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ABSTRACT

MEASURING NAMED ENTITY SIMILARITY THROUGH

WIKIPEDIA CATEGORY HIERARCHIES

Jared M Ashman, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Chengkai Li

Identifying the semantic similarity between named entities has many applications in NLP, 

including information extraction and retrieval, word sense disambiguation, text summarization and 

type classification. Similarity between named entities or terms is commonly determined using a 

taxonomy based  approach,  but  the  limited  scalability  of  existing  taxonomies  has  led  recent 

research to use Wikipedia’s encyclopedic knowledge base to find similarity or relatedness. These 

existing methods using Wikipedia have so far focused on relatedness, but are not as well suited 

to finding similarity. In this thesis, we evaluate methods for determining the semantic similarity 

between named entities by associating each named entity to a specific Wikipedia article, and then 

using the commonalities between Wikipedia category hierarchies as the similarity. To evaluate the 

effectiveness, we conducted a survey to get manually defined similarity scores for named entity 

pairs.  The scores  obtained  were  then  compared  to  both  implemented  methods and  existing 

relatedness measures.
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CHAPTER 1

INTRODUCTION

1.1 Semantic Similarity and Semantic Relatedness

Semantic  similarity  and  semantic  relatedness  are  often  used  synonymously.  Both 

similarity and relatedness are measures of how close two concepts are to one another. Natural 

language processing (NLP) takes advantage of the measures for many applications, including 

information extraction and retrieval,  word sense disambiguation, text summarization, and type 

classification.  However,  these  applications  typically  use  similarity  and  relatedness 

interchangeably, which has led current research to focus mainly on semantic relatedness, when 

semantic similarity may be better than semantic relatedness or vice versa, as they are different.

Specifically, semantic similarity is a subset of semantic relatedness. Similarity includes 

hyponymic and hypernymic relationships (is-a), while relatedness includes any and all functional 

relationships  (has-a,  is-a-part-of,  etc.)[12].  The  differences  lead  to  several  observations  when 

determining a semantic similarity or semantic relatedness measure for a pair of concepts. Figure 

1.1 illustrates the observations on how a concept pair falls into one of four areas with respect to 

the pair’s measure of relatedness and similarity.

Area (1) on Figure 1.1 is not possible for a concept pair to fall into. Since similarity is a  

subset of relatedness, it is impossible to have a high similarity measure and a low relatedness 

measure. Where similarity and relatedness measures are both high, concept pairs like “George 

Washington” / “Abraham Lincoln” or “tiger” / “jaguar” fall firmly into area (2). The opposite holds  

for (3), where similarity and relatedness measures should both be low, like in the concept pair 

“nirvana”  /  “cheese  grater”.  Both  these  areas  give  credence  to  the  idea  that  similarity  and 

relatedness are synonymous, as the measures are roughly equivalent with each other.
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Figure 1.1 Measures of Semantic Relatedness and Semantic Similarity

However, there is a large class of concept pairs, like “Maradona” / “soccer” and “OPEC” /  

“oil”  that fall into area (4). These concept pairs have a high relatedness, but low similarity. In any 

of the cases that fall into (4), semantic similarity and semantic relatedness are quite clearly not 

synonymous and the majority of conflict between the two measures is to be found.

1.1.1 Semantic Similarity Versus Semantic Relatedness

Due  to  the  difference  detailed  above,  on  most  data  sets  of  concept  pairs,  methods 

created to  measure semantic relatedness should not  perform well  when measuring semantic 

similarity,  though  these  methods  often  use  semantic  similarity  and  semantic  relatedness  as 

synonyms.  To  date,  as  far  as  we  have  been  able  to  determine,  there  has  been  no  direct 

correlation comparison between semantic similarity methods and semantic relatedness methods 

when measuring both semantic similarity and semantic relatedness.

1.2 Methods of Determining Semantic Similarity or Semantic Relatedness

Traditionally,  organized  and well  defined  taxonomies such as WordNet [5] are  used to 

classify concepts and determine the relatedness or similarity measure for a concept pair. What 

these traditional taxonomies lack is large coverage and scale. The taxonomies do not contain 

esoteric or recent concepts, and do not scale quickly as it takes a prohibitive amount of time to 
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add concepts to the taxonomy[8].

1.2.1 Wikipedia as a Taxonomy

Wikipedia[13], in contrast, contains over 3.4 million articles in the English version alone as 

of  November  2010.  Wikipedia,  like  WordNet  and  other  taxonomies,  also  contains  internal 

structure and classification. These structures include the categories that an article belongs to as 

well as any internal links to other Wikipedia articles that are in the article text. Being open for 

editing by anyone, Wikipedia grows incredibly quickly,  and contains both  esoteric  and recent 

articles and concepts.

Being  a  collaborative  and  open  effort  always  means  that  Wikipedia  has  up  to  date 

information, but this means that the structure is not as well defined as a controlled taxonomy. This 

ill defined structure introduces variability that needs to be accounted for. The variability could be 

as simple as a mistake in classifying an article into a category, or may be as severe as deliberate  

vandalism, and in either case can affect the similarity or relatedness measure.

1.2.2 Mapping of Concepts

In  all  of  the  methods  examined  in  this  thesis  document,  Wikipedia  is  used  as  the 

taxonomy for determining the semantic similarity or semantic relatedness measurement. Since in 

NLP applications,  the measurement is between two concept pairs,  and Wikipedia consists of 

articles,  the concepts must be mapped to Wikipedia.  This usually means that  the concept is 

equated with a single article from Wikipedia that best matches the context between the concept in 

the pair.  Some methods map the concepts automatically,  and some use a manual  mapping. 

Regardless of whether it is done manually or automatically, there are three types of mapping that  

take place.

First is a single direct correspondence, where a concept directly corresponds to an article 

in  Wikipedia.  An example of  this  mapping would  be to  map the  concept  “car”  to  Wikipedia.  

Wikipedia does not have an article named “Car”, but it does have an “Automobile” article that the 

concept directly corresponds to.

Second, a concept may apply to more than one article in Wikipedia, and may have to be  
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disambiguated based on the context. In this case, the context is the other concept in the pair, for  

example, the concept “king” could refer to the Wikipedia article for “Monarch” or “King_(chess)” 

depending on if the other concept in the pair was “country” or “rook” respectively.

Finally,  a  concept  may not  apply  directly  to  any article  in  Wikipedia,  and  has  to  be 

mapped to an article in Wikipedia that is similar or encapsulates the concept. This would be the 

case  for  the  concept  “string”,  which  does  not  have  an  article  in  Wikipedia.  The  concept  is  

encapsulated by the article “Rope”.

Manually  mapping concepts to  articles  involves  searching Wikipedia  for  the  concept. 

Once searched, the appropriate article can be selected depending on what type of mapping is  

called for and what the concept is.

While time consuming, the human judgments involved in manually mapping concepts to 

Wikipedia articles is typically very accurate. Automatic mapping of the concept to the article is 

much more prone to mistakes. Some methods using the Wikipedia taxonomy that have been tried 

are  to  use  the  most  frequently  linked  article  for  the  concept [8],  or  to  use  Wikipedia’s 

disambiguation pages to determine which pair of articles has the best similarity score[12].

The methods described in this thesis do a manual mapping to a Wikipedia article, and 

thus  lend  themselves  well  to  measuring  the  similarity  of  named  entities  rather  than  being 

applicable to concepts as a whole.

1.3 Named Entities

Each  article  in  Wikipedia  usually  describes  a  named  entity.  Named  entities  are 

sequences of words that identify an entity.  Examples of named entities are “Barack Obama”,  

“Golden Gate Bridge” and “tiger”. Each named entity falls into a particular type in a named entity 

hierarchy such as the BBN’s Proposed Answer Categories for Question Answering [2]. These types 

are broad categories like “person”, “location” or “animal.” When mapping a concept to Wikipedia, 

a particular article or articles are selected as applicable for the concept, so the method is distilling 

a concept down to named entities.
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1.4 Overview of Our Methods: CatSim

A method of determining semantic similarity measures between two concepts that have 

already been mapped to Wikipedia articles is introduced in this thesis: CatSim. CatSim works in 

two stages:  first  by creating a weighted vector  by collapsing the category hierarchies of  the 

mapped  articles,  then  proceeding  to  perform  a  configurable  vector  comparison  between  the 

vectors,  yielding  a  similarity  measurement  score  for  the  concepts.  The  implemented  vector 

comparisons  are  well  known  in  information  retrieval  literature,  Dice’s  Coefficient,  Jaccard’s 

Coefficient and cosine similarity.

Figure 1.2 Wikipedia Category Hierarchy

1.4.1 Wikipedia Category Hierarchy

The Wikipedia category system forms a type of taxonomy called a folksonomy, where the 

collaborative tagging of articles into different categories both categorizes and provides means to  

connect articles together. Any given category is allowed to have one or more subcategories or  

supercategories  (Figure  1.2),  which  forms  a  hierarchy  of  categories.  The  articles  may  be 

assigned to any and all categories. This creates a very rich taxonomy to mine relationship data 

from.
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1.4.2 Intuition Behind CatSim

In CatSim, the category hierarchies of two articles are compared together to determine a 

similarity  measurement  (Figure  1.3).  When  two  articles  have  categories  in  common,  even 

supercategories up several levels, it follows that the articles are similar, as they have been tagged 

to  belong  to  the  same  category  hierarchies.  This  forms  the  basis  on  which  the  different 

comparison algorithms implemented for CatSim operate. The more categories that two articles 

have in common, the greater the similarity.

To determine the similarity measure, CatSim first constructs a category vector for each of 

the articles containing all of the categories that are in that article’s category hierarchy, and then 

performs a standard vector comparison method on the two resultant category vectors. The vector 

comparison methods chosen to  be implemented in  this  thesis  are  well  known in  information 

retrieval and data mining, Dice’s Coefficient, Jaccard’s Coefficient, and the cosine angle similarity 

measurement.

Figure 1.3 Comparing Category Hierarchies
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1.5 Overview of Our Results

Many of  the similarity and relatedness techniques use the same evaluation methods. 

One  common  method  is  to  compare  the  technique  in  question  to  human  judgments.  First  

compute the results of the technique for a large number of concept or named entity pairs. Once 

that  has been done, determine the correlation coefficient  of  those results to  those of  human 

measurements  for  the  same  concept  or  named  entity  pairs.  There  is  an  existing  study, 

WordSim353[6], that has determined the relatedness between concept pairs, but no such study 

was found for similarity. Therefore we constructed a set of 80 named entity pairs, and conducted  

a survey to determine the similarity between each of the named entity pairs.

Experimental results on CatSim against the relatedness based WordSim353 test data set 

and the similarity survey showed the following:

i. CatSim performed significantly better than existing relatedness methods when correlating 

to the human judgments in the similarity survey.

ii. CatSim performed on par with other existing Wikipedia based relatedness measures, but 

not as well as the state of the art when correlating to the WordSim353 test data set.

iii. While  varying  the  weighting  function  and  the  comparison  method  used  affected  the 

correlation to the test data for both relatedness and similarity, in most cases it was not a 

significant amount.

iv. Varying the maximum category depth increased the correlation to the test data much 

more than varying the other parameters.

1.6 Rest of the Thesis

In the rest of the thesis, we first present in chapter 2 an overview of the related work for 

semantic similarity and semantic relatedness that use Wikipedia. Then in chapter 3 we will cover 

in detail the semantic similarity measurement methods developed in this thesis. Chapter 4 dives 

into our implementation of the semantic similarity measurement methods. Experiments on the 

implemented similarity methods and comparisons with existing relatedness methods comprise 

chapter 5. The thesis document wraps up in chapter 6 with future directions that will be pursued.
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CHAPTER 2

RELATED WORK

2.1 Wikipedia Based Semantic Similarity Measures

Much existing literature for named entities focuses on semantic similarity between named 

entities as a method to enhance the identification of named entities from text. This task is called 

Named Entity Recognition (NER) and was formally described in the 6th Message Understanding 

Conference in 1995. One or the original types of named entities in NER is person names. To 

identify and disambiguate person names, Bunescu and Pasca [3] utilized Wikipedia’s article text 

and the categories that articles belonged to in order to drive a support vector machine (SVM). 

The taxonomy based kernel for the SVM took as an input a concept, then looked at that concept’s 

text to identify and disambiguate to a set of possible articles. Finally it identified context based 

information contained in the possible articles’ text and categories that matched the ambiguous 

concept.  This  method  of  using  the  category  hierarchy  and  article  text  to  find  the  similarity 

measurement  between  the  concept  and  possible  articles  achieved  an  84%  disambiguation 

accuracy when applied to a disambiguation task.

Cucerzan[4] also used Wikipedia article text and category pages to create a system that 

used semantic similarity for entity identification and disambiguation. The method employed by 

Cucerzan was to process the contextual information contained in the concept, then match the 

context of candidate articles and their category information in order to maximize the agreement 

between the article  context  and the concept  context.  The most  similar  article  to  the concept 

context was selected as the disambiguated article. Cucerzan obtained accuracy results of 88% to 

91% on disambiguation tasks dealing with named entities.

Bollegala et. al.[1] approached determining semantic similarity in a different way. Instead 

of using Wikipedia, they used another web based massively scalable knowledge base: search 
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engines. Bollegala focused on determining the correlation coefficient between their web search 

methods and human similarity results. To determine the semantic similarity between two entities, 

they performed three queries, one for the first term, one for the second term, then one for the first  

and second term joined together. The resultant queries contain snippets of text that are then 

mined for syntactic patterns to determine the similarity. The correlation coefficient between their 

web query and snippet pattern based approach to the Miller and Charles [9] 30 word pair sample 

data set was 0.834.

2.2 Wikipedia Based Semantic Relatedness Measures

When expanding the scope to include relatedness as well as similarity, the number of  

different  implementations  of  different  methods  to  determine  semantic  relatedness  between 

concepts or named entities greatly increases. Restricting it to just those methods that directly deal 

with  Wikipedia  yields  three  methods:  Strube  and  Ponzetto’s  WikiRelate! [12],  Gabrilovich  and 

Markovitch’s Explicit  Semantic Analysis (ESA)[7] and Milne and Witten’s Wikipedia Link-based 

Measure (WLM)[8]. The three methods’ correlation coefficients to the WordSim353 data set are 

detailed in Table 2.1.

Table 2.1 Correlation of Wikipedia Based Relatedness Measures to WordSim353

Relatedness Measure Correlation Coefficient
WikiRelate! 0.48

Explicit Semantic Analysis 0.75
Wikipedia Link-based Measure 0.68

Strube  and  Ponzetto’s  WikiRelate!  was  the  first  to  explore  the  use  of  Wikipedia  to 

determine semantic relatedness. They examined path based, information content based, and text  

overlap based relatedness measurement methods. From the experimentation, the path based 

measures had the best correlation coefficient at 0.48 to the WordSim353 data set.

The path based measures developed compute a relatedness measure based on the 

shortest path through the category hierarchy between two articles. The maximum allowed path of  

the search was limited since all articles go through the base categories in the Wikipedia category 

hierarchy.
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After Strube established the use of Wikipedia as a taxonomy for semantic relatedness 

measures, Gabrilovich and Markovitch developed ESA, which markedly improved the correlation 

coefficient to the WordSim353 data set to 0.75. ESA uses a cosine similarity measure over entity 

vectors  to  establish  a  relatedness  measure.  The  entity  vectors  consist  of  every  article  that 

mentions the concepts being compared, and are built up using an inverted index.

While  achieving  state  of  the  art  accuracy,  ESA requires  an  enormous  amount  of 

preprocessing. Milne and Witten attempt to address this with WLM. WLM works on the internal 

hyperlinks within Wikipedia articles to determine the relatedness measure.

WLM averages two relatedness measurements to get the final relatedness measure. First 

WLM computes the cosine similarity between TF-IDF weighted vectors of two articles’ outgoing 

links  to  other  Wikipedia  articles.  The  second  measurement  is  a  term  occurrence  based 

measurement of all of the articles that contain a link to the two articles being compared. This 

combination  approach  of  incoming  and  outgoing  Wikipedia  links  gives  good  relatedness 

measurements with WLM achieving a correlation coefficient of 0.68 with the WordSim353 data 

set.
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CHAPTER 3

APPROACH

3.1 Basics

Like WikiRelate!, ESA and WLM, our approach to measuring semantic similarity, CatSim 

uses Wikipedia’s vast knowledge base. Specifically, we are focusing on named entities that have 

already  been  mapped  to  Wikipedia  articles  and  the  category  hierarchy  of  those  articles  to 

determine the semantic  similarity of  the named entities.  The intuition is  that  articles that  are 

similar to one another tend to have categories in their individual hierarchies in common (Figure 

1.3). CatSim takes advantage of this intuition by using a two step method to first collapse each 

article’s category hierarchy into a vector, and second comparing the vectors together to get a 

similarity score.

3.1.1 Wikipedia Category Hierarchy Challenges

Figure 3.1 Partial “Tiger” Category Hierarchy

A challenge to using the Wikipedia category hierarchy lies in the structure of the hierarchy 

itself. Described briefly in Chapter 1, The hierarchy is a tree structure with a single root category,  
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but is free form and contains multiple inheritance, huge branching factors and cycles. While this 

creates a rich information source to mine, it also introduces difficulties in processing it.

Every article in Wikipedia is classified into one or more categories, and can act as it’s 

own root for an article based category hierarchy.  The article rooted category hierarchy can be 

constructed by starting with all  of the article’s categories, then branching from each of  those 

categories  to  their  supercategories.  The  example  above  in  Figure  3.1  illustrates  creating  a 

category hierarchy, take the “Tiger” article in Wikipedia. “Tiger” is a member of the “Big cats of 

India” and “Tigers” categories at a depth of 1. The “Big Cats of India” category has the categories  

“Conservation in India,” “Fauna of India” and “Felids” as supercategories at depth 2. The “Tigers” 

category has a single supercategory “Panthera,” which, since it’s a super category of a depth 1 

category, is depth 2.

3.2 Collapsing the Category Hierarchy

Conceptually,  to compare two article’s category hierarchies, there has to be a way to 

measure the overlap between them. CatSim accomplishes this through collapsing the category 

hierarchy for the article down into a category vector. The category vector contains the categories 

that  represent all  of  the unique categories that  exist  in  the article’s  category hierarchy,  each 

mapped to a weighted value for the category.

12



Figure 3.2 Collapsing the Hierarchy

Figure 3.2 conceptualizes the method of collapsing the hierarchy, showing an article, A 

and a simplified hierarchy with  categories  C1...C5.  The hierarchy is  moved into  a  vector  one 

category at a time, applying a weight function (wf(d) in Figure 3.2), to each to get a weighted 

value for the category to place into the category vector. The weight function can be any function 

that operates on the depth of the category in the category hierarchy.
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Algorithm: collapse(base:Page, depth:int, maxdepth:int):list

Input:
base: Article or Category to get the categories for
depth: The current depth the algorithm is working at
maxdepth: The maximum depth the algorithm will traverse to

Output:
cv: Category vector of the category hierarchy of the list type

begin

1 if depth <= maxdepth
2 for each c in categories-of(base)
3 if c not in cv
4 add-to-cv(c, wf(depth)))
5 else
6 if wf(depth) > weight-of(cv[c])
7 replace-in-cv(c, wf(depth)))
8 collapse(c, depth + 1, maxdepth)
9 else
10 return

end

Figure 3.3 Category Collapse Algorithm

The specific algorithm used to collapse an article’s categories is shown in Figure 3.3. The 

recursive algorithm is invoked through a call to collapse(base, depth), In the initial call, base is the 

original item to work on, either the base article, or a category within the base article’s category 

hierarchy.  Two further  variables come into  play in  the  category collapse  algorithm.  First,  the 

algorithm allows a depth and a maximum depth to  be specified,  the maximum depth  is  the 

maximum path length from the article to a category through other categories. The greater the 

depth, the higher in the overall Wikipedia category hierarchy and the more often the category will 

appear in any article’s hierarchy. The categories near the root of the overall Wikipedia category 

hierarchy are also general in nature, and thus are not as helpful in determining similarity. For 

these reasons, it makes sense to limit the article’s category hierarchy to a specified maximum 

depth. Depth is the current depth the algorithm is working on and since the algorithm is recursive 

acts as the end condition. Depth is initially called with a value of 1.

Second is the weighting function, wf(d). This function is applied to every category as it is  

placed into  the category  vector,  weighting that  category.  The variable  d  is  the  shortest  path 
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between that category and the base article. Broad classes of weighting functions can be used, 

giving different shapes to the weighting depending on the curve of the function used.

Notice  that  the  category  vector  includes  unique  categories.  Since  Wikipedia  allows 

multiple inheritance and cycles, there exists the possibility that a category is listed twice in an 

article hierarchy. In this case, it is necessary to select a single instance of the category to place 

into the category vector. We chose to use the instance of the category that has the largest weight. 

Intuitively, it makes sense that having a higher weight for the category lends a more accurage 

measure of similarity, and so the larger weight is selected.

3.3 Vector Comparison Methods

Once a weighted category vector has been created for both of the target articles, the 

vectors  must  be compared.  There are a  large number of  vector  comparison methods in  the 

literature. Several of the most commonly used comparison methods seemed to have desirable 

features.  Three  were  selected  for  inclusion  in  the  initial  implementation  of  CatSim.  Dice’s 

Coefficient, Jaccard Coefficient and the standard cosine similarity.

3.3.1 Dice’s Coefficient

D (A,B )=2 ∣A∩B∣
∣A∣+∣B∣

Figure 3.4 Dice’s Coefficient

Dice’s Coefficient is a simple set based similarity measure that gives a stronger emphasis 

to common categories in the category vectors due to doubling the weight of the intersection. This  

emphasis while comparing gives a wider range of scores when differing weights and counts of  

common categories are found. The formula above, Figure 3.4, works on the input A and B, which  

in this case, as well as in Figure 3.6 and 3.8, are the two category vectors being compared.
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Algorithm: dice(a1:Article, a2:Article, maxdepth:int):float

Input:
a1: Article to perform the dice vector comparison for
a2: Article to perform the dice vector comparison for
maxdepth: The maximum depth the algorithm will traverse to

Output:
m: Dice measurement of the similarity between the two articles

begin

1 cv1 = collapse(a1, 1, maxdepth)
2 cv2 = collapse(a2, 1, maxdepth)
3 1u2 = cv1 union cv2
4 for each c in 1u2
5 if c in cv1
6 add-to-ucv1(c, weight-of(cv1[c])
7 else
8 add-to-ucv1(c, 0)
9 if c in cv2
10 add-to-ucv2(c, weight-of(cv2[c])
11 else
12 add-to-ucv2(c, 0)
13 if c in cv1 and cv2
14 add-to-1i2(c, (weight-of(cv1[c] + weight-of(cv2)[c]) / 2)
15 else
16 add-to-1i2(c, 0)
17 return (2 * sum-of-values(1i2)) / (sum-of-values(ucv1) + sum-of-values(ucv2))

end

Figure 3.5 Dice Based Algorithm

The Dice based algorithm in Figure 3.5 compares two category vectors together and 

returns a similarity measure. In the algorithm, the meat of it is in lines 4 through 16, which is  

where the union category vectors and the intersection vector is created, which are ucv1, ucv2 and 

1i2 respectively. The add-to-ucv1 (lined 6 and 8), add-to-ucv2 (lines 10 and 12) and add-to-1i2 

(lines 14 and 16) methods simply add a category associated with a weight to a category vector.

A point of interest is that the intersection logic takes the average of the weighted values 

of the categories, rather than picking the highest or lowest. Taking the average insures that both 

category vectors have equal representation in the intersection vector. The intersection vector also 

contains as many values as the union, any categories that are not in both category vectors are 

inserted into the intersection vector with a value of 0, and thus contribute nothing to the similarity 

measurement, but do affect the size of the intersection vector.
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Once  the  intersection  is  calculated,  computing  the  Dice  similarity  measurement  is  a 

simple division of the summed intersection vector over the addition of the summation of each 

category vector.

3.3.2 Jaccard Coefficient

J ( A,B )=∣A∩B∣
∣A∪B∣

Figure 3.6 Jaccard Coefficient

The Jaccard Coefficient is much like Dice’s Coefficient. The major difference is that it 

does not  offer any emphasis  to  common categories,  note  that  Jaccard’s  coefficient  does not 

multiply the intersection by 2. This should produce a more even distribution of measurements 

given the wide range of weights and number of common categories.

Algorithm: jaccard(a1:Article, a2:Article, maxdepth:int):float

Input:
a1: Article to perform the dice vector comparison for
a2: Article to perform the dice vector comparison for
maxdepth: The maximum depth the algorithm will traverse to

Output:
m: Jaccard measurement of the similarity between the two articles

begin

1 cv1 = collapse(a1, 1, maxdepth)
2 cv2 = collapse(a2, 1, maxdepth)
3 1u2 = cv1 union cv2
4 for each c in 1u2
5 if c in cv1 and cv2
6 add-to-1i2(c, (weight-of(cv1[c] + weight-of(cv2)[c]) / 2)
7 else
8 add-to-1i2(c, 0)
9 return sum-of-values(1i2) / sum-of-values(1u2)

end

Figure 3.7 Jaccard Based Algorithm

The Jaccard based algorithm in Figure 3.7 starts exactly the same as the Dice based 

algorithm,  gathering  the  union  vector.  When  gathering  the  union  vector,  it  operates  a  little 

differently than the intersection vector described above in section 3.3.1. When categories that are 
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in common between the two category vectors are found, the union operation will take the largest 

weighted value found in the category vectors for that category.

The Jaccard based algorithm is also easy to compute once the intersection vector has 

been  created.   Since  we  already  have  the  union  vector,  we  return  the  summation  of  the 

intersection vector over the summation of the union vector.

3.3.3 Cosine Similarity

C (A,B )= A⋅B
∥A∥∥B∥

Figure 3.8 Cosine Similarity

Cosine similarity is used in many applications, perhaps most often in text mining. It works 

well to find the similarity between TF-IDF vectors. We selected cosine similarity because it was 

used in other similarity and relatedness applications, both in those that use Wikipedia like ESA 

and WLM as well as those that use more traditional taxonomies.

The cosine similarity based algorithm in Figure 3.9 below was the most computationally 

complex algorithm, as the dot product and Euclidean distance for both category vectors needs to 

be  calculated.  This  creates  a  much  slower  overall  execution  speed  than  either  the  Dice  or 

Jaccard methods.

Notice, like the intersection vectors from the Dice and Jaccard algorithms, the individual 

category vectors are extended out to include the categories from the other category vector. The 

new categories in the category vectors have a value of 0, and do not affect the dot product or 

euclidean distance.

Interestingly,  due  to  the  extension  of  either  a  category  vector  or  the  creation  of  an 

intersection vector, all three algorithms start out with the same steps, creating a union vector. This 

is  probably  not  strictly  necessary  and  definitely  hurts  the  execution  speed  of  both  Dice’s 

coefficient and the cosine similarity, as neither algorithm needs the union.
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Algorithm: cosine(a1:Article, a2:Article, maxdepth:int):float

Input:
a1: Article to perform the dice vector comparison for
a2: Article to perform the dice vector comparison for
maxdepth: The maximum depth the algorithm will traverse to

Output:
m: Cosine similarity measure of the similarity between the two articles

begin

1 cv1 = collapse(a1, 1, maxdepth)
2 cv2 = collapse(a2, 1, maxdepth)
3 1u2 = cv1 union cv2
4 for each c in 1u2
5 if c in cv1
6 add-to-ucv1(c, weight-of(cv1[c])
7 else
8 add-to-ucv1(c, 0)
9 if c in cv2
10 add-to-ucv2(c, weight-of(cv2[c])
11 else
12 add-to-ucv2(c, 0)
13 for i in 1..length-of(1u2)
14 add-to-dv(weight-of(ucv1[i]) * weight-of(ucv2[i])
15 1dotproduct2 = sum-of-values(dv)
16 for each c in ucv1
17 add-to-euc1(weight-of(ucv1[c])^2)
18 euclidean1 = square-root(sum-of-values(euc1))
19 for each c in ucv2
20 add-to-euc2(weight-of(ucv2[c])^2)
21 euclidean2 = square-root(sum-of-values(euc2))
22 return 1dotproduct2 / (euclidean1 * euclidean2)

end

Figure 3.9 Cosine Similarity Based Algorithm

3.4 CatSim Example

To illustrate the way CatSim performs the two step process, we will start with Figure 3.10,  

which delineates two articles and their category hierarchies, including common categories. For 

the example, we will  be limiting the category hierarchy to a depth of 4, applying a weighting  

function of wf(d) = 1/d and using the Jaccard based method for the vector comparison.
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Figure 3.10 Comparing Category Hierarchies Revisited

First, category vectors must be created for both A1 and A2. For A1, starting at depth 1, we 

have C1, C2 and C3. Depth 2 has C4, C8, C5, C6, and C12. Depth 3 consists of C7, C9 and C14, while 

the hierarchy ends at depth 4 with C9. Moving through the depths and assigning weight functions 

to those categories, A1’s category vector is [C1:1, C2:1, C3:1, C4:0.5, C8:0.5, C5:0.5, C6:0.5, C12:0.5, 

C7:0.3, C9:0.3, C14:0.3]. C9 at depth of 4 is not included in the category vector as that category 

already exists for the hierarchy at a depth of 3. In the same way, the category vector for A 2 is 

[C2:1, C10:1, C11:1, C6:0.5, C12:0.5, C13:0.5, C14:0.3, C9:0.3].

Once  we  have  our  category  vectors,  apply  the  Jaccard  Coefficient  to  the  category 

vectors. For Jaccard, we need the intersection of the category vectors divided by the union of the 

category vectors to get the similarity value. The intersection of the category vectors is the set of  

all  common categories,  with an average of  their  weighted value.  The intersection set  for our 

example is [C2:1, C6:0.5, C12:0.5, C9:0.3, C14:0.3]. If we sum the values for the intersection set we 

get a value of 2.6. To calculation the union of the category vectors, add each of the categories 

from both article’s category vectors to the union set. For categories that exist in both the category 
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vectors, the largest weighted value is taken. In our example the union set is [C1:1, C2:1, C3:1, 

C4:0.5, C8:0.5, C5:0.5, C6:0.5, C12:0.5, C7:0.3, C9:0.3, C14:0.3, C10:1, C11:1, C13:0.5]. The sum of the 

values in the union set in this example comes out to be 8.9. Following the Jaccard algorithm and 

formula, we divide the intersection set value by the union set value, 2.6/8.9, or 0.2921, which is 

the similarity score using the Jaccard Coefficient for the example hierarchies in Figure 3.10.
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CHAPTER 4

IMPLEMENTATION

4.1 Wikipedia Database

The Wikipedia database is at the heart of the implementation. Without it’s vast knowledge 

store,  CatSim would not  have anything to work on.  The version of  Wikipedia that  CatSim is  

currently running on a download from March of 2010. Due to the nature of CatSim using only the 

internal structure of Wikipedia rather than any of the content, it was not necessary to download  

the entirety of the Wikipedia database. We only had to download the tables that directly dealt with  

the structures we were interested in: Page, Category, PageLinks, CategoryLinks, and Redirect.

4.1.1 Preprocessing

WikiRelate!,  ESA and WLM all  have detailed preprocessing that  must be followed to 

provision the Wikipedia data for use. One of the initial goals of CatSim was to create a system 

that  could  be  set  up  quickly  and  easily  from  a  Wikipedia  database  dump,  without  needing 

preprocessing. We did not completely succeed, as we do require one preprocessing step.

Wikipedia’s category hierarchy does not just have categories that describe content. It also 

includes administrative categories such as lists, classes, templates, help and different categories 

that are used to mark an article as needing cleanup or having problems that need fixed.  None of  

these categories are of use when determining semantic relatedness or similarity, and in fact may 

hinder  efforts  at  a  correct  measurement.  To  account  for  these  administrative  categories,  a 

preprocessing step is done to delete them from the system.

A list was created with common text strings contained in the title of the category. This list 

was used to query the database and delete any categories that contained those strings. Some 

examples of the administrative category text strings were “-related_”, “Wikipedia_”, “templates” 

and “Automatically_assessed_”. In case they were necessary later, the category information that 
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was deleted was saved to a new table in the database that was not used during operation of  

CatSim.

4.2 CatSim

After setting up and preprocessing the database we decided to implement CatSim in the 

Python programming language. The decision to implement in Python in part was driven by two 

factors that eventually made things very easy. These factors are the Object Relational Mapper 

(ORM) SQLAlchemy[11] and a language feature of Python, list comprehensions[10].

4.2.1 SQLAlchemy

In any application that uses a database as a back end, how you access that database 

can make or break the performance and reliability of the application. A clean solution to database 

access are ORM solutions. ORM libraries or modules map the relational model in the database to  

the object model in code. They abstract away the database access so that no SQL is necessary 

to write, and make it easy to pull the data into objects during runtime. This allows the user to 

focus not on database access but to strongly focus on the application logic.

SQLAlchemy is one such ORM for the Python programming language. Besides having all 

of the features of a standard ORM, it includes one feature that is key for CatSim’s performance 

when loading all of the levels of categories. Typically when loading a list of categories and their 

supercategories,  an application would load all  of  the first  level  categories,  and then for each 

category in the first level, would load all of the second level categories. This would continue until 

the  maximum  depth  was  reached.  In  practice,  this  results  in  a  database  query  and  extra  

processing time for each category. This common problem causes an enormous degradation in 

performance.

The  SQLAlchemy feature  we  used  to  get  around  this  query  problem and  solve  the 

performance issue allows you to override the set of loaded instances of  the supercategories. 

When combined with  a dictionary structure to  map which super category belonged to  which 

category, it reduces the number of queries against the database to the maximum depth allowed 

between the article and categories, greatly improving performance.
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Accepting an article to load, the article load method’s key point is that it works on a depth 

basis, acting on all of the categories for the article that are at that depth. It will recursively travel 

up, loading the next level’s data, mapping the returned data to the category in the current level,  

and setting each level as processed so that it does not load again. Each category will be loaded 

only once, as the existence of loaded instances of supercategories is checked before issuing the 

call to the database.

Note that this algorithm can be implemented without the use of an ORM, but the ORM 

makes this much easier overall.

4.2.2 List Comprehensions

The Python programming language has a lot of excellent features, but by far the most 

useful  for  working  with  vectors  and  sets  as  we  do  in  CatSim  are  list  comprehensions.  List 

comprehensions  work  by  creating  a  list  or  set  from another  list  or  set  based  on  evaluation 

statements. An example from CatSim would be calculating the Euclidean distance of a category 

vector for the cosine similarity vector comparer (Figure 4.1).

distance = sqrt(sum([v*v for v in categoryvector]))

Figure 4.1 Euclidean Distance Demonstrating List Comprehensions

The bold area in the figure is the list comprehension. The list  comprehension iterates 

over every value in the category vector, and squares the value. The list  comprehension then 

constructs a new list with all of those squared values and returns it. The built in sum function and 

the math sqrt function are then applied to quickly and easily get the Euclidean distance.
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CHAPTER 5

RESULTS

5.1 Relatedness and Similarity Evaluation Metrics

Existing  relatedness  measures  that  use  Wikipedia  have  consistently  used  the  same 

metrics to evaluate how accurate the measure is. This metric is performing Pearson’s correlation 

coefficient  over  the rank values between the WordSim353 test  data  set  and the relatedness 

measures obtained by the method being evaluated. This gives a value between 0 and 1 that  

shows how correlated the WordSim353 rankings are to the relatedness method’s rankings. Table 

2.1 described in Chapter 2 above shows the existing Wikipedia based methods. A value of 0 

means that  it  is  as uncorrelated as possible,  while a  value of  1 means that  the accuracy is 

perfect,  the  relatedness  method  being  tested  has  exactly  the  same rankings  as  the  human 

judgments in WordSim353.

5.2 Relatedness and Similarity Surveys

While  WordSim353  deals  with  relatedness  data,  we  could  not  find  an  appropriate 

equivalent measure for semantic similarity that highlighted the difference between relatedness 

and similarity.  As a result,  we conducted our own similarity survey to create such a data set 

(SimSurvey).

5.2.1 SimSurvey

SimSurvey consists  of  81 named entity  pairs  that  have  clear  mappings  to  Wikipedia 

articles  for  easy  processing  with  the  CatSim  application.  The  survey  gathered  12  human 

respondents, with each having all 81 pairs evaluated.

5.2.1.1 Named Entity Pair Selection

To determine which named entity pairs would be included, a broad spectrum of different 

classifications were considered.  Since named entities have a type associated with them, and 
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named entity pairs that consist of the same type should be similar, we selected named entity 

types to  focus on.  The types included were:  person,  facility,  organization,  NORP (nationality, 

other, religion, and political), geo-political entity, location, plant, animal and game. Within each 

type, we selected named entities that would have high name recognition for a person located in 

the United States.

The pairs were then selected within and across the types to fall into 3 groups and one 

sub group. We expected 30 of our pairs to have high similarity, 25 to have a middling similarity  

and 26 to have low similarity. Of the 26 low similarity named entity pairs, 6 of those selected were 

of high relatedness, such as the named entity pair “Michael Jordan” / “basketball.”

Respondents were then asked to assign a similarity score to each of the 81 named entity 

pairs, on a score from 0 to 10, with 0 being no similarity and 10 being the same named entity. All  

respondent scores were averaged at the end to get an overall score for each named entity pair.

5.2.1.2 Observations on Respondent Data

The respondents to the survey classified the data as expected, especially the entity pairs 

that were of low similarity and high relatedness. There was some blending, as some of the high 

similarity items tended towards the middle of the score range, such as “Judaism” / “Catholic”. This 

entity pair contains two named entities that are both religions and have a lot of similar properties,  

though the respondents only scored the pair at a 6.3333, where we felt it should have been much 

higher.

5.3 Experimental Results

Figure 5.1 through Figure 5.6 detail  out the experimental results that were run on the 

CatSim application. We varied the vector comparison methods, weighting function, depth, and 

test  data set  to correlate against  to determine the most effective combination of  parameters. 

Regardless of whether the test data set was the WordSim353 for relatedness or SimSurvey for 

similarity, we noticed some overall trends in the data.
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5.3.1 Effects of Different Vector Comparison Methods

Varying the vector comparison methods had moderate effect on the overall data. Within 

each test data set’s results, the vector comparison methods all seemed to be grouped within 0.05 

of each other when the other parameters remained the same.

Both  the  Dice  based  comparison  and  Jaccard  based  comparison  had  similar 

measurements, so the Dice based comparison that emphasized the intersecting categories more 

did not actually have much effect on the overall measurement scores.

5.3.2 Effects of Different Weighting Functions

Like varying the vector comparison methods, we varied the weighting functions used. We 

wanted  to  see  what  the  effect  of  different  function  classes  would  have  on  the  correlation 

coefficient between the results and the test data sets. The intuition says that if you use a function 

that weights categories that are farther from the article less, you will achieve a better similarity 

measurement score.

The  intuition  proved  sound  to  a  point.  We  measured  the  effects  of  exponential,  

polynomial, linear and constant functions, from both growing and shrinking perspectives based on 

level. Based on the data obtained, yes, weighting the categories less based on larger depth did 

increase the score, especially for relatedness coefficients. The similarity correlation coefficients 

are almost constant regardless of the weighting function used.

One feature found was that the cosine similarity method for relatedness actually had a 

much steeper slope upwards compared to the Dice and Jaccard methods. This increased slope 

was not present for the similarity correlation coefficients.

5.3.3 Effects of Different Depths

Surprisingly  enough,  differing  the  maximum  allowable  depth  gave  by  far  the  largest 

variance between the correlation coefficients. When the maximum depth was 1,2 or 3, there were  

actually not enough intersecting categories in the category hierarchy vectors, and thus a large 

percentage  of  article  pairs  ended  up  with  scores  of  0.  This  threw off  the  calculation  of  the  

correlation coefficients, as it averages the ranks of tied scores. Similarly, going above a depth of 6  
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with  the  current  algorithm  gave  too  much  noise  and  progressively  lowered  the  correlation 

coefficient for both WordSim353 and SimSurvey.

A depth of 4 gave the best correlation coefficients, with the coefficient decreasing in steps 

of between 0.02 and 0.07 depending on the weighting function and vector comparison method for  

both depths of 5 and 6. WikiRelate! also found that a maximum path length of 4 gave the best 

results.

5.4 Relatedness Results

Figure  5.1,  Figure  5.3  and  Figure  5.5  show  the  relatedness  results  against  the 

WordSim353 test data set for the Dice, Jaccard and cosine similarity methods respectively. The 

cosine  similarity  method  had  the  highest  correlation  coefficient  at  0.5104.  This  result  places 

CatSim firmly above WikiRelate!,  but does significantly worse than ESA and even WLM. The 

overall results, including the existing methods are detailed in Table 5.1 below.

Table 5.1 Relatedness Correlation Results to WordSim353

Relatedness Measure Correlation Coefficient
WikiRelate! 0.48

Explicit Semantic Analysis 0.75
Wikipedia Link-based Measure 0.68

CatSim Dice 0.4939
CatSim Jaccard 0.4922

CatSim Cosine Similarity 0.5104

5.5 Similarity Results

Against the SimSurvey test data, CatSim performed much stronger, as expected. The 

best result was actually the Jaccard method, detailed in Figure 5.4. Figure 5.2 shows the Dice 

comparison, and Figure 5.6 shows the cosine similarity method results. All three methods are 

very close together in results, so much so that the category vector comparison method may not 

matter as much for similarity as it does for relatedness.

To get a comparison with an existing relatedness method, the WLM measurement was 

calculated for all of SimSurvey’s named entity pairs using WLM’s open web site [14]. The website 

accepts two concepts as input and automatically disambiguates those concepts to the Wikipedia 
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articles that are most likely. For our purposes, since we had the exact titles of the articles to 

compare, the website gave us in all cases the exact articles back, so we were assured of using 

the same Wikipedia articles for the comparison. Once calculated, WLM is shown to perform 0.09 

worse than any of the CatSim methods. Table 5.2 shows the similarity results.

Table 5.2 Similarity Correlation Results to SimSurvey

Similarity Measure Correlation Coefficient
Wikipedia Link-based Measure 0.5921

CatSim Dice 0.6853
CatSim Jaccard 0.6864

CatSim Cosine Similarity 0.6803

5.6 Overall Impression

Overall,  CatSim  performed  well  on  the  stated  task  of  measuring  similarity  when 

compared  against  human  judgments  for  similarity  as  given  in  the  SimSurvey  results.  The 

comparison methods did not yield as strong a difference as hoped, but the promise of the method 

is there. Perhaps the most telling point is the difference in the correlation coefficients based on  

the  maximum  depth.  It  shows  that  arguably  the  most  important  thing  for  CatSim  is  the 

construction of the category vector.
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Figure 5.1 Dice’s Coefficient: WordSim353

Figure 5.2 Dice’s Coefficient: SimSurvey
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Figure 5.3 Jaccard Coefficient: WordSim353

Figure 5.4 Jaccard Coefficient: SimSurvey
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Figure 5.5 Cosine Similarity: WordSim353

Figure 5.6 Cosine Similarity: SimSurvey
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CHAPTER 6

FUTURE WORK

The work in this thesis creates a framework for extensive future work. The promising 

results yielded by combining different weighting functions, depth levels and vector comparison 

methods can be extended to include different weighting functions or better vector comparison 

methods.  The algorithm to perform the category hierarchy collapse can be improved as well. 

Finally, further improvements in the optimization of the algorithms would allow for improvements 

in  efficiency  and  processing  speed,  which  could  enable  the  technology  to  be  used  in  more 

responsive environments such as web services or embedded within larger NLP applications.

6.1 Improving the Weighting Function

One direction of future work would be to improve which weighting function to use when 

creating the category vector for an article. As described in Chapter 3, CatSim currently uses a 

weighting function that is based on the depth that a category in the vector is found on. CatSim 

could be extended to accept different types of weighting functions that may yield stronger results.

6.1.1 TF-IDF Weighting Function

One  option  that  was  considered  and  discarded  due  to  the  additional  processing 

requirements it would impose on the Wikipedia data was to use a TF-IDF based weight of the 

categories.  This type of weighting would more strongly tie the overall  use of the category in 

Wikipedia to the weighted score for it. Combining a TF-IDF weight with a depth based function 

weight may be even better, as it would use overall use of the category with the specific distance 

from the article the category was.

6.2 Vector Comparison Methods Revisited

In this thesis, CatSim only uses three different vector comparison methods to compare 

the articles’ category vectors. While Dice, Jaccard, and Cosine Similarity are all common vector 
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comparison methods and ended up with similar correlation coefficients, there exist many others 

that  could  give  a  better  correlation  coefficient  to  the test  data  sets.  Some other  well  known 

comparison  methods  that  may  be  worth  examining  include  the  overlap  coefficient  or  the 

Levenshtein  distance.  Both  of  these  methods  can  act  on  weighted  vectors  to  measure  the 

similarity or difference between them.

6.3 Category Collapse Algorithmic Improvements

Perhaps the biggest improvements to CatSim’s similarity measures could be found in the 

way the categories are collapsed. Modifying the algorithm to include or remove categories based 

on some heuristic may be found to work well.  The challenge in dynamically deciding what to 

include  or  remove  from  the  category  vector  lies  in  what  heuristics  to  use.  We  considered 

removing categories based on the usage of the category within Wikipedia, but the preprocessing 

to enable the removal was outside the scope of this thesis.

Another  improvement  to  the  category  collapse  algorithm  could  include  taking  the 

subcategories into account. Since CatSim only works right now on supercategories, including the 

subcategories  into  the  algorithm  can  increase  the  number  of  possible  common  categories 

between two articles, and yet not increase the maximum path length between a category and the 

article.

6.4 Efficiency Optimizations

Continuing with  the creation of  the category vectors,  while  pulling the data  from the 

database described in Chapter 4 is reasonably quick, the implementation of the category vector 

creation has room for improvement. Switching from a recursive to an iterative algorithm will yield  

performance improvements immediately.  In addition, implementing a batch processing method to 

process more than one category and supercategories at a time would yield vast improvements in  

processing time.

6.5 Extension From Named Entities to Concepts

As described in Chapter 3, CatSim currently works on named entities. A further logical 

extension of the method would be extend it to using concepts and mapping those concepts to the  
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Wikipedia articles. Any type of automatic mapping would provide a better method as at that point 

it could work on text strings and concepts, rather than having to manually map those text strings  

and concepts.  There are some challenges involved with appropriately mapping that made such 

an automatic mapping out of scope for this thesis, but some ideas for extension are below.

6.5.1 Wikipedia Disambiguation Pages

We attempted to do an automatic mapping between named entities and the Wikipedia 

articles by making use of Wikipedia’s disambiguation pages. A disambiguation page is created 

whenever a particular text string may refer to more than one article. An example of this would be  

for the text string “tiger.” “Tiger” may refer to many different things, including a type of missile, a  

large feline or any number of military units.

Using these disambiguation  pages to  decide  which  article  best  fits  the named entity 

under consideration as well as the context of the comparison may be possible. We used a naive 

mapping  which  indicated  that  the  correct  article  was  the  one  with  the  highest  similarity 

measurement to the second named entity.  This did not  work well  in  practice,  as the context  

selected  sometimes  was  incorrect.  Despite  the  failure  of  our  mapping  method,  using  the 

disambiguation pages could provide a robust mapping solution.

6.5.2 Wikipedia Link References

Another  possibility  for  performing  automatic  mapping while  using  Wikipedia’s  internal 

structure are the links that point to articles. These links can be used by looking at where they are  

linking from to determine what the best article to use for the concept would be. An example of this 

would be to take an article like “Tiger”, and then examine all of the articles that link to “Tiger.” The 

context determined by those articles may be able to be used to determine the mapping of the 

comparison concept with respect to the original concept.

6.6 Real World Test Applications

Much of the existing literature runs similarity and relatedness measures against a real 

world application, like NER or word sense disambiguation to do a “field test” of sorts. As a future 

work item, a test of CatSim in an actual application based environment to complete a real world 
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task would cement it’s usefulness as a semantic similarity method. The most common test for  

similarity is word sense disambiguation, and as such it would be an appropriate test for CatSim to 

complete.
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