination of solvation parameters, 30 probe molecules were used. The

solute descriptors for the 30 probe molecules are listed in Table 2.1.
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Table 2.1 Solute descriptor values for all the probe molecules used in this analysis.
(Reproduced with permission from reference 55)

E

Probe molecule (cm*/molx10) S A B L

1,2-Dichlorobenzene 0.872 0.78 0.00 0.04 4.518
Phenol 0.805 0.89 0.60 0.31 3.766
Octylaldehyde 0.160 0.65 0.00 0.45 4.360
Valeradehyde 0.163 0.65 0.00 0.45 2.851
o-Xylene 0.663 0.56 0.00 0.16 3.939
p-Xylene 0.613 0.52 0.00 0.16 3.839
m-Xylene 0.623 0.52 0.00 0.16 3.839
Cyclohexanol 0.460 0.54 0.32 0.57 3.758
Nitrobenzene 0.871 1.11 0.00 0.28 4.511
N,N-Dimethylformamide 0.367 1.31 0.00 0.74 3.173
2-Pentanone 0.143 0.68 0.00 0.51 2.755
1-Nitropropane 0.242 0.95 0.00 0.31 2.894
Toluene 0.601 0.52 0.00 0.14 3.325
Benzaldehyde 0.820 1.00 0.00 0.39 4.008
Pyridine 0.794 0.87 0.00 0.62 3.003
Aniline 0.955 0.96 0.26 0.53 3.993
Butanol 0.224 0.42 0.37 0.48 2.601
Acetic acid 0.265 0.65 0.61 0.44 1.750
1-Octanol 0.199 0.42 0.37 0.48 4.619
Acetophenone 0.818 1.01 0.00 0.49 4.501
2-Choloraniline 1.033 0.92 0.25 0.31 4.674
Pyrrole 0.613 0.73 0.41 0.29 2.865
Benzonitrile 0.742 1.11 0.00 0.33 4.039
Propionitrile 0.162 0.90 0.02 0.36 2.082
1-Chlorohexane 0.201 0.40 0.00 0.10 3.777
p-Cresol 0.820 0.87 0.57 0.31 4.312
Ethylphenyl ether 0.681 0.70 0.00 0.32 4.242
Naphthalene 1.340 0.92 0.00 0.20 5.161
2-Propanol 0.212 0.36 0.30 0.14 2.786
Cyclohexanone 0.403 0.86 0.00 0.56 3.792

For the determination of each parameter, more than 4 probe molecules having
significant range of solute descriptor values were used in order to meet the statistical

requirement to obtain meaningful results for the parameters.’”® The solvation
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parameters were determined using inverse GC method at 2 different temperatures, 70
°C and 100 °C. Probe molecules were injected and retention times were measured in
triplicate. Methane was used to measure the column hold-up time. For the trigonal
tricationic IL columns the three retention factors calculated for each probe molecule
were identical within the experimental error. The log of average retention factor from
triplicate measurement (log k) and solute descriptors (E, S, A, B, L) were then
subjected to a multi parameter linear least squares fit on Analyse-it® for Microsoft Excel
software to determine the coefficients. Helium carrier gas flow rate was set at 1 mL
min™ for all the analysis with split ratio 100:1. Inlet and detector temperatures were
kept at 250 °C. The values obtained for the solvation coefficients using inverse GC
approach are listed in Table 2.4. The value n represents the maximum number of
probe molecules that could be used for MLRA. The value is less than 30 because
some compounds co-eluted with the solvent peak especially at the higher temperature.
Also, some of the data points had to be removed in order to obtain higher correlation
coefficients (R? > 0.98). It was noted that highly peak tailing analytes such as acetic
acid and N,N-dimethylformamide were common among the analytes that were
removed from the data set.

Separations of Grob test mixture, flavor and fragrance mixture, alcohols and
alkanes mixture, and FAME isomers were carried out in Agilent 6890N Network GC
System (Foster City, CA) equipped with Agilent 5975 inert Mass Selective Detector.
Colum dimensions: 30 m x .25 mm x 0.20 uym. Separation conditions for Grob test
mixture: 40 — 190 °C at 6 °C/min. Flavor and fragrance mixture: 40 °C for 3 min, 10
°C/min to 150 °C. Alcohols and alkanes mixture: 30 °C for 3 min, 10 °C/min to 160 °C.
FAME isomers: 165 °C isothermal.
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Thermal stability of ionic liquids was evaluated using three methods. The first
method involves thermogravimetric analysis (TGA) of the pure ionic liquid at 10 °C/min
heating rate.

Table 2.2 Physical properties of the trigonal tricationic ILs used as stationary phases.
(Adopted from Ref.190,191)

Melting Density Thermal
Point a Refractive Viscosity ®  Stability®
IL M.W. (°C) (g/cm®) index (cSt) (°C)

A3 1474.3 60-62 1.59 - - 365

B1 12039  -38* 1.56 1.467 1280 414

B2 1330.2  -24* 1.53 1.467 2320 401

B3 1432.2  -87* 1.55 1.588 20,000- 361
25,000

C1 1184.9 36-37 1.56 - - 393

C2 1311.2 47 1.41 1.451 1580 363

C3 1413.2 -6* 1.51 1.493 25,000- 381
30,000

C4 1275 -38* 1.64 1.460 7980 392

D1 15244  -16* 1.59 1.465 7760 351

D2 1650.6  -54* 1.49 1.466 10,200 335

D3 1752.7  -15* 1.54 1.495 40,000- 337
45,000

D5 1758.8  -31* 1.48 1.466 35,000- 388
40,000

BMIM-CI ¢ 174.7 65 1.10 - - 145 °

BMIM-TfO | 322.3 27 1.30 1.438 69.8 175°

BMIM-NTf, | 419.4 -4 1.43 1.427 36.4 185°

d

* Phase transition temperature determined by using differential scanning
calorimetry (DSC). @ Measured using pycnometer. ® Kinematic viscosity determined
using capillary viscometer at 30 °C. ° Temperature of 5% thermal degradation
determined by thermogravimetric analysis (TGA). ¢ Values taken from the references
44, 186. ° Thermal stability determined by GC method.
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The decomposition temperature of 5% weight loss of the sample is reported in Table
2.2. The second approach is a temperature programmed GC (TPGC) method where
the ionic liquid is coated in a 5 m x .25mm capillary and a temperature ramp of 3
°C/min was applied from 100 °C until decomposition is observed (see Figure 2.2). The
third method is carried out for D core ionic liquids only. In this method, the ionic liquid is
coated on a NaCl treated fused silica capillary of 5m x .25mm x .15 ym film thickness
and the retention factor of naphthalene was determined at 100 °C isothermally. It was
then subjected to conditioning at higher temperatures for 12 hours (see Table 2.3) and
the naphthalene retention factor was determined again at 100 °C after each
conditioning step. This method yields the most relevant thermal decomposition

temperature of the IL stationary phases.

D5 D3

FID Detector Response (ark. units)
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Figure 2.2 Temperature profile for column bleeding in gas chromatography.
Temperature profile for column bleeding in gas chromatography due to thermal

decomposition or volatilization of trigonal tricationic ionic liquids B3, C1, C2, C3, C4,
D1, D2, D3, and D3.
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2.4 Results and Discussion

Four types of central cores were investigated in this study (see Figure 2.1) and in the
order of increasing flexibility they are; A mesitylene core, B benzene core, C
triethylamine core, and D tri(2-hexanamido)ethylamine core. These core structures
also vary in their ability to form hydrogen bonds with the NTf,” anion and other solutes.
The A and B cores do not have any intrinsic H-bonding capabilities. In the case of C
core, the central nitrogen can be H-bond basic and in D core, the central nitrogen and
amide oxygen both can be H-bond basic and the amide hydrogen can be H-bond
acidic. It is important to note that to the best of our knowledge this is the first time an
amide group is introduced in to the cationic fragment of an ionic liquid. Detailed
information of synthesis and impurities present in these ionic liquids were discussed
elsewhere."’

2.4.1 Physical Properties of Trigonal Tricationic lonic Liquids

The physical properties of this series of multifunctional ILs are summarized in
Table 2.2. lonic liquid A3 and C1 were solids at room temperature with melting points
62 and 37 °C respectively. The remaining 10 ionic liquids were room temperature ILs
with melting points below 20 °C. The RTILs were viscous liquids that did not show any
air or moisture sensitivity that leads to decomposition at laboratory atmosphere.
Densities of these tricationic ILs lie in the range observed for common monocationic
and dicationic ILs*® and are between 1.41 g/cm® and 1.64 g/cm®. Refractive indices
range from 1.451 to 1.588. However viscosities of trigonal tricationic ILs are at least
one or two orders of magnitude higher than those observed for typical monocationic ILs
and dicationic ILs. In fact these are the highest viscosities reported for any ionic liquids.

lonic liquids D3 and D5 have the highest viscosities which range between 40,000-
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45,000 ¢St and 35,000-40,000 cSt respectively. High viscosities are preferable for ILs
that are to be used as stationary phases in GC.**** Furthermore when the benzyl
imidazolium moiety is present the viscosities are markedly higher than other
imidazolium cationic moieties. This trend was observed for symmetrical and
unsymmetrical dicationic ILs as well.** This may be attributed to the added -1
stacking of the aromatic ring. Thermal stabilities of the trigonal tricationic ILs were
measured using three methods (see Experimental Section) and a detailed discussion
follows.

2.4.1.1 Thermal Stability

The thermal stability of ionic liquids is important as it defines the upper limit of
the temperature range where the column can be used as a separation medium. Three
methods were used to evaluate thermal stability: First two methods, TGA method and
temperature programmed GC method were used to obtain a general idea of the
thermal stability. Using the TGA method, the temperatures of 5% thermal degradation
of the trigonal tricationic IL samples are reported as the decomposition temperature in
Table 2.2. All ionic liquids were thermally stable to at least 335 °C in the TGA method.
In the TPGC method, the baseline rise at the beginning of the decomposition event can
be due to two reasons (see Figure 2.2). It can be due to the volatilization of the ionic
liquid or it can be due to the actual decomposition. Either way, this region cannot be
used for chromatographic separations due to the increasing baseline from column
bleed. At the end of Table 2.2, the thermal stability of some common monocationic
ionic liquids (determined by the TPGC method) is listed for comparison purposes.* It is
important to note that the thermal stability values reported in Table 2.2 for

monocationic ionic liquids can be directly compared to the values obtained for trigonal
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tricationic ionic liquids by the TPGC method in Figure 2.2 as both experiments
employed identical procedures. It is evident that the tricationic ionic liquids are much
more thermally stable than the common monocationic ionic liquids. All 3 monocationic
ILs start to decompose or volatilize before 185 °C while for the trigonal tricationic ILs,
no appreciable bleed is observed before 280 °C. There is at least a 90 degree
advantage of workable temperature range for tricationic ILs over the common
monocationic IL stationary phases in gas chromatography. Within the tricationic series
since all the ionic liquids have the same anion, the thermal stability variation are solely
due to variations in the cationic fragment. IL C4 with hydroxyethylimidazolium cationic
moiety and nitrogen core seems to decompose at somewhat lower temperature
whereas |IL D5 with propylphosphonium cationic moiety and amide linkage shows the
highest onset temperature of decomposition. In fact it appears that for D5 the base line
does not start to rise appreciably until the temperature exceeds 315 °C. The above
mentioned two methods were used to present general thermal stability comparison
between the trigonal tricationic ILs and other ionic liquid-based stationary phases since
these are the most common methods used in the literature. The third method, an
isothermal GC method, is probably the most relevant method for the determination of
actual upper limit of temperature for the use of ionic liquids as stationary phases. The
retention factor of naphthalene after each thermal treatment is shown in Table 2.3 and
Figure 2.3. For all the D core ILs listed, symmetrical sharp peaks were obtained up to
290 °C conditioning. At 300 °C thermal treatment the columns show reasonable

retention for naphthalene.
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Table 2.3 Variation of retention factors (knsps) With thermal treatment of D core trigonal
tricationic IL columns.?

Thermal
treatment
b

knaph knaph knaph
(°C) inD1 | inD3 | in D5

100 3.2 8.1 7.2
130 3.1 6.9 7.0
150 3.0 6.5 6.8
200 2.9 5.2 6.5
230 2.9 4.6 6.4
250 2.8 4.3 6.3
270 2.5 3.2 6.2
290 2.1 2.3 6.0

300 3.0°| 23°| 6.7°

310 d d d

@ Measured isothermally for naphthalene, column temperature
100 °C, He flow rate 1 ml/min. ° Thermally treated for 12 hours under He 1 ml/min. ¢
Peak tailing was observed. ¢ No retention was observed for naphthalene.

Variation of retention factor with thermal treatment
for D core ILs

10.0

8.0 M

L‘ v

60 - —t—t—pd— D1
<

4.0 —@-D3

—————
2.0 D5
0.0
80 130 180 230 280

Thermal Treatment °C

Figure 2.3 Graphical representation illustrating the change of retention factor with the
temperature treatment on D1, D2, D3 IL phases.
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However the peaks show some tailing. After 310 °C, there was no retention which
indicates column bleed of the ionic liquid stationary phase. These results confirm that
the D core IL series is thermally stable up to 300 °C as a GC stationary phase. In
previous work it was shown that the phosphonium cationic moiety is more resistant to
thermal degradation than most other N-based cations such as imidazolium and
ammonium.?®® This implies that from this set of tricationic ionic liquids, D5 has the
largest workable temperature range as a stationary phase in gas chromatography. It
exists as a liquid for a range of 331 °C from — 31.4 °C to at least 300 °C. This in itself is
quite impressive compared to the monocationic ionic liquids which generally have a
liquid temperature range of about 200 °C or less. It is important to note that the
commercial stationary phase SP-2331 which has similar polarity to D5 ionic liquid has
an upper temperature limit of 275 °C. Therefore, IL D5 has at least 25 °C advantage
over the comparable commercial stationary phase which in gas chromatographic terms
leads to better separation efficiencies for heavy and highly polar compounds.

2.4.2. lonic Liquid Solvation Parameters

The solvation parameters obtained for the trigonal tricationic ionic liquids are
listed in Table 2.4. In Table 2.5 these values are compared with the same parameters
found for common monocationic and dicationic ionic liquids.*#>*® By comparison,
nearly all interaction parameters obtained for monocationic and dicationic ILs are
similar to each other whereas those obtained for some of the new tricationic ILs are

quite unique.
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Table 2.4 Interaction parameters obtained for trigonal tricationic IL stationary phases

Temperature

(°Cc) c e S a b L n R?
A3 (BzIM)Mst

70 (std. err.) -3.34 (.10) | 0.07 (.08) | 2.02 (.09) | 1.86 (.08) | 0.72 (.11) | 0.47 (.02) | 29 | 0.99
100 (std. err.) -3.37 (.09) | 0.10(.07) | 1.87 (.08) | 1.61 (.07) | 0.58 (.10) | 0.39(.02) | 29 | 0.99
B1 (MIM)Ph

70 (std. err.) -2.94 (.(12) 1 0.14 ((10) | 1.67 ((11) | 1.68 (.10) | 0.05(.14) | 0.50 (.03) | 29 | 0.98
100 (std. err.) -3.00 (.\11) |1 0.18 (.08) | 1.51 (.09) | 1.42 (.08) | 0.02 (.12) | 0.42(.03) | 29 | 0.99
B2 (BulM)Ph

70 (std. err.) -3.18 (.08) | 0.07 (.07) | 1.72 (.08) | 1.80 (.07) | 0.23 (.10) | 0.56 (.02) | 29 | 0.99
100 (std. err.) -3.26 (.08) | 0.09 (.07) | 1.56 (.08) | 1.57 (.07) | 0.15(.10) | 0.48 (.02) | 29 | 0.99
B3 (BzIM)Ph

70 (std. err.) -3.49 (.\10) | 0.04 (.07) | 2.11 (.08) | 2.09 (.08) | 0.46 (.10) | 0.51 (.03) | 28 | 0.99
100 (std. err.) -3.55 (.09) | 0.06 (.07) | 1.97 (.07) | 1.78 (.07) | 0.39(.10) | 0.43(.02) | 28 | 0.99
C1 (MIM)N

70 (std. err.) -3.53 (.\11) | 0.05(.08) | 1.55 (.10) | 1.81 (.08) | 0.35(.11) | 0.53 (.03) | 28 | 0.99
100 (std. err.) -3.70 (.\12) |1 0.04 (.08) | 1.58 (.08) | 1.51 (.08) | 0.31 (.11) | 0.45(.03) | 25| 0.98
C2 (BulM)N

70 (std. err.) -2.92 (.09) | 0.05(.07) | 1.57 (.08) | 1.55 (.07) | 0.14 (.10) | 0.55(.02) | 27 | 0.99
100 (std. err.) -2.98 (.09) | 0.06 (.07) | 1.43 (.08) | 1.29 (.06) | 0.16 (.10) | 0.46 (.02) | 27 | 0.99
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Table 2.4 Continued

C3 (BzZIM)N c e S a b L n| R?
70 (std. err.) -3.23 (.09) | -0.03 (.07) | 1.85(.08) | 1.62 (.07) | 0.37 (.10) | 0.54 (.02) | 28 | 0.99
100 (std. err.) -3.29 (.08) | -0.02 (.06) | 1.10 (.07) | 1.37 (.07) | 0.30 (.09) | 0.46 (.02) | 28 | 0.99
C4 (HylM)N

70 (std. err.) -3.18 (.10) | 0.22 (.09) | 0.66 (.10) | 0.95 (.09) | 0.09 (.12) | 0.67 (.03) | 29 | 0.99
100 (std. err.) -3.05 (.09) | 0.22 (.06) | 0.45(.07) | 0.70 (.06) | 0.03 (.08) | 0.57 (.02) | 25 | 0.99
D1 (MIM)NAmid

70 (std. err.) -3.42 (12) | 0.23(.09) |2.15(.11) | 2.82(.11) | 0.31 (.14) | 0.43 (.03) | 28 | 0.99
100 (std. err.) -3.58 (.12) | 0.16 (.09) |2.10(.10) | 2.50 (.10) | 0.17 (.14) | 0.37 (.03) | 26 | 0.99
D2 (BulM)NAmid

70 (std. err.) -2.89 (.13) | 0.11(.11) | 1.59 (.12) | 2.23 (.10) | 0.05 (.15) | 0.52 (.03) | 28 | 0.99
100 (std. err.) -2.94 (.11) | 0.10 (.09) | 1.45(.10) | 1.84 (.09) | 0.01 (.13) | 0.45(.03) | 28 | 0.98
D3 (BzIM)NAmid

70 (std. err.) -3.10 (.12) | 0.07 (.10) | 1.85(.11) | 2.29 (.10) | 0.15 (.14) | 0.50 (.03) | 29 | 0.99
100 (std. err.) -3.16 (.10) | 0.08 (.08) | 1.69 (.09) | 1.93 (.08) | 0.10 (.11) | 0.42(.02) | 29 | 0.99
D5 (PrP)NAmid

70 (std. err.) -3.30 (.10) | 0.13(.08) | 1.91(.09) | 2.72 (.08) | 0.03 (.11) | 0.52 (.03) | 29 | 0.99
100 (std. err.) -3.34 (.10) | 0.14 (.08) | 1.72(.09) | 2.17 (.08) | 0.07 (.11) | 0.44 (.02) | 29 | 0.99




Table 2.5 Comparison of the interaction parameters of monocationic and dicationic
RTILs with trigonal tricationic ionic liquids.

Temperature

(°Cc) c e s a b I n | R?
BMIM-NTf2 a

70 -3.03 0 1.67 1.75 0.38 | 0.56

(std. err.) (.09) | (.08) | (.09) (.09) ((11) | ((02) | 35 | 0.99
100 -3.13 0 1.60 1.55 0.24 | 049

(std. err.) (.12) | (.09) | (L10) (.10) (.12) | (.03) | 32 | 0.98
bCQ(mim)2-NTf2

70 -2.95 | 0.11 1.76 1.75 0.20 | 0.51

(std. err.) (.14) | (.07) | (.08) (.07) (.10) | (.02) | 33 | 0.99
100 -3.06 | 0.11 1.64 1.50 0.15 | 043

(std. err.) (.08) | (.06) | (.07) (.06) (.09) | (.02) | 32 | 0.99
D1 (MIM)NAmid

70 -342| 023 | 2.15 2.82 0.31 0.43

(std. err.) (.112) | (09) | (11) (.11) (.14) | (.03) | 28 | 0.99
100 -3.58 | 0.16 | 2.10 2.50 0.17 | 0.37

(std. err.) (.12) | (.09) | (L10) (.10) (.\14) | (.03) | 26 | 0.99

These unique parameters give rise to different behaviors in terms of retention,
selectivity and separation efficiency. Three of the five interaction parameter coefficients
i.e., s = dipole—type interactions, a = H-bond donating interactions, and / = dispersion
and cavity formation interactions have the greatest magnitude. This implies that solute
retention is mainly due to these three types of interactions. Similar observations were
made for monocationic and dicationic IL stationary phases.***>% lonic liquid C4 (with
hydroxyethylimidazole charge carrying moieties and a “N” core) had the lowest s and a
terms ever reported for any ionic liquid stationary phases carrying NTf,” anion. Hence
the C4 IL column exhibited the lowest retention for all the test mixtures investigated
(Grob test, alcohols and alkanes, flavor and fragrance mixture, see Figures 2.4, 2.5
and 2.7.). The e term which corresponds to 11- and nonbonding electron interactions is

essentially negligible in this series of trigonal tricationic ionic liquids. It was observed
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that the s, a, b, and | coefficients decrease with increasing temperature. The most
substantial decrease in magnitude is observed for the s and a values (dipole—type
interactions and H—bond basicity). This is mainly due to the fact that these interactions
result from directional bonds and therefore depend largely on the orientation of the
solute molecules and the interacting stationary phase molecules. As the temperature
increases, translational and rotational energy of the molecules increase. This disrupts
the intermolecular interactions between the solute and stationary phase and leads to
lower retention and coefficients.””> When benzylimidazole is the ionic liquid’s charge
carrying moiety, the H-bond acidity term b is increased compared to the other cationic
moieties (with the exception of the D core ionic liquids in which the methylimidazole
cationic moiety shows a higher b value). This is observed in symmetrical dicationic
ionic liquids as well.** This may be due to the increased H-bond acidity of the bridging
methylene hydrogens of the benzyl group. This contention is supported by previously
published results (illustrated in Figure 2.4 which is a packing diagram of a symmetrical
dicationic ionic liquid, Cz(methylimidazolium), 2Br™). This crystal structure shows H-
bonding between the acidic hydrogens and the bromide anion.*® The hydrogens that
are marked with a red arrow are from the methyl group substituted at the 3 position of
the imidazole ring. If the methyl group is substituted by a benzyl group, these would be
the bridging methylene hydrogens. In that case due to the presence of the benzene
ring in the adjacent carbon these hydrogens would be even more acidic giving rise to a
larger b term.

The D core series of tricationic ILs has the highest a values (i.e., hydrogen

bond basicities).This is due to the three amide groups present in each ionic liquid. Both
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amide nitrogen and carbonyl oxygen can participate in H-bonding. The central core

nitrogen may be sterically hindered for effective hydrogen bonding.

Figure 2.4 X-ray crystallographic representation of C;(mim), 2Br ~ showing stacks along
short a — axis and H-bonding. Reproduced with the permission from reference 56.

The e term is probably the least significant coefficient for most of the tricationic
ILs investigated. It implies that the interaction between solute and IL stationary phase
through -1 and non-bonding electrons is minimal compared to other types of
interactions. One would expect the benzylimidazole cationic moiety to introduce some
T — bonding interactions but that is not what is observed. The only statistically
significant e terms are observed for the C4 ionic liquid, with the hydroxyethylimidazole
charge carrying moiety; and for the D1 ionic liquid with methylimidazole charge
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carrying moiety. It is expected that C—core series has the lowest e term, as there are
no core 1 — bonding electrons and only one relatively inaccessible non-bonding
electron pair on the central nitrogen. However, C4 with hydroxyethylimidazole as the
cationic moiety shows the highest -1 and n-1 interactions among the trigonal
tricationic IL series. Furthermore this ionic liquid has a very low H-bond acidity (b
coefficient). This implies that the hydroxyl group interacts with solutes through the non-
bonding electrons of oxygen and not as much through H-bonding. Dispersion forces
are one of the prominent type of interaction that contributes to analyte retention in
these IL stationary phases. However, interaction of tricationic ILs through dispersion
forces (/ coefficient) seems to be similar since there is not much variation in the / value
from one trigonal tricationic ionic liquid to another. The magnitude of / ranges from 0.43
to 0.67 and this falls within the range observed for symmetrical dicationic and
monocationic ionic liquids.***44%%

2.4.3 The Grob Test Mixture

This is a single test mixture that is used to evaluate a capillary column
chromatographically.’®*?** This mixture can be used to evaluate separation efficiency,
acid/base characteristics, adsorptive activity and relative polarity of the column. The
mixture contains 12 components and each peak gives information about the column. 1.
n-decane and 2. n-undecane represents 100% recovery marker. Symmetrical sharp
peaks are expected for properly produced and installed columns. 3. 1-nonanal is used
to identify adsorption unique to aldehydes independent of H-bonding. 4. 1-octanol and
5. 2,3-butanediol peak shapes indicate presence of H-bonding sites. Reduced peak
heights and unsymmetrical peak shapes for 6. 2-ethylhexanoic acid and 7. 2,6-

dimethylphenol indicate H-bonding or basic sites. 8. methyl decanoate, 9. methyl
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undecanoate and 10. methyl dodecanoate are a homologous series of fatty acid methyl
esters and is used to determine the separation efficiency of the column. 11. 2,6-
dimethylaniline and 12. dicyclohexylamine peak shapes give information of the acidic
nature of the column.

According to Figure 2.5, in trigonal tricationic ionic liquids with B and C core
structures (see Figure 2.1), n-decane and n-undecane elute with or near the methylene
chloride solvent peak and could not be separated with the given temperature program.
Also, 2,3-butanediol, 2-ethylhexanoic acid, and dicyclohexylamine were either retained
on the column or eluted with high peak tailing so that they were indistinguishable from
the baseline. All of these 3 compounds are polar, have H-bonding capabilities and lack
any aromatic substituents. Furthermore, 1-nonanal and 1-octanol showed peak tailing
and reduced peak heights. These results imply that the B and C core structures can
produce IL stationary phases that are highly polar with H—bond accepting capabilities.
The C4 IL shows the least retention for Grob test mixture compounds which is in
accordance with the previously discussed solvation parameter coefficient results. The
homologous series of fatty acid methyl esters were well separated with both B and C
core IL stationary phases and showed good separation efficiencies. The acid 2,6-
dimethylphenol and the base 2,6-dimethylaniline were the latest eluting detectable

peaks. Despite the presence of H-bonding sites, these did not show much peak tailing.
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Figure 2.5 Separation of Grob test mixture in trigonal tricationic IL columns.

Separations were compared with commercial columns with varying degrees of polarity.
Intermediate polar (Equity-1701), polar (SUPELCOWAX), and highly polar (SP-2331).1
n-decan, 2 n-undecane, 3 1-nonanal, 4 1-octanol, 5 2,3-butanediol, 6 2-ethylhexanoic
8 methyl decanoate, 9 methyl undecanoate, 10 methyl
dodecanoate, 11 2,6-dimethylaniline, 12 dicyclohexylamine , s dichloromethane; GC
separation conditions: 40 °C to 190 °C at 6 °C min™";1 mL min™' He; MS Detector. All

acid, 7 2,6-dimethylphenol,

chromatograms were obtained using 30 m x .25 mm x 0.20 ym dy columns.
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The elution orders on the B1 and C4 ILs were similar to highly polar commercial
stationary phase SP-2331, whereas the elution order on the C1 IL stationary phase
was more comparable with the polar SUPELCOWAX column.

All 12 test compounds were eluted from stationary phases with D core ionic
liquids. In D3 and D5 the alkanes are better separated from the solvent peak compared
to the B and C core ILs. All D-type columns separated the homologous series of fatty
acid methyl esters with exceptionally good separation efficiencies. In both D1 and D3,
the two bases elute after the acids which indicate that D1 and D3 are more acidic
stationary phases than D5. This also is in agreement with the solvation parameter
coefficients obtained. The H-bond acidity term (b) for D5 is significantly smaller than
that of D1 and D3. In D5, the two acids elute last indicating a more basic, less acidic
stationary phase. The D core IL stationary phases show elution orders similar to the
highly polar SP-2331 column. This leads to the conclusion that the D series ionic
liquids are highly polar and the polarity is comparable to that of SP-2331 (100%
cyanopropyl polysiloxane) stationary phase.

2.4.4 Alcohol and Alkane Mixture

Figure 2.6 illustrates the separation of a mixture of alcohols and alkanes by the
six trigonal tricationic ionic liquid columns and commercial columns of diverse polarity.
Except for C4, the other IL columns show reasonable retention for both polar alcohols

and nonpolar alkanes. This is due to the dual nature of ionic liquids'®’

which suggests
that ionic liquids act like a polar medium to retain polar compounds and like a nonpolar

medium to retain nonpolar compounds simultaneously.
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Figure 2.6 Separation of homologous alkane and alcohol mixture.

1 pentane, 2 hexane, 3 heptane, 4 octane, 5 nonane 6, decane, 7 undecane, 8
dodecane, 9 tridecane,10 tetradecane, 11 pentadecane, 12 hexadecane, a ethanol,
b1-propanol, ¢ 1-butanol, d 1-pentanol, e 1-hexanol, s dichloromethane,. GC
separation conditions: 30 °C for 3 min,10 °C min~" to 160 °C; 1 mL min~' He; MS
detector. All chromatograms were obtained using 30 m x .25 mm x 0.20 ym d¢ columns.
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One of the most interesting observations of this separation is the relative retention of
alcohols and alkanes by these IL columns. In all of the six tricationic liquid stationary
phases, the relative retention of alcohols compared to alkanes is much larger than that
observed for common monocationic; (benzyl(methyl)imidazolium-TfO),** phosphonium

monocationic; (trihexyl(tetradecyl)phosphonium-NTf,),%%

or polyethylene glycol linked
dicationic; (MIM,PEG;-2NTf,)'® ionic liquid stationary phases (see Figure 2.7). For the
B1 and C1 stationary phases, 1- hexanol elutes after hexadecane which is unusual. In
fact, to the best of our knowledge, the C1 ionic liquid has the distinction of having the
largest relative retention for 1-hexanol with respect to hexadecane ever reported for
any commercial stationary phase or any ionic liquid stationary phase. The lowest
overall retention for all alcohol and alkane components was again observed for the C4
column. All 18 compounds were eluted before 9.5 minutes. The shorter chain alkanes
(pentane — nonane) seem to have almost no interaction with this stationary phase and
come out with the solvent peak under these conditions. It appears that the C1 and C4
ILs may be the most polar GC stationary phases yet reported. This high polarity is
unique to trigonal tricationic ionic liquids. All other monocationic, dicationic and linear
tricationic ionic liquids show almost identical solvation characteristics and intermediate
polarities. The higher apparent polarity and different solvation properties of trigonal

tricationic ILs can be attributed to its more rigid trigonal geometry and the existence of

three positive charges in close proximity compared to other forms of ILs.
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Figure 2.7. Comparison of separation of homologous alkane and alcohol mixture.

Comparison of separation of homologous alkane and alcohol mixture using trigonal
tricationic IL D5, monocationic ionic liquid trihexyl(tetradecyl)phosphonium-NTf, and
dicationic ionic liquid (MIM),PEG3-NTf, columns under identical conditions.: 1 pentane,
2 hexane, 3 heptane, 4 octane, 5 nonane 6, decane, 7 undecane, 8 dodecane, 9
tridecane,10 tetradecane, 11 pentadecane, 12 hexadecane, a ethanol, b1-propanol, ¢
1-butanol, d 1-pentanol, e 1-hexanol, s dichloromethane,. GC separation conditions:
30 °C for 3 min,10 °C min™" to 160 °C; 1 mL min™' He; MS detector for D5. FID for
monocationic and dicationic columns. All chromatograms were obtained using
30 m x .25 mm x 0.20 uym d;columns.

The B and C core ionic liquid stationary phases produce tailing peaks for the alcohols.
This is a common phenomenon observed for ionic liquid stationary phases with the
NTf, (bis(trifluoromethane)sulfonimide) counter anion. Both monocationic and
dicationic ionic liquids have shown peak tailing for alcohols and this has been one
drawback of these types of ionic liquids as stationary phases. To overcome this

problem NTf,” anion has been replaced by the triflate (TfO") anion.'®® However, with
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multifunctional ionic liquids the NTf,” anion is used more frequently in order to obtain
lower melting point ILs.

One of the unique and probably the more important property of the trigonal
tricationic ionic liquid stationary phases is that the D core ILs have reduced and in the
some cases almost eliminated the peak tailing of alcohols even though the NTf,” anion
is present. As discussed previously, the polarity of the D5 IL stationary phase is
comparable to the highly polar SP-2331 commercial phase. However, as shown in
Figure 2.6, peak asymmetry for alcohols is less for the D5 stationary phase than for the
commercial SP-2331 phase at higher temperatures. Also nonane (5) and
dichloromethane (s) were barely separated with SP-2331 phase whereas these
compounds are much better separated with the D5 IL stationary phase. Similarly
dodecane (8) and 1-butanol (c) co-elute in SP-2331 while these two are completely
separated with the D5 IL column. Columns D1 and D5 seem to be complementary to
one another in that one column always separates peaks that co-elute on the other (see
Figure 2.5). For example hexane (2) and heptane (3) co-elute on D1 and are baseline
separated on D5. Decane (6) and ethanol (a) peaks overlap on D5 and separate on
D1. Pentadecane (11) and 1-hexanol (e) co-elute in D5 but are well separated on D1.
Furthermore, the D-core ILs shows the greatest retention for alkenes among the
trigonal tricationic ILs evaluated. The retention times of alkanes in D1, D3 and D5
columns are directly proportional to the solvation parameter coefficient of interaction
through dispersion forces (coefficient /). Within the D series, D1 has the lowest / term,
followed by D3, and D5. Accordingly, D1 has the lowest retention for alkanes within the
D series followed by D3 and D5 which shows the highest retention. The dual nature of
ionic liquids is evident from these separations as both the alkane series and alcohol
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series are easily separated. Finally it was observed that the retention of alkanes by the
tricationic ionic liquids is generally lower than their retention on monocationic and
dicationic ionic liquids.***° Therefore other than the high separation efficiency and low
peak tailing for alcohols, the D series of ILs have the distinction of being stationary
phases that produce good separations for variety of analytes, but with less retention
times than conventional columns. This might render trigonal tricationic ILs as desirable
stationary phases in two dimensional GC analysis.

2.4.5 Flavor and Fragrance Mixture

The flavor and fragrance mixture contains structurally related esters (including
two homologous series) and has 24 compounds. The separation of this series provides
another indication of the selectivity and separation efficiency of the trigonal tricationic
ionic liquids compared to commercial columns. According to the Grob test mixture and
the alcohol/alkane test results, the commercial column SP-2331 has comparable
polarity to the trigonal tricationic ionic liquids, especially the D core series. The flavor
and fragrance mixture is used to determine the separation efficiencies of columns with
comparable polarities (see Figure 2.8). Column C1 separated 21 compounds and co-
eluted 3. The furfuryl homologous series elutes separately from the other esters. Only
the last compound of the series furfuryl octanoate overlapped with benzyl butyrate.
Again the C4 column showed the least retention for the mixture and all the compounds
were eluted before 14 minutes. Five compounds were not baseline separated with the
C4 column. However, with the D series columns the compounds are much better
separated. Especially with the D5 column, the retention and selectivity were

comparable to a commercial (SP-2331) column, but the separation was much better. In
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Figure 2.8 Separation of flavor and fragrance mixture.

1 ethyl propionate, 2 ethyl butyrate, 3 ethyl valerate, 4 ethyl hexanoate, 5 ethyl
heptanoate, 6 ethyl octanoate, 1 methyl butyrate, 2 isopropyl butyrate, 3 propyl
butyrate, 4 allyl butyrate, 5 hexyl butyrate, 6 benzyl butyrate, 1 methyl tiglate, 2
isopropyl tiglate, 3 propyl tiglate, 4 allyl tiglate, 5 hexyl tiglate, 6 benzyl triglate, 1

furfuryl propionate, 2 furfuryl butyrate, 3 furfuryl pentanoate, 4 furfuryl hexanoate, 5
furfuryl heptanoate, 6 furfuryl octanoate, 40 °C for 3 min,10 °C min~" to 150 °C; 1 mL
min~' He; MS detector. All chromatograms were obtained using 30 m x .25 mm x 0.20

pm df columns.
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D5 column, all the 24 compounds are nearly base line separated whereas in the
commercial column three esters co-elute and two are only partially separated
(isopropyl tiglate and ethyl hexanoate). This confirms the fact that D5 is a highly
efficient and selective stationary phase for gas chromatography.
2.4.6 Fame Isomer Separation

Determination of fatty acid content in edible oils has been an area of high
interest due to its importance in dietary, nutritional and therapeutic fields.?*® Generally
these isomeric unsaturated carboxylic acids are converted to their methyl esters and
the fatty acid methyl esters (FAME) are separated using highly polar stationary
phases.?’”?% |n this test, a mixture of methyl oleate ( 9cis 18:1) and methyl elaidate
( 9trans 18:1) were separated using the highly polar trigonal tricationic IL stationary
phases D1, D3, D5 and the commercial SP-2331 stationary phase (see Figure 2.9).
The trans- isomer is twice the concentration (10 mg ml”) of the cis- isomer (5 mg ml™)
for ease of identification. In the D core trigonal tricationic ionic liquid columns and the
commercial SP-2331 column, the frans FAME elutes before the cis analogue. It is
characteristic for cyanopropyl-based stationary phases to elute the frans- isomer first.
With polyethylene glycol-based stationary phases, the cis- isomer elutes first. This
indicates that the D core ionic liquids when used as stationary phases are more similar
to the highly polar cyanopropyl stationary phase, but with greater thermal stability.
Under similar separation conditions, D5 shows the best separation for the cis and trans

isomers by the D core series of ILs, followed by D3 and D1 respectively.
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Figure 2.9 Separation of a mixture of methyl ol1eate (5 mg mL™) and methyl elaidate (10
mg mL™).

Column dimensions: 30m x .25 mm x .20 uym d; columns. GC separation conditions:
isothermal at 165 °C; 1 mL min™' He; MS detector.
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2.5 Conclusions

Use of multifunctional ionic liquids as stationary phases for GC can be limited
as the most common counter anion for many ionic liquids (i.e.,
bis(trifluoromethanesulfonyl)imide) results in peak tailing for alcohols and other H-bond
forming analytes. Specific D-core trigonal tricationic ILs were shown to overcome this
problem. According to the solvation parameter study, all monocationic, dicationic and
long chain linear tricationic ionic liquids have almost identical apparent polarities and
interaction parameters. However, those were quite different for the some trigonal
tricationic ILs, namely the C4, and D-core series, and resulted in unique selectivities
and retention behaviors. This uniqueness appears to be the result of two main factors.
First is the rigid trigonal geometry which forces the three positive charges to reside in
close proximity for ILs with short linkage chains. The second is the contribution from
the Amide group. The prominent interaction types of trigonal tricationic ILs were
dipole—type interactions, H-bonding interactions and dispersive interactions.
Alcohol/alkane mixture and Grob test mixtures indicated that these ionic liquids are far
more polar than either the monocationic or dicationic ionic liquids reported thus far.
Nitrogen core ionic liquids C1 and C4 were the most polar stationary phases and
displayed very low retention for alkanes. Grob test, FAME isomer separation, and
elution order of C18:1 cis-trans FAME isomers indicated that D core ionic liquids,
especially D5 have polarities comparable to SP-2331, a 100% cyanopropylpolysiloxane
commercial stationary phase. lonic liquid D5 stands out as it shows minimum peak
tailing for alcohols and other H-bonding analytes. According to the flavor and fragrance
test, D1 and D5 are complementary to each other and show higher selectivity and
superior separation efficiencies than the commercial SP-2331 stationary phase which
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has roughly comparable polarity. Furthermore, D5 is more thermally stable than the
SP-2331. It was observed that benzylimidazolium cationic moiety introduces much
higher viscosities to the ionic liquid systems. IL D3 has the highest viscosity among
ionic liquids ever to be reported. All these trigonal tricationic ILs were highly thermally
stable and had a minimum liquid temperature range of about 300 °C. These values far
exceed those observed for traditional monocationic ionic liquids. According to these
results, trigonal tricationic ionic liquid D5 is very promising as a highly polar stationary
phase that has high thermal stability and yields symmetrical peaks for H-bonding

analytes.
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CHAPTER 3
LINEAR TRICATIONIC ROOM TEMPERATURE IONIC LIQUIDS:
SYNTHESIS, PHYSIOCHEMICAL PROPERTIES AND
ELECTROWETTING PROPERTIES
3.1 Abstract
Efficient and facile synthesis of novel linear tricationic room temperature ionic
liquids was performed and their physiochemical properties were determined. Different
physiochemical properties were observed according to the structural variations such as
the cationic moiety and the counter anion of the ionic liquid. The electrowetting
properties of these ionic liquids were also investigated and linear tricationic ionic liquids
were shown to be advantageous as effective electrowetting materials due to their high
structural flexibility.

3.2 Introduction

Room temperature ionic liquids (RTILs) are a class of salts that are liquids at or
near room temperature.” Recently RTILs have attracted much attention in academic
research and industry since they have shown profound advantages in the context of
green chemistry and have great technological potential.’®?°**'" Recently monocationic,
dicationic and tricationic ionic liquids have been used extensively in the field of
analytical chemistry as ion pairing reagents for the ultra trace detection of anions in the
positive mode of electrospray ionization mass spectrometry (ESI-MS),'*"'#® high

44,45,48,212

thermal stability gas chromatographic (GC) stationary phases, capillary

electrophoresis (CE),*"™ and electrowetting®'+*'°
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reported the synthesis and physiochemical properties of a series of dicationic and
tricationic ionic liquids.*®'®' These reported ILs possessed good thermal stabilities and
higher viscosities with compare to monocationic ILs. Moreover, it was shown by
Payagala et.al. that physicochemical properties such as viscosity, density, thermal
stability, melting point and solubility behaviors can be varied (tuned) to a greater extent
in multi-cationic ILs than in the conventional ILs by changing the cation type, linkage
chain length, etc.****"®" However, the tuning capability for trigonal tricationic ILs'®" was
lower than that of linear dicationic ILs.*® This was because in most of the trigonal ILs
synthesized, there were only two methylene moieties between the rigid trigonal core
and the three pendant cationic moieties. The rigid trigonal geometry and the existence
of three charge carrying moieties in the close proximity resulted in high apparent
polarity and relatively high melting salts. Based on these observations, it was
concluded that for multi-cationic ILs, the linear geometry would give the best tunability
in terms of physicochemical properties and the highest probability of forming RTILs.
The interesting physicochemical properties of the ILs have led to their use in
applications involving electrowetting on dielectric-based microfluidic devices.?'*?'®
Electrowetting (EW) is the decrease in contact angle when an external voltage is
applied across the solid/liquid interface. Simple EW which utilizes a metal base to hold
the droplet is often associated with the drawback of droplet instability with change of
the voltage whereas electrowetting on dielectric solid (e.g., Teflon) produces stable and
reversible droplet shape with changes in the voltage.?'*?'"?'® Since reversibility of the
droplet shape with the change in voltage is an important factor in microfluidic devices,
electrowetting on dielectric (EWOD) has shown greater success in applications such as

fluid lens systems, electrowetting displays, optical filters, paint drying, micromotors,
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electronic microreactors, and in controlling fluids in multichannel structures.?"?*' Water
or aqueous electrolytes are used in nearly all EWOD devices. Water-based systems
were known to create complications due to their evaporation, low thermal stability and
tendency to contribute to corrosion in integrated electronics.?'” The unique properties
of RTILs including negligible vapor pressure, ultra high stability over a wide
temperature range, and large electrochemical windows' make them ideal in EWOD
applications over traditional aqueous or electrolyte solutions. Recently a detailed study
was carried out to find electrowetting properties of traditional and multifunctional ILs.?'®
These EWOD-based microreactors and microextraction devices have been used in
various scientific areas. Dubois et al. demonstrated the use of IL droplets as electronic
microreactors on an open digital microfluidic chips.??? Also, Chatterjee et al. recently
demonstrated that ILs can be used in digital microfluidic devices.?”® Moon et al. used
ILs in EWOD-based micro-heat transfer device and Kunchala et al. used an IL in a
EWOD-based liquid-liquid extraction device.

The contact angle 6, between the dielectric surface and the ionic liquid droplet
under an external voltage of V is derived from a combination of Young’s and

Lippmann’s equations (eq 1).2'>%'

cosé?=cosé?0+iV2=cost90+&V2 .............. (3.1
2y 2

Here, c is the capacitance per unit area (specific capacitance), € is the relative
permittivity of the dielectric layer (dielectric constant), €, is the permittivity of a vacuum,
y is the surface tension of the liquid, t is the thickness of the dielectric layer, 6 is the
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contact angle at the designated voltage across a dielectric layer, and 6, is the contact
angle at zero voltage. As the voltage increases, the contact angle also increases
according to eq 3.1. After a certain point, the contact angle starts to deviate from the
regular behavior with increasing voltage. The voltage and corresponding contact angle
where this occurs is referred to as the saturation voltage and saturation angle,
respectively. According to eq 3.1, a plot of contact angle versus applied voltage should

give a parabolic graph as shown in Figure 3.1.

N contact Angle

Saturation
Point

Voltage

Figure 3.1 Plot of contact angle vs voltage according to Young’s and Lippmann’s
equation.

Our previous studies have shown the use of a series of RTILs in EW
experiments and a correlation between contact angle variation with the structure of the
ionic liquid (IL). Monocationic, dicationic and tricationic ILs were used in those
experiments. The trigonal tricationic ILs in our previous study were of trigonal geometry
hence had relatively rigid structure.™’
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In this study, we report the synthesis and physiochemical properties and
electrowetting properties of linear tricationic ionic liquids (LTILs) for the first time.
Furthermore, we explore the electrowetting properties and their correlation with

structural flexibility.

3.3 Experimental Section

Structures of the LTILs synthesized are illustrated in Figure 3.2 and scheme 1

illustrates the synthesis of the core structure.

aNeK: /H\
N/ N Na Br N'Br

DMF 80 °C

R
N~
R
aThi g, O B N
\:j Br THF r.f
Core 1

Scheme 3.1 Synthesis of LTIL with R-substituted methyl imidazole as the charge
carrying moiety.
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Figure 3.2 Structures of linear tricationic ionic liquids.
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3.3.1 General Methods

All '"H NMR, "C NMR (data reported are for bromide salts), and *'P NMR
spectra were recorded at 295 + 1 K on JEOL Eclipse 300 MHz spectrometer. All NMR
spectra were recorded in deuterated dimethylsulfoxide and the chemical shifts were
measured relative to residual nondeuterated solvent resonances. Electrowetting
experiments were conducted by using a slightly modified contact angle goniometer
(www.ksvltd.com, Monroe, CT). Elemental analysis was performed on a Perkin-Elmer
2400 CHN analyzer. All experiments with moisture- and/or air-sensitive compounds
were run under a dried nitrogen or argon atmosphere.
Caution 1: Tripropylphosphine is a pyrophoric substance and should be handled
carefully under a stream of nitrogen or argon.
Caution 2: Toxicity data for the synthesized ionic liquids are unavailable hence should
be handled carefully.

3.3.1.1 Glass transition temperature / melting point

The thermal measurements were performed with a differential scanning
calorimeter (DSC, PerkinElmer Diamond DSC, 710 Bridgeport Av, Shelton, CT, USA).
Diamond DSC was calibrated using an indium primary standard, with solid-solid
transitions for cyclohexane and ethylbenzene as supplementary low temperature
standards. IL samples (5-10 mg) were sealed in aluminium pans and an empty
aluminium pan was used as reference. The measurements were carried out in the
temperature range -120 °C to a predetermined temperature. The samples were sealed
in aluminium pans, and then heated and cooled at scan rate of 10 °C min”' under a flow
of nitrogen. For solid compounds, the melting points were verified using a capillary
melting point apparatus (MEL-TEMP, 68 Cambridge, MA, USA).
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3.3.1.2 Density

The densities of the ionic liquids were determined at 23 1 °C with Kimble
Glass Specific Gravity Pycnometer (Vineland, NJ).

3.3.1.3 Refractive Index

Refractive index measurements were conducted at 23 £1 °C using a Bausch &
Lomb Abbe-3L refractometer.

3.3.1.4 Viscosity

Kinematic viscosities were determined at 30 +1 °C using Cannon-Manning
Semi-Micro capillary viscometer (State College, PA).

3.3.1.5 Thermal stability analysis

Thermogravimetric analysis (TGA) was done using a TGA 2050 (TA
Instruments Inc., Thermal Analysis & Rheology, New Castle, DE, USA). Samples (ca.
20 mg) were placed on the platinum pans, and heated at 10 °C min” from room
temperature to 600 °C in a dynamic nitrogen atmosphere. The decomposition
temperatures were reported as the temperatures of 1%, 5% and 50 % weight loss of
the sample.

3.3.1.6 Electrowetting experiments

Electrowetting experiments were conducted by using a slightly modified contact
angle goniometer (www.ksvltd.com, Monroe, CT). Figure 3.3 shows the arrangement
for the electrowetting experiment. Indium-tin-oxide (ITO, 30 nm thickness) pre-coated
unpolished float glass slides (www.delta-technologies.com, Stillwater, MN) were used
as purchased. They were dip-coated in a 4% (w/v) of Teflon AF1600
(www2.dupont.com, Wilmington, DE) in Fluoroinert FC75 solvent (www.fishersci.com
Barrington, IL) solution. The dipping speed was approximately 0.78 + 0.03 mm/s in a
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custom made dipcoater. Only 3/4 of the slide was dipped in the solution, then it was
stopped for 5 seconds and after that the slide was raised at the same speed. The
coated slides were kept in an oven at 112 °C for 6 min, at 165 °C 5 min and at 328 °C
for 15 min. Once Teflon coated glass slides were taken out from the oven, they were
allowed to cool to room temperature. Then they were washed thoroughly with acetone

and deionized water followed by air-drying.

Pt wire

Digital
Camera

Light Source

Teflon layer

ITO layer

Glass Slide

Figure 3.3 The electrowetting experimental setup.
Here, y, ySV, and ySL are the interfacial tensions associated with the liquid/vapor,
solid/vapor, and solid/liquid interfaces.
A capillary tube was used to place a drop of IL on top of the Teflon layer. CAM 200
software (www.ksvltd.com, Monroe, CT) was used to calculate drop volume, it was
between 5 + 2 uL for all experiments. Keithley 2400 SourceMeter (www.keithley.com,
Cleveland, OH) was used to apply voltage in 5 V increments starting from 0 to + 70 V.

The positive probe was connected to the Pt wire and negative probe was connected to
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the ITO layer (see Figure 3.3). Afterwards, the above procedure was repeated for O to
— 70 V for a fresh drop of IL placing at a different position on the surface. At each
voltage increment a picture was taken and then CAM 200 software was used to
measure corresponding contact angles. Finally, the contact angle versus voltage
curves were plotted.

3.3.2 Materials

The reagents required for synthesis included anhydrous dimethylformamide,
anhydrous acetonitrile, anhydrous tetrahydrouran, sodium imidazole, 1,3-
dibromoproapne, 1,6-dibromohexane, 1,10-dibromodecane, methylimidazole,
butylimidazole, benzylimidazole, benzyl imidazole and tripropylphosphine which were
purchased from Sigma-Aldrich (Milwaukee, WI, USA). All chemicals were of reagent
grade and were used without further purification. For column chromatography, Silica

Gel 60 A (Sorbent Technologies, Inc.; 200-425 mesh) was used.

Procedure for the synthesis of the core structure (1-bromodecyl-3-bromodecyl
imidazolium bromide salt (1a): Sodium imidazole (1.0 g,12.1 mmol) in anhydrous 20
ml of DMF was added slowly in to a solution of dibromodecane (18.2 g 60.5 mmol) in
100 ml of anhydrous DMF by using a syringe pump over a period of 3 hr at room
temperature. After completion of the addition, the reaction mixture was heated up to 70
OC for 12 hr. Then DMF was evaporated under vacuum and the resulting crude material
was washed with hexane (5 x100ml) to remove excess dibromoalkane. Then the crude
product was subjected to column chromatography using CH;OH:CH,CI, 1:9 as the
eluent system. The purified product was then dried under vacuum overnight to yield the
desired product in 55% (3.8 g) .'"H NMR: 6 9.21 (s, 1H), 7.80 (d, J = 1.7 Hz, 2H), 4.15
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(t, J=7.0 Hz, 4H), 3.51 (t, J = 7.0 Hz, 4H), 1.77 (m, 8H), 1.33 (m, 4H), 1.24 (br s, 20H);
®C NMR: & 136.4, 123.0, 49.4, 35.8, 32.7, 29.7, 29.2, 28.8, 28.6, 28.0, 25.9. Anal
Calcd for Cy3HasNo: C, 47.04; H, 7.38; Br, 40.82; N, 4.77; Found: C, 47.1; H, 7.9; N,
4.8. ESI-MS (m/z): 507.4 (M"), found 507.2.

Procedure for the synthesis of the core structure (1-bromohexyl-3-bromohexyl
imidazolium bromide salt (1b): This compound was prepared by a similar procedure
as described above for 1a. Sodium imidazole (1.0 g, 12.1 mmol) in 20 ml anhydrous
DMF was added slowly in to a solution of dibromodecane (14.8 g, 60.5 mmol) 100 ml
of anhydrous DMF by using a syringe pump over a period of 3 hr at room temperature.
After completion of the addition, the solution was stirred for additional 12 hr. Then DMF
was evaporated under vacuum and the resulting crude material was washed with
hexane (5 x100ml) to remove excess dibromoalkane. Then the resulting crude product
was subjected to column chromatography using CH3;OH:CH,CI, 1:9 as the eluent
system. The purified product was then dried under vacuum overnight to yield the
desired product in 62 % (2.9 g)."H NMR: & 9.38 (s, 1H), 7.84 (s, 2H), 4.18-4.13 (t, J =
7.2, 4H), 3.50-3.46 (t, J = 6.5, 4H), 1.81-1.70 (m, 8H), 1.41-1.31 (m, 4H), 1.25-1.15 (m,
4H); "C NMR: & 136.5, 122.9, 60.9, 49.2, 32.6, 29.8, 25.8, 25.3; Anal Calcd for
CisH7N2: C, 37.92; H, 5.73; N, 5.90; Found: C, 37.9; H, 5.8; N, 5.9. ESI-MS (m/2):
475.10 (M"), found 475.1.

Procedure for the synthesis of the core structure (1-brompropyl-3-bromopropyl
imidazolium bromide salt (1c): This compound was prepared in a similar procedure
to 1b (Yield 70 %, 3.3 g). '"H NMR: 6 9.27 (s, 1H), 7.83 (d, J = 1.4 Hz, 2H), 4.28 (t, J =

7.0 Hz, 4H), 3.54 (t, J = 7.0 Hz, 4H), 2.37 (m, 4H); °C NMR: & 136.4, 122.9, 49.3, 29.9,
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29.2, 28.9, 20.4, 19.8, 15.9, 15.2. Anal Calcd for CgH4sN,: C, 27.65; H, 3.87; Br, 61.32;
N, 7.17; Found: C, 27.6; H, 3.9; N, 7.2. ESI-MS (m/z): 311.0 (M), found 311.0.
Procedure for the synthesis of LTILs (2a-d, 3a-d, 4a-d): All the reactions were carried
out in tetrahydrofuran (THF) except for 4a-d in which acetonitrile (ACN) was used as
the reaction solvent. Linear core structures 1a, b or ¢ 1eq in THF (or ACN) were
reacted with 2.5 eq of methyl imidazole, butyl imidazole, benzyl imidazole or tripropyl
phosphine under reflux over 36-48 hrs. (Phosphonium ILs need to be reacted for 48
hrs). Then the solvent was removed in vacuo and resulting thick liquid or solid was
dissolved in 5-10 ml of deionized water. The aqueous layer was then washed with ethyl
acetate (6 x 100 ml) and water was removed in vacuo. The final product as the
bromide salt was then dried in high vacuum (75-85 % vyield).

Final products were synthesized through a metathesis reaction of the bromide
salts with lithium trifluorimethanesulfonimide (LiNTf,), sodium tetrafluoroborate (NaBF,)
and lithium trifluoromethansulfonate (LiTfO) according to the previously published
procedure.*®
1-(1'-methyl-3'-decylimidazolium)-3-(1"-methyl-3"-decylimidazolium) imidazolium
tri [bis(trifluoromethanesulfonyl)imide] (2a). '"H NMR (300 MHz, DMSO-d): 6 9.15
(s, 1H), 9.08 (s, 2H), 7.78 (d, J= 1.4 Hz, 2H), 7.75 (t, J= 1.4 Hz, 2H), 769 (t, J= 1.4
Hz , 2H), 4.14 (t, J = 7.2 Hz, 8H), 3.84 (s, 6H), 1.65-1.80 (m, 8H), 1.24 (br s, 26H); "°C
NMR: & 137.2, 136.4, 124.1, 122.9, 122.8, 49.3,49.2,36.3, 29.9, 29.3, 28.9, 26.1; "°F
NMR: -78.6. Anal. Calcd for Cs7Hs5Ng: C, 32.86; H, 4.10; N, 9.32; Found: C, 32.8; H,
4.3; N, 9.3. ESI-MS (m/z): 170.4 (M*"), found 170.5.
1-(1'-butyl-3'-decylimidazolium)-3-(1"-butyl-3"-decylimidazolium)imidazolium tri
[bis(trifluoromethanesulfonyl)imide] (2b). '"H NMR: & 9.17 (s, 1H), 9.15 (s, 2H),
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7.80-7.77 (m, 6H), 4.18 (q, J = 6.8 Hz, 12H), 1.81-1.74 (m, 12H), 1.30-1.18 (br s, 28H),
0.89 (t, J = 7.5 Hz, 6H); °C NMR: & 136.5, 122.9, 122.8, 49.3, 49.0, 31.8, 29.8, 29.2,
28.8, 26.0, 19.3, 13.8; ""F NMR: -78.6. Anal. Calcd for C43Hg;Ng: C, 35.95; H, 4.70; N,
8.78; Found: C, 35.5; H, 4.8; N, 8.8. ESI-MS (m/z): 198.51 (M**), found 198.5.
1-(1'-benzyl-3'-decylimidazolium)-3-(1"-benzyl-3"-decylimidazolium)imidazolium
tri [bis(trifluoromethanesulfonyl)imide] (2c) 'H NMR: & 9.25 (s, 2H), 9.12 (s, 1H),
7.79-7.75 (m, 6H), 7.38 (m, 10H) 5.38 (s, 2H), 4.14 (q, J = 7.0 Hz, 8H), 1.79-1.72 (m,
8H), 1.20 (br s, 24H); *C NMR: & 136.6, 136.4, 135.4, 129.5, 129.3, 128.7, 123.3,
123.1, 122.9, 52.4, 49.5, 29.8, 29.3 28.8, 26.1; "°F NMR: -78.6. Anal. Calcd for
CaoHasNg: C, 39.12; H, 4.22;N, 8.38; Found: C, 39.2; H, 4.3; N, 8.4. ESI-MS (m/z):
221.1 (M*), found 221.2.
1-decyltripropylphosphonium-3-decyltripropylphosphonium  imidazolium  tri
[bis(trifluoromethanesulfonyl)imide] (2d). '"H NMR (300 MHz, DMSO-d,): 4 9.33 (s,
1H), 783 (d, J=14,2H), 4.18 (t, J = 7.2, 4H), 2.17-2.10 (m, 18H), 1.77-1.73 (m, 18
H), 1.37-1.22 (m, 20H), 0.98 (t, J = 7.0, 18H); *C NMR: & 136.4, 122.9, 49.3, 29.9,
29.3, 28.8, 26.1, 21.24, 20.4, 19.8, 18.5, 17.9, 15.9, 15.2; "9F NMR: -78.6. Anal. Calcd
for C47HssNs: C, 37.42; H, 5.68; N, 4.64; Found: C, 37.7; H, 5.7; N, 4.6. ESI-MS (m/z):
222.5 (M*), found 222.5.
1-(1’-methyl-3’-hexylimidazolium)-3-(1”-methyl-3”-hexylimidazolium)imidazolium
tri [bis(trifluoromethanesulfonyl)imide] (3a). '"H NMR: & 9.50 (s, 1H), 9.35 (s, 2H),
7.86 (s, 2H), 7.84 (s, 2H), 7.73 (s, 2H), 4.17 (m, 8H), 3.84 (s, 6 H), 1.77 (m, 8H), 1.24
(m, 8H); °C NMR: 6 137.1, 136.5, 124.1, 122.9, 122.8, 49.1, 49.1, 36.3, 29.6, 29.5,
25.3; "°F NMR: -78.6. Anal. Calcd for CygHsgNg: C, 28.09; H, 3.17; N, 10.17; Found: C,
28.1; H, 3.2; N, 10.2. ESI-MS (m/z): 133.1 (M*"), found 133.1.
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1-(1’-butyl-3’-hexylimidazolium)-3-(1”-butyl-3”-hexylimidazolium)imidazolium tri
[bis(trifluoromethanesulfonyl)imide]) (3b). '"H NMR: & 9.47 (s, 1H), 9.43 (s, 2H),
7.86 (s, 4H), 7.84 (s, 2H), 4.17 (t, J = 7.2 Hz, 12H), 1.79-1.72 (m, 12H), 1.24-1.17 (m,
12H), 0.85 (t, J = 7.2 Hz, 6H); *C NMR: & 136.5, 122.9, 49.1, 49.0, 31.8, 29.5, 25.3,
19.3, 13.8; "°F NMR: -78.6. Anal. Calcd for CssHs:Ng: C, 31.75; H, 3.88; N, 9.52; Found:
C, 31.7; H, 3.9; N, 9.5. ESI-MS (m/z): 161.1 (M**), found 161.1.
1-(1’-benzyl-3’-hexylimidazolium)-3-(1”-methyl-3”-hexylimidazolium)imidazolium
tri [bis(trifluoromethanesulfonyl)imide] (3c). 'H NMR: & 9.52 (s, 1H), 9.44 (s, 2H),
7.85 (s, 6H), 7.44-7.34 (M, 10H), 5.45 (s, 4H), 4.19-4.15 (m,8 H), 1.77 (s, 8H), 1.24 (m,
8H); *C NMR (75 MHz, DMSO-d;): 6 136.6, 135.4, 129.5, 129.4, 128.8, 123.3, 123.0,
122.9, 52.3, 49.3, 49.1, 29.6, 29.5, 25.3; 9F NMR: -78.6. Anal. Calcd for C4H47Ng: C,
35.37; H, 3.40; N, 9.05; Found: C, 35.3; H, 3.4; N, 9.1. ESI-MS (m/z): 183.7 (M*),
found 183.8.
1-(hexyltripropylphosphonium)-3-(hexyltripropylphosphonium)imidazolium tri
[bis(trifluoromethanesulfonyl)imide] (3d). '"H NMR: & 9.55 (s, 1H), 7.87 (s, 2H), 4.21
(t, J = 6.9 Hz, 4H), 2.24-2.12 (m, 16H), 1.85-1.75 (m, 4H), 1.56-1.26 (m, 24H) 1.00-
0.95 (t, J = 6.8 Hz, 18H); °C NMR: & 136.6, 122.9, 49.2, 29.5, 25.3, 21.0, 20.5, 19.9,
15.9, 15.7, 15.3; "°F NMR: -78.6. Anal. Calcd for CsoHgoNs: C, 33.55; H, 4.98:; N, 5.02;
Found: C, 33.6; H, 5.0; N, 5.0. ESI-MS (m/z): 185.1 (M*"), found 185.2.
(1'-methyl-3'-propylmidazolium)-3-(1"-methyl-3"-propylimidazolium)imidazolium
tri [bis(trifluoromethanesulfonyl)imide] (4a). 'H NMR: 6 9.50 (s, 1H), 9.32 (s, 2H),
4.31-4.25(m, 8H), 3.87 (s, 6H), 2.46-2.42 (m, 4H); *C NMR: 5 137.1, 123.0, 49.6, 26.0,

22.1,20.4, 19.8, 15.9, 15.7, 15.3, "F NMR: -78.6. Anal. Calcd for C,3H2,Ng: C, 23.90;
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H, 2.3; N, 10.9; Found: C, 23.9; H, 2.40; N, 10.97. ESI-MS (m/z): 105.0 (M**), found
105.1.
1-(1'-butyl-3'-propylmidazolium)-3-(1"-butyl-3"-propylimidazolium)imidazolium tri
[bis(trifluoromethanesulfonyl)imide] (4b). '"H NMR: & 9.50 (s, 1H), 9.43 (s, 2H),
7.90-7.84 (m, 6H), 4.32-4.29 (m, 8H), 4.19 (t, J = 7.2 Hz, 4H), 2.48-2.43 (m, 4H), 1.81-
1.76(m ,4H), 1.31-1.23 (m, 4H), 0.90 (t, J = 7.2, 6H); °C NMR: & 137.1, 136.8, 49.2,
46.4, 31.7, 29.9, 19.3, 13.8; "F NMR: -78.6. Anal. Calcd for CyHsgNg: C, 28.09; H,
3.17; F, 27.58; N, 10.17; Found: C, 28.0; H, 3.2; N, 10.2. ESI-MS (m/z): 133.1 (M*"),
found 133.1.
1-(1'-benzyl-3'-propylmidazolium)-3-(1"-benzyl-3"-propylimidazolium)imidazolium
tri [bis(trifluoromethanesulfonyl)imide] (4c). 'H NMR: & 9.52 (s, 2H), 9.48 (s, 1H),
7.48-7.38 (m, 10H), 5.47 (s, 4H), 4.29 (g, J = 5.8 Hz, 8H), 2.45 (m, 4H); °C NMR: &
137.2, 123.0, 62.5, 49.4, 26.0, 22.1, 20.5, 19.9, 16.1, 15.9, 15.3; "°F NMR: & -78.6.
Anal. Calcd for CssH3sNo: C, 32.14; H, 2.70; N, 9.64; Found: C, 32.1; H, 2.7; N, 9.6.
ESI-MS (m/z): 155.7 (M*"), found 155.7.
1-propyltripropylphosphonium-3-propyltripropylphosphonium imidazolium
tri[bis(trifluoromethanesulfonyl)imide] (4d). '"H NMR: & 9.12 (s, 1H), 7.84 (s, 2H),
4.24 (t, J= 6.8, 4H), 2.23-2.21 (m, 20H), .57-1.47 (m, 12H), 1.04-1.00 (m, 12H), 1.04 (t,
J = 7.2 Hz, 18H); ®C NMR: 6 137.9, 123.0, 62.5, 49.6, 26.0, 22.1, 20.4, 19.8, 15.9,
15.3, "F NMR (282 MHz): -78.6 Anal. Calcd for Cs3Hs;Ns: C, 30.21; H, 4.38; N, 5.34;

Found: C, 30.2; H, 4.4; N, 5.3. ESI-MS (m/z): 157 .1 (M3+), found 157.1.
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3.4 Results and Discussion

3.4.1 Synthesis of Core Structures and Linear ILs

The synthetic strategy involved in these linear tricationic ILs was different from
previously reported ionic liquids for the following reasons: 1. Core 1 (Scheme 1) was
designed and synthesized in-house. It was separated and isolated from the dicationic
and polycationic impurities that were formed during the reaction, by running through
flash chromatographic column (SiO, 60 A, CH,Cl,:CH3;OH 1:9). 2. Reaction solvent. In
previous dicationic and trigonal tricationic IL syntheses, isopropyl alcohol was used as
the reaction solvent in most cases.*®'®!' However, when alcohols are used, the basic
imidazole tends to deprotonate the alcohol enabling unwanted nucleophilic substitution
reactions.??* This complicated the separation of the pure LTILs from the reaction
mixture. Therefore the solvent used in the synthesis of Core 1 was dimethylformamide
(DMF). This was because DMF dissolved sodium imidazole (NalM) and it minimized
the side reactions that take place with protic solvents. Other reaction solvents for the
synthesis of ILs involving imidazolium moieties were found to be acetonitrile (ACN) and
tetrahydrofuran (THF). However isopropyl alcohol can be used as the solvent in
reactions involving tripropyl phosphonium which has a weak basic character compared
to imidazole.
3.4.2 Physicochemical Properties of Linear Tricationic lonic Liquids

In this study, 14 linear tricationic ionic liquids were synthesized and their

physicochemical properties were investigated. The results are listed in Table 1.
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Table 3.1 Physicochemical properties of linear tricationic ionic liquids

lonic Liquid MW g/mol  melting  Density[b] Refractive Viscosity[c] Thermal stability [d] Miscibility [e]

point [a] (°C)  gcm-3 index (cSt) 99 %w 85%w 50%w Heptane Water
2a-NTf2 1352.25 -53 1.65 145 1800 334 400 444 | |
2b-NTf2 1435.29 -33 154 L44 2400 330 3%0 430 | |
2c-NTf2 1504.44 -36 1.36 148 4200 320 390 450 | |
2d-NTf2 1507.37 -41 1.46 1.45 2100 360 410 440 | |
2b-BF4 856.55 -18 1.33 - - 191 308 369 | M
2b-TfO 1043.18 -42 1.28 - - 290 376 430 | M
3a-NTf2 1240.03 -57 1.57 1.44 372 320 380 480 | |
3b-NTf2 1324.19 -51 141 1.49 429 330 380 470 | |
3c-NTf2 1391.14 -36 1.43 147 840 340 370 470 | |
3d-NTf2 1396.3 -45 1.38 1.45 770 355 400 440 | |
43-NTf2 1155.88 -24 1.54 146 1200 290 360 410 | |
4b-NTf2 1240.04 -44 148 1.49 600 3 370 470 | |
Ac-NTfF2 1308.07 -27 141 148 4080 300 350 470 | |
4d-NTf2 1312.14 71-72 1.59 - - 320 350 480 | |

[a] Determined by using Differential Scanning Calorimeter upon heating cycle and
melting points are reported as the onset temperature of melting endotherm. [b]
Determined by using a pycnometer, [c], Measured using capillary viscometer at 30 °C,
[d] Decomposition temperature was determined by using TGA, 99% w = at 1% mass
decrease of sample, 95% w = temperature at 5% mass decrease of the sample, 50% w
= temperature at 50% mass decrease of sample [e] | = immiscible, M = miscible, [f]
amorphous solid.

3.4.2.1 Phase transitions

Phase transition temperatures, including glass transition temperatures (Tg),
were determined using differential scanning calorimetry (DSC). LTILs show
significantly lower glass transition temperatures (except for 4d) compared to many
other types of ILs in the literature, such as symmetrical dicationic ILs.*® It has been
shown for most dicationic ILs that when the chain length is smaller than 3 methylene
units, the IL becomes solid regardless of other structural changes.*® However we found

that LTILs with C-3 linkage chains (4a, 4b, 4c) (see Figure 3.1) do exist as RTILs when
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the counter anion is bis(trifluromethylsulfonyl)imide (NTf, ). This can be explained by
the relative flexibility of the LTILs. Unlike trigonal tricationic ILs, the LTILs have greater
conformational degrees of freedom which help to minimize charge repulsion
interactions.?® The Tg values are mainly governed by the size and charge distribution
of the anion and or cation.??® According to the literature, most ILs containing NTf, are
observed to be liquids at room temperature.**4856:191.227.228 \N\hen the negative charge

carrying moiety is a halide, X (X = F, CI, Br, '), BF,, TfO
(trifluoromethanesulfonate) or PFs  the ILs tend to have higher melting points.*®®"

The LTILs with methylimidazolium charge carrying moieties 2a, 3a and 4a
showed the lowest melting temperatures of the series. According to the melting point
data in Table 1, the butylimidazole cationic moiety produces ILs with higher melting
points compared to the methylimidazole moiety. This is probably because of the butyl
group’s greater van der Waals interactions. Relatively higher melting temperatures
were observed when the IL incorporated the benzyl imidazole moiety, mainly because
of the additional -1 stacking introduced by the phenyl groups.

3.4.2.2 Viscosities

The kinematic viscosities of these LTILs range from 372 to 4200 cSt at 303 K.
LTILs with the C6 linkage chain generally showed lower viscosities ranging from 60-
840 cSt. Typically monocationic ILs have lower kinematic viscosities.?”® The viscosities
are markedly higher in ILs with benzyl groups (see Table 3.1). The same phenomenon
was observed in dicationic and trigonal tricationic ILs.*®'®" It is interesting to note that
ILs with a C3 linkage chain have higher viscosities compared to ILs with C6 linkage
chain and lower viscosities when compared to those with C10 linkage chains.
According to these results, ILs having C3 linkage chains seem to possess greater ionic
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nature owing to closeness of the charged groups. When the distance between charged
groups is increased to six methylene units (~ 8.9 A) as in ILs with C6 linkage chain, the
ionic nature is reduced resulting a lower viscosity. However when the linkage chain is
further increased up to ten methylene units (~ 14 A), higher viscosities are observed
again due to the increase of intermolecular vander Waals interactions over ionic
interactions.?®

3.4.2.3 Densities

The densities of LTILs accompanying NTf, anion range from 1.36 to 1.65 g cm’
‘The lowest density was observed for 2c which has benzyl imidazolium cation and C10
linkage chains. The higher density values are obtained for LTILs with
methylimidazolium groups. Moreover, when the chain length of the substituent at the 3-
position of the imidazole increases from methyl imidazolium to butylimidazolium, the
density decreases (2a-2b, 3a-3b, and 4a-4b). Similar observations have been reported
for monocationic and dicationic ILs as well.*®

3.4.2.4 Refractive indices and solubilities

The refractive indices of the LTILs range from 1.44 to 1.49 and lies in between

the general range observed for monocationic ILs.?"??

227,228,230 in Wh |Ch

The solubility of these LTILs parallels that of monocationic ILs
all Br , BF, , and TfO (trifluoromethane sulfonate) salts synthesized were soluble in
water while all NTf, salts were insoluble in water. All of the LTILs synthesized were

insoluble in n-heptane.
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3.4.2.5 Thermal Stability
For RTILs to be used in applications such as high temperature organic

#1232 and as GC stationery phases; they should posses a good thermal

reactions
stability. Generally, phosphonium cation-based ILs show higher thermal stabilities
compared to nitrogen cation-based ILs such as imidazolium and pyrolidinium
ILs.*819120 This trend was clearly seen in this study as well. LTIL 2d which
accompanies two tripropyl phosphonium cations has the highest thermal stability with
only 5% thermal degradation at 410 °C.
3.4.3 Electrowetting Properties

Electrowetting properties of ILs are listed in Table 3.2. Figure 3.5 shows the
electrowetting curves of linear tricationic ionic liquids with C6 linkage chain and Figure

3.7 shows the electrowetting curves of benzylimidazolium substituted tricationic ionic

liquids with different linkage chains lengths and core structures.

82



Table 3.2 Electrowetting properties of linear tricationic ionic liquids.

lonic L|C|U|d 90 AO,_ AGR V|_ VR
2a 83 16 18 -40 50
2b 80 14 15 -35 30
2c 83 17 18 -50 40
2d 80 16 16 -60 40
3a 85 13 18 -40 40
3b 81 15 14 -30 35
3c 84 12 16 -35 40
3d 78 11 11 -30 35
4a 82 21 16 -35 40
4b 88 19 14 -40 50
4c 86 23 16 -60 55
4d - - - - -
5a* 77 >25 >20 <-70 >70
5b* 88 18 18 -65 60
6a* 77 20 25 -55 60
6b* 82 >15 >14 <-70 >70

6,-Contact angle at zero voltage, A6,- Change in contact angle at negative voltages,
ABr- Analogous contact angle change at positive voltages, V|- Saturation voltage in the
negative voltage realm, Vr-Analogous saturation voltage in the positive voltage realm.
Structures of 5a-6b are shown in Figure 3.5. * Data taken from ref 216.

R
kN/\R a= %N/\/\
J R

R Z
b="N_N
5 WIS

Figure 3.4 Structures of ILs 5a-6b.
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3.4.3.1 g, values

Since there is no external voltage at 6, only the three interfacial tensions
[solid/liquid, liquid/air and air/solid] govern the 6, value, However solid (Teflon) is
common in all experiments, therefore only the surface tension of the IL governs the 6,
value.?"® The higher the surface tension value of the IL, the higher the @, value
obtained.?'® Therefore from the observed ¢, values the relative surface tension of these
ILs can be deduced. This is a good indirect method to evaluate the relative surface
tensions of this new class of ILs. According to Figure 3.5 and Table 2, ionic liquids 3a,
3b, 3c and 3d which have the same anion i.e. NTf, and the same linkage chain length
i.e. C6, the g, values decrease in the order of 3a>3¢c>3b>3d. This decrease is solely
due to the end cationic moieties. The 6, value directly correlates with the surface
tension. Therefore the surface tension of these ILs decrease based on the cation in the
order; methyl imidazolium> benzyl imidazolium> butyl imidazolium> tripropyl
phosphonium.

According to Figure 3.6 and Table 2, by considering &, surface tension values
of benzyl substituted ILs are decreasing in the order of IL 14 >4c>3c¢c>2c¢>6b. Surface
tension values of liquids tend to increase with increasing of hydrophilicity.?*® IL 5b with
a nitrogen core (see Figure 3.6) has more hydrophilic character compared to 6b with a
mesitylene core. Therefore IL 5b has higher surface tension than IL 6b which is
reflected by the 6, value. Similarly when the alkyl chain length of the LTILs increases
from C3 to C10 as in 4c to 2c, the hydrophobic character increases and therefore

surface tension decreases.?™
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Figure 3.5 Electrowetting curves of linear tricationic ionic liquids with C6 linkage chains.

Electrowetting curves of linear tricationic ionic liquids with C6 linkage chains (a) were
overlaid normal to the maximum 6, value (b).
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Figure 3.6 Electrowetting curves of benzyl substituted linear and rigid type tricationic
ionic liquids.

Electrowetting curves of benzyl substituted linear and rigid type tricationic ionic liquids
(a) were overlaid normal to the maximum &, value (b).
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3.4.3.2 Rigid Core Structure vs. Flexible Core Structure

Figure 3.6(a) shows the electrowetting curves of benzylimidazole substituted
ILs, both rigid core (5b, 6b) and flexible core (2¢, 3¢, 4c¢) ILs. In Figure 3.6 (b) curves
are overlaid normal to maximum 6, value. According to Figure 6(b) and Table 2, it can
be clearly observed that rigid core ILs (5a and 5b) have wider V, and Vy values than
those of flexible core ILs (2¢, 3c, 4c). However, flexible core ILs produced much
smoother curves than rigid core ILs. This means their electrowetting properties are
much closer to the ideal behavior expected according to Young's and Lippmann’s
equations. Similar observations can be seen in butylimidazolium substituted rigid ILs
(5a, 6a) and flexible ILs (2b, 3b, 4b) as well (see Figure 3.7).

3.4.3.3 Effect of end groups

Electrowetting curves of linear tricationic ILs with C6 linkage chain each with
four different end substituted groups were plotted in Figure 3.5(a). In Figure 3.5(b) they
were overlaid normal to maximum 6, value. There are no significant differences in
electrowetting properties by changing the end substituted groups, except 6, values. &,
values are different from one IL to the other due to their surface tension differences
which was explained previously. It is interesting to note that the electrowetting
properties of these ILs are fairly similar regardless of their different physicochemical
properties. This unique situation enables one to choose an ionic liquid with the desired
physical property from a large library of ionic liquids that have the same electrowetting
properties. For example, if fast changes in contact angles are required in an
electrowetting application, ILs with lower viscosities can be used. LTIL 3a has
significantly lower viscosity than 3c, but their electrowetting properties are

approximately the same (Table 3.2).
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Figure 3.7 Electrowetting curves of butyl substituted tricationic ionic liquids

Electrowetting curves of butyl substituted tricationic ionic liquids (a) were overlaid
normal to the maximum &, value (b).
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These observations are valid for the other C3 linkage chain and C10 linkage chain ILs

as well (see Figures 3.8 and 3.9).
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Figure 3.8 Electrowetting curves of C10 core linear tricationic ionic liquids

Electrowetting curves of C10 core linear tricationic ionic liquids (a) were overlaid
normal to the maximum &, value (b).
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Figure 3.9 Electrowetting curves of C3 core linear tricationic ionic liquids

Electrowetting curves of C3 core linear tricationic ionic liquids (a) were overlaid normal
to the maximum 6, value (b).
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Examining electrowetting properties and physical properties of the relevant ILs
listed here, one can find a suitable replacement for aqueous electrowetting in
traditional EWOD-based devices.

3.5 Conclusion

Synthesis and physiochemical properties of 14 linear tricationic ionic liquids
were reported and these have been explored as potential electrowetting liquids. These
LTILs have shown high thermal stabilities and considerably high viscosities compared
to traditional monocationic and dicationic ionic liquids. Most of the LTILs synthesized
were room temperature ILs due to their higher structural flexibilities. This structural
flexibility was advantageous in electrowetting applications as LTILs were observed to
be much closer to the ideal behavior described in Young’s and Lippmann’s equation

than any other ionic liquids reported in the literature.
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CHAPTER 4
EVALUATION OF FLEXIBLE LINEAR TRICATIONIC SALTS AS GAS-PHASE ION-
PAIRING REAGENTS FOR THE DETECTION OF DIVALENT ANIONS IN
POSITIVE MODE ESI-MS

4.1 Abstract

Anion analysis is of great importance to many scientific areas of interest.
Problems with the negative mode ESI-MS prevent researchers from achieving
sensitive detection for anions. Recently, we have shown that cationic reagents can be
paired with anions, such that detection can be done in the positive mode, allowing for
low limits of detections for anions using ESI-MS. In this analysis, we present the use of
16 newly synthesized flexible linear tricationic ion-paring reagents for the detection of
11 divalent anions. These reagents greatly differ in structure from previously reported
trigonal tricationic ion-pairing agents, such that they are far more flexible. Here we
present the structural features of these linear trications that make for good ion-pairing
agents, as well as, show the advantage of using these more flexible ion-pairing
reagents. In fact, the limit of detection for sulfate using the best linear trication was
found to be 25 times lower than when the best rigid trication was used. Also, MS/MS
experiments were performed on the trication/di-anion complex to significantly reduce
the detection limit for many di-anions. Limits of detection in this analysis were as low as

50 fg.
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4.2 Introduction

Anion analysis is of great importance to environmental researchers,
biochemists, food and drug researchers, and the pharmaceutical industry; all of which
are continually in need of facile, sensitive analytical techniques that can be used to
both detect and quantitate trace anions.?**?*? Often, the anions of interest exist in
complex matrices such as blood, water, and urine.?%%239.241244.246249 £ this reason,
separation techniques are routinely coupled with anion detection. Currently, some of
these techniques utilize flow injection analysis or ion chromatography,?%2%® with
detection frequently obtained through the use of ion selective electrodes, conductivity,
or spectroscopic techniques.?**?®® Yet, these detection methodologies lack either
universality or specificity.”®>

For many analytes, ESI-MS has provided broad specificity and lower detection
limits. Given the anion’s inherent charge, it is not surprising that negative ion
electrospray ionization mass spectrometry (ESI-MS) has come to the forefront as a
general analytical approach that can be directly coupled with liquid chromatography
(LC) if desired. Unfortunately, for most types of analytes, the negative ion mode often
results in poorer limits of detection (LOD) than the preferred positive ion mode.?%*2%°
Due to high negative voltages, the negative ion mode is more prone to corona
discharge than the positive mode.”® This causes the negative mode to have an
increased chance for arcing events and ultimately more noise resulting in
unsatisfactory LODs.?®* Corona discharge in the negative mode can be controlled by

using halogenated solvents and substituting more alkylated alcohols (i.e., butanol or

IPA) for methanol.?*®%” |deally, LC-ESI-MS methodologies would use more common
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solvents, such as, methanol, water, and acetonitrile. Furthermore, it would be more
practical to do all ion detection in the more stable and sensitive positive ion mode.
Recently, we have developed a method for the detection of singly-charged
anions in positive mode ESI-MS using only water/methanol solvents.'?” This technique
involves the addition of a low concentration of a dicationic ion pairing reagent to the
mobile phase. The dication pairs with the singly-charged anion, resulting in a complex
possessing an overall plus one charge, which can be detected in the positive ion mode.
Benefits of this technique include: (a) the use more practical solvents, (b) substantial
increases in the sensitivity, (c) ease of use, (d) the ability to detect anions that fall
below a trapping mass spectrometer’s low mass cutoff region, and (e) detection of the
complex at a much higher mass-to-charge region where there is far less chemical
noise. To fully take advantage of factor (e) alone, it is best to choose a relatively high
molecular weight pairing agent that will result in a complex of a single positive charge.
Subsequently, the dicationic ion-pairing agent was used to determine the LODs
for over 30 singly-charged anions.’® Also in this work, it was shown for the first time
that MS/MS can often be used to further lower the LODs of these anions. Overall, this
analysis showed the true ultra-sensitivity of ion-pairing by producing the lowest
reported LODs for several anions by any know technique.'®” The effectiveness of over
20 dicationic ion-pairing agents was evaluated in order to determine the structural
properties that allow for low LODs."®® A major finding in this study was that flexibility of
the dication seemed essential for good sensitivity. Therefore, the best dicationic ion-
pairing reagents cited were those which possessed a flexible alkyl chain that linked the
two cationic moieties. Recently, the ion-paring technique was extended to the use of
tri-cationic reagents for the detection of divalent anions." The essential tricationic
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reagents were found to bind divalent anions, and monitoring the complex in the positive

ion mode was a more sensitive detection method than monitoring the naked doubly-

charged anions in the negative mode

SC\NL«/’ ﬁu
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Figure 4.1 Structures of linear tricationic ion-pairing reagents
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However, the tricationic reagents used had a somewhat rigid trigonal structure
(for a representative structure see the bottom of Figure 4.1), which may be an
undesirable feature of an ion-pairing agent from a sensitivity standpoint.

Recently, we devised a synthetic method to produce more flexible linear
trications (see Chapter 3). In this work, we present the use of 16 newly synthesized
linear tricationic ion-pairing reagents to determine the LOD for 11 divalent anions.
Herein, we describe the differences and advantages of using the more flexible linear
trications versus the more rigid trigonal trications. Also, we show that MS/MS
experiments can be performed on the linear trication/di-anion complex, and that by
monitoring a fragment of the complex, the LOD often can be dramatically lowered. This
is the first ever report of using this type of an MS/MS experiment to detect doubly-

charged anions in the positive ion mode with any tricationic ion-pairing agent.

4.3 Experimental Section

4.3.1 Materials

Figure 4.1 gives the structures of all the linear tricationic ion-pairing reagents
used in this study. Detailed synthesis of these ILs were discussed in Chapter 3. The
anions that were tested for LOD (listed in Table 4.1) were ordered as the lithium,
sodium, or potassium salt or as the disassociative free acid. They were also obtained
from Sigma-Aldrich and were used as the reagent grade without further purification.
HPLC grade water and methanol were purchased from Burdick and Jackson

(Honeywell Burdick and Jackson, Morristown, NJ, USA).
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4.3.2 ESI-MS Parameters

The ESI-MS conditions used here were the same as those previously used and
optimized for the detection of perchlorate with a dicationic reagent, and were as
follows: spray voltage, 3kV; sheath gas flow, 37 arbitrary units (AU); auxiliary gas flow
rate, 6 AU; capillary voltage, 11 V; capillary temperature, 350°C; tube lens voltage, 105
V. When detecting the trication/dianion complex in the positive SIM mode, the SIM
width was 5. When performing the SRM experiments, the isolation widths were
between 1 and 5, the normalized collision energy was 30, and the activation time was
30 ms. All data analysis was performed using the Xcalibur and Tune Plus software.

Throughout this study, a Finnigan LXQ (Thermo Fisher Scientific, San Jose,
CA, USA) ESI-MS was used for all of the analyses. The MS was equipped with a six
port injector (5 uL loop) and was coupled with a Finnigan Surveyor MS Pump. Between
the injector and the ionization source, a Y-type mixing tee allowed for the addition of
flow from a Shimadzu LC-6A pump. It was from this pump that the tricationic ion-
pairing agent was introduced to the solvent flow. Overall, the total flow to the ESI was
400 pL/min. The MS pump accounted for 300 pL/min (67% MeOH: 33% H,0), while
the LC pump applied the 40 uM ftrication solution in water at a rate of 100 yL/min. All
the anions were dissolved HPLC grade water, such that their initial concentration was 1
mg/mL. Serial dilutions were made from the stock solutions and the anions were
directly injected using the six port injector. New stock solutions were prepared weekly
and the injector was expected to be the largest cause for possible experimental error (+
5%). The limits of detection were determined to be when an injection at a given

concentration resulted in peaks giving a signal-to-noise ratio of three.
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4.4 Results and Discussion

In previous reports, we have shown that dicationic ion-pairing reagents can be
used to pair with singly-charged anions, such that, the positively-charged complex can
be monitored in the positive mode, resulting in extremely low LODs."®'* More
recently, we demonstrated that tricationic reagents could also be used to complex
doubly-charged anions, leading to much lower LODs for those divalent anions when
detecting the complex in the positive mode.'® Since the trications used previously had
relatively rigid structures, a series of flexible ion-pairing agents were synthesized and
tested to see if they offer greater sensitivity for the detection of anions in positive mode
ESI. In addition, MS/MS of the paired ions was examined in hopes of further lowering
the LOD in many cases.

Figure 4.1 shows the structures of the 16 linear tractions used in this analysis
(A1-4, B1-4, C1-4, and D1-4). All of the 16 linear trications have the same imidazolium
core. They differ in the length of the alkyl chain (Cs;, Cg, Cq9, and Cy,) that tethers the
terminal charged moieties to the central imidazolium, as well as, in the nature of the
terminal charged moieties (methylimidazolium, butylimidazolium, benzylimidazolium,
and tripropylphosphonium). By examining this series of linear trications, we were able
to observe possible advantages of varying the chain length (i.e., flexibility), as well as,
determining which cationic moieties produce the lowest LOD for the sample anions.
Also shown in Figure 4.1, are the structures of two previously reported rigid
trications.’® Of these, the E1 trication was shown to be a moderately successful
pairing agent, while trication E2 was found to be the best known trigonal tricationic ion-

pairing agent.'?®
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Table 4.1 Limits of detection for divalent anions with linear tricationic reagents*

Sulfate Thiosulfate Oxalate Fluarophosphate
Trication LOD (pg) Trication LOD (pg) Trication LOD (pg) Trication LOD (pg)
D3  (2.00 0.01)x 10 D3  (6.25+0.31)x 10 C2 (1.20+006)x10" D4  (2.50+0.13) =10’
D4 (750 +0.38) x 10 C2 (6.25+031)x 10 D2 (350+018)x10" D3 (263+013)x 10
D2 (125+006)%x10° B3  (6.25+0.31) %10’ A2 (B10+041)x10" E2  (3.75+0.19)x 10’
B3 (200+001)x10° B2  (6.25+0.31) %10’ D4 (1.25:006)%10° D2 ([425+021)x10°
B4  (260+013)x10% D2  (7.50+0.38) %10’ B4 [(1.25+006)%10° B3  (9.00+045) %10’
c1 (3.00+015)%x10® B4  (7.50+0.38) x 10’ D3  (250+013)%10° C3  ([1.50 +0.08)x10°
B2 (325+016)x10% C1  (8.75+043)x 10 E2 (250+013)x10° A3 (2.00+0.10)x 10°
C4  (350+018)x10° D4 (9.00 +0.45) %10’ A3 (3.00+£015)x10° A2 (2.00+0.10)x 10°
c3 (3.75 + 0.19) x 10% D1 [1.00 +0.08) x 10% B1  (3.00+018)x10° D1 (2.00+010)x 10%
C2  (4.50+022)x10% C4  [1.00+0.08) x 10% B2 (3.25+016)x10° C4 (210 0.11)x 10%
B1 (5.00+025) %x10° A3  (1.00+0.058)x10% C4  [4.00+020)x10° €2 (225+0.11)x10%
E? (5.00+025) %x10° A4 (1.00+0.05)x 10° C3  (440+022)x10° B2 (275+014)x 10°
A2 (550 +0.28)x10° A2  (1.25+0.06)x 10° C1  (5.00+028) %107 A4 (450 +023)x10°
Ad (5.75 + 0.29) x 10° B1  [1.25+0.06)x 10° E1 (500+£025x10° B4 (5004028 x10°
A3 (6.00£030)%x10° E2  (1.25+0.06)x10° A4 (550+£028)x10° B1  (B.75+0.44)x10%
D1 (6.25 + 0.31) x 10% C3  (1.75+0.09) x 10° Al (650+£033)x10° C1  (1.50+0.08)x10°
Et (625 +031)x10° A1 (5.00+0.25) x10% D1 (825+041)x10° A1 ([450+023)x10?
Al (1.752009)x10°  Ef  (7504038)x10° B3  (2082010)x10° Ef  (5.0040.25)x%10*
Dibromosuccinate Hexachloroplatinate MNitroprusside Dichromate
Trication LOD (pg) Trication LOD (pg) Trication LOD (pg) Trication LOD (pg)
D3  (125+006)x10° D2  (3.50+018) %10’ €2 700+035 C4 (350 +018)x10°
E2  (1.79+009)x10° B2  (3.50+0.18)x 10’ D1 750+0.38 B4  (3.75+019)x10°
D1 (200+010)%x 10 D1 (3.75+0.19) x 10’ E2 750+038 C3  (3.88+019)x10°
c1 (275+014)%x 10 D3 (4.00+0.20) x 10’ C1  [(1.00:008) x%10" B3 [425:021)x10°
B4  (325+016)x10% €2  (5.00+0.25) %10’ D2  [(1.25+006)%10" A3  (5.00+025) x10°
B1 (3.50+£018)%x 10  B1  (7.00+0.35) x 10’ B1 [(1.25+006)x10" D4  (550+028) x10°
B3 (375+019)x10% B3 (7.50 +0.38) x 10’ D3  (200+010)x10" D3 (6.25+031)x10°
A3 (450+023)x10° B4 (7.50+0.38) x 10’ B2 (200+010)x10" A4 (625+031)x10°
C3 (5.00+025x10° C1  (7.50+0.38) %10 C3 (225+011)x10" B1 (625+031)x10°
D4 (5.00+025) %102 A2 (7.50+0.38) %10 B3 (250+013)x10" €2 (6.38+032)x10°
A4 (B00£025)x10° E2  (7.50+0.38) x 10’ A2 (250+£013)x10" C1  (6.50+0.33)x10°
D2 (625+031)x10° C4  (8.50+043)x 10 A3 (300£015x10" D2 (7.50+0.38)x10°
C2 (750038 x10° D4  (1.00£0.05) x10° B4 (3.25+016)x10" B2  (7.50+0.38)x10°
B2 (7T50+038)x10% C3  (1.25+0.06)x10° D4  (375+019)x10" A2 (750 +038)x10?
A2 (250:013)x10° A3 (1.25:0.06)x 10° C4  (3.75:019)x10" D1 (B.75+044)x10°
A1 (3.00+£015)%x10° A4 (175+009)x10° A1 (375+019)x10" £2  (1.00 £ 0.05) = 10*
Et (5.00+025)%10° A1 (500+025)x10° E1 (486+024)x10" E1  (1.25+0.06) % 10*
C4  (5.00+025)x10* E1  (1.58+008)x10° A4  (500+025)x10" A1  (1.50 +0.08) % 10*
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Table 4.1 continued

1.00 + 0.05) x 10°
1.00 £ 0.05) x 10°
1.50 + 0.08) x 10°

% 10°
5.00 £ 0.25) x 10°
5.00 + 0.25) x 10°

5.00 + 0.25) x 10°

7.50 + 0.38) x 10°
1.25 £ 0.06) x 10*

Selenate o-Benzenedisulfonate Bromosuccinate
Trication LOD (pa) Trication LOD (pg) Trication LOD (pg)
E? (750 + 0.38) x 10’ E? (150 + 0.08) x 10 E2 (750 + 0.38) x 10°
B3 (2.50 + 0.13) x 10° ™M (163 + 0.08) x 10 c4 (6.25 + 0.31) x 10°
c4 (2.75 + 0.14) x 10° c1 (1.75 £ 0.09) x 10 D3 (7.50 +0.38) x 10°
D3 (3.75+019) x 10° B1 (2.00 £ 0.10) x 10" o1 (7.50 + 0.38) x 10°
B1 (4.00 + 0.20) x 10° C2 (3.20£0.16) x 10" Ad (8.00 + 0.40) x 10°
c2 (4.25 + 0.21) x 10% B4 (4.00 £ 0.20) x 10" cz | )
C3 (4.40 + 0.22) x 10° B2 (4.00 + 0.02) x 10 B4 ( )
D4 (5.00 + 0.25) x 10° D2 (475 +024)x 10 C3 ( )
D2 (5.00 + 0.25) x 10° D3 (6504 033)x 10 D4 (2.00 + 0.10) x 10°
C1 (5.00 + 0.25) x 10° Ad (6.50 + 0.33) x 10 D2 (225 £0.11)
B2 (5.00 + 0.25) x 10° C3 (7.50 £ 0.38) x 10 A3 (3.75+ 0.19) x 10°
B4 (5.25 + 0.26) x 10° Et (7.50 £ 0.38) x 10 B3 (4.00 + 0.20) x 10°
Ad (5.50 + 0.28) x 10% D4 (1.00 £ 0.05) x 10% Et ( )
A3 (7.00 + 0.35) x 10° B3 (1.00 + 0.05) x 10? C1 ( )
D1 (750 + 0.38) x 10° A3 (1.00 + 0.05) x 10° A2 ( )
A2 (TE0+038)x10° A2  (125+006)x10° B2  (5.50+0.28) x10°
Et (1.13 + 0.06) x 10° Al (3.75 £ 0.19) x 107 B1 ( )
Al (3.38 £ 0.17) x 10° c4 (8.75 + 0.44) x 10° Al ( )

*The limit of detection was determined to be the amount of analyte that resulted in

S/N = 3. Also, the data for E1 and E2 was extracted from reference 128.

The results of these two rigid trications allows for a definitive comparison to the new

flexible trications developed for this study.

Table 4.1 lists the LODs for the 11 doubly-charged anions, when paired with the
16 linear trications and monitored in the positive mode. Overall, the LODs for the
divalent anions ranged from the nanogram (ng) to the picogram (pg) level. In order to
evaluate the effect of the chain length in the linear tricationic ion-pairing reagent, one
can compare the trications of the same letter. For example, trications D1-4 differ only in
the length of the hydrocarbon chain connecting the charged moieties (see Figure. 4.1).
In general, it appears that the common trend is that linear trications with hexyl or decyl

linkage chains gave the lowest LODs, whereas, trications with propyl or dodecyl
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linkages resulted in higher LODs. This trend can be easily seen by comparing the LOD
for thiosulfate when using the “D” series of linear trications. In this comparison, the
order from best to worst ion-pairing agent was found to be D3, D2, D4, and D1. A likely
explanation for this observation is that when the alkyl linkage chain is too short, the
linear trication is less flexible and not as likely to “bend” around the anion. This finding
supports our hypothesis that flexibility is a key feature in a good tricationic ion-pairing
reagent. In contrast, when the alkyl chain gets too long, the cationic moieties are too
far from each other and could not work as a single unit when binding the anion.
However, the effect of the linkage chain being too short is far more unfavorable than it
being too long. An example of this can be seen in Table 4.1, were trication A1 with the
shortest linkage chain was found to be one of the three worst ion-pairing agents for all
anions. Clearly, the results (Table 4.1 and Figure 4.1) suggest that when using linear
tricationic ion-pairing reagents, the alkyl linkage chain should be between six and ten
carbons in length.

By evaluating the data for a series of trications that all have the same linkage
chain, but different cationic moieties, the best terminal charged groups can be
determined. Typically, the linear trications possessing the benzylimidazolium (the “C”
moiety) and the tripropylphosphonium (the “D” moiety) terminal charged groups
resulted in lower LODs than the methylimidazolium (the “A” moiety) or butylimidazolium
(the “B” moiety) cationic groups. This observation is shown by the LODs for oxalate
when paired with the linear tricationic “2” series. The order from best to worst ion-
pairing agents was found to be C2, D2, A2, and B2. Another example of this can be
seen in the LODs for both nitroprusside and dichromate, where (from best to worst) the
order was C2, D2, B2, and A2. These results, along with the previously noted optimum

101



linkage chain lengths, allow for the determination that trications C2 and D3 were the
overall best tricationic ion-pairing agents. Trication C2 has hexyl linkage chains and
benzylimidazolium terminal charged groups, and trication D3 has decyl linkage chains
and tripropylphosphonium cationic moieties. Interestingly, in the three comprehensive
studies we have done on ion-pairing agent structures, the tripropylphosphonium
cationic moiety is the only one that has always resulted in a recommended ion-pairing
agent.128’129

The other important comparison to be made with the data in Table 4.1 is the
LODs resulting from using the flexible linear trication versus the more rigid trigonal
trications (E1 and E2). As can be seen, the best linear trications, C2 and D3, rank very
near the top for most of the anions tested. However, the best trigonal trication, E2, also
ranks very near the top for many of the tested anions. From this observation, it was
determined that the best linear trications and the best trigonal trications both work well
when monitoring the same divalent anions. Interestingly, the linear and trigonal ion-
pairing reagents seem to be complimentary to one another. Overall, the best linear
trication was not found to be a greatly superior ion-pairing agent when compared to the
best trigonal trication. Yet, some very useful and somewhat complimentary tricationic
ion-pairing reagents were added to our repertoire. However, if you compare trigonal
trication E1 (the moderately successful trigonal trication) to the flexible linear trications,
it can be seen that trication E1 ranks near the bottom for all the anions tested. It was
determined that in general, the more flexible trications are better ion-pairing agents
than the rigid trications. Obviously, there are other factors that play a part in finding the

optimum ion-pairing agent, which allow trication E2 to work as well as the linear
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trications. Perhaps the most important factor is that it contains the highly favorable
tripropylphosphonium moiety.

Figure 4.2 illustrates the benefits of using a linear trication versus a trigonal
trication for the detection of sulfate in the positive mode. In both detection scenarios,
the same concentration of sulfate was injected (500 pg). In the upper panel (), the ion-
pairing agent was the best linear trication D3, and in the lower panel (Il) the best

trigonal trication E2 was used.
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Figure 4.2 Comparison of the detection of sulfate in the positive mode using tricationic
ion-paring reagents D3 (1) and E2 (ll).

It is apparent that the linear trication resulted in superior detection of sulfate, with a

signal-to-noise seven times greater that that for the trigonal trication. It should be noted
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that sulfate itself has a mass-to-charge ratio of 48, thus falling below the low mass
cutoff of our MS instrument and rendering itself undetectable in the negative mode.
Another facet of this study was to show that SRM experiments could be
performed on the trication/anion complex, and that by monitoring a positively-charged
fragment of the complex, lower LODs for the divalent anions could be achieved. The
key part of this type of experiment is to find the proper fragment to monitor. In many
cases the fragmentation was the same, but not always. Figure 4.3 shows a proposed
fragmentation pattern for the more commonly observed disassociation of a trication
D3/di-anion complex. As is shown by Figure 4.3, collision induced dissociation (CID)
typically resulted in a singly-charged alkyl linked phosphonium imidazole, which had a
mass-to-charge ratio of 367.4. Monitoring this fragment can lead to a decrease in the

LOD for the anion that was part of the parent complex.
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Figure 4.3 Proposed fragmentation pattern for a typical SRM experiment using trication
D3.
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Table 4.2 lists the results for the SRM experiments that were performed in this
analysis. Trications D3 and C2 were paired with 11 divalent anions and tested for their
LOD using the SRM method. For comparison, the SIM results are listed next to the
SRM results. As can be seen, the SRM mode often resulted in lower LODs than the
SIM mode. There were two analytes (D3/bromosuccinate and C2/oxalate) that showed
no improvement, but in general there was nearly an order of magnitude improvement
when using the SRM mode. In three cases, the SRM mode resulted in a two order of
magnitude decrease in the LOD. One of these cases was the detection of nitroprusside
using trication C2 as the ion-pairing agent and employing the SRM mode. For this
system, the LOD for nitroprusside was determined to be 50 femtograms (fg), which is
the lowest LOD for any mono- or divalent anion that has tested to date. Clearly this is a
very facile and sensitive method.

Table 4.2 Comparison of LODs in the SIM positive and SRM positive modes.

Trication D3 Trication C2
SIM LOD (pg) SEM LOD (pg) SRM Mass  SIM LOD (pg) SEM LOD (pg) SEM Mass

Sulfate (2.00£010)x 10" (1.50 £0.08)x 10" 3674 (450 £0.23)x 10° (3.00£0.18)x 10°  309.2
Thiosulfate (6.25+0.10)x 10" (5.00 £ 0.20)x 107 3674 (6.25+0.31)x 10" (3.50+0.18)x 10"  309.2
Oxalate (2.50 £0.13) x 10° (1.00 £ 0.08) x 10° 3674 (120 £ 0.06) x 10" (T.50+0.38)x 10"  549.2
Fluorophosphate (263+0.13)x 10" (2.06 £0.10)x 10" 3674 (225 +0.11) x 10° (1.00 £0.05)x 10°  309.2
Dibromosuccinate  (1.25+0.06)x 10° (1.25 £ 0.06) x 10" 7454 (T50+£0.38)x 10° (2.00£0.10)x 10" 629.4
Hexachloroplatinate  (4.00 £ 0.20)x 10" 4.50 +0.23 10035 (5.00£028)x10" (200+010)x 10" 8894
Nitroprusside (2.00£0.10)x 10" 3.50+0.18 8535 700£035  (5.00£025) x10° 7374
Dichromate (6.25+0.31)x 10° (5.75 £ 0.29) x 10° 3674 (6.36 +0.32) x 10° (3.00 £0.15)x 10° 6434
Selenate (375£0.19)x 10°  2.00£0.10 3674 (4.25+£021)x10° (6.00£0.30)x 10"  309.2
o-Benzenedisulfonate (6.50 + 0.33)x 10" (1.00 £ 0.08) x 10" 367.4 (3.20 £ 0.16) x 10" (3.75+0.19)x 10"  309.2
Bromosuccinate (7.50 +0.38) x 102 (1.00 £ 0.05) x 10°  745.4 (1.00 £0.05) x 10° (1.00+£0.05)x 10° 6294

Also, listed in Table 4.2 are the SRM fragment masses that were monitored. As
noted previously, many complexes produce the same fragment; 367.4 for trication D3
and 309.2 for trication C2. However, it was observed that there are some trication/di-

105



anions that follow different disassociation pathways. For example, the trication
D3/hexachloroplatinate complex produced a fragment with a mass-to-charge ratio of
1003.5. This fragment corresponds to the loss of one chlorine atom from the
hexachloroplatinate, while the overall cation-anion complex remained intact. A similar
effect was seen with the SRM detection for nitroprusside. Here, nitroprusside loses a
nitro group and still stays complexed with the trication. For these cases, it is interesting
to see that the non-covalent trication/di-anion complex remains intact, while covalent
bonds have been broken. One more example of this type of fragmentation was for
bromine containing anions. Here the central imidazolium looses its acidic proton (in the
2 postion of the imidazolium ring) and becomes a dication. This dication then
complexes with a bromide anion that was lost from the di-anion. This means that for
any bromine containing di-anions, the same fragment could be monitored (m/z:
745/747 for D3 and m/z: 629/631 for C2).

It should be noted that although the LODs for the 11 divalent anions in SIM and
SRM are already quite low, they could be lowered further by completely optimizing the
conditions for a particular complex. In this analysis, one general set of conditions were
used for the entire study. Previously, it has been shown that the LODs can be further
decreased by a factor of three to ten with individual optimization.'?"'?%'? Finally, the
use of some other types of MS systems (triple quad, etc.) with this technique can

further reduce detection limits.
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4.5 Conclusions

Sixteen newly synthesized linear tricationic ion-pairing agents were evaluated
for their ability to detect doubly-charged anions in positive mode ESI-MS. It was found
that for linear trications, the optimum alkyl chain lengths coupling the cationic moieties
should be between six and ten carbons in length. It was determined that the best
cationic moieties were tripropylphosphonium and benzylimidazolium. In comparison to
previously reported rigid tricationic ion-pairing agents, the flexible linear trications
presented here generally make better MS ion-pairing agents. It was shown that when
the same amount of sulfate was injected, the signal-to-noise ratio when using the best
linear trication was seven times greater than when using the best trigonal trication.
However, it was found that trigonal trication E2 remained useful as it was often
complimentary to the linear frications. Lastly, one to three orders of magnitude

decreases in the LODs were found when using SRM.

107



CHAPTER 5
BONDED IONIC LIQUID POLYMERIC MATERIAL FOR SOLID PHASE MICRO
EXTRACTION GC ANALYSIS

5.1 Abstract
Four new ionic liquid-based materials were bonded onto 5 um silica particles for use as
adsorbent in solid phase micro extraction (SPME). Two ILs contained styrene units that
allowed for polymerization and higher carbon content of the bonded silica particles.
Two polymeric ILs differing by the anion were used to prepare two SPME fibers that
were used in both headspace and immersion extractions and compared to commercial
fibers. In both sets of experiments, ethyl acetate was used as an internal standard to
take into account adsorbent volume differences between the fibers. The polymeric IL
fibers are very efficient in headspace SPME for short chain alcohols. Immersion SPME
can also be used with the IL fibers for short chain alcohols but also for polar and basic
amines that can be extracted at pH 11 without damage to the fiber contained silica
particles. The sensitivities of the two IL fibers differing by the anion were similar. Their
efficacy compares favorably to that of commercial fibers for polar analytes. The

mechanical strength and durability of the polymeric IL fibers were excellent.
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5.2 Introduction

Solid phase microextraction (SPME) was developed by Pawliszyn in the early
1990s as a simple and "green" technique for sample preparation without the use of any
solvent.?*%"° SPME is simply performed by exposing a silica fiber covered by an
absorbing agent to the headspace (HS) volume of a vial or directly immersing into the
matrix of the liquid sample. A rapid preconcentration of analytes into the fiber surface is
observed if the coating absorbing agent is appropriate. The extracted agents are
analyzed by simply placing the fiber into the injection port of a gas chromatograph
(GC). The injector is heated at an elevated temperature that will cause the vaporisation
of the absorbed analytes into the GC insert and a classical GC chromatogram can be
developed for full identification and quantitation of all extracted compounds.

The chemistry of the sorptive SPME coating layer plays a significant role in
enhancing the extraction of specific classes of compounds and discriminating against
others.?’"?"2 The SPME extractant must primarily be thermally stable so as not to
decompose during the GC injection process. It must also be mechanically strong to
support agitation and manipulation. Finally, it must be able to withstand harsh chemical
media when immersed in the sample solution including extreme pHs, high ionic
strengths, and organic solvent concentrations. Bare silica gel, polydimethylsiloxane
(PDMS), divinylbenzene (PDMS-DVB), polyacrylate (PA), high density polyoxyethylene
(Carbowax) are used in commercially available SPME fiber.?”® Since higher selectivity
as well as higher sensitivity are needed as the technique gains wide-spread popularity,
the quest for new coating adsorbents is the goal of numerous research teams.

lonic liquids are a new class of non molecular solvents with unique properties
such as a very low volatility, often good thermal stability, electrical conductivity, good
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solvating properties associated to adjustable polarity, and water or solvent
solubility.?”*?"® lonic liquids are actually salts with a melting point close to or below
room temperature. Their low volatility and peculiar solvating properties were soon
considered as attractive properties that would make them very useful for use in
separation techniques®® and especially, possible candidates for new adsorbents for
SPME fibers.

Considerable insights into solute-IL interactions and affinities were obtained
during the development and evaluation of GC stationary phases made with
ILs.*4246:56.277 This experience was first used to develop microextractions on a single
ionic liquid drop, i.e. without fiber support.2®%"® Next ionic liquid coated fibers were
prepared for a single determination of trace amount of polyaromatic hydrocarbons in
water samples.”® The contamination of the GC injection liner precluded the
widespread use of this method. Polymerized ionic liquids were used to coat on the
silica fiber and obtain thermally stable and reusable SPME fibers for esters™* and

21 determination.

amphetamine metabolite
So far, the works reported with ionic liquid SPME fibers were successful with
mixtures containing mainly hydrophobic and semi-polar compounds. It was found in

GC analyses on ionic liquid stationary phase®*#°4¢5

and in ionic liquid-water liquid-
liquid extractions'”” that alcohols had an unusually high affinity for ILs. In this work,
attention will be given to hydrophilic and polar compounds such as short chain alcohols
and amines. For this purpose, completely new and different ionic liquids were prepared
and tested as new adsorbents for SPME. To reduce contamination and/or loss of
adsorbent, the different ionic liquid derivatives were bonded to silica microparticles that

were used to prepare a porous and mechanically strong fiber coating. Both headspace
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and immersion techniques were tested to evaluate the capabilities of the newly
developed bonded ionic liquid sorbents with a large variety of polar solutes.

5.3 Experimental Section

5.3.1 Materials

The reagents sodium imidazolide, 1-methylimidazole, 1-hydroxyethyl imidazole,
triethylene glycol, phosphorous tribromide, ethyl acetate, toluene, 4-chloromethyl
styrene, tetrahydrofurane (THF), n-butanol, methylene chloride, chloroform, dioxane,
butyric acid, phenol, dimethylamine, trimethylamine, pyridine and aniline were
purchased from Sigma-Aldrich, Milwaukee, WI, USA. The common HPLC solvents:
acetonitrile (ACN), isopropyl alcohol (IPA), ethanol and methanol were OmniSolv™
solvents obtained from EMD Merck, Darmstadt, Germany. Kromasil spherical azobis-
isobutyronitrile-derivatized silica gel with 5 um particle diameter, 10 nm pore size and
310 m? surface area was obtained from Supelco, Sigma-Aldrich.The beverages tested
were obtained from different local grocery stores. The standard reference material
used for calibration was SRM 1828b from the National Institute of Standards and
Technology (Gaithersburg, MD, USA).

5.3.2 Synthesis of the lonic Liquid Derivatized Silica

Bis-hydroxyethyl imidazolium trioxyethylene derivative

Bis-hydroxyethyl imidazolium trioxyethylene bis-(trifluoromethylsulfonyl) imide, noted
(HelM),PEG;, 2 NTf, (7) was synthesized following a method previously reported.'®
Equimolar mixture of trioxyethylene dibromide and hydroxyethyl imidazole was refluxed
in tetrahydrofuran (THF) overnight. The bromide ionic liquid obtained was converted to
NTf, anionic form by stirring a 1.0 g of the above dibromide salt with 4.0 g of LiNTf; in
water for 5 hr. Then the NTf, ionic liquid was extracted with methylene chloride,
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washed with water and ether and dried in a vacuum oven with P,Os. After that
(HelM),PEG;, 2NTf,, (1.0 g) was stired in a slurry of (3-
Isocyanatopropyl)triethoxysilane derivatized silica gel (2.0 g, C% 3.2) in toluene at 110
°C to obtain the silica bonded monomeric IL1 (see Figure 5.1, top). Obtained silica gel
was filtered through a sintered glass funnel and washed with 60 ml portions of acetone,
dimthyl formamide, methanol, chloroform and acetone to remove remaining unbound
ionic liquids and other impurities. Derivatized silica gel was dried under vacuum over
P,Os. The elemental analyses and coverage are listed in Table 5.1. The second ionic
liquid polar derivative was done following the same protocol as for IL1 but the bromide
ions were exchanged for trifluoromethyl sulfate or triflate ions (TfO") instead of NTf,
ions giving IL2 bonded particles (Table 5.1).

1,1°-(1,6-hexanediyl)bisimidazole (8).%*

A 250-ml round-bottom flask was charged with 100 mL anhydrous dimethylformamide
(DMF) and 2.0 g sodium imidazole (22.2 mmol). Next, 3.8 mL of 1,6-dichlorohexane
(3.8 mmol) were slowly added into the DMF solution and stirred overnight at room
temperature. After filtering off remaining solids, the filtrate was concentrated under
reduced pressure and the resulting crude product was purified by column
chromatography (SiO, 20 ym, 60 A; CH,Cl,/methanol 9:1) to give the desired product
1,1-(1,6-hexanediyl)bisimidazole in 80 % yield (see Figure 5.1, bottom). '"H NMR
(300 MHz, DMSO-d §): 8, 7.56 (s, 1H), 7.12 (S, 2H), 6.84 (s, 2H), 3.89 (t, J = 7.2 Hz,
4H), 1.64 (m, 4H), 1.21 (m, 4H). Calculated analytical mass: Ci,HgN4: C, 66.02; H,

8.31; N, 25.67; found: C, 66.2; H, 8.4; N, 25.7.
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1,1°-(1,6-hexanediyl)bis-p-vinylbenzylimidazolium chloride (9).*? 1.0 g of 1,1'-(1,6-
hexanediyl)bisimidazole (4.6 mmol) was dissolved in 20 mL CH3;CN in a 100-mL round-
bottom flask. 4-chloromethylstyrene (1.5 g; 10.1 mmol) was added with a syringe and
the reaction was heated at 65 °C overnight. The reaction was then allowed to cool to
room temperature and was poured into 100 mL diethyl ether. A precipitate formed
immediately, and the crude product was cooled to —10 °C in the freezer. Et,0 was
decanted and the product dissolved in 20 mL deionized water. The aqueous phase
was washed with ethyl acetate (3x50 mL) and water was removed by reduced
pressure to obtain the dicationic imidazolium monomer in the chloride form (Figure 5.1,
bottom). 'H NMR (300 MHz, DMSO-d ¢): & 9.58 (s, 2H), 7.83 (s, 4H), 7.50 (dd, J =
8.2 Hz, 8H), 6.71 (dd, J = 11.0 Hz, 2H), 5.86 (d, J = 17.5 Hz, 2H), 5.41 (s, 4H), 5.41 (s,
4H), 5.28 (d, J = 12.0Hz, 2H), 4.15 (t, J = 7.2 Hz, 4H); 1.22 (m, 4H). Calculated
analytical mass: C3oH3sN4; C, 68.82; H, 6.93; N, 13.54; found: C, 68.9; H, 7.0; N, 10.9.
Synthesis of the silica-bonded polymer (IL3 & IL4)

To a suspension of 2.0 g of azobis-isobutyronitrile-derivatized silica (Obtained from
Supelco) in Toluene was added 1.0 g of the dicationic monomer (9) and the mixture
was heated to 80 °C for 6 h. Then it was allowed to cool to room temperature with
continued stirring overnight. Next, the content was filtered through fine-pore-sintered
glass filter funnel. The collected silica-bonded polymeric product was successively
washed with 80 mL portions of toluene, chloroform, ethanol, DMF, methanol, and

acetone. The final product was dried under vacuum at 50 °C.
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Metathesis reaction
The bonded silica is in the chloride form. One gram of silica-bonded ionic liquid
polymer in chloride form was mixed with 3.0 g of sodium triflate (NaTfO) and stirred
overnight. After filtration, it was washed with deionized water until no white precipitate
was seen testing the filtrate with dilute silver nitrate. This silica gel was then further
washed with 80 mL portions of toluene, chloroform, ethanol, DMF, methanol, and
acetone. The resulting silica-bonded polymer was vacuum dried overnight to obtain the
bonded silica in the triflate form. Similar metathesis was carried out to obtain the silica-
bonded ionic liquid polymer in its bis-trifluoromethanesulfonimide (NTf,") form.
5.3.3 SPME Methods

5.3.3.1 Solid Phase Microextraction

For all headspace extractions, a Supelco SPME fiber assembly and holder
Model 57330 was used with a 57357-U sampling stand, a 57358-U heater block
holding eight 15-mm vials of 4.0 mL and a Corning PC420-D heat/stir plate, all
provided by Supelco (Sigma-Aldrich). Immersion extractions were done using the
Supelco fiber assembly and a Varian CX 8200 autosampler (Varian Inc. Palo Alto, CA,
USA) using 2 mL mini-vials. The ionic-liquid-derivative-bonded silica particles were
sent to Supelco Bellefonte to be glued as a 50-um layer onto SPME flexible core wire
fitting the holder (Supelco® proprietary protocol). Figure 5.2 shows scanning electron
microphotographs of fiber IL3. A very porous 50 um layer is coated on the solid core.
At high magnification (Figure 5.2, bottom), it is possible to see the polymeric IL bonded
onto each silica particle. All SEM images were obtained on Zeiss Supra 55 VP with

Genesis 4000 EDAX (Located at UTA Nanofab facility).
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Figure 5.1 Scanning electron microphotographs of fiber IL3.

Granular structure of the coating due to the silica particles. Bottom right Enlargement of
the coated layer showing the porous structure of the Stableflex® layer holding the
bonded silica particles. The left inset is an enlargement of a single silica particle
showing the IL polymeric coating as white spots covering the particles. bottom right For
comparison, the same procedure was followed with bare silica particles.

Table 5.1 Characteristics of the silica bonded ionic liquid adsorbents for SPME.

fiber bonded moiety C% coverage
# umol/m?
IL1 (HelM),PEG3;, 2 NTf, 9.2 1.5
IL2 (HelM),PEG3;, 2 TfO 8.5 1.2
IL3 [(StyrIM),Cs, 2 NTf, ], 21.1 Polymeric
IL4 [(StyrIM),Cs, 2 TfO], 23.4 Polymeric
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For comparison, commercial fibers were used in the same conditions as the newly
developed fibers. They were a 65-um polydimethylsiloxane / divinylbenzene fiber
(PDMS/DVB) Stableflex 57326-U, a 60-um polyoxyethylene glycol (PEG) 57354-U, a
100-uym PDMS 57300-U and an 85-um polyacrylate fiber (PA) fused silica 57304
(Supelco). Before use, all the fibers were conditioned at 220 °C in the GC injection port
under a flow of helium for 15 min.

5.3.3.2 Gas Chromatography

An Agilent GC 6850 was used with a split injector and FID detector both set at
300 °C. A Chemstation software (Agilent, Palo Alto, CA, USA) was used to drive the
chromatograph and process the chromatograms. The column for polar compounds and
headspace analysis was a 30 m, 250 ym i.d., 0.25 ym film thickness Supelcowax™ 10
capillary column (Supelco). The stationary phase is a polyethylene glycol polymer of
about 20 million molecular weight (Carbowax® 20 M). The column for polar and amine
compounds analyzed by immersion was a 30 m, 320 ym i.d., 4 ym film thickness SPB-
1 Sulfur PDMS capillary column (Supelco). Both columns were operated with helium as
the carrier gas.

5.3.3.3 SPME Protocol-Headspace Analysis

A known amount of the polar test compounds: ACN, methanol, ethanol, n-
propanol, IPA, n-butanol, acetone, and ethyl acetate, were added to 2.5 mL distilled
water in a Teflon®-capped 4 mL vial. Seven hundred fifty milligrams of sodium chloride
and a magnetic stir bar were added to the solution. The fiber holder needle was then
inserted in the vial headspace. The fiber was exposed for 15 min to the headspace
vapors obtained at 50 °C under fast 1,000 rpm stirring. After 15 min, the fiber was
retracted inside the needle and the fiber holder was withdrawn from the vial. The
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needle containing the fiber was next inserted into the GC split injector set with a low
split ratio of 5 to 1. The fiber was immediately exposed for thermal desorption of the
adsorbed compounds at 200 °C for 2 min. After 2 min, the fiber was retracted inside
the needle, the latter being simultaneously withdrawn from the injector. The sample
was analyzed with the 30-m capillary column maintained at 50 °C for 4 min followed by
a temperature gradient of 15 °C/min for 6 min and 40 s up to 150 °C, with 1 min at
150 °C. The helium carrier gas linear velocity was 35 cm/s (hold-up time 1.45 min) with
an average flow rate of 1.0 mL/min. The FID solute peak areas were used for
guantitation rather than the peak heights.

5.3.3.4 SPME Protocol-Immersion Analysis

Stock solutions of the volatile analytes were prepared at concentration in the
g/L range in water. A volume of 1.2 mL of buffer at different pH and containing 30% w/v
NaCl was introduced in a 2-mL vial. Spiking additions using the stock solutions were
made to prepare the mixture with known concentrations of the desired analytes at the
selected pH. A total of five to six extractions by fully immersing the fiber in the liquid
mixture for 10 min with strong agitation (50 Hz vibration) at room temperature were
made with each sample. In all cases, the first extraction was excluded because results
from the first extraction were usually not consistent with the remaining extractions.
After 10 min, the vibration-agitation is stopped; the fiber is retracted inside the needle
and withdrawn for the vial for immediate GC analysis. The needle is inserted into the
GC injector at 220 °C or 250 °C and the fiber is exposed in splitless condition for 45 s
then the split is opened at a ratio of 20 to 1 (total helium flow is ~30 mL/min) for 1 min
15 s before being retracted into the needle and withdrawn from the injector. The
chromatogram was developed with the capillary column maintained at 45 °C for
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1.5 min followed by a temperature gradient of 8 °C/min for 4 min and 22 s up to 80 °C,
followed by a faster gradient of 20 °C per min for 8 min and 30 s up to 250 °C with a 5-
min hold at 250 °C. The helium carrier gas linear velocity was 30 cm/s (hold-up time
1.67 min) with an average flow rate of 1.5 mL/min. The FID detector was set at 290 °C.
The solute peak areas were used for quantitation rather than the peak heights.

5.4 Results and discussion

5.4.1 Ethoxylated and Polymeric IL Derivatives

Polar analytes are hydrophilic. As such, they are more difficult to extract by the
SPME protocol even maximizing the salting-out effect of adding sodium chloride close
to the saturation concentration (359 g/L or 28% w/v at 25 °C).?*® SPME was used to
identify the fuel used in arson cases and was very effective with gas or petroleum
derivatives but was much less so when alcohols were used as fuel source igniters.?*
Thus, enhancing the capabilities of SPME with new adsorbents that have a high affinity
for polar compounds is of considerable interest. The specific affinity of ionic liquids for
alcohols and polar compounds may be used for this purpose. Considering the
problems due to ionic-liquid-coated fibers (liner contamination in the GC injector and
irreproducibility),”® bonded IL silica materials were tailored for the task. Oxyethylene
adducts were also selected to enhance to polarity of the ionic liquid derivative.

The IL1 (NTf,) and IL2 (TfO) derivatives were bonded as oxyethylene adduct
monomers onto the silica particle surface (Scheme 5.1). The carbon loading and
moiety molecular weight (Table 5.1) allows for an estimate of the bonding density as
1.2-1.5 ymol/m?. Such bonding density would be somewhat low for bonded silica
particles used as the sorbent in stationary phase HPLC. The 8.5% to 9.2% carbon
loading makes it acceptable for SPME extraction. Derivatives IL3 and IL4 were
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designed to increase substantially the carbon load by polymerizing a styrene bonded
di-imidazolium monomer (9). The significantly higher carbon loads between 21 and
23% cannot be related to a coverage density since the additional carbon is strictly the
result of the chain lengthening polymerization reaction up to the point that spots can be
seen on the silica particle surface (Figure 5.1, bottom).

The specific role of the anion in selectivity was pointed out previously.**190-276.284
Specifically, linear solvation energy relationship (LSER) studies found that the triflate
anion had less proton acceptor ability than the bis-(trifluoromethylsulfonyl)imide anion
(lower b coefficient in the Abraham LSER regression equation).**'%%?** This is not
surprising since ftriflic acid is one of the strongest acids known. TfO™ also had a
significantly higher a parameter (basicity) than NTf,".**'%%?° |t is then interesting to
compare the effect of the anion in our ionic liquid sorbent derivatives.

5.4.2 Headspace Analyses

5.4.2.1 Effect of the fiber exposure time

The same trend was observed for all studied new SPME fiber coated sorbents
used in headspace extractions. The adsorbed amount of all analytes increases up to a
plateau value reached after about 15 min of headspace exposure at 50 °C. A small
decrease may be observed for some compounds exposed for times greater than
20 min. Figure 5.2 shows the results obtained with the polymeric sorbent IL3 using the
relative response value: {peak area (p.a.) at time t} over {p.a. at time 15 min}. The
trend is the same for all compounds in this study. The absolute response in
concentration depended on the nature of the solute as shown by the inset of Figure

5.2. Similar sorption-time profiles were obtained for polymeric IL-coated fibers (30 min
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plateau time at 25 °C)"** or IL-coated fibers for amphetamine detection (20 min plateau

time at 50 °C).?®'
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Figure 5.2 Profiles of the relative sorption expressed as [p.a. (t) over p.a. (15 min)]
versus headspace exposure time for the polymeric IL 3 SPME fiber.

All solute concentrations were 5 ug/ml (ppm). Exposure temperature 50 °C, 3.0 g NaCl
added to 10 mL as salting-out agent

5.4.2.2 Extraction parameter optimization

Salting-out agent. Sodium chloride is added to the solution as a salting-out
agent. Previous work showed that the maximum amount of added NaCl produced the
highest partial pressure of volatile analytes in the headspace volume and,
consequently, the highest amount of analytes extracted by the fiber,'3*268-270.278-281.285

This result was confirmed with our fibers. A saturated NaCl solution at 20 °C contains

316 g/L and has a density of 1.20 g/mL. To avoid any precipitation and/or solubility
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problems, the amount of NaCl added to all solutions was 30% w/v (750 mg NaCl in
2.5 mL water) just below the saturation concentration.

Extraction temperature: Temperature is another parameter increasing the
partial vapor pressure of the analytes in the headspace volume. However, it also
increases the vapor pressure of water making the pressure of the headspace volume
higher than atmospheric pressure. If leaks occur, the concentration of the extracted
analytes may be biased. The working extraction temperature for all headspace
experiments was set at 50 °C.

The sensitivities obtained with the two monomeric IL fibers (IL1 and IL2,
Tables 5.2) are clearly lower than the corresponding sensitivities obtained with the
polymeric IL fibers IL3 and IL4. The two polymeric-bonded IL fibers have a better
absolute sensitivity than the commercial PA and PDMS-DVB fibers for the three
lightest polar analytes: acetonitrile, methanol, and ethanol. The commercial fibers PA
and especially PDMS-DVB have better sensitivities than the new IL-based fibers for all
other tested polar compounds. Fiber IL4 (bonded polymeric [(StyrIM).Cs, 2 TfO], ,
Table 5.1) showed higher absolute sensitivities than its NTf, fiber IL3 counterpart for

all analytes (Table 5.2).
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Table 5.2 Analytical figures of merit obtained for polar solutes extracted for 15 min at
50°C by headspace SPME with different fibers.

Solute fiber  Sensitivity LOD Correlation  Calibration range
p.a. per Mg/L or ppb coefficient pg/mL or ppm
(Mg/mL)
acetonitrile
IL1 0.47 (4.0 £0.3) x 10 0.992 0.5-50
L2 0.40 (4.0 £0.3) x 10 0.991 0.5-50
IL3 1.05 (1.0+0.1) x 10 0.991 0.5-50
IL4 1.54 (1.0+0.1) x 10 0.994 0.5-50
PA 0.99 (2.0 £0.1) x 10 0.993 1-50
PDMS/DVB 1.56 (1.00 +.1) x 10" 0.998 1-50
methanol
IL1 0.64 (3.5+0.2) x 10 0.995 0.5-50
IL2 0.70 (3.0+0.2) x 10 0.997 0.5-50
IL3 0.62 (3.0+0.2) x 10 0.994 0.5-50
IL4 1.31 (1.0+0.1) x 10 0.993 0.5-50
PA 0.71 (3.0+0.2) x 10 0.998 1-50
PDMS/DVB 0.70 (3.0+0.2) x 10 0.996 1-50
ethanol
IL1 0.92 (2.0+0.2) x 10 0.993 0.5-50
IL2 0.91 (2.0+0.2) x 10 0.991 0.5-50
IL3 0.95 (2.0 £0.2) x 10’ 0.993 0.5-50
IL4 1.76 (1.0 £0.1) x 10’ 0.995 0.5-50
PA 1.33 (1.5+0.1) x 10 0.996 1-50
PDMS/DVB 1.17 (2.0 £0.2) x10' 0.993 1-50
n-propanol
IL1 1.77 (1.0 £0.1) x 10’ 0.997 1-100
IL2 1.62 (1.0 0.1) x 10 0.992 1-100
IL3 2.12 (1.0 £0.1) x 10’ 0.996 1-100
IL4 3.23 50104 0.998 1-100
PA 2.98 50+04 0.996 1-100
PDMS/DVB 3.05 7.0+0.5 0.997 1-100
i-propanol
IL1 1.29 (1.5+0.1) x 10 0.993 1-100
IL2 1.31 (1.5+0.1) x 10 0.991 1-100
IL3 1.56 (1.5+0.1) x 10 0.998 1-100
IL4 2.66 8.0+0.6 0.991 1-100
PA 2.02 (1.0 £0.1) x 10’ 0.995 1-100
PDMS/DVB 2.34 9.0+0.6 0.999 1-100
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Table 5.2 Continued

n-butanol
IL1 4.50 (4.0 £0.3) x 10’ 0.993 1-100
L2 4.21 50104 0.992 1-100
IL3 5.40 3.0+0.2 0.992 1-100
IL4 6.52 20+0.2 0.994 1-100
PA 8.16 1.0+ 0.1 0.991 1-100
PDMS/DVB 11.5 0.50 £ 0.04 0.992 1-100
acetone
IL1 0.99 (2.0 £0.2) x 10’ 0.996 1-100
L2 0.82 (2.5+0.2) x 10’ 0.993 1-100
IL3 1.36 (1.5+0.1) x 10 0.997 1-100
IL4 1.95 (1.0 +0.1) x 10 0.996 1-100
PA 1.25 (1.5+0.1) x 10 0.995 1-100
PDMS/DVB 2.60 50+04 0.999 1-100
ethyl acetate
IL1 3.12 (1.0 £0.1) x 10’ 0.992 1-100
IL2 3.04 (1.0 £0.1) x 10 0.992 1-100
IL3 3.20 (1.0 £0.1) x 10 0.994 1-100
IL4 4.88 50104 0.995 1-100
PA 6.59 40104 0.995 1-100
PDMS/DVB 8.70 3.0+0.2 0.996 1-100

Fibers IL 1 to 4: see full structures in Table 1; PA: polyacrylate fiber 85 um coating
thickness; PDMS/DVB: polydimethylsiloxane/divinylbenzene fiber 65 um coating
thickness; p.a.: peak area; LOD: limit of detection; ppm: part per million or mg/L; ppb:
part per billion or pg/L.

It should be noted that with the IL-coated fibers, both the binder and silica used to
prepare the adsorbing layer take a significant percentage of the coating volume having
limited extraction capabilities. Furthermore, the coating volume of the IL-based fibers
with a coating thickness of around 50 um (see Figure 5.2) is itself lower than the

coating volume of the commercial PA fiber (85 um) and the PDMS-DVB fiber (65 um).

To take into account these composition and volume differences, we used ethyl acetate

as an internal standard to normalize the results.
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Figure 5.3 represents the Table 5.2 absolute results as relative results, i.e.,
plotting for each analyte the ratios of the analyte absolute response over the same fiber
ethyl acetate response. This representation shows that the IL fibers have a better
relative response for all selected analytes. For the polymeric-bonded IL fibers IL3 and
IL4, the short-chain alcohols' relative response can be twice higher than that of the
commercial fibers. For n-butanol that shows the highest absolute response for all
fibers, the polymeric IL3 (NTf, anion) relative response is about 20% higher than the
other fiber response (Figure 5.3).

However, the relative representation of the results in Fig 5.4 shows that, except
for n-butanol, there is no significant difference between the NTf,” and TfO™ IL fiber
response. The higher absolute values obtained for fiber IL4 (Table 5.2) compared to
fiber IL3 may be due to the accumulation of excess silica particles during the coating
procedure. The relative response in headspace analysis for the two polymeric IL fibers
is very similar being somewhat better than the two monomeric IL fibers. The enhanced
affinity of ILs for short-chain alcohols observed with IL gas chromatography stationary

44,46

phases was confirmed in headspace analysis with |L-based adsorbents.
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Figure 5.3 Relative response ratios of analytes in headspace analyses with four ILs
and two commercial fibers.

5.4.2.3 Use of the polymeric IL fiber for ethanol determination in beverages

The headspace analysis process was validated using the reference material
NIST SRM (National Institute of Standards and Technology-Standard Reference
Material) 1828b and it was used with fiber IL4 to assess the ethanol content of several
alcoholic beverages. A calibration curve was prepared between 5.0 and 100.0 ppm in
volume (microliters of ethanol per liter of water). The NIST reference material was
calibrated in the units of % mass. The beverage items were all labeled in ethanol %
vlv. Considering the low concentrations involved, the water density was taken as
1.0gmL™" and the ethanol density (0.789 gmL™") was used to establish the

correspondence: 1,000 ppm in mass=0.1% w/w=0.1267% v/v. Table 5.3 lists the
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results obtained comparing them with the beverage labels. The relative standard
deviation (RSD) on four experiments were between 6% and 12%. These RSDs may
appear high for an analytical technique; they are the usual RSD values obtained in
quantitative SPME experiments.'*?%92702% The ayerage values obtained for the SPME
ethanol extraction of the two reference materials with certified 0.02% and 0.1% w/w
values, were respectively 0.024 + 0.002% v/v and 0.12 + 0.01% v/v validating the
method with an 8% RSD.

Table 5.3 SPME results obtained with fiber IL4 in the ethanol analysis of real samples.

a label SPME value® c . 4
Sample indication % viv RSD® deviation
NIST SRM 1828b 0.02%w/w or 0.024 +0.002 7.1% -5.1%
0.0253%v/v

NIST SRM 1828b  0.1%w/w or 0.12 + 0.01 8.2% -3.1%
0.1267%Vv/v

Miller Lite beer 3%viv 29+0.3 11.7% -3.3%
Coors original 5%viv 48+04 9.4% -4.0%
Shiner beer 4.4%vIv 43+04 8.6% -2.3%
Dos Equis XX 4.2%viv 40+0.3 7.6% -5.0%
Steel Reserve 211 8.1%vV/v 8.6+0.5 6.4% +6.2%
Crown Royal 40%v/v 38+3 8.1% -5.0%
Whisky

Antique Whiskey  30%v/v 29+3 11.9% -1.7%

a) SRM = standard reference material, the other samples were obtained from local
groceries stores (Arlington, Texas).
b) Average values of 4 measurements, headspace protocol.
c) Relative standard deviation on 4 measurements.
d) Relative difference with the label indication and SPME result.
Five different beers and two liquors were analyzed for their ethanol content. The
samples were diluted using the label indication in percent v/v so that the ethanol

content for SPME analysis was around 50 ppm in volume, a value in the middle of the

calibration curve. With ethanol being rapidly eluted in gas chromatography, no
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interferences were encountered in the sample analyses. Except for the beer sample
containing the highest ethanol percentage, all SPME results, including the two certified
samples, were found slightly below the label values (see Table 5.3). SPME headspace
extraction could be used to estimate the ethanol content of blood samples in a non-
destructive way.
5.4.3 Immersion Analyses

This study is done in collaboration with Supelco R&D laboratories Bellefonte,
PA. The protocol for immersion extractions is necessarily different from the headspace
protocol (see Experimental section). Only the two polymeric fibers IL3 and IL4 were
evaluated. Six extractions were performed successively for each sample at room
temperature. The very first extraction of a new sample always gave results that differed
significantly from the five following extractions, it was discarded. lon-exchange could
be responsible for this phenomenon. Since the cationic part of the IL is chemically
attached to the fiber and the anion is bound by electrical interaction only, the fiber can
behave as an anion-exchanger. lon-exchange can occur between the high ionic
strength solution and the fiber anions. The fiber can exchange its triflate or bis-
triflylimide anions for chloride and/or phosphate anions in the sample.

5.4.3.1 Extractions at pH 2

Since bonded silica is known to be sensitive to pH, extractions at pH 2 and pH
11 were done with different analytes. Table 5.4 lists the results obtained for nine
selected typical solutes with the two polymeric IL fibers IL3 and IL4, two commercial
fibers: a 60-uym thick PEG fiber and a 100-uym thick PDMS fiber, and the same
compounds that were used in headspace analyses plus a variety of other less volatile

compounds. A more complete table listing 19 compounds can be found in the Apendix.

128



The listed values are the average of five successive experiments. The low percent
RSD for most of the extracted analytes indicate that the fibers are quite stable. The
relatively higher RSD for methanol was associated to a slowly declining response with
repeated extractions. This may be due to an experimental artifact (slow evaporation
during sampling). The same trend was observed with phenol and butyric acid.

The IL fibers were compared to a polar 60-um PEG-coated fiber and to a non-
polar 100-um PDMS coated fiber. Table 5.4 lists the sensitivity obtained for each fiber
expressed as GC peak area per parts per million (micrograms per milliliter) of analyte
concentration. As observed in the headspace extraction study, the amount of extracting
material has a great influence on the experimentally observed fiber sensitivity.
Therefore, in the immersion extraction study also, ethyl acetate was used as an
internal standard. Figure 5.4 presents the relative response ratios for each analyte and
each fiber expressed as the absolute value for analyte on a given fiber (from Table 5.4)

divided by the corresponding ethyl acetate value.
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Table 5.4 SPME results obtained with different fibers by immersion in two different pH
solutions.

Sensitivity pH2 RSD°  Sensitivity pH 11 RSDP

Solute fiber p.a. per (ug/mL) % p.a. per (ug/mL) %
acetonitrile IL3 47.2 0.5% 43.5 0.8%
IL4 27.4 0.5% 24.3 1.2%
PEG 67.9 21% - -
PDMS 15.8 1.6% - -
methanol IL3 11.1 13.0% 251 1.5%
IL4 12.6 13.6% 25.4 2.8%
PEG 54.0 49% - -
PDMS 6.8 17% - -
ethanol IL3 23.2 0.9% 34.8 1.7%
IL4 18.5 1.2% 27.8 3.7%
PEG 62.4 2.4% - -
PDMS 12.2 1.5% - -
n-propanol IL3 176.0 0.6% 91.8 1.0%
IL4 97.0 2.1% 49.3 1.2%
PEG 381.0 2.2% 185.0 1.9%
PDMS 123 0.8% 55 1.1%
isopropanol IL3 494 1.3% 49.1 1.5%
IL4 27.2 2.8% 26.6 1.3%
PEG 104 2.2% 96.1 1.8%
PDMS 41.4 0.6% 60.1 1.4%
n-butanol IL3 331 1.0% 69.9 0.9%
IL4 131 2.6% 27.0 2.8%
PEG 611 1.7% - -
PDMS 327 1.2% - -
acetone IL3 78.0 0.5% 75.7 1.2%
IL4 32.9 1.0% 30.9 1.4%
PEG 65.7 2.3% - -
PDMS 58.6 0.8% - -
ethyl acetate IL3 90.3 1.1% 93.1° 21%
IL4 44.8 0.9% 75.1° 1.0%
PEG 129 2.1% 290° 2.3%
PDMS 178 1.5% 1036° 4.4%
methyl-tert- IL3 235 1.2% - -
butyl ether
IL4 89.8 2.8% - -
PEG 245 2.5% - -
PDMS 4580 1.2% - -
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Table 5.4 Continued

dioxane IL3 33.7 0.9% 28.6 1.2%
IL4 121 2.6% 10.9 2.4%
PEG 41.3 2.7% - -
PDMS 67.2 1.1% - -
butyric acid IL3 323 6.7% ion. -
IL4 143 24% ion. -
PEG 585 7.8% ion. -
PDMS 48.7 6.0% ion. -
phenol IL3 2200 12% - -
IL4 1220 12% - -
PEG 11600 2.6% - -
PDMS 477 7.4% - -
methylamine IL3 ion. - 105 0.8%
IL4 ion. - 34.7 5.6%
PEG ion. - 191 2.2%
PDMS ion. - 137 2.3%
PDMS/DVB ion. - 288 4.2%
dimethylamine L3 ion. - 135 1.7%
IL4 ion. - 81 1.4%
PEG ion. - 229 2.2%
PDMS ion. - 319 1.8%
PDMS/DVB ion. - 684 4.1%
trimethylamine L3 ion. - 115 1.1%
IL4 ion. - 200 1.1%
PEG ion. - 213 1.4%
PDMS ion. - 2082 4.2%
PDMS/DVB ion. - 699 3.5%
isopropylamine L3 ion. - 134 1.7%
IL4 ion. - 161 0.7%
PEG ion. - 470 1.1%
PDMS ion. - 492 1.2%
PDMS/DVB ion. - 1594 3.2%
diethylamine IL3 ion. - 216 1.8%
IL4 ion. - 161 0.7%
PEG ion. - 602 1.5%
PDMS ion. - 1220 3.1%
PDMS/DVB ion. - 3390 3.4%
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Table 5.4 Continued

butylamine IL3 ion. - 556 1.2%
IL4 ion. - 353 1.8%
PEG ion. - 1560 2.5%
PDMS ion. - 2334 3.8%
PDMS/DVB ion. - 9228 5.1%

triethylamine L3 ion. - 365 1.4%
IL4 ion. - 815 1.9%
PEG ion. - 960 21%
PDMS ion. - - -
PDMS/DVB ion. - - -

a) Fiber #3 is polymeric [(StirIM),Cg, 2 NTf,],; Fiber IL4 is the triflate version of IL3
(Table 5.1); PEG: polyethylene glycol, fiber 60 um coating thickness; PDMS:
polydimethylsiloxane, fiber 100 um coating thickness; PDMS/DVB: polydimethyl-
siloxane divinylbenzene, fiber 65 um coating thickness.

b) RSD: relative standard deviation on six successive extractions of the same sample.
c) Ethyl acetate decomposes in ethanol and sodium acetate at pH 11. The
measurements were especially done at pH 7. p.a.: peak area; ion.: the compound
ionizes at the measurement pH.

-“ Fibers were not evaluated under these conditions.

In absolute terms, fiber IL3 (polymeric IL with NTf, anion) gave higher sensitivity
factors for all studied analytes compared to its counterpart Fiber IL4 with the triflate
anion (Table 5.4). The sensitivity factors for the PEG fiber were also higher than these
obtained with the two IL fibers for all analytes. The picture is completely different when
considering the relative fiber responses. Figure 5.4 shows that the two ILs fibers gave
similar results in this relative representation. The IL fibers results compare well with the
polar PEG fiber. Both results are clearly superior to the PDMS results except for MTBE
(see Figure 5.4). The relative results obtained in headspace extraction (Figure. 5.4)
and immersion extractions (Figure 5.4) were quite coherent. Compared to the two IL
fibers, the PEG fiber seems to be slightly more efficient in immersion extractions than

in headspace extractions in acidic media.
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Figure 5.4 Relative response ratios of analytes in immersion analyses at pH 2 with two
ILs and two commercial fibers.

5.4.3.2 Extractions at pH 11

Phosphate buffer was used to obtain a matrix of pH 11 allowing an evaluation
of fiber stability. Since the polymeric ionic liquids are bonded to silica particles, alkaline
solutions could damage the particle and/or deteriorate the bonding. Many of the pH 2
neutral analytes and seven basic analytes were used as test solutes. Table 5.4 lists all
the results in the two rightmost columns.

The first observation is that there is ample stability and good reproducibility of

the results at pH 11. The RSDs of the experiments were similar to those obtained at
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pH 2. Experiments at different pHs were repeated with the same fibers over several
months to study different mixtures. The reproducibility of the silica-based fibers was
comparable to that of the polymer-based commercial fibers.

Table 5.4 also lists the sensitivity factors obtained for seven small amines at pH
11. The two polymeric IL fibers were able to extract all of the tested amines with
sensitivity factors equal or higher to those obtained for short-chain alcohols at both pHs
(Table 5.4). The amine sensitivity factors are however significantly lower than the
corresponding factors obtained with the three commercial fibers. It must be pointed out
that the 65-um PDMS/DVB commercial fiber was specially designed to extract basic
compounds. It did produce sensitivity factors for amines higher than those of all other
fibers except for trimethylamine.

When considering these extractions in relative terms, the picture is different.
Figure 5.5 shows the relative response ratios (ethyl acetate reference compound) of
the amines extracted by immersion at pH 11. The IL fiber sensitivities for the amine
compounds seem significantly better than the commercial fibers sensitivities. This
figure will not be commented on any further because it was not obtained with a true
internal standard. The internal standard, ethyl acetate, used to prepare Figures 5.4 and
5.5 is not stable at pH 11 as it slowly decomposes to ethanol and sodium acetate. So
its sensitivity factor was specially measured at pH 7 meaning that the standard was not
present with the amine compounds as a true internal standard should be. This could
induce a bias in Figure 5.6. Figure 5.6 shows the same Table 4 data using n-propanol
as an internal standard. n-Propanol is not the same standard as the one used in
Figsures.5.4 and 5.5 but is was present with the amine compounds since it is stable at
pH 11. Figure 5.5 and Figure 5.6 show very similar results for the two IL fibers
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compared to one another and also compared to the commercial PEG fiber. The PDMS
and PDMS/DVB commercial fiber relative responses look very different and much
higher than those of the two IL fibers when the true internal standard n-propanol is the
reference compound. Polar n-propanol is not as good as the less polar ethyl acetate as
an internal standard. Since n-propanol adsorbs more on the polymeric IL fibers and
PEG fiber than on the less polar PDMS/DVB fiber (Figure 5.4), used as the internal
standard, it tends to produce underestimated relative sensitivity factors for the IL fibers

and/or overestimated values for the PDMS-based fibers.
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Figure 5.5 Relative response ratios of analytes in immersion analyses at pH 11 with
two ILs and three commercial fibers (EtOAC reference).
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There is no definitive conclusion comparing the new polymeric IL fibers to the
commercial PDMS and PDMS/DVB fibers; however, there is no doubt that the IL fibers

are able to extract short amines effectively.
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Figure 5.6 Relative response ratios of analytes in immersion analyses at pH 11 with
two ILs and three commercial fibers (n-Propanol reference).

5.4.4 Durability of the IL Fibers

The headspace procedure is a very gentle process for the fibers and did not
pose any durability problems. The immersion procedure put much more mechanical
strain on the fiber itself since the Varian 8200 auto sampler uses a strong vibrator
similar to that used in an electrical razor. It is extremely harsh on the fiber coating

vibrating it at about 50 Hz. However, a single triflate fiber IL4 was used to do all the
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more than 50 immersion experiments done in this study. The fibers were very durable.
The thickness of the fiber coating remained the same. The fiber coloration did change
after the initial 220 °C conditioning but remained stable and consistent after all
immersions and GC analyses done for the study. No indications of visual fiber coating
deterioration were noted throughout the study.

Peak tailings were observed on the GC peaks of amines. A 30 °C desorption
temperature increase was tried to improve the peak shape increasing the amine
desorption rate. The GC injector temperature was raised to 250 °C. No significant
changes were observed in either the analyte sensitivities or the GC peak shapes.
However, the IL fibers withstood this temperature increase without damage further
showing their durability.

5.5 Conclusions

Upon polymerization and bonding to silica particles, the liquid state of ILs is lost
but the other unique properties, such as low volatility and polarity associating apolar
and charge—charge interactions, are maintained. It was demonstrated that the
polymerized IL-bonded silica particles could be coated on SPME fibers to be used for
the extraction of small and polar molecules. The headspace, as well as the immersion
SPME protocols, was used to quantitate short-chain alcohols down to the 10 ppb level.
The efficacy of the method was tested by checking the ethanol content of a variety of
beverages and a NIST standard material. Small amines were extracted using the
immersion procedure at pH 11 demonstrating the stability of the polymerized IL-coated
silica particles. The nature of the anion, triflate or bis-triflyl amide, could influence the
overall polarity of the IL. However, no clear differences were found between the two
fibers made respectively with these two anions.

137



PART TWO

CALIX[4]JARENE CHEMISTRY OF NOx GASES

138



CHAPTER 6
CALIX[4]JARENE CHEMISTRY OF NOx GASES

6.1 Introduction to Calix[4]arenes

Calixarenes are a class of macrocyclic polyphenols that have been widely
employed for the construction of sophisticated supramolecular architectures with
numerous applications. In 1975, Gutsche coined the term “calix” deriving from the
resemblance of the simplest calixarene which is calix[4]arene, to that of the classical
Greek vase, the calyx crater.”®” Calixarene can be represented by Calix[n]arenes
where n represents the number of phenolic units present in the molecule.

Calix[4]arenes have 4 phenolic units linked together in the macrocyclc ring system.

8 289,290

Calixarenes are used in sensing,®® biomimicing, fluorescent probes,?’

294,295 applications.

catalysis,?*? electrochemistry,”” and liquid chromatographic
Calix[4]arenes are by far the most widely know derivative in host-guest
chemistries compared with other Calix[n]arenes (n= 5,6,7,8). This is mainly due to ease

of synthesis and functionalizations. Calix[4]Jarene molecule can be subdivided into

three sections called the upper rim, annulus and lower rim (see Figure 6.1).

139


https://springerlink3.metapress.com/content/?Author=David+Gutsche

Upper rim

Annulus

Lower rim

Figure 6.1 Representation of calix[4]arene and designation of the sections.

Calix[4]arenes can exist in four major conformations termed cone, partial cone, 1,2-
alternate and 1,3-alternate (see Figure 6.2). These names were given based on the
projection of the aryl groups upwards (“u”) or downwards (“d”) relative to an average
plane, typically the annulus. Therefore, “u,u,u,u” represents cone “u,u,u,d” represents
partial cone; “u,u,d,d” represents 1,2 alternate and “u,d,u,d” represents 1,3-alternate

conformations. As the number of aryl groups increases (i.e. “n” increases) the number

of possible conformations increase.

Cone Partial cone 1, 3 Alternate 1, 2 Alternate

Figure 6.2 Conformations of calix[4]arenes.
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Out of the four major conformations of calix[4]arene the 1,3-alternate conformation has
proven to be particularly useful. With symmetrical substitutions in the upper and lower
rims, it is the only isomer with a zero net dipole moment.?® Apart from 1,3-alternate
conformation, the cone conformation is also widely used in variety of host guest
complexation studies. Functionalization can be generally carried out at the upper or
lower rim of the molecule. Typical functionalizations include alkylation, acylation,
nitration, amination and sulfonation.

Replacement of all four —OH groups present in calix[4]arene with alkyl, acyl, or

297,298

aroyl groups can increase the conformational stability. These types of

derivatizations results in conformational immobilization, therefore non-interconverting
cone, partial cone, 1,2-alternate and 1,3-alternate conformations can be

synthesized.?*

The interior of the calix[4]arene is a perfect binding site for many types of guest

300-302 303-306

molecules. This cavity can accompany guests such as metal ions, anions

and neutral molecules 3738

6.2 Oxides of Nitrogen

Oxides of nitrogen are commonly known as NO, gases. In the ambient air, NOy
primarily consists of nitrogen dioxide (NO,) and nitric oxide (NO) and nitrous oxide
(N2O). Nitric oxide is readily converted to NO, which is considered to be much more
harmful to the environment.**® These NO, pollutants can cause serious health hazards
to humans and animals.*'° Figure 6.3 shows the main sources of NO, gases by human

actions (anthropogenic sources).
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National Summary of Nitrogen Oxides (NO,) Emissions By
Sector (2005)
On Road Vehicles | o
Non Road Equipment 4,162,872
Electricity Generation 3,783,659
Fossil Fuel Combustion 2,384,297
Industrial Processes 1,163,635
Waste Disposal 155,415
Fires 94,372
Residential Wood Combustion 38,324
Solvent Use 6,400
Miscellaneous | 3,644
Fertilizer & Livestock | 2,098 M Total Emissions
(in tons)

Figure 6.3 Major sources of nitrogen oxides (NO,) emissions by sector.
(source: http://www.epa.gov/air/emissions/NOx.htm, accessed 08/16/2010).

According to Environmental Protection Agency (EPA) records, worldwide annual NOy
emissions are estimated to be 50 million metric tons. The united States generates
about 20 million metric tons of NO4 per year. About 90% of these anthropogenic
emissions come from fossil fuel burning used in electricity, heat generating power
plants and by motor vehicles. Natural sources of NO, include lightning, forest fires,
grass fires, trees, bushes, grasses, and yeasts.310 Emissions of NO, gases from
combustion primarily exist in the form of NO while the rest consists of NO,/N,O,.
Biogenic sources contribute about 10% of the total NO emissions.

NO, present in the atmosphere is a cause for acid rains. This is due to the

production of HNO; and HNO, by NO, reacting with water. During the lightning
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process, after absorbing high energetic photons, NO, and O, reacts to give NO and Os;.
Since NO produced in this pathway can easily be reconverted back to NO, some
scientists think NO, gases are mainly composed of NO..

Nitrous oxide (N,O) is also one of the major oxides of nitrogen that contribute to
the total NO, content. N,O is also known as laughing gas. This is used as a local
anesthesia in medicine. N,O not only has anesthetic properties but also analgesic
properties which will make the patient comfortable by masking the pain. However, N,O
itself is not capable of acting as an anesthetic. It has to be mixed with oxygen to obtain
the desired anesthetic and analgestic effects. N,O is also used in food industry, as
propellants, and in combustion engines. N,O is an ozone depleting substance which
reacts with ozone present in both the troposphere and the stratosphere. N,O also has
a long half-life of approximately 150 years.

Emission control, sensing, fixating and storage/release of these NO, gases are
of very high importance due to the environmental implications. The development of
chemical and non chemical methods for the control of these processes has attracted
much attention in industry and academia.

6.3 Supramolecular Approaches for Molecular Recognition of Gases

311

Molecular recognition of gases is an emerging area of chemistry.”"" Molecular

chemistry is based on covalent bonds. However noncovalent forces play a major role in

supramolecular chemistry.'23'3

Its interdisciplinary nature has brought a wide range of
collaborations between crystallographers, inorganic chemists, biochemists and
synthetic organic chemists. Supramolecular chemistry of gases helps to understand

how gaseous molecules interact with biological systems and offers an understanding of

the mechanisms of their physiological activity. Humans live in the troposphere and are
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in constant contact with gases. Along with industrial development in the world, gas
emission levels have increased, thus breaking the natural environmental equilibrium.
Oxygen (O,) gas is extensively utilized in the steel manufacturing industry and nitrogen
(N2) is used to produce ammonia (NH3;). All fossil fuel burning results in gases such as
carbon dioxide (CO,), carbon monoxide (CO) and NO, gases. If the utilization of these
gases is slower than their emissions to the atmosphere, then the environment has to
face critical pollution conditions.

Recently, significant efforts have been made to build and develop new
supramolecular architectures for the purpose of molecular recognition, sensing and
storage/release of gases. Figure 6.4 illustrates a calix[4]resorcarene-based molecular
receptor (developed by Cram et al.) encapsulated O,, N,, CO,, and Xe.*'* The host-
guest exchange between the free and occupied hemicarcerand was slow on the NMR
time-scale. Association constants (Kass) of 180M™" (N,), 44 M™" (O,), and 200M™" (Xe)
were obtained in CDCI; at 22°C, assuming the binding between host and guest is
1:1.31%14

The volume of the inner cavity of the hemicarcerand is approximately about 120
A® and the voulume of the guest gas molecule is approximately 40 A%, It is predicted
that this hemicarcerand (Scheme 6.1) can likely encapsulate more than one gas

molecule.®"" However this was not investigated by the initial developers.
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R = (CHz):Ph

Scheme 6.1 Encapsulation of CO, within the hemicarcerand developed by Cram et al.
Reproduced with the permission from reference 311.

Nature employs molecular recognition methods for effective discriminating of
gases dissolved in blood. Differentiation of O, and CO by a heme molecule is one of the
most extraordinary examples.315 Here, in addition to the iron—gas interaction, the
histidine residue on the distal porphyrin face of hemoglobin and myoglobin is involved
in hydrogen bonding with O, (see 81, Scheme 6.2), as evident from EPR (Electron
Paramagnetic Resonance), X-ray, and neutron-diffraction studies. Such hydrogen-
bonding interactions not only affect oxygen affinity, but may also stabilize the oxy form
and prevent auto oxidation. The properties of the distal cavity are also important in
molecular recognition, particularly the polarity of the walls, the functional composition,

and the 3D arrangement.
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Scheme 6.2 Molecular recognition of gases in nature.
Reproduced with permission from reference 311.

In oxygen-avid Ascaris hemoglobin, glutamine and tyrosine residues participate
in hydrogen bonding with O, (see S2, Scheme 6.2).>'® The crystal structure of complex
S2 shows the tyrosine hydroxyl group to be perfectly aligned to make a strong
hydrogen bond with the distal atom of the complexed O,, and the glutamine forms a
relatively weaker hydrogen bond to the oxygen atom coordinated to the iron center.
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There is also another hydrogen bond between the tyrosine and glutamine moieties.
Such a hydrogen-bonding network is believed to be responsible for the Ky values for O,
being four orders of magnitude greater than that of human hemoglobin.

The crystal structures of complexes of heme protein with NO also suggest that
the distal cavity is important in gas binding. Such cavities are rather hydrophobic and
possibly help to exclude the noncoordinated H,O molecule prior to the complexation of
NO. The X-ray structure of the iron(ll)-nitric oxide complex of native sperm whale
myoglobin S3 (see 83, Scheme 6.2) shows a Fe-NO interaction as well as the
formation of a hydrogen bond between the gas molecule and the histidine 64 residue
on the distal porphyrin face of the myoglobin.*' Here, the NO binding event takes
place in a tight cavity formed by the lipophilic leucine 69 and valine 68 moieties as well
as histidine 64.

Reports have indicated that N, fixation in the atmosphere involves enzymes
such as Fe Mo nitrogenase. It has been shown that the NH nitrogen-metal intermediate
S4 (see S4, Scheme 6.2) participate in H-bonding with the amino acid residues of the
enzymes.®"

6.3.1 Calix[4]arene-based Supramolecular Approaches in NO, Gas Complexation

As mentioned in the beginning of this chapter, NO, gases are a crucial group of
gases contribute to environmental pollution and global warming.*'° NO, mainly consists
of nitrogen dioxide (NO,), dinitrogen tetroxide (N»O,), dinitrogen pentoxide (N.Os) and
nitric oxide (NO). Only NO has multiple biological roles in human organisms.?'3%"? All
the other NO, gases are toxic pollutants derived from fossil fuel burning, power plants,
and large scale industrial processes. NO, gases cause ground level ozone, toxic

particulate matter, acid rain and global warming.
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Recently, Kochi and co-workers demonstrated the encapsulation of NO by 1,3-
alternate calix[4]arene (Scheme 6.3). Initially, the calix[4]arene was oxidized to its
radical cation by reacting calix[4]arene with Na(Hg), which then complexed NO gas

with the formation of the calix[4]arene—nitrosonium (NO*) complex (see scheme 6.3).

Neutral form Oxidized form

Scheme 6.3 Encapsulation complexes of NO, gases with calix[4]arenes and the X-ray
crystal structure of the complex.
Reproduced with permission from reference 311.

Strong charge-transfer interactions between NO* and the T electron rich interior of the
calixarene placed the gas molecule at a distance of ~2.4 A from the cofacial aromatic
rings, which is much shorter than the typical van der Waals contact (3.2 A). The
association constant estimated for this complex was estimated to be 5x10®M™".
However, NO* was easily released from the cavity upon the addition of CI” ions, as a
result of the formation of nitrosyl chloride (NOCI). Variations in the redox chemistry and
temperatures can control the complexation of NO*. This charge-transfer complex has a
deep purple color and thus can be used in colorimetric NO sensing applications.*®

Prior to finding of this calixarene-based NO* complexes, a non calixarene host

based on a stilbenoid was developed by Kochi and coworkers, and used for
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entrapment studies of NO in the form of NO*.**' Figure 6.4 shows the ORTEP diagram

and the space filling model of the nitrosonium complex.

Figure 6.4 ORTEP diagram showing the tight binding with limited liberation of the
noncovalently bound nitric oxide in the complex (left) and the space-filling
representation of the NO complex, showing the entrapped NO nestled within the cavity
of cofacial phenylene donor. Reproduced with permission from reference 321.
More recently, in 2002 Zyryanov and coworkers, employed calix[4]arenes to visually
detect and chemically transform NO,/N,O, gases.*”? The tetrakis-O-alkylated
calix[4]arenes (see scheme 6.4) reversibly interacted with NO,/N,O, and entrapped the
highly reactive NO™ ion within their cavities. NO* is generated from N,O,, which is
known to disproportionate to NO*NO;~ upon exposure to aromatic compounds.®®
Stable nitrosonium complexes of these calix[4]arene derivatives were quantitatively
isolated upon addition of a stabilizer such as Lewis acidic SnCl, or CF;COOH. Only
one NO" ion was found per cavity. This observation is also in agreement with the

previously reported nitrosonium complexes prepared by Kochi and coworkers.*** These

interactions between calix[4]arene and NO* were determined to be reversible.
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Scheme 6.4 Encapsulation complexes of NO, gases with calix[4]arenes cone
conformer (top) and the 1,3-alternate conformer (bottom).
Reproduced with permission from reference 311.
The addition of H,O or alcohols to a solution of calix[4]arene-NO* complexes resulted
in the dissociation of the complexes and the recovery of original calix[4]arene host
molecule (see Figure 6.5). The complex prepared with the 7,3-alternate conformation
of calix[4]aren, (R'=H) dissociated instantly. However the complex prepared by the use

of calix[4]arene bearing cone conformer takes several minutes to dissociate. Bulky tert-

butyl groups at the upper rim of the cone conformer protect the encapsulated NO™ ion.
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Figure 6.5 Reversible nature of Calix[4]arene-NO* complex up on addition of water.

The dramatic color change results from the charge transfer between the nitrosonium
cation and 1 electron rich calix[4]arene moiety. The selective detection of NO, in the
presence of gases such as H,O, O,, HCI, HBr, SO,, NH3;, and neat generation of NO
can be fully expected, since none of these vapors/gases undergoes reactions with
calixarenes. All this may be of interest for sensing and cleaner NO generation
technology.

In contrast to the entrapment of a single NO* guest inside the cavity of O-
alkylated calix[4]arenes, calix[4]arene nanotubes that can accommodate more than
one nitrosonium cation have been developed by Zyryanov and Organo et.al.**3* In
the design of nanotubes, several calix[4]arenes were rigidly connected from both sides
of their rims, with at least two symmetrical bridging units. This is achieved by using the
1,3-alternate conformation which is known as the “smart conformation” of
calix[4]arene.*®® Calix[4]arenes in a 1,3-alternate conformation are much more rigid
than other conformers and possess a cylindrical inner tunnel defined by two cofacial
pairs of aromatic rings oriented orthogonally along the cavity axis. According to a
number of X-ray studies, this tunnel is approximately 5-6 A in diameter.*® Two pairs of
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phenolic oxygens are oriented in opposite directions providing a simple route to
enhance the tube length modularly. Findings have shown that these developed
calix[4]arene-based nanotubes also reversibly interact with NO,/N,O, and entrap highly
reactive nitrosonium (NO*) cation within their T-electron-rich interiors.**® Stable
nitrosonium complexes of these new hosts were quantitatively isolated upon addition of
a Lewis acid such as SnCl,. These complexes can be used as an alternative to alkyl
nitrites, nitrosamines/amides, and nitrosothiols that are used in biomedicine as NO-

releasing drugs.®*°
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Structures and X-ray crystal structures of calix[4]arene-based nanotubes are shown in
Figure 6.6. Figure 6.7 shows NMR spectra of empty and filled high capacity

calix[4]arene nanotubes used to prepare NO* complexes using NO, gases.

}:;ﬁi
:

& A 8 A
R e - =

Figure 6.6 Synthetic calixarene-based nanotubes for NO,/N,O, fixation and high
capacity nitrosonium ion (NO™) storage.

X-ray crystal structures of synthetic nanotubes (from CHCI;/MeOH; side and top views;

O red, C gray). Hydrogen atoms are omitted for clarity (right).
Reproduced with permission from reference 326.

153



d) ™ Hy+ Hg + Hy

Hy+ H;, |L||-|||||H,,|
H |
Ha | o
| [ et Hm | i '|-|q
J“h.-hb.—.———-#'““*-——"mﬂh
c} ‘
I
J NN |
A 1 flllﬂl“hﬁ-.—-"h-—-——r
b) | Moy |
Hy
He " " |t
| I | ' i
p— P *!J'l_ I S | e
ﬂ] ‘
| L
] 4 2 Nt
- Appm _5

Figure 6.7 Partial '"H NMR spectra (500 MHz, (CDCl,),, 295 K) of calixtube-NO*
complex.

a) empty calixarene-based di-tube b) filled ditube with NO*, ¢) empty tri-tube and d)

filled tri-tube . The residual solvent signals are marked with filled circles (¢).
Reproduced with permission from reference 326.
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6.4 Nitric Oxide Releasing Compounds

Nitric oxide is known to chemists for more than two centuries since its discovery
by John Priestley in 1772. As recently as 1987 this diatomic free radical was widely
considered to be just a toxic gas, one of the constituents of toxic NO, gases causing
acid rain, smog, and tobacco smoke as well as a precursor of other harmful oxides of
nitrogen responsible for nitrosamine formation.**®*'® However in 1992, an issue of
Science magazine introduced NO as the molecule of the year.®® This is mainly

338-345 and

because of contributions from three US scientists, Furchgott,****" Ignarro
Murad®¥®3*° who received the honor of Nobel Prize in 1998 because their contribution
to the research on nitric oxide. After the discovery of NO’s signaling role in the
cardiovascular and nervous systems as the main biological messenger in brain, many
myths about toxicity due to NO evanesced. After these major discoveries related to
biological roles of NO, pharmaceutical industry all around the world started developing
NO releasing drugs for medicinal use. Figure 7.8 shows some potential applications of

NO is biology and medicine.**"%9-%%
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Figure 6.8 Potential applications of nitric oxide releasing compounds

9.0

The NO synthases (NOS) generally handles all the NO production needs in the
human body to ensure our well-being as long as a proper balance is maintained.

Scheme 6.5 shows biosynthetic pathway of NO generation from L-arginine.
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Scheme 6.5 Biosynthetic pathway of NO by L-argenine.
Reproduced with permission fom reference 356.

However, excessive NO formation can invasively lower blood pressure and may
contribute to tissue damage in chronic diseases like rheumatoid arthritis. NO reacts

with superoxide (O?), a by-product of mitochondrial respiration, giving reactive nitrogen

species that can effectively damage proteins and DNA 3%

To contravene the consequences of physiological overproduction of NO inside
the body, numerous drug development efforts in NO synthase inhibitors have been

reported in the literature®'®%>° On the other hand, when the essential amount of NO is
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insufficient to make through biosynthetic pathways serious health problems such as
respiratory distress, impotence, blood clot formation, and collapsed blood vessels can
arise as well. Therefore, synthetically developed NO releasing drugs are of great
interest to prevent these diseases. Some of the commonly used NO releasing drugs

are shown in Figure 6.9.

(|3H2C)NC}2 H.C
3
\
(|3HONC)2 /CHCHQCHQONO
CH,ONO, H,C
nitroglycerin isoamyl nitrite
(GTN)
Vo ||
NC“"Fe:__CM 2Na”
NC-— | —CN
CN
ONO,
isosorbide dinitrate sodium nitroprusside
(SNP)

Figure 6.9 Commonly used synthetically produced NO releasing drugs. Reproduced
with permission from reference 356.

We have developed calix[4]arene-based supramolecular systems to
encapsulate toxic NO, to form stable calix[4]arene-NO* complexes for the cleaner
generation of nitric oxide after a simple reduction using hydroquinone. This cleaner NO
generation was then further developed to design a calix[4]arene system with a

hydroquinone moiety is embedded into the calix ring system.
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This prevents external addition of hydroquinone and the NO generation can be
achieved successfully upon an addition of an alkyl nitrite in the presence of a lewis acid

such as SnCl, or trifluoroacitic acid.
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CHAPTER 7

SUPRAMOLECULAR, CALIXARENE-BASED COMPLEXES THAT RELEASE
NO GAS
7.1 Abstract

Calix[4]arenes and nanotubes based on them convert NO2/N,O, gases into nonvolatile
NO* species and encapsulate them. In a one-electron reduction scheme with
hydroquinone, the complexed NO™ transforms into NO gas. While NO is released,
calixarenes are regenerated and can be loaded again. Supramolecular materials for
generation, storage and release of NO can be potentially created, with high-capacity
calixarene nanotubes holding a special promise.

7.2 Nitric Oxide Generation by a Supramolecular Approach

The well-documented biological importance of nitric oxide (NO) includes
protective, regulatory, and deleterious functions.>*®*%’ To control the gas release,
compounds have been developed that deliver NO via their thermochemical or
photochemical decomposition.**®%93%° At the same time, there are only very few
examples of supramolecular systems that have the capability to reversibly trap, store
and release NO.**'3 \We recently described synthetic, molecular containers for
NO,/N,O, gases, which are based on calix[4]arenes.**>*** These reversibly react with
NO,/N,O, with the quantitative formation of stable calixarene-nitrosonium (NO™)
complexes. NO" is generated from N,O, upon its disproportionation to NO*NOs'. In this

work, we further extend the supramolecular chemistry between calixarenes and NOy
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gases and demonstrate their use for the effective generation of NO, in a simple and
reliable protocol.

While there are several available agents, capable of clean, one-electron
reduction of NO*,*3¢" we identified commercially available hydroquinone as the most
suitable. Hydroquinone quantitatively reduces NO® with the formation of NO and
benzoquinone.** We found, that when mixed with hydroquinone in apolar, chlorinated

solution, calixarene-NO* complexes smoothly react and release NO.

Preliminary experiments started with simple calixarene 10 (see Figure 7.1).

NO2/N204(g)

0]

.

Figure 7.1 Calixarene-nitrosonium complex 11 obtained from reacting calixarene 10
with NO,/N,O,4 and the generation of NO gas.
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Bubbling NO,/N,O, gas through the CDCI; solution of tetrakis(O-n-
hexyloxy)calix[4]arene 10 led to the rapid, quantitative formation of calixarene-NO*

complex 11 (Figure 7.1).

Figure 7.2 NO release experiment using calix[4]arene-NO" complex.
Calixarene dissolved in chloroform (A), dark purple colour calixarene-nitrosonium
complex when A is treated with NO,(g) (B), disappearance of dark purpled colour

calixarene-nitrosonium complex and (C) the appearance of pale yellow solution
containing empty calixarene with oxidized hydroquinone formed after releasing of
NO (g).

In complex 11, NO® is tightly encapsulated inside a m-electron rich
calix[4]arene tunnel with a remarkably high Kssse >> 10° M7.32* Calixarene-NO*
complexes were originally prepared from calix[4]arenes and nitrosonium salts, %6436
calix[4]arenes and NO,/N,0,**° or calix[4]arene cation radicals and free NO*®, In the

'H NMR spectrum of 10 in CDCl; the aromatic protons were recorded as a singlet at &

= 6.95 (Figure 7.3). In nitrosonium complex 11, it was transformed into a singlet at & =
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7.02. The methylene bridge CH, protons of 11 were seen as a singlet at 6 = 3.74. In
complex 10, this was observed at & = 3.60. The OCH, protons in 10 were recorded at &

= 3.39, and they characteristically moved to 6 = 3.77 in complex 11.
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Figure 7.3 Selected portions of the "H NMR spectra (300 MHz, CDCl3, 295 K) in
generation of NO using calix[4]arene-NO".

Here a) calixarene 10. b) calixarene-NO" complex 11 prepared from calixarene 10 and

NO,/N,O,. c) same as b) after mixing with hydroquinone; the benzoquinone singlet is
situated at 6 = 6.78. The residual solvent signals are marked “*”.

In a typical NO generating experiment, a ~20-fold excess of hydroquinone was
added to a CHCI; (or CDCI3) solution of complex 11 and shacked vigorously. At this
point, the NO gas release could be detected with a naked eye, and the solution color
changed from deep-purple to yellow (Figure 7.2). The former color belongs to charge-

transfer complex 11, while the latter reflects the formation of 1,4-benzoquinone. The
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released NO gas was identified by UV spectrophotometry, showing the fine vibrational
structure of three sharp absorption peaks at Ay« = 204, 214 and 226 (Figure 8.4). This
is in agreement with the previously published absorption data for the identification of
NO.*®% %9 |n addition, the 'H NMR spectrum clearly showed the quantitative
regeneration of free calixarene 10 (Figure 7.3). Noteworthy, NO itself has no affinity to

calix[4]arenes.®®

Abs

T T T T T 1
200 210 220 230 240 250 26C
Wavelength (nm)

Figure 7.4 The UV spectrum (gas phase, 295 K) of NO gas generated from calixarene-
NO* complex 11 and hydroquinone.

The calix[4]arene cavity is too narrow for hydroquinone, and the electron-
transfer reaction, most probably, occurs outside, in the bulk solution. The encapsulated
NO" must be released first. While the equilibrium between calixarene 10 and its
complex 11 provides only small (<<1%) quantities of free NO" for the outside reaction,
hydroquinone may facilitate the NO* release. Electron rich aromatic molecules are
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known to form strong complexes with NO*.** In a model experiment, 1,4-O,0-
dimethylated hydroquinone was mixed with complex 11. Indeed, the NO" release was
observed and free calixarene 10 was also regenerated.

To explore our findings, we tested recently prepared calixarene-based synthetic

nanotubes (see Figure 7.5).%%°

/‘\N(sz N204(g)

Pr’

Pr Pr .
_ 12 n=0
14 “:(1) 5 13n=1
Sn=1 o NO(g) @
[}

Figure 7.5 Filling of calixarene-based nanotubes with nitrosonium and generation of
NO gas.

These nanotubes are several nanometers long and can reversibly interact with
NO,/N,O, with the formation of complexes with multiple NO®. Accordingly, nanotubes
12 and 13 were filled with NO* species by simply bubbling NO,/N,O, gases through
their (CDCIl,), solutions (Figure 7.5). Deep-purple complexes 14 and 15 quantitatively
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formed, which entrap two and three NO™ cations, respectively. They were identified by
'"H NMR and absorption spectroscopy (Figure 7.6).>® For example, the propyl Ar-O-
CH, protons in 14 and 15 were both seen at & ~ 3.85, which is significantly downfield
comparing to empty tubes 12 and 13 (5 ~ 3.26). Similarly, downfield shifts (Ad > 1) of

the Ar-O-CH, and CH,-O-CH, protons in filled tubes 14 and 15 were observed.
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Figure 7.6 Selected portions of the "H NMR spectra (300 MHz, (CDCl,),, 295 K) in
generation of NO using calix ditube.

Here a) calixarene-based tube 14. b) nitrosonium complex 12, prepared from 14 and
NO,/N,Q4. ¢) same as b) after mixing with hydroquinone; the benzoquinone singlet is
situated at & = 6.78. The residual solvent signals are marked “*”.

When a ~20-fold excess of hydroquinone was added to the (CDClI,), solutions
of 14 and 15, the color changed from deep-purple to yellow. The '"H NMR spectrum

clearly showed the quantitative regeneration of free nanotubes 12 and 13 (Figure 7.6).

The NO release could be visually detected and identified by UV spectrophotometry.
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The use of calixarene nanotubes, capable of storing multiple NO* species, could
potentially lead to interesting NO releasing materials with the high gas capacity.

In conclusion, novel supramolecular systems are now available for the
generation of NO gas, which are based on calix[4]arenes. The gas is safely stored in
the form of NO™, which is not volatile and strongly bound within the calixarene cage.
The NO" is produced from higher NOy, namely NO,/N,O,. In a one-electron reduction
scheme involving calixarene-NO* complexes and simple hydroquinone, NO is smoothly
released and free calixarenes are quantitatively regenerated, which can be reloaded
using NO./N,O,. The reversibility can also be achieved through spontaneous,
atmospheric oxidation of the newly generated NO to NO,/N,O,4. There is the possibility
to modify the cage structure through conventional calixarene syntheses.

7.3 Experimental Section

7.3.1 General Experimental Procedures and Methods

'H NMR spectra were recorded in CDCI; and C,D,Cl, at 295 £ 1 K unless
stated otherwise, on JEOL Eclipse 300/500 MHz spectrometer. The chemical shifts
were measured relative to the nondeuterated solvent resonance. UV — Visible spectra
were measured on a VARIAN Cary 50 UV spectrophotometer. All the solvents were
distilled and purified according to standard procedures. All chemicals were purchased
from Sigma Aldrich and used as received. NO,/N,O, gas was generated by reacting Cu
with concentrated Nitric acid and the gas was passed through a packed CacCl, tube to
remove traces of moisture.

All experiments with moisture and /or air sensitive compounds were run under
dried nitrogen atmosphere.

Caution: NO, gas is a prominent air pollutant and very toxic when inhaled.
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7.3.2 Synthesis of Calix[4]arene Derivatives

Scheme 7.1 summarizes the synthetic pathway for 25,26,27,28-Tetrakis(n-hexyloxy)-p-

tert-butylcalix[4]arene- 1, 3-alternate.>**

HexsL

2005 Cs,CO
n-hexylbromide n-hexylbromide

0 CH3CN rf
CH3CN/ rf A2 00 © o
H g/ \H “H 82 % Hex H/ H SHex  45%

16 17 10

Scheme 7.1 Synthetic route for o-alkylated calix[4]arene 1,3 alternate

25,27-Hydroxy-26,28-bis(n-hexyloxy)-p-tert-butylcalix[4]arene (17). n-Hexylbromide
(4.3 ml, 30.0mmol) was added to a suspension of 25,27,26,28-
tetrahydroxycalix[4]arene (4.8 g, 10.0 mmol) and K,CO; (4.2 g, 30.0 mol) in MeCN
(200 mL), and the reaction mixture was refluxed under nitrogen for 48 h. The
precipitate was filtered off, and the solution was evaporated to dryness. The residue
was redissolved in CH,Cl, (200 mL), and the solution was washed with water
(3 x 150 mL) and dried over MgSOQ,. After evaporation, the solid residue was treated
with MeOH (200 mL) to yield the corresponding 25,27-Hydroxy-26,28-bis(n-hexyloxy)-
p-tert-butylcalix[4]arene as a white solid (80 %). '"HNMR (CDCl;, 298 K): & 7.82 (s, 2
H), 7.03 (s, 4H), 6.84 (s, 4H), 4.32 (d, J = 13.5 Hz, 4H), 3.96 (t, J = 6.0 Hz, 4H), 3.32
(d, J = 13.5 Hz, 4H), 2.04 (m, 4H), 1.41 (m, 4H), 1.32 (m, 8H),1.26 (s, 18H), 1.00 (s,

18H), 0.93 (t, J = 7.5 Hz, 6H).
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25,26,27,28-Tetrakis(n-hexyloxy)-p-tert-butylcalix[4]arene-1,3-alternate (10).
n-Hexylbromide (5.7ml, 40.0mmol) was added to a suspension of corresponding 25,27-
Hydroxy-26,28-bis(n-hexyloxy)-p-tert-butylcalix[4]arene (10.0 mmol) and Cs,CO; (50 g,
150.0 mmol) in MeCN (300 mL), and the reaction mixture was refluxed under nitrogen
for 48 h. After cooling, the precipitate was filtered off and treated with a mixture of
water (100 mL) and CH,CI, (100 mL). The organic layer was separated, washed with
water (2 x 100 mL), dried over MgSQ,, and evaporated. After evaporation, the solid
residue was recrystallized from 10:1 MeOH-CHCI; to give desired 1,3-alternate O-
alkylated calix[4]arene (40%).mp 231-233 °C; 'H NMR (CDCl3, 298 K): & 6.95 (s, 8H),
3.73 (s, 8H), 3.38 (t, J = 7.5 Hz, 8H), 1.28 (s, 36H), 1.25-1.1 (m, 32H), 0.86 (t, J=7.5
Hz, 12H).
25,26,27,28-Tetrakis(n-hexyloxy)-p-tert-butylcalix[4]arene-1,3-alternate-NO*
complex (11).

25,26,27,28-Tetra(n-hexyloxy)calix[4]arene 5 mg ( 0.005 mmol) was dissolved in 0.5
ml of CDCl; in an NMR tube. Dry NO, gas was then bubbled through the solution for
2~3 seconds followed by bubbling Nitrogen gas for 3 minutes to remove excess
dissolved NO, gas. '"H NMR (CDCls, 298 K): & 7.02 (s, 8H), 3.77 (t, J = 8.0 Hz, 8H), 3.6
(s, 8H), 1.8 (m, 8H) 1.30 (m, 24H), 0.93 (t, J = 7.0 Hz, 12H), UV-Vis (CDCl): Amax
525.0 nm.

Reduction of 25,26,27,28-Tetrakis(n-hexyloxy)-p-tert-butylcalix[4]arene-1,3-
alternate-NO" (11).

Excess hydroquinone 5 mg (0.05 mmol) was added in to the 25,26,27,28-Tetrakis(n-
hexyloxy)-p-tert-butylcalix[4]arene- 1, 3-alternate-NO*(11) (0.003 mmol) complex formed

above and shook well. After the gas ceased, the "H NMR spectrum was recorded of
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the resulting pale yellow color solution. "H NMR (CDCl; 298 K): § 6.94 (s, 8H), 6.78 (s),
3.73 (s, 8H), 3.39 (t, J = 7.0 Hz, 8H), 1.27 (s, 36H) 1.19 (m, 16H) 0.87 (t, J = 7.0 Hz,
12H). This resembles the original chemical shifts for free, 25,26,27,28-Tetrakis(n-
hexyloxy)-p-tert-butylcalix[4]arene- 1, 3-alternate (10).

Calix[4]arene Dimeric tube (12)

'H NMR(300 MHz C,D,Cl,): 8 7.20 (d, J = 7.5 Hz, 8H), 7.03 (m 12H), 6.87 (t, J = 8.0 Hz
4H), 3.88 (s,18H), 3.57 (t, J = 7.0 Hz, 8H), 3.28 (t, J = 7.0 Hz, 8H), 2.60 (t, J = 8.0 Hz,
8H), 1.06 (m, 8H), 0.58 (t, J = 7.0 Hz, 12H). Theses spectral data are in agreement
with previously published data.’%3"°

Calix[4]arene Dimeric tube-NO* complex (13)

Calix[4]arene dimeric tube (12) 5 mg (0.004 mmol) was dissolved in 0.5 mL of C,D,Cl,
in NMR an tube and bubbled dry NO, gas through the solution for 3~4 seconds.
Nitrogen was purged through the solution to remove excess dissolved NO,. H
NMR(300 MHz C,D,Cl,): 6 7.34 (t, J = 8.0 Hz, 4H),7.26 (d, J= 7.0 Hz, 8H), 7.10 (d, J =
8.0 Hz, 8H), 6.29 (t, J=7.5 Hz, 4H), 4.25 (m,8H), 4.02 (m, 8H), 3.86 (t, J = 7.0 Hz, 8H),
3.83,3.84 (2 xd, J=16.0 Hz,), 1.91-1.87 (m, 8H), 1.07 ( t, J=8.0 Hz ,12H). Theses
spectral data are in agreement with previously published complex (13) which was
obtained from NO,/N,Q, 32637

Reduction of Calix[4]arene dimeric tube-NO* complex (13)

The Calix[4]arene dimeric tube-NO* (0.004 mmol) (13) complex formed above was
treated with excess solid hydroquinone (5 mg) to reduce NO" inside the calix[4]arene
dimeric tube. Presence of free Calix[4]arene dimeric tube was confirmed by 'H NMR

after the Nitric Oxide gas was ceased. '"H NMR(300 MHz C,D.Cl,):  7.20 (d, J =7.5

Hz, 8H), 7.03 (m 12H), 6.87 (t, J = 8.0 Hz, 4H), 3.88 (s,18H), 3.57 (t, J = 7.0 Hz, 8H),
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3.28 (t, J =7.0 Hz, 8H), 2.60 (t, J = 8.0 Hz, 8H), 1.06 (m, 8H), 0.58 (t, J = 7.0 Hz, 12H).
Along with the empty calix[4]arene ditube, benzoquinone peak was observed at 6.78
ppm.

Calix[4]arene trimeric tube (14)

Calix[4]arene trimeric tube was synthesized according to previously reported
method.**® "H NMR (300 MHz C,D,Cl,): § 7.22, 7.19 (2 x d, J = 8.0 Hz, 16 H), 7.05 (t, J
= 8.0 Hz, 4H), 7.03 (d, J = 8.0 Hz, 8H), 6.98, 6.85 (2 x t, J = 7.2 Hz, 8H), 3.94 (s, 8 H),
3.88 (AB q, 16H), 3.55 (m, 16H), 3.27 (t, J = 6.5 Hz, 8H), 2.55 (m, 16H), 1.06 (m, 8H),
0.56 (t, J = 7.2 Hz, 12H). The spectral data are in agreement with previously published
data.’*®

Calix[4]arene trimeric tube-NO* complex (15)

Calix[4]arene trimeric tube (14) 5.0 mg (0.003 mmol) was dissolved in 0.5 ml of
C,D,Cl, gently warmed the solution to dissolve all solids in the NMR tube and bubbled
dry NO, gas through the solution for 3~4 seconds. Nitrogen was purged through the
solution to remove excess dissolved NO,. '"H NMR (300 MHz C,D,Cly): 6 7.35 (m, 20
H), 7.11 (d, J = 7.3 Hz, 8H), 6.50 (t, J = 7.0 Hz, 4H), 6.47 (t, J = 7.0 Hz, 4H), 4.3 (m, 16
H), 3.9 (m, 24H), 3.66 (d, J = 14.0 Hz, 8H), 1.85 (m, 8H), 1.08 (t, J = 7.3 Hz, 12H). This
spectral data is in agreement with previously published Calix[4]arene trimeric tube-NO*
complex which was obtained after the reaction of free empty tube with NO,/N,O, 3%
Reduction of Calix[4]arene trimeric tube-NO* complex (15)

The Calix[4]arene trimeric tube-NO" complex (15) (0.003 mmol) formed above was
treated with excess solid hydroquinone (10 mg) to reduce NO" inside Calix[4]arene

trimeric tube. Presence of free Calix[4]arene trimeric tube was confirmed by '"H NMR

after the nitric Oxide gas was ceased. "H NMR (300 MHz C,D,Cly): 6 7.22, 7.19 (2 x d,
171



J=8.0 Hz, 16 H), 7.05 (t, J = 8.0 Hz, 4H), 7.03 (d, J = 8.0 Hz, 8H), 6.98, 6.85 (2 x t, J =
7.2 Hz, 8H), 3.94 (s, 8 H), 3.88 (AB q, 16H), 3.55 (m, 16H), 3.27 (t, J = 6.5 Hz, 8H),

2.55 (m, 16H), 1.06 (m, 8H), 0.56 (t, J = 7.2 Hz, 12H).
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CHAPTER 8
NITRIC OXIDE RELEASE MEDIATED BY CALIX[4]MONOHYDROQUINONES

8.1 Abstract
Calix[4]monohydroquinone has been used as supramolecular system for the
generation of NO gas. In a one-electron reduction scheme involving
calix[4Jmonohydroquinone-NO+ complex, NO is released without the presence of an
external reducing agent. Free calix[4]monoquinone, thus obtained, can be reused for a
new NO-releasing cycle after NaBH,-reduction to calix[4Jmonohydroquinone.

8.2 Introduction

Nitric oxide (NO) is a colorless odorless gas, which plays important roles in
several biological functions.’”"*2 In particular, in the human body nitric oxide is
involved in the regulation of cardiovascular, respiratory, and nervous systems. The
development of therapeutic agents designed to release NO is an intensively active
area of research, since NO gas has shown beneficial effects against several types of
disease states. Thus, NO-releasing organic nitrates, as glyceryltrinitrate, are used as
antianginal drugs®”? by the utilization of vasodilation properties of NO gas, while the
antiinflammatory properties of NO gas have been used in NO-NSAIDS* a class of

nonsteroidal anti-inflammatory drugs able to release NO. In addition, NO gas has

|375 |376-378

shown antibacterial®*> and antitumora activity, and consequently there is a strong

interest in the search of synthetic compounds that chemically store and release NO in

a controlled fashion.>"®-3®
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Thus, Schoenfisch and coworkers have reported the synthesis and
characterization of NO-releasing systems based on diazeniumdiolate®®* NO-
donors.****** The diazenium-diolate groups, covalently bound to dendrimer or silica
nanoparticles, were able to dissociate spontaneously under physiological condition to
give NO gas. At the same time, there has been a growing interest in supramolecular
systems that have the capability to reversibly trap, store, and release NO.%*>*¥ Among
them, increasing attention has been devoted to the development of calixarene-
based'"*%:38 materials able to store NO in the form of entrapped nitrosonium (NO*)

ion.%®43703% Thys Rathore and Rudkevich have described stable complexes between

calixarene derivatives and NO* ion,3"%%%

with this ion strongly bound within the
calixarene aromatic cavity by means of cation-1r interactions.**® This work was also
extended to the storage of NO™ ion into the cavity of synthetic calixarene-based
nanotubes.??%3"

We have shown that nitric oxide (NO) can be smoothly released from the
calixarene cavity after a one-electron reduction scheme involving calixarene-NO*
complexes and an external reducing agent such as hydroquinone molecule.®*? After
releasing NO, the starting calixarene was regenerated in quantitative yield and can be

reused for a new NO-releasing cycle.

8.3 NO Generation by Calix[4]Jmonohydroquinone Systems

In this work, we developed a new calixarene-based supramolecular system
endowed with an internal hydroquinone reducing moiety and therefore able to release
NO without the addition of external reducing agents.

The designed compound, p-tert-butylcalix[4Jmonohydroquinone 20, was

obtained by NaBH, reduction of the corresponding tripropoxycalix[4Jmonoquinone
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19,%° which in turn was prepared by TI(CF;COO); mediated oxidation

395

p-tert-butylcalix[4]arene 18 (Scheme 8.1).

394

of tripropoxy-

TI(CF3CO0),
—_— >

CF4COOH, 3 h
7%

THF/EtOH

NaBH,
49 %

Scheme 8.1 Synthesis of tripropoxycalix[4]monohydroquinone

Examination of its 'H and C NMR spectra (see experimental section)

indicated that calix[4]Jmonohydroquinone 20 adopts a cone conformation.>* In fact, two

AX systems relative to ArCH,Ar groups [4.32/3.17 ppm (J = 12.5 Hz), 4.36/3.16 ppm (J

= 13.2 Hz)] were present in the '"H NMR spectrum (Figure 8.1a), whereas the *C NMR

spectrum displayed two ArCH,Ar resonances at 312 and 314 ppm.*3%

Tripropoxycalix[4Jmonoquinone 19 shows the presence of a broad singlet (or a very

tight AB system) at 3.51 ppm relative to ArCH,Quin protons adjacent to quinone ring

and an AX system [4.14/3.10 ppm J = 12.5 Hz, 4H] relative to ArCH,Ar protons (see

for comparison its spectrum in the presence of TFA reported in Figure 8.1d). This is

indicative of a fixed syn orientation of ArOPr rings associated to a fast through-the-

annulus rotation of the quinone ring. This behavior was confirmed by the presence of

two resonances at 35.5 and 31.0 ppm relative to ArCH,Quin and ArCH,Ar carbon,

respectively, in the >C NMR spectrum of 19.%"%%
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Figure 8.1 '"H NMR spectra (300 MHz, CDCl3, 295 K) illustrating NO™ complexation and

release in calix[4Jmonohydroquinone system

Here (a) p-tert-butylcalix[4]Jmonohydroquinone 20; (b) monohydroquinone 20 in the
20 complex (16) upon addition of --BuONO to

presence of TFA; (c) formation of NO

solution “b”; (d) Solution “c after 5 min from the addition of -BuONO corresponding to

monoquinone 19 in the presence of TFA. Relevant signals of monoquinone 19 are

marked with asterisks in “c” and “d”.
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When fert-butylnitrite (2 equiv) was added to a mixture of
calix[4Jmonohydroquinone 20 and TFA in CDCl;, a deep-purple color initially appeared
(see experimental section). Subsequently, NO gas was released out from the system,

and within 5 min, the solution turned to a transparent pale-yellow color (Scheme 8.2).

NaBH,

THF/EtOH

20 / ) pr Pr

t-BuONO

CF,COOH

Scheme 8.2 Generation of NO using calix[4Jmonohydroquinone

These results are consistent with an initially formed NO™ ion encapsulated into
the calixarene cavity and then quickly reduced to NO by means of a one-electron
reduction scheme by the hydroquinone moiety of calix[4]monohydroquinone 20, which
was oxidized to calix[4Jmonoquinone 19. Clearly, there are two possibilities for the
reduction of NO+ ion to NO: the first is an encapsulated 1-complex, with NO™ situated
inside the calix[4Jmonohydroquinone cavity, whereas the second postulates an
external TT-complex, with NO+ situated outside the calixarene cavity. Energetically, the
encapsulated r-complex seems much more favorable; in fact, it is well known that NO*

is easily encapsulated into the Tr-electron rich calix cavity and generally shows Kassoc
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106 M".*° The deep-purple color initially developed is an additional proof of the
formation of calix[4]monohydroquinone-NO* complex. In fact, as shown in previous
works, 64370389392 this deep-purple color is caused by the strong charge transfer
interaction between NO™ and the electron rich T-surface of aromatic rings present in
20. This was corroborated by a broad charge-transfer band at Ana 545 nm in CHCI;,
typical for these systems.*”®*®° '"H NMR analysis confirmed the above conclusions. In
fact, the '"H NMR spectrum of the mixture of p-tert butylcalix[4]Jmonohydroquinone 20
and TFA (Figure 8.1b) changed substantially after the addition of tert-butylnitrite. In
particular, a new set of resonances relative to NO* 20 complex (Figure 8.1c)
appeared, whose aromatic protons were shifted downfield with respect to
calix[4]Jmonohydroquinone 20, in accordance with our previous results.****% |n
addition, the "H NMR spectrum (Figure 8.1c) displayed also the resonances relative to
tripropoxycalix[4Jmonoquinone 19 (see marked signals). After that the reduction had
taken place completely and neutral NO molecule was released, calix[4Jmonoquinone
19 was obtained in quantitative yield, as confirmed by NMR analysis (Figure 8.1d) and
by the transparent pale-yellow color of solution. Calix[4]monoquinone 19 thus obtained
was sufficiently pure (Figure 8.1d) and, after NaBH,-reduction to 20, can be reused for
a new NO-releasing cycle (Scheme 8.2).

8.3.1 Headspace UV Analysis of Calix[4Jmonohydroquinone-NO" Complexes

The headspace NO gas generated by the reaction between 20 and fert-butylnitrite in
TFA was analyzed using UV spectrophotometry, and three characteristic peaks were
obtained at Anax 206, 214, and 226 nm (Figure 8.2). These UV data are in agreement

with previously published UV absorption data for identification of NO.%¢4°1
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Figure 8.2 UV spectrum of the headspace gas generated from the
calix[4]Jmonohydroquinone-NO™ complex.
8.3.2 Solution Phase UV Analysis of Calix[4]Jmonohydroquinone-NO* Complexes
The solution phase complex between calix[4]Jmonohydroquinone and tert-butylnitrite in
the presence of TFA was monitored by UV spectrometry. UV traces were recorded
immediately after mixing and then monitored until disappearance of the complex with
time. The complex was disappeared within approximately after 5-6 minutes (see Figure

8.3).
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Figure 8.3 Solution-phase UV analysis of calix[4]Jmonohydroquinone-NO* complex

In contrast to the NO-releasing experiment reported in Scheme 8.2, if 4 equiv of
tert-butylnitrite was added to a mixture of 20 and TFA (10 equiv) in dry chloroform, the
excess nitrosonium ion reacted further with calix[4]quinone 19 and allowed the
selective ipso-nitration of 19 at the distal aromatic ring with respect to the quinine
moiety, yielding 22 in 60% yield (Scheme 8.3). The reaction outcome is likely to be the
result of an initial jpso-nitrosation of 19, followed by an oxidation of the nitroso

intermediate to nitroderivative 22 by oxygen.*%

HO Q NO,
t-BUONO (4 eq), \ N
CF3COOH ) >
10 min \ T
60 ¥ 0o
OH § 0 O % s NN
7 pr Pr Pr
20 Pr 22 r

Scheme 8.3 ipso nitration followed by oxidation of calix[4]monohydroginone
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The structure of 22 was assigned by spectral analysis. In particular, the
presence of a pseudomolecular ion peak at m/z 723 in the ESI(+) mass spectrum
confirmed the molecular formula. The molecular structure of 22 was confirmed by the
pertinent signals in the '"H NMR spectrum. In fact, a singlet was present at 8.07 ppm
relative to protons in ortho to nitro group, whereas an AB system relative to the
remaining aromatic protons was present at 6.54 and 6.89 ppm (J = 2.1 Hz, 4 H). In
addition, a resonance was present at 6.74 ppm (2H) relative to the protons of the
quinone moiety. Also in this case, the presence of a broad singlet at 3.56 ppm and of
an AX system at 4.22/3.27 ppm (J = 13.0 Hz) relative to ArCH,Quin and ArCH,Ar
protons, respectively, were indicative of a fast through the-annulus rotation of the
quinone ring of 22, which was confirmed by the pertinent *C NMR signals. The
regiochemical outcome of the nitrosation can be explained by considering that very
likely the excess NO™ ion is complexed by quinone 19, as indicated by the deep purple
color of the solution. In this complex, the nitrosonium cation should be sandwiched
between the two distal Ar-OPr rings, which would be parallel to one another. In this
way, the NO™ ion is perfectly oriented to give the jpso nitrosation onto the central Ar-
OPr ring opposite to quinine system, with high regioselectivity.****"° This reaction can
be considered as an interesting example of supramolecular control of a reaction

outcome,*034%4

which could be probably exploited in a larger context.

In conclusion, we have shown that p-tert-butylcalix[4]-monohydroquinone 20
can be used for the generation of NO gas. In a one-electron reduction scheme
involving NO*_20 complex (21), NO is released without the presence of an external

reducing agent. Free tripropoxycalix[4]monoquinone 19, thus obtained, can be reused

for a new NO-releasing cycle after NaBH,-reduction to 20.
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8.4 Experimental Section

8.4.1 General Methods and Procedures

ESI-MS measurements were performed on a Micromass Bio-Q ftriple
quadrupole mass spectrometer equipped with electrospray ion source, using a mixture
of H,O/CH;CN (1:1) and 5% HCOOH as solvent, or a Perkin-Elmer 2400 CHN
Analyzer. Flash chromatography was performed on Merck silica gel (60 A, 40-63 um).
All experiments with moisture- and/or air-sensitive compounds were run in freshly
distilled over P,Os chloroform, under a dried nitrogen atmosphere. Head space UV
analysis of the nitric oxide releasing experiment was carried out under inert and dry
nitrogen environment. All the other chemicals were purchased from Sigma Aldrich and
used as received. Reaction temperatures were measured externally; reactions were
monitored by TLC on Merck silica gel plates (0.25 mm) and visualized by UV light and
spraying with H,SO,4-Ce(S0O,),. Compound 18 was prepared according to a literature
procedure.*® All 1D NMR spectra were recorded on a Bruker Avance-400
spectrometer or a JEOL Eclipse 300 MHz spectrometer; chemical shifts are reported
relative to the residual solvent peak (CHCl;: 6 7.26, CDCls: 6 77.23). UV-Visible
spectra were measured on a VARIAN Cary 50 UV spectrophotometer.
8.4.2 Synthesis of Calix[4Jmonohydroquinone
25,26,28-tris(n-propyl)-p-tert-butylcalix[4]monoquinone (19).
A solution of 18 (2.65 g, 3.42 mmol) and TI(CF3;COO); (5.57 g, 10.20 mmol) in
trifluoroacetic acid (14.0 ml) was stirred for 3 h in the dark at room temperature. The
mixture was dried under vacuum and the residue was dissolved in CH,Cl, (50 mL), and
washed with cold 1N HCI (4 x 50 mL) and brine (2 x 10 mL). The organic phase was

dried over Na,SO,. The crude product, obtained after solvent evaporation under
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vacuum, was subjected to flash chromatography on silica gel (petroleum
ether/dichloromethane, 6/4 v/v), to give 14 (1.93 g, 77%). Compound 19: ESI(+) MS:
mi/z = 733 (MH*); "H NMR (CDCls, 400 MHz, 298 K): 5 0.78 (t, OCH,CH,CH;, J = 7.6
Hz, 3H), 1.02 (t, OCH,CH,CH3, J = 7.9 Hz, 6H), 1.03 [s, C(CH3);, 18H], 1.34 s,
C(CHg3)3, 9H], 1.83 (m, OCH,CH,CHjs, 4H), 1.91 (m, OCH,CH,CHj3, 4H), 3.10 and 4.14
(AX, ArCHAr, J = 12.8 Hz, 4H), 3.51 (br s, ArCH,Quin, 4H), 3.55 (m, OCH,CH,CHj,
4H), 3.69 (m, OCH,CH,CHg;, 2H), 6.57 and 6.84 (AB, ArH, J = 2.4 Hz, 4H,), 6.60 (s,
Quin-H, 2H), 7.10 (s, ArH, 2H); "*C NMR (CDCls, 100 MHz, 298 K): 5 9.4, 11.0, 22.3,
23.9, 31.0, 31.6, 31.9, 34.0, 34.3, 35.5, 75.8, 76.6, 125.8, 126.4, 126.5, 127.6 (s),
132.9, 133.7, 135.9, 145.1, 147.1, 154.3, 154.4, 186.5 and 189.5 (C=0). Anal. Calcd
for C49He4Os: C, 80.29; H, 8.80. Found: C, 80.20; H, 8.90.

25,26,28-tris(n-propyloxy)-p-tert-butylcalix[4]monohydroquinone (20). To a
solution of 19 (0.61 g, 8.32 mmol) in a mixture of THF/EtOH (20 mL, 1:1 v/v) was
added NaBH, (0.16 g, 42.8 mmol) and the mixture was stirred for 2 h at r.t. The solvent
was removed by evaporation in vacuo and the residue was partitioned between CHClI;
(20 mL) and H,O (20 mL). The organic phase was taken to dryness, and the residue
was subjected to flash chromatography on silica gel (petroleum ether/dichloromethane,
3/7 v/v), to give 20 (0.30 g, 49%). Compound 20: ESI(+) MS: m/z = 735 (MH"); 'H
NMR (CDClI3, 400 MHz, 298 K): 6 0.85 [s, C(CHg)3, 18H], 0.93 (t, OCH,CH,CH,, J=7.5
Hz, 3H), 1.07 (t, OCH,CH,CHs, J = 7.4 Hz, 6H), 1.32 [s, C(CHs);, 9H], 1.90 (m,
OCH,CH,CHg;, 4H), 2.33 (m, OCH,CH,CHjs, 2H), 3.16 and 4.36 (AX, ArCHAr, J = 13.2
Hz, 4H), 3.17 and 4.32 (AX, ArCH,Ar, J = 12.6 Hz, 4H), 3.71 (t, OCH,CH,CH3, J=7.0
Hz, 4H), 3.82 (t, OCH,CH,CHs, J = 7.4 Hz, 2H), 4.18 (s, ArOH, 1H), 4.91 (s, ArOH,
1H), 6.51 and 6.54 (AB, ArH, J = 1.8 Hz, 4H,), 6.57 (s, ArH, 2H), 7.12 (s, ArH, 2H); "*C

NMR (CDCl;, 100 MHz, 298 K): 6 9.8, 11.0, 22.6, 23.6, 31.3, 31.4, 31.9, 33.9, 34.3,
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76.4, 78.0, 114.9, 124.7, 125.2, 125.9, 131.6, 132.1, 132.6, 136.2, 145.4, 146.5,
147.2, 148.1, 152.2, 154.0. Anal. Calcd for C49HesOs: C, 80.07; H, 9.05. Found: C,
80.16; H, 8.96.

Preparation of p-tert-butylcalix[4lmonohydroquinone-nitrosonium complex (21).
Trifluoroacetic acid 25 pyL (10 eq) and tert-butylnitrite 4 uL (1 eq) was added to a
solution of 20 (0.025 g, 0.034 mmol) in 1 ml of dry CDCl;. UV-Vis (CHCI3) Anax = 545

nm (Figure 8.4).

1.0+

0.04

T T T T
400 500 600 700
Wavelength (nm)

Figure 8.4 UV-Vis spectrum of NO* complex prepared by p-tert-
butylcalix[4]monohydroquinone 20 and -BuONO in presence of TFA.
26,28-bis(n-propyloxy)-23-nitro-p-tert-butylcalix[4]monoquinone (22).
Trifluoroacetic acid (25 ul, 0.34 mmol) and tert-butylnitrite (16 pl, 0.136 mmol) was
added to a solution of 20 (0.025 g, 0.034 mmol) in 1 mL of dry chloroform and the
mixture was stirred for 10 min at r.t. Evaporation of the solvent gave the crude product
which was purified by the preparative TLC (silica gel, ethyl acetate/hexane, 1/4, v/v), to
give 4 in 60% yield. ESI(+) MS: m/z = 723 (MH*); "HNMR (CDCls): & 8.04 (s, ArH, 2H),
6.89 and 6.54 (AB, ArH, J = 2.1 Hz, 4H,), 6.75 (s, ArH, 2H), 4.21 and 3.26 (AX,

ArCH.Ar, J = 13.0 Hz, 4H), 3.70-3.55 (overlapping, OCH,CH,CH,;, 6H), 3.59 (br s,
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ArCH,Quin, 4H), 1.97-1.79 (overlapping, OCH,CH,CHj;, 6H), 1.02 [s, C(CHs)s, 18H],
1.01 (t, OCH,CH,CHs;, J = 7.5 Hz, 6H), 0.79 (t, OCH,CH,CH,, J = 7.5 Hz, 3H). "*C
NMR (CDCls;, 100 MHz, 298 K): 5 9.1, 10.7, 21.9, 23.7, 30.8, 31.4, 33.9, 76.7, 77.2,
124.1, 126.1, 127.1, 131.2, 133.5, 138.2, 142.9, 145.8, 147.1, 154.1, 162.9, 186.5,
189.9. Anal. Calcd for C4sHs55NO7: C, 74.87; H, 7.68; N, 1.94. Found: C, 74.97; H, 7.60;

N, 2.02. ESI-TOF MS, m/z: 722.33, Calcd for C4sHssNO».
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CHAPTER 9
GENERAL SUMMARY

First five chapters of this dissertation focus on the design and synthesis of new
ionic liquids and their potential applications in analytical chemistry. In Chapter 2, new
class of trigonal tricationic ionic liquids were used as gas chromatographic (GC)
stationary phases and these new GC phases were characterized based on Abraham’s
linear solvation energy relationships. Use of multifunctional IL stationary phases for GC
can be limited as the most common counter anion for many ILs (i.e.,
bis(trifluoromethanesulfonyl)imide) results in peak tailing for alcohols and other H-bond
forming analytes. Specific amide core containing trigonal tricationic ILs were shown to
overcome this problem. In addition they were also shown to give efficient, symmetric
peak shapes for most of the analytes used in this study. Amide core containing trigonal
tricationic IL-based GC phases were shown to have comparable polarities to the
commercial SP-2331 phase.

In Chapter 3, the design and synthesis of new linear tricationic ILs were
discussed. Previously synthesized ILs had rigid trigonal structures. Thus the design
and synthesis of more flexible tricationic ionic liquids offered the opportunity for
enhanced results. These ILs were the first example found in the literature with a
tricationic charge that still existed as liquids at room temperature. Physicochemical
properties of these linear ILs were discussed and their ability to be used in
electrowetting applications has also been examined. These new linear tricationic ILs

which were more flexible compared to trigonal rigid core structures, were used as ion
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pairing reagent in detection of dianionic species using the positive mode of ESI-MS.
These results were described in Chapter 4. The results of this study revealed that the
complexation or ion pairing ability decreased when the imidazole or phosphonium
charged moieties were separated by 3 methylene units. In general, use of these
flexible tricationic ILs in detecting anions in the positive mode of ESI-MS produced
higher sensitivities compared to what was observed in the negative mode.

Chapter 5 described development of a polymeric IL type sorbent material
designed for solid phase microextraction (SPME). Most of the commercially available
adsorbent materials used in SPME applications are physically coated siloxane and
polyacrylate-based sorbents. This newly developed IL-based polymeric coating
material was covalently bonded to silica surface and therefore could be used in direct
immersion applications without any lose of the material. These silica bonded new
polymeric IL sorbent materials also show less bleeding at higher GC inlet temperatures
compared to commercial fibers with PMDS (poly dimethyl siloxane) and PDMS/DVB
(poly dimethyl siloxane-divinyl benzene) type coatings. In this study, these new IL-
based polymeric coatings were used in both headspace and direct immersion
experiments and their extraction capabilities were found to be comparable to
commercial coatings.

Chapter 6 through 8 discussed calix[4]arene-based supramolecular chemistry
of NO, gases. General introduction to supramolecular chemistry and NO, gases were
given in Chapter 6. In Chapter 7, cleaner generation of medicinally important nitric
oxide gas (NO) using calix[4]arene-NO" after a simple reduction by hydroquinone was
discussed. As described in Chapter 8, NO generation without any external addition of

hydroquinone was shown by using calix[4]Jmonohydroquinone.
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APPENDIX 1
'"H AND *C NMR SPECTRA OF

1-BROMODECYL-3-BROMODECYL IMIDAZOLIUM BROMIDE SALT (1a)

188



[oPl9 vz
[s1969LTLO6 L
[=1g

144

[s11

FSTYA

FFO

330

[sn)gog 9

[51969LTL06 T
[sn]10 €T

[ZHW] 26559625 " 00€E
H’

T

[wdd] g

[ZHW] 26559625 " 00E
HT

[ZHA] PBLOLSED 'S
[zH] TE9LEEVE 0

0

vBEIT

[wdd] g

[ZHW] 26559625 " 00€
HT

[slo69L1L06 2
zHW] 00€) [xleT098S0°L

WHN ZYITEd
00g XDF

X

[wdd]

HI

LOTET

XFATdROD dT
ssnd etbuts

BE:TZ:00 0TOZ-dAS-ZT
6Z:¥0:81 800Z-HAL-E
OV:PTi8T 800Z-NAC-E

90a-0sWa

7SE6SPIHS

zxe-esind srbuts

e3Tep

—(T220DLTOTD) BOE09OMA

LU T T O T

386 dweg

swty uorjiTiedey
AeTep uorjexeTey
uteb aaoey

JTem TeTITUL
aesaad a3jueq

u3ze x

a1bue x
swry boe X
UIPTA 06 X

sueos Te3l0L
suwog

uIn3aa pPoW
paddr1d
3ISSFFO_TAL
basxz Taly
UuTPWOP TIL
JesFzo aal
baxz xay
uTePWOP IIT
deessus x
uoT3INTOS8IT X
sueosexd x
sjutod X
3885330 X
baxz X
uTPWOpP X
uotjeanp boe X
y3zbuexls preTd

aa3swoxidads
®3TS
SuoTsUSWTQ
S3TUn WwIg
1373 wrg
2zT5 wWid
jewxcy e3eq
Jusumo])

PWTy Juexany
PWT3} UCTSTADY
awT3 uoTiRBID

JusATOS

p1 eTdwes
uswrIadxy
Toy3zny
sureuaTTd

03y

9LLO'L

<

'L

'z

1917°1
£50€°1
SOEE’]
PESEl
£8PLl
00LL'T
6LSF'T
9

SOLY'T
LT
0Z8+'T
1L69°T
S8S8°T
SLIL'E
LPEEE
SLOS'E

<
-

aad spaed 1 X

woEEe o a ®
4§ S&8 2 e g E
g Sk& ] N s 2
E LEZ = = 23
oy os 09 oL " os 06 0ot
—‘ 5 Lo
=
2

g

Lm\)//\\\///\\x//<\\)//\\\///\\Z/«v

Z/\/\/\/\/\/‘_
® d

0

o

€0 70

0 ro

90

Lo

60 80

01

LY 91 1 ¥ €1 TIOTI

81

0T 61

I'T

¥t €T TT

§T

auepunqge

189



HI : uogjiy Jad spaed : X

g e Eer B i R £
5 g 5kh TEEI
1l Tl €1 ¥l 1 ol Cr 81 61

186 dway, o
swty uoriTiedey L

[oplo vz =
[81969LTLO6 L =
[s]5 = AeTep uoriexeTsy
¥y = uteb zadey
[s]1 = ATEM TETITUI
ASTVE = jesead ejueq
330 = opow TIL
330 = spouw 111
[snls0s°9 = esnd X
[aply = u3ex
[bsp]sy = sTbue"x
[81969LTLO6 T = ewry boe x
[sn]10°€T = 4IPTA 06 X
ZZ = sueds Te30%
2z = sueog
1= PELETE o -1
HASTYE = paddT1d u
[wdd]g = Jes3yo TIL =
[ZHW] 6559625 00 = bexz ray
HI = utRWOP Tl HI & uorpipy 3ad spaed : x
[wdd]g = 385330 2T
[2HW] 26559625 00E = Uluw%uuw
i ] HI = :u!EﬂuknTW.WW.MT_ H .mr N .rﬂ”
ZHA]¥BLOLGED S = deans"x 12 p -~ W BE
tzaltesiecre'0 = weratoserx K F F R § 3 g 5 5P 5
PEEIT = sjutod X
[wdd]g = 395330 X
[2HW] 26559625 00€ = bex3y X
HI = uTewop”xX re St 9t Le € 6t or 't r
[s1969LTLO6°Z = uwoT3eanp boe X
zuW]l00€) [2]1€109850°L = u3bueals prera
HAN gYITEd = 2933w0x303dg
00€ X203 = 8318
X = SuoTsUsWTQ
[wdd] = s3TUN WTg
HI = ST3T3 wrg
LOTET =
XETAWOD a1 =
asTnd o1buts = FUBWWOY

8T:¥Z:00 0T02-d3AS-TT
6Z:¥0-8T 800ZT-NAL-E
OF:¥T:8T1 800Z-NAL-E

swr3 3usIand
SWTI UOTSTARY
|WTY UOTIEBID

90-0SHWa = Jueatos

PSESPINS = Py orduwg

zxa-asTnd a1buts = Juawtradxyg
e3Tep = Toy3ny

= (1®300LT0TD) 80E090ME = SWEUSTTA

rY .

oL
auepunqe

190

o
auepunqe

€0 7o

o

£0

60 80 L0 90



DE1 & uopiy aad syaed : x

(oply-zZ
[slvoovzeoL v
[slz

0s

[s]z

[slvoovzBoL'Z
[snlcL 6

00z6
0026
T

[ZHW] 26559625 " 00€

HI
[zEX]ZvEPErLY €T
[zH]LZOPZTIOE O

v

9E£559

(wdd] oot

[2HW] 9ZPEZB9S " SL

O£

[slpoovzesL ¢
2EW]00€) [11€109850°L

AN Z¥1TEA
00E X0z

XTTIW0D dt
a1dnoosp sstnd stbuts

06:BZ:ZT 010Z-435-Z1
6Z:S0:0T 800Z-NAL-9
6¥:BE 60 800Z-NAC-9
9a-05Wa

168ZILHS

osp estnd s1buts
e3tep

- (2202010011) 805090M3

396 dwey,

swty uor3riedey
Ketep uorjexerey
uteb 1a0sy

suwyTy 8ON

BoN

ITRA TETITUL
Burtdnooeqg

Tou a1
®ou u3e aag
oep u3e aal
esTnd %
uze x
sTbue x
swry boe x
YIPTA 06 X

sueds Te30L
sueng

uan3ex POl
paddrTd
3es33o 23T
bexy 211
uTewWop aax
daams ¥
uoTINTOSEI X
suwosazd ¥
s3utod X
JesIFo X

bezz X
uTewop X
uoT3eanp boe ¥
yibueays preta

ze3swoxjoeds
e3Ts
suotsuswrg
s3TuUn wrg
31373 _Wig
®zT15 wrg
jvmIoz e3eq
Jusumon

Wy JuULTIND
PWTY UOTSTARY
BWTY UOTIEBID

JusATOS

PT eTdwes
uswrradxy
Toy3nyg
suvuaTTd

03PV

TLIOETT
169191

0091 07041 0081 006107007

oot

0oz

0ot

(sypursnoy))

191



oot

0oz

192

oor

e

(sypuwsnoy))

290 280 270 260 250 240

30.0

350 340 330 320

370 360

38.0

9.0

420 410 40.0 ¥

43.0

450 440

47.0 460

49.0 48.0

510 50.0

52.0

0TL6'ST

LTTOST

TI09'8T
6108°8T

959T°6T
ETLL'6T

LSPLTE

9ILL'SE

FoLE6F

X : parts per Million : 13C



APPENDIX 2
'H NMR SPECTRA OF

1-BROMOHEXYL-3-BROMOHEXYL IMIDAZOLIUM BROMIDE SALT (1b)

193



X

I = el PN - 6
= b T e N = s
AXERZFEE Shdg =2p3 &
QAJEJSSE R = kg & =
—ERORER =& miete 8 =
] o1 0T e oy s 09 L 08 0’6 oor
~ -

[ [ .
=2
=
s
&
=
H

[ople 2z = 396 dueg c
[51969LTL06 L = ®wTy uoTryTiedey =
[s]g = AeTsp uoTjexeTsy
0E = ureb zaDoy
[sl1 = ITRM TRTITUIL _
STV = jesexd ejueqg £
¥30 = spow TIL
330 = ouaelumu .
[sn]gos 9 = um.n_.—&\x _ﬂu_
[gely = uze x 3
[Beplgy = spbus x
[s1969L1L06°C = oty boe x
[snl1o" €T = UIPTH 06 X
T = SueDs TRIOL
Zl = sueog
1= uaniaa pon
ESTVA = peddr1o .
[wdd]g = 3esI30 TIL B
[ZHW] 26559625 " 00€ = baxy TIL
HI = UTRWOP TIL
[wdd]g = 3e8FF0 III
[zEW] 26559625 00E = bexy xx1
HI = uTewWop IIT = W
[ZHA] PBLOLGES 'S = deams™ ¥ = 4 5
[ZH] TE9LEEPE O = uoTINTOSVI ¥
0= sueosead x W
¥8E9T = sautod ¥ E
[wdd]g = 385330 X
[ZHW]1 26559625 " 00€ = .n.@uu.un
HT = utewop X "
[S1969LTL06°Z = uoT3Ranp bow x 2
zEW] 00€) [I]1€T098G0°L = y3busais preTa
WAN Z¥1TEd = aejewoxjoeds
00 X0F = 8315
X = suoTsuswTg
[wdd] = s3TUn WIg
HT = o137ty wig
LOTET = °zTs wIg
XITAHOD AT = JewIoz B3RQ
asTnd a1buTts = JuUsUMOD
0Z:€0:00 0T0Z-4ES-ZT = ewT3y juszany .
0:00 0T0Z-4ES-TT = swTy uOTSTASH &
ET:GF:9T 8002-ID0-ZT = BWIT) UCTIEBID
94d-0SKHad = JuIATOS
8IFS6G#HS = pT ordueg
zxe-esind o7buts = Fuswrtredxy
e3TeP = Foyiny .
FPL * Z-HYOWIOIOTUDTP = sweusTTd a
N N
._M\/\/\/\ /\@/\/\/\/Lm
o
i
=3

194



34

1.2

3.6

1.3

14

ILSFE bz
68LE'E
n 9008°€ "
i ' PSST'T
ILLIT
FLRT'T
90T’ T
SLTTT
8EST'T
't
LT
79661
L £09€'T
“
998¢°T
901H'T
\
|
\

o
J "
o
”
8
| <
‘ =
|
|
\
|
= \
3
. 95691
sop = .
-
EIETF ST
wsTp
WY -
= g
3 £ 5 5
=
v .
2 2
2 =
E El
= =
i i
" =
0T o 0 VI T 0T §0 90 K0 T0 0
auepunqe 2durpunqe

195



[oplz €z
[s1voorzesL v
[slz

[slvoovzasL'z
[snlsL 6

008
008

01

STV

[wdd] g

[ZHH] 26559625 " 00E
HI

[zHA]ZVEZPZPLY "ET
[zH] LZO¥PZTIE O

v

9€559

[wdd] 00T

[2HW] 9ZvE2896 " GL

J€T

[s]poorzegL 2

zHW] 00€) [L]ETO098S0'L

WAN Z¥1TEQ
00 X3
X

s7dnooep ssTnd a1buts

9€:60:2% 0T0Z-dIS-1Z
SP:90:ZZ 0T0Z-dES-1Z
Z0:0Z:EZ 800Z-AON-SZ
90-0SHa

88FEGLAS

oep estnd a1buts
"3TeP

3pL-z-527118002

3eb dweg

suty uor3Tiedey
AeTep uoTjexerey
uteb xaDey

swT3 ®ON

SON

3TEA TRTITUL
Butrtdnooeq
@sTou il

S0U U3R IIT

oep u3e III
esTnd X

uje”x

e1bue ¥

ewry boe X
UIPTM 06 X

sueds Te30L
sSuEDs

uIN38I POl
paddT1d

385330 2T
baxzy a1l
urTewop 31
deens x
uoT3INTOSeI X
sueosexd x
sautod X
I953F0 X
baxz X
uTewop X
uot3ieinp boe ¥
y3buesys preta

ze3swoxjoesds
o378
suoTsUBWTQ
s3TUn WIg
21313 wid
2z1s wig
IewIOF B3RQg
Jusuo)

BWT3 JUBIIND
BWTY UOTSTADY
BWTY UOTIRBID

JuaaToS
Py erdueg
JuewtIedxy
Toy3nY
swRUaTTA

03PV

TSE6'09
09£67TT1

0oL 007 00 00r 00 009 00L 008 006 0001 00IL 00T1

aiiinn

0oLl

98LY

oorr 00081

Og1 : uory a3d sued : g

0091 0°0L1 0081

0061 000

B

rbitiebogrery 4

auepunqe

ro

To

o

196



[oplz €2
[s]vo0vzeoL v
[slz

0s

[s]z

andas

[s]t

[slv¥sovzaoL T
[snlsL 6

008

ooe

0T

ASTYA

[wdd] g

[2HH] 26559625 ' 00€
BT

[zHA) ZHZYZYLY "ET
[zB] LZO¥ZT9E" 0
v

9ESS9

[wdd]goT

[zHW] 9ZPEZBIS " SL

2€T

[slvoovzeoL'z
zanlooe) [LleT098S0°L

WAN ZYITEA
00€ X23F

sTdnoosp ssTnd atbuts

6Z:0T-Z% 0T02-43S-TT

LO:0T+ZZ 0TOZ-4AS-TZ
20:0ZT-ET BOODZ-AON-ST
90-0sSWa

88VEGLHS

oep esnd erbuts
v31op

3PL E-GZTTIB00Z

03PV

L T T T I T

3eb dwey

swr3 uor3Tiadey
AeTep uoTeXETEY
uteb zADEY

ewTy sON

20N

3Tes TeTITUL
Burrdnooeg
@sTOU 3T

®oU u3e 2T

o9p u3e III
esTnd X

u3e"xX

s1bue ¥

swr3 boe ¥
YIPTA 06 X

sueds TE30L
suwog

uInisx poW
peddrTd

3es33o Iy
bexy aI1
UTeWOP IIT
deesns X
uoTINTOSI X
sueosexd X
s3utod X
Jesyzo X
beaz x
utewop X
uotaeznp bow x
y3buails preTa

I1339wox302dg
83718
suotTsuswTq
s3Tun wrqg
1373 WwIg
°zTs WTg
JewIoy e3eq
JusuoD)

swTy FusIIND
ewT3 UOTETARY
|WTY uoTIEBID
Jueatos

PT ordues
Juswrradxy
ToyInY
sweusTTd

b r s ot i e S =
ok % Y P m EE m z
Il =ZS5G 4
a3 B m. REILF 2 i
0ot oor 0os 009
D1 uoiipy aad spaed @ x
I 2
) &
e =
S F
-3
oozt 00gl oorl
-, o Pt he Nt

DT ¢ uogpy 19d spand £ X

o

900 0o wo

80°0

urpuNqe

DduUTpuUnNge

197



APPENDIX 3
'"H AND *C NMR SPECTRA OF

1-BROMOPROPYL-3-BROMOPROPYL IMIDAZOLIUM BROMIDE SALT (1c)

198



HI 2 uogyy ad spaed £ X
NN e [

C.MSZ ==

T500°0—
ShLE”
7968
P00S

0Pt
S
OFs
89S
9T
L8T
6608
OFEs’L
9BER'L
YILT6

g
—\ ig : ; ; ; . : .
ag N 0 ol 0T 0t or s 09 oL s LX) 0or
/\/\z/%@/\/\

g
EH
)
2
[oplez = 38b dusy
[$1969LTL06 'L = owri uor3tiedey ﬁ
[s]1g = Aerep uorjexerey
9p = uteb a0oy -
[s]t = JTeM TRTITUIL =
dSTYd = jessad s3jueqg |
330 = ®spow”TIL
330 = spow IIT
[snlgos'9 = esTnd x
[aply = u3e ¥
[6sp]lSy = sTbue X
[51969LTLO6 Z = suty Bow x
[sn]10°€T = 4IPTH 06 X |
£S = sueds Te30L -
£ES = suwog W
T= uIn3jex PoR
dSTHd = peddT1o
[wdd]g = 3esI30 TIL
[ZHR] 26559625 " 00E = bex3 tiL
HI = UTBWOPR TIL
[wdd]g = jeszFo I3l
[2HA] 26559625 00E = baaz za1
HI = utewop III
[zHX) PBLOLSES 'S = deeas g
[ZH]TEILGEPE D = uoTINTOSSI ¥ &
0= sueosexd x w w
P8EST = s3utod ¥ =
[wdd]g = jes330 X
[ZHW] 26559625 00E = bexz %
HT = utEWop X
[81969LTL06°Z = uoyjeanp bow x
zHA] 00€) [1]1€109850°L = y3ibuexys preota
HAN ZYlTEd = 2932w02309dg
00€ X023 = ®3TS
X = suoTsuswTq
[wdd] = s3TUR WTQ ”
HI = 31373 Wig £
LOTET = ®2T8 WIQ
XTTAW0D a1 = Jewroy ejeq
esTnd eaTbuts = JusuMO]
¥:EZ 0102-43S-1T = |WT3 JusIIND
¥:EZ 0T02-43S-TT = SWTI UOTSTASY
PZILE'ET BOOZ-INY-6T = SWT3 UOTIESID
90-0SWa = JusaTOS
LTOZLYHS = pr1 erdues
zxa-esTnd o1buts = uswtaadxg
e3Tep = Toy3ny g
G- (®309£D01T) BO6TBOME = sweusTTd
F
Dw )
-
- — B
'
i

199



0T

o

Pyl

0

HduEpunge

7.0

7.1

72

75

7.6

7.7

7.8

79

8.0

8.1

8.2

84

6II8°L
S9T8°L
brad
5
——

X : parts per Million : IH

200

Ly

aduepunqge

20

22

2.6 25 24 23

2.7

28

29

37 3.6

38

44 4.3 4.2

4.5

F6TET
£T8ET
TrieT

STLPF'T
T8LPT
OF8F'T

ERIE°E
SEFEE

9T0s°€
PrIse
ToFS°E

X : parts per Million : 1H



DET 3 uoyy sad sund : x

mrEmEERN ke & m z
Minthire=SLS B2 > z
ZZLMWWIFLMZ _.n.... 5 £
FHIE LR A
EESEI=NT SHh =

0 o1 00z 008 00F 005 009 00L 008 006 0001 0011 00Z1 00£T 0°0FE 00ST 00091 00LI 0081  0°061 0°00T

[oPl6 €2
[s]vgorzeaL v
[slz

[slvoorzeoL 2z
[snlsL 6

0056
00s6

[ZEW] 26559625 " 00€

H1T
[ZBA]1Z¥YZPevLY €T
[zH]LZOPZTI9E O

¥

9EG59
[wdd] 00T

[2BH] 9ZPEZBIS " GL

26T

[s1ys0vzesL T

zEW] 00g) [11€T09850 L

WAN Z¥I13q
00€ %0

x

[wdd]

oeT

gzres

XTTdWOD dT
otdnooep estnd erbuts

€T:0S:1T 0T0Z-43S-Z1
Z¥i6¥: 1T 0T0Z-d3S-ZT1
T0:P0:0T 8002-435-21
90-0SHa

ZEILSLES

osp asTnd aTbuts
©3Top

¥—(230DE£001T) 80T T60ME

3eb dwey,

swr3 uor3Tiedey
Kerep uotjexerey
uteb zaDey
swTy sON

20N

ITes TRTITUL
Burtdnooeq
@sTou il

souU uje aIl
o8p uze aIl
esTnd x

uze X

oTbue x

swry boe ¥
HIPTA 06 X

SURDS TRIOL
suedg

uIn3isx pol
paddr1o

398330 IIT
bsxz zar
UTPWOp IIT
doans ¥
uoTINTOSRI X
suessazd ¥
s3utod X
JBSIFOX

beaz X
uTewop X
uoTIeINp bow X
y3busi3s pPTeTA

as3swox3osds
°3TS
suotsuswTg
s3TUN WIQ
eT3T3 wrg
ezTs wig
IewIOF EBIRQ
Jueumo)

sWTY JuULIIND
SWT3 uUOTSTARY
sWT} UOTIRDID
IUSATOS

PT ordweg
JuswtIadxg
ToyIny
sweuaTTd

03PV

oor

0og

oor

0os

(sypuusnoy))

201



ooe ooz oot 0

(syppunsnor)

.0 14.0 13.0 12.0

300 29.0 28.0 27.0 26.0 25.0 24.0 23.0 22.0 21.0 20.0 19.0 18.0 17.0 16,0 1

33.0 32.0 310

0 340

35

43.0 42.0 41.0 40.0 39.0 38.0 37.0 36.0

50.0 49.0 48.0 47.0 46.0 45.0 4.0

8STT'SI
FRLTST
OETLST
6TF6'ST

S888°LT
LPIS8T

Lolg'el
TIH0T
ELLI'TIT
LTIz

£960°9T

SII8'8T
0T£6'8T
S68T°6T
£08E°6T
FI06'6T
TET9°08
8878°0¢

179¢°6F

:13C

X : parts per Million

202

ot ooz oor 0

(syppuusnoy))

-
150.0

10.0

20.0

130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0

140.0

8STTST

0sTL6F
0000
S6LTOF

179¢°6F

WL6'TTT

66FP"9CT

X : parts per Million : 13C



APPENDIX 4
'"H AND *C NMR SPECTRA OF
1-(1-METHYL-3"-DECYLIMIDAZOLIUM)-3-(1"-METHYL-3"-DECYLIMIDAZOLIUM)

IMIDAZOLIUM TRI [BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (2a)

203



HI : uoriy 1ad suaed @ x

L = = PN g SN e
] = I i oo 84 £
B S 1 T B 2388 §aa B
5] e o FE~ B ®REw FSh -1
Il
0 o1 0c 0 oy os 09 oL 08 0'6 001
<
T 3
[ [ i
g
H
&
B
]
ﬁ "
[ople"€z = 326 dwag ﬁ 4|
[s1969L1L06°L = owry uor3riedey "
[s]g = AeTep uotTjexersy w
0§ = uteb aaoey _
[s]lT = ATRA TRTITUL =
STV = jesaxd ajueq 7 g
330 = spow TIL
330 = spowIxT
[sn]lg0s 9 = asTnd
laply = uje ¥
[Baplgy = eThue ¥
[s1969LTL06°T = mEququme
[snl10°€T = YIPTH 06 X ”
zZE = sueos Te30L o
2E = sueog %
1= uInyax poW * | M_
STV = paddrd .r.\ ”
[wdd]g = 395330 TIL ~ e
[ZHW] 26559625 " 00€ = beag~tag
HI = uTewop TIL
[udd]g = JesFz0 IIT
[z2HW] 26559625 " 008 = beaz x1I
BT = uTewop IIT
[ZHAI PBLOLGES G = deems ¥
[zH)TE9LEEPE O = UOTINTOSAI X
0= sueossxd ¥
¥BEIT = sjutod ¥
[wdd]g = j85330 X
[zHW] 26559625 " 00€ = baaz x
HI = uTewop X w
[5)969LTL06 2 = uoTjeanp boe x 2
zHR] 00€) [L1]E€T09850°L = U3IbUSI3s PTaTd
WAN ZYITEG = ze3ewcazoeds
00€ XOE = °31§
X = suoTsUSWTQ
[wdd] = s3TUN WTQ
HI = ST3T3 wWig
LOTET = szTs wta
XATdH0D dT = JeuIoy eieq
esind o1buts = JuBUWOD
LE6TET 0T0T-dES-ZT = swT3TjusIIny W
T ET 0T02-43S-TT = BWT] UOTSTASY
6E €560 8002-TOL-8T = [WTF UOTIEDID
90-0SHa = JueaTos
TEETPEHS = p1 erdures
zxe osTnd o1buts = JuawtIadxy
eITep = aoyany
= (WISHOTODLT) BOBTLOME = sweusTTd
HINE
\ - —\
. NN~~~
N N TSSO o N N_
) oY »
s
153
=
n

204



s

or

0T

ol

ouBpuUNqE

4.0

4.1

42

8018°¢

BOLO'T

BEOI'T

BLTI'F

1592

X : parts per Million : 1H

09

205

s

or

e

LTS

0T

ol

Muvpunge

0.9

L0

1.2

14

1.5

L6

17

18

1.9

20

6FIT'L

X : parts per Million :



s

or

0T

ol

ouBpuUNqE

4.0

4.1

42

8018°¢

BOLO'T

BEOI'T

BLTI'F

X : parts per Million : 1H

206

1592

09

s

or

e

0T

ol

Muvpunge

0.9

L0

1.2

14

1.5

L6

17

18

1.9

20

6FIT'L

X : parts per Million :



8859°L
MWL
€0LYL
SIILL
UL
8ITLL

SEL 9S'L LS'L 8SL 6S°L 9L 1L TYL 9L POL SYL 99°L L9L 89L 69°L LL ILL TLL

16’8 76'8

€6'8 P68 S6'8 96’8 L6 868 668 06

\

6TE0°6

6 706 €0°6 P06 S0°6 906 LO6 80°6 60°6

Wt

HI : uogy 2ad sued © g

OLPLL
SISLL

ELL PUL O SL'L UL LLL SUL 6LL 8L I8L I8L €L PRL SEL 98L LIS

e

HI : vonpuy sad sped 2 x

e

6 TI'6 €16 FI'6 SI'6 916 LI'6 816G 616 T6

IT6 IT6 €T6 rT'6

o ro-

§0 £0

Lo

60

0

60 80 L0 90 §0 ¥0 €0 TO

o1

Tl

Muvpunge

ouBpuUNqE

207



[opPlez
[=1vsorzaaL ¥
[slz

[s1v9orzsoL T
[snlsL 6

0056

006

1

ESTVd

[wdd]g

[2HH] 26559625 " 00E
HT

[ZHX]ZYZPEYLY "ET
[zH]LZOPZTI9E O

v
9£559

[wdd] oot

[2HW] 92¥E2895 " SL

€T

[s1ysorzesL 2

zmw] 00€) [11£T09850° L

WWN ZYLTEA
00€ X0F

X

[wdd]

JET

8Z¥ZS

XTTAWOD AT
s1dnoosp ssTnd sybuts

90:ZEET 0T0Z-dES-ZTT
TI:0£:60 800ZT-NAL-LT
TP:EP:60 800Z-NAL-LT
90-0SHa

96LOSLES

oep esTnd sTbuts
w3Tep

€= (WIKOTIOLT) 809 T90MA

LT O O R T ]

LR O B R B ]

nwwwwnnw

3eb dws]

swty uoT3Tiedey
Keep uorjexerey
uteb zadey
owy3 eoN

SON

ITeM TRTITUL
ButTdnoosg
ssTou IIT

BOU uje I3
o8p u3w I3l
esnd ¥

uje X

atbue ¥

swry boe x
Y3IPTAT06 X

Sueds Te30L
sueag
uinjes poW
peddr1d
388330 211
baxy 231

uoTINTOSeI X
sueossxd ¥
sjurod X
JeFFFO X
baiz X
uTeWOP X
uotT3eInp bow X
y3busz3s PIeTE

aejewoxioeds
231§
suoysuswtq
s3Tun wig
21313 wIg
8z2TS WIQg
Iewzo0z w3eq
JUSWWOD

WYY JuUeIIND
SWTY UCTSTASH
BWT3 UOTIEBID

JusATOS

pT oTdweg
JuswrIadxy
Toyany
sweusaTTd

03PV

9059°0

=3

oo

oor

|
0os

(1)

0oL

o8

006

0ol

0oL

1708°7T1
BEVG'TTT
SSEITTI

oozt

ooel

rin
g
S
E
0orL 0051 0091 00LL 0081 006107002
e
El
2
Z
=
g
=
.
2
=
W
&
=
H
=

208



119.0

90590

12087771
BEBG'TTI

BEETFTI

2LH9T

01£6°87
8LIE6T
£TRR6T
0F56'67
<
=

2
i
o

40.0

TESHOET

PRIOLET

138.0 137.0

139.0

140.0

136.0 134.0 132.0 3 1300 1290 1280  127.0 126.0 125.0 1240 123.0 1220 1210 1200
30.0 20.0 10.0 0
y e
b 51
] a
] =

LLFE6F

50.0

H
w6k §
|

141.0

orl 0T oor 08 09 OF 0T 0 0oz oor 0

(syppuesnoy)) (syipuesnoy))

209



APPENDIX 5
'H AND "*C NMR SPECTRA OF
1-(1'-BUTYL-3'-DECYLIMIDAZOLIUM)-3-(1"-BUTYL-3"-
DECYLIMIDAZOLIUM)IMIDAZOLIUM TRI
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APPENDIX 6
'H AND "*C NMR SPECTRA OF
1-(1'-BENZYL-3'-DECYLIMIDAZOLIUM)-3-(1"-BENZYL-3"-
DECYLIMIDAZOLIUM)IMIDAZOLIUM TRI
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APPENDIX 7
H, 3C AND *'P NMR SPECTRA OF
1-DECYLTRIPROPYLPHOSPHONIUM-3-DECYLTRIPROPYLPHOSPHONIUM

IMIDAZOLIUM TRI'  [BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (2d).
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APPENDIX 8
'H AND "*C NMR SPECTRUM OF
1-(1-METHYL-3-HEXYLIMIDAZOLIUM)-3-(1"-METHYL-3’-
HEXYLIMIDAZOLIUM)IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (3a).
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APPENDIX 9
'H NMR SPECTRUM OF
1-(1’-BUTYL-3’-HEXYLIMIDAZOLIUM)-3-(1"-BUTYL-3"-
HEXYLIMIDAZOLIUM)IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (3b).
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APPENDIX 10
'H AND "*C NMR SPECTRUM OF
1-(1"-BENZYL-3'-HEXYLIMIDAZOLIUM)-3-(1"-BENZYL-3"-
HEXYLIMIDAZOLIUM)IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (3b).

239



[oPlZ €2
[519694TL06° L
[slg

[sn]505°9
[aPly

[Bep]gy
[$]1969L1L06 2
[sn]10°€T

[ZHW) 26559625 " 00E
HT

[wdd] g

[2EW] 26559625 " 00€
HI

[ZHA]PBLOLSEY 'S
(zn] TE9LEEVE O

0

¥8E9T

[wdd]g

[ZHW] 26559625 " 00E
HI

[51969LTLO6 T
zaWl 00€) [I1€T098S0°L

WAN ZYLTED
00€ X2F

X

[wdd]

HI

LOTET

XITAHOD dT
ssTnd s1buts

60:EZ:ET 0T0Z-d3S-Z1

ST TT-ET 0TOZT-4ES-TT
9T:2S:9T BOOZ-LOO-E
90-0OSWa

60T009#S

zxa-asTnd a7buTs
=3Top

FpL Z-HTI190WITAZUSG

L O R T ]

86 dwsg,

swry uoT3TIedey
Kerep uorjexerey
uteb zaday

JTeM TeT3ITuI
jessad ejueq
epou TIL

opow 23]
esTnd X

uze x

erbue ™y

ewty boe ¥
UIPTH 06 X

sueds Te3jor

J@SFFO AT
bazxy aar
uTeWOpP IIT
deans x
uor3anTosea X
sueosexd X
s3utod X
IVEFFO X
bazz %
UFRWop X
uoT3eInp bov X
y3buex3s pretd

aejewoxjdeds
8318
SuoTsSUsWTg
s3TUN WTQ
21373 wrg
2278 Wrg
Jemwzoy e3eq
‘JusuO])

BWTY JuUsIIND
SWT3 UOTSTABY
swT3 uoTIESID

jueaTes

P ordumsg
JuawtIadxy
Toyany
SWeUSTTd

03PV

LL'8

T

188

SELL'T
LILY'T
1697
T958°C

La 4y

6ISI't

STLI'Y

8061t
0Ist's

SE98°L
L88E'L

IFre'L

HI:

LLVS'L

Jad spaed : g

TTH'6
661576

Bl

69

aouepunqge

0T

e

240



S

or

80

90

o o

aduepunqe

4.0

4.1

42

44

45

46

47

48

49

5.0

51

52

54

55

5.6

57

6ISI'T
STLy
80611

0ISH'S

241

X : parts per Million : 1H

0.9

1.0

1.2

14

1.5

1.6

1.7

1.8

19

20

21

22

el

SELL'T

:1H

X : parts per Million



9.0

9.1

92

L]

L)

9.4

1Zrr'e

9.5

66156

929 9.8 9.7 9.6

10.0
parts per Million ;: 1H

X

10.1

Jouepunqge

242

Jouepunqe

7.2

7.3

74

715

7.6

7.7

7.8

79

8.0

8.1

8.2

THre'L
SE9E°L

LBBEL
6EIFL
6LEPL

LLFS'L

parts per Million : IH

X



loplé ve
[s1vo0rZBIL" ¥
(slz

[gplsz
[snlgz €
[ap]g

[BaploE
[slvoorzeoL T
[snlsL 6

oo8

oo8

0T

fcfatto

[wdd] g

[zHW] 26559625 " 00€E

HI
[zHA]IZVEVEVLY "EC
[zH] LZOPZTIE O

v
9£659

[wdd] 0ot

[2HH] 9ZpEEB9S " GL

Of1

[s1vo0vz8IL T

zHA100€) [L1ET098S0° L

WWN Z¥1TEd
00 x2d

e1dnoosp esTnd s1buts

LZ:0T:TIZ 0T0Z-43S-12T
0T:60:1Z 0T0Z-435-12
80:TO0:TO0 8002Z-NOL-TT
oza

zzgzeeds

oep esTnd =1buts
°318pP

Pl Z2-3TWTZA019080

wwwwwnn

I

396 dwag

swty uot3iTiedey
AeTep uoTjexeTsy
uteb zaoey

swTy SON

20N

JTeM TeT3TUl
ButTdnoseqg
@sTOU IIT

souU u3le III

oep uje IAI
astnd X

uze ¥

aTbhue ¥

swty boe x
YIPTH 06 X

SuEDS TR3IOL
suesg

uInjex Pol
peddrTd

3853FO AT
beay zax
uTeWop IIT
doams ¥
uoTINTOSSI X
sueosaxd ¥
sautod ¥
3I9SFIO X
baxr x
utewop X
uoT3jeanp boe ¥
y3busals pratd

a938W0x300dg
2318
suoTsuawTqg
S3TUN WTQ
13Ty wig
szTs wrqg
FewIoy” B3R
Fusuwo)

swT3 JusIIND
SWTY UOTSTADY

|WT3 uCTIESID

Juswtaadxy
Foy3ny
sweueTTd

03PV

0oy

0os

009

0oL

008

006

0001

0011

0ozl

ool

0ore

0ost

DET ¢ uoypy a2d syed : g

0091 0'0LT 0°081

0061 0°002

ro

44

£0

o

0

20

UEpunqe

243



0+t

ooz

S6T8TT
LI06T
9690762

ST 09T O0°LT 08T 06T 00 0TI 0T€ 0€E 0Pe 0°SE

08PE'TTI
£TLP'TTL
£109°77T1

o1z ozen ezt orel sz

D1 = uoyy Jad sued : X

"6F
£ESST6F
S668°TS

09€ 0L O08€ 068 O0OF OTF O0TF OEF OFF O0SF 09F 0LF O8F 06F 005 OIS 0TS 0€ES O0FS

LI'0 ST°0 €10 IT°0 6070 LO'O SO°O €£0°0 T0°0 10°0—

D1 = uonpy Jad sped @ X

.. 11 1
™~ I t
2 g2 =
2 k: 3
4 b 2
091 oLen 081 06T1 00ET OIET [Lrdy | 0eel OFET

o

Nuepunqe

uepunqe

244



APPENDIX 11
'H, *C AND *'P NMR SPECTRA OF
1-(HEXYLTRIPROPYLPHOSPHONIUM)-3-
(HEXYLTRIPROPYLPHOSPHONIUM)IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (3d).
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APPENDIX 13
'H AND "*C NMR SPECTRA OF
(1-BUTYL-3'-PROPYLMIDAZOLIUM)-3-(1"-BUTYL-3"-
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APPENDIX 14
'H AND "*C NMR SPECTRA OF
(1-BENZYL-3'-PROPYLMIDAZOLIUM)-3-(1"-BENZYL-3"-
PROPYLIMIDAZOLIUM)IMIDAZOLIUM TRI

[BIS(TRIFLUOROMETHANESULFONYL)IMIDE] (4c).
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APPENDIX 16
'H NMR SPECTRA OF

1,1°-(1,6-HEXANEDIYL)BISIMIDAZOLE (8)
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'"H NMR SPECTRA OF

1,1°-(1,6-HEXANEDIYL)BIS-P-VINYLBENZYLIMIDAZOLIUM CHLORIDE (9)

278



HI : uoppy 1ad syed : X

PuUEpUnqE

ol

zHW] 00€)

AN @ g i v gos a2 e
D - e = fa o b b o°© o ~ Pl o o
Eehk I= &5 @ BE5 Roe 22 5@ mhhkig i
e &% 28 g B2z 223 22 B33  BakEs &
ol 0T | e or os 09 LA 08 06 ool o1l
ﬁlu;uulndy ' ﬁ. Jﬁ
[opl1 €2 = 386 dumy,
[51969LTL06°L = swrj uoT3TIedey
[s]lg = Aerep wor3exersy
0§ = uteb zaD8Yy
[s]1 = ITeM TRTITUL
ASTYE = 3esaad sjueq
330 = epow Tal
330 = spow 131
[sn)g05'9 = estnd x
[aply = u3e X
[6sp]sy = s1bue x
[s1969LTL06°C = swt3y boex
[sn]10°€T = YIPTA 06 X
9z = sueds Te30L N o
9z = sueds e e
I= uinlex poW
ASTVE = peddr1d
(wdd]g = 3es3zo TaL
[zZHW] 26559625 00E = bezz 13y
HI = uTewop TIL
[wdd]g = ELTFF eSS
[2HW] 26559625 ' 00E = bezz aar
HI = UTewop III
[ZHX]¥BLOLSE9 'S = desas x
[zH]TE9L6EVE 0 = uoTINTOSSI X & ~ &
0= sueosead x = WL 2
PREST = s3urod X
[wdd]g = 95330 X
[2HR] 26569625 00E = baaz X
HI = uTRwop X
[s1969L1L06°2 = uoT3eanp bow x

[z]leTo9850 L

¥WN ZYITEQ
00E X0F

[T )

y3jbuex3s preta

ze3ewoxjoeds
°e3TS
suoTsuswrg
s3TUn_WTg
®T373 Wig
®zTs WIg
Jewaoy e3Rq
Jusumo)

0T

279

09

oL

‘0T 0T0Z-43S-LT = |swTy JuaxInd

T 0T0Z-43S-LT = owTy UCTSTARY

T 600Z-T00-22 = ewT3 uoTIELID

90-0SHQ = IUSBATOS

LOVEZS#S = Py eTdueg
zxe esTnd @Tbuts = FuswtIadxy o
VI[P = Foy3ny z

OWITZ8AUTATA) 60TZLOME = SWeUSTTI

o8

0'6



v

0T

4.1

4.2

44

4.6

47

4.8

49

50

51

5.2

54

55

5.6

5.7

58

59

duepunge

9STI'F
96r1Ir
9ELTY

SorTs
1987°¢

8LIT'S

1808°s

Fo98°s

1.2

1.3

14

1.5

L6

L7

18

X : parts per Million ;: 1H

L ST ' 60 L0 S0 0 10 I0-

duepunqe

280

PITT'L

609L°1

X : parts per Million : 1H



£0r

01

RduEpUnqe

77

7.8

79

8.0

8.1

8.2

8.3

84

8.5

8.6

8.7

8.8

8.9

9.0

9.1

9.2

9.4

9.5

9.6

P6I8'L
6EES'L

§955°6

1H

X : parts per Million

281

RuEpunqe

6.6

6.7

6.8

6.9

7.1

72

73

74

7.5

7.6

S859°9

15699

691L9

SESL'9

FO8EL

6ETH'L

LSLY'L

TE0S'L

1H

X : parts per Million



APPENDIX 18
'H NMR SPECTRA OF
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APPENDIX 19
'H NMR SPECTRA OF
25,26,27,28-TETRAKIS(N-HEXYLOXY)-P-TERT-BUTYLCALIX[4]ARENE-1, 3-

ALTERNATE (10)
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APPENDIX 20
'H NMR SPECTRA OF
25,26,27,28-TETRAKIS(N-HEXYLOXY)-P-TERT-BUTYLCALIX[4]ARENE-1, 3-

ALTERNATE-NO* COMPLEX (11)
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APPENDIX 21
"H NMR SPECTRA OF
REDCUCED 25,26,27,28-TETRAKIS(N-HEXYLOXY)-P-TERT-

BUTYLCALIX[4]JARENE-1,3-ALTERNATE-NO" (11)
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APPENDIX 22
"H NMR SPECTRA OF

CALIX[4]DIMERIC TUBE
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APPENDIX 23
'H NMR SPECTRA OF

CALIX[4]DIMERIC TUBE_NO" COMPLEX
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APPENDIX 24
'H NMR SPECTRA OF

REDUCED CALIX[4]JARENE DIMERIC TUBE-NO" COMPLEX (13)
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APPENDIX 25
'"H NMR SPECTRA OF

CALIX[4]ARENE TRIMERIC TUBE (14)
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APPENDIX 26
"H NMR SPECTRA OF

CALIX[4]ARENE TRIMERIC TUBE-NO" COMPLEX (15)
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APPENDIX 27
"H NMR SPECTRA OF

REDUCED CALIX[4]JARENE TRIMERIC TUBE-NO" COMPLEX (15)
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APPENDIX 28
"H AND *C NMR SPECTRA OF

25,26,28-TRIS(N-PROPYL)-P-TERT-BUTYLCALIX[4]MONOQUINONE (19)
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*C NMR was recorded on Bruker Avance-400 MHz spectrometer.
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APPENDIX 29
'"H AND "*C NMR SPECTRA OF
25,26,28-TRIS(N-PROPYLOXY)-P-TERT-BUTYLCALIX[4]MONOHYDROQUINONE

(20)
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*C NMR was recorded on Bruker Avance-400 MHz spectrometer.
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APPENDIX 30
'"H NMR SPECTRA OF

P-TERT-BUTYLCALIX[4]IMONOHYDROQUINONE-NITROSONIUM COMPLEX (21)
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APPENDIX 31
'"H AND "*C NMR SPECTRA OF

26,28-BIS(N-PROPYLOXY)-23-NITRO-P-TERT-BUTYLCALIX[4]MONOQUINONE (22)
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TGA CUREVES FOR LINEAR TRICATIONIC IONIC LIQUIDS
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APPENDIX 34

SEM IMAGES OF SILICA BONDED

SPME COATINGS
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10 um EHT = 500 kV Mag= 157 KX Date :14 Aug 2009
| 3.4 mm StageatT= 00° Signal A= SE2 Time :9:34:49

SEM Image of IL3-NTf; silica bonded coating material
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Bt KRRER00O

Metal support
Silica supported IL
material
100 pm EHT = 250 kv Mag= 81X Date :14 Aug 2009 w
WD =110 mm Stage at T= _30.0° Signal A=SE2 Time :10:20:59
| Metal support

SEM Image of a IL3-NTf; fiber
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EERT09

20 pm EHT = 6.00 k¥ Mag= 234X Date :14 Aug 2009
WD = 52 mm Stageat T= 00° Signal A= SE2 Time :10:40:47

Cross sectional area of a IL-based silica supported SPME fiber
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APPENDIX 35
REPRESENTATIVE CHROMATOGRAMS OF SPME HEADSPACE

AND DIRECT IMMERSION ANALYSIS
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HEADSPACE SPME

Heam. |

Chromatogram A1: Desorbed compounds from Polymeric Fiber #3 after

headspace adsorption on a 5 ppm alcohol mixture. Chromatogram obtained on a
Supelcowax 10, 30 m, 250 ym, 0.25 um film thickness column; carrier gas

helium, 1 mL/min, 35 cm/s giving t, = 1.43 min.

Temperature program: 50°C for 4 min followed by a gradient 15°C/min for 6.7 min to 150°C.

ID# Compound name Retention time
(5 ppm each) (min)
1 Acetone 2.65
2 Methanol 3.23
3 Isopropy! alcohol 3.55
4 Ethanol 3.65
5 Acetonitrile 4.90
6 n-Propanol 5.39
7 n-Butanol 7.51
* Unknown 1.94; 3.92; 5.16

Table A1: Retention time for Polymeric Fiber #3 for 5 ppm alcohol mixture Chromatogram 1.
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Chromatogram A2: Desorbed compounds coming from Polymeric Fiber #3 after direct
immersion adsorption on a polar mixture listed in Table 2. Chromatogram obtained on
a SPB-1 Sulfur PDMS, 30 m, 320 uym, 4 pm film thickness column; carrier gas helium,
1.5 mL/min, 30 cm/s giving t, = 1.67 min. Temperature program: 45°C for 1.5 min
followed by a gradient 8°C/min for 4.4 min next 20°C/min for 8.5 min to 250°C.

ID# Compound name Concentration Retention time
(mg/mL or ppm) (min)
1 Methanol 20 1.74
2 Ethanol 20 2.42
3 Acetonitrile 20 2.60
4 Acetone 20 2.73
5 Isopropyl alcohol 20 2.91
6 n-Propanol 10 3.89
7 Methyl-t-butyl ether 0.5 4.28
8 Ethyl acetate 0.5 4.56
9 n-Butanol 10 6.11
10 Dioxane 20 7.18
1 Butyric acid 10 8.26
12 Phenol 0.2 10.70

Table A2: Retention time for Polymeric Fiber #3 for the polar mixture of

Chromatogram 2.
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