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ABSTRACT

CONSTRAINED DYNAMICS APPROACH FOR MOTION

SYNCHRONIZATION AND CONSENSUS

Divya Bhatia, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Kamesh Subbarao

In this research we propose to develop constrained dynamical systems based stable attitude

synchronization, consensus and tracking (SCT) control laws for the formation of rigid bodies. The

generalized constrained dynamics Equations of Motion (EOM) are developed utilizing constraint

potential energy functions that enforce communication constraints. Euler-Lagrange equations are

employed to develop the non-linear constrained dynamics of multiple vehicle systems. The con-

straint potential energy is synthesized based on a graph theoretic formulation of the vehicle-vehicle

communication. Constraint stabilization is achieved via Baumgarte’s method. The performance of

these constrained dynamics based formations is evaluated for bounded control authority.

The above method has been applied to various cases and the results have been obtained using

MATLAB simulations showing stability, synchronization, consensus and tracking of formations. The

first case corresponds to an N-pendulum formation without external disturbances, in which the

springs and the dampers connected between the pendulums act as the communication constraints.

The damper helps in stabilizing the system by damping the motion whereas the spring acts as

a communication link relaying relative position information between two connected pendulums.

Lyapunov stabilization (energy based stabilization) technique is employed to depict the attitude

stabilization and boundedness. Various scenarios involving different values of springs and dampers

are simulated and studied.

Motivated by the first case study, we study the formation of N 2-link robotic manipulators.

The governing EOM for this system is derived using Euler-Lagrange equations. A generalized set

of communication constraints are developed for this system using graph theory. The constraints are

v



stabilized using Baumgarte’s techniques. The attitude SCT is established for this system and the

results are shown for the special case of three 2-link robotic manipulators.

These methods are then applied to the formation of N-spacecraft. Modified Rodrigues Pa-

rameters (MRP) are used for attitude representation of the spacecraft because of their advantage

of being a minimum parameter representation. Constrained non-linear equations of motion for this

system are developed and stabilized using a Proportional-Derivative (PD) controller derived based

on Baumgarte’s method. A system of 3 spacecraft is simulated and the results for SCT are shown

and analyzed.

Another problem studied in this research is that of maintaining SCT under unknown external

disturbances. We use an adaptive control algorithm to derive control laws for the actuator torques

and develop an estimation law for the unknown disturbance parameters to achieve SCT. The estimate

of the disturbance is added as a feed forward term in the actual control law to obtain the stabilization

of a 3-spacecraft formation. The disturbance estimates are generated via a Lyapunov analysis of the

closed loop system.

In summary, the constrained dynamics method shows a lot of potential in formation control,

achieving stabilization, synchronization, consensus and tracking of a set of dynamical systems.
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CHAPTER 1

INTRODUCTION

1.1 Background Development

Consensus seeking formations of vehicles implies disciplined motion of several rigid vehicles

(e.g spacecraft, unmanned aircraft, robotic vehicles etc) maintaining a desired geometric formation

shape and geometry. Formation control is an important area of research not only for air and space

vehicles but also for ground and under water vehicles.

The applications of formations are numerous as with formations of spacecraft for unprece-

dented image resolution for astronomy and surveillance [1, 2], modeling of environment, surveillance

and rescue missions in military applications, monitoring of forests and agricultural lands, health-

care applications, collaborative information processing, energy saving from vortex forces [3] and

fuel efficiency via induced drag reduction [4]. Spacecraft formations have also been envisioned for

distributed sensing for gravitational field mapping, atmospheric data sampling, co-observations (i.e,

near-simultaneous observations of the same science target by instruments on multiple platforms),

and synthetic radio-frequency and radar apertures. Formation flying can be used for airborne refu-

eling and quick deployment of troops and vehicles. [5] looks at the problems related to formations

of a number of small, low cost structures instead of one big instrument.

Formations can be established in several ways that include leader-follower, behavioral method

and virtual structures [1]. In leader-following formation, there is one leader and all the other vehicles

follow the leader. In the behavioral method, a prescribed behavior is set for all the vehicles in the

formation for example trajectory, neighbor tracking, collision and obstacle avoidance and formation

keeping. In virtual structure approach, entire formation is treated as a single, virtual structure [6].

In this thesis we deal with the attitude (orientation) synchronization and tracking of a formation of

rigid bodies under communication constraints which helps in maintaining the formation geometry.

We develop the formation control [1, 3, 4, 7] using the theory of constraint forces to build

formations from arbitrary initial conditions of the rigid bodies in formation. We develop general

non-linear equations of motion of rigid bodies [8, 9] in a formation using the Euler-Lagrange Method

[1, 2, 10].

1
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(a) (b)

Figure 1.1. (a) Formation of Spacecraft and (b) Formation of Aircraft.

The formation is maintained due to the constraints acting between the rigid bodies which in

the present context serves like an information exchange among the units in the formation. Com-

munication [11] between these units helps in maintaining the formation; loss of which can make

the overall formation unstable and could annihilate the formation as a consequence. For a coor-

dinated team of multi-agents, the concept of graph theory has been shown to be very useful for

inter-communication between the agents in recent years. Information consensus strategies based on

graph theory for multiple vehicle control has been extensively addressed in [12]. Active constraints

help in the local interactions between the units of this system [13]. Constraint forces [14] also deter-

mine the total force required on each rigid body to maintain the formation. To keep the formations

intact, we develop a control law that is derived from a Baumgarte [1] like stabilization procedure.

Similar work was done in [1, 7, 10] wherein constraints are stabilized via a proportional-derivative

structure. We then show the attitude synchronization and tracking of this formation system similar

to that in [2, 10].

Decentralized control approaches for formations are discussed in [15]. Decentralized [6, 11]

information consensus requires only local neighbor-to-neighbor information exchange among the

vehicles. The basic idea in this type of consensus is that each vehicle updates its information state

based on the information states of its local neighbors so that the final information states of the total

system converge to a common consensus value. Consensus problems have been applied in the context

of formation control, self-alignment, flocking and network dynamics systems [16]. The problem of
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desired reference state tracking is discussed in [10, 12]. In [17], invertibility of input-output maps

and control system design for non-linear formation flying were considered.

(a) (b)

Figure 1.2. (a) Robot Formation and (b) Constellation (Formation of Celestial bodies).

Several studies have addressed coordination control of multiple mobile robots (see [18] and

references therein). Potential field approach is a popular approach to achieve coordination of multiple

vehicles and shape the dynamics of the formation. Coordinated control using potential functions can

be found in [19, 20, 21, 22, 23]. The basic idea in these studies is to create an energy-like function

(potential function) to enforce position constraints between vehicles and use the negative gradient of

the potential function as a restoring force on each vehicle to achieve coordination. The constrained

dynamical approach in this thesis utilizes this basic idea to set up the control laws.

1.2 Problem Definition and Motivation

Motivated by developments in technology, the requirements of efficiency and quality in pro-

duction have resulted in complex and integrated systems. The use of multi composed systems is

spreading widely. Many multi composed systems work either under cooperative [18, 21] or coordi-

nated schemes. Examples of such systems are abundant in nature (constellations), biological systems
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(fish swarms, birds flock as shown in figure 1.3) and artificial machines (aircraft, spacecraft forma-

tion, multiple robots). Inspired by these systems and lured by its advantages, man has started

mimicking such systems. Man made distributed systems are now being used to achieve efficiency

and time and cost reduction. For example, formation of satellites as shown in figure 1.1(a), robots

formation as shown in figure 1.2(a), marine craft formation, airplane formation etc [5, 13, 24]. How-

ever, many technical challenges must be addressed before controlled formation could be realized. For

instance, it requires extensive technology development for precise attitude maintenance, controlled

formation under external disturbances, tracking etc which requires that we need to address problems

like synchronization, consensus, stability and tracking in general of these formation.

(a) (b)

Figure 1.3. (a) Birds Flock and (b) School of fish.

Hence, synchronization [25] and consensus [12, 26, 27] of such systems is very important and

has been studied since many years but has only recently caught much attention.

The main contribution of this research is the development of the control algorithm for

multiple rigid bodies using constraint forces that simultaneously achieve and maintain a given for-

mation together with tracking [28]. For a large interconnected system with arbitrary connection

topologies, the synthesis of a constraint potential is non-trivial. We solve this by exploiting the con-

nection topology and synthesizing a potential energy function based on the graph Laplacian for this

interconnected system [10, 24]. Once chosen, this still poses an additional difficulty of synthesizing

the constraint Jacobians as re-deriving the Jacobian each time for a different connection topology is

tedious. We address this issue by numerically synthesizing the Jacobian. Thus the framework only
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needs to know the connection topology and the control laws are derived accordingly. In the present

research, several candidate scenarios are evaluated such as tracking and finally unaided consensus.

For detailed descriptions of these scenarios also see [12, 26, 27].

The problems related to synchronization, consensus and tracking are addressed using the

stabilized constraint dynamics approach and are discussed in detail in Chapter 4. Another problem

addressed in this research is the synchronization, consensus and tracking under unknown external

disturbance. An adaptive control algorithm [29] is adopted to solve for an estimate of unknown

disturbance through Lyapunov method [30, 31, 32] and a feed forward term is added to the ex-

ternal torque required to stabilize this disturbed system. Various cases (N-spacecraft formation,

N-pendulum formation and N 2-link robotic manipulator) have been studied to test these tech-

niques. These systems are simulated for various topologies of the rigid bodies and the results are

obtained using simulations developed in the MATLAB environment.



CHAPTER 2

SYNCHRONIZATION OF MULTIPLE OSCILLATORS

This chapter discusses the N-pendulum formation system as a motivating example. We start

by discussing the Euler-Lagrange equations. Next, we derive the mathematical model (equations of

motion) of a 2-pendulum formation. In this case a spring and a damper between the pendulums

serve to model communication. The spring helps in the exchange of information between pendulums

and damper helps in damping the motion of the system and stabilizing the system. Following this,

we generalize the equations of motion for an N-pendulum formation. We proceed by establishing the

stability of this formation using Lyapunov’s stability method. Finally, we simulate a 4-pendulum

system for different sets of springs and dampers in MATLAB and verify the stability, synchronization

and consensus using these simulations.

2.1 Euler-Lagrange Method

Euler-Lagrange method is an energy based method that can be used to derive the governing

equations of motion of a dynamical system. In classical mechanics, we define the Lagrangian as the

difference between the kinetic energy, T and the potential energy, U of a dynamical system.

L = T − U (2.1)

If we know the Lagrangian of a system, we can easily derive the equations of motion of that

particular system by using the Euler-Lagrange equations given by,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∑

τi, i = 1, 2, . . . , N (2.2)

where qi is the generalized coordinate of the ith body in the system and
∑
τi is the sum of the

generalized external forces acting on the system.

The Lagrangian formulation helps in deriving the equations of motion (EOM) of many com-

plex systems which can otherwise be difficult to deal with using the Newton’s II law. This method

is derived from the action principle which has applications to other fields like quantum mechanics

etc. This formulation is advantageous as it is a generalized method which can be used to derive

6
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EOM of complex systems using any coordinate system convenient to the user. EOM derived using

this method are invariant under symmetry if the Lagrangian of that system is invariant.

2.2 Equations of Motion for a constrained 2-Pendulum system

Consider 2 pendulums under constraints, i.e a spring and a damper connecting the two center

of masses of the pendulums. The constraint here models the information exchange between the

pendulums and the damper helps in damping the motion of this system. We consider 2 pendulums

having massless rods of lengths li and masses of bobs as mi, when disturbed from their equilibrium

position (i.e vertical axis) makes angles θi where i = 1, 2.

Figure 2.1. 2-pendulum system.

ci and ki are the damping coefficient and the spring constant of damper and spring respectively

of this system; a is the upstretched length of the spring; g is the acceleration due to gravity and is

equal to 9.8m/s2.

For a system of N-pendulums in general, there are (N−1) springs and dampers in the system.

Then,

T =

N∑
i=1

1

2
mil

2
i θ̇

2
i (2.3)

U =

N∑
i=1

mighi +

N−1∑
i=1

1

2
ki∆r

2
i (2.4)
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where

hi = li(1− cos θi) (2.5)

gives the change in the height of the pendulums.

∆~ri = ∆xiî+ ∆yiĵ (2.6)

is the displacement of the pendulums, where î and ĵ are the unit vectors in x and y direction. Also,

∆xi = l(i+1) sin θ(i+1) − li sin θi

∆yi = l(i+1) cos θ(i+1) − li cos θi

(2.7)

where ∆x and ∆y is the displacement of the center of mass in x and y direction. Now,

∆r2 = ∆~r.∆~r (2.8)

= l21 + l22 − 2l1l2 cos (θ2 − θ1) (2.9)

Differentiating equation (2.6),

∆ṙi = (l(i+1) cos θ(i+1)θ̇(i+1) − li cos θiθ̇i)̂i+ (−l(i+1) sin θ(i+1)θ̇(i+1) + li sin θiθ̇i)ĵ (2.10)

Lagrangian is given by:

L = T − U (2.11)

Euler-Lagrange equations are given by:

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
+
∂R

∂θ̇i
=
∑

Qθi (2.12)

where
∑
Qθi are the external forces acting on the 2-pendulum system. And,

R =
1

2
ci∆~̇ri∆̇~ri (2.13)

=
1

2
c(l22θ̇

2
2 + l21θ̇

2
1 − 2l2l1θ̇2θ̇1cos(θ2 − θ1)) (2.14)

is the Rayleigh dissipation due to the damper involved in the 2-pendulum system. Substituting the

values of L and R in the Euler-Lagrange equations and rearranging them gives the final equations

of motion for this 2-pendulum system as,

θ̈1 = − g
l1

sin θ1 +
kl2
m1l1

sin (θ2 − θ1)− c

m1l1
(l1θ̇1 − l2θ̇2 cos(θ2 − θ1)) (2.15)

θ̈2 = − g
l2

sin θ2 −
kl1
m2l2

sin (θ2 − θ1)− c

m2l2
(l2θ̇2 − l1θ̇1 cos(θ2 − θ1)) (2.16)
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2.3 EOM for the Generalized N-Pendulum system

Following the same method of calculating the kinetic energy, potential energy and the La-

grangian of a generalized N-pendulum system, then using Euler -Lagrange equations we find the

generalized equations of motion of the N-pendulum system which can also be found similarly by

observing the pattern in the 2-pendulum system. The generalized N-pendulum system equations of

motion are summarized below.

Figure 2.2. N-pendulum system.

For 1st pendulum:

θ̈1 = − g
l1

sin θ1 +
k1l2
m1l1

sin (θ2 − θ1)− c1
m1l1

(l1θ̇1 − l2θ̇2 cos(θ2 − θ1)) (2.17)

For i = 2→ (N − 1) pendulums:

θ̈i = − g
li

sin θi −
k(i−1)l(i−1)

mili
sin (θi − θ(i−1)) +

kil(i+1)

mili
sin (θ(i+1) − θi)−

c(i−1)

mili
(liθ̇i

−l(i−1)θ̇(i−1) cos(θi − θ(i−1)))−
ci
mili

(liθ̇i − l(i+1)θ̇(i+1) cos(θ(i+1) − θi))
(2.18)

For N th pendulum:

θ̈N = − g

lN
sin θN −

k(N−1)l(N−1)

mN lN
sin (θN − θ(N−1))−

c(N−1)

mN lN
(lN θ̇N − l(N−1)θ̇(N−1) cos(θN − θ(N−1)))

(2.19)
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2.4 Stability of the N-Pendulum system

In this section, we prove analytically that the N-pendulum system can be stabilized by least

number of dampers placed between any two pendulums in an N-pendulum system. Start by writing

the kinetic energy of this system as:

T =

N∑
i=1

1

2
mil

2
1θ̇i

2
(2.20)

Also, the potential energy of this system is as follows,

U =

N∑
i=1

migli(1−cos θi)+

N−1∑
i=1

1

2
ki[(l(i+1) sin θ(i+1)− li sin θi)

2+(l(i+1) cos θ(i+1)− li cos θi)
2] (2.21)

Formulating the Hamiltonian or the total energy of this system as,

TotalEnergy : V = T + U (2.22)

The above is also a suitable Lyapunov function candidate. Differentiating the Lyapunov

function candidate with respect to time as,

dV

dt
=

N∑
i=1

(mil
2
i θ̇iθ̈i +migli sin θiθ̇i) +

N−1∑
i=1

ki[(l(i+1) sin θ(i+1) − li sin θi)(l(i+1) cos θ(i+1)θ̇(i+1) − li cos θiθ̇i)

−(l(i+1) cos θ(i+1) − li cos θi)(l(i+1) sin θ(i+1)θ̇(i+1) − li sin θiθ̇i)]

(2.23)

Substituting the values of θ̈i from equations (2.17), (2.18) and (2.19) in the above (2.23) and

rearranging the terms gives,

dV

dt
= −

N−1∑
i=1

ci[(l(i+1) cos θ(i+1)θ̇(i+1) − li cos θiθ̇i)
2 + (−l(i+1) sin θ(i+1)θ̇(i+1) + li sin θiθ̇i)

2] (2.24)

or

dV

dt
= −2R (2.25)

where

R =
1

2

N−1∑
i=1

(ci∆~̇ri∆̇~ri) (2.26)

From equation (2.24), we see that the change in the total energy is dependent on θi, θ̇i and

li. Thus the rate at which this system stabilizes depends on the number of dampers in the system.

When there are no dampers in the N-pendulum system, the system remains bounded but does not

converge.
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Now, to prove the stability of the N-pendulum formation system, rewrite equation (2.24) as:

V̇ = −
N−1∑
i=1

ci(Term1 + Term2) (2.27)

where

Term1 = (li cos θiθ̇i − l(i−1) cos θ(i−1)θ̇(i−1))
2 (2.28)

and

Term2 = (−li sin θiθ̇i + l(i−1) sin θ(i−1)θ̇(i−1))
2 (2.29)

We see that equations (2.28) and (2.29) are positive for all values of li and θi, which makes

equation (2.27) negative definite. From Lyapunov’s stability theorem [8] which states,

Theorem: If a scalar function V (x, t) satisfies the following conditions:

1. V (x, t) is positive definite (that is, lower bounded).

2. V̇ (x, t) is negative semi-definite.

3. V̇ (x, t) is uniformly continuous in time.

4. V̇ (x, t)→ 0 as t→∞

we conclude that the system in equations (2.17)-(2.19) with V (x, t) in equation (2.22) is asymptotic

stable (AS).

2.5 Simulation Results

We simulate the equations of motion of the 4-pendulum system in MATLAB and we plot the

results showing the variation of the angles θi with time and the phase plots with different values of

ci (damping coefficient) and ki (spring constant). In this system there are 3 springs and 3 dampers.

2.5.1 Case 1: Damping coefficients (c1, c2, c3) = (1, 1, 1)

In this case, initial condition of orientations and angular velocities are (θ1, θ2, θ3, θ4, θ̇1, θ̇2, θ̇3, θ̇4) =

(1, 1, 1, 1, 1, 1, 1, 1), masses of the bobs are (m1,m2,m3,m4) = (1, 1, 1, 1) and lengths of pendulums

are (l1, l2, l3, l4) = (1, 1, 1, 1). The results are shown in figure 2.3. We see that all the pendulums

synchronize and stabilize.

2.5.2 Case 2: Limited number of dampers as (c1, c2, c3) = (1, 0, 0)

In this case, initial masses of bobs are (m1,m2,m3,m4) = (1, 1, 1, 1), lengths of pendulums

are (l1, l2, l3, l4) = (1, 1, 1, 1), spring constants are (k1, k2, k3) = (1, 1, 1) and initial conditions of
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Figure 2.3. 4-pendulum system with (c1, c2, c3) = (1, 1, 1).

orientations and angular velocities are (θ1, θ2, θ3, θ4, θ̇1, θ̇2, θ̇3, θ̇4) = (1, 1, 1, 1, 1, 1, 1, 1). The results

are shown in figure 2.4. In this case, the motion is damped slowly as there is only one damper.

Figure 2.4. 4-pendulum system with (c1, c2, c3) = (1, 0, 0).



CHAPTER 3

FORMATION OF N 2-LINK ROBOT MANIPULATORS

This chapter discusses the formation control of N 2-link robotic manipulators. As was done

in the previous chapter, we first develop the EOM of a 2-link robotic manipulator using the Euler-

Lagrange method. The next section derives the generalized EOM for N 2-link robotic manipulators.

3.1 2-link Robotic Manipulator

Figure 3.1. A 2-link robotic manipulator.

Consider a 2-link robotic manipulator, i.e it has 2 degrees of freedom. The manipulator

consists of 2-rigid links where l1 and l2 are the lengths of it’s first and second arms. m1 and m2 are

the distributed masses of the two arms of the robotic manipulator, that is, the center of mass for

13
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each link is at the center of each arm. The moments of inertia of the two arms are I1 and I2. Now,

from the figure 3.1,

xD = l1 cos θ1 +
1

2
l2 cos (θ1 + θ2)

yD = l1 sin θ1 +
1

2
l2 sin (θ1 + θ2)

xC =
1

2
l1 cos θ1

yC =
1

2
l1 sin θ1

(3.1)

where xD, yD, xC and yC are the positions of the points D and C. Differentiating equation (3.1)

gives the velocity of the center of masses, i.e C and D.

ẋD = −l1 sin θ1θ̇1 −
1

2
l2 sin (θ1 + θ2)(θ̇1 + θ̇2)

ẏD = l1 cos θ1θ̇1 +
1

2
l2 cos (θ1 + θ2)(θ̇1 + θ̇2)

ẋC = −1

2
l1 sin θ1θ̇1

ẏC =
1

2
l1 cos θ1θ̇1

(3.2)

The total velocity of the center of mass D is given by

v2D = ẋ2D + ẏ2D (3.3)

=

[
−l1 sin θ1θ̇1 −

1

2
l2 sin (θ1 + θ2)(θ̇1 + θ̇2)

]2
+

[
l1 cos θ1θ̇1 +

1

2
l2 cos (θ1 + θ2)(θ̇1 + θ̇2)

]2
(3.4)

= l21θ̇
2
1 +

1

2
l22(θ̇1 + θ̇2)2 + l1l2θ̇1(θ̇1 + θ̇2) [sin θ1 sin (θ1 + θ2) + cos θ1 cos (θ1 + θ2)] (3.5)

= l21θ̇
2
1 +

1

2
l22(θ̇1 + θ̇2)2 + l1l2θ̇1(θ̇1 + θ̇2) cos θ2 (3.6)

The total kinetic energy is

T =

[
1

2
IAθ̇

2
1

]
+

[
1

2
ID(θ̇1 + θ̇2)2 +

1

2
m2V

2
D

]
(3.7)

where, IA = 1
3m1l

2
1 and ID = 1

12m2l
2
2 are the moment of inertia of arms 1 and 2. Then,

T =

[
1

2

(
1

3
m1l

2
1

)
θ̇21

]
+

[
1

2

(
1

12
m2l

2
2

)
(θ̇1 + θ̇2)2 +

1

2
m2V

2
D

]
(3.8)

Substituting equation (3.3) in (3.8) and regrouping the similar terms

T = θ̇21

(
1

6
m1l

2
1 +

1

6
m2l

2
2 +

1

2
m2l

2
1 +

1

2
m2l1l2 cos θ1

)
+θ̇22

(
1

6
m2l

2
2

)
+θ̇1θ̇2

(
1

3
m2l

2
2 +

1

2
m2l1l2 cos θ2

)
(3.9)
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The total potential energy of this system is the sum of the potential energies of the two links.

U = m1g
l1
2

sin θ1 +m2g

(
l1 sin θ1 +

l2
2

sin (θ1 + θ2)

)
(3.10)

where g is acceleration due to gravity. Now, the Lagrangian for the 2-link robot arm is given by the

difference between the total kinetic energy and potential energy.

L = T − U (3.11)

Substituting the values of T and U from equations (3.9) and (3.10) in (3.11) and solve to get

L = θ̇21

(
1

6
m1l

2
1 +

1

6
m2l

2
2 +

1

2
m2l

2
1 +

1

2
m2l1l2 cos θ2

)
+ θ̇22

(
1

6
m2l

2
2

)
+ θ̇1θ̇2

(
1

3
m2l

2
2 +

1

2
m2l1l2 cos θ2

)
−m1g

l1
2

sin θ1 −m2g

(
l1 sin θ1 +

l2
2

sin θ1 + θ2

)
(3.12)

The Euler-Lagrange equations are given by:

d

dt

(
∂L

∂θ̇ i

)
− ∂L

∂θ̇ i
= τi (3.13)

where i = 1, 2 in this case. τi is the sum of all the generalized external torques. Using equation

(3.12) into (3.13), we get the equations of motion of a 2-link robotic arm as,

τ1 =

(
1

3
m1l

2
1 +m2l

2
1 +

1

3
m2l

2
2 +m2l1l2 cos θ2

)
θ̈1 +

(
1

3
m2l

2
2 +

1

2
m2l1l2 cos θ2

)
θ̈2 − (m2l1l2 sin θ2) θ̇1θ̇2

−
(

1

2
m2l1l2 sin θ2

)
θ̇22 +

(
1

2
m1 +m2

)
gl1 cos θ1 +

1

2
m2gl2 cos (θ1 + θ2)

(3.14)

τ2 =

(
1

3
m2l

2
2 +

1

2
m2l1l2 cos θ2

)
θ̈1 +

(
1

3
m2l

2
2

)
θ̈2 +

(
1

2
m2l1l2 sin θ2

)
θ̇21 +

1

2
m2gl2 cos (θ1 + θ2)

(3.15)

We can write equations (3.14) and (3.15) in generalized matrix form as, τ1

τ2

 =

 h11 h12

h21 h22

 θ̈1

θ̈2

+

 f11θ̇1 + e11θ̇2 f12θ̇2 + e12θ̇2

f21θ̇1 + e21θ̇2 f22θ̇2 + e22θ̇1

 θ̇1

θ̇2

+

 g11

g21


The above generalized matrix form can be rewritten in compact form as,

τi = Hi(θi)θ̈i + C̄i(θi, θ̇i)θ̇i + Gi(θi), i = 1, 2 (3.16)
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where

h11 =

(
1

3
m1l

2
1 +m2l

2
1 +

1

3
m2l

2
2 +m2l1l2 cos θ2

)
, h12 =

(
1

3
m2l

2
2 +

1

2
m2l1l2 cos θ2

)
,

h21 =

(
1

3
m2l

2
2 +

1

2
m2l1l2 cos θ2

)
, h22 =

(
1

3
m2l

2
2

)
,

f11 = 0, f22 = 0,

f12 = −
(

1

2
m2l1l2 sin θ2

)
, f21 =

(
1

2
m2l1l2 sin θ2

)
,

e11 = − (m2l1l2 sin θ2) , e12 = 0, e21 = 0, e22 = 0,

g11 =

(
1

2
m1 +m2

)
gl1 cos θ1 +

1

2
m2gl2 cos (θ1 + θ2), g21 =

1

2
m2gl2 cos (θ1 + θ2)

(3.17)

3.2 EOM of N 2-link Robotic Manipulator

Figure 3.2. Three 2-link robotic manipulator formation.

In this section, we consider N 2-link robotic manipulators. The generalized equations of

motion of N 2-link robotic manipulators is written in compact form as

τi = Hi(θi)θ̈i + C̄i(θi, θ̇i)θ̇i + Gi(θi) (3.18)

where i = 1, 2, 3 . . . N .
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Dropping the index i and writing the equation (3.18) for N 2-link robotic manipulators as,

τ = Hθ̈ + C̄θ̇ + G (3.19)

where

H =


H1

. . .

HN

 , C̄ =


C̄1

. . .

C̄N



G =


G1

...

GN

 , τ =


τ1
...

τN

 and θ =


θ1
...

θN


Note, that each θi =

(
θ1i , θ

2
i

)
is a two component attitude vector.

In order for this system to maintain a prescribed formation, communication constraints should

be developed which enforce synchronization, consensus and tracking. The generalized communica-

tion constraints are developed in the next chapter using the graph theory.



CHAPTER 4

CONSTRAINED DYNAMICS FORMULATION

To maintain the formation of N -rigid bodies (spacecraft, aircraft, pendulums, robots etc),

constraints could be employed to achieve the formation. These constraints aid in the consensus and

synchronization of the attitude of the rigid bodies depending upon how these are enforced. In this

chapter, we first develop the graph theory background needed in formulating the communication

constraints. We then develop the generalized constraints required for maintaining the N-rigid bodies

in formation. We then develop the N 2-link robotic manipulator EOM with the constraint dynamics.

Once the EOM of the formation under constraints are developed, a Baumgarte stabilization technique

is applied to stabilize this formation. Finally, the formation is simulated in MATLAB for various

communication topologies and the cases of synchronization, tracking and consensus are shown.

4.1 Graph Theory Background

A graph is a pair G = (V, E) where V is a finite nonempty set of nodes or vertices V =

{v1, v2, v3, . . . , vN} and a set of edges or arcs E ⊆ V × V. We assume vi, vi 6⊆ E , ∀ i, i.e no self

loops. Edge eij = (vi, vj) is said to be outgoing with respect to node vi and incoming with respect to

vj . If every possible arc exists, the graph is said to be complete. If (vi, vj) ⊂ E ⇒ (vj , vi) ⊂ E , ∀ i, j

the graph is said to be undirected, otherwise it is directed and is termed as digraph. The edges are

represented by an adjacency matrix

Figure 4.1. Graph showing node and edge.

18
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A = [aij ] (4.1)

with aij = 1 if (vj , vi) ⊂ E and aij = 0 otherwise. Also, aii = 0. For an undirected graph A is

symmetric. The weighted adjacency matrix is given by

Aw = `ij [aij ] (4.2)

where `ij are the weights of each edge in the graph.

The in-degree of vi is the number of edges having vi as a head i.e. ith row sum di =
∑
j

aij .

The out-degree of a node vi is the number of edges having vi as a tail, i.e. ith column sum do =
∑
j

aji.

If the in-degree equals the out-degree for all nodes v ∈ V, the graph is said to be balanced.

The valency matrix of the graph is a diagonal matrix given as,

D = diag

 N∑
j=1

aij

 (4.3)

The weighted valency matrix is given by:

Dw = diag

 N∑
j=1

`ij [aij ]

 (4.4)

Now the structure of the graph is given by the Laplacian matrix i.e.

L = D −A (4.5)

and the weighted Laplacian matrix is given by:

Lw = Dw −Aw (4.6)

Example: An example of a graph showing how to formulate the Laplacian is explained below

for the connection topology explained below.

In this case, a desired (reference node)rigid body is connected to rigid body 1 which is

connected to 2 and 2 to 3. Then,

A =



σ1 σ2 σ3 σd

σ1 0 0 0 1

σ2 1 0 0 0

σ3 0 1 0 0

σd 0 0 0 0
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Figure 4.2. Graph topology.

The rows of A are given by the in degree of that particular node. For example, σ1 is the in

degree of σ2, σ2 is the in degree of σ3 and σd is the in degree of σ1. Then,

D =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


and L = D −A. Hence,

L =



1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 0 0


4.2 Development of Generalized Constraints for an N-Rigid bodies system

Consider an N rigid bodies system whose attitude is given by qi. q = {q1, q2, . . . , qN}

represents the collection of the attitudes of N rigid bodies with respect to the inertial frame. To

develop the constraints, consider a mapping from q 7→ y(L̃) which is given by:

y = L̃ q (4.7)

where L̃ ∈ Rj×N has number of rows equal to j and number of columns equal to the total number

of rigid bodies in the system i.e N . Also, j = total number of rigid bodies having an out-degree with

out-degree ≥ 1. y ∈ Rj×1 is a vector with j rows and 1 column.
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Now, the constraints (akin to directional communication between a body and others in the

formation), are represented as scalar potential functions given by:

C(q1,q2 . . .qN) = yTy (4.8)

= (L̃ q)T L̃ q (4.9)

= qT (L̃T L̃)q (4.10)

L̃ is also called the error Laplacian and is derived from L. The above form of constraint potential

ensures the attitude consensus and tracking. For the attitude tracking consensus problem, when all

the rigid bodies track a desired reference attitude, the attitude vector of the system then becomes

q = {q1, q2, . . . , qN, qd} where q ∈ R(N+Nd)×1 with additional reference attitudes included. Nd

are the total number of desired reference attitude vectors. For such a case, L̃ will be constructed

with this new q attitude vector.

Using the connection topology as given in example shown in figure 4.2, we develop the con-

straints as,

L̃ q =



1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 0 0





q1

q2

q3

qd


Then,

L̃ q =



q1 − qd

q2 − q1

q3 − q2

0


Finally,

C =
(

q1 − qd q2 − q1 q3 − q2 0

)


q1 − qd

q2 − q1

q3 − q2

0


giving

C = (q1 − qd)2 + (q2 − q1)2 + (q3 − q2)2 (4.11)
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4.3 Constrained EOM formulation for N 2-link robotic manipulator system

Using the above formulated constraints and applying it to N 2-link robotic manipulator

system, we find that the above constraints for this case is written as,

C(θ1, θ2 . . . θN) = yTy (4.12)

= (L̃ θ)T L̃ θ (4.13)

= θT (L̃T L̃)θ (4.14)

where, attitude of this system is expressed as θ = {θ1, θ2, . . . , θN}. Here, each θi =
(
θ1i , θ

2
i

)
is a two component attitude vector. With the constraint potentials formulated, the Lagrangian is

modified as follows,

Lm = L+ ΛTC (4.15)

where Λ is the vector of Lagrange Multipliers of this system of N 2-link robotic manipulators given

by Λ = (λ1, λ2, . . . , λM )
T

and C = (C1, C2, . . . , CM )
T

is the vector of constraint potentials.

The modified Euler-Lagrange equations for this system under constraints is given by:

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
+

[
∂Ci(θ)
∂θi

]T
Λ = τi (4.16)

where τi is the vector of generalized external torques acting on the ith body. Denoting Wi as the

Jacobian of the constraints for the ith body, i.e.Wi =
[
∂Cj(θ)
∂θi

]
, the equations of motion for this

constrained system is obtained as,

Hjθ̈j + Fjθ̇j
2

+ Gj(θ̇i, θ̇i+1)j + Ej = (τj −Wj
TΛ) (4.17)

where, equation (4.17) can be rewritten as,

θ̈j = Hj
−1
[
(τj −Wj

TΛ)− Fjθ̇
2
j −Gj(θ̇i, θ̇i+1)j −Ej

]
(4.18)

Dropping the arguments in equation (4.17) for the sake of brevity, we get

Hθ̈ + Fθ̇2 + G(θ̇iθ̇i+1) + E = (τ −WTΛ) (4.19)

where,

W =


W1

...

WN
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Differentiating the constraints C with respect to time yields,

Ċ = Wθ̇ = 0 (4.20)

Upon differentiation of equation (4.20) with respect to time,

C̈ = Ẇθ̇ + Wθ̈ = 0 (4.21)

Substituting the value of θ̈ from equation (4.19) into (4.21) we get

Ẇθ̇ + W
[
H−1

(
τ −WTΛ− Fθ̇2 −G(θ̇i, θ̇i+1)−E

)]
= 0 (4.22)

The above can be trivially solved for Λ,

Λ =
[
WH−1WT

]−1 [
WH−1

(
τ − Fθ̇2 −G(θ̇iθ̇i+1)−E

)
+ Ẇθ̇

]
(4.23)

where
[
WH−1WT

]
is a square matrix. Substituting Λ back in equation (4.19) yields the constrained

equations of motion.

4.4 Baumgarte Stabilization of Constraints

The control torque required to enforce the formation constraints is derived using Baumgarte

stabilization technique. Equation (4.21) is modified to include stabilization terms, i.e.

C̈ = −KdĊ −KpC (4.24)

where Kp and Kd are appropriately chosen positive definite matrix gains for the proportional and

derivative (PD) terms. Then,

Λ =
[
WH−1WT

]−1 [
WH−1

(
τ − Fθ̇2 −G(θ̇i, θ̇i+1)−E

)
+ Ẇθ̇ + KpC + KdĊ

]
(4.25)

It can be easily shown that the Λ obtained from equation (4.25), when substituted into

equation (4.19) ensures that the N 2-link robotic manipulator formation system is asymptotically

stable. If we choose value of the control torque given by

τ = −WT
[
WH−1WT

]−1 [
Ẇθ̇ −WH−1(Fθ̇2 + G(θ̇i, θ̇i+1) + E) + KpC + KdĊ

]
(4.26)

This value of external control torque τ ensures that Λ = 0 and ensures that C → 0 thus

leading to synchronization and asymptotic stability of the formation.
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Lemma 1: The choice of the external torque as

τ = −WT
[
WH−1WT

]−1 [
Ẇθ̇ −WH−1(Fθ̇2 + G(θ̇i, θ̇i+1) + E) + KpC + KdĊ

]
ensures C(t)→ 0 as t→∞.

Proof: For the above value of control torque given by τ , we can write

Hθ̈+Fθ̇2+G(θ̇i, θ̇i+1)+E = −WT
[
WH−1WT

]−1 [
Ẇθ̇ −WH−1(Fθ̇2 + G(θ̇i, θ̇i+1) + E) + KpC + KdĊ

]
(4.27)

Pre multiplying both sides of equation (4.27) by WH−1 gives

WH−1[Hθ̈ + Fθ̇2 + G(θ̇i, θ̇i+1) + E] = −
[
Ẇθ̇ −WH−1(Fθ̇2 + G(θ̇i, θ̇i+1) + E) + KpC + KdĊ

]
(4.28)

Simplifying equation (4.28) gives

Wθ̈ + Ẇθ̇ + KpC + KdĊ = 0 (4.29)

Using equation (4.20) in above, we get

C̈ + KpC + KdĊ = 0 (4.30)

Choosing appropriate values of Kp,Kd > 0, we see C → 0 as t→∞ from equation (4.24).

4.5 MATLAB Results

The simulation results in this case corresponds to different scenarios. (m1,m2) = (10, 5),

(m3,m4) = (10, 5) and (m5,m6) = (10, 5) are the initial conditions of the masses of the arms of 1st,

2nd, 3rd and the reference robots respectively. (l1, l2) = (5, 2), (l3, l4) = (5, 2), (l5, l6) = (5, 2) and

(ld1, ld2) = (5, 2) are the initial conditions of lengths of the 1st, 2nd, 3rd and the reference robotic

arms respectively.

4.5.1 Connection Topology 1

In this case the connection topology (CT1) is considered as shown in figure 4.3 where desired

reference robot is connected to 1. 1 is connected to 2 and 2 to 3.
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Figure 4.3. Case 1 Topology.

A1 =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 0



D1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


Now, L1 = D1 − A1. Figure 4.4 show results corresponding to tracking performance for

a constant desired attitude. Clearly, all the formation objectives are met and the three vehicles

converge to a constant orientation. The initial conditions of the orientations of the robots are

robot1(θ) = (−0.2, 0.2), robot2(θ) = (−0.1, 0.1), robot3(θ) = (0.2,−0.2) and robotd(θ) = (0.2, 0.1).

The initial conditions of the angular velocities of the robots are robot1(ω) = (0, 0), robot2(ω) = (0, 0),

robot3(ω) = (0, 0) and robotd(ω) = (0, 0). The PD gains are Kp = 10 and Kd = 80.

4.5.2 Connection Topology 2

In this case the connection topology (CT2) is considered as shown in figure 4.5 where the

reference robot is connected to robot 1 which is connected to 2, 2 to 3 and 3 to 1.
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Figure 4.4. CT1: Tracking a constant orientation θd = (0.2, 0.1).

Figure 4.5. Case 2 Topology.

A2 =



0 0 1 1

1 0 0 0

0 1 0 0

0 0 0 0



D2 =



2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


Now, L2 = D2−A2. Figure 4.6 show results corresponding to tracking performance for a con-

stant desired attitude. All the 3 robots track the attitude of the desired vehicle and converge to a con-
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stant orientation. The initial conditions of the orientations of the robots are robot1(θ) = (−0.2, 0.2),

robot2(θ) = (−0.1, 0.1), robot3(θ) = (0.2,−0.2) and robotd(θ) = (0.2, 0.1). The initial conditions of

the angular velocities of the robots are robot1(ω) = (0, 0), robot2(ω) = (0, 0), robot3(ω) = (0, 0) and

robotd(ω) = (0, 0). The PD gains are Kp = 20 and Kd = 700.

Figure 4.6. CT2: Tracking a constant orientation θd = (0.2, 0.1).

4.5.3 Connection Topology 3

Figure 4.7. Case 3 Topology.

In this case, the connection topology (CT3) is considered as shown in figure 4.7 where robot

1 is connected to 2, 2 to 3 and 3 to 1.
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A3 =


0 0 1

1 0 0

0 1 0



D3 =


1 0 0

0 1 0

0 0 1


Now, L3 = D3 −A3. Figure 4.8 show results corresponding to consensus of the three 2-link

robotic manipulators. All the three 2-link robotic manipulators should converge to the average of

their initial values. The initial conditions of the orientations of the robots are robot1(θ) = (−0.2, 0.2),

robot2(θ) = (−0.1, 0.1) and robot3(θ) = (0.2,−0.2) . The initial conditions of the angular velocities

of the robots are robot1(ω) = (0, 0), robot2(ω) = (0, 0) and robot3(ω) = (0, 0). The PD gains are

Kp = 20 and Kd = 500. In this case, we see that the consensus is not achieved. It is because this

system is highly non-linear and for some unknown reasons, for only some sets of initial values we

achieve average consensus in true sense. So, various values of initial conditions should be tried to

show consensus results.

Figure 4.8. CT3: Average consensus of orientations.

4.5.4 Connection Topology 4

In this case, the connection topology (CT4) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 1 to 3 and 2 to 3 as shown in figure 4.9.
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Figure 4.9. Case 4 Topology.

A4 =



0 0 0 1

1 0 0 0

1 1 0 0

0 0 0 0



D4 =



1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 0


Now, L4 = D4 − A4. Figure 4.10 show results corresponding to tracking performance for a

constant desired attitude. All the 3 robots track the attitude of the desired vehicle and converge

to a constant orientation. The initial conditions of the orientations of the robots are robot1(θ) =

(−0.3, 0.2), robot2(θ) = (0.4,−0.2), robot3(θ) = (−0.5,−0.7) and robotd(θ) = (−0.5, 0.3). The

initial conditions of the angular velocities of the robots are robot1(ω) = (0, 0), robot2(ω) = (0, 0),

robot3(ω) = (0, 0) and robotd(ω) = (0, 0). The PD gains are Kp = 50 and Kd = 150.

4.5.5 Connection Topology 5

In this case, the connection topology (CT5) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 2 to 1, 2 to 3 and 3 to 1 as shown in figure

4.11.
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Figure 4.10. CT4: Tracking a constant orientation θd = (−0.5, 0.3).

Figure 4.11. Case 5 Topology.

A5 =



0 1 1 1

1 0 0 0

0 1 0 0

0 0 0 0



D5 =



3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


Now, L5 = D5 − A5. Figure 4.12 show results corresponding to tracking performance for a

constant desired attitude. All the 3 robots track the attitude of the desired vehicle and converge
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to a constant orientation. The initial conditions of the orientations of the robots are robot1(θ) =

(−0.3, 0.2), robot2(θ) = (0.4,−0.2), robot3(θ) = (−0.5,−0.7) and robotd(θ) = (−0.5, 0.3). The

initial conditions of the angular velocities of the robots are robot1(ω) = (0, 0), robot2(ω) = (0, 0),

robot3(ω) = (0, 0) and robotd(ω) = (0, 0). The PD gains are Kp = 50 and Kd = 180.

Figure 4.12. CT5: Tracking a constant orientation θd = (−0.5, 0.3).



CHAPTER 5

SPACECRAFT ATTITUDE FORMATION

This chapter discusses the spacecraft attitude formation problem. We make use of the Mod-

ified Rodrigues parameters (MRP) for describing the attitude of the spacecraft. The first section in

this chapter discusses the Modified Rodrigues Parameters and their advantages. Next we develop

the equations of motion of a single spacecraft followed by the N-spacecraft formation. We then

incorporate the constraints as discussed in Chapter 4 along with the spacecraft dynamics using the

modified Euler-Lagrange equations to get an N-spacecraft formation system. The constraints are

then stabilized using the Baumgarte stabilization technique thus stabilizing the whole formation.

Finally, this system is simulated in MATLAB for different topologies and the results are shown

verifying stability, synchronization, consensus and tracking.

5.1 Modified Rodrigues Parameters

The parameters used to describe the attitude (orientation) [33] of a spacecraft (s/c) in this

chapter are the Modified Rodrigues parameters (MRP). If ê and φ denote the principal axis and the

principal angle [33] respectively, then the MRP has the advantage that the kinematics remains non

singular for eigenaxis rotations up to 360o. Additionally, we have a minimum parameter represen-

tation.

Alternate representations such as the euler angles (321) have a singularity at θ = ±π2 where

θ is the pitch angle.

If ê and φ denote the principal axis and the principal angle [33] respectively, then the quater-

nions are represented as 

βo

β1

β2

β3
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where

βo = cos
φ

2

β1 = ê1 sin
φ

2

β2 = ê2 sin
φ

2

β3 = ê3 sin
φ

2

(5.1)

The quaternions are a 4 parameter set with the unit norm constraint as,

β2
o + β2

1 + β2
2 + β2

3 = 1 (5.2)

Thus, while there is no singularity, they are a non-minimal set and are constrained.

5.1.1 Derivation of Modified Rodrigues Parameters

The MRPs are constructed from quaternions as follows:

σ1 =
β1

1 + βo

σ2 =
β2

1 + βo

σ3 =
β3

1 + βo

(5.3)

Figure 5.1. Axis Angle Coordinate (http : //en.wikipedia.org/wiki).
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So,

σ1 = ê1 tan
φ

4

σ2 = ê2 tan
φ

4

σ3 = ê3 tan
φ

4

(5.4)

Thus, MRPs are 3-parameter coordinates (minimum parameters) with singularity at eigenaxis

rotation of only 360o which is not a hindrance as the rigid body can perform all the maneuvers till

360o. Hence σi →∞ when φ→ 2π and when σi = 0, φ = 0.

5.2 Derivation of Equations of Motion of a Spacecraft

Consider a spacecraft whose attitude is expressed in terms of the Modified Rodrigues Param-

eters (MRP) [9]. Let σ1, represent the orientation of the s/c with respect to the inertial frame. The

Lagrangian approach [10, 1, 2] is employed to derive the governing equations of motion of this s/c.

Note, σ1 =
(
σ1
1 , σ

2
1 , σ

3
1

)
is the three component attitude vector.

The rotational kinematics of the s/c can be represented as follows,

σ̇1 = J1(σ1)ω1 (5.5)

where,

J1(σ1) =
1

2

(
σ̃1 + σ1σ1

T − 1 + σ1
Tσ1

2
I3

)
(5.6)

where, I3 is a 3× 3 identity matrix and σ̃1 = [σ1×] is a skew-symmetric matrix given as,

[σ1×] =


0 σ3

1 −σ2
1

−σ3
1 0 σ1

1

σ2
1 −σ1

1 0


where, [9] ω1 is the angular velocity in the body fixed frame and M1 is the symmetric moment of

inertia matrix of the s/c.

Using equation (5.5), [34] the Lagrangian, L is expressed as L = T , where T is the system

kinetic energy, i.e.

L =
1

2
σ̇T1 H1(σ1)σ̇1 (5.7)

where

H1(σ1) = J1
−TM1J1

−1 (5.8)
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The Euler-Lagrange equations to derive the dynamics of this system is given by:

d

dt

(
∂L

∂σ̇1

)
− ∂L

∂σ1
= τ1 (5.9)

where, τ1 is the generalized external torque acting on the s/c.

H1(σ1)σ̈1 + C̄1(σ1, σ̇1)σ̇1 = τ1 (5.10)

where, C̄1(σ1, σ̇1) = J1
−TM1J̇−11 + J1

−T ˜[
J1
−1σ̇1

]
M1J1

−1.

5.3 Formulation of Equations of Motion of N-Spacecraft

For N spacecraft system [σ1, σ2, . . . , σN] represents the orientation vector of this system.

σi =
(
σ1
i σ

2
i σ

3
i

)T
is the three component attitude vector.

The rotational kinematics of the system of spacecraft is represented as follows,

σ̇i = Ji(σi)ωi, i = 1, 2, . . . , N (5.11)

Implicit in the discussion here is the fact that the three component attitude vector is treated

as a single node. Also,

Ji(σi) =
1

2

(
σ̃i + σiσi

T − 1 + σi
Tσi

2
I3

)
(5.12)

where, I3 is a 3× 3 identity matrix and σ̃i = [σi×] is a skew-symmetric matrix such as,

[σi×] =


0 σ3

i −σ2
i

−σ3
i 0 σ1

i

σ2
i −σ1

i 0


where, ωi is the angular velocity in the body fixed frame and Mi is the symmetric moment of inertia

matrix of the ith spacecraft.

Using equation (5.11), the Lagrangian, L is written as L = T , where T is the system kinetic

energy, i.e.

L =
1

2

N∑
i=1

σ̇Ti Hi(σi)σ̇i (5.13)

where

Hi(σi) = Ji
−TMiJi

−1 (5.14)

The Euler-Lagrange equations used for formulating the dynamics of this system is:

d

dt

(
∂L

∂σ̇i

)
− ∂L

∂σi
= τi (5.15)
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where, σ = {σ1, σ2, . . . , σN} and τi is the vector of generalized external torques acting on the ith

s/c.

The equations of motion of N-spacecraft without any external disturbances is as follows:

Hi(σi)σ̈i + C̄i(σi, σ̇i)σ̇i = τi (5.16)

where, C̄i(σi, σ̇i) = Ji
−TMiJ̇

−1
i + Ji

−T ˜[Ji
−1σ̇i

]
MiJi

−1.

5.4 Constrained Rotational Equations of Motion of N-Spacecraft

Using the generalized form of communication constraints developed in Chapter 4, we develop

the EOM of the constrained formation of N-spacecraft in this section. The constraint potential for

the spacecraft dynamics becomes:

C(σ1, σ2 . . . σN) = yTy (5.17)

= (L̃ σ)T L̃ σ (5.18)

= σT (L̃T L̃)σ (5.19)

where L̃ is the error Laplacian, L is the Laplacian and σ = {σ1, σ2, . . . , σN}.

Once the constraint potentials are set, use the same method as applied to N 2-link robotic

manipulators, i.e augment the original Lagrangian by the constraints. Then using the modified

Euler-Lagrange equations, formulate the constrained EOM of N-spacecraft formation given as,

Hi(σi)σ̈i + C̄i(σi, σ̇i)σ̇i = (τi −Wi
TΛ) (5.20)

where, C̄i(σi, σ̇i) = Ji
−TMiJ̇

−1
i + Ji

−T ˜[Ji
−1σ̇i

]
MiJi

−1.

The arguments of Hi(.) and C̄i(., .) are dropped for the sake of brevity. Thus the generalized

constrained system of N spacecraft formation can be written as follows

Hσ̈ + C̄σ̇ = τ −WTΛ (5.21)

where,

H(σ) =


H1(σ1)

. . .

HN(σN)

 , C̄(σ, σ̇) =


C̄1(σ1, σ̇1)

. . .

C̄N(σN, σ̇N)
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W(σ) =


W1(σ)

...

WN(σ)

 and τ =


τ1
...

τN


Using the constraint dynamics from equations (4.20) and (4.21) and substituting the value

of σ̈ from Equation (5.21) into (4.21) we obtain

Ẇσ̇ + W
[
H−1

(
τ −WTΛ− C̄σ̇

)]
= 0 (5.22)

Solving for Λ,

Λ =
[
WH−1WT

]−1 [
WH−1τ +

(
Ẇ −WH−1C̄

)
σ̇
]

(5.23)

where
[
WH−1WT

]
is a square matrix. Substituting Λ back in equation (5.21) yields the con-

strained equations of motion. The constraint dynamics are in-built in the spacecraft dynamics using

Equations (4.20) and (5.9).

5.5 Baumgarte Stabilization of Constraints

Using the Baumgarte stabilization technique as explained in Chapter 4, using equation (4.24)

we find Λ as

Λ =
[
WH−1WT

]−1 [
WH−1τ +

(
Ẇ −WH−1C̄

)
σ̇
]

+
[
WH−1WT

]−1 [
KpC + KdĊ

]
(5.24)

Λ obtained from equation (5.24), when substituted into equation (5.21) ensures that theN -spacecraft

formation is asymptotically stable.

If we choose value of the control law given by

τ = −WT
[
WH−1WT

]−1 [(
Ẇ −WH−1C̄

)
σ̇ + KpC + KdĊ

]
(5.25)

it ensures that Λ = 0 and C → 0 which leads to synchronization and asymptotic stability of the

formation. The proof of this can be shown in a similar way as shown in Chapter 4 using Lemma 1.

5.6 MATLAB Simulation Results

The simulation results are shown corresponding to the scenarios shown in Chapter 4. The

moment of inertia of all the bodies are assumed to be identically equal which is
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M =


40 0 0

0 40 0

0 0 40


5.6.1 Connection Topology 1

In this case, the connection topology (CT1) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2 and 2 to 3. Then,

A1 =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 0


Figure 5.2 show results corresponding to tracking performance for a constant desired attitude.

Clearly, all the formation objectives are met and the three vehicles converge to a constant orientation.

The initial conditions of attitude are (σ1, σ2, σ3, σd) = (−0.2, 0.5,−0.4, 0.2) and angular velocities

are (ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp = 4 and Kd = 20.

Figure 5.2. CT1: Tracking a constant orientation σd = (0.2, 0.2, 0.2).

5.6.2 Connection Topology 2

In this case, the connection topology (CT2) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 2 to 3 and 3 to 1.
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Figure 5.3. CT1: Control Torque values are upper bounded as τc = (10, 10, 10).

Then,

A2 =



0 0 1 1

1 0 0 0

0 1 0 0

0 0 0 0


Figure 5.4 show results corresponding to tracking performance for a constant desired atti-

tude. All the 3 spacecraft track the attitude of the desired vehicle and converge to its value. The

initial conditions of attitude are (σ1, σ2, σ3, σd) = (−0.2, 0.5,−0.4, 0.2) and angular velocities are

(ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp = 4 and Kd = 20.

5.6.3 Connection Topology 3

In this case, the connection topology (CT3) considered corresponds to where the spacecraft

1 is connected to 2, 2 to 3 and 3 to 1. Then,

A3 =


0 0 1

1 0 0

0 1 0
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Figure 5.4. CT2: Tracking a constant orientation σd = (0.2, 0.2, 0.2).

Figure 5.6 show results corresponding to consensus of all the 3-spacecraft. All the 3 spacecraft

converge to the average of their initial values which is what is expected. The initial conditions of

attitude are σ = (0.3, 0.5, 0.4) and angular velocities are ω = (0, 0, 0). The PD gains are Kp = 10

and Kd = 50.

5.6.4 Connection Topology 4

In this case, the connection topology (CT4) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 1 is connected to 3 and 2 to 3. Then,

A4 =



0 0 0 1

1 0 0 0

1 1 0 0

0 0 0 0


Figure 5.8 show results corresponding to tracking performance for a constant desired atti-

tude. All the 3 spacecraft track the attitude of the desired vehicle and converge to its value. The

initial conditions of attitude are (σ1, σ2, σ3, σd) = (−0.2, 0.5,−0.4, 0.2) and angular velocities are

(ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp = 4 and Kd = 20.

5.6.5 Connection Topology 5

In this case, the connection topology (CT5) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 2 to 1, 2 to 3 and 3 to 1. Then,
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Figure 5.5. CT2: Control Torque values are upper bounded as τc = (10, 10, 10).

A5 =



0 1 1 1

1 0 0 0

0 1 0 0

0 0 0 0


Figure 5.10 show results corresponding to tracking performance for a constant desired atti-

tude. All the 3 spacecraft track the attitude of the desired vehicle and converge to its value. The

initial conditions of attitude are (σ1, σ2, σ3, σd) = (−0.2, 0.5,−0.4, 0.2) and angular velocities are

(ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp = 4 and Kd = 20.

Figures 5.3, 5.5, 5.7, 5.9 and 5.11 show the performance when the control torques are limited.

We observe that there is a significant change in the transient response but the attitude synchroniza-

tion, tracking and consensus is achieved nevertheless.
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Figure 5.6. CT3: Average consensus of orientation.

Figure 5.7. CT3: Control Torque values are upper bounded as τc = (10, 10, 10).

Figure 5.8. CT4: Tracking a constant orientation σd = (0.2, 0.2, 0.2).
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Figure 5.9. CT4: Control Torque values are upper bounded as τc = (10, 10, 10).

Figure 5.10. CT5: Tracking a constant orientation σd = (0.2, 0.2, 0.2).
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Figure 5.11. CT5: Control Torque values are upper bounded as τc = (10, 10, 10).



CHAPTER 6

ADAPTIVE CONTROL OF FORMATION UNDER DISTURBANCE

In this chapter, we discuss the effect of external disturbance on synchronization, consensus

and tracking (SCT) of the formation of rigid bodies (spacecraft i.e case study III, robots i.e case

study II). Section 6.1 deals with the SCT when the the external disturbance is known and the torque

required to maintain SCT is derived accordingly. When the external disturbance is not known, an

adaptive control is used to calculate the torque required to maintain the SCT of the rigid bodies

formation, which is discussed in the next section. Finally, the disturbance dynamics are developed

which is feed forward to the torque to obtain system stabilization, the MATLAB results of which

are shown in section 6.4. N-spacecraft formation dynamics (case study III) developed in Chapter 5

are used because it is the most general non-linear dynamics that represent the dynamics of a wide

variety of rigid bodies in general.

6.1 Torque Derivation under known Disturbance

The Euler-Lagrange equations under constant external disturbance d modifies to:

d

dt

(
∂L
∂σ̇i

)
− ∂L
∂σi

+

[
∂Cj(σ)

∂σi

]T
Λ = τi + di (6.1)

Then the generalized system under known disturbance for N bodies can be written as follows,

Hσ̈ + C̄σ̇ = τ + d−WTΛ (6.2)

where

d =


d1

...

dN


Substituting the value of σ̈ from equation (6.2) into (4.21) we get

Ẇσ̇ + W
[
H−1

(
τ + d−WTΛ− C̄σ̇

)]
= 0 (6.3)

Solving for Λ from above we get

Λ =
[
WH−1WT

]−1 [
WH−1(τ + d) +

(
Ẇ −WH−1C̄

)
σ̇
]

(6.4)
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where
[
WH−1WT

]
is a square matrix. Substituting Λ back in equation (6.2) yields the constrained

equations of motion.

Using the Baumgarte stabilization technique applied to constraints as in equation (4.24) to

get the stabilized and modified Λ as

Λ =
[
WH−1WT

]−1 [
WH−1(τ + d) +

(
Ẇ −WH−1C̄

)
σ̇ + KpC + KdĊ

]
(6.5)

Λ obtained from equation (6.5), when substituted into equation (6.2) ensures that the N -rigid body

formation is asymptotically stable. Value of the control law given by

τ = −WT
[
WH−1WT

]−1 [(
Ẇ −WH−1C̄

)
σ̇ + KpC + KdĊ

]
− d (6.6)

ensures that Λ = 0 and ensures that C → 0 eventually leading to synchronization and asymptotic

stability of the formation. In this control torque, we know the disturbance d acting on the system

dynamics.

When this torque is applied, the system dynamics reduces to

Hσ̈ + C̄σ̇ = −WT
[
WH−1WT

]−1 [(
Ẇ −WH−1C̄

)
σ̇ + KpC + KdĊ

]
(6.7)

6.2 Adaptive Control: Torque Derivation under unknown Disturbance

When the true value of the disturbance d acting on the system is unknown, the control torque

applied will be

τ̄ = −WT
[
WH−1WT

]−1 [(
Ẇ −WH−1C̄

)
σ̇ + KpC + KdĊ

]
− d̂ (6.8)

where d̂ is the estimate of the unknown disturbance.

Using equations (4.21) and (4.24), substitute for σ̈ in these equations and use τ̄ ,we get

Ẇσ̇ + WH−1
(
τ̄ + d̂−WT Λ̄− C̄σ̇

)
+ KpC + KdĊ = 0 (6.9)

Substituting the value of τ̄ from equation (6.8) to get the value of Λ̄

[WH−1WT ]Λ̄ = (Ẇ −WH−1C̄)σ̇ + KpC + KdĊ + WH−1d̂ + WH−1[
−WT (WH−1WT)−1

(
(Ẇ −WH−1C̄)σ̇ + KpC + KdĊ

)
− d̂

] (6.10)

Simplifying further, we obtain

Λ̄ = 0 (6.11)
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Now, using the equation (4.21) and substituting the value of σ̈ in terms of the τ̄ and Λ̄ we

get

C̈ = Ẇσ̇ + WH−1
(
τ̄ + d−WT Λ̄− C̄σ̇

)
(6.12)

Further substituting the value of τ̄ and Λ̄ from equations (6.8) and (6.11) and simplifying to

get

C̈ = WH−1d̃−
(
KpC + KdĊ

)
(6.13)

where d̃ = d− d̂, is the error between the true disturbance value d and the estimate of the unknown

disturbance value d̂.

We write equation (6.13) in the state space form as,

y1 = C,y2 = Ċ (6.14)

Then

ẏ1 = y2

ẏ2 = −Kdy2 −Kpy1 + Φd̃

(6.15)

where Φ = WH−1. Rewrite the equations as,

d

dt

 y1

y2

 =

 0(3×3) I(3×3)

−Kp(3×3) −Kd(3×3)

 y1

y2

+

 0(3×3)

I(3×3)

 (Φd̃)

Writing it in compact form as,

ẏ = Amy + BmΦd̃ (6.16)

where

y =

 y1

y2


is a vector.

Am =

 0(3×3) I(3×3)

−Kp(3×3) −Kd(3×3)

 and Bm =

 0(3×3)

I(3×3)



Now, lets construct a Lyapunov function candidate for this system as,

V =
1

2
yTPy +

1

2
d̃TΓ−1d̃ (6.17)
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Differentiating equation (6.17) gives

V̇ =
1

2
(ẏTPy + yTPẏ) +

1

2
( ˙̃d
T

Γ−1d̃ + d̃TΓ−1 ˙̃d) (6.18)

Substituting the value of ẏ in the above equation giving

V̇ =
1

2
(Amy + BmΦd̃

T
Py + yTPAmy + BmΦd̃) + ˙̃d

T

Γ−1d̃ (6.19)

where P and Γ−1 are positive definite and symmetric matrices. Solving equation (6.19) gives

V̇ =
1

2
yT(AT

mP + PAm)y + yTPBmΦd̃ + ˙̃d
T

Γ−1d̃ (6.20)

where

AT
mP + PAm = −Q (6.21)

where Q is a positive definite symmetric matrix. We choose Q to find P knowing the value of Am

and since Am is Hurwitz (equation (6.16)), P is guaranteed to be positive definite. Rearranging the

terms in equation (6.20)

V̇ = −1

2
yTQy + (yTPBmΦ + ˙̃d

T

Γ−1)d̃ (6.22)

Now d̃ 6= 0.Thus,

yTPBmΦ +
˙̃
d
T

Γ−1 = 0 (6.23)

Solving for the disturbance error dynamics ˙̃d gives, ˙̃d = −ΓΦTBT
mPy. The estimated dis-

turbance dynamics is given by:

˙̂
d = ΓΦTBT

mPy (6.24)

since d̃ = d− d̂ and ḋ = 0 because we assume constant unknown disturbance which is feed forward

to equation (6.8) to get the stabilized attitudes of the rigid body formation.

6.3 MATLAB Results under constant unknown disturbance

The simulation results in this section for constant external disturbance corresponds to the

scenarios shown in Chapter 5. The moment of inertia of all the bodies for this case are also assumed

to be identically equal which is given by

M =


40 0 0

0 40 0

0 0 40
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6.3.1 Connection Topology 1

In this case, the connection topology (CT1) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2 and 2 to 3. Then,

A1 =



0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 0


Then, L1 = D1 − A1. Figure 6.1 shows results corresponding to tracking performance for a

constant desired attitude when the actual value of the disturbance acting on the three spacecraft is

same, i.e (d1,d2,d3) = (0.1, 0.1, 0.1). Figure 6.2 shows results corresponding to tracking performance

for a constant desired attitude when the actual value of the disturbance acting on the three spacecraft

is different, i.e (d1,d2,d3) = (0.1, 0.2, 0.3). All the formation objectives are met and the three

vehicles converge to a constant orientation. The initial conditions of attitude are (σ1, σ2, σ3, σd) =

(−0.2, 0.5,−0.4, 0.2) and angular velocities are (ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp =

4 and Kd = 20.

Figure 6.1. CT1: Tracking under same disturbance (d1,d2,d3) = (0.1, 0.1, 0.1).

6.3.2 Connection Topology 2

In this case, the connection topology (CT2) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 2 to 3 and 3 to 1.
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Figure 6.2. CT1: Tracking under different disturbance (d1,d2,d3) = (0.1, 0.2, 0.3).

Then,

A2 =



0 0 1 1

1 0 0 0

0 1 0 0

0 0 0 0


And, L2 = D2 − A2. Figure 6.3 shows results corresponding to tracking performance for a

constant desired attitude with the actual value of the disturbance acting on the three spacecraft is

same, i.e (d1,d2,d3) = (0.1, 0.1, 0.1). Figure 6.4 shows results corresponding to tracking performance

for a constant desired attitude with the actual value of the disturbance acting on the three spacecraft

is different, i.e (d1,d2,d3) = (0.1, 0.2, 0.3). All the formation objectives are met and the three

vehicles converge to a constant orientation. The initial conditions of attitude are (σ1, σ2, σ3, σd) =

(−0.2, 0.5,−0.4, 0.2) and angular velocities are (ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp =

20 and Kd = 80.

6.3.3 Connection Topology 3

In this case, the connection topology (CT3) considered corresponds to where 1 is connected

to 2, 2 to 3 and 3 to 1. Then,
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Figure 6.3. CT2: Tracking under same disturbance (d1,d2,d3) = (0.1, 0.1, 0.1).

Figure 6.4. CT2: Tracking under different disturbance (d1,d2,d3) = (0.1, 0.2, 0.3).

A3 =



0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 0


And, L3 = D3 − A3. Figure 6.5 shows results corresponding to consensus performance of

spacecraft attitudes with the actual value of the disturbance acting on the three spacecraft is same,

i.e (d1,d2,d3) = (0.1, 0.1, 0.1). Figure 6.6 shows results corresponding to consensus performance

of spacecraft attitudes with the actual value of the disturbance acting on the three spacecraft is

different, i.e (d1,d2,d3) = (0.1, 0.2, 0.3). All the formation objectives are met and the three vehicles

converge to an orientation equal to the average of the initial attitudes of the spacecraft. The
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initial conditions of attitude are (σ1, σ2, σ3, σd) = (−0.2, 0.5,−0.4, 0.2) and angular velocities are

(ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp = 20 and Kd = 80.

Figure 6.5. CT3: Average consensus under same disturbance (d1,d2,d3) = (0.1, 0.1, 0.1).

Figure 6.6. CT3: Average consensus under different disturbance (d1,d2,d3) = (0.1, 0.2, 0.3).

6.3.4 Connection Topology 4

In this case, the connection topology (CT4) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 1 is connected to 3 and 2 is connected to 3.

Then,
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A4 =



0 0 0 1

1 0 0 0

1 1 0 0

0 0 0 0


And, L4 = D4 − A4. Figure 6.7 shows results corresponding to tracking performance for a

constant desired attitude with the actual value of the disturbance acting on the three spacecraft is

same, i.e (d1,d2,d3) = (0.1, 0.1, 0.1). Figure 6.8 shows results corresponding to tracking performance

for a constant desired attitude with the actual value of the disturbance acting on the three spacecraft

is different, i.e (d1,d2,d3) = (0.1, 0.2, 0.3). All the formation objectives are met and the three

vehicles converge to a constant orientation. The initial conditions of attitude are (σ1, σ2, σ3, σd) =

(−0.2, 0.5,−0.4, 0.2) and angular velocities are (ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The PD gains are Kp =

20 and Kd = 80.

Figure 6.7. CT4: Tracking under same disturbance (d1,d2,d3) = (0.1, 0.1, 0.1).

6.3.5 Connection Topology 5

In this case, the connection topology (CT5) considered corresponds to where the desired

reference vehicle is connected to 1, 1 is connected to 2, 2 is connected to 1, 2 is connected to 3 and

3 is connected to 1. Then,
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Figure 6.8. CT4: Tracking under different disturbance (d1,d2,d3) = (0.1, 0.2, 0.3).

A5 =



0 1 1 1

1 0 0 0

0 1 0 0

0 0 0 0


And, L5 = D5 − A5. Figure 6.9 shows results corresponding to tracking performance for a

constant desired attitude with the actual value of the disturbance acting on the three spacecraft

is same, i.e (d1,d2,d3) = (0.1, 0.1, 0.1). Figure 6.10 shows results corresponding to tracking per-

formance for a constant desired attitude with the actual value of the disturbance acting on the

three spacecraft is different, i.e (d1,d2,d3) = (0.1, 0.2, 0.3). All the formation objectives are met

and the three vehicles converge to a constant orientation. The initial conditions of attitude are

(σ1, σ2, σ3, σd) = (−0.2, 0.5,−0.4, 0.2) and angular velocities are (ω1, ω2, ω3, ωd) = (0, 0, 0, 0). The

PD gains are Kp = 20 and Kd = 80.
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Figure 6.9. CT5: Tracking under same disturbance (d1,d2,d3) = (0.1, 0.1, 0.1).

Figure 6.10. CT5: Tracking under different disturbance (d1,d2,d3) = (0.1, 0.2, 0.3).



CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE WORK

7.1 Summary

This research summarizes the development of a constrained dynamical systems approach

to formation control problems emphasizing stable synchronization, consensus and tracking (SCT).

Euler-Lagrange equations are employed to develop the non-linear constrained dynamics equations

governing the motion of the multiple vehicle systems. The constraint potential energy functions

enforce communication constraints, which is synthesized based on a graph theoretic formulation of

the vehicle-vehicle communication. Additional constraint stabilization is achieved via Baumgarte

stabilization method. The performance of these constrained dynamics based formations is evaluated

for bounded control authority.

This research is motivated by an N-pendulum formation system in which the springs and the

dampers connected between the pendulums serve to model communication constraints. Equations

of motion of N rigid bodies is developed using Euler-Lagrange method. We developed a method

to incorporate the formation in multiple vehicle rigid body system via communication constraints

which are formulated using graph theory. These are stabilized via Baumgarte technique. 2-link

robotic manipulators system and N- spacecraft formation system are simulated in MATLAB for

different graph topologies and synchronization, tracking and consensus (SCT) are established and

proved. Another problem addressed is the effect of unknown external disturbances on the SCT of

these systems. An adaptive control algorithm is employed to derive a control law for the actuator

torques and an estimation law is developed for the estimates of unknown disturbance parameters to

achieve the SCT. The two formation systems are tested for this method using MATLAB simulations.

7.2 Conclusions

We develop general non-linear dynamics of a formation of N -rigid bodies under constraints.

Communication constraints are expressed utilizing a graph theoretic framework. Baumgarte stabi-

lization (PD control logic) is used to stabilize the constraints. This acts like stabilizing a commu-

nication channel between the units of the formation which in turn helps in the synchronization of
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the orientations of the rigid bodies. Tracking formulation is then developed for this system which

leads to the consensus formulation as well. Various cases were examined based on the communi-

cation topologies such as, limited communication formulation, fully connected topology, directed

and undirected cases etc. We also develop the above problem under the effect of unknown exter-

nal disturbance. Adaptive control is employed to solve for the estimated disturbance dynamics. A

control law for the actuator torques is derived and an estimation law for the unknown disturbance

parameters to achieve the stability, synchronization, consensus and tracking is developed. From the

MATLAB results developed and shown for different rigid bodies system in Chapters 2, 4, 5 and 6,

we conclude that the method developed in this research performs very nicely in establishing stable

synchronization, tracking and consensus. Tuning the values of the positive definite proportional and

derivative gains Kp and Kd gives very appropriate results. Hence the method of using constraint

dynamics directly in the system dynamics to develop stabilization is a good technique and can be

used for various rigid body systems in actual life.

However, the N 2-link robotic manipulator is a highly non-linear complex system. The de-

velopment of SCT for this system requires the consideration of other forces acting on this system,

for example, the torques at the hinges, the frictional forces between the hinges and the manipulator

arms etc. The tracking and synchronization for this problem are seemed to be established appro-

priately but for some unknown reasons, the consensus case gives some problems. The results of this

case required lots of tuning of the gain parameters and the initial conditions. This performance of

this system is dependent on the initial conditions chosen.

In general, the method developed in this research is a high performance technique to establish

SCT of any non-linear formation system. But if the system is highly non-linear where the system is

also affected by other forces like the frictional force (like in N 2-link robotic manipulator), drag force

etc, we need to take those forces into account in the system dynamics. Hence, this method cannot

produce expected results until all the forces acting on the system are taken into consideration.

7.3 Future Work

The use of multiple vehicle (formation) systems is spreading widely due to its advantages in

various areas of life. So, we need to address all the possible problems in order to make formation

control efficient and cheap. Several other problems that should be addressed in this field in future

would be:
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• Studying the stability of the time delayed communication constraints using the Razumikhin

Theorem.

• Developing the Switching Topology model for the generalized MATLAB model developed in

this research.

• Development of a Kalman filter for this model to study the uncertainties in the attitudes and

angular velocities of this system.

• Tracking a reference vehicle having time varying dynamics.



APPENDIX A

MISCELLANEOUS DERIVATIONS
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A.1 Derivation of Euler-Lagrange equations using Action principle

Action (S) is represented as an integral over time, taken along the path of the system between

the initial time and the final time of the development of the system.

S =

∫ t2

t1

Ldt (A.1)

For the above function integral to be defined, the trajectory should be bounded in time and space.

Action principle is used to derive the equations of motion of a system. The principle of least action

states that for motion between any two points in a conservative dynamical system, action has a

minimum value with respect to all the paths between any two points that correspond to the same

energy. So, according to the variational principle, we minimize the functional in Equation (A.1).

Now, Hamilton’s principle states that the dynamics of a physical system is determined by a

variational problem for a functional based on a single function, the Lagrangian, which contains all

the physical information concerning the system and the forces acting on it. The variational problem

allows for the derivation of the differential equations of motion of the physical system.

It states that the true evolution q(t) of a system described by generalized coordinate q(t) =

[q1, q2, . . . , qN ] between two specified states q1 = q(t1) and q2 = q(t2) at specified times t1 and t2 is

a stationary point of the action functional.

S(q) =

∫ t2

t1

L(q, q̇, t)dt (A.2)

Hamilton’s principle states that the true evolution of a physical system is a solution of the functional

equation.

δS

δq(t)
= 0 (A.3)

Now, q(t) represents the true evolution of the system between two specified states q1 and q2 at two

times t1 and t2. Let, ε(t) be a small perturbation which is zero at the trajectory endpoints, i.e

ε(t1) = ε(t2) = 0 (A.4)

Now, the change in the action functional is δS

δS =

∫ t2

t1

[L(q + ε, q̇ + ε̇)− L(q, q̇)]dt (A.5)

=

∫ t2

t1

(
ε
∂L

∂q
+ ε̇

∂L

∂q̇

)
(A.6)
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Applying integration by parts to the last term in above equation results in

δS =

[
ε
∂L

∂q

]t2
t1

+

∫ t2

t1

(
ε
∂L

∂q
− ε d

dt

∂L

∂q̇

)
dt (A.7)

Applying the boundary conditions from Equation (A.4) into (A.7), we obtain

δS =

∫ t2

t1

ε

(
∂L

∂q
− d

dt

∂L

∂q̇

)
dt (A.8)

Hamilton’s principle requires that this first-order change δS is zero for all possible perturba-

tions ε(t), i.e the true path is a stationary point of the action functional S. This can be satisfied if

and only if (
∂L

∂q
− d

dt

∂L

∂q̇

)
= 0 (A.9)

which is the Euler-Lagrange equation.
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