
MEASURING NAMED ENTITY SIMILARITY THROUGH

WIKIPEDIA CATEGORY HIERARCHIES

by

JARED M ASHMAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2010

Copyright © by Jared M Ashman 2010

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank Dr. Chengkai Li, my thesis advisor, without whom I could not have

completed this thesis. Under his supervision and assistance, I have learned a great deal about

how to perform research. Dr. Li has helped me to grow as a student, especially in the way I

approach and solve problems. He has also taught me how, when and where to focus my efforts,

which has served me well many times while researching and writing this thesis.

Dr. Bahram Khalili, my graduate advisor, also deserves thanks and recognition, for all of

his help and guidance throughout my journey in the masters program at the University of Texas at

Arlington. He has helped me accomplish more in the last years than I thought possible.

Finally, I would like to thank my wife, Heather, and my family, Gabriel, Alexandra,

Joshua and Nicholas, whose daily love and support have more than once kept me moving

towards completion of this thesis. My wife has always acted as my sounding board and has

helped me come to the right decision more times than I could ever count. She inspires me

through her example. I love you Heather.

November 19, 2010

iii

ABSTRACT

MEASURING NAMED ENTITY SIMILARITY THROUGH

WIKIPEDIA CATEGORY HIERARCHIES

Jared M Ashman, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Chengkai Li

Identifying the semantic similarity between named entities has many applications in NLP,

including information extraction and retrieval, word sense disambiguation, text summarization and

type classification. Similarity between named entities or terms is commonly determined using a

taxonomy based approach, but the limited scalability of existing taxonomies has led recent

research to use Wikipedia’s encyclopedic knowledge base to find similarity or relatedness. These

existing methods using Wikipedia have so far focused on relatedness, but are not as well suited

to finding similarity. In this thesis, we evaluate methods for determining the semantic similarity

between named entities by associating each named entity to a specific Wikipedia article, and then

using the commonalities between Wikipedia category hierarchies as the similarity. To evaluate the

effectiveness, we conducted a survey to get manually defined similarity scores for named entity

pairs. The scores obtained were then compared to both implemented methods and existing

relatedness measures.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT.. iv

LIST OF ILLUSTRATIONS...viii

LIST OF TABLES... ix

Chapter Page

1 INTRODUCTION... 1

1.1 Semantic Similarity and Semantic Relatedness...1

1.1.1 Semantic Similarity Versus Semantic Relatedness......................................2

1.2 Methods of Determining Semantic Similarity or Semantic Relatedness.......................2

1.2.1 Wikipedia as a Taxonomy...3

1.2.2 Mapping of Concepts...3

1.3 Named Entities...4

1.4 Overview of Our Methods: CatSim...5

1.4.1 Wikipedia Category Hierarchy..5

1.4.2 Intuition Behind CatSim..6

1.5 Overview of Our Results..7

1.6 Rest of the Thesis..7

2 RELATED WORK.. 8

2.1 Wikipedia Based Semantic Similarity Measures..8

2.2 Wikipedia Based Semantic Relatedness Measures...9

3 APPROACH... 11

3.1 Basics... 11

v

3.1.1 Wikipedia Category Hierarchy Challenges...11

3.2 Collapsing the Category Hierarchy...12

3.3 Vector Comparison Methods..15

3.3.1 Dice’s Coefficient..15

3.3.2 Jaccard Coefficient...17

3.3.3 Cosine Similarity...18

3.4 CatSim Example..19

4 IMPLEMENTATION..22

4.1 Wikipedia Database...22

4.1.1 Preprocessing..22

4.2 CatSim...23

4.2.1 SQLAlchemy..23

4.2.2 List Comprehensions..24

5 RESULTS... 25

5.1 Relatedness and Similarity Evaluation Metrics...25

5.2 Relatedness and Similarity Surveys...25

5.2.1 SimSurvey..25

5.2.1.1 Named Entity Pair Selection...25

5.2.1.2 Observations on Respondent Data...26

5.3 Experimental Results...26

5.3.1 Effects of Different Vector Comparison Methods..27

5.3.2 Effects of Different Weighting Functions...27

5.3.3 Effects of Different Depths..27

5.4 Relatedness Results..28

5.5 Similarity Results..28

5.6 Overall Impression...29

6 FUTURE WORK.. 33

vi

6.1 Improving the Weighting Function..33

6.1.1 TF-IDF Weighting Function..33

6.2 Vector Comparison Methods Revisited..33

6.3 Category Collapse Algorithmic Improvements..34

6.4 Efficiency Optimizations...34

6.5 Extension From Named Entities to Concepts...34

6.5.1 Wikipedia Disambiguation Pages...35

6.5.2 Wikipedia Link References...35

6.6 Real World Test Applications..35

REFERENCES... 37

BIOGRAPHICAL INFORMATION...39

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Measures of Semantic Relatedness and Semantic Similarity...2

1.2 Wikipedia Category Hierarchy...5

1.3 Comparing Category Hierarchies..6

3.1 Partial “Tiger” Category Hierarchy...11

3.2 Collapsing the Hierarchy...13

3.3 Category Collapse Algorithm...14

3.4 Dice’s Coefficient..15

3.5 Dice Based Algorithm..16

3.6 Jaccard Coefficient.. 17

3.7 Jaccard Based Algorithm..17

3.8 Cosine Similarity...18

3.9 Cosine Similarity Based Algorithm..19

3.10 Comparing Category Hierarchies Revisited..20

4.1 Euclidean Distance Demonstrating List Comprehensions...24

5.1 Dice’s Coefficient: WordSim353..30

5.2 Dice’s Coefficient: SimSurvey...30

5.3 Jaccard Coefficient: WordSim353...31

5.4 Jaccard Coefficient: SimSurvey..31

5.5 Cosine Similarity: WordSim353...32

5.6 Cosine Similarity: SimSurvey..32

viii

LIST OF TABLES

Table Page

2.1 Correlation of Wikipedia Based Relatedness Measures to WordSim353..................................9

5.1 Relatedness Correlation Results to WordSim353...28

5.2 Similarity Correlation Results to SimSurvey..29

ix

CHAPTER 1

INTRODUCTION

1.1 Semantic Similarity and Semantic Relatedness

Semantic similarity and semantic relatedness are often used synonymously. Both

similarity and relatedness are measures of how close two concepts are to one another. Natural

language processing (NLP) takes advantage of the measures for many applications, including

information extraction and retrieval, word sense disambiguation, text summarization, and type

classification. However, these applications typically use similarity and relatedness

interchangeably, which has led current research to focus mainly on semantic relatedness, when

semantic similarity may be better than semantic relatedness or vice versa, as they are different.

Specifically, semantic similarity is a subset of semantic relatedness. Similarity includes

hyponymic and hypernymic relationships (is-a), while relatedness includes any and all functional

relationships (has-a, is-a-part-of, etc.)[12]. The differences lead to several observations when

determining a semantic similarity or semantic relatedness measure for a pair of concepts. Figure

1.1 illustrates the observations on how a concept pair falls into one of four areas with respect to

the pair’s measure of relatedness and similarity.

Area (1) on Figure 1.1 is not possible for a concept pair to fall into. Since similarity is a

subset of relatedness, it is impossible to have a high similarity measure and a low relatedness

measure. Where similarity and relatedness measures are both high, concept pairs like “George

Washington” / “Abraham Lincoln” or “tiger” / “jaguar” fall firmly into area (2). The opposite holds

for (3), where similarity and relatedness measures should both be low, like in the concept pair

“nirvana” / “cheese grater”. Both these areas give credence to the idea that similarity and

relatedness are synonymous, as the measures are roughly equivalent with each other.

1

Figure 1.1 Measures of Semantic Relatedness and Semantic Similarity

However, there is a large class of concept pairs, like “Maradona” / “soccer” and “OPEC” /

“oil” that fall into area (4). These concept pairs have a high relatedness, but low similarity. In any

of the cases that fall into (4), semantic similarity and semantic relatedness are quite clearly not

synonymous and the majority of conflict between the two measures is to be found.

1.1.1 Semantic Similarity Versus Semantic Relatedness

Due to the difference detailed above, on most data sets of concept pairs, methods

created to measure semantic relatedness should not perform well when measuring semantic

similarity, though these methods often use semantic similarity and semantic relatedness as

synonyms. To date, as far as we have been able to determine, there has been no direct

correlation comparison between semantic similarity methods and semantic relatedness methods

when measuring both semantic similarity and semantic relatedness.

1.2 Methods of Determining Semantic Similarity or Semantic Relatedness

Traditionally, organized and well defined taxonomies such as WordNet [5] are used to

classify concepts and determine the relatedness or similarity measure for a concept pair. What

these traditional taxonomies lack is large coverage and scale. The taxonomies do not contain

esoteric or recent concepts, and do not scale quickly as it takes a prohibitive amount of time to

2

add concepts to the taxonomy[8].

1.2.1 Wikipedia as a Taxonomy

Wikipedia[13], in contrast, contains over 3.4 million articles in the English version alone as

of November 2010. Wikipedia, like WordNet and other taxonomies, also contains internal

structure and classification. These structures include the categories that an article belongs to as

well as any internal links to other Wikipedia articles that are in the article text. Being open for

editing by anyone, Wikipedia grows incredibly quickly, and contains both esoteric and recent

articles and concepts.

Being a collaborative and open effort always means that Wikipedia has up to date

information, but this means that the structure is not as well defined as a controlled taxonomy. This

ill defined structure introduces variability that needs to be accounted for. The variability could be

as simple as a mistake in classifying an article into a category, or may be as severe as deliberate

vandalism, and in either case can affect the similarity or relatedness measure.

1.2.2 Mapping of Concepts

In all of the methods examined in this thesis document, Wikipedia is used as the

taxonomy for determining the semantic similarity or semantic relatedness measurement. Since in

NLP applications, the measurement is between two concept pairs, and Wikipedia consists of

articles, the concepts must be mapped to Wikipedia. This usually means that the concept is

equated with a single article from Wikipedia that best matches the context between the concept in

the pair. Some methods map the concepts automatically, and some use a manual mapping.

Regardless of whether it is done manually or automatically, there are three types of mapping that

take place.

First is a single direct correspondence, where a concept directly corresponds to an article

in Wikipedia. An example of this mapping would be to map the concept “car” to Wikipedia.

Wikipedia does not have an article named “Car”, but it does have an “Automobile” article that the

concept directly corresponds to.

Second, a concept may apply to more than one article in Wikipedia, and may have to be

3

disambiguated based on the context. In this case, the context is the other concept in the pair, for

example, the concept “king” could refer to the Wikipedia article for “Monarch” or “King_(chess)”

depending on if the other concept in the pair was “country” or “rook” respectively.

Finally, a concept may not apply directly to any article in Wikipedia, and has to be

mapped to an article in Wikipedia that is similar or encapsulates the concept. This would be the

case for the concept “string”, which does not have an article in Wikipedia. The concept is

encapsulated by the article “Rope”.

Manually mapping concepts to articles involves searching Wikipedia for the concept.

Once searched, the appropriate article can be selected depending on what type of mapping is

called for and what the concept is.

While time consuming, the human judgments involved in manually mapping concepts to

Wikipedia articles is typically very accurate. Automatic mapping of the concept to the article is

much more prone to mistakes. Some methods using the Wikipedia taxonomy that have been tried

are to use the most frequently linked article for the concept [8], or to use Wikipedia’s

disambiguation pages to determine which pair of articles has the best similarity score[12].

The methods described in this thesis do a manual mapping to a Wikipedia article, and

thus lend themselves well to measuring the similarity of named entities rather than being

applicable to concepts as a whole.

1.3 Named Entities

Each article in Wikipedia usually describes a named entity. Named entities are

sequences of words that identify an entity. Examples of named entities are “Barack Obama”,

“Golden Gate Bridge” and “tiger”. Each named entity falls into a particular type in a named entity

hierarchy such as the BBN’s Proposed Answer Categories for Question Answering [2]. These types

are broad categories like “person”, “location” or “animal.” When mapping a concept to Wikipedia,

a particular article or articles are selected as applicable for the concept, so the method is distilling

a concept down to named entities.

4

1.4 Overview of Our Methods: CatSim

A method of determining semantic similarity measures between two concepts that have

already been mapped to Wikipedia articles is introduced in this thesis: CatSim. CatSim works in

two stages: first by creating a weighted vector by collapsing the category hierarchies of the

mapped articles, then proceeding to perform a configurable vector comparison between the

vectors, yielding a similarity measurement score for the concepts. The implemented vector

comparisons are well known in information retrieval literature, Dice’s Coefficient, Jaccard’s

Coefficient and cosine similarity.

Figure 1.2 Wikipedia Category Hierarchy

1.4.1 Wikipedia Category Hierarchy

The Wikipedia category system forms a type of taxonomy called a folksonomy, where the

collaborative tagging of articles into different categories both categorizes and provides means to

connect articles together. Any given category is allowed to have one or more subcategories or

supercategories (Figure 1.2), which forms a hierarchy of categories. The articles may be

assigned to any and all categories. This creates a very rich taxonomy to mine relationship data

from.

5

1.4.2 Intuition Behind CatSim

In CatSim, the category hierarchies of two articles are compared together to determine a

similarity measurement (Figure 1.3). When two articles have categories in common, even

supercategories up several levels, it follows that the articles are similar, as they have been tagged

to belong to the same category hierarchies. This forms the basis on which the different

comparison algorithms implemented for CatSim operate. The more categories that two articles

have in common, the greater the similarity.

To determine the similarity measure, CatSim first constructs a category vector for each of

the articles containing all of the categories that are in that article’s category hierarchy, and then

performs a standard vector comparison method on the two resultant category vectors. The vector

comparison methods chosen to be implemented in this thesis are well known in information

retrieval and data mining, Dice’s Coefficient, Jaccard’s Coefficient, and the cosine angle similarity

measurement.

Figure 1.3 Comparing Category Hierarchies

6

1.5 Overview of Our Results

Many of the similarity and relatedness techniques use the same evaluation methods.

One common method is to compare the technique in question to human judgments. First

compute the results of the technique for a large number of concept or named entity pairs. Once

that has been done, determine the correlation coefficient of those results to those of human

measurements for the same concept or named entity pairs. There is an existing study,

WordSim353[6], that has determined the relatedness between concept pairs, but no such study

was found for similarity. Therefore we constructed a set of 80 named entity pairs, and conducted

a survey to determine the similarity between each of the named entity pairs.

Experimental results on CatSim against the relatedness based WordSim353 test data set

and the similarity survey showed the following:

i. CatSim performed significantly better than existing relatedness methods when correlating

to the human judgments in the similarity survey.

ii. CatSim performed on par with other existing Wikipedia based relatedness measures, but

not as well as the state of the art when correlating to the WordSim353 test data set.

iii. While varying the weighting function and the comparison method used affected the

correlation to the test data for both relatedness and similarity, in most cases it was not a

significant amount.

iv. Varying the maximum category depth increased the correlation to the test data much

more than varying the other parameters.

1.6 Rest of the Thesis

In the rest of the thesis, we first present in chapter 2 an overview of the related work for

semantic similarity and semantic relatedness that use Wikipedia. Then in chapter 3 we will cover

in detail the semantic similarity measurement methods developed in this thesis. Chapter 4 dives

into our implementation of the semantic similarity measurement methods. Experiments on the

implemented similarity methods and comparisons with existing relatedness methods comprise

chapter 5. The thesis document wraps up in chapter 6 with future directions that will be pursued.

7

CHAPTER 2

RELATED WORK

2.1 Wikipedia Based Semantic Similarity Measures

Much existing literature for named entities focuses on semantic similarity between named

entities as a method to enhance the identification of named entities from text. This task is called

Named Entity Recognition (NER) and was formally described in the 6th Message Understanding

Conference in 1995. One or the original types of named entities in NER is person names. To

identify and disambiguate person names, Bunescu and Pasca [3] utilized Wikipedia’s article text

and the categories that articles belonged to in order to drive a support vector machine (SVM).

The taxonomy based kernel for the SVM took as an input a concept, then looked at that concept’s

text to identify and disambiguate to a set of possible articles. Finally it identified context based

information contained in the possible articles’ text and categories that matched the ambiguous

concept. This method of using the category hierarchy and article text to find the similarity

measurement between the concept and possible articles achieved an 84% disambiguation

accuracy when applied to a disambiguation task.

Cucerzan[4] also used Wikipedia article text and category pages to create a system that

used semantic similarity for entity identification and disambiguation. The method employed by

Cucerzan was to process the contextual information contained in the concept, then match the

context of candidate articles and their category information in order to maximize the agreement

between the article context and the concept context. The most similar article to the concept

context was selected as the disambiguated article. Cucerzan obtained accuracy results of 88% to

91% on disambiguation tasks dealing with named entities.

Bollegala et. al.[1] approached determining semantic similarity in a different way. Instead

of using Wikipedia, they used another web based massively scalable knowledge base: search

8

engines. Bollegala focused on determining the correlation coefficient between their web search

methods and human similarity results. To determine the semantic similarity between two entities,

they performed three queries, one for the first term, one for the second term, then one for the first

and second term joined together. The resultant queries contain snippets of text that are then

mined for syntactic patterns to determine the similarity. The correlation coefficient between their

web query and snippet pattern based approach to the Miller and Charles [9] 30 word pair sample

data set was 0.834.

2.2 Wikipedia Based Semantic Relatedness Measures

When expanding the scope to include relatedness as well as similarity, the number of

different implementations of different methods to determine semantic relatedness between

concepts or named entities greatly increases. Restricting it to just those methods that directly deal

with Wikipedia yields three methods: Strube and Ponzetto’s WikiRelate! [12], Gabrilovich and

Markovitch’s Explicit Semantic Analysis (ESA)[7] and Milne and Witten’s Wikipedia Link-based

Measure (WLM)[8]. The three methods’ correlation coefficients to the WordSim353 data set are

detailed in Table 2.1.

Table 2.1 Correlation of Wikipedia Based Relatedness Measures to WordSim353

Relatedness Measure Correlation Coefficient
WikiRelate! 0.48

Explicit Semantic Analysis 0.75
Wikipedia Link-based Measure 0.68

Strube and Ponzetto’s WikiRelate! was the first to explore the use of Wikipedia to

determine semantic relatedness. They examined path based, information content based, and text

overlap based relatedness measurement methods. From the experimentation, the path based

measures had the best correlation coefficient at 0.48 to the WordSim353 data set.

The path based measures developed compute a relatedness measure based on the

shortest path through the category hierarchy between two articles. The maximum allowed path of

the search was limited since all articles go through the base categories in the Wikipedia category

hierarchy.

9

After Strube established the use of Wikipedia as a taxonomy for semantic relatedness

measures, Gabrilovich and Markovitch developed ESA, which markedly improved the correlation

coefficient to the WordSim353 data set to 0.75. ESA uses a cosine similarity measure over entity

vectors to establish a relatedness measure. The entity vectors consist of every article that

mentions the concepts being compared, and are built up using an inverted index.

While achieving state of the art accuracy, ESA requires an enormous amount of

preprocessing. Milne and Witten attempt to address this with WLM. WLM works on the internal

hyperlinks within Wikipedia articles to determine the relatedness measure.

WLM averages two relatedness measurements to get the final relatedness measure. First

WLM computes the cosine similarity between TF-IDF weighted vectors of two articles’ outgoing

links to other Wikipedia articles. The second measurement is a term occurrence based

measurement of all of the articles that contain a link to the two articles being compared. This

combination approach of incoming and outgoing Wikipedia links gives good relatedness

measurements with WLM achieving a correlation coefficient of 0.68 with the WordSim353 data

set.

10

CHAPTER 3

APPROACH

3.1 Basics

Like WikiRelate!, ESA and WLM, our approach to measuring semantic similarity, CatSim

uses Wikipedia’s vast knowledge base. Specifically, we are focusing on named entities that have

already been mapped to Wikipedia articles and the category hierarchy of those articles to

determine the semantic similarity of the named entities. The intuition is that articles that are

similar to one another tend to have categories in their individual hierarchies in common (Figure

1.3). CatSim takes advantage of this intuition by using a two step method to first collapse each

article’s category hierarchy into a vector, and second comparing the vectors together to get a

similarity score.

3.1.1 Wikipedia Category Hierarchy Challenges

Figure 3.1 Partial “Tiger” Category Hierarchy

A challenge to using the Wikipedia category hierarchy lies in the structure of the hierarchy

itself. Described briefly in Chapter 1, The hierarchy is a tree structure with a single root category,

11

but is free form and contains multiple inheritance, huge branching factors and cycles. While this

creates a rich information source to mine, it also introduces difficulties in processing it.

Every article in Wikipedia is classified into one or more categories, and can act as it’s

own root for an article based category hierarchy. The article rooted category hierarchy can be

constructed by starting with all of the article’s categories, then branching from each of those

categories to their supercategories. The example above in Figure 3.1 illustrates creating a

category hierarchy, take the “Tiger” article in Wikipedia. “Tiger” is a member of the “Big cats of

India” and “Tigers” categories at a depth of 1. The “Big Cats of India” category has the categories

“Conservation in India,” “Fauna of India” and “Felids” as supercategories at depth 2. The “Tigers”

category has a single supercategory “Panthera,” which, since it’s a super category of a depth 1

category, is depth 2.

3.2 Collapsing the Category Hierarchy

Conceptually, to compare two article’s category hierarchies, there has to be a way to

measure the overlap between them. CatSim accomplishes this through collapsing the category

hierarchy for the article down into a category vector. The category vector contains the categories

that represent all of the unique categories that exist in the article’s category hierarchy, each

mapped to a weighted value for the category.

12

Figure 3.2 Collapsing the Hierarchy

Figure 3.2 conceptualizes the method of collapsing the hierarchy, showing an article, A

and a simplified hierarchy with categories C1...C5. The hierarchy is moved into a vector one

category at a time, applying a weight function (wf(d) in Figure 3.2), to each to get a weighted

value for the category to place into the category vector. The weight function can be any function

that operates on the depth of the category in the category hierarchy.

13

Algorithm: collapse(base:Page, depth:int, maxdepth:int):list

Input:
base: Article or Category to get the categories for
depth: The current depth the algorithm is working at
maxdepth: The maximum depth the algorithm will traverse to

Output:
cv: Category vector of the category hierarchy of the list type

begin

1 if depth <= maxdepth
2 for each c in categories-of(base)
3 if c not in cv
4 add-to-cv(c, wf(depth)))
5 else
6 if wf(depth) > weight-of(cv[c])
7 replace-in-cv(c, wf(depth)))
8 collapse(c, depth + 1, maxdepth)
9 else
10 return

end

Figure 3.3 Category Collapse Algorithm

The specific algorithm used to collapse an article’s categories is shown in Figure 3.3. The

recursive algorithm is invoked through a call to collapse(base, depth), In the initial call, base is the

original item to work on, either the base article, or a category within the base article’s category

hierarchy. Two further variables come into play in the category collapse algorithm. First, the

algorithm allows a depth and a maximum depth to be specified, the maximum depth is the

maximum path length from the article to a category through other categories. The greater the

depth, the higher in the overall Wikipedia category hierarchy and the more often the category will

appear in any article’s hierarchy. The categories near the root of the overall Wikipedia category

hierarchy are also general in nature, and thus are not as helpful in determining similarity. For

these reasons, it makes sense to limit the article’s category hierarchy to a specified maximum

depth. Depth is the current depth the algorithm is working on and since the algorithm is recursive

acts as the end condition. Depth is initially called with a value of 1.

Second is the weighting function, wf(d). This function is applied to every category as it is

placed into the category vector, weighting that category. The variable d is the shortest path

14

between that category and the base article. Broad classes of weighting functions can be used,

giving different shapes to the weighting depending on the curve of the function used.

Notice that the category vector includes unique categories. Since Wikipedia allows

multiple inheritance and cycles, there exists the possibility that a category is listed twice in an

article hierarchy. In this case, it is necessary to select a single instance of the category to place

into the category vector. We chose to use the instance of the category that has the largest weight.

Intuitively, it makes sense that having a higher weight for the category lends a more accurage

measure of similarity, and so the larger weight is selected.

3.3 Vector Comparison Methods

Once a weighted category vector has been created for both of the target articles, the

vectors must be compared. There are a large number of vector comparison methods in the

literature. Several of the most commonly used comparison methods seemed to have desirable

features. Three were selected for inclusion in the initial implementation of CatSim. Dice’s

Coefficient, Jaccard Coefficient and the standard cosine similarity.

3.3.1 Dice’s Coefficient

D (A,B)=2 ∣A∩B∣
∣A∣+∣B∣

Figure 3.4 Dice’s Coefficient

Dice’s Coefficient is a simple set based similarity measure that gives a stronger emphasis

to common categories in the category vectors due to doubling the weight of the intersection. This

emphasis while comparing gives a wider range of scores when differing weights and counts of

common categories are found. The formula above, Figure 3.4, works on the input A and B, which

in this case, as well as in Figure 3.6 and 3.8, are the two category vectors being compared.

15

Algorithm: dice(a1:Article, a2:Article, maxdepth:int):float

Input:
a1: Article to perform the dice vector comparison for
a2: Article to perform the dice vector comparison for
maxdepth: The maximum depth the algorithm will traverse to

Output:
m: Dice measurement of the similarity between the two articles

begin

1 cv1 = collapse(a1, 1, maxdepth)
2 cv2 = collapse(a2, 1, maxdepth)
3 1u2 = cv1 union cv2
4 for each c in 1u2
5 if c in cv1
6 add-to-ucv1(c, weight-of(cv1[c])
7 else
8 add-to-ucv1(c, 0)
9 if c in cv2
10 add-to-ucv2(c, weight-of(cv2[c])
11 else
12 add-to-ucv2(c, 0)
13 if c in cv1 and cv2
14 add-to-1i2(c, (weight-of(cv1[c] + weight-of(cv2)[c]) / 2)
15 else
16 add-to-1i2(c, 0)
17 return (2 * sum-of-values(1i2)) / (sum-of-values(ucv1) + sum-of-values(ucv2))

end

Figure 3.5 Dice Based Algorithm

The Dice based algorithm in Figure 3.5 compares two category vectors together and

returns a similarity measure. In the algorithm, the meat of it is in lines 4 through 16, which is

where the union category vectors and the intersection vector is created, which are ucv1, ucv2 and

1i2 respectively. The add-to-ucv1 (lined 6 and 8), add-to-ucv2 (lines 10 and 12) and add-to-1i2

(lines 14 and 16) methods simply add a category associated with a weight to a category vector.

A point of interest is that the intersection logic takes the average of the weighted values

of the categories, rather than picking the highest or lowest. Taking the average insures that both

category vectors have equal representation in the intersection vector. The intersection vector also

contains as many values as the union, any categories that are not in both category vectors are

inserted into the intersection vector with a value of 0, and thus contribute nothing to the similarity

measurement, but do affect the size of the intersection vector.

16

Once the intersection is calculated, computing the Dice similarity measurement is a

simple division of the summed intersection vector over the addition of the summation of each

category vector.

3.3.2 Jaccard Coefficient

J (A,B)=∣A∩B∣
∣A∪B∣

Figure 3.6 Jaccard Coefficient

The Jaccard Coefficient is much like Dice’s Coefficient. The major difference is that it

does not offer any emphasis to common categories, note that Jaccard’s coefficient does not

multiply the intersection by 2. This should produce a more even distribution of measurements

given the wide range of weights and number of common categories.

Algorithm: jaccard(a1:Article, a2:Article, maxdepth:int):float

Input:
a1: Article to perform the dice vector comparison for
a2: Article to perform the dice vector comparison for
maxdepth: The maximum depth the algorithm will traverse to

Output:
m: Jaccard measurement of the similarity between the two articles

begin

1 cv1 = collapse(a1, 1, maxdepth)
2 cv2 = collapse(a2, 1, maxdepth)
3 1u2 = cv1 union cv2
4 for each c in 1u2
5 if c in cv1 and cv2
6 add-to-1i2(c, (weight-of(cv1[c] + weight-of(cv2)[c]) / 2)
7 else
8 add-to-1i2(c, 0)
9 return sum-of-values(1i2) / sum-of-values(1u2)

end

Figure 3.7 Jaccard Based Algorithm

The Jaccard based algorithm in Figure 3.7 starts exactly the same as the Dice based

algorithm, gathering the union vector. When gathering the union vector, it operates a little

differently than the intersection vector described above in section 3.3.1. When categories that are

17

in common between the two category vectors are found, the union operation will take the largest

weighted value found in the category vectors for that category.

The Jaccard based algorithm is also easy to compute once the intersection vector has

been created. Since we already have the union vector, we return the summation of the

intersection vector over the summation of the union vector.

3.3.3 Cosine Similarity

C (A,B)= A⋅B
∥A∥∥B∥

Figure 3.8 Cosine Similarity

Cosine similarity is used in many applications, perhaps most often in text mining. It works

well to find the similarity between TF-IDF vectors. We selected cosine similarity because it was

used in other similarity and relatedness applications, both in those that use Wikipedia like ESA

and WLM as well as those that use more traditional taxonomies.

The cosine similarity based algorithm in Figure 3.9 below was the most computationally

complex algorithm, as the dot product and Euclidean distance for both category vectors needs to

be calculated. This creates a much slower overall execution speed than either the Dice or

Jaccard methods.

Notice, like the intersection vectors from the Dice and Jaccard algorithms, the individual

category vectors are extended out to include the categories from the other category vector. The

new categories in the category vectors have a value of 0, and do not affect the dot product or

euclidean distance.

Interestingly, due to the extension of either a category vector or the creation of an

intersection vector, all three algorithms start out with the same steps, creating a union vector. This

is probably not strictly necessary and definitely hurts the execution speed of both Dice’s

coefficient and the cosine similarity, as neither algorithm needs the union.

18

Algorithm: cosine(a1:Article, a2:Article, maxdepth:int):float

Input:
a1: Article to perform the dice vector comparison for
a2: Article to perform the dice vector comparison for
maxdepth: The maximum depth the algorithm will traverse to

Output:
m: Cosine similarity measure of the similarity between the two articles

begin

1 cv1 = collapse(a1, 1, maxdepth)
2 cv2 = collapse(a2, 1, maxdepth)
3 1u2 = cv1 union cv2
4 for each c in 1u2
5 if c in cv1
6 add-to-ucv1(c, weight-of(cv1[c])
7 else
8 add-to-ucv1(c, 0)
9 if c in cv2
10 add-to-ucv2(c, weight-of(cv2[c])
11 else
12 add-to-ucv2(c, 0)
13 for i in 1..length-of(1u2)
14 add-to-dv(weight-of(ucv1[i]) * weight-of(ucv2[i])
15 1dotproduct2 = sum-of-values(dv)
16 for each c in ucv1
17 add-to-euc1(weight-of(ucv1[c])^2)
18 euclidean1 = square-root(sum-of-values(euc1))
19 for each c in ucv2
20 add-to-euc2(weight-of(ucv2[c])^2)
21 euclidean2 = square-root(sum-of-values(euc2))
22 return 1dotproduct2 / (euclidean1 * euclidean2)

end

Figure 3.9 Cosine Similarity Based Algorithm

3.4 CatSim Example

To illustrate the way CatSim performs the two step process, we will start with Figure 3.10,

which delineates two articles and their category hierarchies, including common categories. For

the example, we will be limiting the category hierarchy to a depth of 4, applying a weighting

function of wf(d) = 1/d and using the Jaccard based method for the vector comparison.

19

Figure 3.10 Comparing Category Hierarchies Revisited

First, category vectors must be created for both A1 and A2. For A1, starting at depth 1, we

have C1, C2 and C3. Depth 2 has C4, C8, C5, C6, and C12. Depth 3 consists of C7, C9 and C14, while

the hierarchy ends at depth 4 with C9. Moving through the depths and assigning weight functions

to those categories, A1’s category vector is [C1:1, C2:1, C3:1, C4:0.5, C8:0.5, C5:0.5, C6:0.5, C12:0.5,

C7:0.3, C9:0.3, C14:0.3]. C9 at depth of 4 is not included in the category vector as that category

already exists for the hierarchy at a depth of 3. In the same way, the category vector for A 2 is

[C2:1, C10:1, C11:1, C6:0.5, C12:0.5, C13:0.5, C14:0.3, C9:0.3].

Once we have our category vectors, apply the Jaccard Coefficient to the category

vectors. For Jaccard, we need the intersection of the category vectors divided by the union of the

category vectors to get the similarity value. The intersection of the category vectors is the set of

all common categories, with an average of their weighted value. The intersection set for our

example is [C2:1, C6:0.5, C12:0.5, C9:0.3, C14:0.3]. If we sum the values for the intersection set we

get a value of 2.6. To calculation the union of the category vectors, add each of the categories

from both article’s category vectors to the union set. For categories that exist in both the category

20

vectors, the largest weighted value is taken. In our example the union set is [C1:1, C2:1, C3:1,

C4:0.5, C8:0.5, C5:0.5, C6:0.5, C12:0.5, C7:0.3, C9:0.3, C14:0.3, C10:1, C11:1, C13:0.5]. The sum of the

values in the union set in this example comes out to be 8.9. Following the Jaccard algorithm and

formula, we divide the intersection set value by the union set value, 2.6/8.9, or 0.2921, which is

the similarity score using the Jaccard Coefficient for the example hierarchies in Figure 3.10.

21

CHAPTER 4

IMPLEMENTATION

4.1 Wikipedia Database

The Wikipedia database is at the heart of the implementation. Without it’s vast knowledge

store, CatSim would not have anything to work on. The version of Wikipedia that CatSim is

currently running on a download from March of 2010. Due to the nature of CatSim using only the

internal structure of Wikipedia rather than any of the content, it was not necessary to download

the entirety of the Wikipedia database. We only had to download the tables that directly dealt with

the structures we were interested in: Page, Category, PageLinks, CategoryLinks, and Redirect.

4.1.1 Preprocessing

WikiRelate!, ESA and WLM all have detailed preprocessing that must be followed to

provision the Wikipedia data for use. One of the initial goals of CatSim was to create a system

that could be set up quickly and easily from a Wikipedia database dump, without needing

preprocessing. We did not completely succeed, as we do require one preprocessing step.

Wikipedia’s category hierarchy does not just have categories that describe content. It also

includes administrative categories such as lists, classes, templates, help and different categories

that are used to mark an article as needing cleanup or having problems that need fixed. None of

these categories are of use when determining semantic relatedness or similarity, and in fact may

hinder efforts at a correct measurement. To account for these administrative categories, a

preprocessing step is done to delete them from the system.

A list was created with common text strings contained in the title of the category. This list

was used to query the database and delete any categories that contained those strings. Some

examples of the administrative category text strings were “-related_”, “Wikipedia_”, “templates”

and “Automatically_assessed_”. In case they were necessary later, the category information that

22

was deleted was saved to a new table in the database that was not used during operation of

CatSim.

4.2 CatSim

After setting up and preprocessing the database we decided to implement CatSim in the

Python programming language. The decision to implement in Python in part was driven by two

factors that eventually made things very easy. These factors are the Object Relational Mapper

(ORM) SQLAlchemy[11] and a language feature of Python, list comprehensions[10].

4.2.1 SQLAlchemy

In any application that uses a database as a back end, how you access that database

can make or break the performance and reliability of the application. A clean solution to database

access are ORM solutions. ORM libraries or modules map the relational model in the database to

the object model in code. They abstract away the database access so that no SQL is necessary

to write, and make it easy to pull the data into objects during runtime. This allows the user to

focus not on database access but to strongly focus on the application logic.

SQLAlchemy is one such ORM for the Python programming language. Besides having all

of the features of a standard ORM, it includes one feature that is key for CatSim’s performance

when loading all of the levels of categories. Typically when loading a list of categories and their

supercategories, an application would load all of the first level categories, and then for each

category in the first level, would load all of the second level categories. This would continue until

the maximum depth was reached. In practice, this results in a database query and extra

processing time for each category. This common problem causes an enormous degradation in

performance.

The SQLAlchemy feature we used to get around this query problem and solve the

performance issue allows you to override the set of loaded instances of the supercategories.

When combined with a dictionary structure to map which super category belonged to which

category, it reduces the number of queries against the database to the maximum depth allowed

between the article and categories, greatly improving performance.

23

Accepting an article to load, the article load method’s key point is that it works on a depth

basis, acting on all of the categories for the article that are at that depth. It will recursively travel

up, loading the next level’s data, mapping the returned data to the category in the current level,

and setting each level as processed so that it does not load again. Each category will be loaded

only once, as the existence of loaded instances of supercategories is checked before issuing the

call to the database.

Note that this algorithm can be implemented without the use of an ORM, but the ORM

makes this much easier overall.

4.2.2 List Comprehensions

The Python programming language has a lot of excellent features, but by far the most

useful for working with vectors and sets as we do in CatSim are list comprehensions. List

comprehensions work by creating a list or set from another list or set based on evaluation

statements. An example from CatSim would be calculating the Euclidean distance of a category

vector for the cosine similarity vector comparer (Figure 4.1).

distance = sqrt(sum([v*v for v in categoryvector]))

Figure 4.1 Euclidean Distance Demonstrating List Comprehensions

The bold area in the figure is the list comprehension. The list comprehension iterates

over every value in the category vector, and squares the value. The list comprehension then

constructs a new list with all of those squared values and returns it. The built in sum function and

the math sqrt function are then applied to quickly and easily get the Euclidean distance.

24

CHAPTER 5

RESULTS

5.1 Relatedness and Similarity Evaluation Metrics

Existing relatedness measures that use Wikipedia have consistently used the same

metrics to evaluate how accurate the measure is. This metric is performing Pearson’s correlation

coefficient over the rank values between the WordSim353 test data set and the relatedness

measures obtained by the method being evaluated. This gives a value between 0 and 1 that

shows how correlated the WordSim353 rankings are to the relatedness method’s rankings. Table

2.1 described in Chapter 2 above shows the existing Wikipedia based methods. A value of 0

means that it is as uncorrelated as possible, while a value of 1 means that the accuracy is

perfect, the relatedness method being tested has exactly the same rankings as the human

judgments in WordSim353.

5.2 Relatedness and Similarity Surveys

While WordSim353 deals with relatedness data, we could not find an appropriate

equivalent measure for semantic similarity that highlighted the difference between relatedness

and similarity. As a result, we conducted our own similarity survey to create such a data set

(SimSurvey).

5.2.1 SimSurvey

SimSurvey consists of 81 named entity pairs that have clear mappings to Wikipedia

articles for easy processing with the CatSim application. The survey gathered 12 human

respondents, with each having all 81 pairs evaluated.

5.2.1.1 Named Entity Pair Selection

To determine which named entity pairs would be included, a broad spectrum of different

classifications were considered. Since named entities have a type associated with them, and

25

named entity pairs that consist of the same type should be similar, we selected named entity

types to focus on. The types included were: person, facility, organization, NORP (nationality,

other, religion, and political), geo-political entity, location, plant, animal and game. Within each

type, we selected named entities that would have high name recognition for a person located in

the United States.

The pairs were then selected within and across the types to fall into 3 groups and one

sub group. We expected 30 of our pairs to have high similarity, 25 to have a middling similarity

and 26 to have low similarity. Of the 26 low similarity named entity pairs, 6 of those selected were

of high relatedness, such as the named entity pair “Michael Jordan” / “basketball.”

Respondents were then asked to assign a similarity score to each of the 81 named entity

pairs, on a score from 0 to 10, with 0 being no similarity and 10 being the same named entity. All

respondent scores were averaged at the end to get an overall score for each named entity pair.

5.2.1.2 Observations on Respondent Data

The respondents to the survey classified the data as expected, especially the entity pairs

that were of low similarity and high relatedness. There was some blending, as some of the high

similarity items tended towards the middle of the score range, such as “Judaism” / “Catholic”. This

entity pair contains two named entities that are both religions and have a lot of similar properties,

though the respondents only scored the pair at a 6.3333, where we felt it should have been much

higher.

5.3 Experimental Results

Figure 5.1 through Figure 5.6 detail out the experimental results that were run on the

CatSim application. We varied the vector comparison methods, weighting function, depth, and

test data set to correlate against to determine the most effective combination of parameters.

Regardless of whether the test data set was the WordSim353 for relatedness or SimSurvey for

similarity, we noticed some overall trends in the data.

26

5.3.1 Effects of Different Vector Comparison Methods

Varying the vector comparison methods had moderate effect on the overall data. Within

each test data set’s results, the vector comparison methods all seemed to be grouped within 0.05

of each other when the other parameters remained the same.

Both the Dice based comparison and Jaccard based comparison had similar

measurements, so the Dice based comparison that emphasized the intersecting categories more

did not actually have much effect on the overall measurement scores.

5.3.2 Effects of Different Weighting Functions

Like varying the vector comparison methods, we varied the weighting functions used. We

wanted to see what the effect of different function classes would have on the correlation

coefficient between the results and the test data sets. The intuition says that if you use a function

that weights categories that are farther from the article less, you will achieve a better similarity

measurement score.

The intuition proved sound to a point. We measured the effects of exponential,

polynomial, linear and constant functions, from both growing and shrinking perspectives based on

level. Based on the data obtained, yes, weighting the categories less based on larger depth did

increase the score, especially for relatedness coefficients. The similarity correlation coefficients

are almost constant regardless of the weighting function used.

One feature found was that the cosine similarity method for relatedness actually had a

much steeper slope upwards compared to the Dice and Jaccard methods. This increased slope

was not present for the similarity correlation coefficients.

5.3.3 Effects of Different Depths

Surprisingly enough, differing the maximum allowable depth gave by far the largest

variance between the correlation coefficients. When the maximum depth was 1,2 or 3, there were

actually not enough intersecting categories in the category hierarchy vectors, and thus a large

percentage of article pairs ended up with scores of 0. This threw off the calculation of the

correlation coefficients, as it averages the ranks of tied scores. Similarly, going above a depth of 6

27

with the current algorithm gave too much noise and progressively lowered the correlation

coefficient for both WordSim353 and SimSurvey.

A depth of 4 gave the best correlation coefficients, with the coefficient decreasing in steps

of between 0.02 and 0.07 depending on the weighting function and vector comparison method for

both depths of 5 and 6. WikiRelate! also found that a maximum path length of 4 gave the best

results.

5.4 Relatedness Results

Figure 5.1, Figure 5.3 and Figure 5.5 show the relatedness results against the

WordSim353 test data set for the Dice, Jaccard and cosine similarity methods respectively. The

cosine similarity method had the highest correlation coefficient at 0.5104. This result places

CatSim firmly above WikiRelate!, but does significantly worse than ESA and even WLM. The

overall results, including the existing methods are detailed in Table 5.1 below.

Table 5.1 Relatedness Correlation Results to WordSim353

Relatedness Measure Correlation Coefficient
WikiRelate! 0.48

Explicit Semantic Analysis 0.75
Wikipedia Link-based Measure 0.68

CatSim Dice 0.4939
CatSim Jaccard 0.4922

CatSim Cosine Similarity 0.5104

5.5 Similarity Results

Against the SimSurvey test data, CatSim performed much stronger, as expected. The

best result was actually the Jaccard method, detailed in Figure 5.4. Figure 5.2 shows the Dice

comparison, and Figure 5.6 shows the cosine similarity method results. All three methods are

very close together in results, so much so that the category vector comparison method may not

matter as much for similarity as it does for relatedness.

To get a comparison with an existing relatedness method, the WLM measurement was

calculated for all of SimSurvey’s named entity pairs using WLM’s open web site [14]. The website

accepts two concepts as input and automatically disambiguates those concepts to the Wikipedia

28

articles that are most likely. For our purposes, since we had the exact titles of the articles to

compare, the website gave us in all cases the exact articles back, so we were assured of using

the same Wikipedia articles for the comparison. Once calculated, WLM is shown to perform 0.09

worse than any of the CatSim methods. Table 5.2 shows the similarity results.

Table 5.2 Similarity Correlation Results to SimSurvey

Similarity Measure Correlation Coefficient
Wikipedia Link-based Measure 0.5921

CatSim Dice 0.6853
CatSim Jaccard 0.6864

CatSim Cosine Similarity 0.6803

5.6 Overall Impression

Overall, CatSim performed well on the stated task of measuring similarity when

compared against human judgments for similarity as given in the SimSurvey results. The

comparison methods did not yield as strong a difference as hoped, but the promise of the method

is there. Perhaps the most telling point is the difference in the correlation coefficients based on

the maximum depth. It shows that arguably the most important thing for CatSim is the

construction of the category vector.

29

Figure 5.1 Dice’s Coefficient: WordSim353

Figure 5.2 Dice’s Coefficient: SimSurvey

30

Figure 5.3 Jaccard Coefficient: WordSim353

Figure 5.4 Jaccard Coefficient: SimSurvey

31

Figure 5.5 Cosine Similarity: WordSim353

Figure 5.6 Cosine Similarity: SimSurvey

32

CHAPTER 6

FUTURE WORK

The work in this thesis creates a framework for extensive future work. The promising

results yielded by combining different weighting functions, depth levels and vector comparison

methods can be extended to include different weighting functions or better vector comparison

methods. The algorithm to perform the category hierarchy collapse can be improved as well.

Finally, further improvements in the optimization of the algorithms would allow for improvements

in efficiency and processing speed, which could enable the technology to be used in more

responsive environments such as web services or embedded within larger NLP applications.

6.1 Improving the Weighting Function

One direction of future work would be to improve which weighting function to use when

creating the category vector for an article. As described in Chapter 3, CatSim currently uses a

weighting function that is based on the depth that a category in the vector is found on. CatSim

could be extended to accept different types of weighting functions that may yield stronger results.

6.1.1 TF-IDF Weighting Function

One option that was considered and discarded due to the additional processing

requirements it would impose on the Wikipedia data was to use a TF-IDF based weight of the

categories. This type of weighting would more strongly tie the overall use of the category in

Wikipedia to the weighted score for it. Combining a TF-IDF weight with a depth based function

weight may be even better, as it would use overall use of the category with the specific distance

from the article the category was.

6.2 Vector Comparison Methods Revisited

In this thesis, CatSim only uses three different vector comparison methods to compare

the articles’ category vectors. While Dice, Jaccard, and Cosine Similarity are all common vector

33

comparison methods and ended up with similar correlation coefficients, there exist many others

that could give a better correlation coefficient to the test data sets. Some other well known

comparison methods that may be worth examining include the overlap coefficient or the

Levenshtein distance. Both of these methods can act on weighted vectors to measure the

similarity or difference between them.

6.3 Category Collapse Algorithmic Improvements

Perhaps the biggest improvements to CatSim’s similarity measures could be found in the

way the categories are collapsed. Modifying the algorithm to include or remove categories based

on some heuristic may be found to work well. The challenge in dynamically deciding what to

include or remove from the category vector lies in what heuristics to use. We considered

removing categories based on the usage of the category within Wikipedia, but the preprocessing

to enable the removal was outside the scope of this thesis.

Another improvement to the category collapse algorithm could include taking the

subcategories into account. Since CatSim only works right now on supercategories, including the

subcategories into the algorithm can increase the number of possible common categories

between two articles, and yet not increase the maximum path length between a category and the

article.

6.4 Efficiency Optimizations

Continuing with the creation of the category vectors, while pulling the data from the

database described in Chapter 4 is reasonably quick, the implementation of the category vector

creation has room for improvement. Switching from a recursive to an iterative algorithm will yield

performance improvements immediately. In addition, implementing a batch processing method to

process more than one category and supercategories at a time would yield vast improvements in

processing time.

6.5 Extension From Named Entities to Concepts

As described in Chapter 3, CatSim currently works on named entities. A further logical

extension of the method would be extend it to using concepts and mapping those concepts to the

34

Wikipedia articles. Any type of automatic mapping would provide a better method as at that point

it could work on text strings and concepts, rather than having to manually map those text strings

and concepts. There are some challenges involved with appropriately mapping that made such

an automatic mapping out of scope for this thesis, but some ideas for extension are below.

6.5.1 Wikipedia Disambiguation Pages

We attempted to do an automatic mapping between named entities and the Wikipedia

articles by making use of Wikipedia’s disambiguation pages. A disambiguation page is created

whenever a particular text string may refer to more than one article. An example of this would be

for the text string “tiger.” “Tiger” may refer to many different things, including a type of missile, a

large feline or any number of military units.

Using these disambiguation pages to decide which article best fits the named entity

under consideration as well as the context of the comparison may be possible. We used a naive

mapping which indicated that the correct article was the one with the highest similarity

measurement to the second named entity. This did not work well in practice, as the context

selected sometimes was incorrect. Despite the failure of our mapping method, using the

disambiguation pages could provide a robust mapping solution.

6.5.2 Wikipedia Link References

Another possibility for performing automatic mapping while using Wikipedia’s internal

structure are the links that point to articles. These links can be used by looking at where they are

linking from to determine what the best article to use for the concept would be. An example of this

would be to take an article like “Tiger”, and then examine all of the articles that link to “Tiger.” The

context determined by those articles may be able to be used to determine the mapping of the

comparison concept with respect to the original concept.

6.6 Real World Test Applications

Much of the existing literature runs similarity and relatedness measures against a real

world application, like NER or word sense disambiguation to do a “field test” of sorts. As a future

work item, a test of CatSim in an actual application based environment to complete a real world

35

task would cement it’s usefulness as a semantic similarity method. The most common test for

similarity is word sense disambiguation, and as such it would be an appropriate test for CatSim to

complete.

36

REFERENCES

[1] Bollegala, D., Y. Matsuo, and M. Ishizuka. 2007. Measuring Semantic Similarity between

Words Using Web Search Engines. In Proc. of WWW.

[2] Brunstein, A. 2002. BBN's Proposed Answer Categories For Question Answering.

<http://www.ldc.upenn.edu/Catalog/docs/LDC2005T33/BBN-Types-Subtypes.html>.

[3] Bunescu, R. and M. Pasca. 2006. Using Encyclopedic Knowledge for Named Entity

Disambiguation. In Proc. of EACL, 9-16.

[4] Cucerzan, S. 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia Data.

In Proc. of Empirical Methods in Natural Language Processing.

[5] Fellbaum, C. (Ed). 1998. WordNet: An Electronic Lexical Database. MIT Press.

[6] Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin.

2002. Placing Search in Context: The Concept Revisited, ACM Transactions on

Information Systems, 20(1):116-131.

[7] Gabrilovich, E. and S. Markovitch. 2007. Computing semantic relatedness using

Wikipedia-based explicit semantic analysis. Proc. of IJCAI, 1606-1611.

[8] Milne, D. and I. Witten. 2008. An Effective, Low-Cost Measure of Semantic Relatedness

Obtained from Wikipedia Links, In Proc. of AAAI08 Workshop on Wikipedia and Artificial

Intelligence.

[9] Miller, G. A. and W. G. Charles. 1991. Contextual correlates of semantic similarity.

Language and Cognitive Processes, 6(1):1-28.

[10] Python Software Foundation. 2010. 5 Data Structures - Python v2.7 documentation.

<http://docs.python.org/tutorial/datastructures.html#list-comprehensions>.

[11] SQLAlchemy. 2010. SQLAlchemy - The Database Toolkit for Python.

<http://www.sqlalchemy.org>.

37

[12] Strube, M. and S. P. Ponzeto. 2006. WikiRelate! Computing semantic relatedness using

Wikipedia. In Proc. of AAAI, 1419-1424.

[13] Wikimedia Foundation. 2010. Wikipedia, the free encyclopedia.

<http://en.wikipedia.org/wiki/Main_Page>.

[14] Wikipedia Miner Services. 2010. Wikipedia Miner Services.

<http://wdm.cs.waikato.ac.nz:8080/service?task=compare>.

38

BIOGRAPHICAL INFORMATION

Jared M Ashman graduated December 2010 with his M.S. in Computer Science from the

University of Texas at Arlington. Prior to completing his M.S., Jared received his B.S. in Computer

Science from Kent State University in December 2005, graduating magna cum laude.

Through his time at the University of Texas at Arlington, Jared’s research gravitated

towards information retrieval, data mining and natural language processing. His M.S. thesis

combined these and dealt with mining Wikipedia’s metadata to determine the semantic similarity

between named entities.

Professionally, Jared has worked as a software engineer in the healthcare industry,

working for the Fortune 500 company Stryker from 2006 until 2008, developing custom imaging

software for xray and MRI, and Stryker’s electronic medical record management solution. After

leaving Stryker, Jared joined the fastest growing privately held company in the United States,

Ambit Energy, in 2008 and is currently a development team lead. In his work at Ambit Energy, he

leads a team of developers building the software to expand into new energy markets.

39

