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ABSTRACT 
 

AXIAL WAVE PROPAGATION IN TRUNCATED CONES 

 

Bhumil A. Diwanji, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Kent L. Lawrence 

While dealing with problems of impact analysis, where the force is dependent on the 

time, one can use the transient analysis to compute the response. Transient wave propagation 

has drawn interest from a long time mainly because of the way structural members behave 

when subjected to high rates of loading. Solutions to these problems find applications in the 

design of various mechanical equipments, or any situation where rigid objects are impacting on 

structural members. 

The first part of this study deals with the axial wave propagation in cones of different 

apex angles using transient analysis in ANSYS. The results from the ANSYS are compared with 

existing analytical and experimental data available from other studies.  

As the angle of the cone increases, the one dimensional modal theory fails to yield 

accurate results, due to lack of lateral inertia effects. The second part of this study is to examine 

at what angle the one dimensional theory for wave propagation ceases to be valid.  
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CHAPTER 1 

INTRODUCTION 

 In the real world, all loads as well as the structural responses are time-varying. For 

example, a weight attached to a spring is released to vibrate freely; it will continue to vibrate 

until it reaches its steady state. If one is concerned only with steady state response, a static 

analysis is required, which neglects the dynamic effect of nature. The response before statics is 

called a transient state, in which dynamic effect cannot be neglected. 

 

1.1 Literature Review 

1.1.1 Experimental Investigations 

 In 1968, an experimental investigation was undertaken by V.H. Kenner and W. 

Goldsmith to study the propagation of waves produced by impact of projectiles on truncated 

2024 aluminum cones with apex angles of 0.48, 5.38, 20, and 30 degree [5].The initial pulse 

incidence on the conical section was studied by gluing a cylindrical rod of the same diameter 

and material to the testing end of the cone. Only for the case of 20 degree cone, a piezoelectric 

crystal sandwiched between the apex end and the cylindrical frontal section of similar diameter 

was used for the same purpose. Wave propagation was initiated at the convergent end of all the 

cones as well as at the divergent end of the 0.48 and 5.38 degree cones by a striker. The axial 

impact on the cones was caused by a ½ inch diameter steel ball, fired at approximately 1300 ips 

with the help of a pneumatic gun or by just dropping it on the preceding cylindrical section of the 

cone. While in some cases the cone was struck directly to produce impact. The shape of the 

wave front and the velocity of the disturbance were also determined in the study. Surface 

strains were measured by means of foil and semiconductor resistance strain gages oriented 

along the direction of the generators of the cone. The velocity of the strikers was also derived
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from the strain-gage records. The gages were bonded to the specimens using Eastman 910 or 

Epoxy 150 adhesive and no difference in the dynamic response of the gages mounted with 

either type of glue was found for the strain levels and frequencies of interest. The results 

indicated that one dimensional theory produced accurate results for smaller apex angles of 0.48 

and 5.38 degrees where wave propagation in an elastic cone assumes no lateral inertial effects, 

shear and warping, where as it does not satisfies for large end cones of 20 and 30 degrees. 

 A similar study concerned with the impact on hollow cones was conducted by V.H. 

Kenner and W. Goldsmith along with J.L. Sackman, for investigating the effect of lateral inertia, 

on pulse durations of the elastic transient produced in a 20 degree apex angle hollow cone [10]. 

The general test arrangement and observation method were similar to the previous experiment 

with an exception that the cone was struck by the steel balls of different diameter. The 

conclusion of the study revealed that the accuracy of one dimensional theory progressively 

decreased with the decrease in pulse duration of the initial transient, as the theory 

overestimates peak amplitudes when the pulse length is shortened. 

 

1.1.2 Numerical Analysis 

 In 1970, N. H. Sandlin [6] and C. Larson [7] published axial wave propagation in 

bars with variable cross sectional areas. N. H. Sandlin used one dimensional discrete 

parameter mathematical model together with a simple predictor-corrector integration 

scheme to investigate the propagation of waves along the longitudinal axis of rods. He 

considered the lumped mass model of a rod, which consisted of concentrated masses 

interconnected by springs of different spring constants, assuming springs had no mass density. 

He found solutions for free-free uniform rod, free-fixed uniform rod, stepped area rod, 

viscoelastic rod, elastic-plastic free fixed rod, 5.38 degree cone and 20 degree hollow cone. The 

forces applied in the models were a function of sine and sine square, with the number of nodes 

changing from 20 to 49 for different cases. He concluded his work by saying that, the most 
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disagreement between experimental and numerical data occurs in the free-free solid and hollow 

cone cases at points near the ends and at times following wave reflections; the discrepancy, 

may be due to a combination of inertia effects and inaccurate applied impulse force.  

 C. Larson in his thesis [7] applied a numerical method of modal superposition to 

develop a solution for wave propagation behavior in truncated cones. He used one dimensional 

elasticity theory to compute the results for solid cones with apex angles of 0.48, 5.38, 20 and 30 

degrees and a hollow cone of 20 degree apex angle. The results acquired from his solutions 

were compared with one presented in Sandlin’s thesis [6] and with experimental data obtained 

by Kenner and Goldsmith [5]. He concluded in his thesis that, the modal analysis solution is a 

reasonably good approximation for cones with apex angles less than thirty degrees and very 

good for angles less than about five degrees. 

  Both the authors compared their work with experimental investigation performed by 

Kenner and Goldsmith [5]. 

 

1.2 Project Motivation 

 The first major formulation of axial wave propagation in bars with variable cross 

sectional area was published in 1868 by M. B. De Saint-Venant [1]. Longitudinal impact analysis 

for rods has drawn interest for a long time mainly because of the need for information on the 

performance of structures subjected to high rates of loading. Solutions to these problems find 

applications in the design of various mechanical equipments, or in situation where rigid objects 

impact on structural members. For hundreds of years, longitudinal impact analysis has 

fascinated many famous scientists such as W. Goldsmith [2], K. F. Graff [3]. 

There has been a lot of research done by scientists and engineers on cylindrical rods or 

rods with uniform cross-sectional area along their length. However, for a rod with variable cross-

sectional areas, there exist only few analytical solutions in the literature. According to B. Hu, P. 

Eberhard and W. Schielen [4],the main reason for this fact is due to the wave equation which 
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governs the solution to conical rods, is a partial differential equation with variable coefficients. 

The equation was very expensive to solve and required higher computational capable 

machines. Hence forth in past years, due to lack of computational capability many dynamics 

problems were modeled as lumped mass systems, making them easier and faster to solve. The 

lumped mass model of a rod, consisted of series of masses interconnected with springs of 

spring constants k. Spring constant, k is calculated using    where, E is Young’s 

modulus, A is cross section area and L is the length of the rod. In the following study the 

accuracy of one-dimensional model with two-dimension model has been analyzed and it shows 

that the one-dimensional model does not yield accurate results for cone angles greater than 

about 10 degree.  

 Secondly, N Akkas, F Barez and W Goldsmith [11] performed investigation in elastic 

wave propagation in an exponential rod and 17.8° cone where in they found that for one-

dimensional analysis the results diverges in the first and subsequent pulse reflections due to 

neglecting the effect of radial inertia. Similarly according to C. Larson [5], V.H. Kenner and W. 

Goldsmith [1] the two-dimensional elastic theory for determination of wave propagation in cones 

gives more accurate results than one-dimensional theory. Direct method for transient analysis 

has been used to check if the wave propagation yields the accurate results as modal 

superposition method that was used in previous studies. 

1.3 Project Objectives 

 The study deals with the transient analysis of one-dimensional and two-dimensional 

models of the cone for different apex angles using ANSYS. There are two main motives behind 

investigating different apex angle cone models which are listed below 

 Aim 1:  At what angle does one- dimensional theory not apply for modal analysis? 

 Aim 2: Analyze two-dimensional model of cone for wave propagation and compare its 

results with experimental and numerical results. 
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The results concluded in the study can be useful to any kind of impact analysis on the cone and 

can be utilized to determine the time needed for force to travel from one end of the cone to 

other.  

The general overview of the thesis is stated below. 

Chapter 2: Discusses setting up the model in ANSYS 

Chapter 3: Discusses the results 

Chapter 4: Discusses conclusion and future work.  
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CHAPTER 2 

MODEL SETUP 

2.1 Critical Frequency   

 To reduce computational time and produce simple inexpensive solution to complex 

formulation, it is always favorable to define a three-dimension model into one-dimension or two-

dimension model. However, in modal analysis especially for the case of cones having large 

apex angle this is a drawback, as it ignores the lateral inertia effects, i.e. as the cone angle 

increases, error for frequency increases. 

For solving the cases of transient analysis, the first few frequencies or modes affect the 

results significantly. According to Cook, Malkus, Plesha and Witt [8], the reduced mode set must 

include double the highest important frequency contained in the loading. For free-free analysis, 

the mode shapes are unrelated to complexity of loading. For all the solid cones, the pulse of 

force has duration of 35 microseconds. In this thesis, all the cones have free-free boundary 

conditions for which the critical frequency for mode of vibration is given by the set of equations 

given below. 

 

 

 

 

2.1.1. One-Dimensional Model 

Many dynamics problems in the past years are modeled as lumped mass systems 

because of its simple formulation and reduced computational time. Lumped mass model of the 

cone is considered as a series of masses m i, connected by massless springs of spring constant
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ki. The parameters like mi and ki should be calculated carefully to reflect the approximate real 

time situation. Material of cone used for this study for analysis of one-dimension theory is 

aluminum with young’s modulus of 10.6 x 10
6
 psi and weight density of 0.1 lbf/in

3
. 

 

 

Mass(i) = Density * Volume(i) 

Volume(i) =  

Spring Constant k(i) =  

Figure 2.1 Lumped mass model 

To determine, the accurate results of frequency for lumped mass model, proper amount 

of mesh elements are needed to be used. Use of higher number of meshing elements should be 

avoided because that will increase the computational time and space. The right mesh size can 

be determined by mesh refinements which converge to particular value. Appendix A shows the 

mesh convergence of lumped-mass model. 

Matlab code [Appendix B] had been used to create the log file for ANSYS APDL. It can 

compute and create masses and spring constants for any number of nodes. This log file can run 

in ANSYS APDL to evaluate the different frequency results. One can compute as many 
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numbers of modes of frequency as required, but for this particular study the critical frequency 

has been considered below 58000 Hz. 

 

2.1.2 Two-Dimensional Model 

Modal analysis of ANSYS workbench has been used to solve the two dimensional 

axisymmetric model for all cone angles. Cone material has been considered as aluminum with 

young’s modulus of 10.6 x 10
6 
psi and weight density of 0.1 lbf/in

3
. Mesh convergence has been 

checked. Appendix 2 provides the mesh convergence for different apex angles. Element size 

can be calculated by equation given below. 

  

Table 2.1 Cone mesh density for 1D and 2D model 

 

 
 
 
 
 

 

 

 

2.2 Comparison between Experimental and Two-Dimensional ANSYS model 

 To examine the reflection of a longitudinal wave pulse for free-free end conditions, two-

dimensional axisymmetric model has been analyzed using ANSYS workbench software. For 

data comparisons truncated cones with apex angle of 0.48, 5.38, 20 and 30 degrees and hollow 

cone with apex angle of 20 degree has been considered.  

 According to R. Cook [8], in wave propagation and shock loading problems, many 

modes are excited and the response may be required for only a short period of time where 

direct method should be used. So, direct method for transient analysis has been used in 

Degree 
cone 

1D Model 2D Model 

Number Number Number 

of nodes of nodes of elements 

5.38 300 426 105 
10 300 536 143 

15 500 690 193 

20 500 881 256 
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ANSYS workbench. Material of all the cones is aluminum with young's modulus of 10.6 x 10
-6

 

psi and density of 0.1 lb/in
3
. The meshes have been refined and converged in order to obtain 

accurate results. The element size of 0.24" has been considered for 0.48° and 5.38° solid 

cones, while element size of 0.06" has been used for remaining solid cones. For 20 degree 

hollow cone, mesh size of 0.06" has been used.  

 In wave propagation problem, to generate accurate results, time increment is an 

important factor. Time increment should be selected in such a way that, it includes an acoustic 

wave to transverse an element, for the element with the least transversal time. The time 

increment is calculated by equation 5 given by R. Cook [8]. For maximum  critical frequency 

has been used. 

  

 

 

 For solid cone with apex angle of 0.48 degree, the input pulse from experimental result 

was determined to be 33 microseconds half-sine pulse with peak load of 4500 pounds. The 

force is applied at the convergent end of the cone. The strain gauges were placed at 5.93 inch, 

14.93 inch and 23.937 inches apart from the convergent end diameter.  

 Two cases have been considered for cone with apex angle of 5.38 degree. The force is 

applied both at the convergent end and divergent end of the cone. The input pulse from 

experimental result was determined to be 35 microseconds half-sine pulse with peak load of 

5000 pounds applied at small end. And for divergent end, the input pulse was determined to be 

35 microseconds half-sine square pulse with peak load of 5000 pounds. The strain gauges were 

placed at 1.5", 3.5" and 6" apart from small end diameter.  

 One solid cone and one hollow cone have been considered for apex angle of 20 

degree. For solid cone, the input pulse from experimental result was determined to be 35 
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microseconds half-sine square pulse with peak load of 2500 pounds. For hollow cone, three 

different types of forces have been considered. One with peak load of 351 pounds, one with 

peak load of 127 pounds and one with peak load of 104 pounds with 50, 22 and 11 

microseconds respectively half-sine square pulse. The force is applied at the divergent end of 

the cone. The strain gauges were placed at 1.477”, 5.416” and 13.294” apart from divergent end 

diameter. 

 For cone with apex angle of 30 degree, the input pulse from experimental result was 

determined to be 40 microseconds half-sine pulse with peak load of 4500 pounds. The force is 

applied at the convergent end of the cone. The strain gauges were placed at 0.483”, 6.283” and 

9.083” apart from convergent end diameter.  
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CHAPTER 3 

RESULTS 

3.1 Comparison of Frequencies of One-Dimensional with Two-Dimensional Model 

 In Table 3.1 the frequencies of different cone angles for one-dimensional model are 

compared to two-dimensional model. Frequency below 58000 Hz has been considered for both 

models. For 5.38 degree cone angle, one-dimensional as well as two-dimensional model yields 

seven different modes of frequency. For 10 degree cone angle, one-dimensional model yields 

seven different modes of frequency while two-dimensional model yields nine different modes of 

frequency. For 15 and 20 degree cone angle, two-dimensional model yields ten and fourteen 

different modes of frequency respectively, while their one-dimensional model yields only seven 

different modes of frequency for both the cones. The difference in mode numbers occurs 

because one-dimensional model ignores radial inertial effects. 
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Table 3.1 Frequency comparison of different cone angles 

Mode 5.38° cone 10 degree cone 15° cone 20 degree cone 

Number 1D 2D 1D 2D 1D 2D 1D 2D 

1
St

 0 0 0 0 0 0 0 0 

2
nd

 10918 10798 11388 11341 11598 11482 11708 11495 

3
rd

 18943 18774 19619 19489 19952 19633 20134 19515 

4
th
 26997 26790 27764 27466 28189 27414 28431 26507 

5
th
 35134 34872 35919 35302 36404 34550 36696 27592 

6
th
 43340 42985 44105 42907 44624 36278 44952 32665 

7
th
 51597 51091 52322 50065 52858 40863 53212 37582 

8
th
 

  
--- 53348 --- 46141 --- 41408 

9
th
 

  
--- 56648 --- 51012 --- 44342 

10
th
 

    
--- 54088 --- 46076 

11
th
 

      
--- 49075 

12
th
 

      
--- 51194 

13
th
 

      
--- 53671 

14
th
 

      
--- 55863 

 
  

Figure 3.1 shows, the percentage error in 1D model compare to 2D model frequency 

versus mode number for different cone angles. First mode has 0 Hz frequency because the 

geometry has free-free boundary condition. For 5.38 degree cone, the error in frequency is very 

less however after 15 degree, the error increases significantly. For 20 degree cone angle, the 

error is approximately 30% for seventh mode. The reason of this difference is also due to radial 

inertial effect. So after 15 degree cone angle, it is not advisable to use the one-dimensional 

theory. 
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Figure 3.1 Percentage errors in 1D model compare to 2D model vs. mode number 

 

3.2 Comparison of Experimental with ANSYS Results 

 The results from ANSYS workbench were compared with the experimental data, 

theoretical data and analytical solution for solid cones with apex angles of 0.48, 5.38, 20 and 30 

degrees and hollow cone with apex angle of 20 degree. 

 

3.2.1 For 0.48 Degree Solid Cone 

 The data shown in Figure 3.2 for 0.48 degree cone is compared to results documented 

by C. Larson [7] wherein he considered theoretical solution and experimental solution. The 

forcing function used for this cone is the same as one used by Larson. The maximum 

compressive strain at probe 1 is -1.98x10
-3 

in/in occurs at 46 microseconds, at probe 2 is 

1.77X10
-3 

in/in occurs at 91 microsecond and at probe 3 it is 1.52x10
-3 

in/in occurs at 137 
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microsecond. While tensile strain occurs at 1.63x10
-3

 in/in at 192 microseconds for probe 3, at 

1.79x10
-3

 in/in at 237 microseconds for probe 2.  

 

 

Figure 3.2 ANSYS calculated results for 0.48 degree solid cone 

F(t)= 4500 x Sin(πt/0.000033) lbf 

F(t) 
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Figure 3.3 Theoretical and experimental results from Larson 

 

3.2.2 For 5.38 Degree Solid Cone 

Data shown in figure 3.4 for a 5.38 degree solid cone is compared to results 

documented by C. Larson [7] shown in figure 3.5. He had compared his solution with theoretical 

solution and numerical solution. The forcing function used for this cone is the same as one used 

by Larson and the force is applying at convergent end of the cone. From ANSYS result, the 

maximum compressive strain at probe 1 is 12.7x10
-3 

in/in occurs at 21 microseconds and 

6.33x10
-3 

in/in occurs at 120 microseconds in tension, while theoretical and experimental results 

are approximately 12x10
-3 

in/in occurs at 21 microseconds for compressive and 5.75x10
-3 

in/in 

occurs at 120 microseconds. For probe 2, ANSYS results are 4.65X10
-3 

in/in occurs at 35 

microsecond in compressive and 3.95x10
-3 

in/in occurs at 104 microseconds in tension while 

theoretical and experimental results are approximately 4.1X10
-3 

in/in occurs at 35 microsecond 
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in compressive and 3.5x10
-3 

in/in occurs at 105 microseconds in tension. For probe 3, ANSYS 

results are 2.19X10
-3 

in/in occurs at 63 microsecond in compressive and 2.3x10
-3 

in/in occurs at 

85 microseconds in tension while theoretical and experimental results are approximately 2X10
-3 

in/in occurs at 66 microsecond in compressive and 1.5x10
-3 

in/in occurs at 86 microseconds in 

tension. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 ANSYS calculated result for 5.38 degree solid cone 

 

F(t) 

F(t)= 5000 x Sin(πt/0.000035) lbf 
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Figure 3.5 Theoretical and experimental results from Larson 

Data shown in figure 3.6 for a 5.38 degree solid cone is compared to results 

documented by Sandlin [6] shown in figure 3.7. He had compared his solution with experimental 

results. The forcing function used for this cone is the same as one used by him and the force is 

applying at divergent end of the cone. From ANSYS result, the maximum compressive strain at 

probe 1 is 0.514x10
-3 

in/in occurs at 22.5 microseconds and 0.14x10
-3 

in/in occurs at 124 

microseconds in tension, while numerical and experimental results are approximately 0.41x10
-3 

in/in occurs at 28 microseconds for compressive. For probe 2, ANSYS results are 0.69x10
-3 

in/in 

occurs at 42 microsecond in compressive and 0.44x10
-3 

in/in occurs at 104.5 microseconds in 

tension while numerical and experimental results are approximately 0.6x10
-3 

in/in occurs at 46 

microsecond in compressive and 0.22x10
-3 

in/in occurs at 110 microseconds in tension. For 

probe 3, ANSYS results are 1.28x10
-3 

in/in occurs at 65.5 microsecond in compressive and 

2x10
-3 

in/in occurs at 82 microseconds in tension while numerical and experimental results are 
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approximately 1x10
-3 

in/in occurs at 68 microsecond in compressive and 1.6x10
-3 

in/in occurs at 

86 microseconds in tension.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 ANSYS calculated result for 5.38° solid cone stuck at divergent diameter 

F(t) 

F(t)= 5000 x Sin
2
(πt/0.000035) lbf 
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Figure 3.7 Numerical and experimental results from Sandlin 

 

3.2.3 For 20 Degree Solid Cone 

Data shown in figure 3.8 for a 20 degree solid cone is compared to results documented 

by Larson [7] shown in figure 3.9. He had compared his solution with experimental results. The 

forcing function used for this cone is the same as one used by him. From ANSYS result, the 

maximum compressive strain at probe 1 is 0.7x10
-3 

in/in occurs at 18 microseconds and 

0.28x10
-3 

in/in occurs at 42 microseconds in tension, while theoretical and experimental results 

are approximately 0.65x10
-3 

in/in occurs at 20 microseconds for compressive and 0.25x10
-3 

in/in 

occurs at 40 microseconds for tension. For probe 2, ANSYS results are 0.22x10
-3 

in/in occurs at 
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38 microsecond in compression and 0.13x10
-3 

in/in occurs at 62 microseconds in tension while 

theoretical and experimental results are approximately 0.225x10
-3 

in/in occurs at 38 

microsecond in compression and 0.15x10
-3 

in/in occurs at 60 microseconds in tension. For 

probe 3, ANSYS results are 0.068x10
-3 

in/in occurs at 83 microsecond in compression and 

0.11x10
-3 

in/in occurs at 107 microseconds in tension while experimental results are 

approximately 0.1x10
-3 

in/in occurs at 80 microsecond in compression and 0.1x10
-3 

in/in occurs 

at 130 microseconds in tension. 
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Figure 3.8 ANSYS calculated result for 20 degree solid cone 

 

F(t) 

F(t)= 2500 x Sin
2
(πt/0.000035) lbf 
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Figure 3.9 Theoretical and experimental results from Larson 

 

3.2.4 For 30 Degree Solid Cone 

Data shown in figure 3.10 for a 30 degree solid cone is compared to results 

documented by Larson [7] shown in figure 3.11. He had compared his solution with 

experimental results. The forcing function used for this cone is the same as one used by him. 

From ANSYS result, the maximum compressive strain at probe 1 is 1850x10
-6 

in/in occurs at 

18.45 microseconds and 181x10
-6 

in/in occurs at 36 microseconds in tension, while theoretical 

and experimental results are approximately 1300x10
-6 

in/in occurs at 18 microseconds for 

compression and 181x10
-6 

in/in occurs at 42 microseconds for tension. For probe 2, ANSYS 

results are 164x10
-6 

in/in occurs at 48 microsecond in compression and 186x10
-6 

in/in occurs at 

64 microseconds in tension while experimental results are approximately 100x10
-6 

in/in occurs 

at 30 microsecond in compression and 100x10
-6 

in/in occurs at 70 microseconds in tension. For 
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probe 3, ANSYS results are 176x10
-6 

in/in occurs at 100 microsecond in compression and 

204x10
-6 

in/in occurs at 83 microseconds in tension while experimental results are 

approximately 100x10
-6 

in/in occurs at 100 microsecond in compression and 104x10
-6 

in/in 

occurs at 80 microseconds in tension. 
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  Figure 3.10 ANSYS calculated result for 30 degree solid cone 

F(t) 

F(t)= 4500 x Sin(πt/0.00004) lbf 
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Figure 3.11 Theoretical and experimental results from Larson 

 

3.2.5 For 20 Degree Hollow Cone 

 Three different forces has been applied to 20 degree hollow cone. Data shown in figure 

3.12 for a 20 degree hollow cone is compared to results documented by Goldsmith [11] shown 

in figure 3.11. He had compared his solution with experimental results. The forcing function 

used for this cone is the same as one used by him. From ANSYS result, the maximum 

compressive strain at probe 1 is -67x10
-6 

in/in occurs at 30 microseconds while experimental 

results are approximately 65x10
-6 

in/in occurs at 28 microseconds for compression. For probe 2, 

ANSYS results are 35x10
-6 

in/in occurs at 51 microsecond in compression while experimental 

results are approximately 29x10
-6 

in/in occurs at 48 microsecond in compression. For probe 3, 

ANSYS results are 21x10
-6 

in/in occurs at 70 microsecond in compression while experimental 

results are approximately 20x10
-6 

in/in occurs at 68 microsecond in compression. 
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Figure 3.12 ANSYS calculated result for 20 degree hollow cone 
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Figure 3.13 Experimental results by Goldsmith 

 

 Data shown in figure 3.14 for a 20 degree hollow cone is compared to results 

documented by Goldsmith [11] shown in figure 3.15. From ANSYS result, the maximum 

compressive strain at probe 1 is -30.6x10
-6 

in/in occurs at 17 microseconds while experimental 

results are approximately 25x10
-6 

in/in occurs at 18 microseconds for compression. For probe 2, 

ANSYS results are 11x10
-6 

in/in occurs at 37 microsecond in compression while experimental 

results are approximately 10x10
-6 

in/in occurs at 36 microsecond in compression. For probe 3, 

ANSYS results are 7x10
-6 

in/in occurs at 55 microsecond in compression while experimental 

results are approximately 6x10
-6 

in/in occurs at 55 microsecond in compression. 
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Figure 3.14 ANSYS calculated result for 20 degree hollow cone 

 

 

 

F(t)= 127 x Sin
2
(πt/0.000022) lbf 
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Figure 3.15 Experimental results by Goldsmith 

 

 Data shown in figure 3.16 for a 20 degree hollow cone is compared to results 

documented by Goldsmith [11] shown in figure 3.17. From ANSYS result, the maximum 

compressive strain at probe 1 is -25x10
-6 

in/in occurs at 14 microseconds while experimental 

results are approximately 25x10
-6 

in/in occurs at 13 microseconds for compression. For probe 2, 

ANSYS results are 8.5x10
-6 

in/in occurs at  31 microsecond in compression while experimental 

results are approximately 12x10
-6 

in/in occurs at 31 microsecond in compression. For probe 3, 

ANSYS results are 5.6x10
-6 

in/in occurs at 50 microsecond in compression while experimental 

results are approximately 10x10
-6 

in/in occurs at 51 microsecond in compression. 
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Figure 3.16 ANSYS calculated result for 20 degree hollow cone 

 

F(t)= 104 x Sin
2
(πt/0.000011) lbf 
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Figure 3.17 Experimental results by Goldsmith 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1 Limitations of One-Dimensional Theory 

 For the cone with apex angle of 10 degree and below, one-dimensional model yields 

accurate results. For the cone with apex angle of 20 degree, the results from one-dimensional 

model yields 30% error because one-dimensional model ignores radial inertia effect. Due to 

ignorance of radial inertia effect, one-dimensional model ignores a great number of mode 

shapes. For example, below 58000 Hz, for 20 degree cone, there were fourteen modes of 

frequency for two-dimensional model while for one-dimensional model there were only seven 

different modes of frequency. It is concluded that the one-dimensional theory is a reasonably 

good approximation for cones with apex angles less than 10 degree and really close agreement 

for angle less than 5°. 

 

4.2 Discussion on Comparison of Experimental Results with ANSYS 
Results 

 The agreement of FEM results with experimental and numerical results is judged to be 

good. There are some minor difference in the results for all the cones, do not necessarily due to 

ANSYS setup, however it is assumed that difficulty in duplication exactly test conditions affect 

the comparisons.  

 The most serious disagreement between the ANSYS results and experimental results 

occurs in the free-free solid cases for 30 degree cone angle. The peak strain value for all the 

probes does not matches with experimental data but the time takes wave to travel yields the 

accurate results. That means, the peak value for applied force from experiment for 30 degree 

does a not match with applied ANSYS force. 
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4.3 Future Work 

 Although results indicate that, there is certain advantage of using two-dimensional axis 

symmetric model; the type presented here, however, three-dimensional model may give more 

accurate results. For future work, one can consider solution of three-dimensional model of the 

cone and compares with experimental data to check the deviation from two-dimension model. 
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APPENDIX A 

 
 

MESH CONVERGENCE CHECK FOR ONE-DIMENSIONAL 
AND TWO-DIMENSIONAL MODEL 
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 Table A.1 ANSYS APDL mesh convergence for 5.38 degree solid cone 
 

 
 

Table A.2 ANSYS workbench mesh convergence for 5.38 degree solid cone 
 

ANSYS Workbench Frequency 
Frequency Element size 0.6 0.3 0.24 0.16 0.12 0.06 

1st   0 0 0 0 0 0 

2nd   10798 10798 10798 10798 10798 10798 

3rd   18774 18773 18773 18774 18774 18774 

4th   26787 26790 26789 26789 26790 26790 

5th   34873 34871 34871 34871 34872 34872 

6th   42990 42984 42984 42984 42985 42985 

7th   51083 51091 51092 51091 51091 51091 
 

ANSYS APDL Frequency 
Frequency  node 20 40 50 75 100 200 300 500 

1st    2.3635E-04 7.7127E-04 0 1.1127E-03 0 2.66E-03 2.6100E-03 4.5123E-03 

2nd    10875 10908 10912 10916 10917 10918 10918 10918 

3rd    18772 18903 18918 18932 18937 18942 18943 18943 

4th    26574 26897 26934 26970 26983 26995 26997 26998 

5th    34288 34934 35008 35081 35106 35130 35134 35136 

6th    41849 42986 43118 43246 43290 43333 43340 43344 

7th    49186 51023 51236 51444 51516 51584 51597 51603 



 

3
6
 

Table A.3 ANSYS APDL mesh convergence for 10 degree solid cone 

ANSYS APDL Frequency 
Frequency node 75 100 200 300 500 

1st   1.11E-03 1.82E-03 1.96E-03 2.66E-03 7.66E-03 

2nd   11385 11387 11388 11388 11388 

3rd   19606 19612 19618 19619 19619 

4th   27733 27748 27761 27764 27765 

5th   35858 35887 35914 35919 35922 

6th   43998 44048 44096 44105 44109 

7th   52152 52232 52308 52322 52329 
 
 

Figure A.4 ANSYS workbench mesh convergence for 10 degree solid cone 
 

ANSYS Workbench Frequency 
Frequency Element size 0.6 0.3 0.24 0.16 0.12 0.06 

1st   0 0 0 0 0 0 

2nd   11341 11341 11341 11341 11341 11341 

3rd   19489 19489 19489 19489 19489 19489 

4th   27467 27466 27466 27466 27466 27466 

5th   35307 35302 35302 35302 35302 35302 

6th   42915 42907 42907 42907 42907 42907 

7th   50084 50065 50065 50065 50065 50065 

8th   53322 53349 53348 53349 53349 53349 

9th   56643 56648 56648 56648 56648 56648 
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Table A.5 ANSYS APDL mesh convergence for 15 degree solid cone 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 Table A.6 ANSYS workbench mesh convergence for 15 degree solid cone 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

ANSYS Workbench Frequency 
Frequency Element size 0.6 0.3 0.24 0.16 0.12 0.06 

1st   5.1995E-04 0.0000E+00 2.07E-03 1.6223E-03 2.64E-03 3.03E-03 

2nd   11482 11482 11482 11482 11482 11482 

3rd   19633 19633 19633 19633 19633 19633 

4th   27415 27414 27414 27414 27414 27414 

5th   34553 34550 34550 34550 34550 34550 

6th   36271 36278 36278 36278 36279 36279 

7th   40861 40863 40863 40863 40863 40863 

8th   46143 46141 46141 46142 46142 46142 

9th   51015 51012 51012 51012 51012 51012 

10th   54101 54088 54088 54088 54088 54088 

ANSYS APDL Frequency 
Frequency Node 75 100 200 300 500 

1st   1.00E-03 2.80E-04 3.01E-03 2.50E-03 5.14E-03 

2nd   11594 11596 11597 11597 11598 

3rd   19938 19945 19951 19952 19952 

4th   28154 28170 28185 28187 28189 

5th   36335 36367 36396 36402 36404 

6th   44505 44559 44610 44620 44624 

7th   52669 52754 52836 52851 52858 
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Table A.7 ANSYS APDL mesh convergence for 20 degree solid cone 
 

 
 
 
 
 
 

ANSYS APDL Frequency 
Frequency node 75 100 200 300 500 

2nd  11704 11706 11707 11708 11708 

3rd  20120 20127 20133 20134 20134 

4th  28395 28412 28427 28430 28431 

5th  36624 36656 36687 36693 36696 

6th  44829 44884 44938 44947 44952 

7th  53016 53104 53189 53204 53212 
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Table A.8 ANSYS workbench mesh convergence for 20 degree solid cone 

 

ANSYS Workbench Frequency 
Frequency Element size 0.6 0.3 0.24 0.16 0.12 0.06 

2nd 
 

11495 11495 11495 11495 11495 11495 

3rd 
 

19515 19515 19515 19515 19515 19515 

4th 
 

26508 26507 26507 26507 26507 26507 

5th 
 

27592 27592 27592 27592 27592 27592 

6th 
 

32663 32665 32665 32665 32665 32665 

7th 
 

37576 37581 37582 37582 37582 37582 

8th 
 

41404 41408 41408 41409 41409 41409 

9th 
 

44333 44341 44342 44342 44342 44342 

10th 
 

46092 46077 46076 46075 46075 46075 

11th 
 

49060 49074 49075 49075 49075 49076 

12th 
 

51199 51195 51194 51194 51194 51194 

13th 
 

53673 53671 53671 53671 53672 53672 

14th 
 

55886 55864 55863 55861 55861 55861 
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APPENDIX B 
 
 

MATLAB CODE FOR ONE-DIMENSIONAL MODEL
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clc 
clear all 
E=10.6e6;   %elastic modulus 
d=0.1/386;       %density = 0.1 
n=1000;       % no of nodes 
ang=20;       %angle of cone in degree 
L=12;       %length of cone 
r1=0.0625;  %smallest cone radi 
x=0.0625/tan(ang*pi()/(2*180)); 
new_L=L+x; 
r2=tan(ang*pi()/(2*180))*new_L;         %largest cone radi 
%r2=1.05;    

  
l=12/(n-1);  
inc=((r2-r1)*l/L); 
fid = fopen('20degcone.txt', 'wb');        %to create new text file 

name: 1D_run 

  
fprintf(fid, '/batch\r\n'); 
fprintf(fid, '/prep7\r\n\r\n'); 
fprintf(fid, 'n, 1, 0, 0\r\n'); 
g(1)=0;                                 %to write location of nodes in 

text file 

  

for i=2:n 

    
    g(i)=g(i-1)+l; 
    fprintf(fid, 'n, %d, %f, 0\r\n', i, g(i)); 
end 
fprintf(fid,'\r\n'); 
fprintf(fid, 'et, 1, combin14\r\n'); 
fprintf(fid,'et, 2, mass21, 0,0,4\r\n\r\n'); 

  
for i=1:n-1                             %calculating spring constant 

and write in the text file 
    r(1)=r1; 
    r(i+1)=r(i)+inc; 
    A(i)=3.14*(r(i)*r(i)+r(i+1)*r(i+1))/2; 
    K(i)=A(i)*E/l; 
    fprintf(fid,'r, %d, %e, , ,\r\n',i,K(i)); 
    fprintf(fid, 'type, 1\r\n'); 
    fprintf(fid, 'real, %d\r\n', i); 
    fprintf(fid, 'en, %d, %d, %d\r\n\r\n',i,i,i+1); 
end 

  
for i=1:n-1 
    Vol(i)=pi()*(r(i)*r(i)+r(i)*r(i+1)+r(i+1)*r(i+1))*l/3; 
    m(i)=d*Vol(i); 

     
end 
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mass=zeros(n,1); 
mass(1)=m(1)/2; 
mass(n)=m(n-1)/2; 
for i=2:n-1 
    mass(i)=m(i)/2+m(i-1)/2; 
end 

  
for i=1:n 
    fprintf(fid,'r, %d, %e,\r\n',n-1+i, mass(i)); 
    fprintf(fid, 'type, 2\r\n'); 
    fprintf(fid, 'real, %d\r\n',n-1+i); 
    fprintf(fid, 'en, %d, %d\r\n\r\n',n-1+i, i); 
end 

  
for i=1:n 
    fprintf(fid, 'd, %d, uy,0\r\n', i); 
end 

  
% fid=fopen('try2.txt','wb'); 
%  
% for i=1:n-1 
%     fprintf(fid,'%f %f\r\n',mass(i)); 
% end 

  

fclose(fid); 
h(1)=mass(1);                            %to find the mass 
for i=2:n 
    h(i)=h(i-1)+mass(i); 
end 
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