
EPISODIC TASK PLANNING AND LEARNING

IN PERVASIVE ENVIRONMENTS

by

YONG LIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2010

Copyright c© by YONG LIN 2010

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr. Fillia Makedon for constantly

motivating and encouraging me, and also for her invaluable advice during the course of my

doctoral studies. She guides me to the research towards the intelligent robot in the area

of pervasive assistive environments. I also wish to thank my academic advisors Dr. Chris

Ding, Dr. Heng Huang, Dr. Gutemberg Guerra-Filho and Dr Yonghe Liu for their interest

in my research and for taking time to serve on my dissertation committee. My research

using Markov decision processes and game theory for the autonomous robot is after the

suggestion of Prof. Ding. I also want to thank Prof. Huang for his guidance of machine

learning and classification techniques. His knowledge and insights were very helpful to

me.

I would also like to extend my appreciation to the Computer Science and Engineering

department of the University of Texas at Arlington, for providing financial support for my

doctoral studies. I am especially grateful to Dr. Manfred Huber, who opened the gateway

and aroused my interest of the area of uncertainty and artificial intelligence. I am grateful

to all the teachers who taught me during the years I spent in school, first in China, and

finally in the Unites States. I would like to thank Dr. Shuwang Lu for encouraging and

inspiring me to pursue graduate studies.

I joined the Heracleia Human-Centered Computing Laboratory in May 2008. From

that time on, the working environment of the lab boosts my interest in research for methods

of pervasive assistive environments. I thank all the members of the Heracleia lab. Espe-

cially, I wish to thank Dr. Zhengyi Le, Dr. Eric Becker for their support and encouragement,

so that I can start the research on assistive technologies.

iii

Finally, I would like to express my deep gratitude to my family who has encouraged

and inspired me and sponsored my undergraduate and graduate studies. I am extremely

fortunate to be so blessed. I am also extremely grateful to my mother, sister and wife for

their sacrifice, encouragement and patience. I also thank several of my friends who have

helped me throughout my career.

This work is supported in part by the National Science Foundation under award num-

ber CT-ISG 0716261, MRI 0923494 and CPS 1035913. Any opinions, findings, and con-

clusions or recommendations expressed in this publication are those of the author(s) and

do not necessarily reflect the views of the National Science Foundation.

November 18, 2010

iv

ABSTRACT

EPISODIC TASK PLANNING AND LEARNING

IN PERVASIVE ENVIRONMENTS

YONG LIN, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Fillia Makedon

During planning and control of autonomous robots in a pervasive environment de-

signed to serve people, we will inevitably face the situations of needing to perform multiple

complex tasks. Management and optimization of the execution of complex tasks involve

the design of efficient approach and framework based on algorithm, artificial intelligence,

machine learning, cognitive science, etc. In this dissertation, we have developed a new

method for complex task planning of robots, so that they can improve the service for the el-

derly and the disabled. The word “episode” comes from the Greek word “επεισoδισo”,

which means “event”, or “occurrence”. Humans learn and plan from past episodes by

connecting them to the current environment and the task at hand. In cognitive science,

episodic memory refers to “a human memory subsystem that is concerned with storing and

remembering specific sequences and occurrences of events pertaining to a person’s ongo-

ing perceptions, experiences, decisions and actions” [1]. It helps a human plan the next

task. In recent years, researchers have begun to realize the importance of episodic memory

to artificial intelligence and cognitive robots, and the episodic like approaches to general

event processing.

v

We propose a computational framework that utilizes the idea of episodic memory to

cope with robot planning on complex tasks. Our approach is based on the traditional math-

ematical model of Markov decision processes, combining the episodic memory approach.

In this way, it provides a human-like thinking for autonomous robots, so that they can ac-

complish complex tasks in pervasive assistive environments, and thus achieve the goal of

assisting the everyday living of people. In regard to the traditional hierarchical algorithms

for Markov decision processes, although they have been proved to be useful for the prob-

lem domains with multiple subtasks due to their strength in task decomposition, they are

weak in task abstraction, something that is more important for task analysis and modeling.

Using episodic task planning and learning, we propose a task-oriented design approach,

which addresses the functionality of task abstraction. Our approach builds an episodic task

model from different problem domains, which the robot uses to plan at every step, with

more concise structure and much improved performance than the traditional hierarchical

model. According to our analysis and experimental evaluation, our approach has shown to

have better performance than the existing hierarchical algorithms, such as MAXQ [2] and

HEXQ [3].

We further introduce a hierarchical multimodal framework for robot planning in

multiple-sensor pervasive environments, using multimodal POMDPs. Considering real-

istic assistive applications may be time-critical and highly related with the risk of planning,

we develop a risk-aware approach, allowing robots to possess risk attitudes [4] in their

planning. Thus, we have answered the question of how to plan and make sequential deci-

sions efficiently and effectively under complex tasks in pervasive assistive environments,

which is very important for the design of applications to assist the living of the elderly and

the disabled.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

LIST OF FIGURES . x

LIST OF TABLES . xii

Chapter Page

1. INTRODUCTION . 1

1.1 Motivation . 2

1.2 Significance . 7

1.3 Outline . 8

2. PLANNING IN PARTIALLY OBSERVABLE DOMAINS 9

2.1 Introduction of MDPs and POMDPs . 9

2.2 POMDP Solutions . 11

2.3 Belief Value Iteration with MDP Heuristic 13

2.3.1 Belief States Approximation . 13

2.3.2 The MHVI Algorithm . 15

2.3.3 Belief Graph and Belief Space Compression 17

2.4 Experimental Evaluation . 21

2.4.1 Performance Comparison . 21

2.4.2 Stage Convergence and Post-Convergence Iteration 22

2.5 Conclusion . 25

3. EPISODIC TASK LEARNING IN ASSISTIVE ROBOTS 27

3.1 Introduction to Episodic Tasks . 27

vii

3.1.1 Episode and Episodic Memory . 28

3.1.2 Episodic Task Planning and Markov Decision Processes 30

3.2 Hierarchical Approaches for MDPs . 32

3.3 Task-Oriented Design . 35

3.3.1 Tasks and MDPs . 35

3.3.2 Experience and Task Abstraction 37

3.4 Episodic Task Learning . 38

3.4.1 Differentiate the States . 38

3.4.2 Episodic Task State Abstraction 40

3.4.3 Knowledge Acquisition by TMDP 43

3.5 Extended to POMDP Task . 44

3.6 An Alternative Approach for the Modeling 48

3.7 Comparison of Episodic Task Learning and Episodic Memory 50

3.8 Experimental Evaluation . 53

3.9 Conclusion . 57

4. PLANNING FOR MULTIMODAL PERVASIVE APPLICATIONS 58

4.1 Introduction . 58

4.2 Technical Preliminary . 60

4.3 Pervasive Human-Computer Interaction 62

4.3.1 Sensor Coverage in Functional Areas 62

4.4 Dynamic Fusion of Sensor Data . 63

4.4.1 Event System and Multi-observation 65

4.5 Hierarchical Multimodal Markov Stochastic Domains 67

4.5.1 Activity Planning by MDPs . 67

4.5.2 Action Planning by Multimodal POMDPs 69

4.5.3 Action Control for Reminding Tasks 72

viii

4.6 Experimental Evaluation . 73

4.7 Related Work . 76

4.8 Conclusion . 77

5. PLANNING FOR RISK-SENSITIVE TASKS 78

5.1 Introduction . 78

5.2 Decision Theories and Utility Functions 83

5.3 Risk-Aware MDPs . 85

5.4 Decision-Making with Cost and Wealth 88

5.4.1 Decision Processes and Decision Graph 88

5.4.2 Reward, Cost and Wealth . 88

5.5 Bridging Cost and Wealth . 91

5.5.1 Problem Formulation . 91

5.5.2 Equipotential Operations . 93

5.5.3 Bi-Directional Value Iteration . 96

5.6 Example . 99

5.7 Conclusion . 104

6. CONCLUSION AND FUTURE WORK . 105

6.1 Summary . 105

6.2 Future Work . 106

6.3 Closing Remarks . 106

REFERENCES . 108

BIOGRAPHICAL STATEMENT . 117

ix

LIST OF FIGURES

Figure Page

1.1 The Task for An Robot Serves Medicine to A Patient 3

2.1 Example of A State Graph and A Belief Graph
(a) State Graph; (b) Belief Graph . 18

2.2 Convergence of Reward in MHVI Algorithm:
(a) Hallway2; (b) Tag . 22

2.3 MHVI Performance of Average Steps to
Absorbing States (y-axis is the number of steps,
i.e. the stochastic distance to absorbing states):
(a) Hallway2; (b) Tag . 23

2.4 Effect of Belief Points Reassignment Level on the Performance:
(a)Size of Belief Space |B| decreases with greater `;
(b) The use of ` does not change the Reward 24

3.1 An Example of Episodic Memory [5] . 30

3.2 MAXQ Framework for Taxi . 33

3.3 Taxi Domain . 39

3.4 Episodic Task Abstraction for Taxi . 41

3.5 Episodic Task Learning Approach Diagram 42

3.6 Task Abstractions for HEXQ and MAXQ:
(a) Taxi HEXQ; (b) Taxi MAXQ . 43

3.7 RockSample[4,4] Domain . 46

3.8 Task Abstraction for RockSample[4,4]
(POMDP with abstract actions) . 47

3.9 TSN Graph for Taxi Task (MDP) . 49

3.10 TSN Graph for Coffee Task
(POMDP without Abstract Actions) . 51

3.11 Episodic Memory Formation . 52

x

3.12 Comparison for Taxi Domain (Single Trial):
(a) Reward of by Iteration Steps; (b) Reward of by Time 54

3.13 Comparison for Taxi Domain (Different Trials):
(a) Convergence Steps; (b) Convergence Time 56

4.1 Sensor Deployment in A Pervasive Environment 63

4.2 Sensor Events and Dialogue Events Become the Source of
Multi-observation for Reminder Planning System 65

4.3 A Scenario for Loose Coupling Pervasive Interaction
(Remind the User to Take Medicine):
dashed-lines indicate optional speech response 66

4.4 Hierarchical Multimodal Framework for Reminder Planning System 68

4.5 Activities for Reminding Tasks . 68

4.6 The Action Domain TSN Graph for Every Activity 70

4.7 Learning Curve for the Multimodal POMDP 74

4.8 Analysis of the Actions in Multimodal POMDP Subtasks 74

4.9 Statistic for the Prompt Action in the Reminder System 75

5.1 Relationship of Wealth, Risk Attitude with Utility 79

5.2 Decision Tree for the Investment of a Venture 81

5.3 Bi-directional Value Iteration for Bridging Cost
and Wealth (equipotential positions of decision nodes
are visualized as bold lines) . 97

5.4 Decision Graph for the Block-World Problem 102

5.5 Comparing the Initial Plan (W0) and the Optimal Plan (W0 = 20):
x-axis be τ , y-axis be the index of plan . 104

xi

LIST OF TABLES

Table Page

2.1 Comparison of Different Algorithms
(Items with ∗ are tested in our platform) 26

3.1 Model Parameters of RockSample[n,k] (n2 map, k rocks) 47

3.2 Performance Comparison of POMDP Tasks 57

4.1 Correlations for States and the Second Class Atomic Actions 73

5.1 Comparison of Reward, Cost and Wealth in Planning 91

5.2 Four Optional Plans for the Block-World Problem 102

5.3 Example Data from the Bi-directional Value Iteration Process 103

xii

CHAPTER 1

INTRODUCTION

A pervasive assistive environment is a smart home space that provides healthcare

monitoring and assists the elderly and the disabled people. The domestic equipment au-

tomation system, the pervasive computing and data mining based healthcare monitoring

system, and the robot service system are three branches for the platform of assistive envi-

ronments. Wireless sensors, cameras, PDAs and healthcare monitoring devices are used to

detect user activity and health [6, 7]. With accurate information of the human, such as the

living habits and daily activities, it is possible to analyze the physical and mental state of

the human.

The elderly and the disabled are a special group of users that deserve special care.

A simple and friendly human-machine interface is necessary for the assistive environment

instruments. For the increasing number of elderly and disabled that live alone, it becomes

a social problem to introduce a good solution to provide service and support for their activ-

ities of daily living (ADL) [8]. Sensor networks provide a mechanism to detect a person’s

activity. Using data-mining techniques, we are able to analyze the intention and health of

a person. However, only the robot as an autonomous instrument is able to sense the world

and change the world.

The concept of service robot has emerged over the past decades. The service robot

has successfully found its way in society as factory robot, cleaning robot, coffee robot,

rescue robot, etc. Planning, navigation, decision making and learning is the basic abilities

for a robot to make good service for the user.

1

2

1.1 Motivation

How could a robot serve humans effectively and efficiently. This is a problem that

researchers want to solve for many years, looking at different aspects of the problem. Gen-

erally speaking, a robot needs to organize its service to humans as tasks. A task is often

referred to a specific process with goals or termination conditions. Tasks are highly re-

lated to situation assessment, decision making, planning and execution. For each task, we

achieve its goals by a series of actions. A complex task contains not only different kinds of

actions, but also various internal relationships, such as causality, hierarchy, etc.

An assistive robot in pervasive environments faces many types of tasks. Take a

healthcare robot that serves medicine to a patient as an example (Figure 1.1). It has to

get a cup of water and a bottle of medicine first, then it delivers the water and medicine to

the patient. This is a rather simple task for a human. When it comes to a robot, we have to

consider how to optimize its planning and execution. A more complex situation of the task

is, if only one of the three cups has water, and only one of the two bottles has medicine,

while the robot does not know exactly which cup has water and which bottle has medicine,

then this task has to involve a complex process of searching. This may greatly increase

the complexity of the problem domain. A similar domain with the medicine domain is

RockSample [9], in which a robot explores in square region to determine the usability of

several rocks located throughout the area. In these cases, the tasks have partially observable

factors, that is, the medicine robot cannot determine whether the cup is full of water until

it comes close to the cup, and the exploring robot has to come close to the rock until it has

a probability 1 to make a successful check of the usability of the rock.

Markov decision processes (MDPs) serve as useful mathematical tools to model the

assistive tasks in a pervasive environment. An MDP is a model that an agent interacts syn-

chronously with an environment that is fully observable. It assumes the sensor system of the

agent is precise enough such that it can observe every state with probability 1. Partially Ob-

31 2
3 4 5 6

Figure 1.1. The Task for An Robot Serves Medicine to A Patient.

servable Markov Decision Processes (POMDPs) are generalized forms of MDPs, in which

the observations are considered to have some certain probabilities [10]. POMDPs are more

flexible to deal with uncertainty in different tasks. In [11], POMDPs are proposed for the

planning system to remind people with dementia or cognitive disabilities to wash hands.

Some research works incorporate dynamic Bayesian networks to strengthen POMDP [12],

which is modeled as factored POMDPs. It is proposed for the spoken dialogue manage-

ment system served to order the ticket. However, early problems of (PO)MDPs have often

been constrained in small state spaces and simple tasks. For example, Hallway is a task

in which a robot tries to reach a target in a 15-grids apartment [10]. Considering the task

structure, this process has only a single goal. The difficulties come from noisy observations

by imprecise sensors equipped on the robot, instead of the task. Although (PO)MDPs have

been accepted as successful mathematical approaches to model planning and controlling

processes, without an efficient solution for big state spaces and complex tasks, we cannot

apply these models on more general problems in the real world. In a simple task of grasp-

ing an object, the number of states reaches |S| = 1253 [13]. If the task domain becomes

4

complex, it will be even harder to utilize these models. Suppose an agent aims to build a

house, there will be thousands of tasks, with different configurations of states, actions and

observations.

Compared to other task planning approaches, such as STRIPS or Hierarchical Task

Network [14], (PO)MDPs consider the optimization for every step of the planning. There-

fore, (PO)MDPs are more suitable for planning problems of intelligent agents. However,

for task management, the (PO)MDP framework is not as powerful as the Hierarchical Task

Network (HTN) planning [15]. HTN is designed to handle problems with many tasks.

Primitive tasks can be executed directly, and non-primitive tasks will be decomposed into

subtasks, until every subtask becomes a primitive task. This idea is adopted in the hi-

erarchical partially observable Markov decision processes (HPOMDPs) [16]. Actions in

HPOMDPs are arranged in a tree. A task will be decomposed into subtasks. Each subtask

has an action set containing primitive actions and/or abstract actions. In fact, a hierarchical

framework for (PO)MDPs is an approach that builds up a hierarchical structure to invoke

the abstract action subfunctions. Although inherited the merits of task management from

HTN, the hierarchical (PO)MDPs do not specially address the optimization of the big state

space problem. Another solution considers multiple tasks as a merging problem using mul-

tiple simultaneous MDPs [17]. This solution does not specially consider the characteristic

of different tasks, and it limits the problem domains to be MDPs.

Existing hierarchical approaches such as MAXQ [2] emphasize the decomposition

of abstract actions, rather than discovering the internal relationship of subtasks. Compared

to MAXQ, the VISA algorithm [18] is more close to an episodic relationship because it

can depict the causal relationships between different state variables. Unfortunately, the

causal relationships of VISA are correlated with state variables, rather than states, not to

mention task-related states. While in the episodic task learning, we apply the relationships

between abstract states, which are task-related states. Like the states defined in state space,

5

an abstract state is a reasonable combination of state variables. The difference between

states and abstract states is, in our task-oriented approach, we extract the most useful task-

related states as the abstract states. The author of HEXQ [3] clearly proposes a concept

of skill-reuse. If a reinforcement learning agent can find and learn reusable subtasks and

in turn employ them to learn higher level skills, then it should be more efficient than an

agent without the skill-reuse. This idea is close to our proposition of task learning. Un-

fortunately, as examined in our experiments, the performance of HEXQ is not as good as

other hierarchical approaches.

A cognitive robot is a robot that is human-aware [19], in order to improve the pos-

sibility to cohabitate with a human, and strengthen the human-robot interaction. Research

into the development of a human-like thinking [20, 21] of a robot aims at enabling the robot

to remember scenarios encountered, and use memory as experiences to improve the future

planning.

When tasks to assist people are too complex for a robot to decide what to do next,

the task planner wants to utilize a smarter framework for the sequential decision-making.

An effective approach can be considered is the human-like thinking approach. In fact, arti-

ficial intelligence is motivated just using some mathematical, algorithm or other theoretical

technologies to simulate the smart humankind. In this dissertation, we propose a new ap-

proach for the task planning, which we call episodic task planning, we also describe how to

learn such a episodic task framework. The word of episodic comes from episodic memory

from cognitive science [22]. In recent years, episodic memory for autonomous robots has

become a hot research topic [5, 23]. There is also work on using intelligent agents that

incorporate human-like thinking, so as to become cognitive robots [24, 21].

Our approach of episodic task planning and learning provides a computational frame-

work and a solid mathematical foundation for the robot planning with human-like thinking.

It is known as episodic memory, referring a functionally subsystem of human memory that

6

is concerned with storing and remembering specific sequences of events pertaining to a

person’s ongoing perceptions, experiences, decisions and actions [1]. The human memory

can be divided into short term memory (working memory) and long term memory. The

short term memory stores information recently received or needed for further processing.

The long term memory consists of three parts [25]:

• Semantic Memory: It is a network of associations and concepts that underlies our

basic knowledge of the word meanings, categories, facts and propositions.

• Procedural Memory: It is memory for behavior or motor skills, or more generally,

perceptuomotor or ideomotor skill. The skill such as riding a bicycle, swimming is a

procedural memory.

• Episodic Memory: It involves the literal re-experiencing of past events-the bringing

back to awareness of previous experiential episodes. A human accesses this memory

if he can say “I remember”.

Episodic memory is concerned with unique, concrete, personal experience dated in

the person’s past (e.g. a trip to a park). On the other hand, semantic memory [26] refers to

a person’s abstract, timeless knowledge of the world (e.g. the color of the sky).

We propose a task-oriented design approach. Specifically, we use the concept of task

abstraction, which is a snapshot of a scenario. When a planner comes to such a snapshot, it

will arouse the planner to recall previous memory about a similar episode. Then the planner

will be able to follow its stored experiences to execute the current situation. Our compu-

tation framework is based on Markov decision processes (MDPs) and partially observable

Markov decision processes (POMDPs). We improve the original design of (PO)MDPs

based approaches and incorporate the advantages of episodic memory, as a result, we call

this approach episodic task planning and learning.

We further introduce a hierarchical multimodal framework for robot planning in a

pervasive environment, using multimodal POMDPs, which models our approach to solve

7

real-world problems in pervasive environments. Considering that realistic applications may

be risk-sensitive, we use a risk-aware approach for the task planning. As a result, we an-

swer the question of planning and decision-making for complex tasks in pervasive assistive

environments, which is very important for the design of assistive applications. The episodic

task planning and learning forms the core part of our approach.

1.2 Significance

In this work, we answer a fundamental question about how to effectively plan the ac-

tions of a robot in complex pervasive environments. Our computational framework makes

sequential decisions for the execution of tasks. This is significant in the following aspects:

Compared to the episodic memory approach, our approach provides an ability to

optimize the system using global data, rather than simply to correlate an episode with an

event. We use the classical models of MDPs and POMDPs that have been proved to be a

rather flexible and powerful mathematical tools to optimize the action control of robots. It

provides a strong computational framework for the execution of tasks and the completion

of objectives.

On the other hand, considering the traditional hierarchical algorithms for MDPs, al-

though they are strong in task decomposition, they are weak in task abstraction, which is

more important for task analysis and modeling. In this work, we propose a task-oriented

design to strengthen the task abstraction. Our approach learns an episodic task model from

the problem domain, with which the planner obtains the same control effect, with con-

cise structure and much improved performance than the original model. According to our

analysis and experimental results, our approach has better performance than the existing

hierarchical algorithms, such as MAXQ and HEXQ. More importantly, our approach pro-

8

vides a way to learn and store experiences, and make use of these experiences for future

planning and execution.

We also provide solutions for multimodal and risk attitudes factors in planning sys-

tems. We give examples to explain how to solve these problems. As a result, the question

of how to make planning in pervasive environments that have complex tasks is answered in

this dissertation.

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces

the technical preliminaries of MDPs and POMDPs, and gives an algorithm for POMDPs.

Chapter 3 shows how episodic task learning can be used by intelligent agents to effectively

and efficiently make sequential decisions to serve people in assistive pervasive environ-

ments. Chapter 4 further introduces a hierarchical framework for multimodal POMDPs.

The application background is a reminder system to serve people with cognitive impair-

ments. Chapter 5 explains how to deal with risk-aware planning in pervasive environments.

Chapter 6 discusses the results and gives ideas for future work.

CHAPTER 2

PLANNING IN PARTIALLY OBSERVABLE DOMAINS

2.1 Introduction of MDPs and POMDPs

A Markov Decision Process (MDP) [27, 28] is a model to solve sequential decision

making under uncertainty. An MDP defines the model an agent interacts synchronously in

fully observable environments. The fully observable environment is an ideal assumption.

It assumes the sensor system of the agent is precise enough such that it can observe every

state with probability 1. The model is described as a tuple Mmd p = 〈S,A,T,R,γ〉, where

S is a set of states, A is a set of actions, T (s,a,s′) is the transition probability from state s

to s′ using action a, R(s,a) defines the reward when executing action a in state s, and γ is

the discount factor. The optimal state-action mapping for the tth step, denoted as πt , can be

calculated by the optimal (t−1)-step value function Vt−1:

πt(s) = argaVt(s)

= argmax
a

Qt(s,a)

= argmax
a

[
R(s,a)+ γ ∑

s′∈S
T (s,a,s′)Vt−1(s′)

]
. (2.1)

where Vt(s) is the value of a state s in the time step t, and Qt(s,a) is the Q-value of a state

s, given an action a in the time step t.

This is originally known as Bellman equation [29]. It is solved using dynamic pro-

gramming, with convergence condition as maxs |Vt(s)−Vt−1(s)|< ε .

A POMDP models an agent’s action in an uncertainty world. At each time step,

the agent needs to make a decision based on collected historical information. A policy is

defined as a function of action selection under stochastic state transitions and noisy obser-

9

10

vations. A POMDP is represented as Mpomd p−S = 〈S,A,O,T,Ω,R,γ〉, where S is a finite set

of states, A is a set of actions, O is a set of observations. At each time step, the agent lies in

some state s ∈ S. After taking an action a ∈ A, the agent goes into a new state s′. The tran-

sition is a conditional probability function T (s,a,s′) = p(s′|s,a), which is the probability

the agent lies in s′, after taking action a in state s. The agent makes observations to gather

information, with observation result o ∈ O. This is modeled as a conditional probability,

Ω(s,a,o) = p(o|s,a).

Now that the POMDP has to model the planning with partially observable informa-

tion, it introduces a concept of belief state, representing how much belief an agent assigns

to the possible states in which it resides. After belief state is taken into consideration,

the original POMDP model changes to a seemingly fully observable MDP model, denoted

as Mpomd p−B = 〈B,A,O,τ,R,b0,bg,γ〉, where b0 is the initial belief state, and bg is the ab-

sorbing states, representing the goals and/or termination states (RockSample [9] is a typical

example using termination states. POMDP processes without any goal or termination state

are theoretically feasible. If this condition is considered, we can simply set bg = null). The

B is a set of belief states, i.e. belief space. The τ(b,a,b′) = p(b′|b,a) is the probability the

agent changes from b to b′ after taking action a. The R(b,a) = ∑s R(s,a)b(s) is the reward

for belief state b.

The POMDP framework is used as a control model for an agent. In a control problem,

a utility is defined as a real-valued parameter to determine the action of an agent at every

time step. This is represented as a real-valued reward R(s,a), which is a function of state s

and action a. The optimal action selection becomes a problem to find a sequence of actions

a1..t to maximize the expected sum of rewards E (Σtγ tR(st ,at)). When we use a discount

factor γ , the values can converge to a fixed number. When states are not fully observable,

the goal becomes to maximize the expected reward for each belief. The nth horizon value

11

function can be built from the previous value Vn−1 using a backup operator H, i.e. V = HV ′.

The value function is formulated as the following Bellman equation

V (b) = max
a∈A

[R(b,a)+ γ ∑
b′∈B

τ(b,a,b′)V (b′)]. (2.2)

Here, b′ is the next step belief state,

b′(s) = bt(s′) = ηΩ(s′,a,o)Σs∈ST (s,a,s′)bt−1(s), (2.3)

where η is a normalizing constant.

When optimized exactly, this value function is always piece-wise linear and convex

in the belief space [30].

2.2 POMDP Solutions

The uncertainty property and the scale of problems affect the solution of POMDP.

Various approaches have been proposed in prior works.

Value iteration is an approach originated from utility theory [31]. Some early algo-

rithms, such as Witness [32], consider the use of exact value function for belief states. Un-

fortunately, the time and space complexity of an exact value iteration makes it only suitable

to solve POMDPs with dozens of states. More researchers try to find approximate methods

for value iteration. A smooth and differentiable approximation method called SPOVA is

proposed in [33]. A Boyen-Koller approximation algorithm for belief states is proposed in

[34]. It requires the model to be specified as a dynamic Bayesian network. In [35], belief

states are approximated by sets of (weighted) samples drawn from particle filter. When a

new belief state is encountered, its Q-value is obtained by finding k nearest neighbors from

the historical records, with result being the linearly averaging of the Q-values.

The MDP heuristic is considered in QMDP [10] to solve POMDPs. The Q-value for

belief state b is estimated at Qa(b) = ∑s b(s)QMDP(s,a). Policies within QMDP do not take

12

actions to gain information, and decisions are made under current uncertain information.

Therefore, QMDP can lead to loops of belief states [10]. Several methods are considered to

improve the MDP heuristic approach. The most-likely-state approximation computes the

most likely state x∗ = argmaxx b(x), and defines π(b) = πMDP(x∗). A transition entropy Q-

MDP algorithm is proposed in [36]. From the experimental results of Hallway2 problem,

the goal achievement percentage is 63.7%, compared to 3.9% for Q-MDP.

Reachable belief state based algorithms (such as PBVI [37], Randomized PBVI [38])

are considered as a substitute for each belief update. PBVI produces new beliefs in a

single step forward trajectory for every action. It only keeps one belief state that is farthest

away from any points already in the belief set B. The randomized PBVI initiates reachable

belief states by randomly exploring the environment. Instead of backing up every b ∈ B, it

backs up random belief states, instead of every b ∈ B. Classification and pattern adaptation

are used in [39] to find a decomposition of belief space into a small number of belief

features. The planning is taken over a low-dimensional space by discerning features and

using standard value iteration to find policies over discrete beliefs. However, utilizing

the classification technique on the belief spaces, the efficiency issue needs to be taken

into consideration. Another is the cluster approach to aggregate states [40], according

to the optimal MDP values. The soft clustered belief space is then projected onto the

POMDP. A framework extended from Bayesian reinforcement learning on the POMDP

problem domains is proposed in [41]. It relies on the Dirichlet distribution to approximate

the infinite belief space to a finite space.

Several approaches based on AND-OR trees and AND-OR graphs are proposed in

[42] to eliminate repeated states. In such a tree or a graph, OR-nodes represent action

choices by the planning agent, and AND-nodes represent the arrival of percepts. The pur-

pose is to provide a redundant structure to solve domains with huge belief states. In this

paper, we propose a least visited belief point reassignment (LVBPR) technique, which is

13

proved to be useful to limit the increase the belief space, and without a complex and redun-

dant structure.

2.3 Belief Value Iteration with MDP Heuristic

In this section, we introduce the MDP heuristic based value iteration algorithm for

POMDPs.

2.3.1 Belief States Approximation

If the environment is not fully observable to an agent, the first work is to find out

a quantification representation of the environment. This is why we consider belief states.

Belief states are continuous probabilities representing the current realization of an uncertain

environment. A belief state is the realized state of the world from sufficient statistic of

the history information. A POMDP model can be solved using Mpomd p−B. The belief

states approximation becomes an estimation from an infinite continuous belief space to a

finite discrete belief space, denoted as B̃ = SE(B), where SE is the belief state estimation

function. The solution becomes Mpomd p−B̃ = 〈B̃,A,O,V,Π,τ,R,b0,bg,γ〉, where V (s) is

the optimal value derived from MMDP. Correspondingly, the value of belief state b is

denoted as V (b). The Π(b) is the optional set of optimal actions for belief state b, and

B̃ is a finite set of belief states, compared to the infinite set of belief states B.

In a point-based approach, a belief space is built using the reachable points of belief

states [37]. A belief state b ∈ B is a probability distribution over discrete state space s1..n,

∑n
s=1 b(s) = 1. A belief point is a label to identify the belief state b, denoted as b̃. The

identification of a belief state b ∈ B is a classification of belief points in the belief space.

Our method has two stages. In the first stage, we use binary discrimination as a rough

classification of the probability distributions. Let b1,b2 be two belief states with the same

state space. We can easily get two binary similarities:

14

1. b1 and b2 are ε-binary similar iff ∀s,b1(s) > ε ∧b2(s) > ε , or b1(s)≤ ε ∧b2(s)≤ ε;

2. b1(s) and b2(s) are (1− ε)-binary similar iff ∀s,b1(s) > 1− ε ∧ b2(s) > 1− ε , or

b1(s)≤ 1− ε ∧b2(s)≤ 1− ε .

If belief states b1 and b2 are both ε-binary similar and (1− ε)-binary similar, then

b1 and b2 are binary similar, denoted as b1 ≈ b2. Using binary belief discrimination, the

continuous infinite belief space B is approximated to a finite belief space B̃, with size |B̃|=
2|S|. The binary belief discrimination is a rough but efficient classification for discrete states

distribution. Its time complexity is O(|B̃||S|).
Although binary discrimination is efficient when approximating the infinite belief

space onto finite horizon (finite number of states), we have to consider a more precise

method to match belief states with labeled belief points, which becomes the second stage.

There are several mathematical models to represent the difference of distribution, such as

K-L divergence. Considering the specific belief states distribution, we adopt the distribu-

tion distance and affinity theory [43]. Let b1 and b2 be two belief states defined on the same

belief space B, the distance between b1 and b2 is

d(b1,b2) =
√

2(1−ρ(b1,b2)),

where ρ(b1,b2) is the affinity of b1 and b2, representing the likeness of the distributions,

ρ(b1,b2) =
√

∑
s∈S

b1(s)b2(s). (2.4)

Matusita [43] proved ρ(b1,b2) has the following properties:

1. 0≤ ρ(b1,b2)≤ 1;

2. ρ(b1,b2) = 1 iff b1 = b2.

In Algorithm 1, we list the process for the estimation of belief state b′, which is the

next belief state computed from b. If b′ is an existing belief state in B̃, the algorithm returns

its belief point label. For a new belief point, we will insert b′ in B̃.

15

input: b,a,b′

output: b̃′

B̃′ = {x|τ(b,a,x) > 0∧b′ ≈ x}
if B̃′ 6= /0 then

b̃′ = argmaxx̃ ρ(b,x ∈ B̃′)

else

B̃′′ = {x|x ∈ B̃− B̃′∧b≈ x}
b̃′ = argminx̃ d(b,x ∈ B̃′′)

end if

if b̃′ = /0 then

B̃← B̃+b′, b̃′← belie f point(b′)

end if
Algorithm 1: Belief State Estimation

2.3.2 The MHVI Algorithm

Now we introduce an MDP heuristic based belief value iteration (MHVI) algorithm

to model the POMDP problems. It is based on an alternative tuple MPOMDP−B̃. Solution for

the POMDP problem becomes a process to solve the tuple. Besides the elements provided

in Section 2.3.1, we introduce others in the following. The Π can be derived from the

result of MMDP. This serves as the heuristic to compute the optimal policies of POMDP.

The value for belief point can be computed by iterating Equation (4.2). The approximate

belief space B̃ is initialized with |O|+2 belief points (one belief point for each observation,

plus b0 and bg), denoted as B̃0..|O|+1. Let the belief point created by observation o be

B̃(o,s), B̃(o,s) = ηΩ(s,∀a ∈ A,o). Unlike other belief points, during the entire algorithm,

the initial set of belief points B̃0..|O|+1 keep fixed without change.

16

We use a learning process to build τ . On initialization, τ has a single entry, τ(bg,∀a∈
A,b0)= 1. More transitional relationships can be learned during the explore-exploit process

of value iteration.

repeat

bt+1 ← b′t , t ← t +1

for ∀a ∈ A do

b̃′ = Belie f StateEstimation(b,a,b′)

update τ(b̃,a, b̃′)

V (b̃′) = b′×V (S)

if a ∈Π(b) then

Va(b̃) = maxa∈A[R(b,a)+ γ ∑b′∈B τ(b̃,a, b̃′)V (b̃′)]

end if

end for

π = argmaxaVa(b̃)

b′t ← Belie f StateEstimation(b,π,b′)

until converge

Algorithm 2: MHVI Explore-Exploit Iteration

As is shown in Algorithm 2, MHVI assumes the optimal policy π to be an element

of the optimal policy set for belief point Π(b̃), which is obtained from the tuple Mmd p. We

do not constrain the exploit process using the policy set. Therefore, unknown belief points

can still be found, which will benefit the final solution. Thus, the solution can be more

failure-proof. Since |Π(b)| ≤ |A|, this will also be helpful to decrease the exploration and

search time.

17

A transition probability of two belief points indicates the probability when we take

an action a on belief point b, and the system transit to another belief point b′. We have

τ(b̃,a, b̃′) = Σo∈O
[
Ω(b,a,o)T (b,a,o,b′)

]

= Ω(b,a,o),

where T (b,a,o,b′) = 1 if SE(b,a,o) = b̃′, T (b,a,o,b′) = 0 otherwise.

We find out Ω(b,a,o) by the following process. First we compute b′, b′(s) = b(s′) =

ηΣs∈Sb(s)T (s,a,s′), where η is a normalizing factor. By Ω(b,a,o,s) = ηb′(s)B(o,s), we

can finally obtain the transition probability for τ(b̃,a, b̃′).

2.3.3 Belief Graph and Belief Space Compression

The transitional relationship for fully observable problems is often represented as

a state graph. In a state graph, a node denotes the state of a system. States in a state

space are bijective to nodes in its state graph. The initial state s0 is the beginning node

of a trajectory. It can be revisited during the traversal. A state graph may have multiple

absorbing states. An edge in a state graph represents an action a ∈ A. The transitional

relationship is described as a probability T (s,a,s′). A state graph may have loop, which

starts from state s and ends also in s. A state graph may contain cycle, which passes

through state s, goes into another state, and returns to s. The absorbing states cannot be in

a cycle. In a state graph, reward from action a is represented as the weight of an edge, i.e.

weight(s,s′) = R(s,a,s′).

The optimal policies of a state graph can form a path P∗s , starting from s0 and going

into sg. There is no loop or cycle in the optimal path P∗s of a state graph. In a specific

application, the action may be uncertain, for example, a traveler has 0.8 probability to

reach a new state and 0.2 probability to stay in the current position at a given step. This

may result in a loop in the real trajectory, but not a loop in the optimal path P∗s .

18

s ss
s s s ss

s
s s

s
s

action s states initial state absorbing statess
(a)

(b)

Figure 2.1. Example of A State Graph and A Belief Graph: (a) State Graph; (b) Belief
Graph.

19

In the case of partially observable problems, we use a belief graph to depict a transi-

tional relationship. In a belief graph, a node is a belief point b̃, which labels a belief state

b. By approximating the belief space, the cardinality |B| changes from infinite to a finite

value |B̃|. Therefore, belief states from the real belief space are surjective to nodes in the

belief graph. A belief graph has an initial belief point b0 and an absorbing belief point bg.

An edge in a belief graph represents the action and observation pair (a,o). A belief graph

can contain a loop, which starts from a belief point b and ends also at b. A belief graph

may contain a cycle, which passes through belief point b, goes in some other belief points,

and returns to b. In a belief graph, the weight for an edge is the reward from the action and

observation pair (a,o), i.e. weight(b̃, b̃′) = R(b,a,o,b′).

In this paper, every benchmark POMDP problem that has been researched by previ-

ous researchers makes the assumption that, states in POMDP are only partially observable,

except for the absorbing states. This makes the absorbing belief states identifiable.

The optimal policies of a belief graph form a path P∗b , starting from b0 and going into

bg. Suppose a belief graph is built from the exact belief space, i.e. every node represents

a different belief state, there will be no cycle or loop in P∗b . When we use the approximate

belief space B̃, multiple belief states may be projected onto one belief point by surjection,

therefore P∗b may contain loop or even cycle. This is different from the optimal path of a

state graph. We have two constraint conditions in the belief graph:

1. (Loop) ∀b̃, b̃′ ∈ P∗b , b̃ = b̃′⇒ b 6= b′;

2. (Cycle) b̃1, b̃2, .., b̃k, b̃′1 ∈ P∗b , b̃1 = b̃′1 ⇒ b 6= b′1.

These constraint conditions will eliminate loops and cycles in a belief graph, so that

we obtain a more reliable graph to establish the relationships between belief points.

Belief space is an important factor influencing the performance of the POMDP al-

gorithm. The computing cost for one iteration can be O(|A||S|2 + |A||B̃||S|). We cannot

change |S| and |A|. For an POMDP problem with big state space, the compression of belief

20

space is an effective strategy to maintain good performance. Other algorithms also have

different types of constraints in order to restrict the size of belief space. For example, the

Point Based Value Iteration (PBVI) algorithm [37] appoints only one belief point in each

time step. Next, we introduce a least visited belief point reassignment (LVBPR) approach,

by which we manage and compress the belief space in a natural way.

Every time a belief point is visited, it will be recorded into a counter. Let ` be the

belief point reassignment level. The system uses a buffer to store the belief points. At every

time step, the system has a probability to release the belief points whose counter is lower

than `. The released belief points can be assigned to the new belief state. Details of the

LVBPR approach are as follows:

Let ϕ(B̃) be the buffer of the belief space, with a lower-bound xϕ(B̃)y, size |ϕ(B̃)|,
and a upper-bound pϕ(B̃)q. In the beginning, let xϕ(B̃)y = B̃|O|+2, and the upper-bound of

the belief space be pϕ(B̃)q = B̃|O|+2+|ϕ(B̃)|.

In every time step, we verify the visited count of xϕ(B̃)y with `, if it is higher than

`, xϕ(B̃)y← xϕ(B̃)y+1. We get the available belief points from buffer ϕ(B̃). The current

location is set to an entry between xϕ(B̃)y and pϕ(B̃)q, denoted as ϕ(B̃x). If the visited

count of a current entry φ = ϕ(B̃x) is lower than `, we release τ(φ ,∀a ∈ A,∀B̃i ∈ B̃) and

τ(∀B̃i ∈ B̃,∀a ∈ A,φ), with φ assigned to the new belief state. Otherwise, we search the

available belief point in next buffer entry. If ϕ(B̃x)≤ pϕ(B̃)q, then

ϕ(B̃x) =





ϕ(B̃x)+1∼ 1− p

xϕ(B̃)y∼ p

where p is the probability to return to xϕ(B̃)y. This means that, in each step, the current

pointer has a p probability to change to xϕ(B̃)y.

If ϕ(B̃x) > pϕ(B̃)q, then pϕ(B̃)q ← pϕ(B̃)q+ 1, the entry of ϕ(B̃x) is assigned to

the current belief state, and ϕ(B̃x) ← xϕ(B̃)y. In this case, we reassign the belief point

21

when the buffer is overflow. We make use of the parameters `, ϕ(B̃) and p to adjust the

performance. Therefore, LVBPR is a dynamic and configurable algorithm.

By single step simulation of next belief point from b, we get at most |A| belief points.

By belief states estimation process, new belief points will be inserted into B̃.

2.4 Experimental Evaluation

To evaluate the performance of MHVI, the benchmark problems of Tiger-grid, Hall-

way [10], Tag [37] and RockSample [9] are chosen in the simulation experiments. The

experiments are implemented on Intel 2.4GHz CPU 2GB memory by Matlab.

2.4.1 Performance Comparison

The first experiment aims to get comparable results with existing algorithms. Repli-

cate earlier experimental settings, each problem is executed 100 times, terminates after

convergence within 251 steps. The results are averaged over 100 runs. Table 3.2 provides

the comparison results based on goal completion rate, sum of rewards, policy computation

time and number of belief points. We test Persus[44] and MHVI in the same environment.

The comparison results indicate MHVI achieves competitive performance.

Most of the rewards in MHVI are higher than the algorithms seen in prior works,

except for the Tag. However, even for the Tag domain, we found that if we use a different

configuration in our algorithm, the reward of MHVI can even reach −5.83. For almost

every problem domain, the belief space of MHVI is lower than that in other algorithms.

This puts the MHVI algorithm to a light-weight search space, so as to achieve better per-

formance. This is because we utilize a least visited belief point reassignment (LVBPR)

mechanism in the MHVI, so that it can manage the belief space, and speed up the search

process.

22

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

Time(secs)

R
ew

ar
d

(a)

0 1000 2000 3000 4000
−9

−8

−7

−6

−5

Time(secs)

R
ew

ar
d

(b)

Figure 2.2. Convergence of Reward in MHVI Algorithm: (a) Hallway2; (b) Tag.

We keep same parameter configuration for different problem domains in experiment

1 (By the adjustable configuration parameters, in fact, we can optimize the results of reward

and |B̃|.). However, rewards and |B̃| can be affected by the configuration. For example, in

Tag-domain problem (Table 3.2), the reward of MHVI is −7.37 and Persus −6.17. In the

following experiments, by properly tuning the configuration of `, the reward of MHVI can

even reach −5.83 (Figure 2.2(b)). This kind of tuning will also affect the size of B̃. More

details and explanations about the approach are presented in the next section.

2.4.2 Stage Convergence and Post-Convergence Iteration

Since we use a discount factor γ in Bellman equation, and the state space of MDP

is fixed, the value for each state is deterministic to converge after a sufficient number of

iteration steps. The iteration process for MHVI serves as a learning process to build the

POMDP model. The LVBPR approach guarantees the increase of B̃ in a slow process.

Using the discount factor γ , the value function of a POMDP problem will always

converge [32]. Given an approximation belief point set B̃, since the belief point of absorb-

ing states bg ⊂ B̃, if the values V (B̃0..|B̃|) converge, then the absorbing states are sure to be

visited. Hence the goal can be reached when values converge.

23

0 500 1000 1500
20

40

60

80

100

120

Time(secs)

#S
te

ps

(a)

0 1000 2000 3000 4000
0

50

100

150

200

250

Time(secs)

#S
te

ps

(b)

Figure 2.3. MHVI Performance of Average Steps to Absorbing States (y-axis is the number
of steps, i.e. the stochastic distance to absorbing states):(a) Hallway2; (b) Tag.

A belief space is a continuous space containing infinite belief points. For a finite

approximate belief space B̃ with converging values V (B̃1..|B̃|), when a new belief point is

discovered, B̃ changes to B̃′, and values converge to V (B̃1..|B̃′|). This indicates, unlike MDP,

a POMDP model can converge in multiple stages, which we call stage convergence. We

refer post-convergence iteration to the iteration after a convergence stage. The result will

lead to a new stage of convergence.

In MHVI, there are multiple stages of convergence. The second experiment clearly

demonstrates this effect. From Table 3.2, MHVI converges within no more than 251 steps

for every benchmark problem. In experiment 2, each POMDP problem is executed 10000

time steps and then stops after the values converge. The results indicate they often stop

within no more than 50 extra steps after the 10000 steps.

Figure 2.2 depicts the average of the discounted reward E (Σtγ tR(st ,at)). The av-

erage discount reward for Tag problem increases to −5.83 at the 10000 time step. From

the Tag problem (Figure 2.3(b)), the average number of steps to absorbing states decrease

steadily with the increase of iteration steps. This indicates, during the post-convergence

iteration, the POMDP finds better paths to the goal. The value iteration serves as a learning

24

3 4 5 6 7 8 9 10 11 12
60

80

100

120

140

160

180

200

220

Belief Points Reassignment Level

S
iz

e
of

 B
el

ie
f S

pa
ce

Hallway
Hallway2
Tiger−grid
Tag

(a)

3 4 5 6 7 8 9 10 11 12
−8

−6

−4

−2

0

2

4

Belief Points Reassignment Level

R
ew

ar
d

Hallway
Hallway2
Tiger−grid
Tag

(b)

Figure 2.4. Effect of Belief Points Reassignment Level ` on the Performance: (a) Size of
Belief Space |B| decreases with greater `; (b) The use of ` does not change the Reward.

25

process for the Tag POMDP model. However, the increase of reward for Hallway2 (Figure

2.3(a)) is not obvious.

In experiment 3, we want to make clear the effect of belief points reassignment level `

on the performance. The system takes 500 time steps and stops after it reaches convergence.

For each `, we execute the system 10 times and average the results. Results of the test

problems Hallway, Hallway2, Tiger-grid and Tag are considered for the comparison. When

` takes 2, there is no belief points reassignment, the belief points can be over 2000. In

Figure 2.4(a), |B̃| is high for each problem, and it is lower than 100 for all the problems.

Comparing with the results in Table 3.2, the time step is lower than 251, |B̃| = 107, and

` = 3. In Figure 2.4(b), the reward decreases only a little when ` increases. Thus, using `,

|B̃| becomes an adjustable parameter.

2.5 Conclusion

We present an algorithm of MHVI to solve POMDP problems. MHVI adopts an

MDP heuristic approach to build a weighted graph, in order to model the approximate belief

space, as well as a dynamic, configurable mechanism to manage graph nodes. The weighted

graph is a unified model for POMDP problems, with or without goals and/or termination

states. Theoretical analysis and experimental results indicate the weighted graph based

heuristic algorithm is fast, flexible and robust in solving POMDPs.

26

Table 2.1. Comparison of Different Algorithms (Items with ∗ are tested in our platform)

Method Goal% Reward Time(s) |B|
Tiger-grid (36s 5a 17o)
QMDP[37] n.a. 0.198 0.19 n.a.
PBVI[37] n.a. 2.25 3448 470
Persus*[44] n.a. 2.34 61.6 93
HSVI2[45] n.a. 2.30 52 1003
MHVI* n.a. 3.21 1.67 61
Hallway
(60s 5a 21o)
QMDP[10] 47.4 0.261 0.51 n.a.
PBVI[37] 96 0.53 288 86
Persus*[44] n.v. 0.51 61.4 105
HSVI2[45] n.v. 0.52 2.4 147
MHVI* 100 0.71 2.80 72
Hallway2 (92s 5a 17o)
QMDP[10] 25.9 0.109 1.44 n.a.
PBVI[37] 98 0.34 360 95
Persus*[44] n.v. 0.35 64.7 124
HSVI2[45] n.v. 0.35 1.5 114
MHVI* 100 0.65 3.96 66
Tag (870s 5a 30o)
PBVI[37] 59 -9.18 180880 1334
Persus*[44] n.v. -6.17 1542 418
HSVI2[45] n.v. -6.36 24 415
MHVI* 100 -7.37 9.24 104
RockSample[4,4]
(257s 9a 2o)
HSVI1[9] n.a. 18.0 577 458
HSVI2[45] n.a. 18.0 0.75 177
MHVI* n.a. 18.4 6.64 74
RockSample[5,5]
(801s 10a 2o)
HSVI[9] n.a. 19.0 10208 699
MHVI* n.a. 20.4 13.56 83
RockSample[5,7] (3201s 12a 2o)
HSVI[9] n.a. 23.1 10263 287
MHVI* n.a. 23.0 225 98
RockSample[7,8] (12545s 13a 2o)
HSVI1[9] n.a. 15.1 10266 94
HSVI2[45] n.a. 20.6 1003 2491
MHVI* n.a. 21.6 1959 140

n.a.=not applicable, n.v.=not available

CHAPTER 3

EPISODIC TASK LEARNING IN ASSISTIVE ROBOTS

3.1 Introduction to Episodic Tasks

Real-world autonomous robot applications often contain complex tasks. For exam-

ple, if a user wants a robot to bring a cup of coffee, the robot has to navigate first to the

cup, grasp it, then navigate to the user, and finally put down the coffee for the user. This is

a simple example of a coffee task. In the real-world, it is possible that the robot cannot find

the cup, or the cup is empty without coffee, in extreme condition, the user may disappear

when the robot wants to deliver him the coffee. In fact, the robot may be required to warm

up the water and make the coffee, or even buy the coffee. These real-world examples be-

come a new challenge to the state of the art of assistive robots: The decision of the robot

has to be real-time, in order to immediately respond to any changes in the environment,

and the robot needs to be able to make decisions on how to handle complex tasks that have

multiple subtasks.

It is especially important for socially assistive robot [46] living in a home, to safely

and reliably serve the elderly and the disabled. The robot has to take into consideration the

state of the world, and finish its goal, which is defined as a task. Since robots must know

the state of the humans in their control loop [19, 47], this greatly increases the complexity

of the computing.

Early work about robot tasks is to model it as a task-sequencing planning problem,

in order to determine the optimal sequence of paths for each robot such that all the tasks are

executed with a total minimum cost (e.g. time) [48]. Such problems are solved according

a proposed decomposition scheme. The ways in which agent actions affect the world can

27

28

be modeled compactly using a set of relational probabilistic planning rules. An algorithm

called probabilistic relational dynamic [49] is proposed to learn a prior distribution over

task-specific rule sets . It uses a hierarchical Bayesian approach. A recent work shows how

to use MDPs to assist the memory-impaired elders for their activities of daily living (ADLs)

using dynamic multi-tasks planning, and the system is designed as a reminder system with

dialogue management [50].

In this work, we propose a novel approach for the solving of complex tasks, which

we call episodic task learning. The idea is originated in cognitive science. It addresses the

way humans analyze and handle their everyday activities. In the next section, we will first

introduce the terms of “episode” and “episodic memory”.

3.1.1 Episode and Episodic Memory

From cognitive science, an episode is a basic unit of information that human memory

operates on [5]. The decision as to what constitutes a meaningful episode is domain depen-

dent and left to the external applications to make. In general, an episode is a sequence of

actions with a specific goal.

In recent years, there has been renewed interest in AI applications to enhance intelli-

gence agents with a memory of their past functioning. The inspiration comes from human

episodic memory, ”a functionally distinct subsystem of human memory that is concerned

with storing and remembering specific sequences of events pertaining to a person’s ongo-

ing perceptions, experiences, decisions and actions” [1]. Episodic memory is concerned

with “unique, concrete, personal experiences dated in the remember’s past” (e.g. a trip to

a park). On the other hand, semantic memory [26] refers to “a person’s abstract, timeless

knowledge of the world” (e.g. the color of the sky).

“Both episodic and semantic memories are thought to be propositional in nature -

they can be contemplated introspectively, can be communicated to others in some symbolic

29

form and questions about their veridicality can be asked.” These characteristics contrast

with those of procedural memory [51], a memory subsystem concerned with the acquisition

and utilization of procedures and skills, which is non-propositional.

A memory system is widely believed to have three high-level activities: encoding,

storage and retrieval [1]. “Encoding is the process that converts a perceived event into a

memory representation. It consists of activation (the process of determining when a new

episode needs to be recorded), salient feature selection (deciding what information will be

stored), and cue selection (deciding what features of the state will cue the memory). From

a computational point of view, another aspect of encoding is the particular representation

of episodes and their organization in memory.” “Storage deals with how stored episodes

are maintained over time.” “Retrieval is the process by which encoded episodes become

available again to the agent. Retrieval is triggered by the agent’s state and is based on cues,

especially salient or significant parts of the retrieval information. Cue construction is the

process of constructing the data used to retrieve a memory. Matching uses these cues in

order to search for similar episodic memories. Recall means retrieving the memory from

storage and placing it into working memory. After the process completes, the memory

becomes available for the agent to use.”

An example about the episodic memory is provided in Figure 3.1 [5]. When the

character in the figure sees an object, the episodic memory system is triggered, and a past

situation where this object appeared is recovered as an episode. The character is now able

to use this information to decide what to do in the current situation.

Recently, research about how to apply the episodic memory approach for autonomous

agents has become a new direction in AI research. In path-planning [5], information re-

garding obstacles, food and other creatures perceived by the visual system are recorded

within an episode. Instead of storing this information in a “world map”, they maintain

episodes within the episodic memory. During the planning process, episodes are recol-

30

Figure 3.1. An Example of Episodic Memory [5].

lected in the working memory, and only “remembered” things are considered during the

decision-making process. A similar approach using episodic memory for the planning is

the obstacle avoidance in a Bubble Family game [52]. It is also reported that episodic mem-

ory system can be interfaced with a machine emotion system with the goal of producing

intelligent behaviors in a cognitive humanoid robot [53].

3.1.2 Episodic Task Planning and Markov Decision Processes

In this work, we adopt the episodic approach for robot planning. We focus on a

computational framework using episodic memory and show how to use the mathematical

models of MDPs and POMDPs to solve episodic task planning. Similar to existing episodic

memory approach, the salient features, or episodic snapshots [20] are kept in our approach

of episodic task planning. We model these parameters into abstract states. A global map of

the entire state space is held, for computing of optimal solution. After we have computed

the optimal policies, we will obtain a so-called experience. We store the experiences as

31

abstract actions, which are highly related with the abstract states. These experiences are the

episodes of that occurred before. During the planning, the planner will recall the episodes

and execute them as abstract actions, according to the abstract states that the planner has

discerned from the observations. Thus, an experience will become an episode plus the

optimal policies in this episode. It is modeled as a temporally-extended action, i.e. an

abstract action in the framework. To obtain a good experience is important to a planner.

What we need to consider is to maximize the possibility of reuse. In other words, we need

to extract the minimized experience. Otherwise, if an experience is still separable into

multiple experiences, then we need to continue the task abstraction of the original domain,

until every experience is minimized.

In episodic task planning, a task is an objective process, with a goal that the agent

wants to achieve. An episode corresponds to an experience. It is related with an abstract

state, which is appointed considering the context of the task. More importantly, the task

needs to be abstracted into a sequence of abstract states, with connections to guide them to

the final goal of the task.

Now, the challenge is finding the optimal way to create an optimal abstraction of

a task, so that the entire story can be organized into episodes. More importantly, how to

construct experiences, so that we can optimize the planning and execution of an assistive

robot. In order to answer these questions, we will first review some existing approaches that

use the MDPs for the planning of complex tasks in the next section. Then we introduce our

idea of task-oriented design in Section 3.3, by which we will make clear the relationships

further among tasks, MDPs and experiences. In Section 3.4, we introduce the approach for

episodic task state abstraction, and the algorithm to learn and construct experience. Such

an approach can also be extended to POMDPs, which we will introduce in Section 3.5. In

Section 3.6, we present an alternative approach for the modeling of problem domains. In

Section 3.7, we further make a comparison of the techniques between episodic task learning

32

and episodic memory. We provide a performance evaluation of the episodic task planning

approach in Section 4.6. Finally we conclude this chapter.

3.2 Hierarchical Approaches for MDPs

The hierarchical approaches for Markov decision processes (MDPs) seem to be most

suitable to solve the complex tasks. For example, MAXQ [2] is a classical approach that

exploits a hierarchical decomposition to accelerate the computation of optimal policies. It

has been proved to be better than the flat MDP approach that does not incorporate any hi-

erarchy. The algorithm needs the designer to construct a MAXQ graph for every domain

(Figure 3.2). The MAXQ graph contains two types of nodes: Max nodes represent the task

and its subtasks, and Q nodes represent an action that can be performed to achieve its par-

ent’s subtasks. The basic idea of MAXQ is an exhaustive decomposition from the original

task to the subtasks, until every subtask reaches an atomic action. The exhaustive decompo-

sition is a common approach for task analysis. Hierarchical Task Network (HTN) planning

[15] and hierarchical partially observable Markov decision processes (HPOMDPs) [16]

also incorporate such an idea of exhaustive decomposition. In these approaches, the sub-

tasks may be named as “subtasks”, “abstract actions”, or even “options” [54]. Although

there is slightly different for their definitions, each of them is used to represent the sub-

level tasks in the hierarchical structure. Although the parent-child relationship between a

task and its subtasks can be discovered in the exhaustive decomposition based approach, it

provides no further information about the other relationships between different subtasks.

Compared to MAXQ, the VISA algorithm [18] is more close to the episodic rela-

tionship because it can depict the causal relationships between different state variables.

Unfortunately, the causal relationships of VISA are correlated with state variables, rather

than states, not to mention task-related states. A state variable is simply a property of a

33���� ����������	 �
���
������������ �
���
������������ �������������	
������� ������������ ���
���
�������
�������
���� ������������ �������������� �������������������

Figure 3.2. MAXQ Framework for Taxi.

state, but only the states are related directly with a task and its subtasks. Thereafter, the

state variable influence graph used by VISA cannot depict directly the relationships among

multiple tasks/subtasks.

The author of HEXQ [3] clearly proposes a concept of skill-reuse. If a reinforce-

ment learning agent can find and learn reusable subtasks and in turn employ them to learn

higher level skills, then it should be more efficient than an agent without the skill-reuse.

This idea is close to our proposition of task learning. Unfortunately, as examined in our

experiments, the performance of HEXQ is not as good as other hierarchical approaches.

This conclusion is coherent with the result from [55]. The authors of [55] also claimed that

there exists a concurrent HEXQ whose performance can be better than an un-concurrently

designed MAXQ. Generally, an un-concurrently designed algorithm can be implemented

34

as a concurrent algorithm with better performance. However, the performance of concur-

rence is not within our discussion. Although HEXQ incorporates the idea of task learning,

it is still constraint to the hierarchical decomposition. Therefore, HEXQ is a hybrid algo-

rithm between task learning and hierarchical decomposition. Unfortunately, such a hybrid

only results in that it can neither be a good task learning approach, nor a high performance

algorithm.

We cannot obtain a complete road-map of the task relationship using these existing

hierarchical approaches. While in our opinions, the details about the road-map of the task

relationship is more important for complex task planning than simply decomposing a task

into atomic subtasks. For example, for the exhaustive decomposition based approach, such

as MAXQ, we obtain a clear road-map of the hierarchies of the abstract actions, and how

the atomic actions are related with every abstract action. However, this does not provide a

clue about how these abstract actions are executed in the whole system. In other words, the

exhaustive decomposition provides the details in task decomposition, and clear relationship

about different levels of subtasks, but it does not interpret how these subtasks are linked

with each other, rather than simply to link with its parents or children.

Under such a background of algorithm design, we decide to withdraw the original ob-

jective of directly implement the real-world robot application, and turn to the development

of an easy, effective and task-oriented approach, in order for the agent to automatically

learn the task model from the original domains. We develop an approach called episodic

task learning (ETL) for the complex task problems in real-world applications. Although

there still exists hierarchical structure in ETL, different from the existing approaches, ETL

will only decompose a flat MDP into two hierarchies, one for the representation of subtask

relationships, and the other for describing the details of experiences. By our analysis and

experiments, ETL outperforms the existing hierarchical approaches, such as MAXQ and

HEXQ.

35

3.3 Task-Oriented Design

3.3.1 Tasks and MDPs

A task is a basic unit of the daily activities of humans and intelligent agents. Gener-

ally speaking, a task contains a set of states, a set of actions and some certain relationships,

with an initial state s0, where it starts from, and a single or several absorbing states sg

(goals and/or termination states), where it ends in (RockSample [9] is a typical example

using termination state instead of goals. Theoretically, the infinite tasks may not have goal

or termination state, we can simply set sg = null).

A task planning is very close to an MDP planning. On one hand, a task domain

consists of a series of task states whose transitions conform to the Markov properties.

Therefore, a task planning conforms to an MDP planning. On the other hand, every MDP,

whether it has a finite or infinite state space, we can describe it as a process with an initial

state, a set of absorbing states, which conforms to the definition of the task. Therefore, the

optimal policies of an MDP correspond to the optimal policies of a task. A task-oriented de-

sign addresses the discerning of the internal task-relationships in a problem domain, which

the planner can utilize for the planning.

A series of prior works have considered the task abstraction for MDPs [2, 3, 56].

A key point of the research is how to extract the abstraction, rather than whether or not a

planner needs the abstraction. Considering an exhaustive decomposition based approach,

MAXQ decomposes a task into subtasks, until it reaches atomic actions. An abstraction of

the task is correspondingly obtained in each decomposition. HEXQ relies on state variables

for the task abstraction. It stochastically explores the state space, so as to gather the states

that change value with the same frequency and put them in a level of the hierarchies. Such

a frequency analysis approach has been challenged in [18], for a reason that it cannot work

36

well in every problem domain. For example, it wrongly finds out a state influence graph in

the simple but famous coffee task [57].

Before continue our discussion, let us review and make clear some notations. Sub-

tasks are the children of task decomposition. A subtask owns every property of a task. The

objective of the decomposition is to obtain a sub state space, a sub action space, and a set

of subtask correlated absorbing states. An atomic action is the action defined in the MDP.

It may be a set of instructions for controlling the robot. An abstract action is a temporally-

extended atomic actions. In the task-oriented design, it corresponds to a subtask. An option

[54] is a specially defined subtask. Its entrance is defined as a set of states, and its exit a

set of termination states with corresponding probabilities, although most of the termination

probabilities of the current domains are still 1, and they have only a single element for the

set of entrance states, which is in accordance to the specification of the subtask and the

abstract action. In fact, the difference of these terms exists more on the naming. Both the

subtask and the abstract action can be extended smoothly to the specific definition of the

option. On the other hand, an MDP together with a set of subtasks, a set of abstract actions,

or a set of options, will constitute a semi-Markov decision process.

Let us bypass the minor difference among these naming mechanisms and return back

to our discussion. Different from the traditional hierarchical decomposition approach, the

task-oriented design is based on an idea of experience extraction. This idea has been ex-

pressed in HEXQ [3]. Unfortunately, the algorithm of HEXQ makes a statistic for the

frequency changes of state variables. In fact, although such a statistic also belongs to the

analysis of experience, it is an approach of general data mining, which is quite different

from our task-oriented design.

37

3.3.2 Experience and Task Abstraction

In order to understand the experience, let us first take a review of the stochastic. An

MDP models a stochastic process in a planning. It is based on such an assumption: the

transition from a state to another state is a stochastic process, with a transition probability.

Although every transition of the states is stochastic, since the observation of every state

is determined in an MDP, the planner can always find out its current state. Now that the

process is stochastic, whether it is possible to discover some useful experiences, with which

the planner can speed up its future planning and learning is an interesting question, both

for theoretical analysis and for engineering design.

Firstly, an experience must be a relatively fixed portion of a stochastic process. Only

a relatively fixed process is possible to be further reused. Secondly, an experience must be

related with a temporally-extended action, i.e. an abstract action. Since a single atomic

action can be reused directly, there is no need to model it as an experience. Thirdly, an

experience must be related with several state abstractions, one for the initial state, and the

others for the absorbing states. Formally, an experience must be an abstract action, which

is an MDP, denoted as Me, plus its optimal policies Π∗. This indicates, in a given task state,

if the planner takes a corresponding abstract action, without any additional computing, the

planner can perform Π∗ directly.

In fact, the concept of experience exists in every hierarchical approach, even if it

is not specially addressed. Then, by what standard or principle it is possible to extract

the most useful experience is the real art. First, an optimal experience e should have the

maximum possibility to reuse: If there exists another classification of the experiences, its

maximum frequency of reuse should not be greater than that of the optimum experience.

Second, in order to maximize the reuse, the e should be minimized: There exists no expe-

rience that is possible to be extracted from e.

38

Now that the focus of the task-oriented design is to extract useful experiences, the

approach such as exhaustive decomposition just helps us to achieve such an objective. A

task state abstraction is a process to obtain task-related abstract states and abstract actions,

indicating to what degree we have accomplished a task. Every experience e corresponds to

a set of abstract task states, with an initial task state representing the execution condition,

and other task states representing the results.

A Markov stochastic task domain Ma is a task-oriented equivalence model of a

Markov stochastic domain M, such that the optimal policies of M correspond to the op-

timal policies of Ma. We have, M = 〈Ma,E〉, where the Ma is a task abstraction of the

original Markov stochastic domain M, and the E is an experience space. We will introduce

the Ma and the E further in the following parts.

3.4 Episodic Task Learning

Episodic task learning (ETL) is an approach to learn a Markov stochastic task domain

from a Markov domain. After the Markov stochastic task domain is learned, we will use

it as an equivalent model for the planning of the original domain. In other words, we will

obtain a more efficient model, without changed the controlling effect of the system. The

Markov stochastic task domain is more close to the cognitive thinking, which provides an

efficient computation model for the intelligent agent.

In this part, we introduce this approach beginning with the review of states in MDPs.

3.4.1 Differentiate the States

An MDP consists of a set of states. A transition between a pair of states is performed

by taking an action from the action space. The task analysis needs to decompose the orig-

inal MDP M into a set of sub-MDPs, with sub state spaces and sub action spaces (In this

paper, we consider the distinct states, rather than the continuous states; in fact, any contin-

39

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22

23 25

24

N:1

S:2

E:4W:3

Figure 3.3. Taxi Domain.

uous state space can be approximated by a distinct state space.). An alternative description

of such a decomposition is the use of state variables [3, 18]. Let us take the taxi domain

[58] as an example to explain this approach.

The taxi domain is introduced as an episodic task: A taxi inhabits a 5×5 grid world

(Figure 3.3). There are four specially-designated locations {R,B,G,Y} in the world. In

each episode, the taxi starts from a randomly-chosen location. There is a passenger at one

of the four locations (chosen randomly), and he wishes to be transported to one of the four

locations (also chosen randomly). The taxi has six actions

{North, South, East, West, Pickup, Putdown}.

The episode ends when the passenger is deposited at the destination. We have three state

variables: the taxi location, the passenger location {R,G,Y,B,Taxi}, and the destination

{R,G,Y,B}. A combination of the state variables constitutes the states used in the flat MDP

40

solution (totally 500 states). For every state s, it is a distinct combination of n state variables

xi, i.e. s = x1x2 . . .xn. For any two distinct states, s1 = x(1)
1 x(1)

2 . . .x(1)
n , s2 = x(2)

1 x(2)
2 . . .x(2)

n ,

∃i ∈ [1,n],x(i)
2 6= x(i)

2 .

If a state s is composed of a single state variable, it is a primitive state. Otherwise,

if s is a combination of multiple state variables, it is a complex state. Due to the Markov

property, the states from a single state space are composed of the same set of state variables.

Thus, for a state space with primitive states, we call it primitive state space. Otherwise, for

a state space with complex states, we call it complex state space. For any single step

transition T (s,a,s′), there exists and only exists a single state variable xi, such that i ∈
[1,n],x(1)

i 6= x(2)
i , and ∀ j 6= i∧ j ∈ [1,n], we have x(1)

j = x(2)
j .

3.4.2 Episodic Task State Abstraction

An abstraction of an MDP is a compaction of the original state space into a state

space with abstract states. Given a state si in a complex space S, if si = x(i)
1 x(i)

2 . . .x(i)
n ,

and ∀s j ∈ S we have x(i)
k = x(j)

k , then we obtain an abstract complex space S−{xk}, with

s′i = x(i)
1 x(i)

2 . . .x(i)
k−1x(i)

k+1 . . .x(i)
n . Here the state variable xk is verbose and it is eliminated in

the task abstraction. Such a verbose state variable elimination is a simplest task abstraction

of a complex space. In the taxi domain, since the destination is designated in every episode,

the state variable x3 (the destination) is verbose.

Another task abstraction of a complex space is the state value abstraction. Nor-

mally, a state variable xi has a value space V (xi). In regard to the passenger location,

V = {R,G,Y,B,Taxi}. Although a value abstraction does not change the state variable, it

may change its meaning. Since the value abstraction for {R,G,Y,B} is a complex state

O f f Taxi/UserLocation, we have V = {O f f Taxi/UserLocation,Taxi}. In fact, a more

reasonable explanation of the state variable is the taxi status, with V = {Empty,UserIn}.

However, there is no difference for the value space of the taxi status and the passenger

41���������	�
��
 ��	�
��� ��������� ��	�
��������������
 �� �����	 ���������� � �� ��� � � � � � !����
Figure 3.4. Episodic Task Abstraction for Taxi.

location. Hence it is feasible that we automatically obtain the abstraction without changing

the original state variable.

An abstract task state (or simply task state) is a task-related complex state that is

defined closely with the experience. Every experience corresponds to a set of task states,

designating its entrance and exit. The state space of an experience is primitive. Therefore,

one of the state variables of the experience’s task states can distinctly appoint the initial

state, absorbing states as well as other states of the experience. The taxi domain has a

primitive state space of the grid world. We obtain two experiences as Got→u and Gou→d

(Figure 3.4). The Got→u has an entrance Empty/Lt (the taxi is empty and locates at its

initial position) and an exit Empty/Lu (the taxi is empty and locates at the user location).

The Gou→d has an entrance UserInLu (the taxi has a user and at the user location) and an

exit UserInLd (the taxi has a user and at the destination). The abstract actions of Got→u

and Gou→d are still MDPs with the same state space, action space and transition probabil-

ities, with only the initial state and the absorbing states being different. We call such an

abstraction isomorphic.

In our episodic task abstraction, considering Empty/Lu→UserIn/Lu and UserIn/Ld →
Empty/Ld , both of the transitions are direct: the abstract task states are the same with the

complex states. Therefore, there is no need to create experiences for them. As a result, the

actions of Pickup and Putdown are directly used in the task abstraction. Such an abstrac-

tion has already been used widely. In fact, both Pickup and Putdown cannot be finished in

42

ETL

Task State

Abstraction

Task Action

Abstraction

Task MDP

Value Iteration

Figure 3.5. Episodic Task Learning Approach Diagram.

a single step, hence they are still abstract actions. However, we overlook the details and cite

them simply as primitive actions, i.e. experiences. This indicates that our two-hierarchical

task model, one for the application of experiences for the task abstraction, and the other for

the extraction of experiences, is reasonable and feasible.

Now, we are able to obtain the abstract states for the task abstraction Ma. For M =

〈Ma,E〉, if the M is an MDP, then the Ma is also an MDP. We have Ma = 〈Sa,Aa,T a,Ra,sa
0,s

a
g〉,

where the Sa is the state space of the abstract task, the Aa is the action space, includ-

ing the abstract actions and the primitive actions, the T a defines the transition probabil-

ities, the Ra is the reward array. The system can learn the initial task abstract state sa
0

and the goal sa
g easily from M. For an MDP, the planner can observe the states deter-

ministically, hence the transition of the task states has a probability 1. Here the E is the

experience space, E = {E1,E2,E3 . . .}. For each Ei, we have Ei = 〈Me
i ,Π

e
i 〉, where the

Me = 〈Se,Ae,T e,Re,se
0,s

e
g〉 is the tuple that defines the experience’s MDP. The Πe

i is the

optimal policies of Me
i , i.e. Πe

i = π∗(Me
i). The ETL approach is depicted in Figure 3.5.

Compared to our the hierarchical approaches, the exhaustive decomposition approach

(MAXQ) and a hybrid hierarchy approach (HEXQ) have multiple hierarchies in the taxi

domain. These frameworks are depicted in Figure 3.6(a) and Figure 3.6(b).

43�������� �������� 	
��
������������� 	
��
���� 	
��
���� ������������ � � � � � � � ������������������� 	
��
���� ��� ������� � � � � � �
(a)�������� �������� 	
��
������������� 	
��
���� 	
��
���� ������������ ��� �� ������������������������ 	
��
���� ��� ��������� ��� �� ��� � � � � � ������ � �� ��� � � � � � �
(b)

Figure 3.6. Task Abstractions for HEXQ and MAXQ: (a) Taxi HEXQ; (b) Taxi MAXQ.

3.4.3 Knowledge Acquisition by TMDP

The taxi task has an equivalence model 〈Ma
md p,Emd p〉, with two isomorphic abstract

actions aa
1,a

a
2. The idea is, with the knowledge of these isomorphic abstract actions, which

can be acquired from the Emd p = 〈{Me
i,md p,Π

e
i,md p}|i=1..|aa|〉, the Ma

md p will become a stan-

dard MDP. Currently, the only knowledge missing for the Ma
md p is the reward Ra(s,aa

i). We

will obtain Ra(s,aa
i) by a Task MDP (TMDP) value iteration. Since it is possible that an

isomorphic abstract action aa relates with multiple states, we assign an index for each state

s, denoted as y(s).

Details about the TMDP value iteration are listed in Algorithm 3. The difference be-

tween the TMDP algorithm and the MDP algorithm is, there is a single step value iteration

44

repeat

for s ∈ S do

for a ∈ A do

if T (s,a,s) < 1 then

V = ∑s′∈Sa T a(s,a,s′)V a
t−1(s

′)

if a ∈ Aa then

Ra(s,a) = Me
md pssvi(a,y(s),V)

end if

V a
t (s,a) = Ra(s,a)+ γV

end if

end for

V a
t (s) = maxaV a

t (s,1 : |A|)
πa

t (s) = argmaxaV a
t (s,1 : |A|)

end for

t = t +1

until converge

Algorithm 3: TMDP Value Iteration

(Me
md pssvi) (Algorithm 4). When T (s,a,s) = 1, the action a is not related with the state s.

Thus we rely on T (s,a,s) < 1 to bypass these unrelated actions. For the state s in aa, the

optimal policy πe
t (aa,y,s) in the experience is determined. Finally, we obtain the reward

Ra(s,a) by the difference V e
t (aa,y,se

0)−V e
t (aa,y,se

d).

3.5 Extended to POMDP Task

A more interesting and promising part of the episodic task abstraction is its extension

to the partially observable domains. For a POMDP task Mpomd p = 〈S,A,O,T,Ω,R,b0,bg〉,
where b0 is the initial belief state, bg are the absorbing belief states (goal belief states and/or

45

Re(aa,1 : |Me(aa)|,se
d) = r

for s ∈ Se(aa) do

V e
t (aa,y,s) = maxa

[
Re(aa,s,a)+ γ ∑s′∈Se(aa) T e(aa,s,a,s′)V e

t−1(a
a,y,s′)

]

πe
t (aa,y,s) = argmaxa

[
Re(aa,s,a)+ γ ∑s′∈Se(aa) T e(aa,s,a,s′)V e

t−1(a
a,y,s′)

]

end for

return V e
t (aa,y,se

0)−V e
t (aa,y,se

d)

Algorithm 4: Me
md pssvi(aa,y,r)

termination belief states). The equivalence model can be 〈Ma
pomd p,Emd p〉, 〈Ma

md p,Epomd p〉
or 〈Ma

pomd p,Epomd p〉. In this work, we only consider the most popular model 〈Ma
pomd p,Emd p〉.

The POMDP problem of RockSample[n,k] [9] has a task domain of 〈Ma
pomdp,M

a
mdp〉.

Difficulty of RockSample POMDP problems relies on the big state spaces. RockSample[n,k]

describes a rover samples rocks in a map of size n× n. The k rocks have equally proba-

bility to be Good and Bad. If the rover samples a Good rock, the rock will become Bad,

and the rover receives a reward of 10. If the rock is bad, the rover receives a reward of

−10. All other moves have no cost or reward. The observation probability p for Checki is

determined by the efficiency η , which decreases exponentially as a function of Euclidean

distance from the target. η = 1 always returns correct value, and η = 0 has equal chance

to return Good or Bad.

The RockSample[n,k] [9] has a task domain of 〈Ma
pomd p,Emd p〉. It describes that a

rover samples rocks in a map of size n×n (Figure 3.7). The k rocks have equally probability

to be Good and Bad. The rover can select from k+5 actions: {North,South,East,West,Sample,Check1, . . . ,Checkk}.

If the rover samples a Good rock, the rock will become Bad, and the rover receives a re-

ward of 10. If the rock is bad, the rover receives a reward of −10. All other moves have no

cost or reward. The observation probability p for Checki is determined by the efficiency η ,

which decreases exponentially as a function of Euclidean distance from the target. η = 1

46

1 2 3 4

5 6 7 8

9 10 11
12

13
14 15 16

Exit

1 2 3 4

5 6 7 8

9 10 11
12

13
14 15 16

1 2 3 4

5 6 7 8

9 10 11
12

13
14 15 16

Figure 3.7. RockSample[4,4] Domain.

always returns correct value, and η = 0 has equal chance to return Good or Bad. In the task

abstraction graph for RockSample[4,4] (Figure 3.8), the S0 represents the rover in the ini-

tial location, the Ri represents the rover staying with the rocki, and the Exit is the absorbing

state. Except for the node of Exit, there are 16 task states related with other nodes, indicat-

ing {Good,Bad} states for 4 rocks. Thus, |Sa| = 81. For the observations, |Oa| = 3k + 2:

1 observation for the rover residing on place without rock, k observations for the rover re-

siding with a rock, 2k observations for Good and Bad of each rock, and 1 observation for

Exit. There are 2k2 + k +1 actions in the task domain: Check1, . . . ,Checkk,Sample. All of

the abstract actions for a specific RockSample[n,k] problem are isomorphic.

As a result of the learning, we got the knowledge of Ra(s,aa
i) for the task abstraction,

and πe
t (aa,s) for the experience. Thus, we can focus on the task abstraction Ma alone

in future computation. After the fully observable task abstraction Ma
md p is learned, the

47������� ��	 �
 �� ���
 ��� �� ��� �� ��� �� �������
Figure 3.8. Task Abstraction for RockSample[4,4] (POMDP with abstract actions).

partially observable task abstraction Ma
pomd p becomes a general POMDP. We can solve it

using any existing POMDP algorithms.

RockSample[n,k] is an example of the equivalence model 〈Ma
pomdp,Emdp〉. In our

POMDP value iteration algorithm, the computational cost is O(|Aa||Sa|2 + |Aa||Ba||Sa|) =

O(|Aa||Sa|2), when |S| À |B|. The sizes for different arrays are listed in Table 3.1:

Table 3.1. Model Parameters of RockSample[n,k] (n2 map, k rocks)

b |Sa| |Aa| |O|
Mpomdp n22k +1 k +5 n2 +2k +1
Ma

pomdp (k +1)2k +1 2k2 + k +1 3k +2

In each round of value iteration, by rough estimation, we get the computational com-

plexity of Mpomdp as O(kn422k), and Ma
pomdp as O(2k422k). This conclusion can be utilized

to general POMDP problems that can be transformed to a task equivalence model with

complex action Ma
mdp (the number of states being |Sa|), and a task view has k task nodes

(not including the initial and absorbing nodes). When |Sa|>
√

2k3, the equivalence model

created by ETL approach can greatly improve the computational capacity. However, if

|Sa|<
√

2k3, the equivalence model cannot improve the performance. Alternatively, it may

48

degrade a little the computational capacity. We can take this conclusion as a condition for

applying the ETL approach on POMDP tasks, to improve the performance, although it can

be used on every existing POMDP problem.

In sum, the ETL approach first analyzes the task model, and creates a task view and

an action view. The action view is responsible for learning the model knowledge. The

trained action view will then be saved for future computing in task view. The task view is

an equivalence model with better computational capacity than the original POMDP model.

3.6 An Alternative Approach for the Modeling

In order to know the details of task states, in the ETL approach, we develop a Task

State Navigation (TSN) graph to clearly depict the task relationship. A TSN graph contains

a set of grids. Each grid represents a state of the task, labeled by the state ID. Neighboring

grids with ordinary line indicate there is a transitional relationship among these states.

Neighboring grids with bold line indicate there is no transitional relationship.

Let us take the taxi task [58] as an example, to interpret how to build the TSN

graph, as well as how to construct the equivalence model 〈Ma
mdp,M

a
mdp〉. The taxi task

is introduced as an episodic task. A taxi inhabits a 5× 5 grid world. There are four

specially-designated locations {R,B,G,Y} in the world. In each episode, the taxi starts

in a randomly-chosen state. There is a passenger at one of the four randomly chosen lo-

cations, and he wishes to be transported to one of four locations. The taxi has six actions

{North,South,East,West,Pickup,Putdown}. The episode ends when the passenger has

been putdown at the destination.

This is a classical problem, used by many hierarchical MDP algorithms to build the

models. We present the ETL solution here. First, we build the TSN graph for taxi task in

Figure 3.9. Label Te represents the taxi is empty, and Tu indicates the taxi has user. Lt is

491 2 3 4TeLt TeLu TuLu TuLd TeLd5☆
Figure 3.9. TSN Graph for Taxi Task (MDP).

the start location of taxi, Lu is the location of user, and Ld is the location of destination.

There are 5 task states in the TSN graph, {TeLt ,TeLu,TuLu,TuLd,TeLd}. The initial state is

s0 = TeLt , representing an empty taxi in the random location. The absorbing state (goal) is

sg = TeLd , representing the taxi is empty and at the user’s destination. We mark a star in the

grid of the absorbing state. A reward of +20 is given for a successful passenger delivery, a

penalty of −10 for performing Pickup or Putdown at wrong locations, and −1 for all other

actions.

From the TSN graph, it is clear that the taxi task is a simple linear problem. The

transition probabilities for the neighboring states are 1. There are four actions in the task

domain, aa = {Got→u,Gou→d,Pickup,Putdown}, where Got→u is the complex action go-

ing from Lt to Lu, and Gou→d is the complex action going from Lu to Ld . This model has

two abstract actions aa(1),aa(2), and it is easy to know that S(1) = S(2),T (1) = T (2),aa(1) =

aa(2) = {n,s,e,w}. However, aa(1) and aa(2) have different s0 and sg. We call this kind of

abstract actions isomorphic action.

Some existing POMDP problems have simple relationship in task domain, such that

there is no abstract action. Thereafter, the equivalence model becomes a single model,

〈Ma
pomdp〉. The coffee task [57] has this kind of equivalence task model. It can be solved

using action network and decision tree in [57]. Here, we propose the ETL approach for

coffee task. The TSN graph for coffee task is shown in Figure 3.10. The L is an appointed as

the initial state in the office. From the beginning O, since the weather has 0.8 probability to

be rainy, denoted as R, and 0.2 probability to be sunny, denoted as ¬R, we get the transition

50

probability from L to R and ¬R. If the weather is rainy, the agent needs to take umbrella

with successful probability of 0.8, and 0.2 to fail. We denote the agent with umbrella as

U , and ¬U if it fails to take umbrella . If the agent has umbrella, it has probability 1 to be

¬L/¬W (dry when it comes to the shop). If it has no umbrella and the weather is rainy, the

agent will be ¬L/¬W for 0.2, and be ¬L/W (wet in shop) for 0.8. ¬L/W has probability

1 to be C/W (coffee wet), and ¬L/¬W has probability 1 to be C/¬W . Whether it be C/W

or C/¬W , the agent has 0.9 probability to deliver the coffee to user H/W (user has wet

coffee), and H/¬W (user has dry coffee). The agent has 0.1 probability to fail to deliver

the coffee ¬H/W (user does not have coffee and coffee wet), ¬H/¬W (user does not have

coffee and coffee dry).

There are 11 observations for this problem: r (rainy), ¬r (sunny), u (agent with

umbrella), ¬u (agent without umbrella), w (agent wet), ¬w (agent dry), nil (none), h/w

(user with coffee and coffee wet), ¬h/w (user with out coffee and coffee wet), ¬h/¬w (user

without coffee and coffee dry), h/¬w (user with coffee and coffee wet). The observation

probability for rainy when it is raining is 0.8, and the observation probability is 0.8 for

sunny when it is sunshine. The agent gets a reward of 0.9 if the user has coffee, and 0.1 if

it stays dry.

3.7 Comparison of Episodic Task Learning and Episodic Memory

Although the approach of ETL incorporates some ideas from episodic memory (EM),

which makes it a computational framework with cognition of the relationship between tasks

and the world, there are still some differences between these two techniques.

Episodic memory is first introduced in [1] as a theory of cognitive science. It analyzes

how a human uses a memory to maintain a record of previous events, then the human makes

use of these records as experiences to help decision-making and action planning. The

51

Figure 3.10. TSN Graph for Coffee Task (POMDP without Abstract Actions).

episodic, together with procedural and semantic memory system is further proposed for the

planning of a cognitive robot [24]. Further research concerning how episodic memory is

related with complex event processing is proposed in [5].

Episodic memory concerns what to decide after observing an event, such as which

episode should be extracted according to the current observation. While an episode is a se-

quence of actions with a common goal. Although this is similar with the definition of ETL,

the ETL approach that we propose addresses the optimization of complex tasks planning

of a robot. The EM system holds records of specific, temporally-based past experiences, or

episodes. A single episode is a period of task execution of the robot during which the goal

of the robot does not change. This is coherent with the definition of abstract action from

ETL and other hierarchical MDP approaches. Although both of the experiences of EM and

ETL are just episodes, ETL does not hold temporally-based past experiences. Instead, the

ETL approach holds a unique experience with an abstract state. The experience is mod-

eled as E = 〈Me,Πe〉, where Me is a Markov decision processes, while Πe = π(Me) is the

optimal policies of Me.

52

Figure 3.11. Episodic Memory Formation.

As shown in Figure 3.11, each episode contains link to the entire contents of the

working memory system (WMS) and the output of the agent for the duration of a task. All

constituent links points to Semantic Memory (SM) units, so statistics may be calculated

about the frequency of use of each SM. Now that multiple episodes may relate with current

cue, the resulting memory needs to contain common elements to be relevant to the current

situation, and recently formed memories are more likely to contain applicable information.

The third selection point is used to enhance the score of cues that are rare over those that

are commonly seen. An episode is defined as a triple [5] of context, contents and outcome.

Context is the general setting in which an episode happened; for the planning, this might

be the initial state and the goal of the episode. This is similar with the definition of abstract

action from ETL. Contents is the ordered set of events/actions that make up an episode; in

the case of a planner, it is the planner itself. This is coherent with the experience E from

ETL. The outcome of an episode is an evaluation of the episode’s effect (success or failure).

This is indicated by states in ETL, not necessarily to pointed out specifically.

53

Another similarity between ETL and EM is that they both define the process that is

used for planning in the situations that are dynamic in nature, changing the state of the

world in complex ways. In this way, the procedural memory which addresses the skills that

are constant to given conditions will not be addressed any more in both techniques. In fact,

ETL takes the constant planning as atomic action. As we have discussed in Section 3.4.2,

atomic actions may simply be experiences that we do not address any more, because they

are constant with an scenario, just like what is discussed in procedural memory, which is a

skill that is possessed by a human.

The difference between EM and ETL is, the EM framework considers more about

the usability of memory, therefore it also incorporates the SM. While ETL aims to optimize

the tasks, therefore it has a task model Ma, which is very important for the optimization of

the planning and execution of tasks. And it provides the computation framework by state

space, action space and the relationship between tasks and experiences.

3.8 Experimental Evaluation

In the experiments, we implement every algorithm using dynamic programming. In

the taxi domain, we guarantee every trial has the same configuration: the same user location

and destination. Thus, the performance is only determined by the approach of hierarchical

abstraction. Every result is an average of 10 times running. The error bars in the figures

depict the standard deviation. However, only in Figure 3.13(b) the error bars are clearly

displayed. There is almost no error bar in other figures because their standard deviations

are close to zero.

In the first experiment, we examine the performance of every algorithm using a sin-

gle trial. As a result, every algorithm can converge with no more than 50 iteration steps.

We compare these algorithms by the iteration steps, as well as the convergence time. As

54

0 20 40 60 80 100 120 140
−25

−20

−15

−10

−5

0

5

10

15

Steps

A
ve

ra
ge

 R
ew

ar
d

ETL
HexQ
MaxQ
Flat

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−25

−20

−15

−10

−5

0

5

10

15

Time (ms)

A
ve

ra
ge

 R
ew

ar
d

ETL
HexQ
MaxQ
Flat

(b)

Figure 3.12. Comparison for Taxi Domain (Single Trial): (a) Reward by Iteration Steps;
(b) Reward by Time.

55

depicted in Figure 3.12(a), the iteration steps of ETL and MAXQ are the same. HEXQ re-

quires more iteration steps, and even more is the flat MDP. Concerning the convergence

time (Figure 3.12(b)), ETL is the fastest among all algorithms. HEXQ is worse than

MAXQ, and the flat MDP is the worst.

We extend the experiment to different trials. Altogether there are 27 distinct trials

configured for the second experiment. From Figure 3.13(a), ETL has the least iteration

steps in almost every trial. The iteration steps for MAXQ are close to ETL, HEXQ is

worse than MAXQ and ETL, and the flat MDP is the worst. Concerning the convergence

time (Figure 3.13(b)), the results are still consistent to the results in the experiment 1. The

ETL approach is always the best in each experimental comparison.

In fact, both ETL and MAXQ will decompose MDPs into primitive state spaces.

Since HEXQ is a mixed hierarchical approach, unless for specific cases that the frequen-

cies exactly transform the MDPs into primitive state spaces, its performance will not be

comparable to the ETL algorithm or the exhaustive decomposition base approach. Since

the flat MDP has more complex states, its performance is often the worst. Comparing

ETL and MAXQ, since ETL obtains a highly abstract task domain, which contains and

only contains the task relationships for the planning, its performance is better than MAXQ,

which does not have a clear task domain, but retains redundant hierarchical decomposition

relationships of the task.

The third experiment is to examine the POMDP tasks. We use the same POMDP al-

gorithm for each task. For the equivalence models, the experience Epomd p is pre-computed.

The system uses the trained data of Me
pomd p. As shown in Table 3.2, the performance of

each task abstraction Ma
pomd p improves greatly than the original POMDP model Mpomd p.

The bigger the state space, this effect is more apparent. Considering RockSample[n,k], the

greater of n and k, the greater the performance of Ma
pomd p comparing with Mpomd p.

56

0 5 10 15 20 25 30
20

25

30

35

40

45

Trials

S
te

ps
 p

er
 T

ria
l

ETL
HexQ
MaxQ
Flat

(a)

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

Trials

A
ve

ra
ge

 T
im

e
pe

r
T

ria
l (

m
s)

ETL
HexQ
MaxQ
Flat

(b)

Figure 3.13. Comparison for Taxi Domain (Different Trials): (a) Convergence Steps; (b)
Convergence Time.

57

Table 3.2. Performance Comparison of POMDP Tasks

Domain Model |S| |A| |O| Reward Time(s) |B|
Coffee Ma

pomdp 13 5 11 0.71 0.02 5
RockSample[4,4] Mpomd p 257 9 25 18.4 6.64 74

Ma
pomd p 81 37 14 18.5 4.3 68

RockSample[5,5] Mpomd p 801 10 36 20.39 13.56 83
Ma

pomd p 193 56 17 19.5 11.0 78
RockSample[5,7] Mpomd p 3201 12 40 22.4 289 98

Ma
pomd p 1025 106 23 21.7 274 126

RockSample[7,8] Mpomd p 12545 13 66 21.6 1959 140
Ma

pomd p 2305 137 26 21.8 896 232
RockSample[10,10] Mpomd p 102401 15 121 20.5 707600 231

Ma
pomd p 11265 211 32 20.6 10309 391

3.9 Conclusion

We address the problems of how to obtain an effective and efficient hierarchical

abstraction for MDPs. We propose a task-oriented design approach, the ETL algorithm.

Different from the traditional hierarchical approaches, which addresses the task decompo-

sition, ETL focuses on the task abstraction and experience extraction. With ETL, we obtain

a task abstraction that retains the task relationships of the original MDP with much con-

cise structure, so that we can achieve the same controlling effect with the original model

with much improved performance. The ETL approach can also be applied to the POMDP

task abstraction. Our experimental evaluation indicates a promising prospect of the ETL

algorithm and the task-oriented design approach.

CHAPTER 4

PLANNING FOR MULTIMODAL PERVASIVE APPLICATIONS

4.1 Introduction

With the development of sensor networks and pervasive technology, HCI needs to

adapt to pervasive environments and changes from a single-computer based interaction to

a pervasive interaction. In a pervasive interaction system, the communication between

human and machine does not constraint to a single computer, but it involves the entire

computer networks, robots and sensor networks. How to build up applications for a perva-

sive interaction becomes an important issue in pervasive computing, artificial intelligence

and HCI. A typical example of the single computer based interaction is the human-robot

interaction. A robot is often designed as an autonomous agent, with all kinds of sensors

equipped and a single “mind”. For the pervasive interaction, we consider a virtual agent in

the environment. The virtual agent has the power to utilize every sensing ability of the per-

vasive environment. As a whole, it provides an integrated interface to the human. Further

discussion about robot and virtual agent can be found in [59].

In traditional dialogue management systems, human-computer interactions are tightly

coupled with users’ speech responses. An agent speaks a sentence to a user, and waits for

the responses. After the user’s speech is received and recognized, the system proceeds to

the next interaction. Pervasive environments break through the constraint that a user has to

interact with a single computer. The sensor network can also be an attendee of an interac-

tion. After an agent asks a question or informs an affair, the user can optionally choose to

reply or simply keep silence. Without the user’s responses, the agent can still discover the

user’s intentions or preferences by reasoning information from the sensor network. This

58

59

kind of human-computer interaction forms a pervasive interaction. In this system, the com-

munication between human and machine does not constraint to a single computer, but it

involves the entire computer networks, robots and sensor networks. How to build up ap-

plications for pervasive interactions becomes an important issue in pervasive computing,

artificial intelligence and HCI.

A typical example of a single computer based interaction is the human-robot interac-

tion. A robot is often designed as an autonomous agent, with all kinds of sensors equipped

and a single “mind”. For the pervasive interaction, we consider a virtual agent in the envi-

ronment which has the power to utilize every sensing ability of the pervasive environment.

It provides an integrated user-interface for the entire pervasive environment. Further dis-

cussion about robot and virtual agent can be found in [59].

In a pervasive interaction framework, an intelligent agent does not simply recognize

the user’s speech. Instead, all kinds of events captured by sensor networks are accepted and

analyzed by the system. Human activity recognition [60] becomes an important element

for event capture. On the other hand, users do not have to focus their attentions on the

interaction with a single computer. Now that the pervasive environment provides services

as an integrated system, the user will be released from the tightly coupled interaction,

without tampering the effect of the original “conversation”. As a result, the interactions will

be loosely coupled with individual devices. In fact, the more loosely coupled a functional

HCI application with users, the more degree of freedom users will obtain, thereafter, it will

be the more friendly and easier to maintain the interactive relationship.

This paper provides a hierarchical multimodal framework for pervasive interactions.

The application background is a reminder system interacting pervasively with humans,

using decision-theoretic planning. We apply this technique on the planning system that

reminds individuals with cognitive impairment, to support their activities of daily living

(ADL).

60

4.2 Technical Preliminary

A Markov decision process (MDP) models a synchronous interaction of a user with

a fully observable environment. It can be described as a tuple 〈S,A,T,R〉, where the S is

a set of states, the A is a set of actions, the T (s,a,s′) is the transition probability from a

state s to another state s′ using an action a, the R(s,a) defines the reward when executing

an action a in a state s. By MDP, we want to find out the policy of every state, such that the

overall planning is optimal.

A POMDP models an agent’s action in uncertainty world. A policy for POMDP

is a function of action selection under stochastic state transitions and noisy observations.

At each time step, the agent needs to make a decision about the optimal policy based

on historical information. A multimodal POMDP is an extensive form of POMDP that

involves multiple types of observation sources. Although different types of observation

sources share the observation space, their observation probabilities may be different. The

traditional POMDP can be seen as a special form of multimodal POMDP that has only a

single type of observation source.

A multimodal POMDP can be represented as 〈S,A,Θ,O,T,ω,Ω,R〉, where the S is

a finite set of states. In each time step, the agent lies in some state s ∈ S. The A is a set of

actions. After taking an action a ∈ A, the agent goes into a new state s′. The Θ is the set

of multimodal observation types, and the O defines the types of observations. The T is the

set of transition probabilities. The conditional probability function T (s,a,s′) = p(s′|s,a)

presents the probability that the agent lies in s′, after taking action a in state s. The agent

makes an observation to gather information. The observation result is a pair (θ ,o), where

θ ∈Θ is the observation type, and o∈O is the observation. This is modeled as a conditional

probability Ω(s,a,θ ,o) = p(θ ,o|s,a). The ω is the probability an observation belonging

to an observation type, ω(θ) = p(θ |event). In a system that is modeled as multimodal

POMDP, we have the following conditions for different observation types,

61

(i) ∀(s,a,o),0 < ∑θ∈Θ Ω(s,a,θ ,o)≤ 2;

(ii) ∀(s,a,θ),∑o∈O Ω(s,a,θ ,o) = 1.

When belief state is taken into consideration, the states of the multimodal POMDP

are changed to belief states. The original partially observable POMDP model changes

to a fully observable MDP model, denoted as 〈B,A,Θ,O,τ,ω,R,b0〉, where B is the set

of belief states, i.e. belief space. The τ(b,a,b′) = p(b′|b,a) is the probability the agent

changes from b to b′ after taking action a. The R(b,a) = ∑s R(s,a)b(s) is the reward for

belief state b. The b0 is an initial belief state.

A POMDP framework is used to control an agent. The utility is a real-valued pay-

off to determine the action of an agent in each time step, denoted as R(s,a), which is a

function of the state s and the action a. The optimal action selection becomes a problem to

find a sequence of actions a1..t , to maximize the expected sum of rewards E (Σtγ tR(st ,at)).

In this process, what we concern is the controlling effect, achieved from the relative rela-

tionship of the values. After we use a discount factor γ , the relative relationship remains

unchanged, but the values can guarantee to converge. If states are not fully observable,

the goal becomes maximizing the expected reward of each belief. The nth horizon value

function can be built from previous value Vn−1, using a backup operator H, i.e. V = HV ′.

The value function is formulated as the following Bellman equation

V (b) = max
a∈A

[R(b,a)+ γ ∑
b′∈B

τ(b,a,b′)V (b′)]

Here, b′ is the next step belief state,

b′(s) = bt(s′)

= ηΩ(s′,a,θ ,o)Σs∈ST (s,a,s′)bt−1(s)

where η is a normalizing constant.

62

When optimized exactly, this value function is always piece-wise linear and convex

in the belief space.

For the transition probabilities of belief points, we have

τ(b,a,b′) = Σθ∈Θ,o∈O
[
Ω(b,a,θ ,o)T (b,a,θ ,o,b′)

]

= Ω(b,a,θ ,o)

where T (b,a,θ ,o,b′) = 1 if SE(b,a,θ ,o) = b′, T (b,a,θ ,o,b′) = 0 otherwise. SE is an

algorithm specific belief state estimation function.

We can find out Ω(b,a,θ ,o) by the following processes. First we compute b′, where

b′(s) = b(s′) = ηΣs∈Sb(s)T (s,a,s′), where η is a normalizing factor. By Ω(b,a,θ ,o,s) =

ηb′(s)B(θ ,o,s), we can finally obtain the transition probability for τ(b,a,b′).

4.3 Pervasive Human-Computer Interaction

4.3.1 Sensor Coverage in Functional Areas

Different sensors can be deployed in the functional areas of a pervasive environment.

A simple but effective deployment is to put sensors in each functional area, such that the

field of interest is detected. As a result, we build up an activity recognition system for the

pervasive environment. there is a labeled sensor. The detection of activities becomes an

identification of sensor tag as well as time stamp. The activity for time t becomes a posterior

probability for the sensor with maximum instant change, between the measurement in time

t and the measurement in time t − 1. For time t, let yt be the activity, xt be the label of

sensor, the probability for the activity is given by p(yt |xt ,yt−1).

Difficulties of activity recognition come from concurrent activities and noises from

sensor readings. When participants watch TV, they may go to the kitchen and do some

washes. During the wash activity, they may return back to answer a call. These concurrent

activities may result in a confusion of the activity recognition system. Existing research

63

Figure 4.1. Sensor Deployment in A Pervasive Environment.

about the activities falls into several categories. One is the Bayesian inference, to recognize

the activities [7]. Another is the classification techniques and vision-based analysis. These

are often utilized to recognize human’s affective state, physiology and behavior. Further

research involves identifying the human’s intentions for the activities, using hidden Markov

models [61, 60] or conditional random fields [62]. If there are several persons in a home,

the identification of activities about a specific person becomes even harder. We have to rely

on face recognition or speaker recognition to differentiate the persons.

4.4 Dynamic Fusion of Sensor Data

Results from the activity recognition are events of the user’s activities. An event is

a segment of information about the user’s activity, including activity name, sensor label,

64

sensor type, time stamp. The sensor types for activity recognition can be accelerometer,

infrared, light, pressure, video and audio. Benefit of sensor based activity recognition relies

on the fact that, events are certain to be detected by sensor networks. The user does not

have to explicitly inform the intentions. Therefore, this is a passive interaction between the

user and the pervasive environment.

On the other hand, the user intentions can also be captured by the speech interaction,

which is more directly than the recognition of activities. Although the speech interaction is

a traditional way, it is an active interaction between the user and the pervasive environment.

From the perspective of the users, it seems there is an intelligent agent in the pervasive envi-

ronment living and interacting with them. This makes the pervasive environment friendlier.

Especially for elders living alone, it is a necessity component. Defect of the speech interac-

tion is that it has to rely on an explicit communication with human. Dialogue events come

from the speech interaction. Dialogue events have the same format with sensor events, but

the sensor type for speech recognition is audio, and it has its own sensor label.

The combination of sensor events and dialogue events provides a friendly human-

computer interface. In this way, people do not have to respond to the prompts from di-

alogue management systems. The sensor networks make up the missing information by

providing sensor events. During a time that people would like to interact with the dialogue

management system, they can choose to inform the system their activities and preferences

by speech interactions.

Results of the combination of sensor events and dialogue events are multi-observation

of the reminder planning system (Figure 4.2). The system has to identify, analyze, corre-

late and reason for the observations. Since observations are obtained from different sets

of noisy sensors, the reminder planning system needs to deal with the multimodal partially

observable information.

65

Figure 4.2. Sensor Events and Dialogue Events Become the Source of Multi-observation
for Reminder Planning System.

4.4.1 Event System and Multi-observation

Activity recognition creates events about users’ activities. Every event is a segment

of information about the user’s activity, including activity name, sensor label, sensor type,

time stamp. The sensor types for activity recognition can be accelerometer, infrared, light,

pressure, video and audio. The benefit of sensor based activity recognition relies on the

fact that, events are automatically detected by sensor networks, and users do not have to

explicitly inform their intentions. Therefore, this is a passive interaction between humans

and pervasive environments.

On the other hand, users’ intentions can also be captured by speech interaction, which

is a more direct interaction than the recognition of activities. From the perspective of

users, it seems like an intelligent assistant lives and interacts with them. This makes the

pervasive environment more friendly, especially for the elders that are living alone, the

speech interaction is a necessary component. A defect of the speech interaction is that it

has to rely on an explicit communication with the user. Dialogue events come from the

66

Sensors Agent Human

It is time to take medicine.

Yes.

You want to take medicine,
rignt?

OK.

Great! I found you have
taken medicine.

The human is taking medicine.

The human finishes taking

medicine.

Figure 4.3. A Scenario for Loose Coupling Pervasive Interaction (Remind the User to Take
Medicine): dashed-lines indicate optional speech response.

speech interaction. In the pervasive interaction, we can simply put it as an audio event,

with a sensor-label of microphone.

The combination of sensor events and dialogue events provides a friendly and inte-

grated interface. People do not have to respond to prompts from a dialogue management

agent. The events from sensor networks make up the missing information. If people would

like to interact with the agent, they can also choose to “tell” the system about their activi-

ties and intentions directly. Figure 4.3 describes a scenario of the loose coupling pervasive

interaction. When an agent prompts a user to take medicine, the user can choose to reply or

not. As soon as the user takes medicine, the agent will learn the states of the user’s activities

by analyzing events from sensor networks. On the contrary, if it is an autonomous robot,

the human’s responds (marked as dashed-line in the figure) normally should not be omit-

ted. Since the interaction is tightly coupled with the robot, the human has to make explicit

respond to every scenario of the dialogue. The difference of a pervasive interaction from a

single-agent dialogue is, the pervasive interaction adapts to the environments exactly, rather

67

than adapting to the powerful function of a single agent. Thereafter, a pervasive interaction

can provide a more friendly interface to users. It makes the pervasive environment to be an

integrated intelligent system.

We can put the events of a pervasive interaction system into different categories, with

every category belonging to a set of observations, and every observation comes from a set

of noisy sensors. The application system has to identify, analyze, correlate and reason for

the observations. We summarize the features of pervasive interactions as follows:

Adaptation Pervasive interaction makes users adapt to the environments perfectly;

Redundance Pervasive environments provide redundancy interfaces to sense and track the

users’ activities and intentions;

Cross-Reference Intelligent systems using pervasive interactions need to have the ability

to learn the information by cross-reference of multiple interfaces.

4.5 Hierarchical Multimodal Markov Stochastic Domains

A reminder is a planning system to prompt and remind the ADL of individuals with

cognitive impairments. The system requires a multimodal partially observable framework

that concerns both the events from speech recognition, and the events from sensor net-

works. We organize the system in two levels: MDPs based activity planning, and multi-

modal POMDPs based action planning. An action control component is used to manipulate

the reminding tasks. Figure 4.4 provides an overview of the multimodal planning agent’s

working scheme. We introduce the components separately in the following parts.

4.5.1 Activity Planning by MDPs

The activity planning is used to control the states of human activities. Every activity

is represented as a state of the MDP model. We have the followings reasons to adopt MDP

rather than POMDP for the activity planning:

68

T
im

e
 E

v
e
n
t

Sensor

Network

Virtual

Action

Action

Planning

POMDP

Event System

Speech

Recognition

System

Time

Task Domain

Action Domain

Activity Planning

MDP

S
e
n
s
o
r
E

v
e
n
t

V
o
ic

e
 E

v
e
n
t

(Θ, o)

Activity Status List Action Control

SE π

bb b

Belief Space

ss s

State Space

Voice Prompt

Figure 4.4. Hierarchical Multimodal Framework for Reminder Planning System.

Getup

Sport1

Breakfast Bath Medcine

Sport2
Rest

End

Start

1 2

3

4 5 6

7

8

9☆
Figure 4.5. Activities for Reminding Tasks.

69

(i) The uncertainty of multimodal observations is considered in a lower action plan-

ning level, instead of the level of activity planning;

(ii) Since every termination state of action planning can be determined, we can dis-

tinct the states in activity planning.

Figure 4.5 is a Task State Navigation (TSN) graph to demonstrate some example

activities for the reminder system. A TSN graph contains a set of grids, with each grid

represents a state of the task, labeled by the state ID. Neighboring grids with ordinary line

indicate there is a transitional relationship among these states. The reminding tasks start

from the activity Getup, and end in Sport2 or Rest, whose grids are labeled with a star. For

most of the states, it is certain to transmit to the next state, T (s,a,s′) = 1. As discussed

above, the transitions from Getup and Medicine to the next states are both according to the

transition probabilities. We have, T (Getup,a,Sport) = 0.5, T (Getup,a,Break f ast) = 0.5,

T (Medicine,a,Sport) = 0.5 and T (Medicine,a,Rest) = 0.5. The reward for state End is

10, and the rewards for other states are all 0.

We have only one action for the transition of different states. This is an abstract

action, to indicate the end of an activity, and the start of next activity. In fact, the abstract

action a for a state s is determined by the action planning subtask, which is related with the

activity s. When the action planning subtask reaches the End state, it implies the abstract

action is executed.

4.5.2 Action Planning by Multimodal POMDPs

4.5.2.1 Action Planning Subtask

For each activity of the reminding task, the system needs to undertake a subtask,

to guide the user to execute the activity. It is an abstract action that is unrelated with the

actual prompting speech of the system. The prompts are determined in the subtasks of

70

Figure 4.6. The Action Domain TSN Graph for Every Activity.

each activity. We put the execution of different subtasks to a unifying form. These subtasks

accept partial observations from sensor events as well as speech recognition events. It forms

two sets of noisy observations, the sensor observations and the dialogue observations. Thus

the system structure becomes a multimodal POMDP.

The TSN graph for the multimodal POMDP is presented in Figure 4.6. For each

activity, there are six states in the action domain. For the initial state TimeToActivityi,

there are three possible transitions, including a state Activity1:i−1 for previous activities, a

state Activityi+k+1:n for future activities, and a state Activityi+ j for current activity. If the

system assumes the user is taking activity Activityi+ j, it may accept the observation from

previous activities, or future activities. Due to the noises of sensors and speech recognition,

these observations may be correct or not. Thus, the transitions from the state Activityi+ j

to Activity1:i−1 and to Activityi+k+1:n are both small probabilities. The transitions from the

state Activityi+ j to FinishActivityi+ j and to TimeToActivityi+k have higher probabilities.

The state to which it transmits is related with the current observation.

71

Since both TimeToActivityi+k and FinishActivityi+ j are termination states in the ac-

tion domain, when the system reaches them, it will transmit to the next activity in the activ-

ity domain MDP. However, in the state TimeToActivityi+k, we cannot determine whether

or not the activity is finished. Only in FinishActivityi+ j, will the system record a status of

Activityi+ j.

There are three activity states, {un f inished,executing, f inished}. We establish a list

to record the status of every activity in a day. This will be helpful for the system to find out

unfinished activities, for future data analysis, or for reminding the user directly.

4.5.2.2 Multimodal POMDP Framework

Details of different activities are defined in a POMDP framework. Each state is

related with two actions, Prompt and Wait. The Prompt indicates the planning system

needs to provide prompt to the user. The actual content of a Prompt is determined by an

action control, which we will introduce in next part. The Wait means the system takes an

action of waiting.

The number of observation types (denoted as |Θ|) is 2, representing dialogue events

and sensor events. There are |S| different observations in observation space, i.e. |O|= |S|.
The dialogue events and sensor events are mapped into observations of different types. In

fact, even if the system takes the action of Wait, it still has a transition probability to next

states. The states to which the system transmits can be determined by the observations.

Normally, the observation probabilities of dialogue events are lower than that of the sensor

events, and it will decrease with the increase of age for the elderly.

The rewards are assigned as follows. For the termination states,

R(TimeToActivityi+k, ·) = 1, and R(FinishActivityi+ j, ·) = 2.

72

In multimodal POMDP, the ω(·) is a Bayesian statistic for an event belonging to an

observation set. We have ω(x) = p(x|event), where x is an observation set. For other states,

R(·,Wait) = 0, and R(·,Prompt) =−0.1.

4.5.3 Action Control for Reminding Tasks

The action control helps to determine atomic actions of the planning system. Since

the reminder system has complex task structure and actions, the atomic actions are not

correlated strictly with the actions in multimodal POMDP subtasks. Thus, we can incor-

porate the benefit of POMDP framework, and constrain the state space to the core part of

controlling tasks. We separate the atomic actions into two categories.

The first class atomic actions are related with the actions of multimodal POMDP

subtasks. Let the atomic action be a, we have a = f (sactivity,saction,aaction), where f (·, ·, ·)
is the combination function, to merge different states and actions into the text of speech.

Considering the concrete actions, we have

a =





Wait, aaction = Wait

f (sactivity,saction,Prompt), aaction = Prompt

Thereafter, the actions in multimodal POMDP are translated to atomic actions in the

reminder system, represented as the text of speech. Here is an example of the combination.

Suppose sactivity = Medicine, saction = TimeToActivityi, and aaction = Prompt, the atomic

action will be a prompt like “It is time to take medicine”.

The second class atomic actions are related with the states of multimodal POMDP

subtasks. Table 4.1 provides the correlations of the states and the second class atomic

actions. These atomic actions are used to update the status types for the activities.

73

Table 4.1. Correlations for States and the Second Class Atomic Actions

ID State Atomic Action
1 TimeToActivityi none
2 Activity1:i−1 update status for the activity

identified from the event
3 Activityi+k+1:n none
4 Activityi+ j none
5 TimeToActivityi+k S(Activityi+k) = un f inished
6 FinishActivityi+ j S(Activityi:i+ j−1) = f inished

4.6 Experimental Evaluation

The experiments are taken in a simulation environment. Seven activities are used as

an example of the daily activities (Figure 4.5). We have discussed other settings in previous

sections. We want to find out effects of the reminding tasks.

Figure 4.7 demonstrates learning curve of the average reward in each time step, for

the multimodal POMDP. The average reward converges to 1.3.

We made a statistic of the actions in multimodal POMDP subtasks (Figure 4.8).

The activity state 1 represents the state TimeToActivityi, and the activity state 4 represents

Activityi+ j. Both states are important for the reminding subtask. The time for executing

an activity is often longer than preparing the activity. This effect is reflected in the action

assignments of the planning tasks. We have two actions in every state, Prompt and Wait.

In the state TimeToActivityi, the actions of Prompt are about 2/3 of all actions, and Wait

actions occupy the rest 1/3. This is reversed for the state Activityi+ j. During the activ-

ity, the reminder system will choose Wait about 2/3 of all actions, only 1/3 of them are

Prompt. This indicates our multimodal POMDP planning for the reminder system provides

reasonable prompts for the user, because the system does not have to prompt many times

during an activity.

74

0 500 1000 1500 2000 2500
1.26

1.28

1.3

1.32

1.34

1.36

1.38

Learning Steps

R
ew

ar
d

Figure 4.7. Learning Curve for the Multimodal POMDP.

Prompt in Activity State 1Wait in Activity State 1Prompt in Activity State 4Wait in Activity State 4
Figure 4.8. Analysis of the Actions in Multimodal POMDP Subtasks.

75

0 1 2 3 4 5 6
0

20

40

60

80

Distribution for the Number of Prompts in Activity State 1

P
er

ce
nt

0 1 2 3 4 5 6
0

10

20

30

40

50

Distribution for the Number of Prompts in Activity State 4

P
er

ce
nt

Figure 4.9. Statistic for the Prompt Action in the Reminder System.

Figure 4.9 provides a further statistic of the Prompt actions for different activities.

For the activity state 1, TimeToActivityi, there is not a single time the system does not

prompt for the user. For about 70% of the activities, the system only prompts once. This

percent decreases when the number of prompts increases. Only very few occasions the

system prompt more than 4 times. This is comparable with the traditional constant of

prompting tasks in a reminder system. The multimodal POMDP controls the system to

adapt to multi-observation by which the system interacts with the user. The actions of the

planning processes are more like a probability distribution, rather than a constant. For the

state 4, Activityi+ j, there exists about 15% activities, in which the system goes to the next

activity directly, without Prompt. For about 39% activities, the system prompts once for

the user, and about 43% activities twice. When there is no prompt action, the system will

perform Wait in every time step.

76

The distribution of prompts is determined by the observations accepted from the

multimodal readings. The user can choose to respond the system by speech or just keep

silence. Without speech responses, the user’s action is determined by sensor readings. This

is the reason why the number of prompts in the reminder system is not constant. These

results indicate the planning system helps us build a flexible mechanism for the reminding

tasks, and it is a suitable design for the pervasive interaction based reminder systems.

4.7 Related Work

A plan management technology are used to model an individual’s daily plans in [63,

64]. The authors consider reasoning in execution of the plans, so as to make flexible and

adaptive decisions for reminding tasks. A decision-theoretic planning based on POMDP

is proposed to assist people with dementia to wash hands [65]. A time-state aggregated

POMDP method is proposed for the planning of human-robot interaction [66].

The development of multimodal and human-friendly HCI is a hot topic for assistive

technology [67]. In this paper, we further discuss framework of the planning system for

pervasive interaction.

Multi-task management is a challenging topic in Markov stochastic domains. It has

been considered as a dynamically merging problem for MDPs [17]. Another approach is

the hierarchical POMDP [16, 68]. In these works, different actions are organized in the

hierarchical structure of POMDP for the interaction. The designers implement the mod-

els as hierarchical decomposition of abstract actions, until every action becomes atomic.

Our system adopts the idea of hierarchical design. The task domain is modeled as MDP,

whereas the activity domain is modeled as POMDP.

Another related work tries to automatically construct HPOMDP, through data-mining

techniques on collected data [69]. It assumes that a collection of data may contain many

77

repetitive patterns. If an algorithm is provided some preliminary about some given patterns,

then it can take a data-mining on more data, to discover interesting pattern, such as a

permutated of then original pattern. The authors want to make use of a Hidden Markov

model to analyze this information, to help to construct the model of HPOMDP. Designing a

learning approach to build up a Markov automata belongs to a stand-alone topic. Although

the approach is interesting, we have to build up well about the pre-requisite conditions.

Generally, researchers often rely on a simple Bayesian analysis to model POMDP.

4.8 Conclusion

Designing an integrated, friendly and loose coupling user interface is important to

pervasive environments. The pervasive interaction considers not only dialogue events, but

also sensor events. The observations from both of these events are used to build up the

belief space of a planning system. The reminder is a typical system for pervasive interac-

tion. It is used to remind people with cognitive impairment, about the activities of their

daily livings. We model the reminding tasks in MDPs. We normalize the reminding task of

every activity so that it conforms to a multimodal POMDP model. Solving the hierarchi-

cal multimodal Markov stochastic domains becomes a solution of the pervasive interaction

based reminder system.

CHAPTER 5

PLANNING FOR RISK-SENSITIVE TASKS

5.1 Introduction

In many real-world applications of sequential decision-making, such as medical plan-

ning, surgery, therapy, marketing and robot planning, decision under uncertainty is a trade

off return against risk [70]. Uncertainty is the unpredictability of a process [71]. Risk re-

lates with the unpredictability of alternative outcomes [72]. More and more research works

realize the importance of risk sensitivity for planners [73, 74]. In pervasive assistive envi-

ronments, service robots may also have to make decisions according to their risk attitudes.

For example, when the sensor network reports an event that the elder falls, the robot will

face a time-critical task to help the elder directly or trigger a remote doctor to help. How

could the robot decide what to do under this situation is determined by its attitude about

the risk in different planning options. Another example is the gamble game. Suppose an

investor with assets of $10k has an opportunity to invest $5k in a venture, which is equally

possible to gain either $15k or nothing. A risky option for the investor is to invest his

money, which he may have a chance of 0.5 to gain $15k, and a chance of 0.5 to lose $5.

While not to invest is an alternative option that will reward $0 to the investor with certainty.

As a major branch of decision theory, utility theory explains this risk-aware behavior

[31, 75]: Every intelligent agent has a monotonically non-decreasing utility function that

maps its wealth level of every decision step to the resulting real-valued utility. An agent

maximizes the expected utility of its future wealth level. The utility function determines

its risk attitude. Linear utility functions imply a risk-neutral risk attitude. An agent is

risk-neutral iff it makes decisions that maximize the expected future wealth level. Concave

78

79

Risk-Averse

Risk-Neutral

Risk-Seeking

Expected

Utility

Wealth

Figure 5.1. Relationship of Wealth, Risk Attitude with Utility.

utility functions imply a risk-averse risk attitude. An agent is risk-averse iff it makes de-

cisions that do not maximize its expected future wealth level provided that the variance of

its future wealth level is sufficiently reduced. On the contrary, an agent that is risk-seeking

will have more preference to a risky option than a certain one, and it has a convex utility

function. Since different agents can have different utility functions and thus different risk

attitudes, they can make different decisions. The relationship of wealth, risk attitude and

expected utility is depicted in Fig. 5.1.

Risk is often not independent of wealth. When the wealth increases to a certain level,

the agent may change the order of preference. In financial decisions, managers may face a

decision about the chosen of an optimal option among several investment plans. They have

to evaluate the risk according to their wealth conditions. If the managers have more money,

they will have stronger toleration of the risk. On the contrary, if they are pertaining less

money, generally they will be less tolerable of the risk. The decisions from linear utility

functions are independent of the initial wealth level and thus do not change as the wealth

level increases. These utility functions are also known as zero-switch utility functions [76].

Comparably, for each pair of alternative decisions, however the initial wealth level and the

wealth level of every decision step changes, if the agent only changes its preference once,

80

the utility function is one-switch [76]. Normally, if the utility function of an agent is one-

switch, and it has two options p1, p2 in its current decision step. It may prefer an option

p1 when the wealth level w is lower than a threshold. However, if the w is greater than the

threshold, it may change its preference to p2, even if all other conditions hold the same.

But if the utility function is zero-switch, the agent’s preference will not change according

to the w. An n-switch utility function permits at most n switches of preference between

a pair of alternatives. Bell [76] has proposed that the one-switch utility function is more

adaptable to the change of preference of real-world decision-making applications. In the

following parts, we will address the most useful one-switch utility functions. In fact, the

solving of a zero-switch utility function based problem domain is much easier than that is

based on a one-switch utility function.

The measurement of risk falls into two types: cost based analysis and wealth based

analysis. Cost, reward and wealth are all related with resource. Cost is the consumption of

resource, reward may be consumption or gain, and wealth is the total amount of resource

(money, energy, time, and others) an agent holds. In gambles, lotteries, and investments,

utility is a function of wealth [77]. Decision tree is a prevalent method for risk-aware plan-

ning when wealth analysis is utilized. While the decision-theoretic planning finds optimal

policies using value iteration [78] or policy iteration, using backward induction. This pro-

cess proceeds reasoning backwards, from the end of a problem to determine a sequence of

optimal actions. In this way, risk is easier measured by reward. Since cost is a special form

of reward, the existing Markov decision processes (MDPs) based risk-sensitive planning

approaches address cost analysis as a measurement of risk [72, 79, 80].

On the other hand, it is hard for a planning system to calculate the wealth of every

step directly in sequential decision-making. In some simple problems, the expected wealth

for every state can be calculated easily. Considering the gamble game we have mention

81

10k

0k

+15k

0.5

0.5

-5k

GainCost
Initial

Wealth

0k

0k

invest

Not

invest

Figure 5.2. Decision Tree for the Investment of a Venture.

above. We can use a decision tree (Fig. 5.2) to compute the expected wealth of the invest-

ment,

0.5∗ (10k−5k +0k)+0.5∗ (10k−5k +15k) = 12.5k.

Here, the 5k is the cost of the venture, and the 15k is the gain. Initially, the wealth of the

investor is 10k. If he does not invest the venture, the initial wealth of 10k will be reserved.

If he invests, then the wealth will expect to be 12.5k. Since the expected wealth (12.5k)

of the investment is greater than the wealth of no investment (10k), the investor will prefer

to invest. However, for complex problems that cannot be organized into decision tree, the

outcomes will not be so apparent. The block world domain [72] is such an example, which

we will introduce in the experiment section.

In this example, we assume a zero-switch utility function u(x) = x, i.e. uinvest =

u(12.5k) = 12.5k, u¬invest = u(10k) = 10k. Since 12.5k > 10k, the investor will prefer

to invest the venture. If the utility function u(x) is one-switch, then given a wealth level

W , which is determined by the planner’s specific u(x), when x1 > W and x2 > W , even

though x1 > x2, the utility function may change, such that u(x1) < u(x2). However, it is

u(x1) > u(x2), when x1 < W and x2 < W . As a result, when using a one-switch utility

function to make the decision, the investor may change his preference according to the

82

computing results according to the level of his wealth. However, in a one-switch utility

function, there is only a single change of the preference according to the wealth level.

Although wealth analysis is more reasonable to applications, cost analysis is often

easier for the computation and thereafter often favored by researchers [72]. Cost analysis

considers the resource that is consumed. It has a hidden presumption: the utility is inde-

pendent of wealth (the initial wealth is zero). Take the robot planning as an example: If

we concern the minimization of the total amount of time interval a robot spends in a plan-

ning task, we minimize the sum of the time-cost from every decision step. This will ease

the computing of the optimized results. However, concerning risk attitudes and one-switch

rules [76], the estimated optimal policy π̂ discovered simply by cost will be challenged in

real world risk-aware applications. In worst cases, the π̂ may even be reverse to the real

optimal policy π , after the wealth is considered not to be independent of risk. In the robot

planning, if we simply consider the summary time-cost, we overlook how this planning is

related with the initial wealth - in this case, it is the scheduled total time interval to finish

this task, which is important to planning with risk attitudes. For time-critical tasks such as

helping a falling senior, rescuing victims in disaster [81], also considering the total energy

of an autonomous robot is often certain, to minimize the total time-cost within scheduled

time interval will be more reasonable to real applications than simply to concern the time-

cost itself. This is also known as planning under time constraints in prior research [82].

This paper further discuss the discrepancy between a cost based planning and a

wealth based planning. We introduce a bridge algorithm to connect cost and wealth. Given

a utility function u(x) (either zero-switch or one-switch), and an initial wealth w0, a bridge

algorithm helps us find the optimal policies π , based on the suboptimal policies of cost

analysis. With such a bridge between cost and wealth, we can solve any wealth dependent

risk planning problems that have been solved previously only by decision tree. Since the

83

backward induction based MDP is more powerful framework, the bridge algorithm also

helps us solve complex problems that decision tree cannot provide a solution.

Although the prior research in [79, 83] also considered to incorporate a wealth level

w in a risk-sensitive planning, it is distinctly different from our work from the definition

of question domains to the framework and the algorithm. The initial wealth level w0 is

constraint to zero in this prior work, and it decreases as the time step t increases. This is

to consider the accumulated cost as the wealth level. Our framework allows the w0 to be

any real value. The prior work relied on an “augmented” MDP whose states are defined

as the pairs (s,w), while our research still inherits the traditional and commonly accepted

MDP with the state s. The prior work developed a functional value iteration that maintains

a value function for each state of the given MDP. We incorporate the classical Bellman

value iteration, with a slight modification to a utility value iteration. We solve the problem

domain using a bridge algorithm.

5.2 Decision Theories and Utility Functions

Expected utility (Eu) theory [31] provides a quantification for decision-making under

risk and uncertainty. Let X = (E1 : x1, . . . ,Ek : xk) denote a prospect. The Ei(i = 1, . . . ,k)

denotes the possible events, of which exactly one is true and the others are not true. The xi

designates the amount of reward when the Ei is true. In the decision theory, X º Y if the

agent prefers to choose X from {X ,Y}. When choosing from multiple prospects, the agent

selects one that equally or more than º-dominates the others. Because we do not know

which event is true, we do not know for sure what outcome will result from a prospect. The

expected utility can be a decision criterion. Let p(Ei) = pi(i = 1, . . .n) be the probability

84

distribution of the events, then Eu(X) = ∑n
i=1 piu(xi), where u(xi) is the utility for Ei. We

have

X º Y ⇐⇒ Eu(X)≥ Eu(Y),

i.e.
n

∑
i=1

pi[u(xi)−u(yi)]≥ 0.

If an agent always obeys the expected utility decision criterion, it is risk consistent.

certainty equivalent is a quantification of the wealth under uncertainty. Denote x̃ as the

certainty equivalent of the wealth x, then u(x̃) = u(x).

Both the linear and the exponential utility functions are zero-switch. The agent with

zero-switch utility functions never changes its decision according to different wealth levels.

General Markov decision processes of decision-theoretic planning use linear utility func-

tions, which is risk-neutral [28]. When the utility function takes a linear form u(x) = x, the

expected utility becomes the expected value (E) of wealth. The decision criterion becomes

X º Y if and only if E(X)≥ E(Y).

In risk-sensitive MDPs [4, 84], an exponential utility function is in the form

u(x) =−sgn(τ)e−x/τ (5.1)

with inverse

u−1(x) =−τ log(−sgn(τ)x) (5.2)

where τ(τ 6= 0) is the risk tolerance coefficient. The greater τ means the stronger risk

tolerance. When τ > 0, the greater τ results in the less risk-aversion; when τ < 0, the

larger τ results in the greater risk-seeking.

Bell [76] proved that, only the linear-exponential utility functions satisfy the one-

switch rule:

u(x) = x−ae−x/τ (5.3)

85

where a > 0,τ > 0. Given u(x) = v, the y = u−1(x) can be achieved by solving the equation

y− ae−y/τ − v = 0. There are varies methods to address the solution of such an equation.

We skip this part of contents.

5.3 Risk-Aware MDPs

An MDP models a dynamic system as a set of Markov states, with a pre-knowledge

of the transition probabilities. MDP based dynamic systems assume that every state shares

the same action space. Moreover, the Markov property enables us to utilize dynamic pro-

gramming to find out optimal policies. Since an agent’s risk attitude is determined by its

utility functions, by adjusting these functions, we can model the Markov decision problems

with any risk attitudes using risk-aware MDPs.

A risk-aware MDP is a tuple 〈S,A,T,R,s0,G,U〉, where the S is a set of states, the A

is a set of actions, the T (s,a,s′) is the transition probability from the state s to s′ using an

action a, and the R(s,a) defines the reward when executing an action a in the state s. The

s0(s0 ∈ S) is the initial state, and the G(G⊂ S) is a set of absorbing states. The U is the set

of utility functions, U = {u(x),u−1(x)}. An absorbing state does not have to be a goal. In

the general case planning problems, such as an agent plans to invest an amount of money

(or energy) for a gamble, the actual goal is to win the gamble. But if the agent wants to

avoid the gamble due to its risk attitude, the system also reaches an absorbing state. Thus,

the G includes the goals as well as the termination states (for the infinite planning without

goal or termination state, we can simply set G = null).

A policy represents the action that an agent wants to undertake in a given state. In

the traditional risk-neutral MDP model, the optimal state-action mapping for the tth time

step, denoted as πt , can be reached by the optimal (t−1)-step value function Vt−1:

Qt(s,a) = R(s,a)+ γ ∑
s′∈S

T (s,a,s′)Vt−1(s′) (5.4)

86

where the γ is the discount factor. The optimal policies are calculated using the discounted

sum of rewards E (Σtγ tR(st ,at)). The optimal policy of a state s in a time step t is obtained

by

πt(s) = argaVt(s)

= argmax
a

Qt(s,a)

Continue the value iteration until it comes to the convergence condition

max
s
|Vt(s)−Vt−1(s)|< ε.

Then for each state s, we obtain the convergence value V ∗(s), the convergence value

Q∗(s,a) for each action a, and the convergence policy π∗(s).

The optimal action selection becomes a problem to find a sequence of actions a1..t to

maximize the expected sum of rewards E (Σtγ tR(st ,at)). In this process, what we concern

is the control effect, achieved from the relative relationship of the values. When we use a

discount factor γ , the relative relationship remains unchanged, but the values can converge

to a fixed number.

To adapt to the expected utility theory, let γ = 1, and apply the utility function on the

values, we get

Qt(s,a) = u

[
R(s,a)+u−1

(
∑
s′∈S

T (s,a,s′)Vt−1(s′)

)]
(5.5)

Equation 5.5 puts every value into a utility function, hence, we call it utility value

iteration. Specifically, when u(x) = x, it becomes the traditional Bellman value iteration of

Equation 5.4.

The same with value iteration, utility value iteration can also be solved using back-

ward induction, using dynamic programming. The backward induction determines a se-

quence of optimal actions from the end of a problem. This process continues backwards

87

until one has determined the optimal action for every state. When the value for every state

converges, the program terminates.

Observation 1 After the utility value iteration converges, given the state s, we have that,

(i) the V ∗(s) is an expected utility;

(ii) the u−1(Q∗(s,a)) is a certainty equivalent of action a;

(iii) the u−1(V ∗(s)) is a certainty equivalent of the optimal action.

Utility value iteration guarantees the convergence of linear or exponential functions

[4].Unfortunately, it does not hold for the one-switch linear and exponential functions,

which are more useful in real-world risk-aware applications. However, as discussed [76],

the one-switch utility functions adapt to the change of risk attitudes of the investors better

than zero-switch functions.

Although the traditional work of risk-sensitive MDP [4] only addresses the use of

zero-switch functions, an “augmented” MDP solution is proposed to solve the one-switch

function based utility value iteration [79, 83]. However, even if such an approach can

solve the one-switch utility value iteration, it requires the change of the classical MDP

to an “augmented” version, simply because of the risk-attitude. More importantly, such

a seemingly tiny modification increases the state space as well as the complexity of the

system structure, laying unexpected burden to the planning tasks. In Section 5.5, we will

introduce a bridge algorithm to address how to solve the one-switch utility value iteration.

It makes use of the classical MDP, rather than an “augmented” or other modified version

of MDP for the utility value iteration. By the bridge algorithm, we can achieve the goal of

solving the risk-aware MDP, without changing the model of the original planning system.

Thus, with the bridge algorithm, Equation 5.5 will be useful either the utility function is

zero-switch or one-switch.

88

5.4 Decision-Making with Cost and Wealth

5.4.1 Decision Processes and Decision Graph

A decision graph [72] consists of decision nodes and action edges. We formalize the

definition and correlate it with decision theories. When risk and preference is considered

in decision processes, each state becomes a risk-aware decision node. The action edges

indicate the transitional relationship, as well as the reward or cost. Correlating decision

theories with the MDP model, a prospect of a state s corresponds to an action of s.

A well-defined decision graph has the following properties: Every decision node has

one or more paths to absorbing states, and it is reachable from the root decision node. Given

a decision node s, its prospect is certain if and only if there is only a single future state s′,

T (s,a,s′) = 1. If a decision node has only a single prospect, then the node is certain. Given

a path from a decision node to an absorbing state, if every decision node along the path is

certain, then the path is certain. On the contrary, a decision node is risky if it has at least

two paths to the absorbing states, and one is not certain.

5.4.2 Reward, Cost and Wealth

Reward is used in almost every research work of MDPs. Seldom there is a strict

definition of this term. Normally, reward can be benefit (R > 0), hazard (R < 0) or even

cost (R≤ 0). Although we inherit the rough definition of reward from prior works, in this

paper, we strictly define cost as the quantity of consumption, and wealth as the quantity

of resource. Beside these definitions, we also mention a term of prospect. A prospect of

risk-aware MDP is a state-action pair (s,a). Each prospect has a value, which we obtain by

Equation 5.5.

Definition 1 A path p is a feasible solution from the initial state s0, to an absorbing state

sg ∈ G. It is composed by a set of decision nodes and the corresponding decision edges

that connect these decision nodes.

89

We have multiple paths from the initial state s0 to the goals G. Thus, in order to find

out the optimal solution of the problem domain, it corresponds to find out the optimal path.

Suppose P is a set that includes all of the feasible paths for a risk-aware MDP. Denote n is

the total number of paths for the problem domain, we have P = {p1, p2, . . . pn}.

If we choose a decision node from every path, then we obtain at most m≤ n decision

nodes. This is because different paths may share common decision nodes.

Definition 2 Given m decision nodes s1,s2 . . .sm, each coming from a distinct path, they

are equipotential iff, for ∀i, j ∈ [1,m], the value of every prospect of si equals to the value

of a corresponding prospect of s j, i.e. Q∗(si, ·)≡ Q∗(s j, ·).
Reward is often defined in a flexible way to ease the research and analysis of prob-

lems. It can be defined as either positive gain or negative loss, or both of them. For example,

the 4× 3 Grid [36] defines reward as benefit, while the Tiger-grid [10] defines reward as

hazard. In Hallway navigation domain [10], the cost of every step is a small negative con-

stant, but there is a big positive gain at the destination. In fact, it maps many real-world

measurements into a single parameter of reward. In the robot navigation domain, the cost

of every step is related with the energy consumption of the robot, whereas the positive gain

may represent the object that the robot expects to capture.

In a decision system that is measured simply by reward, one assumes that, by rough

estimation, benefit, hazard, or cost can be quantified as real-valued parameters. For a re-

ward based decision process, the absorbing states are not equipotential. The absorbing

states with benefit provide positive reward, while the absorbing states with hazard provide

negative reward. Since the results are known, by backward induction, an agent can eas-

ily find a stochastic path to reach the absorbing state with better reward. Considering a

reward based decision process, since the choices of optimal policies are originated from

unequipotential decision nodes (the goals normally have better reward than others), we call

it unequipotential planning.

90

Cost is a special type of reward. It indicates the quantity of consumption. Compared

to reward, by which we only make a rough estimation of the values, the cost analysis is

more precise to reflect the consumption. In fact, both the benefit and the consumption can

be quantified as reward. However, the benefit of a process may be totally different from

the consumption. For example, we try to write an article, the benefit is fame and/or money.

However, the consumption is the time we input to such a process. If we quantify these

different metrics into a single metric of reward, the result has to be a rough estimation. If

we simple consider cost to analyze the process, it will be more reasonable.

In a cost based decision process, the absorbing states are equipotential. Let f (S)

denote { f (s),∀s ∈ S}. The reward array for the cost based decision processes satisfies

R(s,G) = 0∧R(s,S\G) < 0.

Since the choices of optimal policies are originated from equipotential decision nodes,

we call it equipotential planning. A hidden presumption for the cost based decision pro-

cesses is, the wealth for the s0 is zero.

Another equipotential planning is the wealth based decision process. Wealth indi-

cates how much resource an agent possesses. In a wealth planning, the value of every deci-

sion node is the amount of wealth (time, energy, money, etc.). Wealth planning is based on

the following assumption: the prospect of every decision node is related with the agent’s

current wealth and the reward of its prospects. In many decision-making applications, like

investment and gamble, the policies are not independent of wealth. Therefore, a wealth

planning reflects one’s risk attitude precisely. For a simple decision graph, of which the

decision nodes can be organized in a tree, i.e., there are only burst nodes (splitting paths),

rather than sink nodes (converging paths, or loop), the solution for the wealth planning is

a greedy forward searching in the decision tree. In complex decision problems, the deci-

91

sion graphs may not be organized into trees. Therefore the decision tree approach is not

applicable. We will address this problem further in next section.

A comparison of reward, cost and wealth in planning is summarized in Table 5.1.

Table 5.1. Comparison of Reward, Cost and Wealth in Planning

Reward Cost Wealth
Equipotential y/n y y
Precision rough precise precise
Presumption w0 = 0 w0 = 0 n.a.
Outcome known unknown unknown
Model MDP r.a. MDP decision tree
Algorithm b.i. b.i. f.g.

n.a.=not applicable r.a.=risk-aware
b.i.=backward induction f.g.=forward greedy

5.5 Bridging Cost and Wealth

5.5.1 Problem Formulation

In risk-aware sequential decision-making that is not independent of wealth, every

decision node does not simply consider reward or cost, but it also relates the risk-attitude

with wealth. Many existing research works on the risk-sensitive MDP simply relies on re-

ward or cost analysis for the optimal policies of decision nodes [4, 72, 79]. These results

do not hold if the one-switch utility functions are used to reflect the planner’s risk-attitude,

because the optimal policies that are discovered simply by cost analysis may be different

from the optimal policies when the wealth level is considered, and these backward induc-

tion approaches cannot utilize wealth analysis directly just like the decision tree approach.

However, as we have discussed in previous sections, the one-switch utility functions adapt

to the risk-attitudes better than zero-switch utility functions, in real-world risk-aware plan-

92

ning applications. Also, it is more realistic for real-world applications that risk-attitudes

of the planners are not independent wealth. As a result, these traditional approaches about

the risk-aware planning will not be able to find out the optimal policies in many real-world

applications. For example, two investors A and B want to invest a venture. The investor

A has an initial wealth of 10k, while the investor B has an initial wealth of 1000k. It is

conceivable that the optimal policies for A and B should be different, because they have

different amount of initial wealth. If we simply consider the analysis of reward, we may

not find out the optimal policies that adapt to the potentially different requirements of A

and B. Although recent works in [79] provide an “augmented” MDP solution for the one-

switch risk-aware MDP, the solution changes the original state space of the MDP. It greatly

increases the size of state space, which will result in an unexpected burden to the plan-

ning tasks. On the other hand, although decision tree is a prevalent solution for the wealth

planning in investment or other financial applications, it works only in relatively simple

sequential decision. It cannot solve complex sequential decision problems whose decision

graphs are not trees.

The risk-aware MDP utilizes backward induction that is more powerful than the

greedy forward search based decision tree. Therefore, it can solve the complex sequen-

tial decision problems. Then, how to solve the problems caused by the one-switch rules

when wealth is considered not independent to the planners’ risk attitude, it becomes a key-

point for such an approach to be used in more general applications. This is because, such

a backward induction can only be used to analyze reward, without considering how the

initial wealth will be related with the planners’ sequential decision. Thus, if we can find

out an approach to solve the one-switch rules based risk-aware planning, and we accept

that the planners’ risk-attitudes are not independent with wealth, we will solve the hardest

and most meaningful part of the risk-ware planning tasks. It will change the current sta-

tus of the wealth based planning being mainly solved by decision-tree. It will enable the

93

solution of more complex planning tasks. Also, we do not want to build up new models

for the problem domains, simply because the reason of incorporating the one-switch utility

functions. These new models, such as an “augmented” MDP, will change the state space of

original domains, which means we use a different framework for the planning tasks.

Under these backgrounds, we want to develop a bridge algorithm, such that we can

solve the problems in wealth based analysis using traditional reward or cost analysis based

approaches. More importantly, such a bridge algorithm should be a “transparent” operation.

That is, we do not have to make any change of the original models to an “augmented” or

any other kinds of different models. From the perspective of planners, they still execute

the planning as if such an additional computing does not exist. Right after the use of the

bridge algorithm, planners will be able to obtain the optimal policies according to their

risk-attitudes.

5.5.2 Equipotential Operations

If we simply consider cost, the risk-aware MDP becomes

Mc = 〈S,A,T,R|(R(G, ·) = 0),s0,G,U,w0 = 0〉.

Otherwise, when wealth is considered, the risk-aware MDP becomes

Mw = 〈S,A,T,R,s0,G,U,w0,W 〉,

where W (s) is the certainty equivalent for the state s.

Let the solution of the risk-aware MDP be 〈π∗(S),V ∗(S)〉, indicating the optimal

policy and the optimal value for every state. We can solve Mc using utility value iteration.

As for Mw, since the initial state has equipotential prospects, we are unable to use backward

induction to transfer the value to other decision nodes. This is the reason why existing

research only considers reward and cost. In the following parts, we will introduce a bridge

94

algorithm, which is a bi-directional value iteration. With this algorithm, we are able to

solve the wealth based planning problems that have complex decision graphs, which are

not trees.

Definition 3 Two distinct risk-aware MDPs M1 and M2 are isomorphic iff, M1 ∩M2 =

〈S,A,T,R,s0,G,U〉.
Definition 4 Two distinct isomorphic risk-aware MDPs M1 and M2 are homeotypic iff,

M1 and M2 have the same set of equipotential decision nodes.

In order to understand these abstract terms, let us see some specific examples.

• If two risk-aware MDPs M1 and M2 are isomorphic, then they are used in a same

domain.

• The equipotential decision nodes for the cost based decision processes Mc are ab-

sorbing states. Their values are all zeros.

• There is only a single equipotential decision node for the wealth based decision pro-

cesses Mw, the initial state s0.

• Since Mc and Mw do not have the same set of equipotential decision nodes, they are

not homeotypic.

• Since,

Mc∩Mw = 〈S,A,T,R|(R(G, ·) = 0),s0,G,U,w0 = 0〉∩ 〈S,A,T,R,s0,G,U,w0,W 〉

= 〈S,A,T,R|(R(G, ·) = 0)∩R,s0,G,U,w0 = 0∩w0(> 0)〉

= 〈S,A,T,R,s0,G,U〉,

Mc and Mw are isomorphic.

Theorem 1 Either two distinct risk-aware MDPs M1 and M2 are isomorphic or homeo-

typic, they define the same problem domain, with the same risk-attitude.

From the definition of homeotypic, if M1 and M2 are homeotypic, then they are isomorphic.

Thus we obtain M1
⋂

M2 = 〈S,A,T,R,s0,G,U〉. This conforms to the definition of an MDP

95

that has an initial state s0, as well as a set of goal states G. Also, M1 and M2 share the same

utility function U . This will lead to a fact that M1 and M2 define the same risk-attitude.

Observation 2 A cost based risk-aware MDP Mc, and a wealth based risk-aware MDP

Mw, if they are isomorphic, they define the same problem domain, with the same risk-

attitude.

Observation 3 A cost based risk-aware MDP Mc has a set of equipotential decision nodes

at the absorbing states, a wealth based risk-aware MDP Mw has a single equipotential

decision node at the initial state.

Observation 4 A cost based risk-aware MDP Mc, and a wealth based risk-aware MDP

Mw, given that they are isomorphic, we have

(i) They hold the same optimal policies provided that their risk-attitudes are inde-

pendent with wealth;

(ii) Otherwise, if their risk-attitudes are not independent with wealth, their optimal

policies may be different.

From the above discussions, we are able to solve a risk-ware MDP whose equipoten-

tial decision nodes are absorbing states, by transforming the Mc into its homeotypic model

Mw.

Let ep(M) denote the equipotential decision nodes of M.

Definition 5 An equipotential transposition of a risk-aware MDP M, denoted as ET (M), is

a transformation from M to M′, where M′ is not homeotypic with M. It holds the following

properties

(i)ET (ET (M)) = M;

(ii) V ∗ (ep(ET (M)))+V ∗(ep(M)) = w0.

Observation 5 A transformation from a cost based risk-aware MDP Mc to a wealth based

risk-aware MDP Mw or vice versa is an equipotential transposition.

96

For the cost analysis, we have w0(M) = 0, by equipotential transposition, we get

w0(ET (M)) > 0. The w0(ET (M)) is the initial wealth that we assume the agent has.

Definition 6 An equipotential induction of risk-aware MDP M is a backward induction,

from its homeotypic counter-partner’s equipotential decision nodes, to any other nodes in

the decision graph.

Let EI(M) denote the equipotential induction of M. The EI(M) is executed from

the decision nodes ep(ET (M)), to any other decision nodes. The equipotential induction

is used for wealth planning, i.e. w0 > 0.

In our computing, we use equipotential induction to transfer a tuple of unequipo-

tential risk-aware MDP into an equipotential tuple of risk-aware MDP. In other words, an

equipotential induction helps to turn the measurement from wealth to cost.

Observation 6 When a planner’s risk-attitude is independent of wealth, equipotential op-

erations will not affect the optimal policies of a decision process, i.e.

(i) π∗(ET (M)) = π∗(M);

(ii) π∗(EI(M)) = π∗(M).

Now that under the assumption that the risk-attitude is independent of wealth, equipo-

tential operations do not affect the optimal policies of a decision process, the equipotential

transposition ET (·) and the equipotential induction EI(·) serve as important operations we

use to construct a bridge between cost and wealth.

5.5.3 Bi-Directional Value Iteration

Denote uV I(M) as the utility value iteration that is taken on a tuple M. For a risk-

aware MDP Mc that is based on cost, and a risk-aware MDP Mw that is based on wealth,

if we can find a bridge between Mc and Mw, we are able to find a solution for Mw, with

the help of Mc. Since the solution requires taking value iteration in two directions of the

equipotential decision nodes (the initial state:top, the absorbing states:bottom), the bridge

97

uVI(·)

ET(·)

EI(·)

uVI(·)

ET(·)
=EI(uVI())

Bottom equipotential

nodes

Top equipotential nodes

t

t=t+1

t=1
t

t

0

1

0

Learning Loop for the

Perfect Model of Wealth

R(G)=W(G)

t

uVI()uVI()

Figure 5.3. Bi-directional Value Iteration for Bridging Cost and Wealth (equipotential po-
sitions of decision nodes are visualized as bold lines).

algorithm is a bi-directional value iteration. A bi-directional value iteration process con-

sists of a cost based utility value iteration, a wealth based utility value iteration, and equipo-

tential operations (Fig. 5.3). The algorithm proceeds as follows:

1. In order to analyze a system whose risk attitude is not independent of

wealth, first we assume it is independent of wealth.

2. The bi-directional value iteration process starts from the Mc.

3. By utility value iteration, we obtain uV I(Mc,0), with equipotential deci-

sion nodes at the bottom (the absorbing states G).

4. Since our purpose is to achieve the Mw, we have to take an equipotential

transposition, Mw,t=1 = ET (uV I(Mc,0)), where t is the time-step.

5. The equipotential transposition will not make a change on the optimal

policies. Let a matrix W from Mw,t be the current certainty equivalent of

wealth.

6. Set R(G) = W (G), we get M′
w,t .

7. Proceed the utility value iteration, we get uV I(M′
w,t), which is unequipo-

tential.

98

8. We transform it into cost using equipotential induction, Mc,t = EI(uV I(M′
w,t)).

9. When we take an equipotential transposition on Mc,t , we get Mw for t +1

time-step, which is Mw,t+1 = ET (Mc,t).

10. Continue this process until Mw,t ≈Mw,t+1, i.e. the wealth matrix W con-

verges.

Theorem 2 Bi-directional value iteration algorithm guarantees the convergence of utility

value iteration with the one-switch linear and exponential functions.

From the execution process of the bi-directional value iteration algorithm, at the beginning

of every external loop, we let R(G) = W (G), by which we appoint the reward of every

absorbing node as its current certainty equivalent of wealth. Although when t = 1, this

value cannot reflect the exact value of certainty equivalent, it will proceed to come closer

to the exact certainty equivalent after we iterate the external loop multiple times. The

reason is, after R(G) is assigned, we obtain M′
w,t . The utility value iteration from the

current estimation of R(G) will estimate again the values of other decision nodes, making

them more reasonable. Then we use an equipotential induction EI(·) on the result, which

will reserve the difference between the decision nodes. Finally we apply an equipotential

transposition ET (·) to change the cost based result into a wealth based result M′
w,t+1 of next

step. Every time we do the external loop, the estimated W (G) will come closer to the exact

certainty equivalent, and Mw,t will also be closer to Mw,t+1. Thus, the algorithm guarantees

Mw,t to converge, even if we use the the one-switch linear and exponential functions in

utility value iteration.

Theorem 3 For a risk-aware MDP whose risk-attitude is not independent of wealth, the bi-

directional value iteration algorithm helps to find out the optimal policies when its iteration

converges.

The difference between the Mw,t and the Mw,t+1 is only reflected in the reward matrix R. In

fact, the entire iteration of Mw,t is a learning process for modeling a perfect M∗
w, such that

99

we can find the most suitable certainty equivalent wealth for every state. Since we cannot

obtain the optimal result 〈π∗,V ∗〉 from Mw directly, if we compute it from Mc, we will

obtain an approximate result 〈π̂∗,V̂ ∗〉. With a perfect model M∗
w, every state has the wealth,

therefore, we are able to compute 〈π∗,V ∗〉. Now that when the algorithm converges, the

wealth of every state is already reflected in M∗
w. The current certainty equivalent matrix of

the wealth Wt is already approximately the same with the matrix of the next step Wt+1, when

the iteration converges. Therefore, the current policies are exactly the optimal policies that

we want to obtain, even if we have an assumption that the risk-attitude is independent of

wealth.

The above descriptions of the bi-directional value iteration algorithm are entirely

based on abstract tuple operations. We will display more concrete contents using the exam-

ple in next section. For equipotential operations, the equipotential transposition (Algorithm

5) is a forward iteration algorithm, and the equipotential induction (Algorithm 6) belongs

to the backward induction.

This algorithm is an anytime algorithm [85]. The expected total utility of no state

can decrease from one iteration step to the next, but the expected total utility of at least

one state strictly increases, until the optimal state-action mapping is found in finite time.

Time complexity of the bi-directional value iteration is determined by uV I(·) operation,

whose time complexity is O(|A||S|2O(u−1)). The learning loop iterates k times, which

is determined by τ . When τ increases, k decreases to a small number. Thus, the time

complexity is O(k|A||S|2O(u−1)) = O(|A||S|2).

5.6 Example

We use the block world problem [72] as a concrete example to interpret the bi-

directional value iteration algorithm. The decision graph for the block world problem

100

CE(S,A) = u−1(Q(S,A))

W (s0, ·) = w0

repeat

for ∀T (s,a,s′) > 0 do

for a′ ∈ A do

if CE(s′,a′) 6= min(CE) then

W (s′,a′) = W (s,a)+CE(s,a)−CE(s′,a′)

else if a′ = π then

W (s′,a′) = W (s,a)+CE(s,a)

else

W (s′,a′) = 0

end if

end for

end for

until W (G) = 0
Algorithm 5: Equipotential Transposition

is depicted in Figure 5.4. From the initial decision node 1, the robot has two actions,

Paint and Move, with an action cost −3 minutes and −1 minutes respectively. A Paint

action changes a block from black to white, or vice versa. In the decision graph, the path

1 → 2 → 3 contains only the actions of Paint. For the action of Move, it has only a prob-

ability 0.4 to successfully move a block on another. If it fails, the block falls on the table.

As shown in the decision graph, there are 10 decision nodes, each for a state. Every edge

denotes an action. If an edge splits into two edges, it implies in this prospect, there are

two future states, representing success and fail. We add a logical action 3 to the state 6,

because it has two Move actions (Move1 : 6 → 4,Move2 : 6 → 7). Other states also need

101

CE(S) = u−1(V (S))

CE(S,A) = u−1(Q(S,A))

C(S,A) = 0

C(G,A) = CE(G,A)

repeat

for ∀T (s,a,s′) > 0 do

for s′ ∈ S do

if s′ ∈ G then

C(s,a) = CE(s,a)−CE(s′)

else

C(s,a) = max(C(s′, ·))+CE(s,a)−CE(s′)

end if

end for

end for

until C(s0, ·) > 0

CE = C

CE(S) = max(CE(·,S))
Algorithm 6: Equipotential Induction

to add an action, in order to keep the Markov property of the unified action space for ev-

ery state. As a result, we use an action space of |A| = 3. Also, we need to add a virtual

state 11 to indicate a termination for invalid actions. For example, in the state 2, there is

only one action, the Paint. If the agent takes other actions, such as Move1 or Move2, then

T (2,Move1:2,11) = 1,R(2,Move1:2) = −∞. In this decision graph, only the states of 1,6

are risky decision nodes.

102

1

2

3

4

5

6 7

8

9

10

P

P P

Figure 5.4. Decision Graph for the Block-World Problem.

If there is no time-constraint, i.e. the risk-attitude is independent of w0, then the

outcomes we obtain from a risk-aware MDP become the final result. Otherwise, if there

exists a time-constraint, suppose it be w0 = 20 minutes. Provided the utility functions

are linear or exponential, the optimal actions should be the same, with or without the w0.

However, if we choose the one-switch utility functions, the optimal actions may change

after the w0 is taken into consideration. For Equation 5.1 and Equation 5.3, let a = 0.5,τ =

2, we get the exponential functions and the one-switch utility functions. Altogether, there

are four optional plans for the block world problem. Every plan contains a sequence of

policies the agent undertakes in all of 10 states (Table 5.2).

Table 5.2. Four Optional Plans for the Block-World Problem

P1 1,1,1,1,1,2,2,2,1,2
P2 2,1,1,1,1,3,2,2,1,2
P3 1,1,1,1,1,3,2,2,1,2
P4 2,1,1,1,1,2,2,2,1,2

Table 5.3 displays part of the output data of the bi-directional value iteration. The

outcome of every step has the data for each state. For the case of exponential utility func-

103

tion, the plans keep to be P1. This is in conformance with the fact that the exponential

utility functions meet the zero-switch rule. No matter what level of wealth is taken into

consideration, the plan should not change. For the one-switch utility function, the plan

keeps to be P3 until it converges in Mw,n. This is coherent with the one-switch rule.

Process Outcomes Plan
Exponential (u(x) =−e−x/2)
uV I(Mc,0) −6,−3,0,−3,0,−11.23,−8.23,−16.46,0,−8.23 P1
Mw,1 20,17,14,11.77,8.77,20,11.77,20,3.54,11.77 P1
uV I(M′

w,1) 8,11,14,5.77,8.77,−2.46,−4.7,−12.9,3.54,−4.7 P1

Mc,1 −6,−3,0,−3,0,−11.23,−8.23,−16.46,0,−8.23 P1
Mw,2 20,17,14,11.77,8.77,20,11.77,20,3.54,11.77 P1
Mw,n 20,17,14,11.77,8.77,20,11.77,20,3.54,11.77 P1

One-Switch (u(x) = x−0.5e−x/2)
uV I(Mc,0) −6,−3,0,−3,0,−7.34,−2.96,−7.34,0,−2.96 P3
Mw,1 20,17,14,15.7,12.7,20,15.6,20,12.7,15.6 P3
uV I(M′

w,1) 8,11,14,9.7,12.7,7.65,10.15,7.65,12.65,10.2 P3

Mc,1 −5.2,−3,0,−3,0,−5,−2.5,−5,0,−2.5 P3
Mw,2 20,17,14,17.797,14.797,19.801,17.298,19.801,14.797,17.298 P3
Mw,n 20,17,14,17.799,14.799,19.8,17.299,19.8,14.799,17.299 P2

Table 5.3. Example Data from the Bi-directional Value Iteration Process

More results are shown in Figure 5.5. We vary the τ from 1 to 20, and record every

result. The initial plans only consider the cost (w0 = 0), and the optimal plans consider the

wealth (w0 = 20). The x-axis is the risk-tolerance coefficient τ , and the y-axis is the index

of the corresponding plan. For the exponential utility function, a cost based initial plan is

the same with a wealth based optimal plan. However, the plan changes when τ = 2 for

the decision process with one-switch utility function. This result demonstrates that, with

one-switch utility functions, the optimal plan for the cost based analysis and the wealth

based analysis may be different in an application system.

104

0 5 10 15 20
1

1.5

2

Risk Tolerance Coefficients for Exponential Utility
In

iti
al

 P
la

n

0 5 10 15 20
1

1.5

2

Risk Tolerance Coefficients for Exponential Utility

O
pt

im
al

 P
la

n

0 5 10 15 20
1

2

3

Risk Tolerance Coefficients for One−Switch Utility

In
iti

al
 P

la
n

0 5 10 15 20
1

1.5

2

Risk Tolerance Coefficients for One−Switch Utility

O
pt

im
al

 P
la

n

Figure 5.5. Comparing the Initial Plan (W0) and the Optimal Plan (W0 = 20): x-axis be τ ,
y-axis be the index of plan.

5.7 Conclusion

The profound influence of the bridge algorithm between cost and wealth relies on the

followings: (i) This approach enables us to relate risk attitudes of a planning with the actual

wealth, instead of simply considering cost or reward; (ii) The bridge algorithm provides a

powerful alternative for the wealth based decision problems, which are previously solved

by decision tree.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary

Pervasive environments provide a challenge to the robot planning. We propose an

episodic task planning and learning approach to guide robots to achieve the objective to

serve the elderly and the disabled.

We first provide an introduction of MDPs, POMDPs and an MHVI algorithm to solve

the POMDPs, by which we solve the following problems. In the episodic task planning

and learning (ETL) approach, we propose a task-oriented design. This is a computational

framework that models the tasks to serve people as MDPs and POMDPs. The tasks are

further abstracted into episodes, a planner learns the experiences and then extract useful

knowledge about these experiences for future planning. We made an evaluation and the

ETL approach has better performance than the existing approaches of MAXQ, HEXQ and

plain MDPs. More importantly, our approach aims to discover a cognitive structure and the

problem domains. The planner is able to find out a clear chart to guide every step of the

planning, rather than simply to decompose the abstract actions such as MAXQ. Thus, the

ETL approach serves as a computational framework of episodic memory, which is more

close to the thinking of humans.

We further provide an example of the tasks in assistive environments, the reminder

system. In this work, we introduce a hierarchical multimodal framework for the pervasive

interaction. Then, we answer another question about how to deal with risk-aware planning

for an intelligent agent. For example, if the time is limited in an assistive task, how could

105

106

a robot make an optimal server for people. We provide a bi-directional value iteration

algorithm for the solution.

In sum, we answer a question that, how a robot organizes its experiences to finish the

tasks to assist people.

6.2 Future Work

A difference of the ETL approach with the episodic memory is that, the experiences

in ETL are obtained from learning and optimization of global data, while episodic memory

records episodes simply according in their emerging times. However, both of ETL and

episodic memory require the creation of abstract state or snapshot of a scenario, with the

experiences corrected to the abstractions and snapshots. Further research how to utilize

ETL and episodic memory for robot planning involves a cross-sectional topic that how to

correlate AI, cognitive science as well as HRI to optimize the actions of robots. One thing is

determined, that the further step this research is taken, the closer the intelligence of robots

is closer to humans.

In fact, even in human society, difference persons may have different performance in

the processes of task handling. Generally, a boss may prefer a more efficient clerk than a

slower one. In this sense, the research of how robots undertake tasks efficiently has both

theoretical and realistic meanings.

6.3 Closing Remarks

In this dissertation, we introduce the approaches for robot planning to serve people in

assistive pervasive environments, with the episodic task planning and learning as the core

part. This research provides a human-like thinking for the robot to finish the designated

107

tasks. Such a computation framework will also be helpful for the design of cognitive robot,

and be a promising part of future research of AI.

REFERENCES

[1] E. Tulving, Elements of Episodic Memory. Oxford, UK; New York: Oxford Univer-

sity Press, 1983.

[2] T. G. Dietterich, “The maxq method for hierarchical reinforcement learning,” in

ICML, San Francisco, CA, USA, 1998, pp. 118–126.

[3] B. Hengst, “Discovering hierarchy in reinforcement learning with hexq,” in ICML

’02: Proceedings of the Nineteenth International Conference on Machine Learning.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002, pp. 243–250.

[4] R. A. Howard and J. E. Matheson, “Risk-sensitive markov decision processes,” Man-

agement Science, vol. 18, no. 7, pp. 356–369, Mar. 1972.

[5] D. Tecuci and B. Porter, “An Episodic Based Approach to Complex Event Process-

ing,” in Intelligent Event Processing, Papers from the 2009 Spring Symposium., O. E.

Nenad Stojanovic, Andreas Abecker and A. Paschke, Eds. Menlo Park, CA: AAAI

Press, 2009, technical Report SS-09-05.

[6] M. A. Batalin and G. S. Sukhatme, “Mobile robot navigation using a sensor network,”

in IEEE International Conference on Robotics and Automation, 2004, pp. 636–642.

[7] M. Mühlenbrock, O. Brdiczka, D. Snowdon, and J.-L. Meunier, “Learning to detect

user activity and availability from a variety of sensor data,” in Proceedings of the Sec-

ond IEEE International Conference on Pervasive Computing and Communications

(PerCom’04). Washington, DC, USA: IEEE Computer Society, 2004, p. 13.

[8] A. Mihailidis, B. Carmichael, and J. Boger, “The use of computer vision in an intel-

ligent environment to support aging-in-place, safety, and independence in the home,”

108

109

IEEE Transactions on Information Technology in Biomedicine, vol. 8, no. 3, pp. 238–

247, 2004.

[9] T. Smith and R. G. Simmons, “Heuristic search value iteration for POMDPs,” in Pro-

ceedings of UAI, 2004.

[10] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies for partially

observable environments: scaling up,” in Proceedings of ICML, 1995, pp. 362–370.

[11] J. Hoey, P. Poupart, C. Boutilier, and A. Mihailidis, “Semi-supervised learning of a

pomdp model of patientcaregiver interactions,” in Proc. IJCAI Workshop on Modeling

Others from Observations, 2005, pp. 101–110.

[12] J. D. Williams and S. Young, “Partially observable markov decision processes for

spoken dialog systems,” Comput. Speech Lang., vol. 21, no. 2, pp. 393–422, 2007.

[13] K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Grasping POMDPs,” in Proceedings

of ICRA, 2007, pp. 4685–4692.

[14] M. Lekavý and P. Návrat, “Expressivity of STRIPS-like and HTN-like planning,” in

Agent and Multi-Agent Systems: Technologies and Applications, First KES Interna-

tional Symposium, vol. 4496. Springer, 2007, pp. 121–130.

[15] F. Deák, A. Kovács, J. Váncza, and T. P. Dobrowiecki, “Hierarchical knowledge-

based process planning in manufacturing,” in Proceedings of the IFIP 11 Interna-

tional PROLAMAT Conference on Digital Enterprise, 2001, pp. 428–439.

[16] J. Pineau, N. Roy, and S. Thrun, “A hierarchical approach to pomdp planning and ex-

ecution,” in Workshop on Hierarchy and Memory in Reinforcement Learning (ICML),

2001.

[17] S. P. Singh and D. Cohn, “How to dynamically merge markov decision processes,” in

Proceedings of NIPS, 1997.

110

[18] A. Jonsson and A. Barto, “A causal approach to hierarchical decomposition of fac-

tored mdps,” in ICML ’05: Proceedings of the 22nd international conference on Ma-

chine learning. New York, NY, USA: ACM, 2005, pp. 401–408.

[19] M. Cirillo, L. Karlsson, and A. Saffiotti, “A human-aware robot task planner,” in Pro-

ceedings of the 19th International Conference on Automated Planning and Schedul-

ing, ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009. AAAI, 2009.

[20] A. Nuxoll and J. E. Laird, “A cognitive model of episodic memory integrated with a

general cognitive architecture,” in ICCM, 2004, pp. 220–225.

[21] C. M. Atance and D. K. O’Neill, “The emergence of episodic future thinking in hu-

mans,” Learning and Motivation, vol. 36, no. 2, pp. 126–144, May 2005.

[22] E. Tulving, “Episodic and semantic memory,” in Organization of Memory. New

York: Academic Press, 1972.

[23] E. Tulving and K. Szpunar, “Episodic memory,” Scholarpedia, vol. 4, no. 8, p. 3332,

2009.

[24] W. Dodd, “The design of procedural, semantic, and episodic memory systems for a

cognitive robot,” Nashville, Tennessee, 2005.

[25] M. Solms and O. Turnbull, The Brain and the Inner World. Cathy Miller Foreign

Rights Agency, London, England: Karnac/Other Press, 2002.

[26] E. A. Feigenbaum, “The simulation of verbal learning behavior,” in IRE-AIEE-ACM

’61 (Western): Papers presented at the May 9-11, 1961, western joint IRE-AIEE-ACM

computer conference. New York, NY, USA: ACM, 1961, pp. 121–132.

[27] R. Howard, Dynamic Programming and Markov Processes. Cambridge, Mass: MIT

Press, 1960.

[28] M. Puterman, Markov Decision Processes. New York, NY.: John Wiley & Sons,

Inc., 1994.

[29] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

111

[30] E. Sondik, “The optimal control of partially observable Markov processes,” Ph.D.

dissertation, Stanford University, 1971.

[31] J. von Neumann and O. Morgenstern, Theory of games and economic behavior.

Princeton: Princeton University Press, 1944.

[32] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially

observable stochastic domains,” Artif. Intell., vol. 101, no. 1-2, pp. 99–134, 1998.

[33] R. Parr and S. Russell, “Approximating optimal policies for partially observable

stochastic domains,” in Proc. of IJCAI, 1995, pp. 1088–1094.

[34] X. Boyen and D. Koller, “Tractable inference for complex stochastic processes,” in

UAI, July 24–26 1998, pp. 33–42.

[35] S. Thrun, “Monte Carlo POMDPs,” in Advances in Neural Information Processing

12, 2000, pp. 1064–1070.

[36] F. S. Melo and M. I. Ribeiro, “Transition entropy in partially observable markov deci-

sion processes,” in Intelligent Autonomous Systems. IOS Press, 2006, pp. 282–289.

[37] J. Pineau, G. J. Gordon, and S. Thrun, “Point-based value iteration: An anytime algo-

rithm for POMDPs,” in Proc. of IJCAI, 2003, pp. 1025–1032.

[38] M. T. J. Spaan and N. A. Vlassis, “A point-based POMDP algorithm for robot plan-

ning,” in Proc. of ICRA. IEEE, 2004, pp. 2399–2404.

[39] N. Roy and G. Gordon, “Exponential family pca for belief compression in pomdps,”

in NIPS. MIT Press, 2003, pp. 1043–1049.

[40] Y. Virin, G. Shani, S. E. Shimony, and R. I. Brafman, “Scaling up: Solving POMDPs

through value based clustering,” in Proc. of AAAI, 2007, pp. 1910–1911.

[41] J. Pineau, “Bayes-adaptive pomdps: A new perspective on the explore-exploit trade-

off in partially observable domains,” in Proceedings of International Symposium on

Artificial Intelligence and Mathematics, 2008.

112

[42] J. Wolfe and S. Russell, “Exploiting belief state structure in graph search,” in ICAPS

Workshop on Planning in Games, 2007.

[43] K. Matusita, “On the notion of affinity of several distributions and some of its appli-

cations,” Ann. Inst. Statist. Math., vol. 19, pp. 181–192, 1967.

[44] M. T. J. Spaan and N. A. Vlassis, “Perseus: Randomized point-based value iteration

for pomdps,” J. Artif. Intell. Res. (JAIR), vol. 24, pp. 195–220, 2005.

[45] T. Smith and R. G. Simmons, “Point-based POMDP algorithms: Improved analysis

and implementation,” in Proceedings of UAI, 2005, pp. 542–547.

[46] D. Feil-seifer and M. J. Mataric, “Defining socially assistive robotics,” in in Proc.

IEEE International Conference on Rehabilitation Robotics (ICORR05, 2005, pp.

465–468.

[47] O. C. Jenkins, G. González, and M. M. Loper, “Tracking human motion and ac-

tions for interactive robots,” in HRI ’07: Proceedings of the ACM/IEEE international

conference on Human-robot interaction. New York, NY, USA: ACM, 2007, pp.

365–372.

[48] O. Maimon, “The robot task-sequencing planning problem,” IEEE Trans. Robotics

and Auto., vol. 6, pp. 760–765, Dec. 1990.

[49] A. Deshpande, B. Milch, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning probabilis-

tic relational dynamics for multiple tasks,” in Probabilistic, Logical and Relational

Learning - A Further Synthesis, vol. 07161, 2007.

[50] F. Courtemanche, M. Najjar, B. Paccoud, and A. Mayers, “Assisting elders via dy-

namic multi-tasks planning: a markov decision processes based approach,” in Ambi-

Sys ’08: Proceedings of the 1st international conference on Ambient media and sys-

tems. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2008, pp. 1–8.

113

[51] T. Winograd, “Frame representations and the declarative procedural controversy,” in

Bobrow, D.G. and Collins, A. (eds.) Representation and Understanding: Studies in

Cognitive Science. New York:Academic Press, 1975.

[52] A. L. R. V. R. I. o. C. T. V. U. o. T. V. Deutsch, T.; Gruber, “Episodic memory for

autonomous agents,” in Conference on Human System Interactions, 2008, pp. 621–

626.

[53] A. Chateauneuf, “On the use of capacities in modeling uncertainty aversion and risk

aversion,” Journal of Mathematical Economics, vol. 20, no. 4, pp. 343–369, 1991.

[54] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: a framework

for temporal abstraction in reinforcement learning,” Artif. Intell., vol. 112, no. 1-2,

pp. 181–211, 1999.

[55] D. Potts and B. Hengst, “Discovering multiple levels of a task hierarchy concurrently,”

Robotics and Autonomous Systems, vol. 49, no. 1-2, pp. 43–55, 2004.

[56] E. A. Hansen and R. Zhou, “Synthesis of hierarchical finite-state controllers for

POMDPs,” in Proceedings of ICAPS. AAAI, 2003, pp. 113–122.

[57] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting structure in policy con-

struction,” in Proceedings of IJCAI, 1995, pp. 1104–1113.

[58] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ value function

decomposition,” Journal of Artificial Intelligence Research, vol. 13, pp. 227–303,

2000.

[59] T. Holz, M. Dragone, and G. M. P. O’Hare, “Where robots and virtual agents meet,”

I. J. Social Robotics, vol. 1, no. 1, pp. 83–93, 2009.

[60] D. Kawanaka, T. Okatani, and K. Deguchi, “HHMM based recognition of human

activity,” Transactions Institute Elec. Info. and Comm. Eng., vol. E89-D, no. 7, pp.

2180–2185, July 2006.

114

[61] R. Kelley, A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu, and G. Bebis, “Under-

standing human intentions via hidden markov models in autonomous mobile robots,”

in Proc. of the 3rd ACM/IEEE international conference on Human robot interaction,

2008, pp. 367–374.

[62] D. L. Vail, M. M. Veloso, and J. D. Lafferty, “Conditional random fields for activity

recognition,” in Proceedings of AAMAS, 2007, pp. 1–8.

[63] M. E. Pollack, “Planning technology for intelligent cognitive orthotics,” in Proceed-

ings of the Sixth International Conference on Artificial Intelligence Planning Systems

(AIPS), April 23-27, 2002, Toulouse, France, 2002, p. 322.

[64] M. Pollack, “Intelligent technology for an aging population: The use of AI to assist

elders with cognitive impairment,” AI Magazine, vol. 26, no. 2, pp. 9–24, 2005.

[65] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis, “A decision-

theoretic approach to task assistance for persons with dementia,” in Proceedings of

IJCAI, 2005, pp. 1293–1299.

[66] F. Broz, I. R. Nourbakhsh, and R. G. Simmons, “Planning for human-robot interac-

tion using time-state aggregated POMDPs,” in Proceedings of AAAI, 2008, pp. 1339–

1344.

[67] H.-E. Lee, Y. Kim, K.-H. Park, and Z. Bien, “Development of a steward robot for

human-friendly interaction,” in Control Applications, 2006. CCA ’06. IEEE Interna-

tional Conference, 2006, pp. 551–556.

[68] S. Natarajan, P. Tadepalli, and A. Fern, “A relational hierarchical model for decision-

theoretic assistance,” in ILP’07: Proceedings of the 17th international conference

on Inductive logic programming. Berlin, Heidelberg: Springer-Verlag, 2008, pp.

175–190.

115

[69] G. M. Youngblood, E. O. H. III, D. J. Cook, and L. B. Holder, “Automated hpomdp

construction through data-mining techniques in the intelligent environment domain,”

in FLAIRS Conference, 2005, pp. 194–200.

[70] A. de Palma and et al, “Risk, uncertainty and discrete choice models,” Marketing

Letters, vol. 19, no. 3, pp. 269–285, December 2008.

[71] G. B. Dantzig, “Planning under uncertainty,” Annals of Operations Research, vol. 84,

p. Preface, 1998.

[72] S. Koenig and R. G. Simmons, “Risk-sensitive planning with probabilistic decision

graphs,” in Proceedings of the 4th International Conference on Principles of Knowl-

edge Representation and Reasoning, 1994, pp. 363–373.

[73] A. Pereira and R. Broed, “Methods for uncertainty and sensitivity analysis : Review

and recomendations for implementation in ecolego,” 2006.

[74] V. A. Ugrinovskii, “Risk-sensitivity conditions for stochastic uncertain model valida-

tion,” Automatica, vol. 45, no. 11, pp. 2651–2658, 2009.

[75] P. C. Fishburn, Foundations of Expected Utility. Dordrecht: D. Reidel Publishing

Co., 1982.

[76] D. E. Bell, “One-switch utility functions and a measure of risk,” Manage. Sci., vol. 34,

no. 12, pp. 1416–1424, 1988.

[77] D. E. Bell and P. C. Fishburn, “Strong one-switch utility,” Manage. Sci., vol. 47, no. 4,

pp. 601–604, 2001.

[78] R. Bellman, “A markovian decision process,” Journal of Mathematics and Mechanics,

vol. 6, 1957.

[79] Y. Liu and S. Koenig, “Risk-sensitive planning with one-switch utility functions:

Value iteration,” in Proceedings of The Twentieth National Conference on Artificial

Intelligence (AAAI-05), 2005, pp. 993–999.

116

[80] P. Perny, O. Spanjaard, and L.-X. Storme, “State space search for risk-averse agents,”

in Proceedings of the 20th International Joint Conference on Artificial Intelligence

IJCAI, Hyderabad, India, 2007, pp. 2353–2358.

[81] G. Nejat and Z. Zhang, “Finding disaster victims: Robot-assisted 3d mapping of ur-

ban search and rescue environments via landmark identification,” in International

Conference on Automation, Robotics and Computer Vision, 2006, pp. 1–6.

[82] T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson, “Planning under time con-

straints in stochastic domains,” Artif. Intell., vol. 76, no. 1-2, pp. 35–74, 1995.

[83] Y. Liu and S. Koenig, “Functional value iteration for decision-theoretic planning with

general utility functions,” in Proceedings of AAAI. AAAI Press, 2006, pp. 1186–

1186.

[84] S. Marcus, E. Fernández-Gaucherand, D. Hernández-Hernandez, S. Coraluppi, and

P. Fard, Systems and Control in the Twenty-First Century, 1997, vol. 29, ch. Risk

sensitive Markov decision processes.

[85] M. S. Boddy and T. Dean, “Solving time-dependent planning problems,” in IJCAI,

1989, pp. 979–984.

BIOGRAPHICAL STATEMENT

Yong Lin received his Bachelor of Engineering degree from Shenyang Jianzhu Uni-

versity, China, in 1997. He received his Master of Science degree from University of

Science and Technology of China, in 2003. All of these degrees are in Computer Science

and Engineering. He has worked on the areas of computer science, including network man-

agement, wireless network, data mining, security and cryptography. His current research

interests include pervasive computing, robotics, artificial intelligence, machine learning

and game theory.

117

