
RECOMMENDER SYSTEMS: AN ALGORITHM TO PREDICT

“WHO RATE WHAT”

by

RAHUL SINGHAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2010

Copyright c© by RAHUL SINGHAL 2010

All Rights Reserved

To my Parents, Brother and Friends.

ACKNOWLEDGEMENTS

I would like to thank my supervising professor Dr.Chris Ding for constantly

motivating and encouraging me, and also for his invaluable advice during the course

of my Masters studies. I wish to thank my committee members Dr.Heng Huang and

Dr.Chengkai Li for their interest in my research and for taking time to serve in my

dissertation committee.

I would like to thank my parents and friends for constantly encouraging and

inspiring me to continue my masters studies. Finally, I would like to express my

deep gratitude to my Father who have encouraged and inspired me and sponsored

my undergraduate and graduate studies. I am extremely fortunate to be so blessed.

November 19, 2010

iv

ABSTRACT

RECOMMENDER SYSTEMS: AN ALGORITHM TO PREDICT

“WHO RATE WHAT”

RAHUL SINGHAL, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Chris H.Q. Ding

Recommender systems are systems that recommend content for us by looking

at certain factors including what other people are doing as well as what we are doing.

Examples of such systems present today are Amazon.com recommending books, CDs,

and other products; Netflix recommending movies etc. These systems basically rec-

ommend items or movies to customers based on the interests of the present customer

and other similar customers who purchased or liked the same item or movie. Our

paper goes beyond the concept of overall generic ranking and provides personalized

recommendation to users. Despite all the advancements, recommender systems still

face problems regarding sparseness of the known ratings within the input matrix.

The ratings are given in the range of (1-5) and present systems predict “What are

the ratings” but here we propose a new algorithm to predict “Who rate what” by

finding contrast points in user-item input matrix. Contrast points are the points

which are farthest from the known rated items and most unlikely to be rated in

future. We experimentally validate that our algorithm is better than traditional Sin-

v

gular Value Decomposition (SVD) method in terms of effectiveness measured through

precision/recall.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . ix

LIST OF TABLES . x

Chapter Page

1. INTRODUCTION . 1

1.1 Recommender Systems . 1

1.2 Who Rate What . 3

1.3 Our Results and Organization . 4

2. RELATED WORK . 6

2.1 Related Work . 6

3. METHOD OVERVIEW . 8

3.1 Traditional SVD method . 8

3.2 Contrast Method . 10

3.2.1 Contrast Points . 10

3.2.2 Methods to Compute Score 12

3.2.3 Top N Approach . 14

3.3 Effectiveness of Recommendations . 15

4. DISTANCE APPROACH . 17

4.1 Distance Approach . 17

4.1.1 Time Complexity . 20

5. EFFIECIENT DISTANCE APPROACH 22

vii

5.1 Efficient Distance Approach . 22

6. EXPERIMENTAL EVALUATION . 25

6.1 Experimental platform . 25

6.2 Evaluation Methodology . 25

6.3 Environment . 26

6.4 Experimental Procedure . 27

7. RESULTS AND DISCUSSION . 29

7.1 Results and Discussion . 29

8. SUMMARY . 35

8.1 Summary . 35

Appendix

A. SYMBOLS TABLE . 36

REFERENCES . 38

BIOGRAPHICAL STATEMENT . 40

viii

LIST OF FIGURES

Figure Page

1.1 2-D matrix with user ratings on movies 3

3.1 Matrix with [0,5] ratings . 9

3.2 Matrix with [0,1] ratings . 9

3.3 Matrix formed after doing SVD . 10

3.4 Matrix with predicted and unpredicted user-items pairs 10

3.5 Matrix with [0,1,-1] values . 12

3.6 Matrix formed after applying SVD on matrix with contrast points . . 12

3.7 Matrix with predicted user-item pairs with Contrast points 12

7.1 Precision v/s Recall graph of MovieLens Dataset (k=10) 30

7.2 Precision v/s Recall graph of MovieLens Dataset (k=20) 31

7.3 Precision v/s Recall graph of MovieLens Dataset (k=30) 32

7.4 Precision v/s Recall graph of MovieLens Dataset (k=40) 33

7.5 Maximum Precision and Recall for different ranks 34

ix

LIST OF TABLES

Table Page

5.1 Algorithms Complexity Comparison 23

7.1 Performance Comparisons of Recommendation Methods (k=10) . . . 30

7.2 Performance Comparisons of Recommendation Methods (k=20) . . . 31

7.3 Performance Comparisons of Recommendation Methods (k=30) . . . 32

7.4 Performance Comparisons of Recommendation Methods (k=40) . . . 33

x

CHAPTER 1

INTRODUCTION

1.1 Recommender Systems

Recommender systems form or work from a specific type of information filtering

system technique that attempts to recommend information items (movies, video on

demand, music, books, news, images, web pages, etc.) that are likely to be of interest

to the user. Typically, a recommender system compares a user profile to some ref-

erence characteristics, and seeks to predict the ’rating’ that a user would give to an

item they had not yet considered. These characteristics may be from the information

item (the content-based approach) or the user’s social environment (the collaborative

filtering approach).

When building the user’s profile a distinction is made between explicit and

implicit forms of data collection.

Examples of explicit data collection include the following:

• Asking a user to rate an item on a rating scale.

• Asking a user to rank a collection of items from favorite to least favorite.

• Presenting two items to a user and asking him/her to choose the best one.

• Asking a user to create a list of items that he/she likes.

Examples of implicit data collection include the following:

• Observing the items that a user views in an on-line store.

• Keeping a record of the items that a user purchases on-line.

• Obtaining a list of items that a user has listened to or watched on his/her

computer.

1

2

• Analyzing item/user viewing times.

• Analyzing the user’s social network and discovering similar likes and dislikes.

The recommender system compares the collected data to similar and not similar data

collected from others and calculates a list of recommended items for the user. Sev-

eral commercial and non-commercial recommendation search engines are available

in market. Examples include Pandora Radio [1] which is an automated music rec-

ommendation service and custodian of the Music Genome Project. Users enter a

song or artist that they enjoy, and the service responds by playing selections that are

musically similar. Users provide feedback on approval or disapproval of individual

songs, which Pandora takes into account for future selections. Another example is

MovieLens [2] which is a recommender system and virtual community website that

recommends films for its users to watch, based on their film preferences and using

collaborative filtering. The website is a project of GroupLens Research, a research

lab in the Department of Computer Science and Engineering at the University of

Minnesota which created MovieLens in 1997. The website’s ultimate goal is to gather

research data on personalized recommendations systems. Recommender systems are

a useful alternative to search algorithms since they help users discover items they

might not have found by themselves. Figure 1.1 shows an example how users rate

items (movies) and how ratings are stored in 2-D recommender systems. Here ?’s

show the unrated user-item pairs.

3

Figure 1.1. 2-D matrix with user ratings on movies.

1.2 Who Rate What

The problem “Who Rate What” means to predict which users will rate what

items in future. The actual rating is irrelevant in this case, we need to predict which

item is going to be rated in near future. The other problem “What are the ratings”

means to predict what are the actual ratings of the items. “Who rate what” goes

beyond the scope of giving generic overall ranking to users which may or may not be

useful to particular useful. We basically here are trying to do the personalized recom-

mendation by predicting which users are going to rate what items in future. Doing

personalized recommendation is difficult because we do not deal with the ratings of

items but we deal with rated user-item pairs in dataset. Even providing personalized

recommendation is commercially beneficial to companies as users get the better and

more detailed picture of recommendation as compared to generic overall recommen-

dation.

In this paper, we propose an algorithm to predict “Who rate What”. Here user

- item matrix contains only ones for rated items and all others are unrated items. We

compare our method with traditional Singular Value Decomposition method. One of

4

the major problem that recommender systems face is data sparsity. Very less number

of items are rated by users and mostly remain unrated. Due to this the quality of

recommendation is not good to users. Here we address this problem by finding some

contrast points which are originally the unrated items. Contrast points means the

items which are most unlikely to be rated in future and thereby improving the accu-

racy of results calculated in terms of effectiveness measured through precision/recall.

One of the main intents of this paper is to understand our approach with the

standard Singular Value Decomposition method. Our main contributions are:

• We propose two approaches for finding contrast points. The first one is “Dis-

tance approach” based on Cosine similarity measure and second one is “Efficient

Distance Approach”. But only second one is experimentally proved on movie

lens dataset, not first one because it is very slow due to its high time complexity.

• The initialization of masked out values with the average of both dimension i.e.,

user and item instead of zeros. The masked out values are the predictions. All

these masked out values are stored in test matrix which we use for assessing the

predictions in future.

• The Comparison of our algorithm with traditional SVD method in terms of

recommendation accuracy measured in precision/recall, with emphasis on pa-

rameters that improve results.

1.3 Our Results and Organization

The rest of the paper is organized as follows. In chapter 2, we describe the re-

lated work i.e Traditional Singular Value Decomposition approach. We describe the

contrast method of finding contrast points and the motivation behind finding these

points in input user-item matrix. We also describe that effectiveness of recommenda-

tions.

5

We describe in chapter 4, Distance Approach of finding contrast points which

is based on cosine-based similarity. We show mathematically how this approach can

find contrast points and also this approach is not applicable on real and large datasets

as it has very high complexity. In chapter 1 we describe our new and faster approach

of finding contrast points in original user - item matrix which is Efficient distance

approach (EDA). The original input matrix contains ones for rated records and zeros

for unrated records. We try to find some of the user-item pairs(contrast points) in

matrix which are most unlikely to be rated in future

The chapter 6 describes about experimental evaluation and contains the de-

scription of dataset used for experimentation and our experimental setup. In chapter

7 We compare the results of our algorithm with the traditional Singular Value Decom-

position approach. Finally chapter 8 summarizes our most important contribution.

Appendix A.1 shows all the symbols used in this paper.

CHAPTER 2

RELATED WORK

2.1 Related Work

Recommenders based on the rank k approximation of the rating matrix based

on the first k singular vectors are described in [3, 4] and many others near year 2000.

The Singular Value Decomposition(SVD) of a rank k matrix A is given by

A = UΣ V T with U an m× k, Σ a k × k and V an n× k matrix such that U and V

are orthogonal. By the Eckart- Young theorem [5] the best rank-k approximation of

A with respect to the Frobenius norm is

||A− UkΣkV
T
k ||2F =

∑
ij

(wij −
∑
k

σkukivkj)
2 (2.1)

where Uk is an m× k and Vk is an n× k matrix containing the first k columns

of U and V and the diagonal Σk containing first k entries of Σ.

RMSE2 =
∑
ij∈R

errij
2 where errij = wij −

∑
k

σkukivkj (2.2)

where R denoted either the training or the test set. To simplify notation we

extend errij with value 0 for ij /∈ R.

The crux in using SVD for recommender lies in handling missing values in the

rating matrix A. Goldeberg et al [6] for example require a gauge set where all ratings

are known, an assumption clearly infeasible on netflix or movielens data scale. Azar

et al. [6] prove asymptotic results on replacing missing values by zeros and scaling

known ratings inversely proportional to the probability of being observed.

6

7

If we see carefully, all these algorithms talk about the “What are the ratings”

problem in recommender systems. In our paper we emphasize on “Who rate what”

problem.

SVD has an important property that makes it particularly interesting for our

algorithm. SVD provides the best low-rank approximation of the original matrix

A. It is possible to retain only k ¡¡ r singular values by eliminating other irrelevant

records. We term this reduced matrix as Σk. The records in Σk are in sorted order

i.e., Σ1 ≥ Σ2 ≥ Σ3 ≥...≥ Σr, the reduction process is performed by retaining first k

singular values. The matrices U and V are also reduced to produce matrices Uk and

Vk, respectively. The reconstructed matrix

Ak = UkΣkV
T
k (2.3)

is a rank − k matrix that is closest approximation to the original matrix A. Authors

[7, 8] pointed out that low-order approximation of original matrix is better than

original matrix as it helps in filtering out that small singular values that create “noise”

in user-item relationship.

CHAPTER 3

METHOD OVERVIEW

3.1 Traditional SVD method

In this paper, we predict “Who Rate What” i.e., which items are most likely to

be rated in future based on previous rated user-item pairs. The dataset is represented

in a 2-d matrix of users and items. Users rate the items and rated items are given

the certain ratings on a scale of 1 to 5. Rated user-item pairs are called as records.

These records show that particular user x rated the item y with certain rating. We

change all the original ratings in the input matrix into +1. The Singular Value

Decomposition(SVD) of a rank k matrix A is given by A = UΣ V T with U an m× k,

Σ a k × k and V an n× k matrix such that U and V are orthogonal. By the Eckart-

Young theorem [5] the best rank-k approximation of A with respect to the Frobenius

norm is

||A− UkΣkV
T
k ||2F =

∑
ij

(wij −
∑
k

σkukivkj)
2 (3.1)

where Uk is an m× k and Vk is an n× k matrix containing the first k columns

of U and V and the diagonal Σk containing first k entries of Σ where uki and vkj

denotes the strength of user i and movie j in factor k, respectively, while σk is the

factor importance weight.

After doing this we do the predictions in Top-N fashion as described in chapter

3.2.3. This whole process of predictions using SVD is called as Traditional Singular

Value Decomposition method. But we can see here that we use full [0, 1] matrix of

all known ratings for training. Figure 3.1 gives an example of user-item matrix with

8

9

ratings given by certain users. We convert all the ratings into 1’s which is shown in

figure 3.1. Then we do SVD on [0, 1] matrix and get matrix which is shown in figure

3.1. After this we predict the items which have value greater than 0.5(threshold

value) in matrix shown in figure 3.1 are predicted. The predicted items are shown

in red color, original rated records are shown in black color and non rated records

in blue color. Basically, we are giving an example how predictions take place in real

recommender systems with certain threshold value. But we have not set any threshold

value, here we check our prediction performance using traditional precision and recall

methods in a Top-N fashion discussed in chapter 3.2.3.

Figure 3.1. Matrix with [0,5] ratings.

Figure 3.2. Matrix with [0,1] ratings.

10

Figure 3.3. Matrix formed after doing SVD.

Figure 3.4. Matrix with predicted and unpredicted user-items pairs.

3.2 Contrast Method

3.2.1 Contrast Points

Our task here is to predict “Who rate What” i.e., which users will rate what

items in future. This means that we are predicting on the basis of personalized

recommendations of users because we are taking into account the user-item pairs or

records. Recommender systems are a useful alternative to search algorithms since

they help users discover items they might not have found by themselves. Most of

the recommender systems or search engines provides generic overall ranking to users

which may or may not be useful to customers. We change the original ratings given

to items to +1 because, suppose if we keep the ratings and then try to predict which

11

items are going to be rated in future; then it could be possible that low rated items

will never be predicted and in this way the system will be biased.

The traditional SVD method discussed in chapter 3.1 gives good results but

there is scope of improvement. This gives us the motivation of think about a method

which can do magic. We come up with a Contrast method. In Contrast method, we

try to find “Contrast Points” which are most unlikely to be rated in future. These

points have maximum distance from rated user-item pairs in matrix i.e., most dis-

similar from rated records. We assign the values to contrast points as -1, because

they have contrast behavior to original rated user-item pairs. Now we show an ex-

ample how Contrast method works on 2-D matrices. Figure 3.1 gives an example of

user-item matrix with ratings given by certain users. We covert all the ratings into

1’s which is shown in figure 3.1. After applying contrast method we get matrix with

[0, 1,−1] values shown in figure 3.2.1. Then we do SVD on previous matrix and gets

matrix shown in figure 3.2.1. Then we do the predictions; suppose we take threshold

value as 0.5, so values higher than 0.5 are predicted and below are unpredicted. The

predicted matrix is shown in figure 3.2.1 with red color values are predicted, black

color values are original 1’s and contrast points, and blue color values are unpredicted.

If we compare our novel “Contrast Method” with “Traditional SVD method”, then

the difference is the input matrix that goes for predictions. In our method also we

do the predictions using SVD.

12

Figure 3.5. Matrix with [0,1,-1] values.

Figure 3.6. Matrix formed after applying SVD on matrix with contrast points.

Figure 3.7. Matrix with predicted user-item pairs with Contrast points.

3.2.2 Methods to Compute Score

Since recommender systems face the major problem of data sparsity i.e., most of

the items remain unrated by many users. Rated User-item pairs or records in matrix

13

are very less as compared to all the records. So we can think of those pairs which

have the least probability of getting rated. We call these points as Contrast points.

Why we call these points as Contrast points, because they have opposite behavior to

rated records in matrix. Now the question arises how to find these points. We give

two approaches “Distance Approach” and “Efficient Distance Approach” discussed

in chapter 4 and chapter 1 respectively. Logically these contrast points are farthest

from the rated records i.e., in similarity wise they are least similar to rated records.

There are two similarity approaches that are commonly used which are correlation-

based approach and cosine-based approach. The similarity measure between users c

and c
′
, sim

(
c, c

′)
, is essentially the distance measure and is used as a weight, i.e.,

the more similar users are c and c
′

are, the more weight rating rc′ ,s will carry in the

prediction of rc,s, where c,c
′

are users and s is an item. Note that sim (x, y) is a

heuristic artifact that is introduced in order to be able to differentiate between levels

of user similarity (i.e., to be able to find a set of “closest peers” or “nearest neighbors”

for each user) and, at the same time simplify the rating estimation procedure. To

present correlation and cosine based popular similarity approaches , suppose Sxy be

the set of all items co-rated by both users x and y, i.e.,

Sxy = {s ∈ S|rx,s 6= � & ry,s 6= �} (3.2)

In collaborative recommendation systems, Sxy is used mainly as an intermediate

result for calculating the “nearest neighbors” of user x and is often computed in a

straightforward manner, i.e., by computing the intersections of sets Sx and Sy. In the

correlation-based approach, the Pearson correlation coefficient is used to measure the

similarity [9]:

14

sim (x, y) =

∑
s∈Sxy

(rx,s − r̄x) (ry,s − r̄y)√∑
s∈Sxy

(rx,s − r̄x)2
√∑

s∈Sxy
(ry,s − r̄y)2

(3.3)

In the cosine-based approach [10], the two users x and y are treated as two

vectors in m-dimensional space, where m = |Sxy|. Then, the similarity between two

vectors can be measured by computing the cosine of the angle between them:

sim (x, y) = cos (~x, ~y) =
~x · ~y

||~x||2 × ||~y||2
=

∑
s∈Sxy

rx,sry,s√∑
s∈Sxy

r2x,s

√∑
s∈Sxy

r2y,s

(3.4)

where ~x · ~y denotes the dot-product between the vectors ~x and ~y.

3.2.3 Top N Approach

We examine the top-N ranked list, which is recommended to a test user, starting

from the top item. In this situation, the recall and precision vary as we proceed with

the examination of the top-N list. We do the personalized recommendation to a test

user but in a Top-N fashion i.e., recommending Top-N items. We predict that these

top-N list of items will be rated by a test user in future. We can predict exactly which

item will be rated by user but in that case we need to have the exact threshold. Google

search engine does the same thing by predicting Top-N list web-pages to users but

non-personalized. Google finds the importance of pages by calculating the weights of

pages in terms of forward and backward links.

The similarity approaches are used to compute the similarity scores between

records and using this we find the records which are least similar i.e., least similarity

scores. These records are considered as Contrast Points which increase our chances of

predicting more relevant and more similar items to users thereby increasing accuracy.

15

3.3 Effectiveness of Recommendations

The problem of developing good metrics to measure effectiveness of recommen-

dations has been extensively addressed in the recommender systems literature. In

most of the recommender systems literature, the performance evaluation of recom-

mendation algorithms is usually done in terms of the coverage and accuracy met-

rics. Coverage measures the percentage of items for which a recommender system

is capable of making predictions [11]. Accuracy measures can be either statistical

or decision-support [11]. Statistical accuracy metrics mainly compare the estimated

ratings against the actual ratings R in the User × Item matrix, and include Mean

Absolute Error (MAE), root mean squared error, and correlation between predictions

and ratings. Decision-support measures determine how well a recommender system

can make predictions of high-relevance items (i.e., items that would be rated highly

by the user). They include classical IR measures of precision (the percentage of truly

high ratings among those that were predicted to be high by the recommender sys-

tem), recall (the percentage of correctly predicted high ratings among all the ratings

known to be high), F-measure (a harmonic mean of precision and recall), and Re-

ceiver Operating Characteristic (ROC) measure demonstrating the tradeoff between

true positive and false positive rates in recommender systems [11].

Although popular, these empirical evaluation measures have certain limitations.

One limitation is that these measures are typically performed on test data that the

users chose to rate. However, items that users choose to rate are likely to constitute a

skewed sample, e.g., users may rate mostly the items that they like. In other words,

the empirical evaluation results typically only show how accurate the system is on

items the user decided to rate, whereas the ability of the system to properly evaluate

a random item (which it should be able to do during its normal reallife use) is not

tested. Understandably, it is expensive and time-consuming to conduct controlled ex-

16

periments with users in the recommender systems settings, therefore, the experiments

that test recommendation quality on an unbiased random sample are rare. However,

the high-quality experiments are necessary in order to truly understand the benefits

and limitations of the proposed recommendation techniques.

CHAPTER 4

DISTANCE APPROACH

4.1 Distance Approach

Various approaches have been used to compute the similarity sim(c, c′) between

users in collaborative recommender systems. In most of these approaches, the simi-

larity between users is based on their ratings of items that both users have rated. The

two most popular approaches are correlation[12] based approach and cosine-based[12]

approach. We use the cosine based similarity to measure distance between different

users and items. To present it, suppose Sxy be the set of all items co-rated by both

users x and y, i.e.,

Sxy = {s ∈ S|rx,s 6= � & ry,s 6= �} (4.1)

In the cosine-based approach [12], the two users x and y are treated as two

vectors in m-dimensional space, where m = |Sxy|. Then, the similarity between two

vectors can be measured by computing the cosine of the angle between them:

sim (x, y) = cos (~x, ~y) =
~x · ~y

||~x||2 × ||~y||2
=

∑
s∈Sxy

rx,sry,s√∑
s∈Sxy

r2x,s

√∑
s∈Sxy

r2y,s

(4.2)

where ~x · ~y denotes the dot-product between the vectors ~x and ~y.

We use the cosine-based similarity measure to calculate the distance between

two points in a user-item matrix. The two points have a row-row distance and column-

column distance. We first precompute the row-row and column-column similarity

matrices of an input user-item matrix using equation 4.2. Using precomputed row-

17

18

row and column-column similarities we find the distance of each unrated user-item

pair from original rated user-item pairs.

The equation for finding the distance between each unrated and all rated records

is as follows:

d [(r, c) , (r′, c′)] =

 1

|R|
∑

r′∈R\r

d (r, r′) +
1

|C|
∑

c′∈C\c

d (c, c′)

 (4.3)

where (r, c) is unrated user-item pair and (r′, c′) is rated user-item pair. d (r, r′) =

cos (r, r′); similarly, d (c, c′) = cos (c, c′). |R| and |C| is initial number of rows and

columns in user-item matrix. We use them in equation as balancing weights. We

maintain the sets S+ = {R+, C+} and S− = {R−, C−}. At any time S+
⋃
S− = S,

Initially when we have no contrast points in our matrix S+ = S and S− = ∅.

So using equation 4.3, we get the distances of all the zeros or unknown records

and replace them with their respective distances. We pick the maximum value and

convert it into +1. This maximum value record is our first contrast point. We keep

track of these maximum value records for future use. After we get the first contrast

point, set S+ = S+−1 i.e., R+ = R+−1 and C+ = C+−1; and S− = S−+1 i.e., R− =

R− + 1 and C− = C− − 1. We use equation 4.3 for finding first contrast point and

then it is never used for exploring subsequent contrast points.

Then we precompute the user-user and item-item similarity matrices again for

newly formed matrix which contains original 0’s, 1’s and contrast point with value

+1. During finding of contrast points we keep their values as +1, not -1. But after

finding all the contrast points we change their values to -1. The equation for finding

second and subsequent contrast points is as follows:

19

d [(r, c) , {(r′, c′) , (r′′, c′′)}] =

 1

|R+|
∑

r′∈R+\r

d (r, r′) +
1

|C+|
∑

c′∈C+\c

d (c, c′)


+

 1

|R−|
∑

r′′∈R−\r

d (r, r′′) +
1

|C−|
∑

c′′∈C−\c

d (c, c′′)


(4.4)

where (r, c) is unrated user-item pair; (r′, c′) ∈ S+ and (r′′, c′′) ∈ S−. |R+|,

|C+|, |R−| and |C−| act as balancing weights for distances between points. If suppose

our first contrast point index is (434 , 282) and second contrast point index is (434 ,

831) i.e., same row as of first one. In this case, value of |R−| will not be increased by 1

but value of |C−| will be increased by 1. Similarly value of |R+| will not be decreased

but value of |C+| will be decreased by 1. So we need to keep track of indexes of every

contrast point. The equation 4.4 is used for finding second and subsequent contrast

points. The concept is, when we go for exploring more contrast points, we try to find

those contrast points which are not only farthest from original rated user-item pairs

but also from previously found contrast points. The equation 4.4 find the distance

between each unrated user-item pair from all original rated user-item pairs as well as

from previously computed contrast points. Whichever unrated user-item pair gives

maximum value is our contrast point.

To prove that our distance approach is correct, we find the overall distance from

each contrast point to all other contrast points and original rated records which is

summed over all contrast points. The equation is given below:

OD =
∑
l∈S−

 1

|S+|
∑

l1∈S+\l

d (l, l1) +
1

|S−|
∑

l2∈S−\l

d (l, l2)

 (4.5)

We expand the equation 4.5 as:

20

OD =
∑

(r,c)∈S−

 1

|R+|
∑

r1∈R+\r

d (r, r1) +
1

|C+|
∑

c1∈C+\c

d (c, c1)


+

 1

|R−|
∑

r2∈R−\r

d (r, r2) +
1

|C−|
∑

c2∈C−\c

d (c, c2)

 (4.6)

where (r1, c1) ∈ S+ and (r2, c2) ∈ S−. Values of |R+|, |C+|, |R−| and |C−| are

taken from equation 4.4 result i.e., when we have all the contrast points.

We compare our approach with traditional SVD method in which we find the

contrast points by doing SVD of input user-item matrix and reconstruct it again.

After reconstruction, we find all those points which have smallest values and their

number is equal to number of original rated items in input matrix. Then we assign

those points as -1 value in original matrix. We use equation 4.6 to find the overall

distance as in our approach. we find the overall distance from our approach is more

than SVD method, which shows that contrast points in our approach are farthest. So

in this way, we prove our approach is better than SVD method. We examined it on

small synthesized matrix, not on real dataset as time complexity is very high. Refer

to table 5.1 for time and space complexity comparison of algorithms. As we could

not able to implement our novel Distance Approach on real dataset, we come up new

approach which is basically an approximation of Distance Approach. We name it

“Efficient Distance Approach” and discussed in chapter 1.

4.1.1 Time Complexity

Suppose m is number of rows and n is number of columns in input matrix. p

is the number of original rated user-item pairs. Total number of entries in matrix

is m ∗ n. Total number of zeros in matrix is (mn− p). To find first contrast point,

we need to find the distance of each zero from all p’s. Time complexity to find

21

first contrast point is O (pmn− p2). Then time complexity to find all remaining

contrast points is O (p2mn− p3). If we see mn is much greater than p because of data

sparsity problem in recommender systems. Therefore upper bound time complexity

of Distance Approach is O (p2mn).

CHAPTER 5

EFFIECIENT DISTANCE APPROACH

5.1 Efficient Distance Approach

This approach is an approximation of our original Distance Approach. In this

approach, our main aim is to find the points in user-item matrix which are most

unlikely to be rated in future. We call these points as “Contrast Points”, which are

basically farthest from the rated entries. The philosophy of this approach and original

Distance Approach is same but the way of achieving is different. We use Singular

Value Decomposition as an underlying matrix factorization technique.

The algorithm takes four arguments as input. These are User-Item input matrix

with rated and unrated records, number of contrast points, rank of matrix for SVD

and empty index matrix of size c× 2. The output of the matrix is X with all desired

contrast points. In line 3 we assign the input matrix A to temporary matrix T.

Line 4 of algorithm is entry point of for-loop where number of iterations are equal to

number of contrast points(c). In line 5 we do the Singular Value Decomposition of

input user-item matrix(A) which contains original zeros(unrated recored) and original

ones(rated records). After doing SVD we get three matrices U, S and V, where k is

the rank of the matrix(A). In line 6, we take first k columns of matrix U and assign

to intermediate matrix U1. In line 7 we take first k rows and first k columns of

matrix S1 and assign to intermediate matrix S1. In line 8, we take first k columns of

matrix V and assign to intermediate matrix V1. In line 9 we reconstruct the matrix

T, which was decomposed in line 5 as T = U1∗S1∗V 1T . Then in line 10 we find the

index of minimum value of reconstructed matrix T and assign to index matrix Y. This

22

23

minimum value record is basically our contrast point. The purpose of Index Matrix Y

is to store the indexes of contrast points which will be used when we come out of the

for-loop. Last step of for-loop i.e., in line 11 we replace the minimum value records

with the value
√
c
i

, where c is number of contrast points and i is iteration number

of for-loop. We assign the contrast point index with
√
c
i

because it acts as weight

and when we get the second and subsequent contrast points they should be distant

from themselves also. When the for loop is complete, we replace the values of indexes

stored in index matrix Y, in original input matrix A with -1. Last step of algorithm

is to assign matrix A to matrix X. This way we achieve our purpose of finding points

which are farthest from the original rated records. We use this matrix to get the test

and training portions for our experiments. The experimental procedure is defined in

chapter 6. The table 5.1 shows time and space complexities of algorithms used in this

paper.

Table 5.1. Algorithms Complexity Comparison

Methods Time Complexity Space Complexity
EDA O(min(cnm2, cmn2)) O(mn)
DA O(p2mn) O(mn)
SVD O(min(nm2,mn2)) O(mn)

24

Algorithm 1 Efficient Distance Approach
1: Input:

A: User-Item Matrix with rated and unrated records

c: Number of Contrast Points

k: Rank of matrix for SVD

Y: Empty Index matrix of size c× 2

2: Output:

X: Resultant Matrix with all desired contrast points

3: T ← A

4: for i = 1 to c do

5: [U, S, V]← SV D (T)

6: U1← U (:, 1 : k)

7: S1← S (1 : k, 1 : k)

8: V 1← V (:, 1 : k)

9: T ← U1 ∗ S1 ∗ V 1T

10: Y [i, :]← IndexOf (min (T))

11: T [Y]←
√
c/i

12: end for

13: A [Y]← −1

14: X ← A

CHAPTER 6

EXPERIMENTAL EVALUATION

This section describes the experimental verification of our algorithm to find

contrast points. We first present our experimental platform - the data set, the evalu-

ation metric , and the computational environment. Then we present our experimental

procedure.

6.1 Experimental platform

Data set. We used the MovieLens data set [13]. MovieLens is a web-based

research recommender system that debuted in Fall 1997. The data set was converted

into user-item matrix that had 943 rows (users) and 1682 columns (movies). The

matrix had 100,000 ratings (1-5) and all unrated items had value zero, for our experi-

ments We converted the value of all rated user-item pairs into +1 as we are concerned

to predict “Who rate What” rather than “What are the ratings”. For getting test

data, we used user and item percentages. We set 30% as user percentage and 40% as

item percentage for our experiments.

6.2 Evaluation Methodology

For our experiments, we measure the prediction quality using traditional Precision-

Recall methods in a Top-N fashion. They are widely used statistical accuracy metrics.

Precision is defined as the ratio of relevant items selected to number of items selected.

Precision represents the probability that a selected item is relevant. Precision is de-

fined mathematically as,

25

26

Precision =
Nrs

Ns

(6.1)

where, Nrs is number of relevant items selected and Ns is number of items selected.

Recall is defined as the ratio of relevant items selected to total number of rel-

evant items available. Recall represents the probability that a relevant item will be

selected. Recall is defined mathematically as,

Recall =
Nrs

Nr

(6.2)

where, Nrs is number of relevant items selected and Nr is total number of relevant

items available.

Precision and recall depend on the separation of relevant and non-relevant items.

For our dataset, originally items are rated from 1-5 but we do not use as such because

we are concerned with the rated records only, not with the ratings. We predict “who

rate what”, not “What are the ratings”. We change the ratings and give all the rated

records as value +1. MovieLens dataset has a rating scale of 1 to 5 and is commonly

transformed into a binary scale by converting every rating of 4 or 5 to relevant and

all ratings of 1 to 3 to non-relevant”. But in our case we consider all rated records

i.e., having value as +1 as “relevant” and all unrated records as “non-relevant”.

6.3 Environment

All our experiments are done using MATLAB, running on Windows machine

with 2.1 GHz Intel Pentium core 2 duo processor with 3 GB RAM, and 2 MB of cache

memory.

27

6.4 Experimental Procedure

We introduce two approaches to achieve our goal of finding contrast points in

input user-item matrix. First one is Distance Approach where we use cosine based

similarity to find distance between unrated and rated records. But as we mentioned

earlier that we could not able to implement this approach on real movielens data set

due to its high time complexity. Due to this hurdle, we examined it on small test

matrix.

The second approach is basically an approximation of distance approach. We

call it an Efficient Distance Approach. We first take input user-item matrix formed

after changing all the ratings (1-5) into 1, as we are concerned with rated records

only not with their ratings. Then in next step we implement our Efficient Distance

Approach as described in chapter 1. We find all the desired contrast points in matrix.

Next step is to do initialization and dividing the matrix into training and test portion

by using user and item percentages. We first randomly choose all the required number

of users as set by user percentage and then randomly choose user-item pairs. If we

find 1 then we change it with 2, for 0 we change it with 3 in matrix. These are

called masked out values and we do the initialization of them by filling them with

the average of both dimensions (user and item). This is better than using zero for

initialization. The masked out values are the predictions. All these masked out values

are stored in test matrix which we use for assessing the predictions in future. We do

not touch the contrast points for initialization, as we do not want to loose them. But

for test matrix we change contrast points value to 4 just to make them differentiable.

After doing initialization and forming test portion of matrix, We use the ini-

tialized matrix to do rank k approximation based on the first k singular vectors i.e.

we use Singular Value Decomposition(SVD) in order to reduce noise i.e., error in the

28

matrix. Then We measure the prediction quality using traditional Precision-Recall

methods in a top-N fashion. We sort the predicted values. We pick N = 1, 2, 3, · · · , 10

top values. We assess the predicted values with the known masked out information.

For comparing with traditional SVD method where we follow all the experimental

procedure steps except finding contrast points which is basically the key of improving

accuracy.

CHAPTER 7

RESULTS AND DISCUSSION

7.1 Results and Discussion

We examined our original distance approach on synthesized dataset which con-

tains 67 users and 70 items with 281 rated records i.e., around 6% of total records.

The overall distance in equation 4.6 in our case came higher than traditional SVD

method, which proves that our motive of finding farthest contrast points is achieved.

As we mentioned earlier we can not implement this approach on real dataset as its

time complexity is very high which is its main limitation. Due to this we come up

with the Efficient Distance Approach to find contrast points. We tested it on real

data set i.e., Movielens dataset of size 943 users and 1682 items with 100,000 rated

records. The known records is around 6.3% of total records. We have shown results

for different ranks of matrix i.e., k = 10, 20, 30 and 40 for EDA and SVD respectively.

For each rank, we have shown results when number of contrast points is c(contrast

points) = 200, 500, 1000 and 2000 for EDA. For all the results, the user and item per-

centage was kept fixed at 30% and 40% respectively. The figure 7.1 shows Precision

v/s Recall graph of MovieLens Dataset when k = 10. The table 7.1 shows the per-

formance comparisons of recommendation methods when k = 10. Similarly there are

figures 7.2, 7.3, 7.4 and tables 7.2, 7.3, 7.4 shown for k = 20, 30 and 40 respectively.

When we examine each Precision v/s Recall graph of MovieLens Dataset for particu-

lar k, we find the maximum precision and recall for c = 2000. Refer figure 7.5 to see

maximum Precision and Recall for different ranks. If we compare the graphs for all

29

30

k’s, then we find the maximum precision and recall when k = 30. The experimental

results illustrate the effectiveness of Efficient Distance Approach.

Figure 7.1. Precision v/s Recall graph of MovieLens Dataset (k=10).

Table 7.1. Performance Comparisons of Recommendation Methods (k=10)

Methods Contrast Points (c) Max. Precision Max. Recall

EDA

200 0.6028 0.5263
500 0.6628 0.5425
1000 0.7183 0.6072
2000 0.7562 0.6972

SVD N/A 0.3988 0.3751

31

Figure 7.2. Precision v/s Recall graph of MovieLens Dataset (k=20).

Table 7.2. Performance Comparisons of Recommendation Methods (k=20)

Methods Contrast Points (c) Max. Precision Max. Recall

EDA

200 0.6281 0.5392
500 0.6724 0.5524
1000 0.6952 0.5862
2000 0.7729 0.7193

SVD N/A 0.4294 0.4025

32

Figure 7.3. Precision v/s Recall graph of MovieLens Dataset (k=30).

Table 7.3. Performance Comparisons of Recommendation Methods (k=30)

Methods Contrast Points (c) Max. Precision Max. Recall

EDA

200 0.6312 0.5473
500 0.6917 0.5627
1000 0.7417 0.6551
2000 0.8017 0.7451

SVD N/A 0.4486 0.4292

33

Figure 7.4. Precision v/s Recall graph of MovieLens Dataset (k=40).

Table 7.4. Performance Comparisons of Recommendation Methods (k=40)

Methods Contrast Points (c) Max. Precision Max. Recall

EDA

200 0.6103 0.5382
500 0.7028 0.5517
1000 0.7362 0.6381
2000 0.7828 0.7303

SVD N/A 0.4367 0.4189

34

Figure 7.5. Maximum Precision and Recall for different ranks.

CHAPTER 8

SUMMARY

8.1 Summary

In this paper, we propose an algorithm to predict “Who rate what”. We show

that we are not concerned with the ratings of items instead the rated items. The al-

gorithm finds the contrast points in matrix which are farthest from rated records and

themselves, due to which we eliminate the chances of those points being predicted in

future, thereby improving results. We give two approaches of finding contrast points,

(1) Distance Approach (DA) using cosine similarity and (2) Efficient Distance Ap-

proach (EDA) using SVD as underlying matrix factorization technique. Philosophy

of both approaches is same i.e. using distance to find contrast points but the under-

lying methodology is different. We clarify that we can not use first approach on real

dataset because of high time complexity due to which we propose EDA. Our novel

idea of finding contrast points is unique. Experimental results indicate our approach

outperform traditional Singular Value Decomposition method.

35

APPENDIX A

SYMBOLS TABLE

36

37

A.1 Table of Symbols Used

Table A.1. Table of Symbols used.

Symbols Definition
Sxy Set of all items co-rated by both users x and y
sim (x, y) Similarity between two vectors x and y
cos (~x, ~y) Cosine of the angle between two vectors x and y
m Number of rows in matrix
n Number of columns in matrix
p Total number of original rated records in matrix
R Number of rows/users in matrix
C Number of columns/items in matrix
R+ Number of rows for rated records
C+ Number of columns for rated records
R− Number of rows for contrast points
C− Number of columns for contrast point
c Number of Contrast points
Nrs Number of relevant items selected
Ns Number of items selected
Nr Total number of relevant items
Uk m× k matrix containing first k columns of U
Vk n× k matrix containing first k columns of V
Σk k × k matrix containing first k entries of Σ

REFERENCES

[1] Pandora, http://www.pandora.com.

[2] Grouplens, http://http://movielens.umn.edu/.

[3] M. H. Pryor, “The Effects of Singular value decomposition on Collaborative

filtering,” 2001.

[4] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimensionality

reduction in recommender systems-a case study,” 2000.

[5] G. H. Golub and C. F. Loan, “Matrix Computations.” 1983.

[6] K. Goldberg, T. Roeder, D. Gupta, , and C. Perkins, “Eigenstate: A constant

time collaborative filtering algorithm,” 2001, pp. 133 – 151.

[7] S. T. D. M. W. Berry and G. W. O’Brian, “Using Linear Algebra for Intelligent

Information Retrieval,” 1995, p. 37(4).

[8] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, , and R. Harshman,

“Indexing by Latent Semantic Analysis,” 1990, p. 42(6).

[9] U. Shardanand and P. Maes, “Social information filtering: Algorithms for au-

tomating “word of mouth”,” 1995.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-Based Collaborative

Filtering Recommendation Algorithms,” 2001, pp. 285–295.

[11] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “Social Information

Filtering: Algorithms for Automating “word of mouth”,” 1995.

[12] G. Adomavicius and A. Tuzhilin, “Toward the Next Generation of Recommender

Systems: A Survey of the state-of-the-Art and Possible Extensions,” 2004.

[13] MovieLens, http://www.grouplens.org/node/73.

38

39

[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Incremental Singular Value

Decomposition Algorithms for Highly Scalable Recommender Systems.”

[15] A. B. M. Kurucz and K. Csalogany, “Methods for large scale SVD with missing

values.”

BIOGRAPHICAL STATEMENT

Rahul Singhal was born in Agra, India, in 1986. He received his Bachelor of

Technology degree in Computer Engineering from Govind Ballabh Pant University of

Agriculture and Technology, Pantnagar, India in 2008, his Masters of Science degree

in Computer Science from The University of Texas at Arlington in 2010. He did his

Summer Internship from Indian Institute of Technology, Kanpur, India during June-

July 2007. He worked as Graduate Research Assistant, System Administrator under

Computer Science and Engineering department. His current research interests is in

the area of Algorithms and Data Structures.

40

