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ABSTRACT

ADAPTIVE METHODS FOR REALISTIC AND INTUITIVE

HUMAN-ROBOT INTERACTION

JARTUWAT RAJRUANGRABIN, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Dan Popa

Due to the advancement in robotics and computer technology, having access

to sophisticated robot hardware is becoming common. An increase in the number of

robots allows one to achieve different kind of tasks by exploiting cooperation, such

as: robot swarms, object manipulation using multiple degrees of freedom of different

robots. It is quite challenging for the human operator to coordinate multiple robots

to achieve a task in an efficient manner. The channels available to receive feedback

information from the robot system can vary from simple encoder reading to video

stream acquisition of the robot system performing tasks. It is important for us to

make use of and coordinate as many sensing modalities as it is required to perform

necessary tasks. On the other hand, we would want to keep the number of modal-

ities utilized optimal just to maintain usage intuitiveness for human operators and

efficiency.

In this dissertation, we have investigated 3 different modalities of interaction

with robots. Physical sensing: we present a novel approach to enhance human-

v



robot interactivity through the use of artificial skin and the Extended Kalman fil-

ter. Visual sensing: we present a novel approach to enhance interaction of humanoid

robot actor through the use of pose estimation and visual servoing. Interface devices:

we present work on combining dynamic gestures based commands from an interface

device to improve the intuitiveness of control / planning of multiple degrees of free-

dom robot system through reinforcement learning.

We propose an efficient way to coordinate multiple modalities sensing as gen-

eralized interface for multiple robots. Performance metrics are proposed so that we

have the quantitative way to identify our interaction efficiency. Eventually, the out-

come of this research will be a reconfigurable multiple interface system that can be

used with multiple robot systems in a way that it is easy and intuitive for the human

operator to operate.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Humanoid robotics is an emerging research area that requires interdisciplinary

expertise. With current advancement in sensors and computer hardware, more so-

phisticated technologies can be integrated into a humanoid robot to make it even

more realistic. Realism in both form and function is not necessarily the only aspect

of humanoid robot research since there are endless possibilities for the utilization of

humanoid robots. To efficiently make use of humanoid robots, we need to have an

optimized way to balance the robot’s autonomy versus user control. A humanoid

robot can be viewed as a system composed of an array of sensors actuators, and such

a system requires art and science to coordinate the arrays so that it can accomplish

meaningful tasks in an efficient manner.

The major sensory input channels to humanoid robots are tactile and visual

sensory inputs. By improving the interaction through these sensor modalities, we

progress toward having humanoid robots that resemble human in terms of function.

Machines that are capable of imitating the complicated behavior of humans, can be

used in applications, such as: manufacturing (assembly line), entertainment, patient

simulation. It is even more of a challenge to control robots with large arrays of

sensors and actuators in order to accomplish meaningful tasks efficiently, without

the operator having to put too much effort into learning to control such systems. An

example of such a scenario would be a patient with motor skill impairment learning to

operate assistive robots that would help him / her perform day to day activities. Such

1
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assistive robots can come in different shapes and forms and also with different control

interfaces. In terms of manipulating the robots efficiently, it is apparent that there

are many challenging aspects to the aforementioned scenario as the most efficient

interface for a patient with motor skill impairment is not intuitive.

1.1.1 Characteristics of the Human-Robot Interaction Systems

A human-robot interaction system can refer to something rudimentary such

as a simple motor control system or it can refer to something as complicated as a

full-fledged humanoid robot. When we use the word “Human-Robot Interaction”, it

usually refers to an autonomous robot system being able to process human commands

and take appropriate actions to achieve the human’s desired outcome. To take a closer

look at the “Human-Robot Interaction”, the complete process consists of:

1. The human having desired outcome in mind

2. The human conveying his/her desired outcome through some forms

3. Robot system receiving human communication message

4. Robot system interpreting the message and taking actions

5. The human receives feedback from the robot system and adjusts the communi-

cation message so that desired outcome is achieved (learning)

We can see that in order to have an efficient “Human-Robot Interaction” system,

it involves many different factors. The communication may take any form as the

technology for interface devices develop. Hence, step 4 is a critical step to determine

the overall efficiency of the interaction. In this proposal, we develop a framework

that helps improve efficiency of human-robot interaction systems by improving the

efficiency and effectiveness of step 4, and at the same time reduces the need for human

user to do a lot of step 5.
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Figure 1.1. Asimo specifications (courtesy of: http://world.honda.com/ASIMO/
technology/spec.html).

A real life example of an advanced humanoid robot is the Honda ASIMO. It is

obvious that in order for the human operator to be able to interact with the robot,

he/she would still have to go through all the steps outlined above. The total of 24

degrees of freedom, as shown in Fig. 1.1, will have to be efficiently coordinated so

that the robot can perform meaningful actions.

Generally, the robot is operated in autonomous mode that does not require a

human operator supervising commands. However, the development team at Honda
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Figure 1.2. Brain machine interface technology for ASIMO robot control (courtesy of:
http://world.honda.com/news/2009/c090331Brain-Machine-Interface-Technology).

does see the importance of developing intuitive / easy to use interface. The Honda

research team developed brain machine interface (BMI) technology that uses elec-

troencephalography (EEG) and near-infrared spectroscopy (NIRS) along with newly

developed information extraction technology to enable control of a robot by human

thought alone. The EEG and NIRS sensors are placed on the head of the human

operator. The brain activity data get processed and then one of the four predefined

body parts will be moved according to the human operator’s mental image of the

selected body part. The diagram of the overall process is show in Fig. 1.2.

The non-invasive BMI technology that is used in this device has certain limita-

tions as oppose to invasive BMI technology, which involves electrode arrays implanted

in the human’s head. Even though the concept of using non-contact control for robot

operations is novel, the technologies involved are not well-developed yet, so this non-

contact control for man-machine interface is still under research.



5

Figure 1.3. 1961 UNIMATE robot arm in the TV picture tubes manufacturing plant
(courtesy of: http://www.prsrobots.com/1961.html).

1.1.2 Emerging Technologies for Human-Robot Interaction Systems

User interfaces for man-machine control have a long history dated back to the

creation of the first robot arm. In Fig. 1.3, the early version of the UNIMATE arm

was operated by storing step-by-step commands on a magnetic drum.

We can see that the interface device started out as something primitive where

the operators were not even able to control the robot in real time. After robot ma-

nipulators became widely available in the manufacturing industry, a form of tethered

control pendant became standard devices for robot operation. A picture of the early

UNIMATE robot model that uses control pendant is shown below in Fig. 1.4.

A wide variety of control pendants became the standard for robot control. Ba-

sic operations for these control pendants include robot calibration, Cartesian space

movement of the end-effector, individual joint movement and open/close gripper.

Generally, the control pendant sends commands to a robot arm in an open loop fash-

ion, which means that the control pendant itself is incapable of receiving feedback
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Figure 1.4. Early UNIMATE robot arm model with control box and control pendant
(courtesy of: http://www.prsrobots.com/unimate.html).

from the robot arm. However, some of the modern control pendants for robot control

may have more functionality. Fig. 1.5 shows the modern control pendant that is used

with SCARA robots.

Control pendants are standard form of control for articulated robot arms. But

for other types of robots such as mobile robots, humanoid robots and so on, control

pendants might not be the best option for robot control interfaces. As other types

of robots require more than just positioning the end-effector to a desired position,

there is no standard form of control device, the design of the interface device depends

heavily on the application and usually designed on an ad-hoc basis.

The gaming industry is also an area in which there is a need to develop interface

devices. What has happened in the gaming industry lately is worth noting, since the

nature of games is getting more complicated and the requirements of game manipu-

lations are similar to robot control. Interfaces such as joysticks for gaming are also

intuitive to some of the robot control applications. Fig. 1.6 shows a generic gaming

joystick that can be used for robot control.
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Figure 1.5. Modern control teach pendant for robot arms (courtesy
of: http://www.staubli.com/en/robotics/products/robot-controller/robot-control-
pendant/).

Figure 1.6. A gaming joystick that can also be used for robot control.

Modern gaming controllers have embedded accelerometers to detect object ori-

entation as well as acceleration; similar devices can be used for robot control. Fig.

1.7 shows a picture of a modern game controller with accelerometer sensors.

Other advanced interface devices include brain activity sensors, eye trackers etc.

These devices are primarily designed for entertainment purposes; however, they have

a lot of potential to be used as interface devices for human-robot interaction. Fig. 1.8

shows a commercially available brain activity sensor interface. It has electrodes that

read signals from a user’s scalp, the signals are processed to classify emotion levels,

brain activities and facial gestures. Fig. 1.9 shows the eye tracker device. This device
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Figure 1.7. A Nintendo Wii nunchuk controller (courtesy of:
http://www.nintendo.com/wii).

Figure 1.8. Emotiv brain activity sensor as gaming device (courtesy of:
http://www.emotiv.com).

tracks and records the movement of the user’s pupils with respect to a screen so that

the data can later be used for analysis of eye movement patterns.

An example of an advanced interface / actuators system is the exoskeleton

system. The operator physically interacts with the system and at the same time

controls the system in real-time. This is a good example of a system that has an

intuitive interface, however, the physical interaction with the system is the challenging

aspect. As the system needs the ability to sense physical commands from the operator
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(a)

(b)

Figure 1.9. (a) Tobii eye tracker system (b) Heat map generated from user eye activity
(courtesy of: http://www.tobii.com).

so that it can perform appropriate tasks. Fig. 1.10 shows the exoskeleton system

developed by team at UC Berkeley [1].

In some cases the interface device might not be available for interactions with

robots. Vision is the another important sensing form that is widely used in robots.

Humanoid robots usually has the vision sensing capability, and it is difficult to interact

with the robot through vision. Fig. 1.11 shows an example of a humanoid robot that

has the ability to generate different facial expressions [2]. The challenging aspect

would be to make the robot interact with humans through vision in real-time in a
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Figure 1.10. The Berkeley Lower Extremity Exoskeleton (BLEEX) [1].

realistic manner. Realistic looking humanoid robots are being developed at many

research institutes. Some of the examples of these robots are: MIT robots [3] shown

in Fig. 1.12 and Albert HUBO robot by David Hanson [4] shown in Fig. 1.13.

Although these robots appear realistic, it is a challenging tasks to add realistic real-

time interactions to these robots.

A good example of a very intuitive interface device for humanoid robot controls

is the marionette, a small replica of the actual robot to be controlled that has the

position sensing capability. Fig. 1.14 shows the marionette used for humanoid robot

control [5]. This is the most intuitive interface device for the of controlling the life size

humanoid robot as the marionette provides one-to-one mapping of all the joints. A
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Figure 1.11. Emotion-Display EDDIE humanoid robot [2].

similar interface device that provide intuitive one-to-one mapping might not always be

available for arbitrary robot systems. It is challenging to come up with an interface

that is as intuitive as this marionette device where the one-to-one mapping of the

interface device to the actual robot system is difficult to achieve.

With current advancement in sensors and computer hardware, more sophis-

ticated technologies are becoming commonplace. A good example would be a high-

speed high-resolution camera with fast image processing capabilities is becoming more

accessible. This means that the sky is the limit for the possibility of the robot sensing

capability. Classical and modern control feedback loop make use of physical variables

such as position, angular position, velocity, angular velocity, acceleration, gyro rate,

temperature, flow rate, elevation and so on. Recent technologies enable us to have ac-
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(a)

(b)

Figure 1.12. (a) MIT Cog robot (b) MIT Kismet robot [3].

cess to the listed physical variables through smaller and smaller devices. The sensing

capability is becoming more reliable, accurate and smaller in sizes. Thanks to sensing

technologies, the robot systems will be able to make use of better sensing capability

for lower cost. With precise, fast and reliable sensing capability plus the advancement

in computer technology, we are able to run complex algorithm processing multiple

sensing data at faster speed. We are now able to achieve faster real time response
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Figure 1.13. Albert HUBO humanoid robot [4].

and having better offline processing power for tasks like clustering, learning, detection

and so on.

1.1.3 Potential Areas of Application for Adaptive Human-Robot Inter-
action Control Systems

As long as there is an autonomous machine that human operates, human-robot

interaction is always a relevant topic. Systems with multiple interface inputs can take

advantage of the adaptive human-robot interaction control method. The application

can range from a simple wheel-based mobile robot with joystick control to multiple

degrees assembly station. Also, with adaptive human-robot interaction control sys-

tem, a simple interface can be used as an input device for complex multiple degrees
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Figure 1.14. Marionette device and humanoid robot control [5].

of freedom robot systems. Simplification of interface device may have tremendous

impact on robot control methodologies. We envision that areas that might bene-

fit from adaptive human-robot interaction control systems are listed as follow, this

is by no mean a complete list potential areas; unmanned vehicles operations, robot

teleoperation, humanoid robots, industrial robots, robot swarms and etc.

1.1.4 Human-Robot Efficiency and Usability Improvement

Nowadays, devices such as high-tech gadgets are around us all the time. It is

important that users of such devices have the capability to give commands to the

devices in an efficient manner. The same principle applies to all the man-machine

interaction systems that require users to operate the system to achieve desired actions

/ outcomes. More efficiency means that we can get more tasks done for given time.
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1.1.5 Coordinating Multiple Sensing Inputs and Multiple Actuators for
Well-Defined Tasks

Robots are usually made up of multiple actuators, multiple sensors and decision-

making capability. It takes extensive implementation of processing, planning and

control to make a robot do meaningful actions. From users point of view, they do

not care about low-level mechanism such as motor control, path planning and so on.

The users only care about final outcomes, actions or behaviors of the robot systems.

In this proposal, we suggest that coordinating multiple sensing inputs and multiple

actuators in order to accomplish well-defined tasks is an important matter.

1.2 Contributions of this work

In the past, the intuitiveness and realism of man-machine interaction have been

mainly determined qualitatively on ad-hoc basis that varies for different systems.

Both quantitative intuitiveness and realism of man-machine interaction have rarely

been used as an online parameters adaptation rule, but rather as post evaluation of

system performance that can hardly be translated into useful quantities / measure-

ments. In this thesis, we develop an adaptive framework for human-robot interaction

that make use of the online intuitiveness and realism quantity feedback from the user

as a way to enhance the overall intuitiveness and realism of the interaction.

This dissertation makes the following contributions to the research in man-

machine interaction in order to improve the existing schemes and offer novel solutions

to the problem.

1. Physical interactivity and safety enhancement scheme for robot manipulators

• A force estimation algorithm using Kalman filter has been formulated. The

scheme is able to accurately estimate force in 3D space using only a sensor

that provides 1 dimensional reading of normal physical interaction force.
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The proposed force estimation scheme makes use of the known kinematics

of the robot and online reading of robot joints position to recursively solve

for an estimation of real time interaction force in 3D space. An impedance

control scheme using the estimated force from Kalman filter has been for-

mulated. A real time implementation of the impedance control for assistive

robot / robot safety is used in conjunction with real time force estimation

using Kalman filter. Conventionally, force in Cartesian space has to be

measured in order to implement impedance control for an actuator system

that is able to move freely in 3D space. With the proposed impedance

control scheme, the requirement of sensing 3D force is eliminated [6].

2. Realistic human mimicking for social robots

• A human head pose estimation / human head tracking algorithm using

extended Kalman filter has been formulated. A nonintrusive way of ex-

tracting human head pose information from 2D visual sensing (a single

camera) has been developed. The method is able to estimate human head

pose in real time by processing a sequence of images obtained from a single

camera. The method does require 4 non-colinear points to be able to accu-

rately estimate the human head pose. The head pose information obtained

from the method can be further utilized for real-time realistic interaction

with humanoid robot head [7].

• A realistic neck-eye motion distribution algorithm for humanoid robot head

has been developed. Generally the mechanical / muscular structure of

humanoid robot head is not similar to the structure of an actual human

head. Under object tracking motion, the motion distribution between neck

and eyes is governed by Listing’s Law [8]. In order for the humanoid robot

head to behave the same way as the human head, we have developed an
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optimization approach leading to a realistic neck-eye motion distribution.

The approach involves solving recursive optimization problem in real time.

We have confirmed experimentally that the approach yields realistic neck-

eye motion distribution for a humanoid robot head [9, 10].

• A visual feedback for human head tracking robustness enhancement has

been formulated. The exact detailed kinematics of human head structure

as well as humanoid robot head structure is often difficult to obtain. Most

of the time an approximated kinematics models is used. Due to the dis-

crepancy between actual model and the approximated model, the solution

to the optimization problem of the neck-eye motion distribution has some

offset error in it. A real time visual feedback algorithm for online error

correction and tracking robustness enhancement has been proposed [9, 10].

Exponential convergence of the algorithm was proven.

3. Framework for intuitive interaction of humans with multi-DOF robots through

multi-modal input devices

• An intuitive, easy to learn interface mapping methodology to interact with

a multiple degrees of freedom robot has been proposed. The dynamic

model of the interface mapping is updated using reinforcement learning in

conjunction with a reward function that ties to user input. The reward

function can be set so that the interface mapping is updated according

to certain performance metrics, which in turn adapt the mapping of the

interface to yield a more intuitive and easier to use interface from the

perspective of the current user [11].
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1.3 Dissertation Organization

In chapter 3, a robot physical interaction scheme for force estimation using

Kalman filter is introduced. In this chapter, we focus on physical interaction with

robots. We use an articulated robot arm as a device we would like to physically

interact with. The objective is to be able to manually guide the robot arm to a desired

position and at the same time being able to specify the impedance of the robot arm.

The impedance control is used so that we can have an assistive robot as well as a safety

mechanism for relatively large robots. The challenge for this chapter is that we can

only measure force in one direction (one degree of freedom). This makes it difficult to

implement impedance control of the robot arm in 3D. Therefore, we proposed a 3D

force estimation scheme using an Extended Kalman filter, the experimental work in

this chapter we use a CRS465 robot arm and a Omni Haptics device. Based on the

detailed dynamical model of the robot [12]., we developed a force estimation scheme

and impedance control scheme. Simulation results of force estimation using Kalman

filter of the CRS465 robot based on detailed dynamical model are presented in this

chapter. Also, experiment of simultaneous implementation of force estimation and

impedance control is also conducted using the detailed simulation model as well as

the actual robot.

Chapter 4 presents a robot interaction scheme through a camera system. In

this chapter, we focus on realism of interaction with a humanoid robot actor. The

objective is to implement a motion control scheme on the Lilly and Zeno robot actors

so that it mimics motions of human head for the application of interest - conversational

robotics. The Lilly robot actor’s main sensing modality is vision. We want the robot

to be able to exhibit a realistic motion in a manner that is similar to humans, suppose

that the robot actor is capable of carrying a conversation with humans. To achieve the

objective, the robot needs the ability to indentify human head position and orientation
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so that the robot is able to follow the human head in a realistic manner. Also, for the

neck-eye structure of the robot, they have to be coordinated so that they look realistic

during the following of the human head. In this chapter, a pose estimation scheme

using the extended Kalman filter is presented as well as an optimization approach

for realistic neck-eye motion distribution. The pose estimation using the extended

Kalman filter is able to estimate 3D pose of the object through a video stream of

an object of interest in real time by tracking four unique points on the object. An

optimization approach for realistic neck-eye motion distribution is implemented on

the Lilly robot actor, tracking discrepancy is an issue using this scheme. We also

address this issue by implementing visual feedback to enhance tracking robustness of

the robot actor.

In chapter 5, interaction with multi degree of freedom robots is discussed. In

this chapter, we focus on interacting with multiple robots or robots with multiple

degrees of freedom through simple interfaces. We are interested in developing an

interface mapping that is intuitive and easy to learn for the human operators. In

this chapter, we discuss the definition of intuitive interface mapping for multiple

agents / multiple DOFs robot control as well as performance metrics. We propose

the use of reinforcement learning approach for adapting the interface mapping. The

reinforcement-learning scheme has been implemented with a simulated mobile robot

motion control system through the use of a 3D stylus as an interface device. Also, the

scheme has been implemented on the actual mobile robot system for position control

using the brain activity sensor. A reward function is used for learning of the interface

mapping. We present results for different reward functions used.

Finally chapter 6 provides discussion on summary of the dissertation as well as

listing the future work.



CHAPTER 2

BACKGROUND

2.1 Physical Interaction with Robots

According to the Robotics Industries Association (RIA), sales of industrial

robots have risen by more than 20% annually through during the last two years. Even

though a large portion (75%) of these robots is currently concentrated in operations

such as welding, painting, and material handling, it is expected that this proportion

will decrease significantly in the future [13]. During the last few years, among notable

trends in industrial robotics has been the introduction of “smart assist devices” and

“safe robots” [14]. These devices augment the dexterity and power output of a human

operator by amplifying his or her motion through a force-sensitive pendant, or they

can sense the presence of humans inside work cells and thus avoid injuries. Robotic

skin is one type of heteroceptive sensor that could eventually enable “cobots” (e.g.

cooperative robots) to share their workspace with humans [15]. In [16], presents a

robot equipped with differential elastic actuators that are backdrivable and torque

controlled, capable of being force-guided. A coordinated haptic training architecture

useful for transferring expertise in teleoperation-based manipulation between two hu-

man users has been proposed in [17]. In [18], discuss a human-machine interface using

Hill-based muscle model to control the isometric force of a robotic thumb. Surface

electromyogram from the skin surface is measured and converted to muscle activation

information.

For the last several years, researchers in Japan, the US, and Europe have been

working on creating artificial robotic skin. Lumelsky, Shur, and Wagner [19] were the

20
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first who proposed the idea of using a large-area, flexible arrays of sensors with data

processing capabilities, which is called “sensitive skin” and can be used to cover the

entire surface of the machine. Sensors to be used with robotic skin include IR sensors

by Vladimir Lumelsky, organic FET arrays at University of Tokyo [20], wireless RF

sensors at Tokyo University of Agriculture [21], PVDF tactile sensors at Tohoku

University [22], work at Univ. Nebraska [23], and force, temperature and electric

field sensors at MIT Media Lab [24].

We have recently introduced a new robotic skin patch (“Quickskin”) [25] based

on piezoelectric transducers embedded into a soft elastomer base, and we propose its

use to enhance human-robot interactivity. Physical interaction with through pushing

or pulling on the robot arm can be used to guide through a desired motion. The

characteristic or feeling of the interaction can be defined by the impedance of the

robot arm. Since its introduction in the 1980s, [26, 27, 28, 29] impedance control has

been used to control robot interaction in a variety of applications, including Intelligent

Assist Devices [26, 30, 31, 32], or in medicine [33, 34].

The typical physical interaction between human and robot (“HRI”) is achieved

using a force-torque sensor mounted on the robot wrist. However, these sensors are

expensive, not always available, and they do not provide direct measurement of the

interaction between the robot chain or the payload with the environment. Several

researches have worked on estimation of interaction force from other proprioceptive

sensors. Kobayashi, Muis and Ohnishi [35] proposed a way to interact with a robot

manipulator without using any sensor by means of Extended Kalman Filtering. And

in [32] crane pushing force is estimated from cable angle measurements. Drawbacks of

this approach include reduced bandwidth of the impedance controller because of force

filtering and also dead-zone of force estimation due to friction or ill-posed numerical

conditioning. Kazerooni et al. [36] have developed an instrumented glove for robotic
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and human-assisted material handling manipulators. The sensory glove measures the

force the wearer imposes on any part of the material handling robot or the object

being maneuvered by the material handling robot and appropriate force is generated

by the actuators to assist the wearer in material handling.

[37] proposed an alternative method by combining impedance control with di-

rect control scheme for control of robot manipulators. The combined impedance /

direct control scheme presented in [37] is shown to be more robust and high in dis-

turbance rejection. A computer simulation has performed to support the proposed

method of combined impedance / direct control.

[38] emphasizes the study of haptic cooperation between two people and between

people and machines. Based on the idea that in order to achieve a particular task

i.e. moving and object, it would be more efficient to have two people (or one person

and machines) performing the task. Examples of physical interaction include; when

two people exchange an object, when two people jointly move a big object, when

one individual teach the other manual skill and when two people dance. Although,

it may perceived by a person that the other person helping causes hindrance but

in fact it is more efficient. In order to efficiently achieve the task with two people

working together, there must be some kind of communications between the two. One

important aspect of the communications is haptic communication. Even though the

two people might not aware of that kind of communication it is the most important

communication that helps getting the task done. The goal of [38] is to study physical

cooperation of two people working together on the same task and possibly replace

one person with a machine that replicated a human interaction behavior. They set

up an experiment for two people to perform a moving of an object to a certain points

and recorded forces acting on the object that were produced by each participant.

The forces applied to an object by both participants were individually measured and
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the total force on the object was also measured. The resulted data were analyzed

and they concluded that it is more efficient, faster to have two people perform on

the experiment. The other experiment was they had one person come in to move

the object with another person pretended to help him but in fact the first person

was assisted by a moving mechanism. The results from those two experiments were

similar. And they proposed to conduct more study in order to thorough understand

the haptic interaction between two individual helping each other to accomplish the

same task.

In chapter 3, we combine the estimation of the human-robot interaction force

using EKF, with direct force measurement along one direction (perpendicular to the

robot arm). We perform realistic simulations with a well identified CRS A465 robot

model, and compare the HRI performance when robot skin is added to the system.

Pushing forces can be applied anywhere on the robot arm as is consistent with the

availability of robot skin sensors. Simulation results show that the addition of robot

skin greatly improves the HRI force estimates, and thus enhances the responsiveness

and safety of the robot. Measurement noise covariances in our simulation are based

on force measurements from “Quickskin”, and experimental work with the skin patch

and an actual CRS robot arm and Phantom Omni haptic device is also discussed in

chapter 3.

2.2 Interaction with Robots through Vision

The role of vision guided control is important and in a wide range of applications

such as humanoid robots, manufacturing environments, satellite and missile control

and creating augmented reality motion. Recently, due to the increased availability

of camera systems, robotic cameras are routinely used in surveillance [39], on movie

sets [40], or in industrial robotics. One of the main issues related to the vision guided
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control system is the evaluation of the position and orientation vector of an object

from the camera field of view, the so-called pose estimation problem. Visual servoing

for following the object is typically achieved using an image based Jacobian, or a

combination of position and image [41, 42] based methods. Certain applications,

such as automated space-station docking, or the interaction between humans and

humanoid robots require the estimation of an object pose in 6D, and visual tracking

of the object based on that pose. Even more challenging, applications can sometimes

provide a single “eye-in-hand” camera view, as opposed to stereo vision, leading to the

so-called 2 1/2 D vision servoing problem [43]. The corresponding pose determination

problem is to calculate the three-dimensional (3D+3D) position and orientation of

an object from a set of feature points captured by two-dimensional (2D) images. In

[44], stereo-based head tracking framework for robust head motion estimation under

varying lighting conditions has been proposed.

Considerable research has already been conducted and various approaches have

been proposed to determine the pose of an object using robot cameras. In [45], an

approach based on active appearance model (AAM) is proposed, which is based on

model matching. A neural network method to determine the pose of an object is

proposed in [46], which requires offline training of the neural network and it fails if

the object is cubical in shape. In [47], a geometric based approach is given, which

uses 4 features points to obtain the pose parameters and an averaging method is

used to deal with system noise. Another method based on hypothesis-testing logic is

proposed in [48], which also uses more than 6 feature points.

Since visual measurements are highly effected by the system noise due to lens

distortion, lighting and background inconsistency, inconsistency in image processing

algorithms, etc, the pose estimation algorithm may produce large errors. This issue

of system noise could be significantly avoided by the use of a Kalman filter, which
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improves the accuracy of the estimation process. Various approaches using Kalman

filter for pose determination have been effectively adopted in [49, 50, 51, 52, 53] and

[54]. In [49, 50], an approach based on Kalman filter is proposed, which uses 5 non-

coplanar feature points with a single camera. Use of multiple cameras with Kalman

filter has been proposed in [51, 52, 53] and [54]. These methods use more than 4

non-coplanar feature points for accurately determining the pose parameters.

Since the 2D camera measurements are related through a nonlinear projection

relationship with the pose parameters, an Extended Kalman filter (EKF) is needed.

It is well-known that such filters are sensitive to state vector and covariance matrix

initial conditions. Inappropriately chosen parameters could produce large errors or

even to the divergence of the estimates. For more on the divergence of the extended

Kalman Filter see [55].

[56] discusses a human head detection algorithm that is able to detect a human

head in a distance more than 2.5 meters. The algorithm was implemented on a

robot with limitations of moving of a camera, orientation of a camera and unfixed

illumination. The assumption is that a human head is an omega (Ω) shape contour.

The proposed algorithm separates background from the omega contour shape with

a combination of three features; Gray Module, Edge Module and Color Module.

The proposed algorithm has been tested on several movie files. The results showed

robustness of head scale, head orientation and moving camera. The detection has

shown significant error when the head to be detected is not facing a camera (from

the back).

[57] proposed approaches of developing a human-like robot photographer. In

order for the robot to be able to behave like human photographer the robot requires

following capabilities; mobility, wireless communication, ability to recognize human

command and ability to follow pre-defined photographic composition rules. [57] uses
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a mobile robot called ETRO which is a wheel-based mobile robot with vision camera.

ETRO has 10 ultrasonic sound sensors, 8 infrared sensors, and wireless connectivity.

The robot is programmed to follow photographic composition rules that are written in

a book photographic composition by T. Grill and M. Scalon which is considered a very

popular and widely used book.The authors summarized four major rules (according

to the book) that were implemented in the experiment. The robot also has the

capability to recognize a human caller. The robot recognizes a waving hand. Since

the authors suggested that it is difficult to do voice recognition in an open space

and face recognition is computationally expensive so they proposed a simpler way

of communication between caller and the robot by recognize hand waving. In the

experiment false detections occurred due to surrounding peoples movement. They

tried to improve the caller finding by adding a face detection routine after the waving

hand detected so that the robot can respond to the correct caller. The conclusion of

the experiment was the robot took photographs well according to four simple position

rules but lacking the artistic aspect of a human photographer. And the robot was

unable to take a scenic picture since it cannot recognize objects. Due to the authors

several aspects concerning intelligence of this robot photographer have to be improved

in the future work so that the robot can behave more like a human photographer.

Visual servoing is an important aspect of our work. [58, 59], proposed a method

of combining Position-based and Image-base visual servoing together. By using kine-

matics measurement, it provides robustness to visual distractions and the occurrence

of the object going out of the field of view. Visual measurement, provide useful in-

formation to achieve pose estimation and to obtain online estimation of the jacobian.

[58] improves robustness and performance of the visual servoing by using the proposed

scheme. [60] proposed a method of using non-linear state feedback model to perform

position-based visual servoing. [60] suggested that the main advantage of the proposed
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method is that camera translation and camera rotation are separately controlled due

to the use of frames selection. [61] proposed a method of tracking a moving target by

uncalibrated model independent visual servo control method namely dynamic quasi-

Newton approach. The control problem is formulated as a nonlinear least squares

optimization. It uses a time-varying objective function which is minimized using the

Newtons method. [61] proved that the convegence of the servoing system using this

method is guaranteed. [62] proposed a method of using laser pointers attached to

the end-effector of the eye-in-hand Image-based visual servoing system. The feature

extraction become just a problem of identifying the laser points on the object which

reduce the computation load of the feature extraction part. [62] showed that by us-

ing the proposed method it produces a control scheme with nice properties such as

decoupling, stability, and good camera trajectory.

A motivating application is visual tracking of a human using a humanoid robot.

In this dissertation, tracking is performed through position based visual servoing,

where the features to be tracked are projected through the camera model from 6D

pose estimates. A PID controller with tuned gains will be used to implement the

proposed servoing scheme. The overall estimation-servoing scheme is experimentally

validated using a simple pan and tilt camera mechanism, LILLY and Zeno humanoid

robot actors.

The advancement and cost-effectiveness of sensor/ actuator and computing

technology has played an important role on the emergence of humanoid robotics.

More recently, research has focused on realistic interaction between humans and hu-

manoid robots in manners as intuitive and natural as human-to-human conversation.

Hence, in “social robotics”, it now possible to construct humanoid hardware with

human-like appearance: e.g. mouth and eyes. The human-like humanoid hardware

has to be controlled so that the overall behaviors are similar to those of humans.
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Mori [63, 64], was among the first to suggest that people are likely to become fa-

miliar with robots that exhibit human-like features, appearance and characteristics.

However, if those characteristics are not apparent, an “uncanny valley” is created

which leads to feeling of “repulsion” by humans. Bartneck [65] proposed the alterna-

tive model to the Moris “uncanny valley” model and Shimada [66] suggested that the

“uncanny valley” model varies from individual to individual. The “uncanny valley”

and other human-likeness theories continue to be attractive research topics. Studies

done by Woods [67] and Goetz [68] suggested that human-like robots are more likely

to be treated the same way people are treated in a social setting, if they do not

have a mechanical-like appearance. Extensive studies of human imitation (realistic

human-likeness) and sociable robot (human-robot interaction) have been conducted

using MIT robots COG and Kismet. Breazeal [3] discussed the potential challenges

regarding building robots that imitate humans and Scassellati [69] studied human

social development models, the way social interaction skills are developed in humans,

relating to human-like robot interaction. It is clear that creating both a realistic

appearance, as well as realistic behaviors for humanoid robots will play an important

role in the future of such robots. In [70], the method of using virtual mechanism

approach to control humanoid robot head for object tracking has been proposed.

The work in [71] is based on the fact that the humanoid robot is currently widely

used, studied and also the humanoid robot shares workspace with people. Therefore,

it is important to study how people would react with the humanoid robot presented

in the people’s workspace. In [71], the robot was placed in the office and repeatedly

performing the interactions and record how human would respond to various type

of interactions. The conclusion of [71] focuses on the social relationships of a robot

among people. A variety of aspects of the social relationships have been issued from
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the experiments, and the authors have proposed ways to improve the appearance and

intelligence of the robot, so that the robot would fit into daily life.

In [72], authors developed an artificial facial expression imitation system that

can recognize and imitate humans facial expressions. They proposed a classification

that was suitable to recognize human facial expression in real time. They also built

a robot that can generate facial expressions in order to validate proposed methods

of recognizing human facial expressions. The methods used in the facial expression

recognition include; model-based method s which require high resolution images and

are time-consuming to fit the data, therefore this approach is not good for real-time

facial expression recognition and Principle Component Analysis (PCA), which dis-

tinguishes facial expression using an image intensity profile. [72] proposed a facial

expression imitation system that consists of two parts; facial expression recognition

and facial express generation through a robot. The facial expression part is able to

classify basic facial expressions such as: neutral, happiness, sadness, anger, surprise,

disgust and fear. The recognition method is called rectangle feature, and was im-

plemented along with a learning algorithm called AdaBoost Learning Algorithm by

using 1065 facial expression images from database. The facial expression generation

part is based on facial action coding system (FACS). The experiment they conducted

includes capturing a picture of a human, detecting/classifying facial expressions, and

then playback of the captured facial expression on the robot.

Another motivating application for our work is to create a conversational robotic

actor with realistic interactivity, in particular person recognition, identification, track-

ing, eye contact, and conversational interaction. Breazeal [73] proposed a vision sys-

tem for social robots that allows them to interact with humans in a meaningful way,

e.g., the intention of the human can be perceived and elicit a natural response from

the robot. Gurbuz [74] proposed a novel approach to do human mouth mimicking on
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a humanoid robot head in real time. Facial features are tracked in real time through

stereo vision and a learning algorithm is implemented to detect human mouth which

in turn is used as a trajectory for the humanoid robot to follow.

The main idea of [75] is to generate a motion of humanoid robots that close to

natural motions of humans. There is no solid boundary as what kind of motion qualify

as natural as it is difficult to define “Natural Motion”. In [75], the term “Natural

Motion” is lightly refers to the motion that is resemble human motion. It can be

categorize into 3 types of works that are relating to generating a natural motion:

motion capture method, optimization based method and control based method.

The motion capture method is widely used in computer animation, movie for

which real actors enact a scene, and the motion of actors are captured through various

methods of data acquisition, and then played back on animated characters, so that

the computer animated characters will appear to behave naturally as if they were real

humans. There are many researchers that are currently working on this topic.

Optimization-based methods are based on minimizing force/torque required to

move the robot. It has been studied that by minimizing force/torque of the robot

actuators it will result in having natural look. Motions of humans are minimized

in terms of energy, a process we have developed through learning since we were

children. So we might not aware that each motion we perform are optimal in terms

of energy consumption. The method is based on the assumptions that by minimizing

force/torque require to move robot joints the robot will appear to move naturally

the same way human does. [75] focuses on this approach. The authors have done

two simulations to show the strength of the proposed method. First, a the 1 DOF

manipulator has been simulated to show the minimized force/torque motion. Second,

the authors have worked on a simulation of a humanoid robot to generate a reaching
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motion. The result has shown that the proposed method is effective in order to

generate a human-like motion.

In this dissertation, we present the basics of an optimization algorithm as well

as experimental results showing a kinesiological sound movement of the humanoid

robot head and eyes. Our work extends past results we employed for creating realistic

interactions between a human and a virtual actor [76]. Unlike other published work in

this area [77, 78, 79, 80], a straightforward, approximate kinematic model of humanoid

robot head was used by our algorithm, rather than an accurate one. Moreover, the

objective function in our algorithm is formed based on kinesiological properties of real

human eyes (Listings Law) [81], so that the resulting motion of the humanoid robot

actor is similar to humans head-eye motion. We also take into consideration that

the actual humanoid hardware might not match the approximate kinematic model.

The visual feedback scheme is used to minimize the error that may arise from model

discrepancy and/or disturbances.

In chapter 4 we also propose and experimentally validate an efficient, EKF-

based 6D pose estimation algorithm and combine it with object tracking with a

robotic camera. Furthermore, pose estimation using the proposed approach is ac-

complished with only 3 non-collinear feature points. The combined algorithm was

found to be robust to large initial condition errors and noise through the experiments

we conducted. In addition, we are interested in generating realistic motion of the

humanoid robot head and eyes using a combination of objective function optimiza-

tion method and visual servoing method to create head-eye motion profile based on

human kinesiology and keep track of the human target in the presence of head-eye

modeling error and hardware imperfections. The visual feedback method does not

require knowledge of an exact kinematic model and joint axis coordinates for either

robot or human. We study the interaction with conversational robot through vision
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[7], based on extraction of human-head 3D poses from video streaming at 30Hz frame

rates. The experiments were conducted using Lilly, a human-like facially animated

robot actor, currently being developed in our lab. We make use of the location in-

formation of a person as detected by the robot, and we augment it with a head-eye

motion coordination scheme that enables the robot to achieve a realistic gaze during

tracking.

2.3 Interaction with Multiple Degrees of Freedom Robots

It is a challenging task to control a system of multiple robots and/or a robot

with multiple degrees of freedoms by a single operator in an efficient manner. The

most intuitive way for a human operator to manipulate a robot is to use hands to

position a robot or a small replica of a robot manually (master / slave operation).

However, such an interface is not always available.

The objectives of building an intuitive interface mapping for multiple agents/

multiple DOFs robot control can be summarized as follow:

• Build a simple reconfigurable interface system that allows a single operator to

manipulate a robot with multiple degrees of freedom and/or multiple robots.

• The proposed interface system should be intuitive, easy to use and can be

learned quickly by an operator.

• The interface system should be able to use with different robot configurations.

The supervisory control of multiple agents/ multiple DOFs robots is a very

demanding application. There are many tasks that can be achieved using multiple

robots, however, the main benefit of using multiple multiple agents/ multiple DOFs

robots is to get task done more efficiently in scenarios where it is considered to be

difficult for humans. It is challenging to evaluate performance of such scenarios due

to several restricting factors. Nevertheless, performance evaluation of supervisory
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multiple multiple agents/ multiple DOFs robots control is vital, since it is almost

impossible to improve the control scheme without it. Hence, as a foundation for

development of better control scheme for multiple multiple agents/ multiple DOFs

robots, we must first be able to evaluate the control performance of the existing

control schemes. In this section, we are discussing the conventional human factors

evaluation that have been in use in the past, and then propose a set of performance

metrics that are suitable to multiple robots control based on common principles.

Research on the psychology of interaction between a human and a robot have

been widely studied. Most of the research in this area are focus on the study of

force, motion, planning but in [82], it concentrated on the study of physiological

effects of a robot on a human.Emotional stress, reduces productivity, can be caused by

working with a robot for a long time. Sensor measurements taken during experiments

include: heart rate (electrocardiograph), respiration, perspiration, pulse wave and

blood pressure. [82] used the mentioned data to analyze the emotional state of the

human participated in the experiment. They also used a 12 DOFs serial mechanism

to capture a human motion so that they could incorporate motion with the data

from the sensor measurements. The experiment was performed by a human wearing

the sensors in the working environment of a robot, and they interpreted all the data

from measurements to indicate the participants stress level. They recorded certain

actions that significantly increase or decrease the stress level of the human. Through

the experiment, they managed to decrease the subject’s stress by performing certain

robot’s motions.

In [83], proposed a reinforcement learning method for robots to learn to solve a

task based on brain activity recorded by an EEG-based BCI system as reward signals.

In [84], reinforcement learning approach for parameterized control policies based on

the framework of stochastic optimal control with path integrals has been proposed.
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In [85], reinforcement learning with Decision Trees (RL-DT) for learning of agent and

environment model by generalizing the relative effect of actions across states is used

for humanoid robot control.

In order to be able to quantify whether or not an arbitrary human-robot task is

completed satisfactorily some performance metrics have to be used. [86] lists general

human-robot performance metrics, while in [87], a set of definitions that form a

framework for describing the types of awareness that humans have of robot activities,

and the knowledge that robots have of the commands given them by humans has been

introduced. [88] discusses supervisory control of multiple robots performance metrics,

and in [89], a method for identifying sets of metric classes by decomposing a human-

robot team consisting of a single human and multiple robots has been proposed.

Human supervisory control metric classes and subclasses and performance metric

evaluation criteria have also been proposed in [90]. [91] proposed generalizable metric

classes for human-multiple robots supervisory tasks. In [92], an objective function

for different levels of human-robot collaboration in a target recognition task has been

developed to assess human-robot collaboration performance in many conditions. In

[93], the method of improving robot operator performance by using augmented reality

has been proposed. In [94], the authors have compiled a set of seven principles for

efficient interaction for the designing efficient interfaces. In [95], common metrics for

task-oriented human-robot interaction have been identified by using a fuzzy temporal

model to evaluate the human trust in automation while interacting with robots and

machines to complete some tasks.

Most of the previous work is qualitative, and based on repeated experimentation

with human subject. The interfaces evaluated are not adaptable to the results or to

individual users. In chapter 5, we propose learning components to be incorporated in

interfaces between a human and multi DOF robots.



CHAPTER 3

PHYSICAL INTERACTION WITH ROBOTS

Industrial Robots nowadays are considered hazardous machinery. Since oper-

ation of robots can consist of moving objects in space with considerable high speed,

human operators sharing the same workspace with the robots might get seriously

injured because robots are not “aware” of the presence of human operators. It is de-

sirable that human operators should be able to share workspace and work safely with

robots. The idea is to make robots “smarter” so that robots can detect a presence of

human operators and avoid physical contact with them.

Physical interaction force sensing is an important aspect for good force control

of the robot manipulator. Suppose that we want to be able to physically interact

with the robot manipulator any point along the manipulator chain, we would need to

place force sensors all over the robot, which is difficult. Sensing interaction forces in

3D is important. However, in this chapter we develop an extended Kalman filter 3D

force estimation scheme, this allows us to obtain estimated force in the unmeasured

directions (we assume that the sensor can only measure normal force). With the need

to have 3D force sensing eliminated, the ultimate goal is to have some kind of artificial

skin force sensor cover the entire robot manipulator so that we can physically interact

with the robot manipulator any point on its chain. In this chapter, we will show the

effectiveness of the extended Kalman filter force estimation scheme by putting a force

sensor at a certain location on the robot manipulator. We will also make use of the

estimated force information to implement impedance control.

35
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Figure 3.1. Overall control system diagram which includes Kalman filtering estima-
tion, Impedance controller, and computed-torque control.

3.1 Force Estimation Using Kalman Filter

3.1.1 Modeling of the Human-Robot Interaction Scenario

In this chapter we will consider arbitrary robot manipulator for the EKF force

estimation scheme. The kinematics and dynamical model of the manipulator is as-

sumed to be well known. We assume that the robot can be equipped with a force-

torque sensor, but here we pretend that none is available, and that robot skin is

mounted at the end-effector of the robot. As a result, we will be primarily interested

in the kinematics of the robot as we need to calculate torque acting on the joints

according to the force acting on the end-effector. The overall EKF force estimation

and impedance control scheme is shown in Fig. 3.1.

3.1.1.1 Kinematics

The point of interaction P can be anywhere in the chain, and we refer to this

point as the “virtual end-effector”. Using the product of exponentials formula, the
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forward kinematics map from the robot base to a point P of application of the force

is gst : Q×R3 → SE(3), is given by

gst(q, p) = (

j∏
i=1

eξiqi)gst(0, p) (3.1)

where j is the robot link where the force is applied, qi‘s are joint coordinates, and ξi‘s

are the link twists given by:

ξi =

−ωi × νi
ωi

 (3.2)

where ωi ∈ R3 is a unit vector in the direction of the twist axis and νi ∈ R3 is a

point on the axis. In general, the base to virtual end-effector transformation matrix

is defined as follows

gst(q, p) =

 0
j+1R(q) p(q)

0 1

 (3.3)

At the same time, the relationship between Jacobian expressed in base frame and

Jacobian expressed in virtual end-effector frame is as follows:

0J(p, q) =
∂ p(q1,...,j)

∂ q1,...,j

= 0
j+1 R(q)Je(p, q) (3.4)

where jth frame is the virtual end-effector frame. Therefore the Jacobian expressed

in the virtual end-effector frame can be obtained from:

Je(p, q) = j+1
0R(q) 0J(q)

=
( 0

j+1
R(q)

)T 0
J(q) (3.5)

where je(q) is the Jacobian expressed in the virtual end-effector frame. Because forces

acting on the manipulator are measured in the end-effector frame, we use je(p, q) in

the manipulator dynamics.
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3.1.1.2 Dynamics

The dynamical model of an arbitrary manipulator is written conventionally as:

M(q)q̈ + C(q, q̇)q̇ +Dq̇ + fc(q̇) +G(q) = τ + JTe (p, q)fh (3.6)

where q ∈ Rn is the vector of generalized joint coordinates, n is the number of joints,

M ∈ Rn×n is the symmetric positive definite mass (inertia) matrix, C(q, q̇)q̇ ∈ Rn is

the vector of Coriolis and centripetal forces, G(q) ∈ Rn is the vector of gravitational

torques, D ∈ Rn×n is the positive semi definite diagonal matrix for joint viscous fric-

tion coefficient, fc(q̇) ∈ Rn is the Coulomb friction term, is the vector of generalized

torques acting at the joints, JTe (p, q) ∈ R3×n is the conventional Jacobian to the vir-

tual end-effector expressed in the end-effector frame and fh ∈ Rn is the human-robot

interaction force at the virtual end-effector represented in its frame.

3.1.2 Force Estimation using Extended Kalman Filter

It is assumed that force measurement at the end-effector or the virtual end-

effector (where an artificial skin patch is mounted) is available only in one dimension

or less (no measurement at all). Rather than using an inverse dynamical model of the

robot manipulator as in [35], which is prone to numerical instability and needs addi-

tional filtering, we use an Extended Kalman Filter as a way to estimate torques acting

at the joints due to pushing force at the virtual end-effector. We write dynamical

model of the manipulator from the base to the end-effector as follows:

M(q)q̈ +N(q, q̇) = τm + τu (3.7)

where q ∈ Rj, N(q, q̇) = C(q, q̇)q̇ + Dq̇ + fc(q̇) + G(q) and τm = τ + JTe (q)fm ∈ R3

is the known torque acting at the joints (either through direct measurement or from

control input), τu = JTe (q)fu ∈ R3 is the unknown torque to be estimated (due to
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pushing force in directions that cannot be measured). Since we use a force sensor

skin element to measure the force perpendicular to the manipulator, we can assume

that fm =

[
fmx 0 0

]T
, i.e, only force element in x direction can be measured.

The state-space model of (3.7) is:

ż =

q̇
q̈

 =

 q̇

M(q)−1[τm + τu −N(q, q̇)]

 (3.8)

To include the unknown torque vector into the estimation, we define the new

extended state x including the unknown torque vector τu:

x =

[
qT q̇T τTu

]T
∈ R2j+3 (3.9)

From (3.7), τu can be written as follows:

τu = M(q)q̈ +N(q, q̇)− τm (3.10)

Since τu is a time-varying function, the first order time derivative τ̇u is given

by:

τ̇u =
d

dt
[M(q)q̈ +N(q, q̇)− τm] (3.11)

or

τ̇u = Ṁ q̈ +M(q)
...
q + Ṅ − τ̇m (3.12)

The new augmented state-space model is written as:

ẋ =


q̇

q̈

τ̇u

 =


q̇

M(q)−1[τm + τu −N(q, q̇)]

Ṁ q̈ +M(q)
...
q + Ṅ − τ̇m

 (3.13)

= f(x, τm)

where f(x, τm) is a nonlinear representation of the new augmented state-space model,

Ṁ =
d

dt

(
M(q)

)
(3.14)
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Ṅ =

(
d

dt
C(q, q̇)

)
q̇ + C(q, q̇)q̈ +Dq̈ +

d

dt
[fc(q̇)] +

d

dt
[G(q)] (3.15)

τ̇m =
d

dt

(
M(q)

)
(3.16)

In order to convert the continuous augmented state-space model into a discrete

model (3.13) needs to be discretized. The first order discretization of (3.13) with

sampling time T leads to:

xk+1 = fT (xk, τmk) +

νk
ηk

 (3.17)

where fT (xk, τmk) = xk + ẋ(xk, τmk)T , νk ∈ R2j is process white noise, and ηk ∈ Rj

is also process white noise associated with the unknown torque. Note that we used

the process noise ηk to introduce the measurement noise from the force skin sensor

element. The overall state covariance matrix is now:

Q = E


νk
ηk


νk
ηk


T (3.18)

The observation equation from the robot joints encoders is given by:

yk = Cxk + wk (3.19)

where C =

[
I2j 0j×j

]
, wk ∈ R2j is the measurement white noise with covariance:

R = E
(
wk w

T
k

)
(3.20)

Define

Fx(x, τm) =
∂fT (xk, τmk)

∂x
∈ R(2j+3)×(2j+3)

=

[
∂fT (xk,τmk)

∂q
∂fT (xk,τmk)

∂q̇
∂fT (xk,τmk)

∂τu

]
(3.21)
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to be the Jacobian matrix of fT (xk, τmk) with respect to

[
qT q̇T τTu

]T
. Instead of a

signum function in the fc Coulomb friction term, we use a smooth hyperbolic tangent

function tanh(), so that the partial derivative (3.21) is well defined:

fc (q̇) = µ tanh (αq̇) (3.22)

where µ is a friction coefficient, α is a design constant chosen to be larger than the

desired HRI force bandwidth. An Extended Kalman Filter is now used to estimate

the state of the linearized system in two steps:

1) Time Update:

x̂−k+1 = f (x̂k, τmk) (3.23)

P−k+1 = FxPkF
T
x +Q (3.24)

2) Measurement Update:

Kk+1 = P−k+1C
T
[
CP−k+1C

T +R
]−1

(3.25)

Pk+1 = P−k+1 −Kk+1CP
−
k+1 (3.26)

x̂k+1 = x̂−k+1 +Kk+1

(
yk+1 − Cx̂−k+1

)
(3.27)

where P−k+1 ∈ R(2j+3)×(2j+3) is the covariance matrix of the prediction error, Pk+1 ∈

R(2j+3)×(2j+3) is the covariance matrix of the estimation error.

3.2 Impedance Control for Robot Safety

Assuming that the HRI pushing force can be estimated by the Kalman Filter,

it is desirable to make use of it in order to guide the motion of the manipulator. We

use an impedance control scheme to program the robot compliance. The goal is to

specify the desired compliance characteristic of the robot manipulator so that when

a human-operator applies force to the robot it feels as if the robot has certain mass
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and viscous coefficient. Define the desired impedance of the robot manipulator from

its base to link j as:

Mdq̈cd +Bdq̇cd +Kdqcd = τt (3.28)

where τt ∈ Rj is the total torque due to pushing force. τt can be written as follows:

τt = JTe (q) fm + JTe (q) fu (3.29)

where JTe is defined in (3.5), fm and fu are defined in (3.7), Md ∈ Rj×j is desired

Mass (Inertia) matrix, Bd ∈ Rj×j is desired Damping matrix, Kd ∈ Rj×j is desired

stiffness matrix, qcd is the desired angular position of the manipulator.

The relationship between desired angular, position, velocity and acceleration

and Md, Bd and Kd can be written in matrix form as follows:q̇cd
q̈cd

 =

 0n×n In×n

−M−1
d Kd −M−1

d Bd


qcd
q̇cd

+

 0n×1

M−1
d τt

 (3.30)

(3.30) can be solved numerically to find qcd, q̇cd and q̈cd.

We can now use a straightforward Computed-Torque Controller to track the de-

sired manipulator trajectory qcd with an overall scheme shown in Fig. 3.1. From(3.7):

M(q)q̈ +N(q, q̇) = τ + JTe (q) fm + JTe (q) f̂u (3.31)

where f̂u is obtained from estimation of the unknown torque. The control signal

becomes:

τ = M (q̈cd − u) +N − JTe
(
fm + f̂u

)
(3.32)

where

u = −Kv (q̇cd − q̇)−Kp (qcd − q) (3.33)

and Kp and Kv are PD controller gains.
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Figure 3.2. The links coordinate of the CRS A465 robot.

3.3 Simulation and Experiment Results

In our simulation, we use actual values of masses, lengths, friction coefficients,

etc. from a well-identified CRS A465 robot [12]. The CRS A465 is depicted in Fig.

3.2. The A465 has six degrees of freedom, and can be equipped with a force-torque

sensor, but here we assume that none is available, and that robot skin is mounted on

the first three links. As a result, we will be primarily interested in the kinematics of

the first three DOFs in the chain.

Fig. 3.2 shows the link coordinate system of the CRS A465 robot, its base coor-

dinate system (X0, Y0, Z0), and coordinate systems for the first three links (Xi, Yi, Zi),

i = 1 . . . 6. For the A465, the first three twists are given by:

ω1 =

[
0 0 1

]T
ω2 =

[
0 0 1

]T
ω3 =

[
0 1 0

]T
ν1 =

[
0 0 0

]T
ν2 =

[
0 0 d1

]T
ν3 =

[
0 0 d1 + d2

]T (3.34)

where di is the link length of the ith joint.
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The transformation between base and virtual end-effector frames at q = 0 is given

by:

gst(0, p) =


I


0

d3

d1 + d2


0 1


(3.35)

In this section we validate the estimator-controller for HRI through the use of

a Simulink R© model based on a well-identified CRS robot from [12]. Actual noise co-

variances based on skin sensor measurements and encoder resolution is used to create

a realistic simulation model. A nominal model of the CRS A465 robot (3.7) is built

together with the Kalman Filter equations (3.23)-(3.27), while (3.21) is obtained in

symbolic form using Matlab R©’s symbolic toolbox. We run simulations to verify that

adding a skin patch greatly improves the performance of the HRI. Simulation results

are presented in five different cases and two different cases for actual implementation

on Phantom Omni haptics device (as shown in Fig. 3.5):

Experiment 1) Kalman filter parameters (3.13) are same as the robot dynamics

(3.6) (known model), and we assume no force measurement.

Experiment 2) Same as experiment 1) but pushing force is lower than the robot

arm static friction.

Experiment 3) The robot dynamics (3.6) and Kalman filter parameters (3.13) are

slightly different (model is uncertain). Here we compare results between no

measurement and 1 dimension force measurement at the pushing point p.

Experiment 4) Estimated pushing force from having 1 dimension force measure-

ment (experiment 3) is used to control the motion of the robot arm through

(3.32) and (3.33).
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Experiment 5) Assuming that HRI interaction in all 3 dimensions is available; we

want to compare the performance with experiment 4.

Experiment 6) EKF force estimation and impedance force control are implemented

simultaneously on Phantom Omni haptics device without force measurement.

Experiment 7) EKF force estimation and impedance force control are implemented

simultaneously on Phantom Omni haptics device with 1D force measurement

through the Flexiforce sensor.

3.3.1 Experiment Testbed

In this subsection we describe an experimental setups that are used to validate

HRI interaction algorithm depicted in Fig. 3.1. We apply our studies on two different

experiment set ups. Firstly, Fig. 3.3 shows a planned experiment using a CRS A465

robot arm and an artificial skin patch used as a one-dimensional force sensor. It is

assumed that the human operator can apply force at the point where the artificial

skin patch is mounted. Secondly, we use an Phantom Omni haptics device, shown

in Fig. 3.5, to test our proposed algorithm. In this set up we use a different kind of

force sensor called Flexiforce, shown in Fig. 3.6. Detailed kinematics and dynamics

of the Phantom Omni device are given in the Appendix A.

An actual signal reading from the piezo-based artificial skin patch (“Quickskin”

from [25]) is shown in Fig. 3.4, from which the covariance corresponding to the signal

was calculated to be 0.0591, and this value is used in the numerical simulation in

the next section. The relationship between the voltage and force of the artificial skin

patch is almost linear by a factor of 3.
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Figure 3.3. Photo of an artificial piezo-electric skin patch mounted on the CRS A465
and used as a one dimensional force sensor.

Figure 3.4. Actual signal measured from the artificial skin patch that is mounted on
the CRS robot arm as shown in Fig. 3.3.
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Figure 3.5. Phantom Omni haptics device that we used in experiment 6 and 7 to
validate the proposed HRI algorithm.

Figure 3.6. Flexiforce sensor used as a 1D force sensor.
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Figure 3.7. Diagram of the system without force measurement.

Figure 3.8. Simulated pushing force fh is composed of force components in x, y and
z direction in the local virtual end-effector frame.

3.3.2 Experiment 1

The diagram of the system in this case is shown in Fig. 3.7; input fh is shown in

Fig. 3.8. M(q) and N(q, q̇) [12] are exactly the same for both the robot arm model and

the Kalman filter parameters (3.6). T sampling period equals 0.002 second, τm = 0.

The estimation error is shown in Fig. 3.9. d1 = 0.33, d2 = 0.305 and d3 = 0.25

hence, Jacobian at the virtual end-effector (artificial patch mounting point) can be

calculated using (3.4)-(3.5). Since the manipulator is in motion and the system is

well identified, we expected that the estimation errors will be close to zero.
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Figure 3.9. Experiment 1: HRI force estimation error if pushing force exceeds static
friction.

3.3.3 Experiment 2

In this case everything is exactly the same as Experiment 1) except is smaller

than in experiment 1 by a factor of ten. It is obvious that when pushing force is lower

than the static friction of the robot arm, the arm does not move and as a result the

Kalman Filter fails to estimate the unknown torque, as shown in Fig. 3.10.

3.3.4 Experiment 3

The diagram of the system in this case is shown in Fig. 3.11. In this case the

robot arm model is assumed to be as in (3.6) but we introduce system uncertainty

through Ñ = 1.5N . In our simulation, this change is known to the robot arm dynamic

model, but unknown to the EKF estimator. In addition we assume that α = 100,

joint encoder covariance noise (3.20) of 10−6, e.g. R =

[
10−6 I2j

]
. The model error
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Figure 3.10. Pushing force is too low to move the arm. HRI force estimation errors
do not converge to zero because they are based on encoder readings only.

is viewed as process noise by the Kalman Filter, and Q equals to

0.1I2j 0

0 0.0591I3

.

The HRI pushing force input is the same as in experiment 1, e.g. the manipulator

friction is overcome, but the system modeling error is large. Fig. 3.12 shows the

estimation error without force measurement, Fig. 3.13 shows the estimation error of

the system with one dimensional force measurement.

We conclude that adding a 1D force measurement greatly improves the estima-

tion of the HRI interaction in the presence of noise and modeling uncertainties.

3.3.5 Experiment 4

The diagram of this case is shown in Fig. 3.1, same assumptions as in experi-

ment 3 with one dimension force measurement. Md is selected to be In, Bd is selected

to be 0.7In and Kd equals to zero vector (3.28). PD gains of the controller (3.33) are
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Figure 3.11. Diagram of the system with force measurement.

set as follow: Kv = 10In, Kp = 25In. The impedance control tracking error is shown

in Fig. 3.14.

3.3.6 Experiment 5

An ideal system to measure the HRI interaction will measure force in all 3

dimensions to feed it into the impedance controller as pushing force shown in Fig.

3.11. The output difference between the ideal system and the system with only 1D

force measurement from Experiment 4) is shown in Fig. 3.15. One can see that the

difference in manipulator response is not significant.

Fig. 3.16 shows the output difference between the system using 3D measurement

of HRI force and the system in Experiment 4) but with a small force input from

Experiment 2) (small pushing force that does not overcome robot static friction). For

the ideal system the robot will move regardless of the magnitude of the pushing force

but the system in Experiment 4) the robot arms initial move is solely due to 1D force

measurement and once the robot arm starts moving the other 2 force component can

be estimated. This results in a small end position error as shown in Fig. 3.16. We

conclude that a robot skin with 1D force measurement capability is not identical, but

is sufficiently performant in creating desired small force HRI interactions.
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Figure 3.12. Due to modeling error, Kalman filter parameters are different from the
robot dynamics model. Without force measurement, performance of the estimation
is poor.

Figure 3.13. The estimation error is improved by adding 1 dimensional measurement
to the system even though sensor noise is presented.
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Figure 3.14. Tracking error of the system shown in Fig. 3.14.

Figure 3.15. Joint output difference between the ideal system case and the system
with only 1 dimension force measurement (Experiment 4) and the pushing force is
low (as in Experiment 2) showing that HRI performance is similar.
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Figure 3.16. Joint output difference between the ideal system case and the system
with only 1 dimension force measurement (Experiment 4). By adding more force
sensing to the skin, HRI improvements are marginal.

3.3.7 Experiment 6

In this experiment, we implement the physical HRI system according to Fig.

3.1. There is no force measurement in this experiment. The parameters of the EKF

estimator are the same as used in Experiment 3. For impedance force control, the

control gains are the same as those used in Experiment 4 . The user interact with the

device at the end-effector, resulting joint trajectory is shown in Fig. 3.17. Estimation

of torque acting on the joints according to the interaction at the end-effector is shown

in Fig. 3.18. Through the transformation we obtain estimation of the pushing force

at the point of interaction, shown in Fig. 3.19. Fig. 3.21 shows the square error

of the estimation, we can see from the results that without force measurement the

performance of the estimation is poor similar to Experiment 3. Fig. 3.22 shows the

trajectory of the end-effector according to interaction by the user.
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Figure 3.17. Experiment 6 - joints angular position due to interaction at the end-
effector by the user.
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Figure 3.18. Experiment 6 - estimation of torque acting on individual joints according
to the interaction at the end-effector.
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Figure 3.19. Experiment 6 - estimation of interaction force being applied at the
end-effector by the user.
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Figure 3.20. Experiment 6 - estimation error.
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Figure 3.21. Experiment 6 - estimation error square.
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Figure 3.22. Experiment 6 - the trajectory of the end-effector according to interaction
by the user.
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3.3.8 Experiment 7

In this experiment, we implement the physical HRI system according to Fig.

3.1. The 1D force estimation is used in this experiment, the Flexiforce sensor is

attached to the Omni haptics device as shown in Fig. 3.5. The parameters of the

EKF estimator are the same as used in Experiment 3. For impedance force control,

the control gains are the same as those used in Experiment 4 . The user interacts

with the device at the end-effector, and the resulting joint trajectory is shown in Fig.

3.23. The estimation of torque acting on the joints according to the interaction at

the end-effector is shown in Fig. 3.24. Torque acting on the joints resulting from 1D

force reading is shown in Fig. 3.25. 1D force measurement is shown in Fig. 3.26.

Through the transformation we obtain estimation of the pushing force at the point

of interaction, shown in Fig. 3.27. The difference between the measured force by

1D sensor and estimated force obtained from EKF estimation is shown in Fig. 3.28.

The squared error of the force estimation is shown in Fig. 3.29, by adding a 1D

force measurement the force estimation improves significantly. Fig. 3.30 shows the

trajectory of the end-effector according to interaction by the user.

The same conclusion as Experiment 3 can be drawn from Experiment 6 and

7 that adding a 1D force measurement greatly improves the estimation of the HRI

interaction in the presence of noise and modeling uncertainties.

3.4 Summary

3.4.1 Summary

In this chapter we proposed a Human-Robot Interaction (HRI) algorithm based

on EKF estimation and measurement of physical interaction force through robotic

skin (1D force sensor). Simulation and experiment results confirm that the proposed



59

0 5 10 15 20 25 30

−1.5

−1

−0.5

0

0.5

1

1.5

time (s)

A
n

g
u
la

r 
P

o
s
it
io

n

 

 
θ

1

θ
2

θ
3

θ
4

Figure 3.23. Experiment 7 - joints angular position due to interaction at the end-
effector by the user.
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Figure 3.24. Experiment 7 - estimation of torque acting on individual joints according
to the interaction at the end-effector.
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Figure 3.25. Experiment 7 - torque acting on the joints obtained through Jacobian
transformation of the 1D measured force.
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Figure 3.26. Experiment 7 - 1D force measurement of the force acting at the end-
effector by the user.
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Figure 3.27. Experiment 7 - estimation of interaction force being applied at the
end-effector by the user.
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Figure 3.28. Experiment 7 - difference between the measured force by 1D sensor and
estimated force obtained from EKF estimation.
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Figure 3.29. Experiment 7 - square error of the measured force by 1D sensor and
estimated force obtained from EKF estimation.
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Figure 3.30. Experiment 7 - the trajectory of the end-effector according to interaction
by the user.
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method is efficient even though not all components of the contact force are available for

measurement. The proposed method is able to estimate joint torque due to pushing

force even when no measurement is available. However, if no force measurements are

available, adequate HRI interaction requires an accurate robot dynamic model and

a pushing force large enough to overcome joint static friction. By adding a 1D force

sensor as a robot skin, we can greatly improve the HRI interaction. The simulation

and experiement results also show that marginally better estimation is achieved by

adding force measurements in more directions.



CHAPTER 4

HUMAN-ROBOT INTERACTION THROUGH VISION

4.1 Humanoid Robotic Actors: LILLY and Zeno

A humanoid actor with facial expressions, LILLY, is being designed at ARRIs

Humanoid Lab in collaboration with Hanson Robotics Inc. LILLY exhibits facial

expressions and enhanced interactivity, including eye movement, eye contact, speech

synthesis, human expression mimicking, human emotion synthesis. LILLY is a second

generation humanoid, similar in design with the head of Einstein Hubo [4], as shown

in Fig. 4.1. One of LILLYs subsystems includes tracking of a human in its field of view

for purposes of conversational interaction and mimicking. To enhance the realism of

interaction, this subsystem requires both 6D pose estimation of the human, as well

as tracking of the human in a natural, direct eye contact pose.

Zeno is a humanoid robot head developed by Hanson Robotics. David Hanson

provided Heracleia lab at UTA with a copy of Zeno head prototype for experimental

testing and algorithm development. The picture of the humanoid robotic actor Zeno

is shown in Fig. 4.2

A set of feature points on the images acquired by LILLYs vision system are used

to estimate the pose of the human. The feature points selected for this purpose are

left eye, right eye and the location of the mouth. These feature points are extracted

using standard image processing techniques such as horizontal and vertical gradient

methods, circular Hough transform and probability distribution of skin color [96], [97]

and [98]. The relative coordinates of the feature points (left eye, right eye, mouth) are

64
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Figure 4.1. (a) Humanoid actor, LILLY, at ARRIs Humanoid Lab. This model
uses RC servos to accomplish facial expressions. We are currently embedding muscle
actuators directly in the robot skin (b) Solidworks model of Lillys skull and eyes
animated via the tracking controller.

nominally known a priori. In [99], they presented an efficient two stage neural-network

based approach for feature extraction and expression classification.

4.2 Pose Estimation and Object Tracking Problem

In this chapter we test a target pose-estimation and tracking algorithm sepa-

rately from face/feature recognition. For this purpose, we use a simple 3D object

as target instead of a human. Much simpler image processing is performed on col-

ored markers placed on the 3D object. Fig 3.2 shows the geometry of the system

where the camera and the rigid object coordinate frames is represented. The feature

point coordinates are related to the image frame (row, column) through a standard

transformation written as:c
r

 =
1

ZC

fx 0

0 fy


xC
yC

+

c0

r0

 (4.1)
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Figure 4.2. Side view of the Zeno head doing human tracking.

where [c, r]T are the image coordinates of the feature point, [xC , yC , zC ]T are the

feature point coordinates in the camera frame, (fx, fy) are the intrinsic camera pa-

rameters defining the focal length and pixel dimensions and [c0, r0]T is the principal

point of the camera frame in the image plane.
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Figure 4.3. Geometric model of the object-camera-image reference frame.

The feature point coordinates are determined in the camera frame using the

transformation, given as: 
xC

yC

zC

 = R


x0

y0

z0

+


x

y

z

 (4.2)

where [x0, y0, z0]T is the known coordinate vector of the feature points in the object

frame, [x, y, z]T is the unknown translation vector of the object and R is the rotation

matrix of unknown orientation angles (roll(φ), pitch(θ), yaw(ϕ)) of the object, given

by:

R =


CφCθ CφSθSϕ − SφCϕ CφSθCϕ + SφSϕ

SφCθ SφSθSϕ + CφCϕ SφSθCϕ − CφSϕ

−Sθ CθSϕ CθCϕ

 (4.3)

where Cφ = cosφ, Sθ = cos θ and Cϕ = cosϕ.

The transformation given in (4.2) and (4.3) forms the basis to estimate the po-

sition ([x, y, z]T ) and orientation (roll(φ), pitch(θ), yaw(ϕ)) vectors. These unknown
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parameters are estimated using a semi-decoupled EKF method proposed in the fol-

lowing section with respect to the camera frame. These estimated parameters are

then used for object tracking in the next section.

4.3 Pose Estimation Using the Extended Kalman Filter

The features used are image measurement points for the Kalman filter; we

use only three non-collinear points, instead of 4, 5 or more used by others. It has

been shown in [100] and [101] that with three feature points, a given 3D object with

known dimensions can be uniquely located in a 3D space with at most 4 distinct

ambiguous solutions. In our case this ambiguity does not exist if the initial triangle

pose estimate is close to the correct pose, or if the initial triangle pose estimate is

roughly perpendicular to the camera line of sight. This is obvious because of the EKF

state update and propagation from close to a correct estimate would yield the correct

pose while the object is undergoing motion.

For example, consider the triangle shown in Fig. 4.4, with three vertices as

the selected feature points. Points B′ and B′′ are produced by the rotation along

AC - axis by an angle ϕ. Even though these two points would yield same pixel

measurements, the estimation process yields the incremental rotations the object has

undergone from B′ to B′′. The whole trajectory is still ambiguous, but if we can

distinguish B′ to B′′ at the beginning of the estimation process, we never lose track

of the right pose.

The experimental results presented in the later subsection also demonstrate

that we can track three non-collinear feature points through the proposed EKF pose

estimation approach with high performance and convergence.

The Kalman Filter requires a dynamical model and a measurement model. For

the dynamical model, it is assumed that the object moves with a constant velocity
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Figure 4.4. Illustration of three non-collinear points producing different pixel mea-
surements as the object moves between ambiguous poses.

over a defined sampling time, which is certainly the case at low speeds, typical of

natural human motions during conversations with a robot. Even when the constant

velocity assumption does not hold, the error in dynamical model will be compensated

by properly tuning the process covariance matrix Q. The measurement model for the

EKF is given by (4.2) and (4.3), as detailed in the following subsections.

4.3.1 Position and Orientation Vector Estimation

For the estimation of position and orientation vector, the dynamical model is

defined as follow:

S̈ = 0 (4.4)
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where S =

[
X Ẋ Φ Φ̇

]T
, X =

[
x y z

]T
and Φ =

[
φ θ ϕ

]T
. Converting the

continuous model in (4.4) to the discrete time model yields

Sk+1 = ASk + γk (4.5)

where γk is the process noise of the discrete time dynamical model described as

Gaussian with zero mean and a noise covariance of Q and the plant matrix is given

as

A =

O3 T × I3

O3 O3

 (4.6)

where O3 and I3 are the 3x3 zero and identity matrices, respectively, and T is the

sampling time. The measurement model for estimation of position and orientation

vector is defined by (4.2) and (4.3). The Extended Kalman filter is defined by the

following equations:

Model:

Sk+1 = ASk + γk (4.7)

Bk = hk (Sk) + ϑk (4.8)

where Bk =

[
c r

]T
, hk = 1

ZC

fx 0

0 fy


xC
yC

 and ϑk is the measurement noise with

the covariance given by Rk.

Gain:

Kk = P−k H
T
k

[
HkP

−
k H

T
k +Rk

]−1
(4.9)

where Hk = ∂hk
∂Sk
|S−

k
,

Propagation:

Ŝ−k+1 = DŜ−k (4.10)

P−k+1 = AP+
k A

T +Qk (4.11)
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Update:

P+
k+1 = [I −KkHk]P

−
k (4.12)

Ŝ+
k = Ŝ−k +Kk

[
Bk − hk

(
Ŝ−k

)]
(4.13)

(4.13) is the estimated position and orientation vector. This position and orientation

vector estimation from this Kalman filter is the estimated position and orientation of

the object of interest.

4.3.2 Object Tracking Using Visual Servoing

Since pose estimation for object using a single fixed camera is limited by the

reduced camera field of view, we add an object tracker using visual servoing using a

motorized robotic camera. This is equivalent to a humanoid robot head tracking an

object by motions of its neck and eyes in order to increase its field of view. The visual

servoing scheme presented in this section uses the position and orientation estimates

from the EKF pose estimation filters. Besides interactivity, the obvious advantage of

using a tracker is the fact that the EKF can recover feature points when they go out

of the field of view. With only 2 feature points in the field of view the estimates will

diverge, therefore object tracking is essential in actual applications. In this section,

object tracking is performed through a simple 2 degrees-of-freedom (DOF) pan and

tilt which represents neck mechanism of LILLY, where the point to be tracked is

obtained by converting the estimated position vector into the image coordinate using

(4.1). The equation in Laplace domain of image-based visual servoing scheme is given

by:

vc (s) = −λ (s) L̂+e (s) (4.14)
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where vc is the camera spatial velocity, λ is control gain,L̂+ is the image Jacobian and

e is the difference between desired feature image and current feature image, defined

as

e = s∗ − s (4.15)

where s∗ is the desired feature, in this case the center of the image frame and s is the

vector of image coordinates obtained from the position estimates using (4.1). The

overall estimation-servoing scheme is shown in Fig 4.4. A simple 2 DOF pan and tilt

camera was used to validate the scheme, and therefore, L̂+ can be taken to be the

identity matrix and λ is chosen as a PID controller with tuned gains.

The resulting controller is simply:vxc
vyc

 = −
(
Kp +

1

s
Ki + sKd

)
c
r

−
cx
cy


 (4.16)

where s∗ =

[
cx ry

]T
is the center of the image frame, vxc and vyc are the motor

control signals and

[
c r

]T
is the projected image coordinates of the estimated pose.

4.4 Realistic Neck-Eye Motion Distribution

This section describes the theoretical approach on how to track an object using a

robot head with head-eye coordination given that the position of object is known. The

analysis of head-eye kinematics in this section is based on past work with simulated

conversational animated figures [76].
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Figure 4.5. A diagram representing the overall estimation-tracking system.

4.4.1 Robot Actor Tracking With Head Eye Coordination

A diagram describing the robot head, along with its coordinate frame notation

while tracking an object is shown in Fig. 4.6.

The distance between the center of the skull and the object is given by:

I =

√
(x− rx)2 + (y − ry)2 + (z − rz)2 (4.17)

where rx, ry and rz epresent the location of the center of the skull with respect

to a reference frame and x, y, z represent the location of the object of interest.

Furthermore, the trigonometric roll-pitch-yaw (RPY) angles of the skull pointing

toward the object can be represented through the following equations:

kx =
x− rx
l

, ky =
y − ry
l

, kz =
z − rz
l

(4.18)

cosα =
kx√
k2
x + k2

y

(4.19)

β = arcsin kz − arcsin
h

l
(4.20)

Furthermore, these angles can also be obtained from the standard inverse kine-

matics:

γd = arctan 2 (r32, r33) (4.21)
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Figure 4.6. A robot head with respect to a fixed reference frame and a target object
to track.

βd = arctan 2

(
r31,

√
r2

11 + r2
21

)
(4.22)

αd = arctan 2 (r21, r11) (4.23)

where rxy is the element of the transformation matrix.

The neck must rotate to thsese angles if the skull must point directly to the

object, however, if eyes can also pan and tilt, we can distribute the required rotational

motion between the skull and the eyes. In [76], the partial motion of the neck,

represented by angles αn, βn and γn are obtained using a percentage function but in

this paper we propose a new approach to calculate them, as detailed in Section 4.4.2.
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After the neck rotation angles αn, βn and γn are obtained, the head rotation matrix

is:

R =


CαnCβn −SαnCγn + Cαn Sβn Sγn Sαn Sγn + Cαn Sβn Sγn

SαnCβn CαnCγn + Sαn Sβn Sγn −Cαn Sγn + Sαn SβnCγn

−Sβn Cβn Sγn CβnCγn

 (4.24)

The new location of the eyes can be calculated by

el = Rel0 (4.25)

er = Rer0 (4.26)

where el, er are the new location of left and right eyes and el0, er0 are the current

location of left and right eyes. Once the new location of the eyes are know, pan and

tilt angles of both eyes can be obtained

θl = arcsin

 x− exl√
(x− exl )

2 + (y − eyl )
2

 (4.27)

ψl = arcsin

 z − ezl√
(x− exl )

2 + (y − eyl )
2 + + (z − ezl )

2

 (4.28)

where θl is the pan angle of the left eye and ψl is the tilt angle of the left eye.

θr = arcsin

 x− exr√
(x− exr )

2 + (y − eyr)2

 (4.29)

ψr = arcsin

 z − ezr√
(x− exr )

2 + (y − eyr)2 + + (z − ezr)
2

 (4.30)

where θr is the pan angle of the rightt eye and ψr is the tilt angle of the right eye.
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4.4.2 Optimization Approach for Realistic Neck-Eye Motion Distribution

In order for the motion distribution of the head and eyes to look realistic, we

apply the following qualitative rules, similar to those in humans [76, 81]:

• The robot head is attached to a torso hence the head position is considered to

be mobile.

• With respect to the torso, the rotation at the neck cannot exceed certain limits.

• When the object is close to the head only saccadic movement occurs (eyes

movement only).

• Both eyes point to the object of interest independently.

• Head rotation velocity should not exceed certain maximum values (allowable

by the hardware).

• Eyes angular displacement should gradually converge to zero to reduce the strain

on the eyes if the object is stationary.

In [76], the motion of the head and eyes was coordinated by the use of a per-

centage function a way to distribute neck and eye motion according to a predefined

weighting function, which imposes turning angles at the neck and eyes which are

dependent on each other. In this paper, the dynamical characteristics of the head-

eye motion are further factored into the distribution scheme via the addition of an

angular velocity term into an objective function to minimize. This optimization has

a similar effect to a quick eye movement (saccadic movement) during the transient

response period, and to a minimal eye displacement as the object motion approach

steady-state.

Consider the quadratic objective function:

J = Θ̇TQΘ̇ + ΦTRΦ (4.31)
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where Θ̇ is the head angular velocity and Θ =

[
α β γ

]T
, Φ is the eye angular

displacement and Φ =

[
θl ψl θr ψr

]T
, Q and R are weighting matrices. Since

the head and eye angles are coordinated to point toward an object, we can express

the eyes angular displacement as a function of head angular displacement through a

kinematic function f(.):

Φ = f (Θ) (4.32)

Factoring in a forward time-step discretization, the head angular velocity can be

approximated by:

Θ̇ ≈ 1

T
(Θt −Θt−1) (4.33)

where Θt−1 is angular position of the previous step and T is a sampling period. (4.31)

can be rewritten as follows:

J =

(
1

T 2
(Θt −Θt−1)T Q (Θt −Θt−1)

)
+ f (Θ)T Rf (Θ) (4.34)

The neck pose Θ that minimizes (4.34) will result in a motion that satisfies all

the qualitative requirements above:

Θ∗ = arg min
Θ∈[−Θmax Θmax]

[
1

T 2
(Θt −Θt−1)T Q (Θt −Θt−1) + f (Θ)T Rf (Θ)

]
(4.35)

The Q and R weight matrices are arbitrary positive definite matrices, however, they

should be selected so that the cost function increases significantly for large head

angular displacement and small eye angular velocity.

The solution to (4.35) Θ∗ can be used with (4.24) to compute the appropriate

rotation angles of the eyes:

α = α∗, β = β∗ and γ = γ∗ (4.36)

Experimental results will be presented in support of concluding that the proposed

optimization scheme can accomplish saccadic motion without requiring the hardware
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to incorporate designs taken from eyes kinesiology studies [81]. The solution for equa-

tion (4.35) can be obtained numerically, for instance using MATLAB optimization

toolbox simplex search.

4.5 Enhancement of Tracking Speed and Robustness to Modeling Errors

The derivations of the tracking model in the previous section are based on a

kinematic head-eye model in which dimensional parameters are known. In an actual

hardware implementation, however, we usually encounter significant discrepancies

between the actual robot head dimension and the kinematic model entries, and un-

modeled kinematics of the head mechanisms. In addition, the optimization (4.35)

must be run at every single sampling instance.

In practice, a robot head-eye pose at the desired optimal angles (* values), will

exhibit a tracking error as depicted in Fig. 4.7. The effect of this error will be apparent

to both the human engaged in eye contact with the robot, and to the robot through its

eye camera images. We propose using two enhancements to minimize tracking error

and eliminate the need for solving the optimization(4.35) at every time step. The first

enhancement is the use of visual feedback from the tracked object, and the second

one is the Actor-Critic reinforcement learning method as an combined alternative to

finding the optimal solution of (4.35), and visual tracking. The addition of visual

feedback to be used with method detailed in section 4.4.2 is discussed in subsection

4.5.1 and the Actor-Critic method is discussed in subsection 4.5.2.

4.5.1 Visual Feedback Approach

To correct for the gaze discrepancy, we use a dynamical visual feedback scheme.

The goal is to correct the tracking error on-the-fly while still maintaining the realism

of head-eye coordination. Assuming that an image tracking error is available in pixel
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Figure 4.7. A diagram showing the error of the actual hardware.

coordinates from a camera placed in the robot eyes, image-based visual servoing can

be used to track this object. The difference between the desired object feature (for

instance the center of a human face at the center of the robot image) and the actual

feature is defined in (4.15), where s∗ is the desired feature position, in this case the

center of the image frame and s = [sx sy]
T is the vector of image coordinates, in this

case the center of the face of the human subject. To stabilize this error to zero, an

image-based visual servoing feedback law can be employed:

φ̇ = −λL̂+e (4.37)

where φ̇ is the combined head/eye angular velocity, λ is control gain, L̂+ is the

approximation of the pseudo inverse of the image Jacobian.

Since in this section we consider the effect of modelling errors, e.g. the exact

kinematics of the robot is uncertain, a direct calculation of the image Jacobian is not

be the best option. Furthermore, the direct computation of the pseudo inverse of

the Jacobian (4.37) of a redundant head-eye robot does not necessarily maintain the

natural head-eye realistic relationships establish in the previous section.
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Hence, we compensate the optimal values obtained in the previous section using

a correction term proportional to the feature tracking errors, without the use of the

Jacobian map. From (4.36), α corresponds to a pan angle of the neck. A new α with

an error compensation term will be calculated as:

α = α∗ + αe (4.38)

where α̇e is defined as:

α̇e =
λα∗ex
αd|y|

(4.39)

where ex is the tracking error along x-axis of pixel coordinate, αd is defined in (4.23)

andy is a displacement along y - axis. αd is calculated from inverse kinematics of the

head without considering eye motion. Similarly, β corresponds to a tilt angle of the

neck. A new β with an error compensation term will be given by:

β = β∗ + βe (4.40)

β̇e =
λβ∗ey
βd|y|

(4.41)

where ey is the tracking error along y - axis of pixel coordinate, βd is defined in (4.22).

For error compensation of the eyes, (4.27) is redefined as:

θl = θl + θe (4.42)

where θ̇e is:

θ̇e =
λ (sgn (αd) |α− α∗ |) ex

αd|y|
(4.43)

Furthermore (4.28) is redefined as:

ψl = ψl + ψe (4.44)

where ψ̇e is:

ψ̇e =
λ (sgn (βd) | β − β∗ |) ey

βd|y|
(4.45)
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Equations (4.29) and (4.30 ) can also be redefined similar to equations (4.42) -

(4.45).The choices in equations (4.39) and (4.41) are chosen so that the proportional

neck feedback gains vary according to the distance of the object to be tracked. This

is done because the closer an object is to the humanoid robot (camera) the more

rotation angle is required in order to cover the same vertical/horizontal displacement.

Similarly, the terms in equations (4.43) and (4.45) are chosen so that the eye feedback

gains also vary according to the distance of an object, however, the gains are scaled

down significantly compared to the neck gains.

Proposition 1 (describing Algorithm 1)

Assume that the robotic head with independent neck and eye kinematics described in

section 4.4 is used to track a moving object within a confined finite volume away from

the robot. Then, the proposed optimization scheme (4.35), in conjunction with the

feedback scheme (4.39)-(4.45), leads to an exponentially stable visual tracking error

of the target.

Proof: From (4.37), (4.39), (4.41), (4.43) and (4.45) we obtain a visual servoing scheme

given by:

φ̇ = −λ



α∗

αd|y|
0

0 β∗

βd|y|

sgn(αd)|α−α∗ |
αd|y|

0

0 sgn(βd)|β−β∗ |
βd|y|


ex
ey

 (4.46)

The time derivative of the image servoing error with components ex, ey can be written

as:

ė = L φ̇ (4.47)
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where L is the image Jacobian of the neck-eye system. Due to the neck-eye mechanical

configuration, we will assume the Jacobian has the following structure:

L =

a 0 b 0

0 d 0 e

 (4.48)

where a > 0, b > 0, c > 0 and d > 0. According to the mechanical configuration of the

hardware and the cameras, the velocity of the feature position sx in x-pixel coordinate

varies according to the velocity of α and θ. In addition, positive α̇ and θ̇ result in

positive ṡx, negative α̇ and θ̇ result in negative ṡx, as guaranteed by assuming that

the cameras in the eyes are place in proper orientations. Hence, we can conclude that

and are always positive. Similarly, c and d are always positive. If the approximation

of the image Jacobian L̂ equals the actual image Jacobian L then LL̂+ equals to

identity. But in the case the pseudo inverse of the L̂ defined as in equation (4.46),

the product LL̂+ is no longer identity, and becomes:

λLL̂+ =
λ

|y|

p 0

0 q

 (4.49)

where

p =
α∗

αd
a+

sgn (αd) |α− α∗ |
αd

b (4.50)

q =
β∗

βd
c+

sgn (βd) | β − β∗ |
βd

d (4.51)

From the solution of optimization problem (4.35), Θ∗, we can calculate the optimal

eyes angle vector Φ∗. Furthermore, Θ∗ has the same sign as Θd from equations (4.21),

(4.22) and (4.23) otherwise the head would rotate in the opposite direction. Since

|αd| ≥ |α∗|, |βd| ≥ |β∗| and sgn(αd) = sgn(α∗), sgn(βd) = sgn(β∗), it follows that

p > 0, q > 0, and therefore:

λ

|y|

p 0

0 q

 > 0 ∀λ > 0 (4.52)
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Finally, we can conclude that the case where L 6= L̂ the tracking error is also expo-

nentially stable given that L̂ is defined as (4.46).

4.5.2 Optimization using Actor-Critic TD Methods

Instead of solving optimization problem (4.35) directly, here we propose to em-

ploy actor-critic methods, such as the Temporal Difference learning method that has

independent memory structures of policy component and value function component.

The policy component is referred to as “actor” due to the fact that it is used to deter-

mine actions [102]. Similarly, the value function component is referred to as “critic”

since it makes a judgment of the “actions” made by the “actor”. The learning that

is done by the actor-critic methods is considered to be on-policy learning. This is

referred to the fact that the “critic” critiques the current policy (actions) that is cur-

rently being executed by the “actor”. The critique is usually defined as a TD error.

This value is the given by the critic and propagate all learning for “actor” as well

as the “critic”. Generally, the “critic” is a state value function. After the “actor”

performs the action, the “critic” evaluates whether or not the action performed is

better. This is defined as the TD error δt:

δt = rt+1 + γV (st+1)− V (st) (4.53)

where V is the current value function, t is current time step, γ is the discount factor,

st+1 is the current state vector, st is the previous state vector and rt+1 is a reward

function defined as follows:

rt+1 = R (st+1, p(st)) (4.54)
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where p(s) is the policy function, R(.) is a function of state vector and policy. The

value function is defined as:

Vt+1(s) =


Vt(s) + α δt if s = st

Vt(s) otherwise

(4.55)

where α is the learning rate. The TD error is used to evaluate the action performed

by the actor. The critic component is basically an on-policy learning of the value

function V . The actor component is updated by:

pt+1(s) =


pt(s, a) + α δt if a = at and s = st

pt(s, a) otherwise

(4.56)

where pt(s, a) is the preference for taking action a at time t for state s and δt is a TD

error defined in (4.53) and a is the action taken by the agent (learner). The equation

(4.56) can be rewritten to use eligibility traces as follows:

pt+1(s, a) = pt(s, a) + α δt et(s, a) (4.57)

where et(s, a) denotes the eligibility trace at current time t for state-action pair (s, a).

The eligibility traces can be generalized as follows:

et(s, a) =


γ λ et−1(s, a) + 1− pt(s, a) if s = st and a = at

γ λ et−1(s, a) otherwise

(4.58)

where λ is the decay factor for exponentially decaying memory trace of the TD(λ)

algorithm. A value function can be represented by a function approximator. As a

result, the value function can be updated by weight updates. In this chapter, we

use multi layer feed forward network as function approximators. The value function

(4.55) can now be written in terms of neural network representation as follows:

V~wv =
M∑
i=0

wi Φ

(
P∑
j=0

wij si

)
(4.59)



85

where Φ(.) is an activation function, wi are neural network weights, P is the length of

state s and M is the number of activation units. Similarly, (4.57) can also be written

in a neural network representation form as follows:

p~wp(s) =
M∑
i=0

wPi Φ

(
P∑
j=0

wPij si

)
(4.60)

The eligibility traces equation (4.61) can now be updated as follows:

et(s, a) = λ γ et−1 +
∂ V~wv(s)

∂ ~wv
(4.61)

The activation function used in this chapter is the Log sigmoid function

φ(.) =
1

1 + e−x
(4.62)

The weight update equation for the value function is defined as follows:

~wv = ~wv + η δt et (4.63)

where η is the learning rate of the NN training.

Similarly, the weight update for (4.60) is as follows:

~wp = ~wp + η δt e
P
t (4.64)

where ePt is the eligibility traces of the actor structure and is defined as follows:

ePt (s, a) = λ γ ePt−1 +
∂ p~wp(s)

∂ ~wp
(4.65)

where λ is the decay factor and γ is the discount factor is defined in (4.53).

Theoretical proof for convergence of the TD(λ) with function approximators is pre-

sented in [103]. Tsitsiklis and Van Roy [103], proves that the discrete policy evaluation

using function approximators converges when learning is performed along the trajec-

tories of TD(λ). [103] also proved that the error of the value function is bounded

by

E ≤ 1− λ γ
1− γ

E∗ (4.66)
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where E∗ is the optimal quadratic error of the function approximator. According to

(4.57), the more λ is close to 1 the more accurate the approximation will be. The im-

portant part of this reinforcement learning scheme is how to select the reward function

properly so that all the important aspects of realistic head-eye motion distribution

are taken into account. The reward function is a function of states and actions as

defined in (4.54). We define the state vector s as follows:

s = [Φ Θ Φ̇ Θ̇ y χ]T (4.67)

where Φ̇ is the head angular velocity and Φ = [α β γ]T , Θ is the eye angular dis-

placement and Θ = [θl ψl θr ψr], y is the distance of an object to be tracked from

the eyes and χ is the image projection in pixel coordinate of the object to be tracked

as seen through the eyes cameras.

We can see that information such as the distance of an object and image pro-

jection of an object to be tracked is important factors to determine the outcome

behavior of the neck-eye motion distribution of the humanoid robot head. In the case

of human, this information comes to us naturally without us making any effort. The

estimation of the distance of the object to be tracked can be done due to the stereo-

vision structure of the eyes. The image projection of the object is obtained through

the processing of the information from the retinas by the brain. This provices rough

estimates of how far the object is off from the center of the eyesight. For the hu-

manoid robot, the distance information described above can also be obtained, and

it is equally as important that the information mentioned above is available as it is

a prerequisite for realistic head-eye motion distribution. Assuming that y and χ are

available, and c1, c2, c3 and c4 are weighting factors, we can form a reward function

to take into account the following behaviors:

r1 = −c1

(
χ2
x + χ2

y

)
(4.68)
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to reward the action that corresponds to bringing the object closer to the center of

eyesight.

r2 = −c2

(
Φ̇T Φ̇

)
(4.69)

to reward the action that corresponds to moving the neck slower than the eyes, since

the neck inertia is a lot larger, thus avoiding turning the head abruptly.

r3 = −c3

(
ΘTΘ

)
(4.70)

to penalize the action that corresponds to keeping the eye off center for a period of

time, as we want to gradually turn the head toward the object. Finally,

r4 = −c4


ΦTΦ if y is large

ΘTΘ if y is small

(4.71)

to reward the action according to the distance of an object as we want to only ro-

tate the eyes when the object is too close to the eyes (to imitate the saccadic eye

movement). The total reward function:

R = r1 + r2 + r3 + r4 (4.72)

The following Algorithm summarizes the reinforcement learning approach adapted

for the neck-eye motion coordination:

Description of Algorithm 2:

Step 1: Learning of optimal neck-eye motion using TD(λ)

1. Define the state variables vector as in equation (4.68)

2. Do the value function iteration by updating the TD error defined in equation

(4.53) where the reward function is as described in equation (4.72)

3. Update NN weights of value function (4.59), as well as policy function (4.60)

using (4.61) - (4.65)
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4. Repeat learning episodes until optimal value function V ∗ is reached

5. Stop updating the NN weights

Step 2: Control using visual feedback with optimal policy

1. The optimal policy function obtained from the latest update of step 2 and 3

can now be used for control of the robot system as in equation (4.60)

Through the proposed optimization scheme we can accomplish saccadic motion with-

out requiring the hardware to incorporate designs taken from eyes kinesiology studies

[81, 8]. Unlike the optimization approach of directly solving equation (4.35), this

Actor-Critic approach does not need a separate module for tracking error correc-

tion due to unmodeled kinematics of the head mechanisms since the tracking error

is already taken into account through the use of reward function (4.68). With this

proposed approach, we are not restricted to any particular hardware and/or design

as long as we have access to the required information as mentioned in (4.67). In

summary, this proposed Actor-Critic reinforcement learning for neck-eye motion dis-

tribution of humanoid robot method is platform independent. In the next chapter,

we present simulation results as well as experiment results to show the effectiveness

of the proposed method.

4.6 Simulation and Experiment Results

4.6.1 EKF Pose Estimation Results

The performance of the proposed estimation algorithm is demonstrated in this

section through several experiments we conducted. The first set of experiments shows

the estimation performance and accuracy when measurement noise is not present (e.g.

by using a software generated trajectory). The second set of experiments investigates

the accuracy of the scheme when measurement noise is present due to the image-
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Figure 4.8. Experiment setup showing the robot arm holding an object facing a
motorized pan/tilt camera. The object used in the experiment is a white box with
colored markers on it. The figure shows multiple views of the setup and the features
that are tracked.

processing algorithm. The third experiment involves the tracking performance of the

visual servoing scheme, and the final experiments tracks the 6D pose of a human head

facing the camera.

In the experiments conducted, the camera parameters values were obtained by

calibration, resulting in fx = 493.5, fy = 459.4, c0 = 160, r0 = 120 and T = 0.04.

The sampling time T is based on the measured frames per second rate, which was 26

fps. Fig. 4.8 shows the object that was used for pose estimation and tracking, while

undergoing different sets of motion. Three non-collinear feature point (P1, P2, P3)

were used and their nominal coordinates are given (in inches) as P1 = [−3, 2.1, 0]T ,

P2 = [−3, −2.1, 0]T and P3 = [3, −2.1, 0]T .
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4.6.1.1 Generated Trajectory Inputs

In this experiment, a set of feature points were generated based on the actual

model of the object to mimic the feature points with no measurement noise. The tra-

jectory consists of motion in all direction and orientation. The initial pose estimates

are [x, y, z] = [0, 0, 20]T .

The estimation results are shown in Fig. 4.9 - 4.11. From the estimated pixel

coordinates [c r]T for each feature point, an error function is defined as:

e =
(
c2
m + r2

m

)1/2 −
(
c2 + r2

)1/2
(4.73)

where [cm rm]T are obtained from the measurement set.

Fig. 4.9 plots the generated trajectory that is used as an input to the EKF pose

estimation filter. The trajectory is composed of simultaneous sinusoidal rotation and

translation with different frequencies in all axes. Fig. 4.10 plots the position and

orientation estimates obtained using EKF pose estimation approach. Fig. exper-

imentposeestimationekfnomeasurementnoisenormailizederror:1 plots the normalized

estimation error. According to the plots, the estimation error is low since it is as-

sumed that the generated trajectories contain neither measurement noise nor feature

extraction error.

4.6.1.2 Actual Trajectory Inputs

In the second set of experiments, the EKF pose estimation algorithm is used

to estimate position and orientation of the actual object, using the experiment setup

shown in Fig. 4.8. Fig. 4.12 plots the feature trajectories in x pixel coordinate. Fig.

4.13 plots the feature trajectories in y pixel coordinate. The object is attached to

the tip of the robot arm as shown in Fig. ekfposeexperimentsetuprobotbox:1 and

in this experiment we only rotate the object along z-axis (roll), the trajectory is



91

Figure 4.9. Pose Estimation using EKF where no measurement noise is presented -
generated trajectory of the object.

Figure 4.10. Pose Estimation using EKF where no measurement noise is presented -
object position and orientation estimates.
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Figure 4.11. Pose Estimation using EKF where no measurement noise is presented -
normalized estimation error.

also sinusoidal. We extract 3 features recursively from the object and use them as

measurements. We can see that there is noise and false detection present in the

extracted features. Fig. 4.14 plots the position and orientation estimates obtained

using EKF pose estimation approach. Fig. 4.15 plots the error function defined in

4.73. The error is the difference in Euclidean distance between extracted features and

estimated features. We can see that the errors stay within a -20 to 20 pixel bound,

and that the feature extraction noise is eliminated by the Kalman Filter.

4.6.2 EKF Pose Estimation and Tracking Results

In this experiment, the camera tracks the object through a motorized pan and

tilt mechanism. Tracking was performed using the position vector estimates obtained

from the EKF. Since the dynamics of the two servomotors were not known, a system
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Figure 4.12. Pose Estimation using EKF where measurement noise is prominent -
feature trajectories in x pixel coordinate.

Figure 4.13. Pose Estimation using EKF where measurement noise is prominent -
feature trajectories in y pixel coordinate.
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Figure 4.14. Pose Estimation using EKF where measurement noise is prominent -
object position and orientation estimates.

Figure 4.15. Pose Estimation using EKF where measurement noise is prominent -
error function defined in (4.73).
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identification algorithm using an ARX model was fitted to the data. The motors were

modeled with the discrete-time transfer function given as:

G(z) =
335.3z − 325.3

z2 − 0.5761z − 0.4162
(4.74)

In order to achieve efficient performance of the motors, a tuned PID controller was

designed using the Ziegler-Nichols tuner in MATLAB. The resulting controller gains

were: KP = 7.98, KI = 4.53 and KD = 2.88. Fig. 4.16 plots the convergence of

the x-pixel (solid line) and y-pixel (dashed line) with untuned and tuned PID gains

for the desired pixel positions set at [120 90]T . The performance of the motors with

tuned PID gains is apparent, exhibiting a fast settling time of 20 time steps (at 26

fps). These controller gain values were then used for tracking of the object whose

pose is estimated by the filter. Fig. 4.17 and 4.18 plot the position and orientation

estimates during tracking of the object by the camera. It can be seen that by using

tracking in combination with EKF pose estimation, the x, y translation estimates

are close to zero. On the other hand, the depth and the orientation estimates of the

object are still present, however the camera does not have enough degrees of freedom

to track them. However, by using visual servoing, the object is always in the field of

view.

4.6.3 Head Pose Estimation Results

In this experiment, we use an actual human face to test the pose estimation

algorithm. A camera acquires the video stream of the human’s face in motion. A

simple routine based on Lucas-Kanade optical flow tracking [47] is implemented to

keep track of 4 facial features points; right eye, left eye, nose and mouth. The facial

features information in pixel coordinate obtained from Lucas-Kanade tracking is fed

into the EKF pose estimation algorithm. The resulting 6D head pose estimates
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Figure 4.16. Performance of the pan/tilt tracking system, individual x and y pixel
position response, (system sampling time was 0.04 seconds) (a) Untuned PID system
pixel position response, (b) Tuned PID system pixel position response, starting at an
initial condition with [15, 40] pixel coordinate.

Figure 4.17. Plot of estimated position vector with tracking.
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Figure 4.18. Plot of estimated orientation vector with tracking.

(position and orientation) are then passed into a 3D visualization software (Blender

3D), which updates the pose of a skull 3D model. Therefore, the 3D model “mimics”

the pose of the human, at a rate of 20Hz using a USB camera, and a Visual Studio.Net

application that passes the pose estimates to Blender. Fig. 4.19 shows screen captures

of the head tracker application and Fig. 4.20 and 4.21 shows plots of the resulting

position and orientation estimates. As we can see from Fig. 4.19 - 4.21, the estimates

are close to the actual head pose.

4.6.4 Head Eye Motion Distribution Results

In this subsection, we first present details on implementation of the Algorithm

2 to learn the optimal control with a simulated robot head model. We then present

experimental results of using proposed methods Algorithm 1 and Algorithm 2 with

a simulated robot head model. Last, we present the results of implementing the
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Figure 4.19. Screen captures of the input head pose video and 3D visualization of the
estimated position and orientation.

Figure 4.20. Plot of position estimates (in inches).
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Figure 4.21. Plot of orientation estimates (in degrees) obtained from the EKF filter.

proposed Algorithm 1 on the LILLY humanoid robot head. Appendix B shows the

implementation diagrams of both Algorithm 1 and Algorithm 2.

4.6.4.1 Simulation of Head-Eye Robot Structure

The kinematics of the simulated robot structure is defined as in [76]. The

measurements of the simulated robot structure are taken from the actual LILLY

humanoid robot head. However, the inertia, mass, friction and stiffness are estimated

from our experiments. In the simulation, for simplicity we only derive a model of the

robot with one eye (left) since we obtain the estimate of the object distance through

other means (not through the stereo vision structure of the head). The robot head

dynamics equation is defined as follows:

Mq̈ + V (q, q̇) +G(q) = τ (4.75)
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where M is the mass matrix of the robot head, V (q, q̇) is the coriolis term, G(q) is

the gravity term and τ is the actuator torque. In this simulation, consists of angular

positions of the neck around z-axis (pan) and around x-axis (tilt), angular positions of

the left eye around z-axis (pan) and around x-axis (tilt). A simple dynamics equation

is defined as follows:

M =



I1 0 0 0

0 I2
2m2 0 0

0 0 IeyeX 0

0 0 0 IeyeY


(4.76)

where I1 = 2, I2 = 0.15, IeyeX = 0.2 and IeyeY = 0.2.

N(q, q̇) = V (q, q̇) +G(q) is defined as follows:

N(q, q̇) =

[
IneckZ q̇1 (m2 +meye)g l2 cos (q2) + IneckX q̇2 0 0

]T
(4.77)

where IneckZ = 0.2, IneckX = 0.5, m2 = 4, l2 = 0.15 and g is the acceleration due to

gravity which equals 9.81.

The dynamical model of the robot head is used with both Algorithm 1 and

Algorithm 2 in the next subsection to compare the performance with the real human

head.

For the optimization approach in Algorithm 1, equation (4.35) is solved in real

time to find the optimal trajectory due to the cost function in equation (4.34 ). For

the implementation of Algorithm 2, we use λ = 0.7, γ = 0.2 and η = 0.01 for the

TD(λ) algorithm. For value function iteration (4.59), we use feed forward neural

network with 2 hidden layers and 10 neurons on each layer. And we have the same

structure for policy iteration (4.60). For reward function, we use c1 = 1.0, c2 = 0.7,

c3 = 0.5 and c4 = 0.3. Sampling period used in implementation of both Algorithm 1

and Algorithm 2 is T = 0.05 sec.
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After 100 episodes of 10 seconds learning (around 25,000 iterations) with ran-

dom initial robot states, the value function converges. With optimal value function,

we also arrive at the optimal policy for control. The optimal policy is represented by

(4.60) where the NN weight vector is now optimal w∗p.

4.6.4.2 Experiments on Comparison between Optimization Method and Actor-Critic

TD Method

In this subsection, we compare the result of using Algorithm 1 and Algorithm

2 with real human for object tracking task. We set up a system where we have a

simulated object moving on a computer screen. The human test subject sits in front of

the camera and we capture the motion of the human head movement. Simultaneously,

the moving object trajectory is used as input for simulated robot system. In other

words, the simulated robot is also implemented in real time for implementation using

both Algorithm 1 and Algorithm 2. This is as if the simulated robot and the human

are performing a tracking of objects that have the exact same motion profile. For

visualization purpose, we output the head-eye motion of the simulated robot to the

computer screen through 3D Blender program so that we can compare the motion of

the simulated robot head along side with the motion of the human head in real time.

We conduct 3 sets of experiment for different speeds of an object to be tracked.

We use slow, medium and fast motions by having the moving object trajectory ac-

cording to sinusoidal wave with different frequencies. The object to be tracked is

simulated using the following:

x(t) = 0.127 sin(2πf1t)

y(t) = 0.7662 (4.78)

z(t) = 0.127 sin(2πf2t)
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where f1 and f2 dictate how fast the simulated object moves. For slow speed, f1 = 0.5

and f2 = 0.3. For medium speed, f1 = 1.0 and f2 = 0.8. Finally, for fast speed,

f1 = 2.0 and f2 = 2.8. Note that the unit of simulated object position is defined in

meters.

Since the information of the pupils location are available only in 2D plane due

to the projection of the camera, we compare the head-eye motion by looking at the

2D projection of the left and right pupil location on to the camera plane for both real

human and the simulated robot. Fig. 4.22 shows the comparison between human eye

trajectory and the simulated robot eyes trajectory using optimization method for slow

moving object. Fig. 4.23 shows the eyes trajectory error between the human eyes and

simulated robot eyes trajectory using Algorithm 1 for slow moving object. Similarly,

Fig. 4.24 and 4.25 show result using Algorithm 2. Fig. 4.26 - 4.29 show results for

medium speed moving object. Fig. 4.30 - 4.33 show results for fast moving object.

Fig. 4.34 shows snapshots of the experiment done with slow speed moving object.

Table 4.1 lists the root mean square error of the implementations of Algorithm 1 and

2 for three different speeds.

Table 4.1. RMSE error of Algorithm 1 and 2

Speed Algorithm 1 Algorithm 2
Slow Left Eye: 3.25314 Left Eye: 3.99042

Right Eye: 3.35942 Right Eye: 3.97044
Medium Left Eye: 3.32233 Left Eye: 3.32

Right Eye: 3.20877 Right Eye: 3.20743
Fast Left Eye: 1.93574 Left Eye: 1.81412

Right Eye: 2.09657 Right Eye: 2.36035



103

Figure 4.22. Experiment 1 using Algorithm 1 for slow moving object tracking (a)
Human’s left pupil trajectory in pixel coordinate obtained from video stream of the
experiment (b) Human’s right pupil trajectory (c) Robot’s left pupil trajectory in
pixel coordinate (d) Robot’s right pupil trajectory.

4.6.4.3 Experiments on LILLY Humanoid Robot Head

We now consider the effect of modelling errors, by conducting experiments with

the humanoid robot head hardware. In this experiment the LILLY humanoid robot

actor uses the visual feedback compensation with equations (4.39) - (4.45) in order

to improve the tracking accuracy. This is done through computer programming by

discretizing (4.39), (4.41), (4.43) and (4.45). Fig. 4.35 shows snapshots of the output

and human face tracking result. We can see from the screenshots that the tracking

error is minimized since the human face being tracked is always in at the center of

the image frame.
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Figure 4.23. Percent error between the real human pupils’ trajectory and the simu-
lated robot pupils’ trajectory using Algorithm 1 for tracking of slow moving object,
the root mean square error of left eye trajectory is 3.253 and the root mean square
error of right eye trajectory is 3.359.

Fig. 4.36 shows the head motion profile that is obtained for this particular

experiment. Fig. 4.37 shows the distribution of motion profile between the neck and

the eyes. As we can see from Fig. 4.38 that with error correction scheme outlined

in section 4.5 the tracking error is kept within certain bound no matter how far the

object is from the eyes of LILLY.

4.6.4.4 Experiments on Zeno Humanoid Robot Head

Zeno head is about 1/4 of a size of an actual human head. The appearance of

the Zeno is based on a fictitious character developed by Hanson Robotics. Zeno looks
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Figure 4.24. Experiment 1 using Algorithm 2 for slow moving object tracking (a)
Human’s left pupil trajectory in pixel coordinate obtained from video stream of the
experiment (b) Human’s right pupil trajectory (c) Robot’s left pupil trajectory in
pixel coordinate (d) Robot’s right pupil trajectory.

like a 4-7 year old child. The unique features of the Zeno include: life-like skin and the

ability to generate various facial expressions. The skin is made of Frubber material,

which is the intellectual property of Hanson Robotics. The Zeno head appearance

is very realistic thanks to the Frubber material. The Zeno head has 3 degrees of

freedom at the neck joint; it is capable of panning, tilting the head back and forth as

well as left and right. It also has 2 degrees of freedom in each eye (pan and tilt). It is

powered by 9 servomotors. 4 of the servos are used for generating facial expressions.

The rest of the servomotors are used for control of the neck/eye motion. The Zeno

head has one color video camera in the right eye, which give us the video stream
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Figure 4.25. Percent error between the real human pupils’ trajectory and the simu-
lated robot pupils’ trajectory using Algorithm 2 for tracking of slow moving object,
the root mean square error of left eye trajectory is 3.99 and the root mean square
error of right eye trajectory is 3.97.

of the view that is seen by the Zeno. Zeno head is a good platform that allows us

to have an interactive / realistic humanoid robot in terms of appearance as well as

motion. Fig. 4.2 and 4.39 show the Zeno head doing a human tracking with neutral

facial expression.

Currently, we have successfully implemented realistic human tracking on the

Zeno head (both Algorithm1 and Algorithm2). As a basis for conversational robot

application, the robot head should be able to keep an eye contact with the human

subject (tracking) in real-time in a realistic manner. Fig. 4.40 shows the snapshots

of the Zeno head doing tracking of a person through implementation of Algorithm
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Figure 4.26. Experiment 2 using Algorithm 1 for medium speed moving object track-
ing (a) Human’s left pupil trajectory in pixel coordinate obtained from video stream
of the experiment (b) Human’s right pupil trajectory (c) Robot’s left pupil trajectory
in pixel coordinate (d) Robot’s right pupil trajectory.

1. Fig. 4.41 shows the snapshots of the Zeno head doing tracking of a person using

Algorithm 2. From the experiments, results show that both Algorithm 1 and 2 yield

realistic head-eye motion of humanoid robotic actors for human tracking application.

In addition, the proposed Algorithm 1 and 2 are independent of platform structure.

4.7 Summary and Future Work

4.7.1 Summary

An efficient object tracker using pose estimation and visual servoing was pro-

posed and implemented using a EKF and then the estimates are tracked using a
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Figure 4.27. Percent error between the real human pupils’ trajectory and the simu-
lated robot pupils’ trajectory using Algorithm 1 for tracking of medium speed moving
object, the root mean square error of left eye trajectory is 3.322 and the root mean
square error of right eye trajectory is 3.208.

tuned PID visual servoing controller. Experimental results clearly show high track-

ing accuracy, robustness of the EKF pose estimation filter approach. To confirm our

findings, we presented experimental results of 6D pose tracking with a motorized pan

and tilt camera. An efficient and robust human tracker for a humanoid robot was

implemented and experimentally evaluated. We employ an optimization approach for

achieving nominal head-eye pose angles, and further compensate the kinematic errors

using visual feedback. Experimental results show that the visual feedback scheme

can significantly improve the tracking accuracy while still maintaining the realism of
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Figure 4.28. Experiment 2 using Algorithm 2 for medium speed moving object track-
ing (a) Human’s left pupil trajectory in pixel coordinate obtained from video stream
of the experiment (b) Human’s right pupil trajectory (c) Robot’s left pupil trajectory
in pixel coordinate (d) Robot’s right pupil trajectory.

head-eye motion coordination that is generated from optimizing the objective func-

tion.

In addition, an efficient and robust human tracker for a humanoid robot was

implemented and experimentally evaluated. We employ an optimization/learning

approach for achieving nominal head-eye pose angles, and further compensate the

kinematic errors using visual feedback. Experimental results show that the visual

feedback scheme can significantly improve the tracking accuracy while still maintain-

ing the realism of head-eye motion coordination that is generated from optimizing

a suitable objective or reward function. Experimental results show that with the
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Figure 4.29. Percent error between the real human pupils’ trajectory and the simu-
lated robot pupils’ trajectory using Algorithm 2 for tracking of medium speed moving
object, the root mean square error of left eye trajectory is 3.32 and the root mean
square error of right eye trajectory is 3.207.

proposed cost/reward functions used with the optimization methods, the head-eye

motion distribution of the humanoid robot actor doing object tracking is realistic

compare to the actual head-eye motion distribution of the real human. Both pro-

posed Algorithms 1 and 2 do not require exact knowledge of hardware parameters,

and generate similar solutions. Furthermore, Algorithm 2, based on reinforcement

learning, can be implemented in real-time using a neural net, but requires a start

learning period. The learning period can be carried out with an approximate sim-

ulation model. On the other hand, Algorithm 1, based on numerical optimization
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Figure 4.30. Experiment 3 using Algorithm 1 for fast moving object tracking (a)
Human’s left pupil trajectory in pixel coordinate obtained from video stream of the
experiment (b) Human’s right pupil trajectory (c) Robot’s left pupil trajectory in
pixel coordinate (d) Robot’s right pupil trajectory.

at each sampling step, does not require a start-up learning period, but it is more

computationally intensive when implemented on-line.
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Figure 4.31. Percent error between the real human pupils’ trajectory and the simu-
lated robot pupils’ trajectory using Algorithm 1 for tracking of fast moving object,
the root mean square error of left eye trajectory is 1.93 and the root mean square
error of right eye trajectory is 2.09.
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Figure 4.32. Experiment 3 using Algorithm 2 for fast moving object tracking (a)
Human’s left pupil trajectory in pixel coordinate obtained from video stream of the
experiment (b) Human’s right pupil trajectory (c) Robot’s left pupil trajectory in
pixel coordinate (d) Robot’s right pupil trajectory.
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Figure 4.33. Percent error between the real human pupils’ trajectory and the simu-
lated robot pupils’ trajectory using Algorithm 2 for tracking of fast moving object,
the root mean square error of left eye trajectory is 1.81 and the root mean square
error of right eye trajectory is 2.36.
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Figure 4.34. Snapshots of comparison between a human and a humanoid robot actor
doing a tracking of a person using optimization method.
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Figure 4.35. Snapshots of the humanoid robot actor doing a tracking of a person with
error compensation scheme being implemented, the small window on the right is an
image that is seen by the robot head through a camera in the one of the eyes.
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Figure 4.36. Actual human head location profile to keep track of by the humanoid
robot head.
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Figure 4.37. Optimal angular motion profile distribution between the neck and the
eyes.
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Figure 4.38. Tracking error expressed in camera frame (pixels) for tracking with visual
feedback correction scheme.



120

Figure 4.39. Frontal view of the Zeno head doing human tracking.
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Figure 4.40. Snapshots of the Zeno humanoid robot doing a tracking of a person with
error compensation scheme being implemented (Algorithm 1).
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Figure 4.41. Snapshots of the Zeno humanoid robot doing a tracking of a person
with actor-critic reinforcement learning of optimal control scheme being implemented
(Algorithm 2).



CHAPTER 5

INTERACTION WITH MULTIPLE DEGREES OF FREEDOM ROBOT

The supervisory control of multiple robots is a very demanding application.

There are challenging tasks that can be achieved using multiple robots and/or robots

with multiple degrees of freedom. It is challenging to efficiently control multiple

robots / robots with degrees of freedom with a simple/intuitive interface by a single

operator. In this chapter, we propose the use of Reinforcement Learning for intuitive

interface mapping. Based on interaction with the environments, we can determine

the optimal interface mapping through the process of Reinforcement Learning. The

novelty of this method is the use of changing reward functions based on qualitative

performance evaluation for the Reinforcement Learning algorithm. We show that the

use of proposed reward functions can result in optimal/intuitive interface mapping

for multiple robots / robots with degrees of freedom control applications.

5.1 Reinforcement Learning

Reinforcement learning is a methodology of learning through interaction with

the environment to achieve a certain goal. In reinforcement learning, the idea is to

make use of agents and environments. The agent is the entity that learns the environ-

ments and makes decisions. The objective is for the agent to learn the optimal policy

(control) through interacting with the environment by maximizing the cost/reward

function over a certain period of time. The state-space is defined as a set of all possible

states that the system can be in. Similarly, action-space is defined as all the possible

actions that the agent can take. The applications for reinforcement learning range

123
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from discrete event decision-making processes such as games, i.e., chess, checker and

backgammon to complicated control problems. One of the strengths of reinforcement

learning is that it is capable of dealing with problems that the models are unknown

or highly complex.

The agent interacts with an environment, at each discrete time step t = 0, 1, 2, 3, . . .

a numerical reward value r = R(s, a) is given based on current environment state

st ∈ S and the current action at ∈ A(st). An agent then arrives at the next state

st+1. The relationship between actions and states is denoted by agent policy π(s).

The cumulative future rewards, value function is defined as V π(s) for the current

policy π. The goal of reinforcement learning is to find the optimal policy π∗ that

corresponds to the optimal value function V ∗(s). To find the optimal policy, the

method of policy iteration is used. It also involves the process of finding the current

value function V π(s), which is called policy evaluation. Given the current value func-

tion V π(s), the policy π can be improved. The process of improving policy is called

policy improvement. After repeating the policy iteration process over and over we

can arrive at the optimal policy π∗. There are different standard methods that are

used for policy iterations, namely, Dynamic Programming, Monte Carlo method and

Temporal Difference learning. In this dissertation, we will be focusing on Temporal

Difference learning.

Temporal difference (TD) learning is an approach to learning how to predict a

quantity that depends on future values of a given signal:

Yt = yt+1 + γ yt+2 + γ2 yt+3 + . . . =
∞∑
i=1

γi−1 yt+1 (5.1)

Yt = yt+1 + γ
[
yt+2 + γ yt+3 + γ2 yt+4 + . . .

]
= yt+1 + γ Yt+1 (5.2)
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Figure 5.1. Algorithm: actor-critic TD(λ) with function approximator.

The Temporal difference error and the value function are already defined in the pre-

vious chapter as in (4.53) and (4.55), respectively. We will be using the actor-critic

reinforcement learning approach for our implementations in later sections. The de-

tails on actor-critic reinforcement are already given in the previous chapter, (4.53)

- (4.65). The implementation algorithm of the actor-critic TD(λ) with function ap-

proximations is shown in the Fig. 5.1.
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5.2 Interface Mapping

In this chapter, we are interested in building a generalized method to learn the

most intuitive interface mapping to be used with single user control of either a robot

with multiple degrees of freedoms or multiple robots. It is obvious that the word

“intuitive” it is quite vague as there is no quantitative measure to make a judgment.

With the current advancement in the interface device technology, it is challenging to

utilize the device to its full potential, or there may not be an immediate intuitive way

to make use of the device. An example of an interface device that might be a good

candidate for us to figure out the “intuitive” input/ output mapping is shown in Fig.

1.6 and 1.8. Also, intuitiveness is something subjective and may vary from user to

user. In this chapter, we present details of interface mapping.

5.2.1 Definition of Interface Mapping

Suppose we have a device that give continuous sensory outputs as a result of

manipulating the device by a human operator. Let’s assume that the reading that

we get from a device has n elements:

u = [u1 u2 . . . un]T (5.3)

where u is the raw input from a device and u ∈ Rn.

We can define a general form of a dynamical interface mapping using a non-

linear state-space model.

ẋ = f(x, u) (5.4)

y = C x (5.5)

where x is the state of the mapping, y is the output of the mapping and y ∈ Rm and

C ∈ Rm×n is the output matrix of the mapping.
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With the above equations (5.4) and (5.5) the mapping is allowed to have dy-

namic behavior. This might be useful in some cases where the output of the mapping

is used to control a fast system (or even system with no dynamics at all) so that the

relationship between interface inputs and outputs can exhibit some degree of change.

Examples of such systems are; pointing devices.

Since we want to learn the optimal mapping for a particular task / user, the

mapping should be adjustable. We represent the mapping using multi layer feed

forward network (just like what we have in the previous chapter). (5.4) now becomes:

ẋ = f~w(x, u) (5.6)

where f~w(.) denote a multi layer feed forward network similar to (4.59) and (4.60).

However, for interfaces that are used with tasks such as robot control, it might

be a better idea to work with static mapping since there is already the dynamics

effect of the actual robot system. An example of a simple interface device to be used

with robot control task is shown in Fig. 1.6. So, for static interface mapping the

relationship between interface inputs and outputs becomes:

y(u) =

p∑
i=0

wi Φi

(
q∑
j=0

wij ui

)
(5.7)

or it can be rewritten in a compact form as:

y(u) = f~w(~w, u) (5.8)

We can see that now the interface mapping is adjustable through ~w, and we denote

~w∗ as the optimal weight for the interface mapping. This can also be considered as

the most intuitive mapping. The next chapter presents a novel approach to update

the interface mapping so that the weight of the multi-layer feedforward network ~w

approaches ~w∗ using actor-critic reinforcement learning approach presented in the

previous chapter.
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5.3 Learning the Interface Mapping

From the previous section, we now have the definition of the interface mapping.

We focus on finding the optimal weight ~w∗ for a particular system and task. In this

chapter, we present details on reinforcement learning of the optimal weight tuning,

and also, we discuss the use of reward function that is related to the qualitative

performance metrics defined for a particular task and are set by the user.

5.3.1 TD(λ) for mapping weight update

To fit the weight update process under the actor-critic reinforcement learning

scheme, we need to clearly define the actor structure as well as the critic structure.

First of all, we need to define state-space of the system. The current environment

state, in this case, is defined as the current weight of the interface mapping as defined

in (5.8):

st ∈ Sw (5.9)

where Sw define the state-space of mapping weights.

The state of the environment (weight ~w) changes due to the current action.

The new state is a function of current state and the current action, as follows:

st+1 = F (st, pt) (5.10)

where F (.) is an arbitrary function. Let assume that the Taylor series expansion of

F (.) takes the following form:

F (s) = F (0) + F ′(0)s+
F ′′(0)

2!
s2 +

F ′′′(0)

3!
s3 + . . . (5.11)

We take the first order approximation of (5.11) to be our state propagation,

and substituting the F ′(0)s term with the action term pt(st) and then turn it into
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Figure 5.2. The complete TD(λ) learning of the interface mapping system.

a discrete update of environment state ~w. The state propagation of the mapping is

defined as follows:

st+1 = st + β pt(st) (5.12)

where β represents a step size.

The complete system of actor-critic TD(λ) learning of an interface mapping is

shown in Fig. 5.2. Note that in the diagram a state vector of the environment is

represented as ~wt instead of st. The learning of the mapping can be done according

to the algorithm laid out in Fig. 5.1.
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Figure 5.3. The complete TD(λ) learning of the interface mapping system with
reward function update scheme implemented.

5.3.2 Reward Functions and Performance Metrics

A reward function has to be set so that the mapping of the interface converges

to the optimal one after certain amount of learning episodes have been completed

assuming there exist an optimal mapping for a task of interest for every user. The

optimal mapping can vary from user to user as different users might not find the opti-

mal mapping for one particular user to be the most preferable one. In this subsection,

we introduce a systematic methodology to update a reward function according to per-
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formance metrics. The reward function obtained will be used with the TD(λ) learning

of the interface mapping system as shown in Fig. 5.3. Suppose that at a particular

episode uk(t) a certain metric PMm is used to evaluate mapping performance, a real

number value pk is assigned to uk(t) to indicate how good the mapping is. k is the

number of episodes that have been evaluated according to the chosen performance

metric. We have:

{uk(t), pk} k > 0, ts < t ≤ tf (5.13)

where ts and tf is start time and end time of the episode.

The reward function is defined as:

R =
1

k

k∑
n=1

pk P{uk(t) |u(t)} (5.14)

where u(t) is the current episode input profile.

Since uk(t) is a continuous function, to evaluate the probability of P{uk(t) |u(t)}

we can use Hidden Markov Model. Appendix A provides details on Hidden Markov

Model implementation for input profile recognition.

The performance metric that we can use for updating the reward function (5.14)

can be arbitrary. The metric can be both quantitative and qualitative. An example

of quantitative metrics are, for example, time it take to complete a task, accuracy,

tracking error and etc. From implementation point of view, using qualitative metrics

is more complicated since we need a way to get feedback from the user. Appendix C

provides a list of widely used performance metrics for robot control applications.

5.4 Experiment Results

A set of experiments on interface mapping using reinforcement approach is

conducted using setup show in Fig. 5.4. We use 3D stylus as an input device. With
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Figure 5.4. 3D stylus used as an input device.

this device, we can access joint angular position data as well as 3D position of the tip

of the stylus.

Two different simulated robot systems are used in conjunction with the 3D stylus

to conduct experiments. Fig. 5.5 shows the screen capture of 7 degrees of freedom

articulated robot arm and 6 degrees of freedom robot arm mounted on a mobile

platform.

5.4.1 Experiment 1

Manipulating a 7 DOFs robot arm using a 3D stylus where the interface map-

ping is (5.8). The task is to position the end effector of the robot arm along a

prescribed trajectory. The performance metric used in this experiment is the track-

ing error. The lower the error the higher the reward will be. Each episode lasts 15

seconds; the prescribed trajectory is the same for all episodes. For the HMM, we use

15 hidden states and calculate the reward using (5.14) and k = 10. We use λ = 0.7,

γ = 0.2 and η = 0.01 for the TD(λ) algorithm. For value function iteration (4.55),
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(a)

(b)

Figure 5.5. (a) 7 degrees of freedom articulated robot arm (b) 6 degrees of freedom
robot arm mounted on a mobile platform.

we use feed forward neural network with 2 hidden layers and 10 neurons on each

layer. And we have the same structure for policy iteration (4.60). Fig. 5.6 shows that
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Figure 5.6. Tracking error decreases as the user continue using the system.

the tracking error of the robot end-effector and the prescribed trajectory decreases

as the user the number of learning episodes increases. It shows that robot system

has becoming easier to control using the interface device with the proposed mapping

update method.

5.4.2 Experiment 2

Manipulating a 6 DOFs robot arm mounted on a mobile platform using a 3D

stylus where the interface mapping is (5.8). The task is to pick an object from start

point and place it at the prescribed location. The performance metric used in this

experiment is the time it takes to complete the task. Each episode lasts 20 seconds;
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Figure 5.7. Time take to complete the task decreases as the user continue using the
system.

the prescribed location is the same for all episodes. For the HMM, we use 15 hidden

states and calculate the reward using (5.14) and k = 10. We use λ = 0.7, γ = 0.2 and

η = 0.01 for the TD(λ) algorithm. For value function iteration (4.55), we use feed

forward neural network with 2 hidden layers and 10 neurons on each layer. And we

have the same structure for policy iteration (4.60). Fig. 5.7 shows that the time spent

completing the pick and place task decreases as the number of episode increases. Note

that after it reaches 80 episodes the performance cannot be improved any further.
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Figure 5.8. The brain activity sensor is worn by the user.

5.4.3 Experiment 3

In this experiment, we would like to control the articulated robot arm shown

in Fig. 5.9 using a brain activity sensor shown in Fig. 1.8. The task that we are

interested in is position the end-effector of the robot arm that has a camera attached

to a certain position and orientation. The input from the brain activity sensor will

be used with the control the robot joints angular position. The robot has 5 degrees

of freedom and we implement the proposed learning of the interface mapping, shown

in Fig. 5.3, to find the optimal mapping for this particular this.

The user wearing the brain activity sensor is shown in Fig. 5.8. The user is

presented with a user interface shown in Fig. 5.10. From the user’s point of view, the

user is doing visual servoing as the user tries to position the camera at the end-effector

of the robot arm so that the object of interest is centered on the screen.
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The emotiv head band (brain activity sensor) is capable of sensing level of emo-

tions. We use this capability of the device as the one of the performance indications

for this experiment. We use λ = 0.7, γ = 0.2 and η = 0.01 for the TD(λ) algorithm.

For value function iteration (4.55), we use feed forward neural network with 2 hid-

den layers and 10 neurons on each layer. And we have the same structure for policy

iteration (4.60). The reward function used in this experiment is the time it takes

to complete the task - moving the end-effector of the robot so that the object move

from the initial location as shown in Fig. 5.11 to the desired final location (center)

as shown in Fig. 5.12.

There are 3 different emotions that can be sensed using the brain activity sensor

device. So, we define the indication of mental work load as “emotion energy”:

EE =
3∑

k=0

∫ tf

0

gk(t)dt (5.15)

where tf denotes the final time, gk(t) represents a function of time for each emotions.

In [104], electrodermal activity (EDA) was used to distinguish stress from cognitive

load.

We start with initial randomized NN weights. After 10 successful task comple-

tions, we measure the emotion levels as shown in Fig. 5.15. The time that take to

complete the task at 11th episode was t = 42.6 seconds and the resulting emotion en-

ergy was 1644.07. We continued the learning for 10 more episodes (task completions)

and at the 21th episode the task completion time was 37.2 seconds and the emotion

energy was 1467.91. The emotions level of the final episode is shown in Fig. 5.16.

The robot arm initial configuration is shown in Fig. 5.13 and the final robot arm

configuration of the final episode is shown in Fig. 5.14.

In this experiment, we can see that the intuitive mapping from the brain activity

sensor input to the robot manipulator joint space is not immediately available. In
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addition, the robot manipulator was used to position the camera that is attached to

the end-effector to a desired location, in other words, the user performed image-based

visual servoing of a redundant mechanism. The user utilized the visual feedback

information to perform the manipulation of the manipulator. With a randomized

initial mapping, the user was able to complete the specified visual servoing task.

However, it is obvious from the time that took the user to complete the task that the

user had some difficulty completing the task. We implemented the proposed TD(λ)

learning of the interface mapping (as depicted in Fig. 5.3) to update the mapping

between brain activity sensor and the manipulator joint space position control. As

the user continued performing the same task the mapping was updated by proposed

algorithm. After a certain numbers of task completions (episodes) we can see from the

time that the user took to complete the visual servoing task and the mental work load

indication (5.15) that the overall performance of the user performing this particular

task has improved.

5.5 Summary

Reinforcement learning allows more flexibility for the interface mapping appli-

cation by not just limiting to training using input/output data set. Different kind

of information can be incorporated into reward function. Universal function ap-

proximation property of the neural networks makes it possible to extend to higher

input/output dimension systems. From the experiment results, we can that it is pos-

sible to use the proposed algorithm with arbitrary systems with arbitrary interface

devices. The reward function and the performance metrics must be appropriately

selected to suit the task to be perform. The experiment also show that the proposed

algorithm can be generalized to case of multiple inputs / multiple outputs system as

we have successfully shown that the interface mapping was improved with a robot
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Figure 5.9. The robot arm to be controlled through the use of the brain activity
sensor.

system that has multiple degrees of freedom. The mapping itself is represented by

the feedforward neural networks. Even though the convergence of the neural network

training is not guaranteed, we were able to show that the mapping was converging to

some optimal values. From one of the experiments, we see that the training could not

be improved any further after a certain number of iterations. We can assume that the

mapping has reached its optimal value but we cannot say for sure that the obtained

mapping was the optimal one. It is difficult to determine whether or not the acquired

mapping is optimal as there are several factors that contribute to the optimality of

the interface mapping, for instance, an optimal mapping for one user might not be
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Figure 5.10. A user interface for experiment 3 that is seen by the user.

Figure 5.11. Initial location of the object to be tracked with respect to the camera
frame that is used for all the episodes of experiment 3.
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Figure 5.12. Final location of the object - the task will consider complete after
reaching this desired location.

Figure 5.13. Initial configuration of the robot arm for experiment 3.
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Figure 5.14. Final robot arm configuration after completing the task of the final
episode.
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Figure 5.15. Experiment 3 - emotion level plots of the 11th episode.
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Figure 5.16. Experiment 3 - emotion level plots of the 21th episode.

an optimal mapping for another users. We also noticed that there is a learning on

the user’s part. By performing the same task repeatedly, the user would definitely go

through some learning process regardless of updating of the mapping. This definitely

has some effect on the convergence of the interface mapping. Further investigation

on the convergence of the mapping and the decoupling of the user’s learning and the

learning of the interface mapping will be addressed in future work.



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

6.1.1 Physical Interaction with Robots

In this part of the dissertation, we were interested in realism of physical inter-

actions with robot manipulators. Motivating applications are safe robots, assistive

robots and devices etc. The important element that the motivating applications have

in common is the need to accurately sense the physical interaction force in all dimen-

sions. With the introduction of the Extended Kalman Filter force estimation scheme,

we are able to accurately estimate unmeasured force components. The estimated

force information is used in conjunction with force control method, i.e., impedance

control to perform assistive task by specifying the cartesian impedance of the robot

manipulator.

The proposed Extended Kalman Filter force estimation eliminates the need for

3D force sensor at the interaction point. Along with the virtual end-effector concept,

the interaction can occur at any point along the robot manipulator chain. The pro-

posed HRI method would allow the user to physically interact with the robot in an

intuitive manner. Assistive robots and physical guidance of the robot manipulator

would now be possible without the need of force/ torque sensor, plus the interaction

point is not only limited to just the end-effector of the robot manipulator as long as

1D force sensor is available.

144
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6.1.2 Interaction with Robots through Vision

In this part of the dissertation, the focus was on the realism of interaction with

robots through vision. This part mainly applies to humanoid robots. We were able

to extract head pose information from a single camera by the extended Kalman filter

estimation. We are also interested in generating realistic head-eye motion distribution

for humanoid robot head doing human tracking. We proposed the use of two different

methods to improve the realism of humanoid robots. The first method is the head-

eye motion distribution using an online optimization approach. The other method

is the reinforcement learning of the motor control of the humanoid robot head-eye

mechanism. Both methods yield realistic motion of the humanoid robot tracking a

person. The advantage of the first method is that it does not require learning but

the down side is that it is more computationally expensive than the other method, as

it needs to solve an optimization problem every time step. The second method does

require some learning time at startup. With both of the methods for distributing

humanoid robot head-eye motion, the schemes can be implemented on any humanoid

robot, as both of the methods are independent of the robot head kinematics.

6.1.3 Interaction with Multiple Degrees of Freedom Robots

In this part of the work, we show that the interface mapping of an arbitrary

system can improved toward the optimal mapping. We started with the assumption

that the given interfaces were not the most intuitive interface devices to be used with

the given tasks. Through the use of the proposed reinforcement learning algorithm,

we were able to improve the performance of the task completion by updating the

interface mapping. Experiment results show the effectiveness of the proposed algo-

rithm through different indications. We can now use the proposed mapping update
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algorithm with a system that does not have good interface or we can map a simple

interface to be used to control multiple robots.

6.2 Future Work

6.2.1 Physical Interaction with Robots

The effectiveness of the proposed method has been confirmed through simula-

tions and experiments. In the experiment the virtual end-effector was fixed to just

one location, we need to generalize the virtual end-effector point of interactions and

make it so that multiple interactions can occur at multiple location simultaneously.

Also, we need to further investigate the experimental use of an artificial skin sen-

sor array with the proposed method on robot manipulators, when the skin sensor

becomes available.

6.2.2 Interaction with Robots through Vision

Future work includes algorithm implementation on different robot platforms,

and in actual conversational interaction without robot. Furthermore, facial expression

synthesis should be implemented on the humanoid through the use of compliant skin

to further enhance the realism of HRI.

6.2.3 Interaction with Multiple Degrees of Freedom Robots

From the experiments the interface mapping converges to certain values, but

we have not really investigated the convergence of the proposed learning of the inter-

face mapping algorithm. The reason was because the function that we are trying to

optimize is not known and cannot be easily modeled that is why we use reinforcement

learning approach to begin with. For future work, we need to investigate the conver-

gence of the learning of the interface mapping. We also need to study the effect of
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human learning on the learning process of the interface mapping. Also, we need to

implement the algorithm with different robot systems, and collect data from different

users. Finally, we will work on improving computation efficiency of the algorithm. In-

corporate more performance justification criteria into the algorithm, and incorporate

the reward function in a more efficient manner.



APPENDIX A

PHANTOM OMNI HAPTICS DEVICE KINEMATICS AND DYNAMICS
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In this appendix, we present kinematics and dynamics of the Phantom Omni

haptics device.

A.1 Kinematics

We find the kinematics of this device by defining the twists, the first four twists

are given by:

ω1 =

[
0 1 0

]T
ω2 =

[
−1 0 0

]T
ω3 =

[
−1 0 0

]T
ω4 =

[
0 1 0

]T
ν1 =

[
0 0 0

]T
ν2 =

[
0 0 0

]T
ν3 =

[
0 0 l2

]T
ν4 =

[
0 −l3 l2

]T (A.1)

where di is the link length of the ith joint. The transformation between base and

virtual end-effector frames at q = 0 is given by:

gst(0, p) =


I3×3


−a4

−(l3 + l4)

l2


01×3 1


(A.2)

where ai is the link offset of the ith joint. The homogeneous transformation of the

Phantom Omni haptics device becomes:

gst(q, p) =



h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

0 0 0 1


(A.3)

where

h11 = C1C4 + S4S1S2S3 − S4S1C2C3,

h12 = −S1(C2S3 + S2C3),

h13 = C1S4 − C4S1S2S3 + C4S1C2C3,
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h14 = −a4C1C4−a4S4S1S2S3 +a4S4S1C2C3 +S1S2C3l3 +S1S2C3l4 +S1C2S3l3 +

S1C2S3l4 + S1C2l2,

h21 = −(C2S3 + S2C3)S4,

h22 = C2C3 − S2S3,

h23 = (C2S3 + S2C3)C4,

h24 = a4S4C2S3 + a4S4S2C3 − C2C3l3 − C2C3l4 + S2S3l3 + S2S3l4 + S2l2,

h31 = −S1C4 + S4C1S2S3 − S4C1C2C3,

h32 = −C1(C2S3 + S2C3),

h33 = −S1S4 − C4C1S2S3 + C4C1C2C3,

h34 = a4S1C4− a4S4C1S2S3 + a4S4C1C2C3 +C1S2C3l3 +S1S2C3l4 +S1C2S3l3 +

C1C2S3l4 + C1C2l2,

and Si = sin(qi), Ci = cos(qi)

A.2 Dynamics

Using conventional Lagranges equation, we obtained dynamical model of the

Phantom Omni haptics device as follow:

M(q) =



M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44


(A.4)

where

M11 = −m4l
2
3C

2
3 + I1 +m2C

2
2 l

2
2 +m3C

2
2 l

2
2 +m3l

2
3 +m4C

2
2 l

2
2 +m4l

2
3 −m3l

2
3C

2
3 +

2m4C2l2l3S3 + 2m3C2l2l3S3,

M12 = M21 = 0,

M13 = M31 = 0,

M14 = M41 = m4a4(S4C1C2l2 + S4l3C1S3 − C4S1C2l2 − C4l3S1S3),
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M22 = l22(m2 +m3 +m4),

M23 = M32 = l2(−m3S2l3C3 +m3C2l3S3 −m4S2l3C3 +m4C2l3S3 +m4C2l4S4),

M24 = M42 = −m4l2S2a4(S1S4 + C1C4),

M33 = m3l
2
3 +m4l

2
3 + 2m4l3l4 − 2m4l3l4C

2
3 +m4l

2
4 −m4l

2
4C

2
3 ,

M34 = M43 = m4l3C3a4(S1S4 + C1C4),

M44 = m4a
2
4,

I1 = 1.5,

l2 = 0.135,

l3 = 0.14,

l4 = 0.1,

a4 = 0.05,

m2 = 0.25,

m3 = 0.2 and m4 = 0.1.

The Coriolis term is defined as follow:

C(q, q̇) =



C1

C2

C3

C4


(A.5)

where

C1 = m4a4C4q̇
2
4C1C2l2 + m4a4C4q̇

2
4l3C1S3 + m4a4q̇

2
4S1C2l2 + m4a4S4q̇

2
4l3S1S3 −

2m4l
2
2C2q̇1S2q̇2+2m4l

2
3C3q̇3q̇1S3+2m4l3C3q̇3l2C2q̇1−2m2l

2
2C2q̇1S2q̇2−2m3l2S2q̇2l3q̇1S3−

2m3l
2
2C2q̇1S2q̇2 + 2m3l3C3q̇3l2C2q̇1 + 2m3l

2
3C3q̇3q̇1S3 − 2m4l2S2q̇2l3q̇1S3,

C2 = l2(m4C2l3q̇
2
3 −m4S2S1a4C4q̇

2
4 + m4C2l4C3q̇

2
3 + m4S2C1a4q̇

2
4 + m3C2l3q̇

2
3 +

m3l2S2C2q̇
2
1 +m3S2l3q̇

2
1S3 +m3S2l3S3q̇

2
3 +m2l2S2C2q̇

2
1 +m4l2S2C2q̇

2
1 +m4S2l3q̇

2
1S3 +

m4S2l3S3q̇
2
3),
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C3 = −m4l2S2q̇
2
2l4S3+2m4l3C3q̇

2
3l4S3−m4l3C1C3a4S4q̇

2
4−m3l3S3l2S2q̇

2
2−m3l3C3l2C2q̇

2
1−

m3l
2
3C3q̇

2
1S3−m4l3C3l2C2q̇

2
1−m4l

2
3C3q̇

2
1S3−m1l3C3l2C2q̇

2
2−m4l3C3l2C2q̇

2
2−m4l3S3l2q̇

2
2+

m4l
2
4C3q̇

2
3S3 +m4l3S1C3a4C4q̇

2
4,

C4 = −m4a4(S4l2C2q̇
2
2S1+2S4l2S2q̇2C1q̇1+S4l2C2S1q̇

2
1+S4l3S1q̇

2
1S3−2S4l3C1q̇1C3q̇3+

S4l3S1S3q̇
2
3 +C4l2C2q̇

2
2C1−2C4l2S2q̇2S1q̇1+C4l2C2C1q̇

2
1 +C4l3C1q̇

2
1S3+2C4l3S1q̇1C3q̇3+

C4l3C1S3q̇
2
3),

The gravity matrix is defined as follow:

G =



0

gl2C2(m2 +m3 +m4)

gS3(m3l3 +m4l3 +m4l4)

0


(A.6)

The joint viscous friction coefficient matrix is defined as follow:

D = αI4 (A.7)

where α = 0.05.
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Figure B.1. Implementation Diagram of the Algorithm 1.
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Figure B.2. Implementation Diagram of the Algorithm 2.
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List of general human-robot performance metrics [86]

Navigation

• Global navigation

• Local navigation

• Obstacle encounter

Effectiveness measurements

• Percentage of navigation tasks successfully completed

• Coverage of area

• Deviation from planned route

• Obstacles that were successfully avoided

• Obstacles that were not avoided, but could be overcome

Efficiency measurements

• Time to complete the task

• Operator time for the task

• Average time for obstacle extraction

Workload measurements

• Number of operator interventions per unit time

• Ratio of operator time to robot time

Perception

• Passive Perception

– Detection measures

– Recognition measures

– Absolute judgments of distance, size, or length

– Relative judgments of distance, size, or length

– Platform relative judgments

– Absolute estimates of robot velocity
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– Estimates involving relative motion

• Active Perception

– Efficiency

– Effort

– Detection accuracy for targets within sensor range

– Efficiency as time to search or non-overlapping coverage

– Coverage as percentage of potential sensor coverage

– Operator confidence in sensor coverage

– Efficiency

– Identification errors

– Degree of operator fusion

Management

• Fan out

• Intervention response time

• Level of autonomy discrepancies

Manipulation

• Degree of mental computation

• Contact errors

Social

• Interaction characteristics

• Persuasiveness

• Trust

• Engagement

• Compliance

System Performance

• Quantitative performance
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– Effectiveness

– Efficiency

• Subjective ratings

• Appropriate utilization of mixed-initiative

– Percentage of requests for assistance made by robot

– Percentage of requests for assistance made by operator

– Number of interruptions of operator rated as non-critical

Operator Performance

• Situation awareness

• Workload

• Accuracy of mental models of device operation

Robot Performance

• Self-awareness

• Human awareness

• Autonomy

List of supervisory control of multiple robots performance metrics [88]

• Interaction Efficiency

• Neglect Efficiency

• Attention Allocation Efficiency

List of human supervisory control metric classes and subclasses [90]

• Mission Effectiveness

• Automation Behavior Efficiency

• Human Behavior Efficiency

– Attention allocation efficiency
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– Information processing efficiency

• Human Behavior Precursors

– Cognitive precursors

– Physiological precursors

• Collaborative Metrics

– Human/automation collaboration

– Human/human collaboration

– Automation/automation collaboration

List of performance metric evaluation criteria [90]

• Experimental Constraints

• Comprehensive Understanding

• Construct Validity

• Statistical Efficiency

• Measurement Technique Efficiency

List of generalizable metric classes [91]

• Mission Effectiveness

• Human Behavior Efficiency

• Robot Behavior Efficiency

• Human Behavior Cognitive Precursors

• Human Behavior Physiological Precursors

Collaborative Metrics [91]

• Team Behavioral Action Efficiency

• Team Cognition Efficiency
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• Robot Collaboration Efficiency
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