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ABSTRACT

EMBEDDED SPARSE REPRESENTATION

FOR IMAGE CLASSIFICATION

Jin Huang , M.S

The University of Texas at Arlington, 2010

Supervising Professor: HENG HUANG

Image classification, such as face recognition and scene categorization, is an

important research area in computer vision over the last decade. It has been suc-

cessfully applied to many image analysis applications. Images usually have a large

number of features, hence the dimensionality reduction methods are often employed

before the subsequent classification to improve the classification results. A lot of

methods have been proposed, including but not limited to PCA, ICA, LDA, and

Bayesian Framework.

Recently, compressive sensing and sparse learning have been widely studied

and applied into computer vision research. Ma et al. suggested a new method called

Sparse Representation Classification (SRC). This new framework provides new in-

sights into two critical issues in image classification: feature extraction and robustness

to occlusion. Motivated by this method, we proposed a new method called embedded

sparse representation. This masterpiece combined the dimension reduction and clas-

sification into one. We proposed three possible objective functions and discussed the

possible optimization ways to tackle them. During the optimization, we used Gibbs

Optimization method to alternatively find the optimal subspace representation and

the sparse weight factor.

v



In the experiments, we verified the convergence of our method. Our method

successfully extracted the subspace structure and got a better performance than SRC

and other classical methods. It has also been shown that our method has the potential

to be extended to other general high dimensional data. The possible improvement

and future work have also been discussed.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to face recognition

1.1.1 Classical methods and application

Face recognition has been a popular research area in computer vision over the

last decade. It is considered as one of the most successful applications in image

analysis. The goal of face recognition is to identify the object in the scene using a

stored database.There are quite a few subspace face recognition algorithms there.

Principal component analysis(PCA):PCA is derived from Karhunen-Loeve’s

transformation. It is a mathematical procedure that transforms a number of possibly

correlated variables into a smaller number of uncorrelated variables called principal

components. The first principal component accounts for as much of the variability

in the data as possible, and each succeeding component accounts for as much of

the remaining variability as possible.Therefore,given a high dimensional vector rep-

resentation of each face in a training set of images, PCA tends to find a much lower

dimensional subspace whose basis vectors correspond to the maximum variance di-

rection in the original image space. If the image elements are considered as random

variables, the PCA basis vectors are defined as eigenvectors of the scatter matrix.

There are a few papers related to this, include [5],[6],[7],[8].

Independent Component Analysis (ICA): ICA is a statistical and computational

technique for revealing hidden factors that underlie sets of random variables, mea-

surements, or signals. ICA assumes a generative model for the observed multivariate

data,in the model,the data variables are assumed to be linear mixtures of some un-

known latent variables, and the mixing system is also unknown. The latent variables

are assumed non-gaussian and mutually independent,and they are called the inde-

pendent components,that is where the name of the method comes from. The method
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minimizes both second-order and higher-order dependencies in the input data and try

to find the basis along which the data are statistically independent. Bartlett [9] pro-

vided two architectures of ICA for face recognition task: Architecture: 1 statistically

independent basis images, 2 factorial code representation. There are also two related

articles [10],[11]. ICA looks very similar to PCA, however, it is capable of finding

latent factor that PCA might fail.

Linear Discriminant Analysis (LDA): LDA find a linear combination of features

which separate two or more classes of objects or events. The resulting combination

may be used as a linear classifier or for dimensionality reduction before later classi-

fication. For all samples of all classes the between-class scatter matrix sB and the

within-class scatter matrix sW are defined. The goal is to maximize sB while mini-

mizing sW ,in other words, maximize the ratio sB
sW

. This ratio is maximized when the

column vectors of the projection matrix are the eigenvectors of s−1
W sB, related article

include [12], [13].

Bayesian Framework: It is a probabilistic similarity measure based on the belief

that the image intensity differences are characteristic of typical variations in appear-

ance of an individual. Two classes of facial image variations are defined: intrapersonal

variations and extrapersonal variations[13]. Similarity among faces is measures using

Bayesian rule.

All these methods have been applied successfully to some datasets to become

the classical methods. However, numerous methods still have been coming out due

to the wide applications of face recognition. Face recognition has a wide variety of

applications in everyday life, please see table 1.1 from partial of the table in [14],

1.1.2 New development

3D facial recognition: it uses a 3D model, which seems to provide more accu-

racy. it Captures a real-time 3D image of a person’s facial surface, uses the most

distinctive features of the face,for example, the rigid tissue and bone,the curves of



3

Table 1.1. Face recognition applications.

Biometrics driverlicense, passport
InformationSecurity ApplicationSecurity, internetsecurity
LawEnforcement Shopliftingtracking
AccessControl FacilityAccess

the eye socket,nose and chin – to identify the subject. These areas are all unique and

remains unchanged. Using depth and an axis of measurement that are not affected by

illumination, 3D facial recognition can even be used in the dark and has the ability

to recognize a subject at different view angles with the potential to recognize up to

90 degrees (a face in profile).Using the 3D software, the system goes through several

steps to verify the identity of an individual.

The first is the detection: Acquiring an image can be accomplished by digitally

scanning an existing photograph (2D) or by using a video image to acquire a live

picture of a subject(3D).

Next is to do the alignment: Once it detects a face, the system determines the

head’s position, size and pose.

Measurement:The system then measures the curves of the face on a sub-millimeter

scale and creates a template.

Representation: the system translates the template into a unique code. This

coding gives each template a set of numbers to represent the features on a subjects

face.

Matching: if the image is 3D and the database contains 3D images, then match-

ing will take place without any changes being made to the image. However, there is

a challenge currently facing databases that are still in 2D images. 3D provides a live,

moving variable subject being compared to a flat, stable image.

Verification or Identification: in verification, an image is matched to only one

image in the database. For example, an image taken of a subject may be matched to
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an image in the Department of Motor Vehicles database to verify the subject is who

he says he is. If identification is the goal, then the image is compared to all images

in the database resulting in a score for each potential match (1:N). In this instance,

you may take an image and compare it to a database of mug shots to identify who

the subject is.

In conclusion, image classification has always been an interesting research topic

for a long time and has wide applications, the new technique keeps on developing, it

is expected new method and technology would make the classification more accurate

and faster.

1.2 Related work

In this section, I want to give a brief introduction about the dimension reduction

and classification methods we would compare during the experiment part.

For PCA, it is quite well known. Therefore I omit the main stuff. I just want

to point out that , for PCA, as the number of dimension increase, the portion of the

variance each additional eigenvector explains is decreasing, therefore, for PCA, its

performance at very low dimension is very hard to beat due to its nature, however, in

order to boost the accuracy, increase the subspace dimension to a very high level will

not help. It belongs to unsupervised category since no label information is utilized

during the training.

Here comes another dimension reduction method, called locality preserving

projection(LPP)[2], compared with PCA, LPP is less well known. So I would in-

troduce the main idea here.

It first builds a graph incorporating neighborhood information of the data set.

Using the concept of Laplacian matrix, a transformation matrix which maps the data

points to a subspace is computed. This linear transformation optimally preserves

the local neighborhood information to some extent. This technique has the following
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merits: first, it incoperates the local information; second,it is linear, therefore its

speed is fast; Last,it is defined everywhere.

This method does not enclose the label information during the training process,

therefore, it also belongs to unsupervised category.

Next part, I want to mention two widely used classification methods, KNN and

SVM.

KNN(k-nearest neighborhood) is a method for classifying objects based on clos-

est training examples in the feature space. An object is classified by a majority vote

of its neighbors, with the object being assigned to the class most common amongst

its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the

object is simply assigned to the class of its nearest neighbor. This method is quite

simple, however, it is very sensitive to local information.

Next, I want to mention a little bit about SVM. In 1995, Corinna Cortes and

Vladimir Vapnik suggested a modified maximum margin idea that allows for mis-

labeled examples.If there exists no hyperplane that can split the ”yes” and ”no”

examples, the Soft Margin method will choose a hyperplane that splits the exam-

ples as cleanly as possible, while still maximizing the distance to the nearest cleanly

split examples.Given a set of training examples, each marked as belonging to one of

two categories, an SVM training algorithm builds a model that predicts whether a

new example falls into one category or the other. Intuitively, an SVM model is a

representation of the examples as points in space, mapped so that the examples of

the separate categories are divided by a clear gap that is as wide as possible. New

examples are then mapped into that same space and predicted to belong to a category

based on which side of the gap they fall on. More formally, a support vector machine

constructs a hyperplane or set of hyperplanes in a high or infinite dimensional space,

which can be used for classification, regression or other tasks. Intuitively, a good

separation is achieved by the hyperplane that has the largest distance to the nearest
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training datapoints of any class (so-called functional margin), since in general the

larger the margin the lower the generalization error of the classifier.

These dimension reduction and classification methods are all very popular.

They are combined perfectly for a lot of data sets. For the dimension reduction

methods I mentioned, they both belong to the unsupervised category as no label in-

formation is encoded during the training. For SVM and KNN, they are both widely

used classification methods. In the experiment part, I would compare the perfor-

mance of these combinations with our methods. Assume we are given a set of images

Ai, Ai = [xi,1, xi,2, ..., xi,ni
] ∈ Rm×ni from k different classes,reshape them into column

vectors and combine into A = [A1, ..., Ak] ∈ Rm×n y is the ith column of A, A−i is A

without y. we want to minimize, the weight vector in the following equation

min
αi

1

2
||wTA−iαi − wTxi||22 + λ||αi||1 (1.1)

Note that the term λ||αi||1 is the regularity term here,λ is the controlling coefficient.

Let us explain the purpose of introducing this term here.

Let us assume the new test image y ∈ Rm can be represented by the training

samples from the same class i, y = ai,1xi,1 + ai,2xi,2 + .... + ai,nxi,ni
for some scalars

ai,j ∈ R, j = 1, 2, ..., ni . As i is unknown,if we use entire training set A to represent

the test image, where y = Aα0 ∈ Rm, its entries are all 0 except those ith class ones.

If m > n,the image size is larger than the total number of samples, this problem is

overdetermined and the correct is unique. However, if m < n, the solution is not

unique.

In the past literature, the solution is seeked by choosing the minimum L2 -norm

solution, α = arg min ||x||2 subject to Ax = y.

Note that α is dense,large number of nonzero entries corresponding to training samples

from many different classes. Naturally, this property is not desirable. Therefore, we

are seeking a norm that could bring the sparse characteristics to. One candidate

would be ||.||0, which counts the number of nonzero entry,however,for a large sample
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data of size n, pick k entries such that minimize the zero norm is NP-hard. Plus, the

||.||0 is not positive homogeneous. Therefore,we have to seek something else.

Recently, Dick [16] discussed the usage of L1 norm for exact recover the signal

with Basis Pursuit method. Candes [17] introduced the usage of L1 norm in image

reconstruction. Ma [15] used equation α = arg min ||x||1 subject to ||Ax− y||22 < ε

to find the sparse representation in his SRC algorithm. In this paper, we use the

SLEP package by Ye [18] to solve the equation. This is a very fast package to solve

the L1 equation. Assume we got α0
i ,now come to the core part.

In 2008, Ma [15] proposed a new classification method, sparse representation-

based classification(SRC), this method provides new insights into feature extraction

and robustness to occlusion. Ma showed that the number of features and the correct

form of sparse representation is more important than the choice of features. What is

more, under the assumption that the occlusion and corruption are sparse with respect

to the standard pixel basis, this framework can handle errors due to occlusion and

corruption uniformly.

Based on SRC, in this paper, we want to introduce our novel method for face

recognition. It blended the functionality of subspace embedding and classification

perfectly. At the first stage, we use leave one out strategy, find out the initial rep-

resentation vector of each image via other images via SRC method. Note that by

introducing L1 regulation norm, the representation vector would be sparse, ideally,

those significant non-zero elements would be corresponding to the same class as the

test image, as those images share a lot of features in common. Also, as stated in the

abstract, this initial solution is robust to occlusion and corruption.



CHAPTER 2

METHODOLOGY

2.1 Introduction

In this section, we first apply SRC method to get an initial sparse solution,

after that, we provide an algorithm to alternatively optimize the objective function

in seeking specified dimension subspace and the updated representation vector.

Assume we are given a set of images Ai, Ai = [xi,1, xi,2, ..., xi,ni
] ∈ Rm×ni from k

different classes,reshape them into column vectors and combine into A = [A1, ..., Ak] ∈

Rm×n y is the ith column of A, A−i is A without y. we want to minimize, the weight

vector in the following equation

min
αi

1

2
||A−iαi − y||2 + λ||αi||1 (2.1)

Note that the term λ||αi||1 is the regularity term here,λ is the controlling coefficient.

Let us explain the purpose of introducing this term here.

Let us assume the new test image y ∈ Rm can be represented by the training

samples from the same class i, y = ai,1xi,1 + ai,2xi,2 + .... + ai,nxi,ni
for some scalars

ai,j ∈ R, j = 1, 2, ..., ni . As i is unknown,if we use entire training set A to represent

the test image, where y = Aα0 ∈ Rm, its entries are all 0 except those ith class ones.

If m > n,the image size is larger than the total number of samples, this problem is

overdetermined and the correct is unique. However, if m < n, the solution is not

unique.

As mentioned, the solution is seeked by choosing the minimum L2 -norm solu-

tion, α = arg min ||x||2 subject to Ax = y.

Note that α is dense,large number of nonzero entries corresponding to training sam-

ples from many different classes. Naturally, this property is not desirable. Therefore,

we are seeking a norm that could bring the sparse characteristics to. One candidate

would be ||.||0, which counts the number of nonzero entry,however,for a large sample

8
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data of size n, pick k entries such that minimize the zero norm is NP-hard. Plus, the

||.||0 is not a true norm,it is not positive homogeneous. Therefore,we have to seek

something else.

Recently, Dick [16] discussed the usage of L1 norm for exact recover the signal

with Basis Pursuit method. Candes [17] introduced the usage of L1 norm in image

reconstruction. Ma [15] used equation α = arg min ||x||1 subject to ||Ax− y||22 < ε

to find the sparse representation in his SRC algorithm. In this paper, we use the

SLEP package by Ye [18] to solve the equation. This is a very fast package to solve

the L1 equation. Assume we got α0
i ,now come to the core part.

Based on all these, we want to find a better representation in the embedded

subspace, i.e, find a solution to minimize the empirical loss function, we want to

preserve the nice perspective of the initial solution, i.e, the new solution should be

quite close to the initial solution, meanwhile minimize the empirical test error in the

embedded manifold space. As the loss function is a non-convex function and carries

two parameters, the subspace and weight representation,we choose to alternatively

optimize at each step, finally we would get a convergent optimal solution of the

subspace embedding representation.

In this part,I want to discuss several possible objective functions, we would

discuss the advantages and disadvantages for each one and would also compare their

performances in the experiment part.We want to find an optimal representation in

the embedded space,so of course we need to minimize the overall residual error over

the training samples. So here comes the first candidate of objective function called

unconstrained L1 objective function.

min
αi

1

2
||wTA−iαi − wTxi||22 + λ||αi||1 (2.2)

w is the projection matrix. To minimize this objective function, we imple-

mented an iterative gibbs optimization method.

When αi is fixed, to solve the minimization problem with , this is equivalent to solve
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the following problem:

min
w

∑
i

||wTA−iαi − wTxi||22 (2.3)

It can be solved analytically, note that the original problem is equivalent to the fol-

lowing problem:

min
w

Tr(wT (A−iαi − xi)(A−iαi − xi)
Tw) (2.4)

The solution to 2.4 is the k eigenvectors corresponding to the smallest k eigen-

values of the covariance matrix . Assume we get the w to 2.4, then plug into 2.2, we

can optimize 2.2 with respect to αi again, next plug in αi again and use the similar

idea to get new w, repeat the above process, and alternatively optimize with w and

αi. The above process stops when
max |wt+1wT

t+1−wtwT
t |

||wt+1wT
t+1||F

falls with the specified tolerance,

i.e, w converges.

Summarized procedure goes as below:

INPUT: a matrix of training samples A = [A1, A2, ..., Ak] ∈ Rmxn for k classes,

xi is the ith image, A−i is A without xi, the specified dimension k1 for w, max number

of iterations N , and the error tolerance ε

1. solve the equation 2.1 to get α0
i

2. solve the equation 2.4 to get w0

I want to emphasize that our algorithm guarantees the convergence of the objec-

tive function. It is non-negative lower bounded and our algorithm makes it monotone

decreasing for each time optimization,therefore theoretically we can find the optimal

w that minimize the objective function.

Now I want to discuss another objective function called constrained L2 objective

function

min
w,αi

∑
i

1

2
(||wTA−iαi − wTxi||22 + β||αi − α0

i ||22) (2.5)
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Algorithm 1 Nie’s L1

wold=w0

repeat

for every wold do

solve 2.2 with wold

plug in the solution from 2.2 to solve 2.3 to get wnew

end for

if convergence criteria of w met then

break

else

wold=wnew

end if

until w converged or max number of iterations reached

Same as previous one, we first get the initial α0
i ,next we let αi = a0i and similar

to previous method we can get the initial w0,after that we plug in, now 2.5 becomes

min
αi

∑
i

1

2
||wT

0 A−iαi − wT
0 xi||22 + ||αi − α0

i ||22 (2.6)

To minimize 2.6,we just need the sum of two terms for each i, the analytical

solution of can be derived as follows:

min
αi

∑
i

1

2
||wT

0 A−iαi − wT
0 xi||22 + ||αi − α0

i ||22 ⇔ min
αi

1

2
||wT

0 A−iαi−wT
0 xi||22+||αi−α0

i ||22

(2.7)

as αis’ are independent.

There is an analytical closed solution to equation 2.7, we can derive it as follows:

equation 2.7 is equivalent to

1

2
(wTA−iαi − wTxi)

T (wTA−iαi − wTxi) + β(αi − α0
i )

T (αi − α0
i ) (2.8)
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Take derivative with respect to αi and set to zero, we get its formula

αi = [(wTA−i)
T (wTA−i + 2βI)]−1(wTA−i)

TwTxi + 2βα0
i ) (2.9)

After we got new αi,plug in and we can get new w as previous idea, we can repeat

this process to iteratively optimize the objective to find the best w.The algorithm is

very similar to algorithm one, the only difference is that different objective function

lead to different forms of w and αi.

Now I want to introduce another objective function called constrained L1 ob-

jective function:

min
w,αi

∑
i

1

2
(||wTA−iαi − wTxi||22 + β||αi − α0

i ||1) (2.10)

To tack this, as before get α0
i first,next let αi = α0

i , we can get w0. Next step,

we need to make a transformation η = αi−α0
i to make equation 2.9 a canonical form

, then equation 2.9 becomes min
w,η

∑
i

1
2
(||wTA−i(η + α0

i ) − wTxi||22 + β||η||1)

i.e,

min
w,η

1

2

∑
i

(||wTA−iη − wT (xi + A−iα
0
i )||22 + β||η||1) (2.11)

in other words, here we are minimizing η in L1norm, thedifferenceofeach αi

and α0
i ,the reason of doing this is that the equation form 2.11 can be solved efficiently

by the SLEP package by Ye [18] while equation 3.1 can’t.

Here I want to make brief comments about the advantage and disadvantage of

three objective functions.

Unconstrained L1 is a concise one, which is straightforward and has a harmony

form,while for the objective function, since it has no constraint about αi, we have no

control of the difference of αi and α0
i ,the final αi could diverge far away from the ini-

tial α0
i ,which would potentially compromise the accuracy.Indeed,the later experiment

show that if the tolerance is small, say 10−4, the w does not seem even converge!
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Constrained L2 has an explicit regularity term, would make αi and α0
i close in

the L2 norm sense. As there is no L1 norm involved, during the steps of minimizing

the objective function, αi has analytical close form solution, this would make the

converge much faster. However, αi would not be able to keep the property of sparse

due to the L2 regularity term.

Constrained L1 use the regularity term in the L1 norm, in the hope of αi being

close to α0
i , meanwhile maintain its sparse property. The cost of doing this is that

there is no closed form analytical solution, in other words, more time and resources

consuming.

After we found the final w, the optimal subspace representation, we would like

to discuss the classification part. Now, given a new test sample y from one of the

classes in the test set, we first compute its sparse representation α
′
i via equation

2.1. If the images are noise-free in the ideal case, the nonzero entries in the α
′
i

will all be corresponding to the class of training set where the test image comes

from,however,due to the noise and modeling error,the actual α
′
i may have multiple

classes of small nonzero entries. We can simply assign the test image to the class

which has the largest magnitude nonzero entry. however,this simplification does not

utilize the subspace structure,instead we want to classify the test image based on how

well the coefficients associated with all training samples of each object reproduce the

test image.

For each class i, let Γi : Rn → Rn be the characteristic function which selects

the nonzero coefficients. We can classify the test image based on these approximations

by assigning it to the class that minimizes the residual.

min
i

ri(y) = ||wTy − wTAΓi(αi)||2 (2.12)

Our whole procedure can be summarized as follows:

1 Divide the images into training set and test set
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2 For every image from the training set, we get an initial weight estimate of every

image using other images, here we impose the regularized term L1 norm, so that the

weight vector is a sparse vector.

3 We alternatively minimize the objective function with the subspace projection and

the weight vector until the subspace representations converge.

4 Based on w and training set, for each image from the test set, classify it based on

equation 2.12.



CHAPTER 3

EXPERIMENT

3.1 Classification

In this section, we want to compare the classification performance of our method,

which consists of different objective functions, with other classification methods. Note

that our method consists of two clear aims: first,dimension reduction, via find the

best embedded subspace representation;second, classification, via take advantage of

subspace structure to find the minimum error class.Note that our dimension reduc-

tion method belongs to the unsupervised category as there is no label information

enclosed during the training process.

There are two popular unsupervised methods, one is PCA,principal component

analysis,which makes the orthogonal projection of the data onto a lower dimensional

linear space, known as the principal subspace, such that the variance of the projected

data is maximized; the other one is LPP, locality preserving projection, which finds the

optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator

on the manifold.

There are also quite a few classification methods, such as KNN, K-nearest

neighborhood, via which an object is classified by a majority vote of its neighbors, with

the object being assigned to the class most common amongst its k nearest neighbors.

SVM, support vector machine,which models a representation of the examples as points

in space, mapped so that the examples of the separate categories are divided by a

clear gap that is as wide as possible. New examples are then mapped into that same

space and predicted to belong to a category based on which side of the gap they fall

on. In this experiment, I would try both the linear kernel and RBF kernel.

In this experiment, I would compare my method with the combination of di-

mension reduction method and classification method, therefore, there are six possible

15
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Figure 3.1. PIE sample image.

choices as follows: PCA + KNN, PCA + SVM(linear), PCA + SVM(RBF),LPP +

KNN, In addition to those, I would also compare the performance with SRC suggested

by Ma, after all, our method is inspired and closely related to this.

The first data set we would test on is a subset of the pie data set, the sample

images are below 3.1, which consist of 680 face images, 68 classes, each class has 10

images, each image has been resized into 16 x 16 size. This dataset is quite difficult

due to the large number of classes, varying expressions and illuminations. You can

compare with the second data set I would mention. We randomly divide the whole

data set into training set and test set, each set consists of 5 images for each class,

340 in total. The parameter setting is dimension=60, the coefficient for initial  L1

regularity term is 32, the coefficient β for controlling the solution difference is 1, the

error tolerance for constrained L1 method and Ding’s method is = 10−4, while for

Nie’s is = 10−2, max number of iteration is 200. The parameters in SVM have been

optimized based on the baseline parameters tested using the 2 folder cross validation.

Table 3.1 gives the accuracy table based on the average of our experiment.

From 3.1,it can be observed that our methods(constrained L1 L1 method and

Ding’s L2 method are significant better among all other unsupervised dimension re-

duction with classification combination methods. It also showed that our methods’s

accuracies are lower than Ma Yi’s method, however, notice that we are doing the

classification based on the subspace whose dimension is only about a quarter of Ma’s

dimension.
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Table 3.1. Classification accuracy for dataset pie when dim=60.

constrained L1 0.8632
constrained L2 0.8423

unconstrained L1 0.7922
Mamethod 0.8794
LPP + MY 0.798
LPP + KNN 0.787

LPP + SVM(linear) 0.811
LPP + SVM(RBF ) 0.815

PCA + MY 0.728
PCA + KNN 0.466

PCA + SVM(linear) 0.723
PCA + SVM(RBF ) 0.737

Table 3.2. Classification accuracy for dataset pie when dim=100.

constrained L1 0.912
constrained L2 0.905

unconstrained L1 0.882
PCA + MY 0.766
PCA + KNN 0.5

PCA + SVM(linear) 0.743
PCA + SVM(RBF ) 0.754

If we increase the dimension to 100, the accuracy would increase, please refer

to Table 3.2 which based on the average of the experiment. It can be observed that

increased dimension of the subspace would make our method beat MaYi’s classifica-

tion result. Also our methods still among the best among all dimension reduction

plus classifier methods

One thing I want to emphasize, as also pointed out before, is that unconstrained

L1 method did not converge, the accuracy seems to be fine when = 10−4, however,

when is reduced to 10−4, the accuracy becomes average around 0.02 meanwhile the

maximum number of iterations reached, in other words, it did not even converge in

the real sense, it keep rotating a small angle that ends up with a undesirable subspace

which gives bad performance.
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Figure 3.2. ORL sample images.

Table 3.3. Classification accuracy for dataset ATT when dim=40.

constrained L1 0.962
constrained L2 0.961

unconstrained L1 0.732
MYmethod 0.953
LPP + MY 0.897
LPP + KNN 0.959

LPP + SVM(linear) 0.969
LPP + SVM(RBF ) 0.891

PCA + MY 0.961
PCA + KNN 0.937

PCA + SVM(linear) 0.96
PCA + SVM(RBF ) 0.878

The second data set we would look at is the ORL data set from cambridge

university computer lab,the sample images are 3.2, which consist of 400 face images,

40 classes, each class has 10 images, each image has been resized into 14 x 11. We again

randomly divide the whole data set into training set and test set, each set consists

of 5 images for each class, 200 in total. The parameter setting is dimension=40, the

coefficient for initial  L1 regularity term is 1000, the coefficient β for controlling the

solution difference is 100, the error tolerance = 10−4, max number of iteration is still

200. Table 3.3 gives the accuracy table

Note that in table 3.3, only with dim=40, we have already quite close results

among other methods. Since ORL is a relatively easy data set for classification pur-
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Figure 3.3. YaleB sample images.

pose,the light condition and the human gesture are almost identical. The results

demonstrate another important key point mentioned, the main strength of our meth-

ods is that it can deal with the occlusion,varying expression and illumination.

The last data set we would look at is the YaleB database from Yale University

computer vision lab,the sample images are below 3.3, the mat file from [2],This dataset

now has 38 individuals and around 64 near frontal images under different illuminations

per individual, each image has been resized into 16 x 16. We again randomly divide

the whole data set into training set and test set, each set consists of about 32 images

for each class, around 340 in total. The parameter setting is dimension=60, the

coefficient λ for initial  L1 regularity term is 1000, the coefficient β for controlling the

solution difference is 100, the general error tolerance = 10−4 except for Nie’s is 10−2

as otherwise it would diverge, max number of iteration is still 200. Table 3.4 gives

the accuracy table based on the average:

If we increase the dimension to 100, please refer to table 3.5,then again our

methods stand out.

I want to draw the conclusion in this section that, via comparing the classifica-

tion results on three data sets, it can be seen that our methods are among the best

of the combinations of popular unsupervised dimension reduction and classification.

In addition to that, it verifies the necessary of having the constrain term.
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Table 3.4. Classification accuracy for dataset YaleB when dim=60.

unconstrained L1 0.912
constrained L2 0.886

unconstrained L1 0.740
MYmethod 0.916
LPP + MY 0.75
LPP + KNN 0.845

LPP + SVM(linear) 0.645
LPP + SVM(RBF ) 0.831

PCA + MY 0.851
PCA + KNN 0.471

PCA + SVM(linear) 0.723
PCA + SVM(RBF ) 0.737

Table 3.5. Classification accuracy for dataset YaleB when dim=100.

unconstrained L1 0.936
constrained L2 0.916

unconstrained L1 0.892
PCA + MY 0.872
PCA + KNN 0.502

PCA + SVM(linear) 0.895
PCA + SVM(RBF ) 0.891

3.2 More investigations

In this section, I want to take a closer look at the method I proposed, a few

graphs would be included to help the analysis, the dataset I used would. First, here

comes the equation again:

min
w,αi

∑
i

1

2
(||wTA−iαi − wTxi||22 + β||αi − α0

i ||1) (3.1)

First, I want to discuss the role of λ in my method, as it is obviously closely

related to the initial α0
i , which in turn affects our method performance.
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Table 3.6. Accuracy for different λ values.

0.0001 0.01 0 1 100 10000

0.8176 0.8176 0.8206 0.8324 0.9 0.8235

From the table 3.6, we can see that the different λ values would have signifi-

cant impact on the classification performance. It is also interesting to note that the

accuracy when λ = 0 is higher than those extreme cases when λ is too large or too

small.

Second, I want to discuss the role of β in our method, as it is the coefficient

to control the difference of the initial solution and the final solution. Now λ is fixed,

which is 1000, please refer to table 3.7. It can be observed that when β is 100, my

method reaches the best accuracy.

Table 3.7. Accuracy for different β values.

0.0001 0.01 0 1 100 10000

0.8618 0.8647 0.8588 0.8588 0.8676 0.8588

Next thing, I want to consider the subspace dimension effect on YaleB dataset,

intuitively the higher the dimension is, the more information might be kept there, it

could help promote the accuracy. Here λ = 1000, β = 100. I used PCA as reference

group, as it also clearly depends on the dimension. It can be observed that when at

the low dimension, PCA displayed its advantage, while around dim=60, my method

start to be better, the performance for PCA almost remains stable after dim=100;

while my method ends up with accuracy around 0.85 when dim=150. However, I

want to caution that I am not saying my method is better than PCA in the general

sense, it really depends on the classifier. Keep in mind that my dimension reduction

method really depends on the classifier, in this experiment, Ma’s method, meanwhile,
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Figure 3.4. PCA vs Jin’s method for dim from 10 to 150 on YaleB dataset.

PCA is a very general method that could almost be applied to most applications

when dimension reduction is desirable.

It is also interesting to observe the number of iterations my method takes for

different values of β, as it is important to make sure the method converges within

the specified tolerance, here, the maximum number of iterations is 200, the specified

error tolerance is 10−4.

Table 3.8. The number of iterations for different β values.

0.0001 0.01 0 1 100 10000

132 35 35 35 200 200
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The next thing I want to investigate is that for fixed α values, the graph of sum

of α difference for different β values. From graph 3.6,it can be observed that when

β = 10, the chain seems have experienced a quite stable burn in period before it fell

within the specified tolerance, which is the desirable property I want as to make sure

convergence.

What is next? I also need to check the value of target function, we are gradually

rotating w to find the optimal subspace representation. Then what is the angle

between w values for different parameter β? Here is the matrix angle table for

β = [0.0001, 0.01, 0, 1, 100, 10000], note that for matrix 3.2, each entry corresponding

to the angle between different β values. for example, 0.1922 is the angle between the

ws when β = 1 and β = 100.

0 0.0098 0.0388 0.0262 0.2018 0.2018

0.0098 0 0.00394 0.0254 0.2006 0.2006

0.0388 0.00394 0 0.0362 0.2088 0.2088

0.0262 0.0254 0.0362 0 0.1922 0.1921

0.2018 0.2006 0.2088 0.1922 0 0.0202

0.2018 0.2006 0.2088 0.1921 0.0202 0

It would also be critical to observe the converge criteria, which is
max |wt+1wT

t+1−wtwT
t |

||wt+1wT
t+1||F

,

for different values of beta, it takes different numbers of iterations to fall within the

loop. It can be seen that for extreme large or small values, the convergence evalua-

tion statistic displays no pattern, always keep fluctuating. While for beta = 10, after

reasonable number of iterations burning period, it seems well fell into the specified

tolerance.

Note that the ratio converges does not guarantee the convergence of w,we also

need to make sure the denominator,at least,does not increase during the iteration,

because otherwise the ratio could converge even if the numerator does not converge

at all. Please see figure 3.7 below,
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Figure 3.5. Sum of α difference when β = 0.01, 0, 10.
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Figure 3.6. Convergence static value when β = 0.01, 0, 10.
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Table 3.9. Accuracy for dataset YaleB when image is 32x32

unconstrained L1 0.952
constrained L2 0.937
MY ′smethod 0.918

I would also like to include a few graphs about the optimal objective function

values, this is a very important statistic when we tried to decide the regularity pa-

rameter as we would like to balance the residual error and the sparsity. I already

included the sparsity regularity term graph in the previous part. As you can imagine,

if I impose too much weight on the regularity term, it could significantly compromise

the performance of my method, since the linear representation would become triv-

ial, however, if the regularity term is negotiable, then we could not get the desirable

sparsity.

The graph we get would be indeed inaccurate, since SLEP is package that seeks

global solution, after the objective function value decreased to global minimum very

fast, it start to go up and down. I contacted the author of the package SLEP, he

replied:”in practice, when close to the optimal, my function cannot give a consistently

decreasing objective function value, which is in accord with the convergence analysis.”

3.3 Applications

One scenario that showed our method power is the case when the image size is

very large, for the YaleB dataset we get, it is of size 32 by 32 for each image, if we

did not do any image resize and apply our methods directly, it can be observed that

our methods still maintain a high classification accuracy rate using now relatively low

dimension. Here are the experiments result(based on five times average):

It can be seen that with increase image size, our methods both displayed sat-

isfying results. It indeed has more significance than the appearance. Although in

the experiments, we all used face images, which can be resized to the desirable size
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for classification purpose, in real life high dimensional data, the resize operations

are usually not applicable. This experiment shows that we can directly handle this

kind of data with low dimension with comparable result with MY’s method. As Ma

mentioned in [15],his method takes several seconds on a 3G HZ machine for each

image, the computation cost becomes too expensive for large scale high dimensional

data, our methods showed a nice ”Spend time now and Save time later property”,

with the ample training samples, we can significantly reduce the testing images size,

which would reduce the total computation time. So this is a method of potential

applications to large size data.



CHAPTER 4

CONCLUSION AND FUTURE WORK

In this paper, we have contended both theoretically and experimentally that

finding an optimal subspace is critical for high-performance classification of high-

dimensional data such as face images,also we showed the importance of having con-

straint of the new solution and the initial solution in the original space. We showed

the effectiveness of our methods by comparing with other methods on three different

data sets, also demonstrated the convergence of my L1 method via analyzing the

intermediate variables. Also, with sparsity properly harnessed and subspace repre-

sentation well chosen, the choice of subspace dimension remains low for even high

dimensional data, one can achieve very surprising classification result with only rela-

tively low dimension.

An implicit assumption that the sample size greater than the image size, there-

fore we have to resize the image, otherwise, when we tried to minimize the objective

function 2.4, we would find the the eigenvectors that corresponding to the eigenvalue

0, that is becomes the covariance matrix is not of full rank. To avoid this problem,

we can exclude those trivial eigenvectors,and start to pick the eigenvectors from first

non-zero eigenvalues. Although this is feasible, in our experiment, as long as the

classification accuracy seems fine for the resized image, we all make the image size

less than the sample size.

Although we have made a lot of efforts trying to reveal the relationship between

the parameters in our method. There are still a lot of stuff not clear yet that need

further investigations. Since this method is quite expensive in computation, it is quite

difficult for us to tune the optimal parameters setting in the real sense. What is more,

although using L1 term as regularity term is desirable, in general it has no analytical

closed form solution, when use alternative optimization method is applied in a non-

29
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convex region, there is no guarantee we can find the global optimal solution.Another

obvious future work is trying to make sure of label information, in other words, trying

to enclose the label information in our objective function, changing from unsupervised

method to supervised method, it is expected to boost the accuracy.
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