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ABSTRACT 

 
TYPIFYING WIKIPEDIA ARTICLES 

 

Quazi Mainul Hasan, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Chengkai Li 

 In Wikipedia, each article represents an entity. Entity can have different types like 

person, country, school, science etc. Although Wikipedia encapsulates category information for 

each page, sometimes it is not sufficient to deduce the type of a page just from its categories. 

But, incorporating the clear type information in a Wikipedia page is very important for the users, 

as it will help them to explore the pages in more organized way. Hence, in my thesis, we 

explore different standard classification techniques, mainly Naïve Bayes and Support Vector 

Machines and experiment how these techniques can be made more effective for typifying 

Wikipedia articles by using different feature selection methods. We proposed a method where 

Wikipedia categories are used as features. Moreover, we combine both words and Wikipedia 

categories as features in the feature vector, which improves the classification accuracy and out 

performs the other standard methods as well. To compare our methods we calculate the 

accuracy of different methods and used well known data mining tool “WEKA”. 
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CHAPTER 1 

INTRODUCTION 

 Wikipedia is an instance of collective intelligence, which is based on an open editable 

model and written collaboratively by large number of Internet users. Wikipedia is now being 

considered as one of the fastest growing collections of articles. The current collection of 

Wikipedia has around 3,478,144 articles and 22,223,054 pages in total in addition to 13,433,763 

registered users [1]. Hence, as the size of Wikipedia knowledge base is growing rapidly; 

organization of this vast number of articles has become one of the key issues to consider. 

Anyone who have surfed the Wikipedia knowledge base has happily experienced the feeling of 

being lost switching from one interesting article to another and discovered information that is 

totally unknown to them before. However, exploring the Wikipedia articles based on their types 

would be much easier. It will allow a user to focus on a particular type as well as the pages of 

that type during exploration. 

In Wikipedia, each article represents an entity. Entities can have different types like 

person, country, school, science etc. Incorporating clear type information (Typifying) can play an 

important role in exploring Wikipedia articles. Typifying Wikipedia articles will arrange the 

articles in a more organized manner. Hence in this thesis we tried to use text classification to 

give Wikipedia articles specific type information based on Wikipedia article text and its category 

information. 

1.1 Motivation 

 Although Wikipedia encapsulates category information for each page, sometimes it is 

not enough to deduce the type of a page just from its categories. Some Wikipedia articles have 

a very small list of categories and some have a very large set of categories. For some Wikipedia 

articles the categories are irrelevant and are not sufficient to provide clean type for those 
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articles. Moreover, for lengthy articles in Wikipedia there can be hundreds of categories which 

are not particularly relevant and this will cause category clutter, also known as over-

categorization [2]. However, the type of a Wikipedia article is also dependent on the text of an 

article. So typing Wikipedia articles based on its text would be more reasonable. On the other 

hand, adding types manually to each Wikipedia article is very tedious, as the size of the corpus 

is extremely large. Therefore, an automatic typifying system is necessary because it will save a 

lot of time and manual labor.  

 

1.2 Challenges 

 Classifying a Wikipedia article based on this text information and categories imposes 

several challenges. The first problem is to choose appropriate features from the Wikipedia 

articles in order to achieve satisfactory classification accuracy. Some approaches consider 

Wikipedia category information per page as features. But, the whole Wikipedia category 

hierarchy is not organized and is barely useful [3]. For example, “Elvis Presley” is in the 

category “Grammy Awards” which is a super category of “Grammy Award winners”, but “Elvis 

Presley” is a Grammy Award winner not a Grammy Award. Hence it would be more reasonable 

if “Elvis Presley” has a category “Grammy Award winners” instead of “Grammy Awards” as 

category. Another approach is to use individual text or word of an article as features for deriving 

the type information. However, it may be possible to choose a subset of words from the whole 

collection of words extracted from Wikipedia articles, which are more relevant as the features. 

But it is still difficult to automatically identify the important or related words per document. 

Therefore, in our approach, we have applied classification based on the text content of a 

Wikipedia article and considered subset of the entire word or entity set as our feature vector. 

We have also used Wikipedia categories up to Level 2 as our features. In both the case, we 

have incorporated the frequency of occurrences for each word, entity or category as the weight 

of that feature.  
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 Several methods have been discussed in literature for document or text classification. 

Among those, the most famous methods are naïve Bayes classifier, decision-trees, nearest 

neighbor classifier, neural networks and Support Vector Machine (SVM). Hence, in this thesis, 

we have applied both naïve Bayes and SVM classification methods in order to typify the 

Wikipedia articles. In our approach, we have used the available type information from DBpedia, 

which is our training set. Since the accuracy of DBpedia ontology is 95% [4] we used the 

DBpedia dataset to train our classifier. But, as DBpedia database does not contain Wikipedia 

page contents, we have extracted the required Wikipedia articles from Wikipedia. Another 

challenging task is to build a new method, which improves the classification accuracy and 

outperforms the classification accuracy of other methods that we used in our thesis for typifying 

Wikipedia articles. We combine both words and Wikipedia categories as features in the feature 

vector, which improves the classification accuracy and out performs the other methods as well. 

 

1.3 Contribution of Thesis 

 In this thesis, we have used naïve Bayes and Support Vector Machine classification 

algorithm to classify Wikipedia articles. To construct the training data for the classifier we used 

different features: 

• Words 

• Entities 

• Wikipedia categories 

• Entity types 

Moreover, we have also used different variations of these features. In our thesis, we work with 

100 class labels, which is a very complex classification problem. We have got an accuracy of 

84.4% where we have considered the local frequent words from each article including their 

frequencies. We have also got 83.6% of accuracy by using Wikipedia categories as features up 

to level-2. We have improved the classification accuracy by combining 2 different features, one 
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is Wikipedia text and the other one is Wikipedia categories, which perform better than the 

individual base classifiers. By using SVM, we have got an accuracy of 91%. 

 

1.4 Organization of Thesis 

The thesis is organized as follows. Chapter 2 gives a detailed background on 

text/document classification, different classification algorithms, DBpedia ontology and related 

work. Chapter 3 explains several standard techniques and our proposed methods for classifying 

Wikipedia articles in purpose of giving it a clear type information. Chapter 4 describes technical 

details of our implementation and preprocessing of our dataset from collected from different 

sources. It also describes parameter tuning for polynomial kernel. Chapter 5 explains our 

simulation results and compares results of using different features and algorithms. Based on the 

results in Chapter 5 conclusion is drawn and future scopes are discussed in Chapter 6. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 In this chapter, we provide a general overview of text classification, naïve Bayes 

classifier, and Support Vector Machine with different kernel methods and DBpedia ontology. 

  

2.1 Document Classification 

 In document classification, we are given a description d Є X of a document, where X is 

the document space; and a fixed set of classes C = {c1, c2, …, cn}. Classes can be called labels or 

categories. We are also given a set of training data, D of labeled documents <d, c>, where 

<d,c> Є ( X x C ).  

We wish to learn a classifier α by using a learning algorithm that maps documents to classes 

[11]:  

α: X → C 

Once the α is learned this can be applied to the test set to predict the most appropriate class for 

each document in the test set. 

 

2.2 Naïve Bayes Classifier   

Naïve Bayes classifier is a probabilistic classifier. The probability of a document d being in class 

c is computed as follows [12]: 

 

where, P(tk I c) = conditional probability of term tk occurring in a document of class c. 

           P(c) = prior probability of a document occurring in class c. 
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           nd = No. of tokens in the document d 

           < t1,t2, … tk > are the tokens in document d 

The goal is to find the best class for the document. The best class in Naïve Bayes classification 

is the most likely or maximum a posterior (MAP) class : 

 

P  is written as  since this value is estimated from the training data. 

2.3 Support Vector Machine 

 “Support Vector Machines are a set of related supervised learning methods that 

analyze data and recognize patterns, used for classification and regression analysis” [12] [13].  

SVM is a non-probabilistic classification algorithm. For a given set of input data it tries to predict 

the class of each input data from two possible classes. An SVM algorithm first trains its 

classification model by using a set of training examples and then predicts the class of a new 

example. More intuitively, an SVM presents the examples as points in n-dimensional space and 

mapped in such a way that examples of different class labels can be separated by a maximum 

clear gap. Similarly new examples are mapped to the same space and then the classification 

model predicts on which side of the gap or margin it belongs to.  

In general, the larger the margin the lower is the generalization error. In figure 2.1, a 

simple example of linearly separable data points are shown. The distance between the thin lines 

is called margin. Also the points on the 2 hyper planes that define the margin are the support 

vectors. SVM tries to find a 1-dimensional hyper plane that separates the input examples base 

on their class labels. However, there can be infinite number of lines. SVM finds a line that is 

oriented so that the margin between the support vectors is maximized.  
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Figure 2.1: Hyper plane in SVM with different margin [25] 

Also, there are cases where the data points are not linearly separable. In that case we will need 

a nonlinear line that separates the data points. Instead of finding a nonlinear line that separates 

out the data, SVM maps the data points to a high dimensional space by using Kernel functions 

where a hyper plane can be used to separate the data.  A simple example is shown in figure 

2.2. 

 

Figure 2.2: Mapping of nonlinearly separable data points using Kernel function [25] 

Several Kernel functions are proposed in the field of SVM. Among them the most important 

kernels are: 

• Polynomial Kernel  
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• Radial  basis function (RBF) 

 

• Sigmod 

 

where, , and d are kernel parameters.  

The effectiveness of SVM depends on the selection of kernel, the kernel's parameters, and soft 

margin parameter r. 

 

2.4 DBpedia Ontology  

 “The DBpedia Ontology is a shallow, cross-domain ontology, which has been manually 

created based on the most commonly used infoboxes within Wikipedia. The ontology currently 

covers over 259 classes which form a subsumption hierarchy and are described by 1,200 

different properties” [15]. The DBpedia ontology currently contains about 1,478,000 instances. 

Table 2.1 below lists the number of instances for several classes within the ontology: 

Table 2.1: No. of Instances per Class in DBpedia Ontology 
 

Class        Instances 
Place    413,000 

Person    312,000 
Work    320,000 

Species    146,000 
Organization    140,000 

Building    33,000 
 
 

A part of the DBpedia Ontology is shown in figure 2.3 for class “Animal”, the classes under the 

“Animal” are the leaves. The root of the DBpedia ontology is “Thing”. 
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        Figure 2.3: Partial DBpedia Ontology for type “Animal” 

 

2.5 Related Work 

The increasing numbers of text documents over the World Wide Web are giving rise to 

several interesting applications to search for information over these pages. In order to make the 

process of document or information search to be more automatic, document classification 

techniques based on the text contents are being applied extensively by many applications. As a 

result, a lot of document classification approaches have already been studied and experimented 

over the whole decades. In paper [17], the authors have studied four different classification 

approaches such as naïve Bayes, nearest neighbor, decision trees, subspace etc and applied 

them to categorize the articles from Yahoo news into seven classes.  They have also tried some 

combinatorial approaches; But finally found, those cannot always supersede the accuracy of the 

best individual classifier. Besides this, a large number of linear classification methods such as 

linear least squares fit (LLSF), logistic regression and support vector machine (SVM) are also 

described in literature [18] in order to perform text-based categorization.  
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Existing works have also expanded the traditional Bag of Words (BOW) model by 

including semantic relations from an automatically constructed thesaurus of concepts based on 

Wikipedia knowledge [19]. Their result for varying data set confirms significant improvements 

over the baseline algorithms. However, as the text categorization involves a large scale of 

computational effort and time, centroid based classification approaches are also applied in order 

to improve the efficiency. Guan et al. [20] describes a faster centroid based classifier named 

Class-Feature-Centroid (CFC), where a centroid is determined after considering both inter-class 

and inner class terms distribution. CFC has been applied to Reuters as well as to some 

newsgroup email collections and the result shows that it outperforms the state-of-the-art SVM 

classifier in case of sparse dataset. Existing works also prove that class dependant feature 

scaling with recursive feature elimination approach improves the performance of standard naïve 

Bayes document classification significantly [21]. Kaptein and Kamps (2008) use link information 

to improve the classification accuracy [23]. They showed that utilizing link structure between the 

Wikipedia articles in classification can cause marginal improvement in classification accuracy. 

Ringland et al (2006) incorporated structural features of Wikipedia and developed a German 

corpus which classifies Wikipedia articles into Named Entity categories [24]. Saleh et al (2010) 

have proposed a method to classify Wikipedia articles into named entities using SVM’s with 

threshold adjustment [26]. They have utilized multilingual features that use unstructured and 

semi-structured portions of Wikipedia articles for classification. Their experimental results also 

showed that using multilingual features helps to improve classification accuracy. 
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CHAPTER 3 
 

METHODS FOR TYPIFYING WIKIPEDIA ARTICLES 

 In this chapter we discuss the different methods we used for typifying Wikipedia articles. 

First we discuss how the words in Wikipedia articles are used as features and their variations. 

Then we discuss using Wikipedia entities and entity types as features respectively. We also 

discuss how the Wikipedia categories can be used as features to improve the accuracy. Finally 

we combine 2 features, word and Wikipedia categories, to improve the classification accuracy. 

 

3.1 Using Words as Features 

 To train our classifier we first need to prepare our training data. As our first approach to 

prepare our training data, we consider the words inside each Wikipedia article. So here each 

word is a feature. In pattern recognition or machine learning, a feature vector is an n-

dimensional vector of numerical features that represent some objects. If we consider a 

dictionary of words and represent word presence and absence in a Wikipedia article by 1 and 0 

respectively, then we can represent a Wikipedia article by a feature vector. Before representing 

a Wikipedia article as a feature vector we stemmed the article using Porter Stemmer algorithm 

[7] and then removed the stop words (e.g., a, an, the, this, that, them, he, him, etc.) by using the 

MySQL Full-Text Stop words list [16]. Stemming algorithm finds the stem, base or root from 

derived words. In addition, it helps us to reduce the no of unique words. Stop words help us to 

remove those words that are irrelevant. Once these are performed on the Wikipedia article, we 

parse each word from the Wikipedia article and represent the Wikipedia article by the words in 

each article. In Figure 3.1, an example is shown for a partial Wikipedia Article “Mohammad Ali”. 

From Figure 3.1 it can be easily seen how the total no. of words has been reduced. 
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Figure 3.1: The effect of applying Stemming and removing stop words. 

 

3.1.1 k-Local Frequent Words (k-LFW) 

 In this method we construct the feature vector, by considering the most frequent words 

from each article. The full process is as follows: 

1. After preprocessing is performed on each Wikipedia article, we count the frequency 

of each word in each Wikipedia article.  

2. Then we sort the words by their frequencies in descending order. 

3. We choose k (k=5, 10, 25, 50, 75, depending on the experiment) top words from 

each Wikipedia article. 

For example, consider 2 articles a1, a2 and they have the words sorted by frequency 

as follows (In this chapter we will use these 2 examples several times in different 

methods): 

a1 {(w1,8), (w2,6), (w3,3), (w4,2), (w5,2)} 

a2 {(w1,7), (w5,6), (w6,4), (w7,2)} 

 

Here, (w1, 8) means word w1 appears 8 times in article a1  

If the number of local frequent words to consider from each article is 3, then from a1 

we will choose L1 = {w1, w2, w3} and from a2 we will choose L2 = {w1, w5, w6}. So the 

feature vector, L will have the following list of features: 
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L = {w1, w2, w3, w5, w6} 

4. Then we by using this feature vector we can represent each of the 2 articles (a1, 

a2). Here we use 2 different approach: 

5.a) LFW Without Frequency (LFW W/O Freq): In this approach, we consider the 

presence and absence of words of an article in a feature vector. We represent the 

absence and presence as 0 and 1 respectively. So the 2 articles a1 and a2 will be 

represented as follows: 

a1 = {1,1,1,1,0} 

a2 = {1,0,0,1,1} 

5.b) LFW With Frequency (LFW W/Freq): In this approach, we consider the 

frequency of words of an article in a feature vector. Hence in this approach the 2 

articles a1 and a2 will be represented as follows: 

a1 = {8,6,3,2,0} 

a2 = {7,0,0,6,4} 

5. After representing each of the Wikipedia articles as a feature vector, we use them 

to train our classifier for both Naïve Bayes and SVM and then we classify test data 

using the trained classifier for LFW W/O Freq and LFW W/Freq separately. 

 

3.1.2 All Unique Words (AUW) 

 In this method we consider all unique words from each article to build the feature 

vector. For the 2 articles (a1, a2) from the last section the feature vector can be represented as 

below: 

L = {w1, w2, w3, w4, w5, w6, w7} 

Here we also have considered AUW W/O Freq and AUW W/Freq. For AUW W/O Freq, the 

feature vectors for both articles are as follows: 

a1 = {1,1,1,1,1,0,0} 
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a2 = {1,0,0,0,1,1,1} 

 

For AUW W/Freq: 

a1 = {8,6,3,2,2,0,0} 

a2 = {7,0,0,0,6,4,2} 

 

3.1.3 n-Global Frequent Words (n-GFW) 

In this method we construct the feature vector as follows: 

1. First we calculate the frequency of each word over all the articles. So by 

considering a1 and a2 the frequency of all the words will be as follows: 

w1 w2 w3 w4 w5 w6 w7 

15 6 3 2 8 4 2 

 

2. Then we sort the words based on their frequency and took the top n words to 

construct the feature vector.  So after sorting the words, the list will be as follows: 

w1 w5 w2 w6 w3 w4 w7 

15 8 6 4 3 2 2 

 

If n=5, then the top 5 words from the above list will form the feature vector. This 

feature vector will be used to represent each Wikipedia article. Here we also 

consider both frequency and without frequency approach. For article (a1, a2) the 

feature vector for both GFW W/O Freq and GFW W/Freq are given below: 

GFW W/O Freq: 

 a1 = {1,1,1,0,1} 

a2 = {1,1,0,1,0} 

GFW W/Freq: 
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a1 = {8,2,6,0,3} 

a2 = {7,6,0,4,0} 

 

3.2 Using Wikipedia Entities as Features 

 In this method, instead of using words as features we use Wikipedia entities as 

features. In Wikipedia, each article is linked to several other Wikipedia entities. In Figure 3.2 

Wikipedia entities are shown partially for a Wikipedia article. The entities are those words that 

are hyperlinked to other Wikipedia articles. 

 

Figure 3.2: Wikipedia entities in an article. 

 

 

3.2.1 k-Local Frequent Entities (k-LFE)  

 In this method we construct the feature vector, by considering the most local frequent 

entities from each article. The full process is as follows: 

1. For each Wikipedia article, we count the frequency of each entity.  

2. Then we sort the entities by their frequencies in descending order. 

3. We choose k (k=5, 10, 25, 50, 75, depending on the experiment) top entities from 

each Wikipedia article. 

For example, consider 2 articles a1, a2 and they have the entities sorted by their 

frequency as follows (In this section we will use these 2 examples several times): 

a1 {(e1,4), (e2,3), (e3,2), (e4,1), (e5,1)} 

a2 {(e1,3), (e5,2), (e6,1), (e7,1)} 
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Here, (e1, 4) means the entity e1 appears 4 times in article a1  

If the number of local frequent entities to consider from each article is 3, then from 

a1 we will choose L1 = {e1, e2, e3} and from a2 we will choose L2 = {e1, e5, e6}. So the 

feature vector, L will have the following list of features: 

L = {e1, e2, e3, e5, e6} 

4. Then we by using this feature vector we can represent each of the 2 articles (a1, 

a2). Here we use 2 different approach similar to LFW: 

5.a) LFE W/O Freq: By following the same procedure as in LFW W/O Freq we can 

represent the 2 articles a1 and a2 as follows: 

a1 = {1,1,1,1,0} 

a2 = {1,0,0,1,1} 

5.b) LFE W/Freq: Similarly by following the step as in LFW W/Freq we get the 

following 2 representations: 

a1 = {4,3,2,1,0} 

a2 = {3,0,0,2,1} 

5. After representing each of the Wikipedia articles as a feature vector, we use them 

to train our classifier for both Naïve Bayes and SVM and then we classify test data 

using the trained classifier for LFE W/O Freq and LFE W/Freq separately. 

3.2.2 All Unique Entities (AUE) 

In this method we consider all unique entities from each article to build the feature 

vector. For the 2 articles (a1, a2) from the last section the feature vector can be represented as 

below: 

L = {e1, e2, e3, e4, e5, e6, e7} 

In a similar fashion as in AUW, we can achieve the following representation for AUE. 

AUE W/O Freq: 

a1 = {1,1,1,1,1,0,0} 
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a2 = {1,0,0,0,1,1,1} 

 

For AUE W/Freq: 

a1 = {4,3,2,1,1,0,0} 

a2 = {3,0,0,0,2,1,1} 

 

3.2.3 n-Global Frequent Entities (n-GFE) 

In this method we construct the feature vector as follows: 

1. First we calculate the frequency of each entity over all the articles. So by 

considering a1 and a2 the frequency of all the entities will be as follows: 

e1 e2 e3 e4 e5 e6 e7 

7 3 2 1 3 1 1 

 

2. Then we sort the entities list based on their frequency and took the top n entities to 

construct the feature vector.  So after sorting the entities will be come as follows: 

e1 e2 e5 e3 e4 e6 e7 

7 3 3 2 1 1 1 

 

If n=5, then the top 5 entities from the above list will form the feature vector. This 

feature vector will be used to represent each Wikipedia article. Similarly as in GFW 

we can represent feature vector for GFE W/O Freq and W/Freq as below: 

GFE W/O Freq: 

 a1 = {1,1,1,1,1} 

a2 = {1,0,1,0,0} 
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GFE W/Freq: 

a1 = {4,3,1,2,1} 

a2 = {3,0,2,0,0} 

 

3.3 Using Wikipedia Entity Types as Features (EType) 

 In this method, we used the type of a Wikipedia entity as feature. The type information 

is taken from the DBpedia ontology. In our first approach, from each Wikipedia article we get the 

list of entities. Then for each entity we try to get the type of that entity from the DBpedia. In 

DBpedia there are 200 types. Hence the size of the feature vector here is 200. If the type exists 

in the DBpedia then add that type in list of features for that article. So for an article a1 if the 

types for the entities we get are {t1,t2,t3,t4,t87, t100, t102} then this article can be represented as 

follows: 

 t1 t2 t3 t4 … t86 t87 … t100 t102 … t200 

a1 1 1 1 1 … 0 1 … 1 1 … 0 

 

The above table shows the feature vector where the frequency is not considered. In another 

approach, we count the frequency of entity types as well and used that frequency in the feature 

vector. Here the frequency of an entity type is the total number of times that type appears in that 

article. For example, we get the frequency count for (t1, t2, t6, t9) in an article as (3,4,6,1). Then 

the feature vector will be as below: 

 t1 t2 t3 t4 … t6 t7 … t9 t102 … t200 

a1 3 4 0 0 … 6 0 … 1 0 … 0 
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3.4 Using Wikipedia Categories as Features 

 In this method, we use Wikipedia categories as features. In Figure 3.3, a category list is 

shown for a Wikipedia article. In Wikipedia, there is a hierarchy of categories. Each Wikipedia 

article can have multiple categories.  

 

Figure 3.3: Wikipedia Category List 

3.4.1 Level-1 Categories 

 In this method, only the Level-1 categories of a Wikipedia article are used to construct 

the feature vector for representing an article. In Figure 3.4, Level-1 categories are shown for 

Wikipedia article “Muhammad Ali”. Here also we propose 2 variations, one is All Unique 

Categories (AUC L1) and the other one is Global Frequent Categories (n-GFC L1). These are 

discussed below: 

 

Figure 3.4: Partial Level -1 Categories for Wikipedia Article “Muhammad Ali” 

• All Unique Categories (AUC L1):  

1. For each article we get the Level-1 categories and construct a list of unique 

categories by combining all these categories. For example, article a1 and a2 has 

category list {c1, c2, c3, c4} and {c1, c2, c5, c6} respectively. Then the unique 

category list will be {c1, c2, c3, c4, c5, c6} which will form the feature vector. 
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2. Then we represent each article by the feature vector as follows: 

a1 = {1,1,1,1,0,0} 

a2 = {1,1,0,0,1,1} 

In this method we didn’t represent Wikipedia articles by using frequencies of 

categories. The reason behind this is Level-1 categories cannot appear multiple times 

in a Wikipedia article.   

• Global Frequent Categories (n-GFC L1): 

1. In this method, we construct a list of unique categories by combining all the Level-1 

categories and also calculate the frequency of each category over all the articles. 

2. Then we sort the categories by their frequency in descending order and took top n 

categories.  

For article a1 and a2 from the above example, the sorted category list by their 

frequency will be {c1, c2, c3, c4, c5, c6}. If we choose top 5 categories as features in 

the feature vector then the articles can be represented as follows: 

a1 = {1,1,1,1,0} 

a2 = {1,1,0,0,1} 

3.4.2 Level-2 Categories 

 In this method, we consider the super categories of an article up to Level-2. In Figure 

3.5 both Level-1 and Level-2 categories are shown. For each Wikipedia article, we get the list of 

categories for both Level-1 and Level-2. Here we proposed two approaches. 

• All unique categories with Level-2 categories (AUC L2) 

• Global frequent categories with Level-2 categories (n-GFC L2) 
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Figure 3.5: Level-2 categories in a Wikipedia article. 

AUC L2:  

 Here we construct a list of unique categories in the same way as we did in AUC L1. 

Then we use this list of unique categories as features in the feature vector and represent each 

article by this feature vector. From Figure 3.5, the article has 3 Level-1 categories {c5, c6, c7}. 

These 3 categories are added in the unique category list. c5 has to super categories {c1, c2}. 

These 2 categories are also added in the unique category list. c6 has one super category c2. But 

as it is already added in the list it will be ignored. {c3, c4} are the super categories for c7 and will 

be added in the unique category list. So the unique category list we get here is {c1, c2, c3, c4, c5, 

c6, c7}. Same way we keep updating the unique category list by considering the categories of 

other Wikipedia articles. Once we have the final unique category list, we can use that list to 

construct our feature vector and represent each article. For representing each article, we 

consider again AUC L2 W/O Freq and AUC L2 W/Freq. 

AUC L2 W/O Freq: 

 If the unique category list has {c1, c2, c3, c4, c5, c6, c7, c8, c9} then in this method an 

article with category list {c1, c2, c3, c4, c5, c6, c7} will be represented as {1,1,1,1,1,1,1,0,0} where 

1 indicates the presence of that category and 0 means absence of that category in that article. 
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AUC L2 W/Freq: 

 In this approach, instead of 1/0, we use frequency of each category in an article. We 

count the number of times a category appears for up to lavel-2 after we get the unique category 

list. From Figure 3.5 the frequency of c5, c6, and c7 is 1. But, the frequency of c2 is 2 since it 

appears as a super category for both c5 and c6. So the article with category list {c1, c2, c3, c4, c5, 

c6, c7} will be represented as {1,2,1,1,1,1,1,0,0} by using the unique category list shown in the 

example for AUC L2 W/O Freq. 

 

n-GFC L2: 

 The steps for this method are as follows: 

1. The frequency of each category (categories up to Level-2) is calculated over all the 

articles. The frequency is calculated the same way as we did for the method AUC L2 

W/Freq 

2. The category list is sorted in descending order based on their frequency. 

3. We choose the top n categories from the sorted list to construct the feature vector. 

For example, suppose there are 2 articles a1 and a2 having the following frequencies for 

their category list. 

a1 = {(c1,1) (c2,1) (c3, 2) (c4, 1)} 

a2 = {(c3,1) (c4,1) (c6, 2)} 

 

The frequency of each category will be {(c1,1) (c2,1) (c3,3) (c4,2) (c6,2)} over the 2 articles. If 

we sort them in descending order and take the top n=3 categories then the list will be {c3, c4, 

c6} which is the feature vector. Again we consider both frequency and without frequency to 

represent each article. 
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GFC L2 W/O Freq: 

a1 = {1,1,0} 

a2 = {1,1,1} 

GFC L2 W/Freq: 

a1 = {2,1,0} 

a2 = {1,1,2} 

 

 

3.5 Improving Classification Accuracy 

 To improve the classification accuracy we combine 2 different types of features from 

each article to form a new feature vector: 

1. Words in a Wikipedia article 

2. Categories in the article 

To select the feature “words” we followed the same process as we did in 25-LFW W/Freq and to 

select the feature category we follow the steps in AUC L2 W/Freq.  

 

3.5.1 Combining features 

 For combining the 2 kinds of features, we just concatenate them together to form a new 

combined feature list. This can be better explained by a simple example. Suppose by using 25-

LFW W/Freq we get the feature list as {w1,w2,w3,w4,w5,w6} and by using AUC L2 W/Freq we 

get the feature list as {c1,c2,c3,c4,c5,c6}. Then the combined feature list will be: 

{w1,w2,w3,w4,w5,w6,c1,c2,c3,c4,c5,c6}                  …   (1) 

Now, if an article a1 has words with corresponding frequencies as {(w1,6)(w3,5)(w4,1)} and the 

category list with their corresponding frequencies as {(c1,4)(c3,2),(c5,1)}. Then the article a1 will 

be represented by using the feature vector in (1) as follows: 

{6,0,5,1,0,0,4,0,2,0,1,0} 
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So we represent each article with our combined feature vector which will form our training data 

and train our classifier based these training data. 
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CHAPTER 4 

IMPLEMENTATION 

 In this section, detailed explanation of preprocessing DBpedia dataset and Wikipedia 

dataset is given. We performed the experiments using Weka [5] api for java. The technical 

details are discussed in this chapter. How the Wikipedia articles are stemmed and how the stop 

words are removed are also described briefly. Finally parameter tuning for SVM is explained. 

   

4.1 Preprocessing of DBpedia Datasets 

 In our implementation we have considered “Ontology Infobox types” dataset (*.csv) 

from the list of DBpedia core datasets [6]. The whole dump is exported to a MySQL database by 

using MS Access as an export tool. Ontology Infobox type dataset contains triples of the form: 

    << $object, rdf:type, $class >> 

Here $object contains the name of the Wikipedia article, $class contains the type of a particular 

Wikipedia article and rdf:type indicates the relationship. One example of such an instance in the 

dataset is given below: 

• $object: <http://dbpedia.org/resource/Alain_Connes> 

• rdf:type: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 

• $class: <http://dbpedia.org/ontology/Scientist> 

In DBpedia, the $object is in URL encoded format. In order to get the name of an article, apply 

URL decode first and then insert it into our database table “instance_type_mapped” inside the 

“typing_wikipedia” database. For example, after applying URL decode to ‘%21Hero’, the article 

name will become ‘!Hero’ which is the real article name in Wikipedia. Also, we extracted only 

the type name from the $class object by removing the extra characters that was introduced by 

DBpedia framework. For example, http://dbpedia.org/ontology/Scientist is extracted as Scientist, 
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which is the type name for ‘Alain_Connes’ in the above example. We extracted 200 unique 

types from DBpedia dataset by applying our extraction method. These individual types are in 

the ‘dbpedia_types’ table of ‘typing_wikipedia’ database. We extracted 847,210 articles with 

their corresponding types. These article names are mapped with Wikipedia page titles to get 

their corresponding “page_id” from the Wikipedia database, since the page id in DBpedia is 

different from page id in table “article” under the Wikipedia database “wikidata20091001”. We 

store the Wikipedia articles’ text content in “article” table where each Wikipedia article can be 

identified by their unique page id. 

We work with specific types instead of more general types. In order to find the general 

and specific types, we first calculate the number of Wikipedia articles in each DBpedia types. 

Then we sort the DBpedia types in ascending order based on their count for each type. The 

general types will have larger count and specific types will have smaller count since specifics 

types are the children of the general types.  So we manually look into the count for each type 

and choose the top 100 specific types. There are more than 100 specific types in DBpedia 

ontology. Also, this selection of specific types is verified manually by looking into the DBpedia 

ontology which can be found at [22]. We store all the specific types in ‘specifictype’ datatable of 

‘typing_wikipedia’ database. To improve the performance of our system and to query the large 

amount of dataset, we have applied BTree index on the data value in each table. For example, 

we have created ‘lookupinstancename’ index on the ‘instance_name’ attribute of the 

‘instance_type_mapped’ data table in ‘typing_wikipedia’ database.  

 

4.2 Preprocessing of Wikipedia Articles 

We have used Wikipedia xml dump which is extracted from Wikipedia on the 1st of 

October 2009. The xml dump is stored in the database for the ease of operation. In our 

experiment we have worked with 5000 training Wikipedia articles and 1000 test Wikipedia 
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articles. We have separated the training data and test data explicitly so that there is no overlap 

between the training data and test data. 

 

4.3 Stemming Algorithm 

Stemming algorithm is applied to the Wikipedia articles which helps us to reduce the 

total number of unique words. This also helps us to reduce the complexity of the data in our 

dataset. We use the Porter Stemming algorithm [7] to stem the Wikipedia articles.  

 

4.4 Parameter Tuning Non-Linear SVM with Polynomial Kernel 

 For SVM, a good accuracy can be achieved by choosing the optimal parameter values 

and the right kernels. As a baseline approach we first tried to use the linear SVM for LFW with 

5000 training data, considering frequency and without frequency. But, we got a very low 

accuracy of 26% which tells us that our dataset is nor linearly separable. So we decided to use 

the polynomial kernel. In polynomial kernel there are 2 parameters involved. One is the 

polynomial exponent (PE) and the other one is the complexity parameter (C). We started with a 

value of {C, PE} = {1, 1} and measure the accuracy. Then we increase the C parameter by 

making the PE constant with a step size of 0.1 and do the vice-versa and measure the 

accuracy. The same we decrease the C and PE value with step size of 0.1. We also measure 

the accuracy by increasing the C value and decreasing the PE value simultaneously and vice 

versa. Then we choose the parameter values for the maximum accuracy. We further tune the 

parameter by performing the same process describes above for a step size of 0.01. We have 

performed the same process for different features to choose the best parameter values for C 

and PE in SVM using polynomial kernel. 
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CHAPTER 5 

EXPERIMENTS AND EVALUATION 

 In this chapter we present the experiments we have performed for different setups. We 

use these results to evaluate the performance of our methods. We also compare our methods 

based on their accuracy. In the following sections we describe the experimental setups, results 

and comparison of those results.  

 

5.1 Setup 

 For experiments we develop our program in Java. We use java API and Weka API for 

java. We vary our training dataset from 2000~5000 Wikipedia articles and as a test set we used 

1000 test Wikipedia articles. There are 100 class labels which are the types from DBpedia 

ontology. We perform our experiments for all the methods by using both naïve Bayes and SVM 

with polynomial kernels. 

Table 5.1: Summary of Basic Setup for Classification 

 Dataset size 
Training Data 2000 3000 4000 5000 

Test Data 1000 
No. of Class labels (types) 100 

 

We run the experiments for each of the method we discussed in chapter 3. Then we compare 

the methods based on accuracy. Accuracy is defined as follows: 

 

5.2 Results and Comparison 

Figure 5.1 and Figure 5.2 show the accuracy for 25 LFW W/Freq and W/O Freq by using naïve 

Bayes classifier and SVM respectively. From the results it can be said that LFW W/Freq 
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performs better than LFW W/O Freq in both Naïve Bayes and SVM. Figure 5.3 compares the 

accuracy between Naïve Bayes and SVM for 25 LFW W/Freq. In Table 5.2 different parameter 

values for SVM are listed for different methods we used. For each method we try to get the 

parameter values in such a way that gives us the best accuracy. We tried different parameter 

values for complexity parameter and polynomial exponent. In Table 5.2 the parameter values 

listed are those values for which we get the best accuracy. 

 

 

Figure 5.1: Comparison between 25-LFW W/Freq and W/O Freq for Naïve Bayes. 
 

Table 5.2: Parameter Values for Polynomial Kernel in SVM 

Methods Complexity Parameter 
(C) 

Polynomial Exponent 
(PE) 

k-LFW, n-GFW, AUW W/O Freq 0.2 1 
k-LFW, n-GFW, AUW W/Freq 0.2 0.5 
k-LFE, n-GFE, AUE W/O Freq 3 0.1 
k-LFE, n-GFE, AUE W/Freq 1.8 0.18 
AUC L1, GFC L1 W/O Freq 0.85 0.6 
AUC L1, GFC L2 W/Freq 0.85 0.6 
Combined features 0.8 0.24 
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Figure 5.2: Comparison between 25-LFW W/Freq and W/O Freq for SVM. 
 

 

Figure 5.3: Comparison between Naïve Bayes and SVM classifier for 25-LFW W/Freq 

Next, In Figure 5.4 we compare the results for 25-LFW W/Freq, AUW W/Freq and 20000-GFW 

W/Freq using naïve Bayes classifier. We choose 25-LFW W/Freq, AUW W/Freq and 20000-

GFW W/Freq since from Table 5.3 and Table 5.4 it can be seen that we get the best accuracy 

for them. We achieve a maximum of 84.4% accuracy for 25-LFW W/Freq. The feature vector 
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size in this case is 18K. From the figure 5.4 AUW W/Freq perform worse than 25-LFW W/Freq 

and 20000-GFW W/Freq. The feature vector size for AUW W/Freq is 69K in this case. One 

reason is that it was over fitting because of the large size of the feature vector.  

Table 5.3: Accuracy of k-LFW W/Freq, where k=5, 10, 25, 50, 75 using Naïve Bayes 

No. of 
Training 

data 

5-LFW 
W/Freq 

10-LFW 
W/Freq 

25-LFW 
W/Freq 

50-LFW 
W/Freq 

75-LFW 
W/Freq 

2000 61.80% 73.60% 77.30% 80.20% 79.70% 
3000 64.50% 76.10% 81.20% 81.70% 80.40% 
4000 68% 78.00% 83.10% 83.60% 82.50% 
5000 69% 79.30% 84.40% 84.40% 83.40% 

 

Table 5.4: Accuracy of AUW W/Freq and n-GFW W/Freq, where n=20000, 30000, 40000 using 
Naïve Bayes 

 
No. of Training 

data AUW W/Freq 20000-GFW 
W/Freq 

30000-GFW 
W/Freq 

40000-GFW 
W/Freq 

2000 68.50% 72.80% 70.40% 68.50% 
3000 67.20% 75.50% 72.00% 69% 
4000 68.90% 79.10% 76.60% 73.60% 
5000 71.80% 81.60% 80% 77% 

 

 

Figure 5.4: Comparisons between 25-LFW, AUW, and 20000-GFW W/Freq for Naïve Bayes 
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In Figure 5.5 we compare 25-LFE W/Freq, AUE W/Freq and 20000-GFE W/Freq methods. 

From Table 5.5 it can be seen that we get the best accuracy for 25-LFE W/Freq for 500 train 

data. From Table 5.6 AUW W/Freq for 5000 train data has the best accuracy.  We choose 

20000-GFE W/Freq since 20000-GFE W/Freq and 30000-GFE W/Freq has almost the same 

accuracy for 5000 train data. The lower accuracy for these three methods is for the reason that 

we consider only the entities from each Wikipedia article and the number of entities for each 

Wikipedia article can be small in number. 

Table 5.5: Accuracy of k-LFE W/Freq, where k=5, 10, 25, 50, 75 using Naïve Bayes 

No. of 
Training 

data 

5-LFE 
W/Freq 

10-LFE 
W/Freq 

25-LFE 
W/Freq 

50-LFE 
W/Freq 

75-LFE 
W/Freq 

2000 49.10% 56.10% 59.2 58.60% 58.20% 
3000 51.40% 57.20% 61% 60.60% 60.40% 
4000 56.50% 62.50% 65% 64.66% 64.20% 
5000 58.30% 63.60% 68% 67% 66.20% 

 
Table 5.6: Accuracy of AUE W/Freq and n-GFE W/Freq, where n=20000, 30000 using Naïve 

Bayes 
 

No. of 
Training 

data 
AUE W/Freq 20000-GFE W/Freq 30000-GFE W/Freq 

2000 58% 57% 57.6 
3000 61% 58.00% 59.60% 
4000 64% 61.00% 62.30% 
5000 67% 65.00% 65.6% 
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Figure 5.5: Comparisons between 25-LFE, AUE, and 2000-GFE W/Freq for Naïve Bayes 

In Figure 5.6 we compare the results for AUC L1, AUC L2 W/O Freq and AUC L2 W/Freq. The 

accuracy for AUC L1 is low compared to other 2 methods which are reasonable since AUC L1 

has very small number of categories in the feature list. For AUC L1 it is not possible to use the 

frequency since categories in an article cannot appear multiple times.  

 

Figure 5.6: Comparisons between AUC L1, AUC L2 W/O Freq, and AUC L2 W/Freq for Naïve 
Bayes  



 

 

 

34

 

On the other hand, for AUC L2 W/Freq and W/O Freq the accuracy is high because there are 

more categories in the feature list which increase the chance of predicting the type of an article. 

Next, we compare the methods with combined features for both naïve Bayes and SVM. From 

Figure 5.7, we achieve 91% accuracy by using the method of combined feature for SVM. The 

parameter values for this experiment are given in Table 5.2. For naïve Bayes we also get a 

good accuracy of 88.1%. 

 

Figure 5.7: Comparison between combined features using naïve Bayes and SVM classifier  

Finally we compare all the methods for both SVM and naïve Bayes in Figure 5.8. From this 

figure we see that our new method AUC L2 W/Freq performs as good as in 25 LFW W/Freq. 

Also, the other new method where we combined the features outperformed all the other 

methods. 
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Figure 5.8: Comparison of all the methods for Naïve Bayes and SVM classifier 
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

 Typifying Wikipedia articles correctly is very important because of the large, 

continuously growing Wikipedia articles. Also, better organization of Wikipedia articles by 

grouping the articles according to their types will help people retrieve article. Moreover, people 

will be able to explore or filter documents of the same type together. In this thesis, we applied 

different features to typify Wikipedia articles. We propose a new method of typifying Wikipedia 

articles based on their categories and shows that it can achieve almost the same accuracy 

compared to the standard methods. In addition, we further improved our accuracy by combining 

the features. Our results for combined features demonstrate that it outperforms other standard 

methods and even perform better than our new method for AUC L2. Also, our results show that 

SVM outperforms Naïve Bayes classifier for the combined features if the parameter for SVM 

can be chosen carefully.  

 We developed our proposed our methods using Wikipedia category hierarchy up to 

Level-2. In future, we will be working on replacing this Wikipedia category hierarchy by YAGO 

[3] and compare its accuracy with our current method.  
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