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ABSTRACT

SELF-ORGANIZATION AND RESOURCE ALLOCATION

IN WIRELESS SENSOR NETWORKS

Publication No.

Liang Zhao, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Liang, Qilian

In this dissertation, we utilize clustering to organize wireless sensors into an energy-

efficient hierarchy. We propose a Medium-Contention Based ClusterHeadship Auction

(MCCHA) scheme, through which sensors self-organize themselves into energy-efficient

clusters by bidding for cluster headship. This scheme is based on a new criterion that

can be used by each sensor node to make a distributed decision on whether electing to be

a cluster head or a non-head member, which is a fully distributed approach. Although

MCCHA uses only local information, it achieves better performance in terms of effective

lifetime and Data/Energy Ratio compared with native LEACH, which relies on other

routing algorithms to access global information. A complementary exponential data

correlation model is also introduced to simulate different data aggregation effect.

To better understand the clustering issue in wireless sensor networks, we model the

end-to-end distance for a given number of hops in dense planar Wireless Sensor Networks

in this dissertation. We derive that the single-hop distance and postulate Beta distri-

bution for 2-hop distance shows Beta distribution for two hops. The multi-hop distance

approaches Gaussian when the number of hops is three or greater. Our error analysis

also shows the distance error can be minimized by exploiting the distribution knowledge.
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Based on this model, we propose a Maximum Likelihood decision to decide to the number

of hops given the distance between two nodes. Due to the computational complexity of

conditional pdf of the number of hops given the distance, we also propose an attenuated

Gaussian approximation for the conditional pdf. We show that the approximation visibly

simplifies the decision process and the error analysis. The latency and energy consump-

tion estimation are also included as application examples. Simulations show that our

approximation model can predict the latency and energy consumption with less than

half RMSE, compared to the linear models.

In this dissertation, we also study the optimal cluster size in Underwater Acoustic

networks. Due to the sparse deployment and channel property, the clustering character-

istics of UA is different from that of aerial sensor networks. We show that the optimal

cluster size is also relevant to the working frequency of the acoustic transmission.

vi



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Wireless Sensor Networks and Clustering . . . . . . . . . . . . . . . . . . 1

1.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 UnderWater Acoustic Sensor Network . . . . . . . . . . . . . . . . . . . . 5

1.4 Deployment Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Review of Wireless Medium Access . . . . . . . . . . . . . . . . . . . . . 7

2.2 Radio Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Data Correlation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 LEACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Hop-Distance Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Skewness and Kurtosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Chi-Square Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Underwater Acoustics Fundamentals . . . . . . . . . . . . . . . . . . . . 16

3. CLUSTERING FOR TERRESTRIAL WSN . . . . . . . . . . . . . . . . . . . 19

3.1 Optimal Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Influence Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.3 Optimal Cluster Size . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii



3.2 Medium-Contention Based ClusterHeadship Auction . . . . . . . . . . . 24

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 MCCHA vs. LEACH . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Optimal Rc at Varying Data Aggregation Effect . . . . . . . . . . 32

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. CLUSTERING IN UNDERWATER SENSOR NETWORKS . . . . . . . . . . 36

4.1 Optimal Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Solution for Random Deployment . . . . . . . . . . . . . . . . . . 37

4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5. MODELING HOP-DISTANCE RELATION . . . . . . . . . . . . . . . . . . . 43

5.1 Probabilistic study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.2 Single-Hop Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Two-Hop Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Single-Hop Distance . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Two-Hop End-to-end Distance . . . . . . . . . . . . . . . . . . . . 48

5.2.3 Three-And-More-Hop End-to-end Distance . . . . . . . . . . . . . 49

5.2.4 Optimum Estimation and Error Analysis . . . . . . . . . . . . . . 49

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6. HOP ESTIMATION GIVEN DISTANCE . . . . . . . . . . . . . . . . . . . . 54

6.1 Maximum Likelihood Analysis . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Attenuated Gaussian Approximation . . . . . . . . . . . . . . . . 54

6.1.2 Decision Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



6.2.1 Latency Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.2 Energy Consumption Estimation . . . . . . . . . . . . . . . . . . 60

6.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ix



LIST OF FIGURES

Figure Page

1.1 ToA ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 TDOA ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 AOA ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A generic MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Time line showing LEACH’s frame structure . . . . . . . . . . . . . . . . 8

2.3 100 nodes elect 5 heads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Plot of a(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Plot of ∂J̄total

∂c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Plot of copt vs. N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Flow chart of a node in MCCHA . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Categories of bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 The Medium Access Control used in MCCHA . . . . . . . . . . . . . . . 29

3.6 MCCHA vs. LEACH. Part I . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 MCCHA vs. LEACH. Part II . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 MCCHA vs. LEACH (Throughput) . . . . . . . . . . . . . . . . . . . . . 34

4.1 Footprint of cluster heads . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Etotal vs. the number of clusters . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Etotal vs. the number of clusters . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Etotal vs. the number of clusters . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 The single-hop case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Two hops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 The histogram vs. postulated distribution for single-hop distance . . . . . 48

5.4 The histogram vs. postulated distribution for two-hop distance . . . . . . 49

5.5 The histogram vs. postulated distribution for three-hop distance . . . . . 50

x



5.6 The histogram vs. postulated distribution for four-hop distance . . . . . . 51

5.7 The histogram vs. postulated distribution for five-hop distance . . . . . . 52

5.8 The histogram vs. postulated distribution for six-hop distance . . . . . . 52

5.9 The RMSE bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Histograms of hop-distance distribution . . . . . . . . . . . . . . . . . . . 55

6.2 Gaussian Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Estimation Average. (a) Latency. (b) Energy consumption . . . . . . . . 62

6.5 Estimation RMSE. (a) Latency. (b) Energy consumption . . . . . . . . . 64

xi



LIST OF TABLES

Table Page

2.1 Communication Energy Parameters . . . . . . . . . . . . . . . . . . . . . 9

2.2 Outcome of 100 nodes electing 5 heads. . . . . . . . . . . . . . . . . . . . 13

3.1 Data of LEACH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Data of MCCHA at α = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Data of MCCHA at α = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Calculated number of clusters. . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Definition of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Statistics of f(r|Hi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Estimation RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



CHAPTER 1

INTRODUCTION

1.1 Wireless Sensor Networks and Clustering

A wireless sensor network (WSN) can be thought of as an ad hoc network consist-

ing of sensors linked by a wireless medium to perform distributed sensing tasks. WSNs

share many communication technologies with ad hoc networks, but there are some vi-

tal differences such as dense deployment and energy constraint [1], thus the protocols

developed for traditional wireless ad hoc networks are not necessarily well suited to the

unique features of WSNs. When a wireless sensor may have to operate for a relatively

long duration on a tiny battery, energy efficiency becomes a major concern [2–5].

A variety of “power-aware” routing protocols have been proposed to address this

problem [6–10]. In one school of thoughts [11–16], the traditional Shortest Path First

strategy is replaced by Least Energy First routing, i.e., a multi-hop route is preferred to

a single-hop one if only multiple short-distance relays cost less energy than a single long-

distance transmission. For example, “Minimum Transmission Energy”(MTE) routing

[12, 13] was proposed in place of traditional “minimum hops routing”. Another school

of thoughts is that nodes are clustered so that a hierarchy is formed [17–22]. Based on

the observations on cellular networks [23], it would be advisable to partition nodes into

clusters for the reasons such as spatial reuse, less update cost, less routing information

and less data transmission [24–34]. LEACH (Low-Energy Adaptive Clustering Hierarchy)

[35], an example of the latter school, can extend network lifetime by an order of magnitude

compared with general-purpose multihop approaches. In conclusion, the characteristics

of WSN prefer hierarchical structure with clusterheads [36–38].

However, the cluster formation in LEACH is based on global information. To access

such information, other routing schemes are required. In this sense, LEACH is only a

1
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semi-distributed protocol for WSN. Another problem with LEACH is the random head

election that cannot guarantee that the desired number of cluster heads be elected or the

elected heads evenly positioned. In this paper, we are concerned to optimize the cluster

formation using only local information. The intuition behind the proposed Medium-

Contention Based ClusterHeadship Auction (MCCHA) is using medium contention to

keep the cluster size within an ideal range.

1.2 Localization

Radio

Figure 1.1. ToA ranging.

In Wireless Sensor Networks (WSN), node location information is often required in

many applications such as event tracing, environment monitoring and geographic routing

[39, 40]. Generally, the distances from a node with unknown location to several anchor

nodes are estimated, and then a multilateration is applied to estimate the node location.

Distance is often estimated based on received signal strength, time of arrival (TOA), time

difference of arrival (TDOA) or angle of arrival [41–43].
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Radio

Acoustic

Figure 1.2. TDOA ranging.

The angle-of-arrival based ranging requires directive antennas or arrays, which is

not suitable for most microsensors. TOA measures the flight time of radio or acoustic

signal and then multiply it by the speed of the signal to estimate the flight distance. The

problem with TOA is measuring time of flight requires timing device with satisfactory

resolution like in GPS. TDOA uses two different signal with tremendous speed difference

so that the flight time can approximated by the difference between arrival time of two

signals [44]. Although it needs much less resolution, it often requires extra acoustic

or ultrasound emission, which comes with higher price, larger size and more energy

consumption, all seeming impractical for microsensors. And all these three techniques

suffer from the multi-path environment, in which the LoS (Line of Sight) component does

not necessarily dominate over other NLoS (Non Line of Sight) counterparts. Thus, most

technically available ranging is based on received signal strength; in fact, RSSI (Received

Signal Strength Indication) is widely used in wireless communications to provide distance

estimation [45].
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Beacon

Unknown

Beacon

Figure 1.3. AOA ranging.

The underlying observation is that the average large-scale path loss can be ex-

pressed as a function of distance by using a path loss exponent, n [23].

P̄L(d) = P̄L(d0)(
d

d0
)n (1.1)

where n is the path loss exponent, which indicates the rate at which the path loss increases

with distance, d0 is the close-in reference distance, which is determined from measurement

close to the transmitter, and d is the distance from the source to the receiving point.

Measurements have also shown that at any value of d, the path loss PL(d) at a particular

location is random and distributed log-normally (normal in dB) about the mean distance-

dependent value [46–48].

PL(d)[dB] = P̄L(d)[dB] + Xσ, (1.2)

where Xσ is a zero-mean Gaussian distributed random variable (in dB) with standard

deviation σ (also in dB). The log-normal shadowing is the main source of distance error

for received-signal-strength-based ranging methods. The values of n and σ are often
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estimated empirically, for example, n could vary from 2 to 10 for different environments,

and typical value of σ in urban area is around 10 dB [49–51].

Due to the log-normal shadowing, the RSS-based ranging could be very rough.

For example, the median localization error of commodity 802.11 technology is 10ft [52],

such accuracy may be achieved by alternative techniques, for example, exploiting the

dense deployment to estimate distance between nodes. For those applications where the

sensor nodes are over-densely deployed, the distance between the nodes are short and the

variance of such distance is also small. Therefore, it is quite promising to estimate the

end-to-end distance based on the number of hops [53–55].

1.3 UnderWater Acoustic Sensor Network

An UnderWater Acoustic Sensor Network (UW-ASN) can be thought of as an ad

hoc network consisting of sensors linked by an acoustic medium to perform distributed

sensing tasks [56–58]. To achieve this objective, sensors must self-organize into an au-

tonomous network which can adapt to the characteristics of the underwater environment.

UW-ASNs share many communication technologies with traditional ad hoc networks and

terrestrial wireless sensor networks, but there are some vital differences such as limited en-

ergy and bandwidth constraint [59–65], thus the protocols developed for traditional wire-

less ad hoc networks are not necessarily well suited to the unique features of WSNs [66].

When a wireless sensor may have to operate for a relatively long duration on a tiny

battery, energy efficiency becomes a major concern.

Another issue in shallow water communications is that due to the limit of band-

width in shallow water communications [67, 68], multi-hop communication could intro-

duce heavy interference between cluster members, therefore, each sensor in a cluster

communicate directly to its cluster head and intra-cluster communication should be co-

ordinated by the cluster head in order to maximize the bandwidth usage.
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1.4 Deployment Issue

Our study is based on random node distribution, but even for those applications

where nodes are manually placed, there is room for randomness. Especially in under-

water environment, where sensor nodes can easily be moved out of desired places due

to water current caused by wind, tide, animal and human activities, failing to take into

consideration the deployment randomness might leave more room for errors. Further-

more, unlike their terrestrial counterparts where sensor nodes are often deployed on the

terrain surface, the underwater sensor nodes are often deployed along a line around bays

and harbors to maximize the detection of ship traffic in the naturally constrained water-

way [69]. In addition, some underwater sensor nodes are able to adjust their depth to

better the network coverage. Therefore, it is necessary to consider the effect of 1-D, 2-D

and 3-D random deployment on the clustering.

1.5 Dissertation Structure

This dissertation begin with a general discussion of energy efficiency in wireless

sensor networks. Chapter 2 also includes the data correlation model that our research

is based on. Chapter 3 discusses the optimal cluster size for terrestrial wireless sen-

sor networks and proposes a self-organization scheme to achieve the desired clustering.

Chapter 4 models the hop-distance relationship in wireless sensor networks and propose

a new ranging method. Chapter 5 studies the mirror problem and comes up with a

novel estimation, which can be used to improve resource allocation. Chapter 6 extends

the clustering study to underwater acoustic sensor networks. Chapter 7 concludes this

dissertation.



CHAPTER 2

BACKGROUND

2.1 Review of Wireless Medium Access

Many special flavored MAC protocols have been proposed for WSN for energy

efficiency, less latency or higher throughputBao02, Elson01, Kanodia02, Mill05, Raje03,

Schu02, Sing98. In this paper, we consider a generic MAC that is compatible with the

basic access mechanism described in 802.11 DCF [70]. As illustrated in Fig. 2.1, after the

channel is sensed idle for greater than or equal to a DIFS(Distributed InterFrame Spacing)

period, the transmitting node generates a random backoff timer chosen uniformly from

the range [0, w − 1], where w is the size of contention window. In a binary exponential

backoff scheme, the value of w is reset to CWmin after each successful transmission,

and doubled after each unsuccessful transmission, up to CWmax (maximum contention

window). The backoff timer is decrement

DIFS

Busy medium Backoff Window Next Frame

Slot time

Defer access Select slot and decrement backoff

as long as medium is idle

Contention Window

Figure 2.1. A generic MAC.

The collisions of packets in the contention-based MAC generally degrade channel

utilization and increase energy consumption, which motivates establishing transmission

7
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schedules to allow nodes to communicate without collisions. In NAMA (Node Activation

Multiple Access) [71] and TRAMA (Traffic-Adaptive Medium Access protocol) [72], a

distributed election scheme is used to determine which node can transmit at a partic-

ular time slot. From this point of view, LEACH is also a schedule-based scheme, in

which cluster formation is a random-access period to establish a scheduled-access period

collision-free (Fig. 2.2).

Round

Set-up
(Random Access)

Steady-State
(Scheduled

Access)

Frame

...

1 2 3 5 74 6 ...

Slot

...
Time

Figure 2.2. Time line showing LEACH’s frame structure.
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2.2 Radio Energy Consumption

The following model is adopted from [35] where perfect power control is assumed.

To transmit l bits over distance d, the sender’s radio expends

ETX(l, d) =















lEelec + lǫfsd
2 d < d0

lEelec + lǫmpd
4 d ≥ d0

(2.1)

and the receiver’s radio expends

ERX(l, d) = lEelec. (2.2)

Eelec is the unit energy consumed by the electronics to process one bit of message, ǫfs

and ǫmp are the amplifier factor for free-space and multi-path models, respectively, and

d0 is the reference distance to determine which model to use. The values of these com-

munication energy parameters are set as in Table 2.1.

Table 2.1. Communication Energy Parameters

Name Value
d0 86.2m

Eelec 50nJ/bit
EDA 5nJ/bit
ǫfs 10pJ/bit/m2

ǫmp 0.0013pJ/bit/m4

2.3 Data Correlation Model

The data collected by neighboring sensors have a lot of redundancy, thus, [35]

assumes perfect data correlation that all individual signals from members of the same

cluster can be combined into a single representative signal. Nevertheless, this assumption

cannot hold when the cluster size increases to some extent. Therefore, we develop a com-

plementary exponential data correlation model based on the observations in distributed

data compression [73–76].
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Considering the phenomenon of interest as a random process, the correlation be-

tween data collected by two sensors is generally a decreasing function of the distance r

between them. After the data aggregation removes most of the redundancy, the residue

can be assumed to be an increasing function of r. Based on the above observation, the

data aggregation effect is modeled as below.

Suppose there are Mk non-head members in cluster k (k = 1, 2, 3, ..., c), the ith

member (i = 1, 2, 3, ..., Mk) collects l bits and sends them back to its head k at distance

rki, the head expends 2lEDA Joules on the data aggregation of the 2l bits (l bits collected

by itself and another l bits by its ith member), where EDA is set as 5nJ/bit as in [35]

and listed in Table 2.1. The resulting data is assumed of l(1+ ηki) bits, where ηki is data

aggregation residue ratio and assumed to be complementary exponential, specifically,

ηki = 1 − e−αrki, 0 < α < 1, (2.3)

where α is a small positive real number whose magnitude depends on specific phenomenon

of interest. For example, the light, acoustic, seismic and thermal signals often show a

strong correlation at short distance, and thus, α will have smaller values for such data.

Since η is a monotonically decreasing function of α and r, η approaches zero for smaller

α and r. This model can approach the perfect-data-correlation assumption in [35] by

decreasing α or approach the no-data-aggregation assumption in [12,13] by increasing α,

thus, different scenarios can easily be set up by varying α.

2.4 LEACH

LEACH uses CDMA-TDMA hybrid communication scheme [77]. Each cluster has

its own Spread Spectrum code so that the interference between clusters is minimized. For

intra-cluster communications, TDMA slots are assigned for each member to minimize me-

dia contention. The operation of LEACH is divided into rounds. At the beginning of each

round, cluster heads are elected and other nodes join them as members so that N nodes

are partitioned into c clusters. When a cluster is formed, the cluster head creates and
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broadcasts a time schedule to its members. As shown in Fig.2.2, each member is assigned

a time slot per frame to send its data to its cluster head, and then the cluster head per-

forms data aggregation and sends the resulting data back to the base station. Compared

with multi-hop routing schemes, LEACH shows an outstanding energy efficiency, which

is referred to as clustering energy gain in the following. Using a low duty-cycle, LEACH

could also take advantage of relaxtion effect of batteries [78].

However, there are two drawbacks in LEACH’s cluster formation:

a. Dependence on Global Information In LEACH, each node i elects itself to be a

cluster head at the beginning of round r+1(which starts at time t) with probability

Pi(t). Two ways were used to determine the self-electing probability Pi(t) in [35].

If all nodes are assumed to start with an equal amount of energy, Pi(t) is given by

Pi(t) =















c
N−c∗(rmod N

c
)

: Ci(t) = 1

0 : Ci(t) = 0

, (2.4)

where c is the desired number of clusters and Ci(t) is the indicator function deter-

mining whether or not node i has been a cluster head in the most recent (r mod

(N/c)) rounds. The more general estimate of Pi(t) is given by

Pi(t) = min{ Ei(t)

Etotal(t)
c, 1}, (2.5)

where Ei(t) is the current energy(i.e. remaining battery capacity) of node i and

Etotal(t) =

N
∑

i=1

Ei(t). (2.6)

Essentially, N in (2.4) and Etotal in (2.5) are global information, which is only

accessible via other routing schemes.

b. Random Election Although random decision generally strengthens the robust-

ness by avoiding sticking to a single choice, too much randomness may shift the

decision away from the optimal range. In LEACH’s case, suppose (2.5) is used and
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Figure 2.3. 100 nodes elect 5 heads (Heads marked by pentagrams).(a) Five heads are
elected and evenly distributed. (b) Five heads are elected and clump in the right semi-
circle. (c) Only one head is elected. (d) Nine heads are elected.

all nodes have equal amount of energy, if N nodes want to elect c heads among

them, then the self-electing probability for each node is

p =
c

N
(2.7)



13

Then the probability of “n heads are elected” is

Pr(n elected heads) = (N
n )pn(1 − p)(N−n) (2.8)

The distribution of the number of elected heads is listed in Table 2.2. Obviously,

too few (Fig. 2.3(c)) and too many (Fig. 2.3(d)) elected heads would damage the

energy efficiency. Moreover, in the case of “no elected head” whose probability

listed in row 1, all the nodes have to communicate directly with the base station, in

which case all the clustering energy gain is lost. When the number of elected heads

is too few, for example, only one head is elected, the head may be exhausted by

the tremendous data sent to it. In such cases, the energy efficiency is tremendously

compromised. Another problem introduced by the random head selection is that

Table 2.2. Outcome of 100 nodes electing 5 heads.

n: number of elected heads Pr(n elected heads)

0 0.0059
1 0.0312
2 0.0812
3 0.1396
4 0.1781
5 0.1800
6 0.1500
7 0.1060
8 0.0649
9 0.0349

≥ 10 0.0341

the sensor locations are not taken into consideration. Obviously, the even layout

of heads would favor energy efficiency (Fig. 2.3(a)). When heads are randomly

selected as in LEACH, elected heads sometimes clump together as shown in Fig.

2.3(b), which leads to unnecessary energy waste.
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2.5 Hop-Distance Relation

Both APS [53] and Hop-TERRAIN [55] find the number of hops from a node to each

of the anchors and then multiply this hop count by a shared metric (average single-hop

distance) to estimate the range between the node and each anchor. The known positions

of anchor nodes and these computed ranges are then used to perform a triangulation to

obtain estimated node positions. A further refinement phase is proposed in [55], which

uses least squares on local computation. However, as we show later, the distance does

not increase linearly with the number of hops. Therefore, a better knowledge about the

hop-distance relationship can cast new light on distance estimation.

In [79], Hou and Li studied the 2-D Poisson distribution to find an optimal trans-

mission range. They found that the hop-distance distribution is determined not only

by node density and transmission range but also by the routing strategy. They showed

results for three routing strategies, Most Forward with Fixed Radius, Nearest with For-

ward Progress, and Most Forward with Variable Radius. Cheng and Robertazzi in [80]

studied the one-dimension Poisson point and found the pdf of ri and the dependency of

ri on previous rj, j < i. They also pointed out the 2-D Poisson point distribution is

analogous to the 1-D case, replacing the length of the segment by the area of the range.

Vural and Ekici re-examined the study under the sensor networks circumstances

in [81], and gave the mean and variance of multi-hop distance for 1-D Poisson point

distribution. They also proposed to approximate the multi-hop distance using Gaussian.

Zorzi and Rao derive the mean number of hops of the minimal hop-count route through

simulations and analytic bounds in [82]. Chandler [83] derives an expression for t-hop

outage probability for 2-D Poisson node distribution. However, Mukherjee and Avidor

[84] argue that one of Chandler’s assumptions is flawed and thus his expression is in

fact a lower bound on the desired probability. They also rigorously derive the pdf of

the minimal number of hops for a given distance in a fading environment. Although

the exact analytic results are available in the literature, their monstrous computational

complexity limits their applications. Therefore, we try to approximate the hop-distance
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relation and simplify the decision process and error analysis in this paper. Considering

the application of resource allocation, only large-scale path loss is considered and thus

the fading is ignored.

2.6 Skewness and Kurtosis

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A

distribution, or sample set, is symmetric if it looks the same to the left and right of the

center point.

Definition 1 [85] For a given sample set X,

m3 = Σ(X − X̄)3/n, (2.9)

m2 = Σ(X − X̄)2/n, (2.10)

where X̄ is the sample mean of X, and n is the size of X. Then a sample estimate of

skewness coefficient is given by

g1 =
m3

m
3
2
2

. (2.11)

Skewness is zero for a symmetric distribution. Positive skewness indicates right skewness

and negative indicates left.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal

distribution.

Definition 2 [85] A sample estimate of kurtosis for a sample set X is given by

g2 = m4/m
2
2 − 3, (2.12)

where m4 = Σ(X − X̄)4/n is the fourth-order moment of X̄ about its mean.

Skewness and kurtosis is useful in determining whether a sample set is normal.

Note that the skewness and kurtosis of a normal distribution are both zero; significant

skewness and kurtosis clearly indicate that data are not normal.
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2.7 Chi-Square Test

Chi-square test is widely used to determine the goodness of fit of a distribution to

a set of experimental data. It works as follows:

• 1. Partition the sample space into the union of K disjoint intervals.

• 2. Compute the probability bk that an outcome falls in the kth interval under the

postulated distribution. Then mk = nbk is the expected number of outcomes that

fall in the kth interval in n repetitions of the experiment.

• 3. The chi-square statistic is defined as the weighted difference between the observed

number of outcomes, Nk, that fall in the kth interval, and the expected number

mk.

D2 = ΣK
k=1

(Nk − mk)
2

mk

(2.13)

• 4. The hypothesis is rejected if D2 ≥ tα, where tα is a threshold determined by a

given significance level. Otherwise, the fit is considered good.

2.8 Underwater Acoustics Fundamentals

Based on the data and formulas in [69], Jurdak, Lopes and Baldi [86] derived the

following model,

SL = TL + 85, (2.14)

where SL is the source level and TL is the transmission loss. All the quantities in (2.14)

are in dB re µPa, where the reference value of 1 µPa amounts to 0.67×10−22Watts/cm2.

For cylindrically spread signals, the transmission loss is approximated by [69],

TL = 10 log d + αd × 10−3, (2.15)

where d is the distance between source and receiver in meters, α is the frequency de-

pendent medium absorption coefficient. Fisher and Simmons [87] measured the medium
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absorption in shallow seawater at temperatures at 4Cand20C. The average is obtained

in [86],

ᾱ =















































0.0601 × f 0.8552 1 ≤ f ≤ 6

9.7888 × f 1.7885 × 10−3 7 ≤ f ≤ 20

0.3026 × f − 3.7933 20 ≤ f ≤ 35

0.504 × f − 11.2 35 ≤ f ≤ 50.

(2.16)

To guarantee the reception quality, the required threshold of α, denoted by α̃, might be

chosen larger than ᾱ. However, we can generally expect α̃ be a monotonically decreasing

function of frequency f . To emphasize their relationship, α̃ is written as α̃(f) in the rest

of this paper. The transmitter power Pt required to achieve an intensity It at a reference

distance of 1m is expressed as,

Pt = 2π × 1m × H × It, (2.17)

where It is related to SL by

It = 10SL/10 × 0.67 × 10−18. (2.18)

Summing up (2.14), (2.15), (2.17) and (2.18), we obtain

Pt = CHdea(f)d, (2.19)

C
△
= 2π(0.67)10−9.5

a(f)
△
= 0.001α(f) ln 10 (2.20)

where H is the water depth in meters.

Therefore, to transmit l bits over distance d, the sender’s radio expends

ETX(l, d) = lEelec + lTbCHdea(f)d (2.21)

and the receiver’s radio expends

ERX(l, d) = lEelec, (2.22)

where Tb the bit duration, Eelec is the unit energy consumed by the electronics to process

one bit of message.
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CHAPTER 3

CLUSTERING FOR TERRESTRIAL WSN

3.1 Optimal Clustering

In this section, we make data-centric analysis of energy consumption in WSN and

propose a new criterion, which is the theoretical basis of Medium-Contention Based

ClusterHeadship Auction.

3.1.1 Problem Formulation

Clustering has been widely used in pattern recognition [88], and we use it to obtain

the energy-efficient organization for WSN. From the data-centric view [89], the data

collected by a node can be sent back directly to the base station or relayed by a cluster

head. The first case occurs if this node is a cluster head; the data collected by head k

is data-aggregated (with the data collected by its members) and sent back to the base

station. Thus, the energy cost for each bit of data collected by head k is

JCH(k) = EDA + Eelec + ǫmpd
4
k, (3.1)

where dk is the distance between head k and the base station.

For the second case, consider non-head member ki, the ith sensor in cluster k, with

distance rki to its cluster head, member ki sends its data to head k, and then head k

performs data aggregation on the data and sends the resulting data to the base station.

Thus, the energy cost for each bit of data collected by non-head member ki is

JCM(ki) = Eelec + ǫfsr
2
ki + Eelec + EDA + η(rki)(Eelec + ǫmpd

4
k), (3.2)

where η(rki) is the data aggregation residue ratio introduced in Section 2.3.

Considering all c clusters, the overall cost is

Jtotal =
c

∑

k=1

{JCH(k) +

Mk
∑

i=1

JCM(ki)}, (3.3)

19
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where Mk is the number of non-head members in cluster k.

Taking E[Jtotal] the expected value of the overall energy cost as the objective func-

tion, the original problem is translated into an objective function clustering. If a cen-

tral control scheme is possible, an iterative algorithm can be run at the base station

to minimized E[Jtotal]. For example, Fuzzy c-Means is utilized in [90] to minimize a

Euclidean-distance-based functional representing the energy cost in Wireless Personal

Area Networks. However, since WSNs are working in ad hoc mode, clustering decision

must be distributed to each sensor node. Thus, our goal is using only local information

to achieve energy-efficient clustering.

3.1.2 Influence Range

Generally, if a node is close to a cluster head, there is some energy gain if it

joins that cluster. The energy gain diminishes when the distance between the non-head

member and the head increases. Consequently, the energy gain approaches zero at some

critical distance, termed as influence range. To determine the influence range, consider

a node i with a head k at distance r. The node could choose to be a non-head member

or a head, which would consequently cost JCM or JCH as in (3.2) and (3.1). Naturally,

the decision should be based on the comparison of JCM and JCH as

JCM

CH

≷
CM

JCH , (3.4)

i.e., the decision rule for each sensor is:

Node i elects to be















a non-head member if JCM < JCH

a cluster head if JCM > JCH

(3.5)

We call this criterion as local energy efficiency criterion, because it is based on only the

local information. Substituting (3.1) and (3.2) into (3.4), we obtain

Eelec + ǫfsr
2
ik + Eelec + EDA + η(rik)(Eelec + ǫmpd

4
k) (3.6)

CH

≷
CM

EDA + Eelec + ǫmpd
4
i .
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The influence range can be obtained by equating two sides though a closed form may be

unavailable. Obviously, the cluster radius Rc has to be much smaller than the influence

range because the energy gain is so low at the outer ring that a new cluster be formed.

Although this criterion is too complex to be used in real applications, it promotes using

Rc instead of c as the clustering objective parameter to guide the election. Denote the

areas occupied by the whole WSN and the cluster by SN and Sc respectively,

c ≈ SN

Sc
. (3.7)

Assume SN and Sc are both circular, Rc is related to c by

c =
πR2

πR2
c

= (
R

Rc

)2, (3.8)

where R is the radius of SN . Although it is mathematically equivalent to partition nodes

into c clusters or to organize nodes into clusters with radius Rc, the former is definitely a

global approach, which leads to dependence on the global information. Thus, the latter

is more suitable for a distributed algorithm.

3.1.3 Optimal Cluster Size

As indicated in (3.8), it is equivalent to determine c or Rc. Here, we try to an-

alytically determine the optimal value of c using the introduced models. LEACH can

only determine a rough range copt ∈ [1, 6] for a similar 100-node network [35], while our

analysis predicts the optimal value of Rc in simulation with satisfying accuracy.

The typical scenario is that N nodes are distributed uniformly in a circular region

with radius R. There are c clusters with one cluster head and n − 1 non-head members

within each cluster. n is the average number of cluster members and related to c by

n ≈ N/c. (3.9)

Based on (3.3), the average total energy cost can be approximated by

J̄total = c(J̄CH + (n − 1)J̄CM)

= cJ̄CH + (N − c)J̄CM (3.10)
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where J̄CH and J̄CM are the average energy cost for the cluster head and non-head

member respectively.

Following (3.1) and (3.2),

J̄CH = EDA + Eelec + ǫmpE[d4], (3.11)

J̄CM = Eelec + ǫfsE[r2] + Eelec + EDA + E[η(r)(Eelec + ǫmpd
4)]. (3.12)

Since all nodes are independently deployed, r and d are independent, thus, (3.12) can be

written as

J̄CM = Eelec + ǫfsE[r2] + Eelec + EDA + E[η(r)](Eelec + ǫmpE[d4]). (3.13)

We estimate the expected values in (3.11) and (3.13) as follows. Assuming the

cluster head is at the center of mass of the cluster,

E[r2] =

∫ ∫

Sc

r2ρc(r, θ)rdrdθ

=

∫ 2π

0

∫ Rc

0

r2ρc(r, θ)rdrdθ

(3.14)

where ρc(r, θ) is the node distribution density. Since the nodes are assumed to be uni-

formly distributed, ρc(r, θ) is a constant given by

ρc = 1/πR2
c = c/(πR2). (3.15)

Substituting (3.15) and (3.8) into (3.14),

E[r2] =
πρcR

4
c

2

=
R2

2c
(3.16)
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Similarly,

E[η(r)] =

∫ ∫

Sc

(1 − e−αr)ρc(r, θ)rdrdθ

=
c

πR2

∫ 2π

0

∫ Rc

0

(1 − e−αr)rdrdθ

=
2c

R2

∫ Rc

0

(1 − e−αr)rdr (3.17)

= 1 +
2c

α2R2
(e

−αR
√

c (
αR√

c
+ 1) − 1) (3.18)

E[d4] =

∫ ∫

SN

|r − rBS|4ρN(r, θ)rdrdθ

=
1

πR2

∫ 2π

0

∫ R

0

(r2 + r2
BS − 2rrBScos(θ − θBS))2rdrdθ (3.19)

Since E[d4] is a function of R and irrelevant to c, we keep it in the further derivation.

The optimal value of c can be obtained by setting ∂J̄total

∂c
to zero.

∂J̄total

∂c
= J̄CH − J̄CM + (N − c)

∂J̄CM

∂c

= ǫmpE[d4] − Eelec − ǫfs
R2

2c
− E[η(r)](Eelec + ǫmpE[d4])

+(N − c)(−ǫfsR
2

2c2
+

∂E[η(r)]

∂c
(Eelec + ǫmpE[d4])), (3.20)

∂2J̄total

∂c2
=

ǫfsR
2

2c2
− ∂E[η(r)]

∂c
(Eelec + ǫmpE[d4])

−(−ǫfsR
2

2c2
+

∂E[η(r)]

∂c
(Eelec + ǫmpE[d4]))

+(N − c)(
ǫfsR

2

c3
+

∂2E[η(r)]

∂c2
(Eelec + ǫmpE[d4]))

=
ǫfsR

2

c2
+ (N − c)

ǫfsR
2

c3

−2
∂E[η(r)]

∂c
(Eelec + ǫmpE[d4])

+(N − c)
∂2E[η(r)]

∂c2
(Eelec + ǫmpE[d4]) (3.21)

where ∂E[η(r)]
∂c

, ∂2E[η(r)]
∂c2

can be computed based on (3.18).

∂E[η(r)]

∂c
=

2

α2R2
(e

−αR
√

c (
αR√

c
+ 1) − 1) +

e
−αR

√

c

c
(3.22)



24

∂2E[η(r)]

∂c2
=

αRe
−αR

√

c

2c5/2
(3.23)

Since it is impossible to solve (3.20) algebraically, we turn to the numerical solution. For

example, the base station is located at (rBS, θBS) = (125, 0) and N = 100, R = 50m in

our experiments, we can evaluate (3.19) as

E[d4] = 5.8997e + 008. (3.24)

In Fig.3.1(a)(b), we plot ∂J̄total

∂c
over c for α = 0.001 and α = 0.05 respectively.

The corresponding copt can be easily obtained by setting ∂J̄total

∂c
= 0.

copt =















1.6569, for α = 0.001

20.2600, for α = 0.05

(3.25)

Note that ∂2J̄total

∂c2
|copt=1.6569= 2.98E − 7 > 0 and ∂2J̄total

∂c2
|copt=20.26= 2.51E − 9 > 0, which

indicates J̄total is minimized at these copt’s. According to (3.8), the corresponding Rc is

Rc =















38m, for α = 0.001

11m, for α = 0.05

(3.26)

We are also interested in the relation of N to copt. In Fig.3.2(a)(b), we plot copt over N

for α = 0.001 and α = 0.05 respectively. These figures show that copt is an increasing

function of N , which indicates the clustering objective parameter (c or Rc) should be

adjusted adaptively if N varies.

3.2 Medium-Contention Based ClusterHeadship Auction

Medium-Contention Based ClusterHeadship Auction (MCCHA) is designed to re-

place the cluster formation occurring at the beginning of each round in LEACH. In

MCCHA, there is no global broadcast. As shown in Fig.3.3, each node firstly broadcasts

its vital information at the maximum radio power level so that the knowledge is spread

as widely as possible. Such “maximum-power” broadcasts are not frequent in MCCHA,
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Figure 3.1. Plot of ∂J̄total

∂c
for N = 100, R = 50m and (rBS, θBS) = (125, 0).(a)α = 0.001.

(b)α = 0.05.

which helps the energy efficiency. The vital information may include nodes’ energy, lo-

cation, etc., though only energy information is needed by MCCHA. Then, each node

counts its neighbors and broadcasts the number of its neighbors at an adjusted power

level corresponding to the cluster radius Rc. The cluster radius Rc is an important sys-

tem parameter for energy efficiency. As shown in Section 3.1.3, given a specific type of
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application, Rc is mainly determined by the node density. In MCCHA, each node should

choose an appropriate Rc according the neighbor count in its transmission range, which

is a good estimator of the local density.

If a node’s headship potential qualifies as a head compared to its neighbors’, it

will try to claim the headship by broadcasting locally, which can be viewed as placing
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Figure 3.3. Flow chart of a node in MCCHA.

a bid for the headship. A node’s “neighbors” are defined as the nearby nodes within

distance Rc from that node. Due to the possible contention for the headship, such bids

could fail, which is indicated by the collision of “headship claims”. Using the modified

MAC described below, the bidders will contend with each other until a node with sat-

isfactory potential wins. By doing so, the head-to-be expels other possible heads in its

neighborhood, and in consequence, the clusters with desired size are formed.
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The headship potential is an important parameter, which replaces the self-electing

probability used in native LEACH. As discussed in [35], the node’s energy is important to

determine its potential because the headship can be rotated among nodes by assigning

more potential to the nodes with higher energy. In addition, we propose taking the

number of neighbors into consideration, because the energy gain is prominent only in the

neighborhood of the head as shown in Section 3.1.2 and thus it is energy-efficient to let

the node with more neighbors win the headship.

Based on these considerations, the qualification conditions are set as below. For

any node, let N denote the set of its neighbors, E(i) and B(i) be the energy and the

number of neighbors of the ith neighbor respectively, i ∈ N . The thresholds are set as

the linear combination of the maximum and mean value of corresponding parameters

as in (3.27) and (3.28) so that the thresholds are adapted to the current distribution of

parameters and take values between the maximum and mean.

ETh
△
= γ1max

i∈N
E(i) + (1 − γ1)mean

i∈N
E(i) (3.27)

BTh
△
= γ2max

i∈N
B(i) + (1 − γ2)mean

i∈N
B(i) (3.28)
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The conditions can be relaxed by decreasing γ1, γ2, where γ1, γ2 ∈ [0, 1]. Since there is

no closed-form objective function, it is difficult to determine optimal γ1, γ2 analytically.

Fortunately, our experiments show that the performance is not sensitive to the setting of

γ1, γ2. Thus, we simply choose a smaller value for γ1 and a larger value for γ2 as γ1 = 0,

γ2 = 0.8, because we want to emphasize the position condition in order to achieve energy

efficiency and relax the energy condition in order to accept more nodes into the headship

auction.

Depending on their conditions, the nodes classify themselves into three categories

shown in Fig. 3.4. Note that DIFSB = DIFSA +CWmin in Fig.3.5, Category-B bidders

have to wait longer than Category-A to ascertain there are no Category-A bidders in

their neighborhoods. The extreme case that no heads are elected is avoided by permitting

Category-B bidders into the headship auction because it is impossible that there are only

Category-C nodes in the neighborhood.

Busy

medium
Backoff Window Next Frame

Busy

medium
Next FrameBackoff Window

Category-A

Bidders

Category-B

Bidders

DIFS A

DIFS B

Figure 3.5. The Medium Access Control used in MCCHA.

Once a node successfully sends out the “headship claim”, its neighbors must join it

by sending “Request to join”. Since these requests can be eavesdropped by their neigh-

bors, their neighbors can correspondingly correct their numbers of unclustered neighbors.

If a node finds all its neighbors are clustered, it can elect to be a cluster head by sending

out a “headship claim”. Those nodes outside the neighborhood of existing cluster heads

cannot join any clusters. When the public channel is idle again, which indicates there
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Figure 3.6. MCCHA vs. LEACH. (a) Amount of data received at the base station over
time. (b) Amount of data received at the base station per given amount of energy.

is no node in its neighborhood trying to join existing clusters, another round of auction

will begin until all nodes are clustered.

3.3 Simulations

In this section, we compare the performance of MCCHA and LEACH using com-

puter simulations. 100 nodes with 2J initial energy were evenly distributed in a circular
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region with diameter 100m, and the base station was located at (125m, 0). The data gen-

erating rate at each nodes is We ran LEACH and MCCHA over 1000 random network

topologies for each c or Rc and took average of collected data.

3.3.1 MCCHA vs. LEACH

In this case, MCCHA is compared to native LEACH for nearly perfect data corre-

lation (α = 0.001). Our results show that the maximum transportation, the total data

delivered back to the base station during a simulation, was maximized at c ≈ 7 for

LEACH and Rc ≈ 40m for MCCHA (See Table 3.1 and 3.2).

Table 3.1. Data of LEACH.

c Effective
Lifetime
(s)

Maximum
Transporta-
tion (bits)

Average DER
(bit/J)

std DER

1 2400 8.9245e+008 5.7636e+006 1.9715e+006
3 4480 1.3304e+009 5.6989e+006 2.3275e+006
5 5200 1.4356e+009 5.8298e+006 2.5481e+006
7 5320 1.4169e+009 6.0806e+006 2.3895e+006
9 5240 1.3729e+009 6.1368e+006 2.2529e+006

Table 3.2. Data of MCCHA at α = 0.001.

Rc (m) Effective
Lifetime
(s)

Maximum
Transporta-
tion (bits)

Average DER
(bits/J)

std DER

10 7440 1.0256e+009 5.2086e+006 2.1247e+006
30 8560 1.4689e+009 7.1239e+006 1.5987e+006
40 8460 1.5169e+009 7.2989e+006 1.5862e+006
50 7200 1.5095e+009 7.2167e+006 1.5846e+006
80 4980 1.4077e+009 6.4853e+006 1.8423e+006

At first glance, LEACH seems have longer lifetime than MCCHA as shown in

Fig.3.6(a). However, a further study of Fig.3.8 reveals that LEACH cannot guarantee the
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data delivery during the later phase. The reason is that the ill result of random election

(e.g. too few heads are elected) often puts tremendous burden on the heads whose energy

is already low during the later phase. After the heads are exhausted quickly, the cluster

members remain idle during the rest of that round, which seems to extend the lifetime.

Therefore, we define the effective lifetime as when the data loss remains below 10 percent.

Fig.3.8 shows that MCCHA extends the effective lifetime by about 3200s.

Another good measurement of energy efficiency is the ratio of data transportation

over energy consumption, termed as Data/Energy Ratio(DER), which is indicated by the

slope in Fig.3.6(b). Higher slope implies the corresponding scheme can transport more

data with given amount of energy dissipation. Fig.3.6(b) shows MCCHA increased DER

by about 25%. The analysis in section 3.1.3 indicates that Rc should be adapted to the

Table 3.3. Data of MCCHA at α = 0.05.

Rc (m) Effective
Lifetime
(s)

Maximum
Transporta-
tion (bits)

Average DER
(bits/J)

std DER

5 5940 7.1606e+008 3.9839e+006 2.0786e+006
10 6080 7.738e+008 4.1198e+006 1.8566e+006
15 5660 7.5131e+008 3.9482e+006 1.7069e+006
20 5260 7.0965e+008 3.6612e+006 1.645e+006
40 4220 5.8698e+008 3.0171e+006 1.4857e+006

decreasing node density. Since the death of nodes decreases the node density, we expect

the optimal Rc to decrease accordingly. However, since MCCHA remarkably extends the

effective lifetime, the number of survival nodes does not decrease visibly during most of

the network lifetime. Therefore, we need not adapt Rc to keep energy efficiency.

3.3.2 Optimal Rc at Varying Data Aggregation Effect

In this case, MCCHA is evaluated at different α. We ran 1000 simulations at

different Rc with α = 0.05 to determine optimal Rc. Table 3.3 shows that the performance
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Figure 3.7. MCCHA vs. LEACH. (a) Number of survival nodes over time. (b) Number
of survival nodes per amount of data received in the base station.

of MCCHA is optimal at around Rc = 10m, which is far from Rc = 40m with α = 0.001.

The reason that the smaller clusters are formed is that the influence range shrinks when

the data correlation decreases. These values of Rc agree well with the analysis in section

3.1.3 for both values of α. This shows the advantage of MCCHA over original LEACH;

the clusters resulting from MCCHA conform to the energy-efficient expectation. This
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Figure 3.8. MCCHA vs. LEACH. Node-to-basestation throughput over time.

also shows the advantage of our data correlation model; we can easily fit the simulation

scenarios for the phenomena of interest by varying α.

3.4 Conclusion

The previous clustering researches often take a global approach, which is appro-

priate for global optimization. However, when a distributed clustering is desired, the

already-answered questions such as “How many clusters should the nodes be partitioned

into?” have to be translated into a distributed version, that is, ’‘What’s the appropriate

cluster size?”, because it is easier for a node to know its cluster size than the number

of clusters in the whole network. In this paper, we take a fully distributed approach to

energy efficiency for WSN. Motivated by the local energy efficiency criterion, we pro-

pose using the cluster size instead of the number of clusters as the clustering objective

parameter in clustering. Furthermore, we utilize the medium contention to implement

the headship auction to keep the cluster size within an ideal range. As shown by the
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simulations, although the proposed MCCHA uses only local information, it achieves bet-

ter energy efficiency than native LEACH in terms of Data/Energy Ratio and effective

lifetime. The simulations also show that the optimal cluster radius obtained from the

experiments agrees well with the analysis of optimal clustering, which indicates the per-

formance of our distributed clustering is close to that of the global optimal one [91].



CHAPTER 4

CLUSTERING IN UNDERWATER SENSOR NETWORKS

4.1 Optimal Clustering

In this section, we analyze the energy consumption in UW-ASN and then study

the relationship between cluster size and energy saving [92].

4.1.1 Problem Formulation

Clustering has been widely used in pattern recognition, and we use it to obtain

the energy-efficient organization for UW-ASN. Consider a heterogeneous UW-ASN, in

which the low-capacity sensors serves as cluster members and are randomly distributed,

and the high-capacity sensors serve as cluster heads and are manually positioned. If we

determine the optimal cluster size, then the required number of high-capacity sensors

and their ideal positions can also be determined. In the following discussion, we assume

the underwater sensor nodes can determine the distance between them via ultrasonic

ranging or other techniques [93, 94].

For each bit sent from lower-capacity nodes, the energy consumption at the ith

member of the kth cluster for each bit of data is

ECM(ki) = Eelec + TbCHrkie
a(f)rki (4.1)

where rki is the distance from the kth cluster head and its ith member. The cluster

head receives collects all the data from its member and then perform data aggregation.

On the average, only η bit remains for each incoming bit and η is also referred to as

data aggregation ratio. Because the MCUs (Microprogrammed Control Unit) used in

underwater sensors often work at much lower power than the hydrophones, the energy

36
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consumed in data procession is ignored here [95]. Similarly, the energy consumption of

the kth high-capacity node is

ECH(k) = NkEelec + Nkη(Eelec + TbCHdke
a(f)dk ), (4.2)

where Nk is the number of low-capacity nodes in the kth cluster and
∑c

k=1 Nk = N , dk

is the distance from the kth cluster head to the surface sink.

Considering all c clusters, the overall cost is

Etotal =

c
∑

k=1

(ECH(k) +

Nk
∑

i=1

ECM(ki)). (4.3)

Taking the expected value of the overall energy cost, we obtain ¯Etotal as the objec-

tive function.

Ētotal = kĒCH + NĒCM

= NEelec + NTbCHE[rea(f)r]

+ NEelec + Nη(Eelec + TbCHE[dea(f)d)] (4.4)

Obviously, the determining factor is E[rea(f)r] and E[dea(f)d], thus, we rewrite (4.4) as

Ētotal = 2NEelec + NTbCHJCM

+ Nη(Eelec + TbCHJCH) (4.5)

JCM = E[rea(f)r],

JCH = E[dea(f)d], (4.6)

Suppose the frequency allocation is irrelevant to r, which is the case for most applica-

tions in use, α(f) and r are independent.The best cluster size could vary for difference

deployments. In the following subsection, we will discuss several typical scenarios.

4.1.2 Solution for Random Deployment

Suppose the low-capacity sensors are deployed at random, then their locations

would follow the two-dimension Poisson distribution, i.e., the number of nodes NA in

area A is given by,

Pr(NA) = (λA)NAe−λA/NA!, (4.7)
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where λ is the node density. A useful property of the Poisson process is that if the

number of nodes occurring in the area A is N , then the individual outcomes of N nodes

are distributed independently and uniformly in the area A. For the single-hop cluster, in

which all cluster members can communicate with the cluster head directly, the distance

r from a cluster member to the cluster head has the cdf given by

F (r) =
πr2

πR2
c

, (4.8)

where Rc is the cluster size. Thus the pdf of r is

f(r) =
2r

R2
c

. (4.9)

JCM =

Rc
∫

0

rea(f)r 2r

R2
c

dr

=
2

R2
c

[
ea(f)r

a(f)3
(a(f)2r2 − 2a(f)r + 2)]Rc

0

=
2ea(f)Rc

a(f)3
(a(f)2 − 2a(f)

Rc
+

2

R2
c

) − 4

a(f)3R2
c

(4.10)

Similarly, the cluster heads should also be evenly distributed in the area of interest.

Suppose the area of interest is circular with radius R, then desirable location of cluster

heads is depicted by the shadow in Fig.4.1.

JCH =

R−Rc
∫

0

rea(f)r 2r

R2
dr

=
2

R2
[
ea(f)r

a(f)3
(a(f)2r2 − 2a(f)r + 2)]R−Rc

0

=
2ea(f)(R−Rc)

a(f)3R2
(a(f)2(R − Rc)

2 − 2a(f)(R − Rc)

+2) − 4

a(f)3R2
(4.11)

By setting the derivative of (4.10) to zero, we obtain

∂Ētotal

∂Rc
=

8 + 2eaRc(−4 + 4aRc − 2a2R2
c + a3R3

c)

a3R3
c

+η(
1

a3R2
(e−aRc(−4aeaRc + 2eaR
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Figure 4.1. Footprint of cluster heads.

(a2Rc + a(2 − 2aR + aRc)))) −

1

a2R2
(e−aRc(−4eaRc +

2eaR(2 + aR(−2 + aR) +

aRc(2 − 2aR + aRc))))) = 0 (4.12)

The solution can be obtained numerically. The second-order derivative of (4.10) is given

by

∂2Ētotal

∂R2
c

=
6(−4 + 2eaRc(2 + aRc(−2 + aRc)))

a3R4
c

− 1

a3R3
c

(4(2eaRc(a2Rc + a(−2 + aRc))

+ 2aeaRc(2 + aRc(−2 + aRc)))) +
1

a3R2
c

(4a2eaRc + 4aeaRc(a2Rc + a(−2 + aRc))

+ 2a2eaRc(2 + aRc(−2 + aRc))) + η(
e−aRc(4a2eaR − 4a2eaRc)

a3R2

− 1

a2R2
(2e−aRc(−4aeaRc + 2eaR(a2Rc + a(2 − 2aR + aRc))))

+
1

aR2
(e−aRc(−4eaRc + 2eaR(2 + aR(−2 + aR)

+ aRc(2 − 2aR + aRc))))) (4.13)

Substitute (4.12) into (4.13), it can be shown

∂2Ētotal

∂R2
c

> 0, (4.14)
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which shows Ētotal is minimized at the solution of (4.12).
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Figure 4.2. Etotal vs. the number of clusters.

4.2 Simulations

In this section, we validate our optimum cluster size analysis using computer sim-

ulations. N = 100 nodes were uniformly distributed in a circular region with diameter

1000m and the water depth was 10m. The surface sink was set at the center. For a

given number of clusters, we used Fuzzy-C-Means(FCM) to form the clusters and then

measured the energy consumption of the clustered network. We ran 100 simulations on

randomly generated network topologies and took average of collected data.

Fig.4.2, Fig.4.3 and Fig.4.4 show the energy consumption for the given number of

cluster with data aggregation ratio η =0.1, 0.5 and 1.0, respectively. The plotted data

show concave curves, which indicates there does exists a optimal cluster size at which
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Figure 4.3. Etotal vs. the number of clusters.

Table 4.1. Calculated number of clusters.

η Rc k
0.1 191.7 6.8
0.5 263.5 3.6
1 293.6 2.9

the energy consumption is minimized. We also solve (4.12) numerically, and translate

the cluster radius into the number of clusters according to

k =
πR2

πR2
c

. (4.15)

The calculated k’s are listed in Table 4.1. Compared to Table 4.1, the figures 4.2, 4.3 and

4.4 show that the energy consumption minimum does occurred around the calculated

number of clusters, proving our numerical analysis matches well with the simulation

results.
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Figure 4.4. Etotal vs. the number of clusters.

4.3 Conclusion

Although clustering has been well studied for the terrestrial WSN, the unique

characteristics of the underwater acoustic communications call for a new study. Because

the path loss is not only relevant to the distance, but also related to the working frequency,

the optimal cluster size for UW-ASN shows different properties from the terrestrial WSN.

In addition, the data aggregation also play an important role in determining the optimal

cluster size. The simulation results agrees well with our numerical analysis [96].



CHAPTER 5

MODELING HOP-DISTANCE RELATION

5.1 Probabilistic study

In this chapter, we model the end-to-end distance for given number of hops and

then apply our model to ranging problem [97].

5.1.1 Problem Formulation

We assume a general beacon scenario, in which anchors sends out beacon packets

informing other nodes about their locations. These beacon packets are also relayed

so that nodes outside the anchors’ transmission range could also received the beacons.

Suppose the sensor nodes are placed on a plane at random at an average density of λ

nodes per square meters. Nonetheless, clarifications about several terms are necessary,

because they have been used in a wide variety of senses [98–102].

Firstly, our study on end-to-end distance for given number of hops is based on

local coordinate system, which could be translated into a global coordinate system if

enough nodes in the local coordinate system have known global coordinates. In previous

research, anchors refer to beacons, whose locations are known and broadcast to other

nodes. However, in our study, an anchor is simply a specific node used in establishing

the local coordinate system. An anchor could have global coordinates or not, which is

of no interest to our study. Therefore, our study is applicable to both anchor-based and

anchor-free approaches.

Secondly, we assume the beacon packets are distributed in an ad hoc fashion. Al-

though better routing, such as geographic routing [82, 103–108], are proposed for WSN,

they are not suitable for relaying beacon packets, because during this phase, most nodes

have no knowledge about locations of their own and neighbors’. Under such circum-

stances, we have to assume the beacon packets are simply flooded throughout the sensor
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network, except that nodes can only relay the beacon packets incoming with least number

of hops and discard those via more hops.

Let N(A) be the number of nodes in area A, it can be shown that N(A) is a two-

dimensional Poisson point process with density λ [109]. One property of the Poisson

process is that if the number of nodes occurring in the area A is N , then the individual

outcomes are distributed independently and uniformly in the area A. That is, if N nodes

are placed at random in the area A, then the probability of a specific node in the subarea

B is B/A, given B ∈ A.

Table 5.1. Definition of Variables

Variable Definition
~r = (r, θ) the polar coordinates of a node
ti the distance from the (i − 1)-hop node to

the i-hop node
Hi the event “the specific node is within i

hops, but beyond (i − 1) hops from the
source.”

Assume the area A is large enough so that none of the anchor nodes is near the

border and the transmission range is R. The problem of interest is to find the distance

from a specific node to the anchor given this node is within i hops from the anchor.

The definitions of variables are listed in Table 5.1. Note that the event Hi can also be

described as “the minimum number of hops from the anchor to the specific node is i”.

5.1.2 Single-Hop Case

Consider the first hop case shown in Fig.5.1, the conditional cdf can be expressed

by

P [r1 < r|H1] = P [r1 < r|r1 < R] =
r2

R2
(5.1)

Taking derivative,

f(r1|H1)(r) =
2r

R2
(5.2)
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Figure 5.1. The single-hop case.

And the conditional mean and variance are 2R/3 and R2/18, respectively, which are

solely determined by the transmission range R and irrelevant to the node distribution

density λ. This is due to the uniform node distribution; no matter how large the density

could be, it would not give any bias to the conditional mean and variance.

5.1.3 Two-Hop Case

Conditional on the value of r1, the cdf for t2 is

Ft2|r1|H2
(t2) =

B

πR2
, (5.3)

where B is the area of the region inside the circle of center ~r1 but outside the circle of

center ~r0. B is equal to

π(t2)
2 − (t1)

2(φ1 −
1

2
sin 2φ1) − (t2)

2(φ2 −
1

2
sin 2φ2), (5.4)
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where

φ1 = cos−1(1 − (t2)
2

2(t1)2
), (5.5)

φ2 = cos−1(
t2
2t1

). (5.6)

The conditional pdf of t2 is obtained by taking the derivative of (5.3).

ft2|r1|H2(r) =
d

dt

B

πR2
, (5.7)

By taking expected value of (5.7),

ft2|H2(t) =

∫ R

0

fr1(s)
d

dt2

B

πR2
ds, (5.8)

r2 is determined by

r2 =
√

(t1)2 + (t2)2 − 2t1t2 cos φ, (5.9)

where φ is the angle between t1 and t2 and uniformly distributed in [−φ2, φ2]. Although

it is possible to derive the pdf of r2 from (5.9), it is awkward to evaluate explicitly.

Furthermore, note that rn depends on rn−1, a nested integral as in (5.10) is generally

required for such evaluations. Thus, for the end-to-end distance for two and more hops,

we will postulate their distribution from the collected simulation data in the next section.

p(rn|H) =

(n−1)R
∫

R

(n−2)R
∫

R

· · ·
R
∫

0

p(rn|r1, r2, · · · , rn − 1, H)

f(rn−1|r1, r2, · · · , rs−2, H) · · ·

f(r1|H)dr1 · · ·drn−2drn−1 (5.10)

5.2 Statistical Analysis

All the simulation data are collected from such a scenario that N sensor nodes

were uniformly distributed in a circular region of radius of 300 meters. For convenience,

polar coordinates were used. The anchor node was placed at (0, 0). We ran simulations
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Figure 5.2. Two hops.

for extensive settings of node density λ and transmission range R. And for each setting

of (N, R), we ran 300 simulations, in each of which all nodes are re-deployed from the

beginning.

5.2.1 Single-Hop Distance

We plot the histogram of single-hop distance collected from simulations and com-

pare with the theoretical result (5.2) in Fig. 5.3, which clearly shows that (5.2) fits the

experimental data very well. Furthermore, a chi-square test was carried out to determine

the goodness of fit of (5.2) to the experimental data.

The threshold for 30−1 = 29 degrees of freedom at a 1% significance level is 49.59.

Compared to this, D2 = 28.8728 is well within the threshold. Thus, we establish that

the data is in good agreement with (5.2).
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5.2.2 Two-Hop End-to-end Distance

Since there is no closed-form formula for the conditional pdf of end-to-end distance

for two and more hops, we have to find a fit for it. We postulate the following pdf for

the conditional pdf of two-hop end-to-end distance according to the experimental data

plotted in Fig. 5.4, whose characteristic curve clearly shows a Beta distribution shape.

The general pdf of Beta distribution is

fX(x) = C(x − a)p−1(b − x)q−1, (5.11)

where p and q are the shape parameters, a and b are the lower and upper bounds, and

C is a numerical factor to make the complete probability one. The bounds a and b can

be easily determined as a = 0 and b = 2R. Since the maximum of (5.11) occurs at

b(p − 1)/(p − 1 + q − 1), which is at 3R/2 in Fig. 5.4, therefore, p = 4 and q = 2 would

be a good guess. The remaining parameter C is determined by

C =

∫ 2R

R

(2R − s)s3

B(4, 2)(2R)5
. (5.12)

The postulated Beta distribution and histogram are drawn together in Fig. 5.4, which

clearly shows a close match.
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Figure 5.4. The histogram vs. postulated distribution for two-hop distance.

5.2.3 Three-And-More-Hop End-to-end Distance

When the number of hops increases beyond three, the end-to-end distance distribu-

tion approaches Gaussian (See Fig. 5.5, Fig.5.6, Fig.5.7 and Fig.5.8). For a more formal

analysis about its Gaussianity, we list their skewness and kurtosis in Table 6.1. Note that

both skewness and kurtosis are well within tolerance, we postulate Gaussian distribution

for three-and-more-hop end-to-end distance. The mean and std can be estimated from

the experimental data (see Table 6.1). We plot the postulated Gaussian distribution and

histogram together in Fig. 5.5, Fig.5.6, Fig.5.7 and Fig.5.8, which clearly show a close

match for each case.

5.2.4 Optimum Estimation and Error Analysis

Once the condition pdf is known, the distance estimation is straightforward. The

optimum unbiased estimator is E[rn|Hn], and accordingly, the RMSE can be minimized

to
√

V AR[rn|Hn]. In APS/Hop-TERRAIN, the distance is assumed to increase linearly
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Figure 5.5. The histogram vs. postulated distribution for three-hop distance.

with the number of hops, and thus, a linear estimator, n∗m1, is used to estimate nth-hop

distance. Accordingly, the MSE of the linear estimator is given by

MSE(Hn) = E[(rn − nm1)
2]

= V AR[rn|Hn] + (mn − nm1)
2 (5.13)

The difference between the minimum RMSE and the biased RMSE given by APS/Hop-

TERRAIN estimator is depicted in Fig.5.9, which increases drastically even when n is

only moderately large. As discussed in the Introduction, there exists a lower bound

of distance error for the RSS-based ranging technology. According to [52], the median

localization error of commodity 802.11 technology is 10ft ≈ 3.05m. The RMSE we

obtain in our simulations is around 8 meters, which is in the same order of magnitude

as the distance error bound in [52]. Furthermore, in environment with irregular terrain,

obstacles or other clutters, the shadowing effect may cause higher distance error. Since

hop-based distance technology is immune to shadowing effect, it may outperform RSS-

base ranging in these kinds of environment.
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5.3 Conclusions

In this chapter, we study the modeling of the end-to-end distance for given number

of hops in WSN. The experiments showed that the distance does not increase linearly

with the number of hops. Therefore, the distance should be analyzed for each number

of hops. We derived the distribution for single-hop distance and also showed that the

complexity of derivation for multiple-hop distance is beyond practical interest. Thus, we

postulate Beta distribution for two-hop end-to-end distance and Gaussian distribution for

three-and-more-hop end-to-end distance. Computer simulations showed our postulated

distributions agree well with the histograms. We also show that the distance error can

be minimized by exploiting the distribution knowledge [110].
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Figure 5.8. The histogram vs. postulated distribution for six-hop distance.



53

1 2 3 4 5 6 7
5

10

15

20

25

30

35

40

45

Number of Hops

R
M

S
E

Minimum RMSE
Biased RMSE

Figure 5.9. The RMSE bias vs. the number of hops. R=30m.



CHAPTER 6

HOP ESTIMATION GIVEN DISTANCE

6.1 Maximum Likelihood Analysis

Suppose the sensor nodes are placed on a plane at random at an average density of

λ nodes per square meters. Let N(A) be the number of nodes in area A, it can be shown

that N(A) is a two-dimensional Poisson point process with density λ. The problem of

interest is to find the number of hops, denoted Hi needed to reach a specific destination

r from a given source node. We can make a Maximum Likelihood (ML) decision,

Ĥ = arg max f(r|Hi), i = 1, 2, 3, · · · , (6.1)

where Hi can also be described as “the minimum number of hops is i from the source to

the specific node with Euclidean distance r”. In the following discussion, we are trying

to approximate f(r|Hi) for 2-D Poisson distribution. Note that r < R → H1, we are

more interested in multiple-hop distance relation, especially for i is relatively large.

6.1.1 Attenuated Gaussian Approximation

Table 6.1. Statistics of f(r|Hi)

Number of Hops Mean Std Skewness Kurtosis
1 19.991 7.0651 -0.57471 -0.58389
2 45.132 7.8365 -0.16958 -1.0763
3 72.01 8.2129 -0.10761 -1.0332
4 99.45 8.391 -0.07938 -0.97857
5 127.14 8.5323 -0.06445 -0.93104
6 154.96 8.6147 -0.05341 -0.9004
7 182.68 8.573 -0.07738 -0.91687

54
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Since f(r|Hi) is awkward to evaluate even using numerical methods, we use his-

tograms collected from Monte Carlo simulations as substitute to the pdf. All the sim-

ulation data are collected from such a scenario that N sensor nodes were uniformly

distributed in a circular region of radius of RBound meters. For convenience, polar coor-

dinates were used. The source node was placed at (0, 0). The transmission range was set

as R meters. For each setting of (N, RBound, R), we ran 300 simulations, in each of which

all nodes are re-deployed at random. We ran simulations for extensive settings of node

0 20 40 60 80 100 120 140 160 180 200
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Figure 6.1. Histograms of hop-distance distribution. (N = 1000, RBound = 200, R = 30).

density λ and transmission range R. Due to space constraints, only the histograms for

(N = 1000, RBound = 200, R = 30) are plotted in Fig. 6.1, which approximately shows

that f(r|Hi) approach the normal when Hi increases. Table 6.1 lists the first-, second-

, third- and fourth-order statistics of f(H, r). The statistics of seven-hop distance is
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slightly aberrant because the 200 meter radius cuts off part of its range as shown in

Fig.6.1. For Hi = 3, 4, ..., 6, the skewness is nearly zero and keeps decreasing. The same

trend applies to kurtosis, though, its values is around −1, which shows the pdf’s are not

perfectly Gaussian. Furthermore, The postulated distribution and histogram are drawn

together in Fig. 5.5, Fig. 5.6, Fig. 5.7 and Fig. 5.8, which clearly shows a close match for

each case.

Thus, the objective function can be approximated by

f(r|Hi) = αnN (mn, σn)

=
αn

2πσ
e
− (r−mn)2

2σ2
n , (6.2)

where α is the equivalent attenuation base, mn and σn are the mean and standard

deviation(std), respectively. The specific values of these parameters can be estimated

from simulations. Our extensive simulations show that, even for only relatively large Hi,

f(r|Hi) has following properties,

1. σn ≈ σn−1, which means the neighboring pdf’s have similar spread.

2. mn − mn−1 ≈ mn+1 − mn, which means the pdf’s are evenly spaced.

3. 3 < mn−mn−1

σn
< 5, which means the overlap between the neighboring pdf’s is small

but not negligible. (As a rule of thumbs, Q(3) is considered relatively small and

Q(5) is regarded negligible.)

4. mn−mn−2

σn
≫ 5, which means the overlap between the non-neighboring pdf’s is neg-

ligible.

5. α < 1. For large density λ, α → 1. Along with Property 1, this tell us that the

neighboring pdf’s have nearly identical shape.

As shown in the following discussion, these properties largely simplify the decision rule

and the error analysis. Another interesting observation, besides these properties, is that

the following equations do not stand true.

mn = nm1 (6.3)

mn = nR (6.4)
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mn = (n − 1)R + R/2 (6.5)

Although these equations sound plausible, they all give visible errors. The aforementioned

estimator [r/R] + 1 for Hi, though widely used, is not good in the new light shed by this

study.

6.1.2 Decision Boundaries

r

Hn Hn+1Hn-1

dn-1 dn

Figure 6.2. Gaussian Approximation.

Following (6.1), and observe the f(r|Hi) in Fig. 6.2, the decision is needed only

between neighboring Hi, that is,

f(r|Hn)
n

≷
n+1

f(r|Hn+1). (6.6)

This is because, for a specific value of r, there are only two values of Hi with dominating

f(r|Hi), compared to which f(r|Hi) for other values of Hi is negligible. Substitute (6.2)

into (6.6), we obtain the decision boundary dn between the regions Hn and Hn + 1.

dn =
B +

√

B2 + AC)

A

A = σ2
n+1 − σ2

n

B = mnσ2
n+1 − mn+1σ

2
n
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C = m2
nσ2

n+1 − m2
n+1σ

2
n + 2σ2

nσ2
n+1 lnα (6.7)

Using Property 1,

dn =
m2

n+1 − m2
n − 2σ2

n ln α

2(mn+1 − mn)
(6.8)

For large density λ, Property 5 is applicable, (6.7) simplifies to

dn =
σ2

nmn+1 + σ2
n+1mn

σ2
n + σ2

n+1

(6.9)

Applying Property 1 to (6.9),

dn =
mn + mn+1

2
(6.10)

No matter which approximate solution we choose for dn, the decision rule is given by

r
n+1

≷
n

dn. (6.11)

In other words,

we decide n̂ if dn̂−1 < r ≤ dn̂. (6.12)

6.1.3 Error Analysis

For our decision rule, a decision error occurs only when Hn but we decide n̂ 6= n.

Thus, the probability of error for a specific r is

p(ǫ|r) =
∑

n 6=n̂

f(Hn|r), (6.13)

where f(H|r) is related to f(r|Hi) by the Bayesian rule. The total probability of error

is obtained by integrating (6.13) over all possible r.

p(ǫ) =

∫

p(ǫ|r)fr(r)dr (6.14)

According to Property 4, only f(r|H = n−1) and f(r|H = n+1) could have outstanding

value over the decision region [dn−1, dn].

p(ǫ) ≈
∞

∑

n=2

dn
∫

dn−1

[f(r|Hn−1)p(Hn−1) + f(r|Hn+1)p(Hn+1)]dr
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=
∞

∑

n=2

αn−1p(Hn−1)[Q(
dn−1 − mn−1

σn−1
) − Q(

dn − mn−1

σn−1
)]

+αn+1p(Hn+1)[Q(
mn+1 − dn

σn+1

) − Q(
mn+1 − dn−1

σn+1

)]

(6.15)

Note that

dn − mn−1

σn−1
− dn−1 − mn−1

σn−1

≈ dn − dn−1

σn−1
≫ 1, (6.16)

therefore, Q(dn−mn−1

σn−1
) is negligible compared to Q(dn−1−mn−1

σn−1
). Similarly, Q(mn+1−dn

σn+1
) is

negligible. (6.15) is approximated by

p(ǫ) ≈ α3p(H3)Q(
m3 − d2

σ3
) +

∞
∑

n=3

[αn−1p(Hn−1)Q(
dn−1 − mn−1

σn−1
)

+αn+1p(Hn+1)Q(
mn+1 − dn

σn+1
)]

= α2p(H2)Q(
d2 − m2

σ2
) +

∞
∑

n=3

αnp(Hn)[Q(
mn − dn−1

σn
)

+Q(
dn − mn

σn
)]. (6.17)

Substituting an appropriate solution of dn into (6.17) would give us the probability of

error within required accuracy. For example, if we choose (6.10),

p(ǫ) ≈ α2p(H2)Q(
m3 − m2

2σ2
) +

∞
∑

n=3

αnp(Hn)[Q(
mn − mn−1

2σn
)

+Q(
mn+1 − mn

2σn
)]. (6.18)

6.2 Application Examples

We provide two application examples, latency and energy estimation, in this sec-

tion. To emphasize the role of the number of hops in the estimation, we use general

time and energy models. On how to derive the parameters such as Trx, Ttxfor a specific

routing scheme, readers are referred to [105,111].
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6.2.1 Latency Estimation

T
pr

T
tx

T
rx

...

Figure 6.3. Time model.

We use a simple time model, in which the latency increases linearly with the number

of hops [112]. Suppose it takes Trx, Ttx for a sensor node to process 1 bit of incoming and

outgoing message, respectively. And Tpr is the required time to transmit 1 bit of message

through a band-limited channel. Therefore, the latency introduced for each hop is

Thop = Ttx + Tpr + Trx (6.19)

Shown in Fig. 6.3, given the end-to-end distance r, we can find the required number of

hops n̂ according to (6.11), thus, a good estimator of the total latency of a l-bit message

is

ln̂Thop (6.20)

6.2.2 Energy Consumption Estimation

The following model is adopted from [35] where perfect power control is assumed.

To transmit l bits over distance r, the sender’s radio expends

Etx(l, r) =















lEelec + lǫfsr
2, r < r0,

lEelec + lǫmpr
4, r ≥ r0,

(6.21)

and the receiver’s radio expends

Erx(l, r) = lEelec. (6.22)
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Eelec is the unit energy consumed by the electronics to process one bit of message, ǫfs

and ǫmp are the amplifier factor for free-space and multi-path models, respectively, and

d0 is the reference distance to determine which model to use. The values of these com-

munication energy parameters are set as in Table 2.1.

Let sn denote the single-hop distance from the (n − 1)th-hop to the nth-hop. Ob-

viously, sn ≤ R. In our experimental setting, R = 30m < d0 so that the free space model

is always used. This agrees well with most applications, in which multi-hop short-range

transmission is preferred to avoid the exponential increase in energy consumption for

long-range transmission. Naturally, the end-to-end energy consumption for sending l bits

over distance r is given by

Etotal(l, r) =

n̂
∑

1

{Etx(l, r1) + Erx(l)} (6.23)

where n̂ is the estimated number of hops for given r and r1 is the single-hop distance

because the message is relayed hop by hop.

On the average,

Ētotal(l, r) = n̂l(Eelec + ǫfsE[r2
1] + Eelec)

= n̂l(2Eelec + ǫfs(m
2
1 + σ2

1)) (6.24)

6.2.3 Simulation

We used the same scenario described in Section 6.1.1 and varied the node density λ

and transmission range R. In each simulation, the number of hops is estimated for each

node using (6.9) and (6.11), and then the latency and energy consumption are estimated

using (6.20) and (6.24), respectively. As comparison to our proposed statistic-based

estimator, we chose a widely used linear estimator.

Linear Estimator 1 n̂ = [r/R] + 1,

Linear Estimator 2 n̂ = [r/R] + 2, (6.25)

where r is the given distance, R the transmission range and [r/R] is the maximum number

less than r/R. We ran extensive simulation for different setting of (N, RBound, R), but
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Figure 6.4. Estimation Average. (a) Latency. (b) Energy consumption.

due to the limit of space, we only plot the results for (N = 1000, RBound = 200, R =

30). The average of latency and energy consumption is shown in Fig.6.4(a) (b) and the

RMSE in Fig.6.5(a) (b), respectively. The latency is plotted in units of Thop while the

energy consumption in units of Joules. When the distance is less than the transmission

range, we can safe decide the number of hops is 1, thus, the estimation error starts
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from the transmission range. In addition, the accuracy is not so The ripple shape of

RMSE is due to the fact decision errors occurs more often in the overlapping zones of

neighboring f(r|Hi). Fig.6.4 show that the linear estimator 1 performs well at the shorter

range but suffers visibly at larger range, while the linear estimator does the opposite.

The linear estimators, no matter what value their parameters take, may significantly

underestimate or overestimate the latency and energy consumption as already pointed

out in Section 6.1.1, while our statistic-based model keeps close to the actual latency and

energy consumption at all ranges except for the border. This is also verified by Fig.6.5,

therefore, the overall RMSE of our estimator is less than 60% of that of linear ones for

both latency and energy consumption. These results show that linear models cannot

identify network behavior accurately, as also confirmed by our extensive simulations for

different settings of node density and transmission range, which is not shown here due

to space constraints.

Table 6.2. Estimation RMSE.

Statistical Linear 1 Linear 2
Latency 0.4405 0.7489 0.6152

Energy Consumption 4.6584e-008 8.7163e-008 6.1583e-008

6.3 Conclusion

To address the fundamental problem “how many hops does it take for a packet to

be relayed for a given distance?”, we make both probabilistic and statistic studies. We

proposed a Bayesian decision based on the conditional pdf of f(r|Hi). Since f(r|Hi) is

computationally complex, we also proposed an attenuated Gaussian approximation for

the conditional pdf, which visibly simplifies the decision process and the error analysis.

We also show that several linear models, though intuitively sound and widely used,

may give significant bias error. We apply our approximation to the latency and energy
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Figure 6.5. Estimation RMSE. (a) Latency. (b) Energy consumption.

consumption estimation in dense WSN. Simulations show that our approximation model

can predict the latency and energy consumption with less than half RMSE, compared to

the aforementioned linear models.



CHAPTER 7

CONCLUSION

The previous clustering researches often take a global approach, which is appro-

priate for global optimization. However, when a distributed clustering is desired, the

already-answered questions such as “How many clusters should the nodes be partitioned

into?” have to be translated into a distributed version, that is, ’‘What’s the appropriate

cluster size?”, because it is easier for a node to know its cluster size than the number

of clusters in the whole network. In this paper, we take a fully distributed approach to

energy efficiency for WSN. Motivated by the local energy efficiency criterion, we pro-

pose using the cluster size instead of the number of clusters as the clustering objective

parameter in clustering. Furthermore, we utilize the medium contention to implement

the headship auction to keep the cluster size within an ideal range. As shown by the

simulations, although the proposed MCCHA uses only local information, it achieves bet-

ter energy efficiency than native LEACH in terms of Data/Energy Ratio and effective

lifetime. The simulations also show that the optimal cluster radius obtained from the

experiments agrees well with the analysis of optimal clustering, which indicates the per-

formance of our distributed clustering is close to that of the global optimal one.

The clustering research also leads us into modeling of the end-to-end distance for

given number of hops in WSN. The experiments showed that the distance does not in-

crease linearly with the number of hops. Therefore, the distance should be analyzed for

each number of hops. We derived the distribution for single-hop distance and also showed

that the complexity of derivation for multiple-hop distance is beyond practical interest.

Thus, we postulate Beta distribution for two-hop end-to-end distance and Gaussian dis-

tribution for three-and-more-hop end-to-end distance. Computer simulations showed our

65
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postulated distributions agree well with the histograms. We also show that the distance

error can be minimized by exploiting the distribution knowledge.

Furthermore, to address the fundamental problem “how many hops does it take for

a packet to be relayed for a given distance?”, we make both probabilistic and statistic

studies. We proposed a Bayesian decision based on the conditional pdf of f(r|Hi). Since

f(r|Hi) is computationally complex, we also proposed an attenuated Gaussian approxi-

mation for the conditional pdf, which visibly simplifies the decision process and the error

analysis. We also show that several linear models, though intuitively sound and widely

used, may give significant bias error. We apply our approximation to the latency and

energy consumption estimation in dense WSN. Simulations show that our approxima-

tion model can predict the latency and energy consumption with less than half RMSE,

compared to the aforementioned linear models.

Although clustering has been well studied for the terrestrial WSN, the unique

characteristics of the underwater acoustic communications call for a new study. Because

the path loss is not only relevant to the distance, but also related to the working frequency,

the optimal cluster size for UW-ASN shows different properties from the terrestrial WSN.

In addition, the data aggregation also play an important role in determining the optimal

cluster size. The simulation results agrees well with our numerical analysis.
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