
COMBATING DOS ATTACKS IN WIRELESS NETWORKS USING

LIGHTWEIGHT KEY MANAGEMENT SCHEMES

by

QI DONG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2010

Copyright c© by Qi Dong 2010

All Rights Reserved

To my family and friends.

ACKNOWLEDGEMENTS

I will always remember the last four years I spent at our Information Security

(iSec) Lab. I appreciate this precious experience, not only because of the challenging

but interesting research work, but also because I have met some great people here.

I am very grateful to my supervising professor, Dr. Donggang Liu. I am

impressed by his wisdom and his passion for students and research. He guided me

to do research and solve the challenging problems. I very much appreciate being his

student. I would like to thank the other professor of our iSec Lab, Dr. Matthew

Wright. His knowledge and wit makes everyone in our lab, including me, enjoy

working with each other and solving the security puzzles. I would also like to thank

Dr. Gautam Das and Dr. Yonghe Liu for helpful discussions and insightful comments.

All of those four professors have given me great inspiration and excellent guidance

during both my course and research work.

I would like to thank all my friends at iSec Lab for their help in my PhD

study (sorted by name): Titus Abraham, Apurv Dhadphale, Bikas Gurung, Jun-

Won Ho, Safwan M. Khan, Kush Kothari, Pranav Krishnamoorthy, Brent Lagesse,

Rongfang Li, Tara Mallesh, Kiran Mehta, Jaideep Padhye, Nabila Rahman, Kartik

Siddhabathula, Gauri Vakde, Jin Xin and Dazhi Zhang.

Finally, I would like to give my special thanks to my family for their greatest

love and caring. I am deeply indebted to my wife Lulu, our parents and my sister

Ying. This dissertation is dedicated to them.

June 15, 2010

iv

ABSTRACT

COMBATING DOS ATTACKS IN WIRELESS NETWORKS USING

LIGHTWEIGHT KEY MANAGEMENT SCHEMES

Qi Dong, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Donggang Liu

The unique features of wireless networks lead to many attractive applications

in both military and civilian operations. Wireless networking devices usually use bat-

teries as power supply, which requires all the operations to be as efficient as possible.

Since the resources such as the battery energy and wireless communication channels

are critical in wireless networks, the attacker my try to disable the system operation

by launching denial of service (DoS) attacks. Specifically, the attacker prevents the

system from working by using up or blocking the limited resources.

This dissertation includes three studies on security mechanisms to combat DoS

attacks using lightweight key management schemes. The first study introduces a novel

pairwise key establishment technique. It can achieve both high resilience to node com-

promises and high efficiency by using a small number of additional sensor nodes. This

work provides the basic cryptographic building blocks for other techniques proposed

in this dissertation.

The second study presents two filtering techniques, a group-based filter and a

key chain-based filter, to handle DoS attacks when digital signatures are used for

v

broadcast authentication in sensor networks. Both methods are efficient for resource-

constrained sensor networks and can significantly reduce the number of unnecessary

signature verifications that a sensor node has to perform.

The third study introduces two techniques for jamming-resistant broadcast sys-

tems, partial channel sharing and unpredictable channel assignment. Both schemes

can significantly reduce the extra communication cost. The analytic and simulation

results show that the proposed approaches greatly push the limit of jamming-resistant

broadcast towards optimal.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . x

LIST OF TABLES . xiii

Chapter Page

1. INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Pairwise Key Establishment 3

1.1.2 Providing DoS Resistance for Signature-Based
Broadcast Authentication . 3

1.1.3 Jamming-Resistant Broadcast Systems 4

1.2 Summary of Contributions . 5

1.3 Organization of the Dissertation . 8

2. BACKGROUND . 9

2.1 Pairwise Key Establishment in WSN 9

2.2 Broadcast Authentication in WSN . 11

2.3 Jamming-Resistant Broadcast Systems 12

2.4 Other Attacks Against Wireless Sensor Networks 14

3. USING AUXILIARY SENSORS FOR PAIRWISE KEY
ESTABLISHMENT IN WIRELESS SENSOR NETWORKS 16

3.1 System Model . 17

3.2 Pairwise Key Establishment . 17

3.2.1 Baseline Approach . 18

vii

3.2.2 Using Multiple Assisting Nodes 19

3.2.3 Supplemental Key Establishment 23

3.3 Evaluation . 24

3.3.1 Sensor Deployment Models . 25

3.3.2 Probability of Establishing Keys 27

3.3.3 Resilience against Node Captures 35

3.3.4 Overhead . 40

3.3.5 Security Performance under Other Typical Attacks 44

3.3.6 Comparison with Previous Schemes 45

3.3.7 Security Reinforcement . 49

3.3.8 Performance under Other Deployment Models 51

3.4 Implementation . 61

3.5 Summary . 62

4. PROVIDING DOS RESISTANCE FOR SIGNATURE-BASED
BROADCAST AUTHENTICATION IN SENSOR NETWORKS 64

4.1 Pre-Authentication Filters . 65

4.1.1 Group-Based Filter . 65

4.1.2 Key Chain-Based Filter . 78

4.1.3 Discussion . 89

4.2 Summary . 92

5. ADAPTIVE JAMMING-RESISTANT BROADCAST SYSTEMS
WITH PARTIAL CHANNELS SHARING 93

5.1 Network and Adversary Model . 94

5.2 Scheme I: Adaptive Re-Grouping with Partial Channel Sharing 96

5.3 Analysis of Scheme I . 100

5.3.1 Performance of Traitor Detection for the Trusted Group . . . 101

viii

5.3.2 Performance of Detecting the Untrusted Group in SGP 102

5.3.3 Performance under Worst-Case Scenarios 105

5.4 Scheme II: Sequential Test Based Detection 111

5.4.1 Problem Statement . 112

5.4.2 Applying Lai’s Bayes Sequential Test 113

5.4.3 Bayes Sequential Test Based Detection 114

5.4.4 Performance Analysis . 115

5.5 Summary . 116

6. MITIGATING JAMMING ATTACKS IN WIRELESS BROADCAST
SYSTEMS WITH UNPREDICTABLE CHANNEL ASSIGNMENT 121

6.1 Network and Adversary Model . 121

6.2 Unpredictable Channel Assignment 123

6.2.1 Basic Approach . 125

6.2.2 Analysis . 128

6.3 Enhancements . 136

6.3.1 Reducing The False Alarm Rate 137

6.3.2 Dealing with Other Attacks 141

6.3.3 Summary of Enhancement . 146

6.4 Summary . 146

7. CONCLUSIONS AND FUTURE WORK 149

7.1 Contributions . 149

7.2 Future Work . 151

REFERENCES . 152

BIOGRAPHICAL STATEMENT . 160

ix

LIST OF FIGURES

Figure Page

3.1 Three types relationships between two sensor nodes u and v.
(a) 0 ≤ λ ≤ r; (b) r < λ ≤ 2r; (c) λ > 2r 26

3.2 The expected value of probability Pen v.s. m
L2 30

3.3 The expected value of probability Pea v.s. m
L2 33

3.4 The error in estimating the probability of establishing
a pairwise key. (a) error of Pen and (b) error of Pea.
The searching radius r′ is approximated by h× r.
Assume h = 2, r = 40, and L = 1000 34

3.5 The probability two sensor nodes can
establish a pairwise key (r = 40 and L = 1000) 36

3.6 The fraction of compromised keys between
non-compromised nodes. (a) the keys between
two one-hop neighbors and (b) the keys between any
pair of nodes (r = 40 and m

L2 = 0.0005) 40

3.7 The fraction of the compromised keys. (a) the keys
between two one-hop neighbors; (b) the keys between
two one-hop neighbors; (c) the keys between any pair of benign
nodes; (d) the keys between any pair of benign nodes (r = 40) 41

3.8 The fraction of compromised links between
non-compromised nodes in the different schemes 47

3.9 The fraction of compromised (direct or indirect) keys between
non-compromised nodes in the different schemes 48

3.10 Illustration of different deployment models for sensor networks.
(a) uniform distribution model; (b) Gaussian distribution model;
(c) group-based model with fixed group centers (100 groups);
(d) group-based model with random group centers (100 groups) 52

3.11 Gaussian deployment modes with different standard deviation σ
(L = 1000). (a) σ = L

6
; (b) σ = L

4
; (c) σ = L

3
; (d)σ = L

2
. 53

3.12 Gaussian deployment modes.

x

(a) network coverage and (b) node density distribution (L = 1000) . . 55

3.13 Performance under deployment model (2). Assume r = 40,
and m

L2 = 0.0005 in (b) and (d) . 56

3.14 The performance under group-based deployment model (3),
in which the expected group center locations are fixed and
evenly distributed in the field. Assume r = 40, L = 1000
and m

L2 = 0.0005 in (c) and (d) . 60

3.15 The performance under group-based deployment model (4),
in which the expected group center locations are randomly
distributed in the field. Assume r = 40, and L = 1000,
and m

L2 = 0.0005 in (c) and (d) . 61

3.16 The performance under different deployment models
illustrated Fig. 3.10. Assume r = 40, L = 1000,
and m

L2 = 0.0005 in (c) and (d). For model (2),
σ = 333.3; for model (3) and (4), g = 100 and σ = 33.3 63

4.1 Example of key trees (m = 2, L = 2, and b = 24) 66

4.2 Probability pr v.s. τ . Assume q = 64 72

4.3 Performance of adaptive re-grouping (L = 3, τ = 3 and m = 2) 78

4.4 Example of the key chain-based approach.
Xj is the first l bits of H(M ||i||Ki||Ku,j) 82

4.5 Probability pr v.s. threshold τ . 86

5.1 Illustration of procedure 1 . 100

5.2 The decision error rate of traitor detection on a traitor-free TG.
η = 0.1 in (a); m = 40 and n = 103 ×m in (b) 101

5.3 The decision error rate in traitor detection on a traitor-free SGP .
(a) Pr[Accept H3|H2 = T] and (b) Pr[Accept H4|H2 = T].
Assume m = 50, n/m = 103, and ρ = 0.5 106

5.4 The decision error rate in traitor detection on SGP .
(a) Pr[Accept H3|¬H4 ∧H5 = T] and
(b) Pr[Accept H4|¬H4 ∧H5 = T]. Assume
m = 50, n/m = 103, ρ = 0.5 and η = 0.2 107

5.5 The decision error rate in traitor detection on SGP when
only one group contains traitors (m = 50, n/m = 103,
and ρ = 0.5). (a) MAX(P1, P2) and (b) MAX(P3, P4) 109

xi

5.6 The impact of ρ in resource-constraint systems.
(a) the impact of ρ on testing H3 and (b) the impact
of ρ on testing H4. Assume n/m = 103, and j/m = 50 111

5.7 The risk z v.s. Px or Py (c = 10−4) 113

5.8 Performance of sequential test based detection in the
worst-case scenario. (a) the wrong decision rate and
(b) shows the decision making speed. Pth is the probability
of making a wrong decision of accepting H3

using our first scheme in the worst-case scenario 116

6.1 The wireless broadcast system with insider
jammer detection in Section 6.2 and 6.3.1 126

6.2 Random channel assignment. The probability that each
receiver is assigned different channel from
each other is p. The probability that the
suspicious node pair is assigned the same channel is 1− p 127

6.3 The probability Pd that an insider jammer is detected
v.s. the total number of messages it can blocked x 131

6.4 The probability that the outsider attacker can
successfully block the one-to-one communication
system within the period of transmitting m messages 134

6.5 Impact of t/j. The false alarm rate Pf

is the probability that a benign node is identified
as a traitor by mistake. Assume n/j = 104 and p = 0.5 135

6.6 Impact of p (j/t = 104 and j/t = 1) 136

6.7 The probability of getting at least τ successes in w trials (j
t

= 1) . . . 138

6.8 The observation window w (j/t = 1) 139

6.9 The maximum number of shared channels that a
malicious node pair can jam before being caught during the
period, in which no more than 8 messages are jammed for w
consecutive messages transmitted through the unshared channel 144

xii

LIST OF TABLES

Table Page

3.1 Notations . 24

3.2 Examples of sensor platform signal ranges 31

5.1 Frequently Used Notations . 95

5.2 Decision Making Criteria in TG examination 97

5.3 Decision Making Criteria in SGP examination 98

5.4 Probabilities that the attacker succeeds
in making particular events occur . 103

6.1 Frequently Used Notations . 124

xiii

CHAPTER 1

INTRODUCTION

In wireless networks, the nodes communicate with each other via wireless chan-

nels instead of the wired links. This significantly improves the system flexibility,

because the nodes are free from the electrical wires or cables. The system deploy-

ment becomes easy and fast. Moreover, the nodes are not restricted to the fixed

locations and can be mobile. Therefore, wireless networks have been widely deployed

and continue to attract a great deal of commercial and research interest.

For instance, wireless sensor networks (WSN) have recently emerged as a pre-

mier research topic. A wireless sensor network typically consists of a large number of

resource-constrained sensor nodes and possibly a few powerful control nodes (called

base stations) [1]. These nodes usually communicate and collaborate with their neigh-

bor nodes through low-power wireless links, and provide fine-grained sensing of phys-

ical conditions (e.g., temperature) from their immediate surroundings. The unique

features of sensor networks lead to many attractive applications, such as target track-

ing and battlefield surveillance.

However, if the wireless networks are deployed in hostile environments, the

attacker can launch malicious attacks to disable the network operation. This research

focuses on the effective and efficient mechanisms to mitigate such attacks.

1.1 Motivation

Security has been recognized as a critical requirement for many wireless net-

working applications, especially in military operations. However, batteries are usually

1

2

used as the power supply for wireless networking devices, thus all the network op-

erations should be as efficient as possible. Therefore, when we design the security

schemes for wireless networks, we have to minimize the communication overhead,

storage overhead, and the computing overhead.

Since resources are critical to wireless networks, a very serious attack is the

denial of service (DoS) attack. Specifically, the attacker prevents the system from

working by using up or blocking the limited valuable resources (e.g., the battery

energy and wireless communication channels). A system is vulnerable to such DoS

attacks, if the attacker can (1) consume many resources by cheating the system into

performing very expensive operations or (2) easily access and block the system re-

sources. Our ideas to protect wireless networks from such DoS attacks are (1) to

avoid the unnecessary expensive operations as early as possible and (2) to make the

critical resource accessible by legitimate users but unaccessible by the attacker.

To achieve those goals, we propose to use efficient key management schemes

to manage the resources. For example, if each wireless communication channel is

determined by a unique secret key, a user can easily access one particular channel

only if he knows the correct key associated with that channel. On the other hand, key

management itself is the cornerstone of most security protocols in wireless networks

and needs to be well investigated.

In this dissertation, I study pairwise key establishment scheme, which enables

secure one-to-one communication using cryptographic methods such as encryption

and authentication. Based on the secure and reliable one-to-one communication,

I also investigate how to combat DoS attacks in one-to-many (broadcast) scenar-

ios. Specifically, this research provides solutions to handle two types of attacks, DoS

attacks against broadcast authentication and jamming attacks against wireless broad-

cast systems.

3

1.1.1 Pairwise Key Establishment

Pairwise key establishment is one of the most fundamental security services.

Many techniques have been developed recently to setup pairwise keys in sensor net-

works [2–11]. Perrig et al. developed the SNEP protocol to provide pairwise key

establishment using a key distribution center (KDC) [2]. This approach, however, in-

troduces huge communication overhead and is vulnerable to single point of failure. A

number of key pre-distribution schemes were proposed to establish keys without any

online KDC [3–7]. These approaches pre-load a small set of secrets into each sensor

node before deployment to make sure that after deployment, every two sensor nodes

can setup a shared key using their preloaded secrets. However, these approaches

either require expensive protocols (e.g., path key establishment) to setup keys or

are vulnerable to only a small number of compromised sensor nodes. In addition,

some methods assume static sensor networks and the knowledge of sensors’ location

information [8–12]. These assumptions may not be true in practice.

Techniques to address these problems are provided in Chapter 3.

1.1.2 Providing DoS Resistance for Signature-Based Broadcast Authentication

Due to the sheer number of sensor nodes and the broadcast nature of wireless

links, it is often desirable for a base station to broadcast commands and data to

the network. The authenticity of such commands and data is critical for the correct

operation of sensor networks. If convinced to accept forged or modified commands

and data, sensor nodes may perform unnecessary and incorrect operations, and cannot

fulfill the intended purposes of the network.

Recent studies have demonstrated that it is possible to perform public key

cryptographic operations on resource-constrained sensor platforms [13–16]. However,

the significant resource consumption imposed by public key cryptographic operations

4

makes such mechanisms easy targets of denial of service attacks. For example, an

attacker can simply injects many forged broadcast messages and cheat the receiving

nodes into performing a large number of unnecessary signature verifications, eventu-

ally exhausting their battery power.

Techniques to address these problems are provided in Chapter 4.

1.1.3 Jamming-Resistant Broadcast Systems

Signal jamming is a well-known threat against wireless communication sys-

tems. The attacker (or jammer) injects sufficient interfering radio signal to block the

channels used by legitimate communication participants [17]. As a defense, spread-

spectrum techniques such as Frequency Hopping (FH) and Direct Sequence Spread

Spectrum (DSSS) spread the signal over a very large bandwidth, which virtually cre-

ates a huge number of logical channels determined by either the frequency-hopping

pattern (FH) or the spreading code (DSSS) [17]. At any given time, only one or a

small set of these channels are used for communication, and the selection of these

channels is kept hidden from the attacker. This makes the attacker’s job much more

difficult since he has to jam a great number of channels to hit the channels in use.

Spread spectrum works well for pairwise communication in which only two

communication participants are involved. However, in broadcast systems, the sender

needs to send the same messages to many receivers. A common practice is to use

a wireless channel that is known by all receivers. Unfortunately, if the attacker

compromises a single receiver, he becomes an insider who knows which channel is

currently in use and can block this channel easily. Thus, designing a jamming-resistant

broadcast system is particularly challenging when there are insiders.

To combat insider jammers in broadcast systems, researchers have recently

proposed several group-based approaches [18, 19]. The proactive approach in [18]

5

organizes receivers into multiple groups and assigns a secret channel to each group.

The sender broadcasts a copy of the message on each channel. Each receiver belongs

to several groups. Therefore, a receiver can receive broadcast messages as long as one

of the groups is free of jamming. However, the number of groups increases significantly

with the number of malicious receivers in order to tolerate jamming attacks. In other

words, a small number of malicious nodes will cause great communication cost in the

system.

Schemes in [19] use the “divide and conquer” strategy to isolate malicious re-

ceivers. However, these schemes require the sender to send a separate copy of each

broadcast message to every group, causing a lot of communication overhead. The

sender needs to send at least 2t extra copies of messages for each broadcast to deal

with t compromised receivers.

Techniques to address these problems are provided in Chapter 5 and 6.

1.2 Summary of Contributions

The contributions of this dissertation are summarized below:

• Pairwise key establishment using auxiliary sensors: The first contribution is a

novel technique for pairwise key establishment in sensor networks. The main

idea is to deploy a small number of dedicated sensor nodes, called assisting

nodes, to help key establishment between sensor nodes. Different from the

regular nodes in traditional networks where they are used for many kinds of

tasks such as sensing the physical environments and forwarding the messages,

the assisting nodes are only responsible for key management in the network,

representing a novel dimension of using sensor nodes.

The proposed approach has many advantages over existing approaches. First, it

can achieve a very high probability of establishing shared keys between sensor

6

nodes in the network. Second, a sensor node only needs to make a few local

communications and perform a few hash operations to setup a key with any

other sensor node. Third, the majority of sensor nodes only need to store a

single key in their memory space. Fourth, the proposed approach does not de-

pend on the sensors’ location information and can be used for sensor networks

with highly-mobile sensor nodes. Finally, our approach still provides high re-

silience to node compromise attacks. In addition, we also conducted analysis

and simulation studies on different sensor deployment models and implemented

this approach on TelosB motes [20]. The results demonstrate the benefits of

our scheme.

• Providing DoS resistance for signature-based broadcast authentication in sen-

sor networks: The second contribution is to apply pre-authentication filters to

remove bogus messages before the actual signature verification is performed.

Specifically, we develop two filtering techniques, a group-based filter and a key

chain-based filter, to help sensor nodes avoid performing many unnecessary sig-

nature verifications. Both methods take advantage of the fact that broadcast in

sensor networks is usually done through a network-wide flooding protocol, and

a broadcast message from a sensor node usually has a small number of imme-

diate receivers due to the low-power, short-range radio used in wireless sensor

networks.

The proposed pre-authentication filters provide complementary capabilities in

dealing with DoS attacks against signature-based broadcast authentication. The

group-based filter organizes the neighbor nodes of a (local) sender into multi-

ple groups, which are protected by different keys organized in a tree structure.

Using these group keys, this mechanism not only facilitates the neighbor nodes

7

to filter out forged messages, but also helps the sender adaptively isolate com-

promised nodes that launch DoS attacks.

The key chain-based filter employs a two-layer method, completely preventing

compromised neighbor nodes from affecting benign ones. The first layer uses

one-way key chains to mitigate the DoS attacks against signature verification,

and the second layer uses pairwise keys to mitigate the DoS attacks on the

verification of the chained keys in the first layer.

Our analytical results show that both group-based and key chain-based filters

can efficiently and effectively thwart the DoS attacks on signature verification.

• Adaptive jamming-resistant broadcast systems with partial channel sharing: The

contribution is two-fold. First, we propose a novel jamming-resistant broadcast

system, which organizes receivers into multiple channel-sharing broadcast groups

and isolates malicious receivers using adaptive re-grouping. Compared to exist-

ing approaches, this scheme reduces the communication cost from 2t to (2−ρ)t

additional messages, where t is the number of compromised receivers and ρ is

the channel sharing factor (0<ρ<1). As a result, the proposed scheme is much

closer to optimal considering the previously proven lower bound of t additional

messages (in [19]) under realistic scenarios. Second, a sequential test based

scheme is also proposed to further improve the performance of our jamming-

resistant broadcast system so that the sharing factor ρ can be set larger to

save more communication cost without reducing security. In addition, the an-

alytic and simulation results show that the proposed approaches greatly push

the performance limit of jamming-resistant broadcast systems towards optimal.

• Mitigating jamming attacks with unpredictable channel assignment: The fourth

contribution is a further improvement of the solution in Chapter 5. It dynam-

ically forms broadcasting groups in an unpredictable way such that insiders

8

cannot achieve maximal jamming impact. Basically, each receiver has a certain

probability to share a common channel with other receivers. If a given channel

is jammed and this channel is only assigned to one receiver, this receiver will

be considered as one of the insiders. Thus, no matter when the insider chooses

to jam the channel, there is a chance that he will be detected. Clearly, the

more channels that the insider jams, the higher the probability that he will be

detected. Compared with my previous solution, this technique only requires

each receiver to listen to one channel, instead of multiple channels at the same

time, thereby reducing the hardware cost greatly.

1.3 Organization of the Dissertation

The organization of this dissertation is as follows. The next chapter gives back-

ground information on pairwise key establishment, broadcast authentication, and

jamming-resistant broadcast systems. Chapter 3 presents pairwise key establishment

scheme using auxiliary sensor nodes. Chapter 4 discusses the pre-authentication filter

techniques, which provides DoS resistance for signature-based broadcast authentica-

tion in sensor networks. Chapter 5 and 6 present the adaptive jamming-resistant

broadcast systems with partial channel sharing technique and unpredictable channel

assignment technique respectively. Chapter 7 discusses some future research direc-

tions on wireless network security.

CHAPTER 2

BACKGROUND

2.1 Pairwise Key Establishment in WSN

Pairwise key establishment has been studied extensively in the area of sensor

network security. The goal is to securely setup a key for communication between two

sensor nodes. A KDC-based scheme is proposed in [2]. In this scheme, every sensor

node shares a unique key with the base station, which is then used as a trusted third

party for establishing pairwise keys between sensor nodes. However, this method

introduces significant communication cost since each key establishment requires the

involvement of the base station. In addition, this method also suffers from single

point of failure.

To overcome the problem of using a KDC, several key pre-distribution tech-

niques have been developed such as [3–7]. In [3], a trusted third party generates a

pool of random keys. Every sensor node then gets a certain number of keys from this

pool before deployment. After deployment, each pair of sensor nodes has a certain

probability of picking the same random key from the pool, which can then be used for

their secure communication. In [4], a similar idea is used. The difference is that every

pair of sensor nodes now has to find q common keys, which are picked from the same

key pool before deployment, between them to establish a pairwise key. In addition, a

cooperative protocol was developed to enhance the security of pairwise key establish-

ment [21]. The giant component theory was used to further improve the performance

and provide trade-offs between connectivity, storage cost, and security [22]. However,

9

10

in these schemes, a few compromised nodes will leak a large fraction of keys shared

between sensor nodes.

In [5], a trusted party such as the base station generates a pool of bivariate

polynomials, instead of random keys. Each polynomial f(x, y) has the symmetric

property: f(x, y) = f(y, x). Before deployment, for each node i, we pick a subset

of polynomials from the pool. For each polynomial f(x, y) picked, we compute a

polynomial share f(i, y) and assign it to i. After deployment, if two sensor nodes i

and j have the polynomial shares from the same bivariate polynomial f(x, y), they

can establish a pairwise key directly. Specifically, since node i knows f(i, y), it can

compute f(i, j), which is the same as f(j, i) due to the symmetric property. Since

node j knows f(j, y), it can compute f(j, i) as well. Based on how polynomials are

picked for each node, a random subset assignment scheme and a grid-based scheme

were proposed. The former has each sensor node pick a fixed number of polynomials

from the pool. In [6], a solution that is equivalent to this random subset assignment

scheme was proposed independently. The later has every sensor node pick polynomi-

als based on a logic grid so that every node can easily compute what nodes to contact

to establish a pairwise key. In [7], this grid-based idea was also used for key estab-

lishment. These schemes can achieve much better security and performance than

previous key pre-distribution schemes. However, it is still very expensive to establish

keys through intermediate nodes.

In addition to the above schemes, many key pre-distribution techniques pro-

posed to use prior deployment knowledge to improve the performance [8, 9, 11, 12].

The basic idea is to assign keying materials in such a way that two sensor nodes

will have a very high probability of establishing a key if their expected locations are

close to each other. In addition to the prior deployment knowledge, post deployment

knowledge has also been used to improve key pre-distribution in sensor networks [10].

11

The idea is to assign each sensor node a large number of keying materials before

deployment. After deployment, every node ranks keying materials based on its de-

ployment location and only keeps those most useful ones in memory. However, the

assumption of knowing the expected location or discovering the deployment location

of each sensor node may not be practical.

2.2 Broadcast Authentication in WSN

Broadcast communication is an important service in wireless networks. For

example, the base station can disseminate the commands efficiently and rapidly via

broadcast communication. Obviously, the authenticity of broadcast message is critical

in hostile environment. There are in general two types of solutions for broadcast au-

thentication in sensor networks, µTESLA [2] and digital signature [13]. µTESLA and

its variations achieve broadcast authentication through delayed disclosure of authen-

tication keys. Its efficiency is based on the fact that only symmetric cryptographic

operations are needed to authenticate a broadcast message. Despite the efficiency,

µTESLA has some undesirable features such as the need for (loose) time synchro-

nization and the authentication delay.

It has been demonstrated that the resource-constrained sensor is able to perform

public key cryptographic operations [13]. In addition, there have been continuous ef-

forts to optimize Elliptic Curve Cryptography (ECC) for sensor platforms [14–16].

We thus believe that ECC-based signature schemes will also be an attractive option

for broadcast authentication in many applications. However, the significant resource

consumption imposed by public key cryptographic operations makes such mechanisms

easy targets of Denial-of-Service (DoS) attacks. For example, if ECDSA is used di-

rectly for broadcast authentication without further protection, an attacker can simply

12

broadcast forged packets and force the receiving nodes to perform a large number of

unnecessary signature verifications, eventually exhausting their battery power.

Note that receiving packets also consumes the energy on sensor nodes. Hence,

an adversary can also launch DoS attacks by sending many bogus packets to jam the

channel and exhaust the energy on the victim nodes. However, this is significantly less

efficient than the DoS attacks against signature verification. Suppose every packet

has 102 bytes payload [23]. A MICAz mote will transmit 133 bytes in the physical

layer [24], which will cost the receiving node about 133 × 8/250, 000 = 4.256ms to

receive. On the other hand, verifying a 40-byte ECDSA signature takes about 1.96

seconds [15]. As indicated in [25], an active MICAz CPU will cost about two fifth of

the energy of receiving packets for the same period of time. This indicates that the

DoS attacks against signature verification is about 184 times more efficient than the

simple jamming attack.

The DoS attacks against signature-based broadcast authentication have also

been studied in [26,27]. A weak authentication mechanism using cryptographic puz-

zles is proposed in [26] to reduce the number of false signature verifications. However,

it requires a powerful sender and introduces the sender-side delay. The dynamic win-

dow scheme proposed in [27] can control the propagation of fake messages by making

smart choices between verifying a message before forwarding it and forwarding a mes-

sage before verifying it. However, a fake message will be propagated in the network

until the victim node verifies the signature.

2.3 Jamming-Resistant Broadcast Systems

In conventional wireless communication, the information bearing baseband sig-

nal is modulated onto a proper high-frequency carrier for transmission. The modu-

lated signal occupies a region of radio spectrum centered at the carrier frequency. If

13

the attacker (or jammer) injects sufficient interfering signals into the same spectral

region, he can significantly reduce the signal-to-noise ratio (SNR) at the receiver and

thus interrupt the wireless communication [17].

Spread spectrum has long been an effective technique to mitigate jamming at-

tacks. Examples include Frequency Hopping (FH) and Direct Sequence Spread Spec-

trum (DSSS) [17]. Their idea is to spread the signal over a much larger bandwidth to

make it extremely expensive for an adversary to block the communication. In general,

the more bandwidth, the better the resistance against jamming attacks. Orthogonal

Frequency Division Multiplexing (OFDM) and Software Defined Radio were proposed

for efficient spectrum management in cognitive radio networks [28]. Researchers have

studied the combination of spread spectrum and OFDM to improve not only the

efficiency and flexibility in spectrum usage [29] but also the resistance against the

jamming attacks [30–33].

These jamming-resistant techniques can be modeled as a virtual multi-channel

communication system, where the virtual (or logical) channel denotes the signal co-

ordinates determined by either the spreading code (DSSS), the frequency-hopping

pattern (FH), the sub-carriers (OFDM), or their combinations. In such system, the

available spectrum contains a large number of orthogonal channels. Only a small

subset of them will be used for communication. If the jammer does not know which

subset is in use, he will be forced to either jam a large number of channels with neg-

ligible interference in each or only a few of them and leave many others, very likely

including those actually used for transmission, interference free [17,34]. Forward error

correction (FEC) schemes are also adopted to reduce the interference from jamming

attacks and random noises [35–37]. They enhance the robustness of communication

through redundancy.

14

These mechanisms work well for one-to-one communication. However, in broad-

cast communication, there are many receivers. Once the attacker compromises a re-

ceiver and finds out which channels are in use, he can directly block those channels

without wasting any effort. The sender can certainly use jamming-resistant one-to-

one communication to send a separate copy of each message to each receiver to combat

the jamming. However, this introduces significant cost and delay, especially when a

huge amount of data (e.g., multimedia data) needs to be disseminated or the data is

time-sensitive (e.g., in battlefields or other emergency situations).

Group-based schemes have been proposed to combat insider jammers in broad-

cast systems [18,19]. The idea is to organize receivers into multiple broadcast groups

and use different channels for different groups. This ensures that a compromised

receiver can only affect the members in the same group. A “divide and conquer”

strategy is then used to isolate malicious receivers. However, these schemes require

the sender to send a separate copy of each broadcast message to every group, causing

a lot of communication overhead. The sender needs to send at least 2t extra copies

of messages for each broadcast to deal with t compromised receivers.

In addition to jamming-resistant broadcast, researchers have studied jamming-

resistant schemes to establish a secret key between two nodes or control channels

among the nodes [38–44]. These schemes usually involve a lot of communication

overhead, long delay, or special hardware.

2.4 Other Attacks Against Wireless Sensor Networks

An attacker can launch a wide range of attacks against the network. For exam-

ple, he can eavesdrop, modify, forge, replay, or block any network traffic. Especially,

the attacker can compromise a few nodes and learn all the secrets, including the key-

ing materials, on the compromised nodes [45]. Examples of other attacks that can

15

be launched against sensor networks include sybil attacks [46], wormhole attacks [47],

and node replication attacks [48]. In sybil attacks, the adversary clones sensor nodes

with different IDs to participate in network operations to mislead the application. In

wormhole attacks, the attacker creates a wormhole between two sensor nodes that

are far away from each other such that he can fool them into establishing an incor-

rect neighbor relation. In node replication attacks, the adversary compromises a few

sensor nodes and then create many replicas of these compromised nodes in the field

to impact the network at a large scale.

CHAPTER 3

USING AUXILIARY SENSORS FOR PAIRWISE KEY ESTABLISHMENT IN

WIRELESS SENSOR NETWORKS

This chapter introduces a novel pairwise key establishment scheme that can

achieve both high resilience to node compromises and high efficiency. The main idea

is to deploy a small number of additional sensor nodes, called assisting nodes, to help

key establishment between sensor nodes.

Each assisting node will hold a piece of secret knowledge for each sensor node.

The special design endows the secret knowledge with several nice properties: (1) an

assisting node have different secret knowledge for different sensor nodes; (2) differ-

ent assisting nodes have different secret knowledge for the same sensor node; (3) a

sensor node does not need to store its secret knowledge for any assisting node, but

can easily compute its secret knowledge on any assisting node. Therefore, a sensor

node can communicate with any assisting node easily and securely, protected by the

corresponding secret knowledge.

Those assisting nodes will work as local key distribution centers and can ran-

domly generate a unique partial secret key for any sensor node pair on demand. A

sensor node pair may receive several different partial keys from different assisting

nodes around them. The sensor node pair can compute their final pairwise key easily

by XORing all those partial keys. As a result, the final key will be unknown to the

attacker unless all the assisting nodes used in key establishment are compromised.

We further discuss the enhancements to handle the potential DoS attacks and

the deployment failure of nodes. The analysis shows the efficiency of the proposed

scheme. A sensor node only needs to make a few local communications and perform a

16

17

few efficient hash operations to setup a key with any other sensor node in the network

at a very high probability. The majority of sensor nodes only need to store a single

key. Besides, it also provides high resilience to node compromises. We also evaluate

the performances of the proposed scheme under different sensor node deployment

situations. The theoretical analysis, simulation studies and experiments on TelosB

sensor motes demonstrate the advantages of this key establishment protocol in sensor

networks.

3.1 System Model

In this dissertation, we use a homogeneous network model, in which the net-

work includes a large number of resource-poor sensor nodes that cannot transmit

messages over long distances or handle long periods of intensive communication and

computation activity, and possibly a few resourceful base stations that have longer

transmission ranges, more energy, and more storage. The resource-poor sensors can

be either static or highly mobile; they are mainly used for sensing physical environ-

ments, conducting in-network processing, and forwarding messages. The base stations

are mainly responsible for collecting/analyzing data from sensor nodes or connect-

ing the sensor network to a traditional wired/wireless network. Due to the low-cost

resource-poor sensor nodes, we assume that it is possible to deploy extra sensor nodes

for some special purposes, e.g., assisting key management.

3.2 Pairwise Key Establishment

This section provides the technical detail of using auxiliary sensors for pairwise

key establishment.

18

3.2.1 Baseline Approach

Sensor nodes are typically deployed to sense the physical conditions in their

local surroundings and report observations for various uses. However, in this chapter,

we explore a new dimension of using sensor nodes. Specifically, we believe that it

is important to deploy sensor nodes that are dedicated to facilitate certain network

protocols such as key management. Hence, the main idea of our approach is to deploy

additional sensor nodes, assisting nodes, to help pairwise key establishment between

sensor nodes. For convenience, we call the sensor nodes that are not assisting nodes

as the regular sensor nodes. The detail of our protocol is presented below.

• Initialization: Before deployment, the base station generates a master key

Ku for every sensor node u. The master key Ku is only known by the sensor

node u and the base station. Every assisting node i will get preloaded with a

hash H(Ku||i) for every regular sensor node u, where H(·) is a one-way hash

function [49], and “||” denotes the concatenation operation. Hence, an assisting

node will need to store n hash images. This clearly introduces considerable

storage overhead at assisting sensor nodes. However, we note that the only job

of the assisting nodes is to help pairwise key establishment. As a result, they can

use all their memory, including the flash memory, to store these hash values.

Therefore, we believe that it will be feasible for an assisting node to store a

reasonably large number of hash images. For instance, the TelosB mote has

1MB flash memory and can store hash images for a network of 128,000 sensor

nodes if every hash image is 8 bytes long. Furthermore, research focusing on

high-capacity, energy-efficient storage subsystems on sensor platforms is quite

active in recent years. This will soon make it possible to equip sensor nodes with

a few gigabytes of flash memory [50]. Therefore, more or longer hash images can

19

be stored in each assisting sensor node to either support larger sensor networks

or achieve higher security.

• Pairwise Key Establishment: After deployment, every regular sensor node will

first discover all neighboring assisting nodes in its radio range. When a sen-

sor node u needs to establish a pairwise key with another node v, it will send

a request to its neighboring assisting node i. The request message includes a

random nonce, the ID of the other node v, and will be protected by H(Ku||i),
which can be directly computed by u. When i receives the message, it can

immediately verify it since the key H(Ku||i) was preloaded to it during the

initialization. The assisting node i will serve as the KDC and generate a re-

ply to u, which includes the key H(H(Kv||i)||u). Note that this key can be

directly computed by node v given the IDs i and u. In the end, both nodes

know H(H(Kv||i)||u) and can use this key to secure their communication. The

protocol for key establishment is:

(1) u → i : v, r1, H(v||r1||H(Ku||i))
(2) i → u : EH(Ku||i)(v, r1, H(H(Kv||i)||u))

(3) u → v : i, EH(H(Kv||i)||u)(r2)

(4) v → u : EH(H(Kv ||i)||u)(r2 − 1)

In the above protocol, r1 and r2 are two random nonces, and EK(X) denotes

the encryption of message X using key K.

3.2.2 Using Multiple Assisting Nodes

In our baseline approach, only one assisting node is used to establish a secret

key between two sensor nodes. Clearly, if this assisting node is compromised, the

communication between these two nodes will be insecure. To enhance the security

of shared keys between sensor nodes, we propose to use multiple assisting nodes in

20

establishing a pairwise key. Specifically, two sensor nodes will apply the key estab-

lishment of the baseline approach to establish a key using each of the neighboring

assisting nodes and use these keys in computing the final key.

Key establishment with multiple assisting nodes: Suppose nodes u and

v try to establish a key. The protocol involves the computation of two partial keys,

one by node u and the other by node v, and the combination of these two partial

keys. The details are given below:

1. Partial key at node u: Let {u1, u2, ..., un} be the set of u’s neighboring assisting

nodes. u contacts each of them (using steps 1 and 2 of the baseline protocol) and

receives n keys {H(H(Kv||u1)||u), H(H(Kv||u2)||u), ..., H(H(Kv||un)||u)}. The

partial key k′u at u is computed by XORing all these n keys. This partial key

can be directly computed by node v given the ID u and the set {u1, u2, ..., un}.
2. Partial key at node v: Let {v1, v2, ..., vm} be the set of v’s neighboring assisting

nodes. Similarly, node v also contacts each of them (using steps 1 and 2 of the

baseline protocol) and receives m keys {H(H(Ku||v1)||v), H(H(Ku||v2)||v), ...,

H(H(Ku||vm)||v)}. The partial key k′v at v is computed by XORing all these m

keys. This partial key can be directly computed by node u given the ID v and

the set {v1, v2, ..., vm}.
3. Key combination: In this step, u sends the following message to node v:

{r3, Su, H(r3||Su||k′u)}, where r3 is a random nonce and Su = {u1, u2, ..., un}.
When v receives this message, it can directly compute all keys used to compute

k′u given Su. It can then authenticate the message using k′u. If authentication

succeeds, the final key ku,v will be computed by XORing k′u and k′v. Finally,

node v will send the following message to node u: {r4, Sv, H(r4||Sv||ku,v)}, where

r4 is a random nonce and Sv = {v1, v2, ..., vm}. When u receives this message,

it can derive all keys used to compute k′v given Sv. It then computes the final

21

key ku,v and authenticates the message using ku,v. If authentication succeeds,

it knows that the final key ku,v is now shared with v.

From the above protocol, we can see that the final key is computed by using

all keys provided by neighboring assisting nodes. As a result, the final key will be

unknown to the adversary unless all neighboring assisting nodes are compromised.

In other words, the adversary cannot compromise the confidentiality and integrity of

the communication between two nodes unless all assisting nodes used in key estab-

lishment are compromised. To defeat our scheme, one possible attack is to jam the

communication around the benign assisting nodes such that only malicious assisting

nodes are used in computing common keys. Since there are no effective ways to stop

an attacker from jamming the communication, we simply ask every sensor node to

re-discover new assisting nodes from time to time. This actually forces an adversary

to continuously launch jamming attacks since otherwise benign assisting nodes will

eventually be used to establish secure keys (unknown to the adversary) between sen-

sor nodes. As a result, in this chapter, we are more interested in the performance

of our protocol when the adversary stops blocking the communication to and from

benign assisting nodes.

Mitigating DoS attacks: Although the confidentiality and integrity of pair-

wise keys can be ensured as long as at least one benign assisting node is used in our

key establishment, the adversary can launch DoS attacks against the protocol, aiming

at preventing two nodes from establishing a common key. In particular, the adversary

can compromise a few assisting nodes and then have them give incorrect keys to any

requesting node. In this way, two sensor nodes that try to establish a pairwise key

will have inconsistent views of the keys used to compute one or both of their partial

keys. Thus, the final key cannot be established. This DoS attack is cost effective for

the attacker since one incorrect key can stop the key establishment in the future.

22

To address this problem, we need to identify consistent keys used in computing

a partial key. This is done by simply using a challenge and response protocol to test

the knowledge of keys between two sensor nodes. Each key H(H(Kv||i)||u) provided

by an assisting node i to a node u has two states: verified or unverified. If the other

node v proves its knowledge about this key, u will mark it as verified; otherwise, the

key will be marked as unverified.

Specifically, if a node u discovered that its partial key k′u is computed differently

from the other node v, it marks all keys from assisting nodes as unverified. Then

for each key provided by its neighboring assisting nodes, it challenges v about the

knowledge of this key. This protocol will be the same as the steps (3) and (4) of the

baseline protocol. A key that passed the test will be marked as verified. We have

to mention that an incorrect key provided by a malicious node may be marked as

verified since the adversary can forge a correct response to u regarding this key. If the

adversary keeps doing this, node u will not be able to establish a common key with

node v. The result as well as the cost is equivalent to the case where the messages

in the key establishment protocol keeps being corrupted. We do not have a perfect

solution to address this DoS attack. However, our objective is to ensure that we can

establish a common key when the adversary stops manipulating messages.

Once all keys are tested, u will use all verified keys to derive the partial key

k′u. To reduce the cost, the messages for testing different keys can be piggybacked

together. Note that when the adversary is still actively manipulating messages, it is

possible that k′u is still different from what node v knows. In this case, we simply

restart the challenge and response protocol after a certain period of time. Once the

attacker stops manipulating the messages between u and v, the partial key can be

correctly computed.

23

3.2.3 Supplemental Key Establishment

Our later analysis in section 3.3 shows that even a small number of assisting

nodes can guarantee a very high probability of establishing pairwise keys between

sensor nodes. However, in practice, it is still possible that a regular sensor node is

not able to find any assisting sensor node in its neighborhood since the deployment

of assisting nodes may not always guarantee full coverage. To deal with this issue,

we propose supplemental key establishment, in which a regular sensor node will look

for those assisting sensor nodes that are multiple hops away from itself. This will

certainly increase the chance of finding assisting nodes to use. Since more assisting

nodes will be found, more random keys will be used in generating the final pairwise

key. As a result, we are also able to achieve better security performance.

• Supplemental Key Establishment: In this step, a sensor node u will look for the

assisting sensor nodes that are no more than h hops away from itself. This can

be easily done by flooding a “discovery” message to all sensor nodes that are no

more than h−1 hops away from u. The nodes receiving such discovery message

will forward their lists of neighboring assisting nodes to node u. The lists could

be aggregated during the transmission to reduce the communication cost. Once

such set is discovered, the remaining step will be similar to the pairwise key

establishment discussed before.

The discovery and usage of assisting nodes multiple hops away will certainly

introduce additional communication overhead. However, we can see that it only

involves the communication with the nodes no more than h hops away. Furthermore,

since the probability of finding at least one assisting node in a node’s radio range can

be made very high, the supplemental key establishment will only happen at a very

low probability. In other words, the additional communication will rarely occur. As

24

Table 3.1. Notations

n number of the regular nodes
m number of the assisting nodes
L length of deployment field
r communication radius of sensor node
fc fraction of compromised sensor nodes
Pen probability of establishing a key between two one-hop neighbors
Pea probability of establishing a key between any two nodes
Pcn probability of a key between two one-hop neighbors being compromised
Pca probability of a key between any two nodes being compromised

a result, we believe that such additional overhead will not be a big problem for the

current generation of sensor networks.

3.3 Evaluation

This section presents the security and performance analysis for the proposed

scheme. We will focus on metrics such as the probability of establishing pairwise keys,

the resilience against node compromises, and the overhead. We will also compare our

approach with previous approaches in terms of these metrics. For convenience, we list

the notations frequently used in analysis in Table 6.1. Note that different sensor de-

ployment models will likely impact the security and performance of key management

protocols. As a result, we will also consider the following sensor deployment models

during the analysis: (1) uniform distribution model, (2) Gaussian distribution model,

(3) group deployment model with fixed group centers, and (4) group deployment model

with random group centers. We will first study the security and performance of our

approach when the uniform distribution model is used in sensor deployment. We will

then extend such analysis to other deployment models in Section 3.3.8.

25

3.3.1 Sensor Deployment Models

We assume that the network consists of n regular sensor nodes and m assisting

nodes. These nodes are deployed in a square-shape field of size L × L. Each sensor

node i will be deployed towards an expected location (xi, yi), which may be known

or unknown a prior depending on the actual deployment. It is also possible that the

expected locations of sensor nodes follow certain probability distribution functions.

For example, if every sensor node is randomly deployed in the field, the expected

location is a random distribution over the field.

After deployment, the actual location of a sensor node may be deviate from its

expected location due to the deployment errors that can be hardly removed. In other

words, after deployment, the sensor node may locate at any point in the field with

a certain probability. We hence use the probability density function (pdf) fi(x, y) to

model the distribution of the actual deployment location (X,Y) of every sensor node

i. Thus, the probability that this sensor node i appears in a particular area D can be

simply calculated by integrating fi(x, y) over the area, i.e.,
∫ ∫

D fi(x, y)dxdy.

In our analysis, we will first consider the following simple sensor deployment

model, in which the actual location of a sensor node i follows a uniform distribution:

fi(x, y) =

1
L2 , if 0 ≤ x ≤ L and 0 ≤ y ≤ L;

0, otherwise.

(3.1)

This deployment model has been used for analyzing many existing key pre-

distribution techniques [3–7]. As a result, our analysis will start from this simple

model. However, we have also seen some other deployment strategies used in several

studies, e.g., the group-based deployment model. Therefore, we will also evaluate the

26

(a) (b) (c)

Figure 3.1. Three types relationships between two sensor nodes u and v.
(a) 0 ≤ λ ≤ r; (b) r < λ ≤ 2r; (c) λ > 2r.

security and performance of our approach under other deployment models in Section

3.3.8.

We assume that all sensor nodes have the same signal transmitting and receiving

range, which can be modeled as a circle of radius r. Let λ denote the distance between

two sensor nodes u and v. As illustrated in Figure 3.1, these two sensor nodes may

exhibit one of the following three types of relationship based on r and λ:

(1) In Figure 3.1(a), we have λ ≤ r. This means that the two sensor nodes are

located within the signal range of each other. They are able to communicate

with each other directly. We thus call them one-hop neighbors.

(2) In Figure 3.1(b), we have r < λ ≤ 2r. This means that the two sensor nodes

are out of the signal range of each other and cannot talk to each other directly.

However, it is possible that they share some common neighbors, e.g., node i in

the figure. In this case, they are able to talk to each other indirectly via their

common one-hop neighbor i. We call u and v two-hop neighbors.

(3) In Figure 3.1(c), we have λ > 2r. This means that the two sensor nodes have to

use more than one intermediate sensor nodes to communicate with each other.

We simply call u and v remote node pair.

27

3.3.2 Probability of Establishing Keys

In our key establishment protocol, two regular sensor nodes u and v can easily

establish a pairwise key as long as one of them can communicate with at least one

assisting node. They won’t be able to setup a pairwise key if neither of them can

talk to any assisting node. Hence, the probability Pe of establishing a pairwise key is

equivalent to the probability that either u or v can find at least one assisting node in

the neighborhood.

Let (Xu, Yu) and (Xv, Yv) denote the actual locations of nodes u and v after

deployment. Let Pi,u,v be the probability that the assisting sensor node i can di-

rectly communicate with either of these two sensor nodes. According to the sensor

deployment model, Pi,u,v can be estimated by

Pi,u,v =

∫ ∫

Du,v

fi(x, y)dxdy, (3.2)

where Du,v denotes the area covering the communication range of either u or v, i.e.,

Du,v = Du ∪ Dv

= {(x, y)|((x−Xu)
2 + (x− Yu)

2 ≤ r2) ∨ ((x−Xv)
2 + (x− Yv)

2 ≤ r2)}.

Thus, the probability Pe that two regular sensor nodes are able to establish a

pairwise key can be estimated by

Pe = 1−
m∏

i=1

(1− Pi,u,v)

= 1−
m∏

i=1

(
1−

∫ ∫

Du,v

fi(x, y)dxdy

)
. (3.3)

If the deployment follows a uniform distribution, Pe can be further simplified

according to Equation 3.1:

Pe = 1− (1−
∫ ∫

Du,v
dxdy

L2
)m = 1− (1− Au,v

L2
)m, (3.4)

28

where Au,v denotes the size of Du,v. Clearly, Au,v is simply a function of r and

the distance λ between u and v. Since the sensors’ actual deployment locations

are independent from each other, the expected value of the probability Pe can be

calculated by

E(Pe) = 1−
(

1− E(Au,v)

L2

)m

.

Note that Au,v ¿ L2 is usually true in practice, E(Pe) can be further approximated

by

E(Pe) ≈ 1− e−E(Au,v)× m
L2 . (3.5)

In this chapter, we are interested in two types of pairwise keys: (1) the key

established between two one-hop neighboring sensor nodes (λ ≤ r), called the one-

hop key, and (2) the key shared between any pair of sensor nodes in the network.

The former is the most useful type of pairwise keys since it directly impacts the

secure communication between neighboring sensor nodes; the latter is also important

in case of end-to-end secure communication. Next we will investigate the probability

of establishing these two types of keys.

Probability of establishing one-hop keys: As discussed, the probability

that two one-hop neighbors u and v can establish a pairwise key is equivalent to the

probability that at least one of them can find an assisting node in the neighborhood.

Since the assisting sensor nodes are randomly and uniformly deployed, the probability

of finding an assisting node to use is determined by the size Au,v of the area Du,v

covered by the radio ranges of these two sensor nodes. Let Pen denote the probability

that two one-hop neighboring nodes can establish a pairwise key.

The case (1) in Figure 3.1 shows the area Du,v covered by the radio range of at

least one of the two one-hop neighbors u and v. Let Aabcd denote the overlap of their

29

radio ranges, which is represented by the shadowed area in the case (1) of Figure 3.1.

We can then calculate Au,v by

Au,v = 2πr2 − Aabcd

= 2πr2 −
(

2r2 cos−1

(
λ

2r

)
− λ

√
r2 − λ2

4

)
. (3.6)

To further estimate Pen, we will calculate the expected value of Au,v. In this

case, the probability distribution function of the distance between u and v being less

than the communication radius r is given by

F (λ) = P (distance < λ) =
λ2

r2
.

Thus, the probability density function f(λ) is given by

f(λ) = F ′(λ) =
2λ

r2
,

and the expected value of Aabcd is given by

E(Aabcd) =

∫ r

0

Aabcdf(λ)dλ =

(
π − 3

√
3

4

)
× r2 = 0.5865πr2. (3.7)

Therefore, the expected value of Au,v can be estimated by

E(Au,v) = 2πr2 − 0.5865πr2 = 1.4135πr2. (3.8)

According to Equation 3.5, the expected value of Pen can be calculated by

E(Pen) ≈ 1− e−1.4135πr2× m
L2 . (3.9)

Equation 3.9 shows that Pen is determined by the number of assisting nodes

(m), the communication radius (r), and the size of the field (L). We note that the

item m
L2 in the equation implies the average number of assisting nodes in unit area. We

thus call it as the assisting node density. Obviously, Pen increases exponentially with

30

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10

−3

0

0.2

0.4

0.6

0.8

1

The assisting node density (m/L2)

e
n

r = 10
r = 30
r = 50
r = 70

Figure 3.2. The expected value of probability Pen v.s. m
L2 .

the assisting node density. We can thus easily choose the number of assisting nodes

to deploy to meet a certain level of performance. We also note that the number (n) of

regular sensor nodes does not impact Pen. Indeed, as long as the sensor deployment

ensure that a given area is covered by at least one assisting sensor node, any regular

node located in this area can setup pairwise keys with its one-hop neighbors. Thus,

in our later analysis, instead of using the percentage of assisting nodes (m
n
), we will

use the assisting node density (m
L2) as one parameter to evaluate the performance of

our protocol.

Figure 3.2 shows the relationship between the expected value of probability

Pen and the assisting node density m
L2 given different values of sensor signal radius r.

From the figure, we can clearly see that Pen does increase with the density of assisting

nodes, although the increasing speed varies with different values of r. Table 3.2 lists

the signal ranges of several current sensor platforms [20]. Given a reasonable signal

radius, e.g., r = 50, we can see that a small assisting node density (e.g., 0.002) can

guarantee a high probability (greater than 0.89) of establishing keys between one-hop

neighboring sensor nodes. In addition, we note that Pen is close to 1 when r = 30

31

Table 3.2. Examples of sensor platform signal ranges

Platform Outdoor Range Indoor Range
TelosB 75m to 100m 20m to 30m
MICAz 75m to 100m 20m to 30m
MICA2 150m —
IRIS > 300m > 50m

Imote2 > 30m

and the assisting node density is 0.001. This is because when r = 30 and the density

is 0.001, a sensor node can find at least one assisting node within its radio range with

a very high probability.

Probability of establishing a key between any two nodes: Let Pea

denote the probability that any two sensor nodes in the network can establish a

pairwise key. Obviously, Pea can be estimated by computing the probability of finding

an assisting node in Du,v, i.e., the area covered by their radio ranges. To estimate

the size Au,v of this area, we have to consider the following two cases differently: (1)

there is an overlap between the radio ranges of u and v (λ ≤ 2r), and (2) there is no

overlap between their radio ranges (λ > 2r).

• Case 1: This case includes both type (1) and type (2) relationships in Figure

3.1. The probability Pa,1 that two given sensor nodes are within two-hop range

is given by

Pa,1 =
π(2r)2

L2
. (3.10)

Let E(Au,v,1) denote the expected value of Au,v in case 1. The probability

distribution function of the distance between u and v being less than 2r is given

by

F (λ) = P (distance < λ) =
λ2

(2r)2
.

32

Thus, the probability density function f(λ) is given by

f(λ) = F ′(λ) =
λ

2r2
,

and the expected value of Aabcd is given by

E(Aabcd) =

∫ 2r

0

Aabcdf(λ)dλ

=

∫ 2r

0

(
2r2 cos−1

(
λ

2r

)
− λ

√
r2 − λ2

4

)
×

(
λ

2r2

)
dλ

=
πr2

4
.

Therefore, the expected value of Au,v can be estimated by

E(Au,v,1) = 2πr2 − E(Aabcd) =
3πr2

4
. (3.11)

• Case 2: This case is shown as type (3) relationship in Figure 3.1. Let E(Au,v,2)

denote the expected value of Au,v in case 2, and Pa,2 denote the probability

that two nodes are more than two hops away. Clearly, Au,v,2 and Pa,2 can be

estimated by

Au,v,2 = 2× πr2, (3.12)

Pa,2 = 1− π(2r)2

L2
. (3.13)

According to Equations 3.10, 3.11, 3.12, and 3.13, we have

E(Au,v) = Au,v,1 × Pa,1 + E(Au,v,2)× Pa,2 = 2πr2 − 5π2r4

L2
. (3.14)

Therefore, the expected value of Pea can be calculated by

E(Pea) ≈ 1− e−E(Au,v)× m
L2 = 1−

(
e−2πr2× m

L2

)
×

(
e

5π2r2

L2 × m
L2

)
. (3.15)

Figure 3.3 shows the relationship between the expected value of probability Pea

(denoted by E(Pea)) and the density of the assisting nodes m
L2 . We can see that the

33

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
x 10

−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The assisting node density (m/L2)

E
(P

e
a
)

r = 30, L = 1000
r = 30, L = 1000000
r = 50, L = 1000
r = 300, L = 1000
r = 300, L = 1000000

Figure 3.3. The expected value of probability Pea v.s. m
L2 .

increasing speed of Pea varies significantly with the signal radius r instead of the field

size (L). That is because the item

(
e

5π2r2

L2 × m
L2

)
in Equation 3.15 is very close to 1

given a reasonable setting (r < L and m
L2 < 0.005). Therefore, Pea can be further

approximated by

E(Pea) ≈ 1− e−2πr2× m
L2 .

Probability of establishing keys through supplemental key establish-

ment: In supplemental key establishment, a sensor node u can use the assisting

nodes within its h-hop range to establish keys with other nodes. Let r′ denote node

u’s searching radius, within which all the assisting nodes will be used by u to establish

pairwise keys with other nodes. Obviously, without supplemental key establishment,

r′ = r. During the supplemental key establishment, u will extend its searching radius

r′ to h hops away from itself. This can increase the chance of successfully communicat-

ing with at least one assistant node. We simply estimate r′ in this case as r′ ≈ h× r.

Thus, according to Equations 3.9 and 3.15, we can estimate E(Pen) (the expected

34

0.001
0.01

0.02
0.03

1
2

3
4

5
x 10

−4

0

0.05

0.1

0.15

0.2

n/L2

m/L2

E
r
r
o
r

o
f
P

e
n

0.05 0.1 0.15

(a)

0.001
0.01

0.02
0.03

1
2

3
4

5x 10
−4

0

0.025

0.05

0.075

0.1

n/L2

m/L2

E
r
r
o
r

o
f
P

e
a

0.02 0.04 0.06 0.08

(b)

Figure 3.4. The error in estimating the probability of establishing a pairwise key.
(a) error of Pen and (b) error of Pea. The searching radius r′ is approximated by

h× r. Assume h = 2, r = 40, and L = 1000.

value of the probability of establishing a key between two one-hop neighbors) and

E(Pea) (the expected value of the probability of establishing a key between any two

sensor nodes) as follows

E(Pen) ≈ 1− e−1.4135π(hr)2× m
L2 , and

E(Pea) ≈ 1−
(
e−2π(hr)2× m

L2

)
×

(
e

5π2(hr)2

L2 × m
L2

)
.

Obviously, such estimation is not precise, because r′ is usually less than h × r

in reality, and the extended search scope may not be exactly a circle. However, the

sensor nodes are usually densely deployed in the target field to guarantee that the

network is fully connected and the entire field is fully covered by the sensing ranges

of regular sensor nodes. The larger the density of the sensor deployment, the smaller

the error of such estimation. We have also conducted a simulation study to evaluate

35

the error of such theoretical analysis when h = 2 (i.e., when two-hop neighboring

assisting nodes are used). In the simulation, we set the radio radius r = 40 and

the deployment field length L = 1000, and vary the regular node density n
L2 and

the assisting node density m
L2 . The evaluation result is shown in Figure 3.4. We can

see that given a reasonable configuration, the theoretical result is very close to the

simulation result. For example, if n
L2 ≥ 0.005 and m

L2 ≥ 0.0002, the error is smaller

than 0.0025.

We have also used simulation studies to evaluate the overall benefit of supple-

mental key establishment. In the simulation, we assume that 10,000 regular sensor

nodes are randomly deployed in a 1000 × 1000 area. The sensor node deployment

location follows the uniform distribution that is determined by Equation 3.1. We set

the wireless signal radius r to 40. The assisting node density m
L2 varies from 0.0001

to 0.0006. For each value of m
L2 , we run the simulation for 100 times and compute the

mean of the simulation results.

Figure 3.5 shows both the simulation result and the analytical result. We can see

that they match very well. It also indicates that by using two-hop assisting nodes,

the probability of establishing a pairwise key between two sensor nodes increases

dramatically. For example, even when the assisting node density is only 0.0001, the

probability Pen of establishing a pairwise key between one-hop neighbors is 0.84, and

the probability Pea of establishing a pairwise key between any two sensor nodes is

0.97.

3.3.3 Resilience against Node Captures

We assume that once the attacker captures a sensor node, it can learn all the

secrets in this node, including the master key, all pairwise keys established with other

nodes, or all preloaded hash images if it is an assisting node. This section will focus on

36

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

The assisting node density (m/L2)

p
a
ir

w
is

e
ke

y
b
et

w
ee

n
tw

o
n
o
d
es

Simulation result of Pea using one-hop assisting node

Simulation result of Pen using one-hop assisting node

Theoritical value of Pea using one-hop assisting node

Theoritical value of Pen using one-hop assisting node

Simulation result of Pea using two-hop assisting node

Simulation result of Pen using two-hop assisting node

Theoritical value of Pea using two-hop assisting node

Theoritical value of Pen using two-hop assisting node

Figure 3.5. The probability that two sensor nodes can establish a pairwise key
(r = 40 and L = 1000).

the security of the master key in any non-compromised sensor node and the pairwise

keys shared between non-compromised sensor nodes when there are captured (either

regular or assisting) sensor nodes. However, we note that the regular sensor nodes

involved in relaying messages to/from assisting nodes cannot understand the content

of the messages used in our key establishment protocol. Hence, compromising regular

sensor nodes will not help attackers to infer the master key in any non-compromised

node or any pairwise key between two non-compromised sensor nodes. Thus, we will

focus on the security of our approach when there are compromised assisting nodes.

The master key of a non-compromised sensor node is immune from the node

capture attack. The reason is that every sensor node u’s master key is only known

by the base station and u itself. The assisting nodes are only preloaded with the

hash of node u’s master key. Due to the one-way property of the hash function, it is

computationally infeasible to compute the original key from a hash image. Therefore,

37

even if some assisting nodes are compromised, the master key of any non-compromised

node will be always safe.

Next we will study the security of pairwise keys shared between those non-

compromised sensor nodes. In our approach, every sensor node computes the final

key by applying the XOR operation on all received keys. As a result, a pairwise key

will be unknown to an adversary unless the adversary compromises all the assisting

nodes that provide the corresponding keys. This indicates an attractive property of

our scheme: every benign assisting node can guarantee the security of pairwise keys

established by any sensor node in its neighborhood as long as it can communicate with

this sensor node.

Certainly, the adversary may try to capture all benign assisting nodes in a small

region to compromise the communication in this area. However, assisting nodes are

randomly deployed; precisely locating and then capturing specific assisting nodes

require substantial effort. In particular, the adversary will need to monitor the com-

munication for a certain period of time and use traffic analysis to identify assisting

nodes. By the time the adversary locates all assisting node in a given area, it is

very likely that all or most of the pairwise keys in this area have been established.

With our security reinforcement idea in Section 3.3.7, the adversary cannot recover

any of the previously established pairwise keys. In this chapter, we thus assume that

the adversary randomly compromises the node in his monitoring range. We use the

number of nodes to compromise to measure the attacker’s effort. Under this assump-

tion, it is still possible that an adversary compromises all benign assisting nodes in a

region. However, our later analysis in this subsection will show that the resilience of

our scheme is significantly better than existing schemes.

We then analyze the overall probability Pc that the pairwise key Ku,v between

two non-compromised nodes u and v is compromised when a fraction fc of sensor

38

nodes, including those assisting nodes, are captured. Let t denote the number of

assisting nodes involved in the establishment of this pairwise key. From our earlier

analysis, Pc is equal to the probability that all these assisting sensor nodes are cap-

tured. Assume that the attacker randomly captures sensor nodes. We know that Pc

can be estimated by

Pc = f t
c . (3.16)

Let E(t) denote the expected value of the random variable t, i.e., the number of

assisting nodes in a sensor’s neighborhood. Pc can thus be estimated by computing

the probability of key Ku,v being compromised when u and v have a total number

of E(t) assisting nodes in their neighborhood. If sensor node i’s deployment location

follows the pdf fi(x, y), we have

E(t) =
m∑

i=1

(∫ ∫

Du,v

fi(x, y)dxdy

)
. (3.17)

According to Equation 3.1, we have E(t) = E(Au,v) × m
L2 . Similar to the

discussion in Section 3.3.2, we will estimate E(t) and Pc for two types of pairwise

keys: (1) the one-hop key shared between two one-hop neighboring sensor nodes; and

(2) the key shared between any pair of sensor nodes in the network.

• For the key shared between two one-hop neighbors, we estimate the probability

Pcn that it is compromised according to Equation (3.8):

E(t) = 1.4135πr2 × m

L2
,

Pcn = fE(t)
c = f

1.4135πr2× m
L2

c . (3.18)

39

• For the key shared between a random pair of sensor nodes in the field, we

estimate Pca that it is compromised according to Equation (3.14), assuming a

reasonable setting (r < L and m
L2 < 0.005):

E(t) =

(
2πr2 − 5π2r4

L2

)
× m

L2
≈ 2πr2 × m

L2
,

Pca = fE(t)
c ≈ f

2πr2× m
L2

c . (3.19)

Figure 3.6 shows the probability of a pairwise key being compromised when

r = 40 and m
L2 = 0.0005. It includes the results from both theoretical analysis and

simulation studies. In the simulation experiments, after establishing the pairwise

keys using our scheme, we randomly compromise fraction fc of assisting nodes, and

then we count the number of pairwise keys which are compromised. We calculate the

fraction of compromised keys by

Pcn =
the number of compromised keys between one-hop neighbors

the number of established keys between one-hop neighbors
, (3.20)

and

Pca =
the number of compromised keys between any pair of nodes

the number of established keys between any pair of nodes
. (3.21)

We run simulation 100 times and present the results using the box-plot. From

the figure, We can see that even if 50% of assisting sensor nodes are compromised,

the fraction of compromised keys shared between non-compromised nodes is still less

than 0.2. This shows that our approach is highly resilient to the node compromise

attack. We can also see that the theoretical result is very close to the simulation

result. We can thus use our theoretical result to predict the trend as well as other

characteristics of Pcn and Pca.

Figure 3.7 shows the fraction of compromised keys between non-compromised

sensor nodes given different assisting node density m
L2 . It clearly indicates that we

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

c
n

fc

Theoretical values
Boxplot shows

simulation results.

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
c
a

fc

Theoretical values
Boxplot shows

simulation results.

(b)

Figure 3.6. The fraction of compromised keys between non-compromised nodes. (a)
the keys between two one-hop neighbors and (b) the keys between any pair of nodes

(r = 40 and m
L2 = 0.0005).

can enhance the security of pairwise keys by deploying more assisting sensor nodes.

Figure 3.7 also shows the fraction of compromised keys established using the assisting

sensor nodes that are no more than two hops away in supplemental key establishment.

The result is consistent with our analysis in the previous section, i.e., supplemental

key establishment can greatly improve the probability of establishing keys. Figure

3.7 also shows another benefit of the supplemental key establishment: it can enhance

the resilience against node capture attack. Indeed, the fraction of compromised keys

can be reduced by using the two-hop neighboring assisting nodes for pairwise key

establishment. This is because the attacker has to compromise more assisting nodes

in order to compromise the pairwise key.

3.3.4 Overhead

This section discusses the overhead of the proposed scheme, including the stor-

age overhead, the communication overhead, and the computation overhead. In the

proposed scheme, most of the sensor nodes (i.e., the n regular sensors) only need to

41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
n

Theoretical values, m/L2 =0.0003

Simulation results, m/L2 =0.0003

Theoretical values, m/L2 =0.001

Simulation results, m/L2 =0.001

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
n

Using one-hop assisting node,m/L2 =0.0003

Using one-hop assisting node,m/L2 =0.001

Using two-hop assisting node,m/L2 =0.0003

Using two-hop assisting node,m/L2 =0.001

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
a

Theoretical values, m/L2 =0.0003

Simulation results, m/L2 =0.0003

Theoretical values, m/L2 =0.001

Simulation results, m/L2 =0.001

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
a

Using one-hop assisting node,m/L2 =0.0003

Using one-hop assisting node,m/L2 =0.001

Using two-hop assisting node,m/L2 =0.0003

Using two-hop assisting node,m/L2 =0.001

(d)

Figure 3.7. The fraction of the compromised keys. (a) the keys between two one-hop
neighbors; (b) the keys between two one-hop neighbors; (c) the keys between any

pair of benign nodes; (d) the keys between any pair of benign nodes (r = 40).

store a single master key, while only a small portion of sensor nodes (i.e., the m as-

sisting nodes) need to store n hash values of the master keys in regular sensor nodes.

As we discussed before, the assisting sensor nodes are only responsible for pairwise

key establishment and can use all the memory, including the flash memory, to store

these hash values.

Next we evaluate the communication cost for sensor nodes u and v to establish

their pairwise key. From our earlier analysis, we know that on average, u and v can

find E(t) assisting nodes in the neighborhood. During key establishment, u and v will

need to send a request to each of these neighboring assisting nodes to get a key. All

42

these messages are exchanged in one-hop range. The number of messages exchanged

with assisting nodes is 2E(t). Due to the limited number of neighboring assisting

nodes for each sensor node (small E(t)), we believe that the communication cost to

establish a pairwise key using one-hop neighboring assisting nodes will not be a big

problem for sensor networks.

As we discussed before, even without supplemental key establishment, we can

establish pairwise keys between sensor nodes at a very high probability. The sup-

plemental key establishment is usually used when a sensor node cannot find any

neighboring assisting node in its radio range. As a result, it will be rarely used. In

addition, even if the supplemental key establishment is needed, it will only introduce

some additional communication within the h-hop area around the node that needs

help for key establishment. The communication cost needed during supplemental key

establishment mainly depends on the average number of assisting nodes found within

h hops.

The proposed scheme involves small computation overhead. For every neigh-

boring assisting node i, sensor node u will first need to apply one hash operation to

compute the key H(Ku||i). To establish a pairwise key with sensor node v, node u will

then apply symmetric key operations for 3× E(t) times on average to generate E(t)

key establishment requests, recover E(t) keys from its neighboring assisting nodes,

and compute E(t) keys for the message from v. Finally, both u and v will apply one

XOR operation on the two partial keys to compute their final pairwise key.

Note that Elliptic Curve Cryptography (ECC) has been demonstrated to be

feasible on sensor platforms. Another choice for key establishment would be to directly

use ECC-based approaches. Next we will compare our scheme with the ECC-based

approach in TinyECC [14] in terms of overhead. We also noticed that the main cost

of ECC-based approaches is the computation cost, and the main cost of our approach

43

is the communication cost. As a result, we focus on the comparison between the

cost of public key cryptographic operations involved in ECC-based approaches and

the cost of communication involved in using additional assisting nodes. Note that

no matter how many assisting nodes are used, the key combination only needs to be

performed once. Thus, we focus on the communication cost involved in deriving the

partial keys.

TinyECC include ECDSA, which can be used to sign and verify messages, and

ECDH, which can be used to establish keys between sensor nodes. To establish a

key, a sensor node will need to receive the certified public key of the other node and

then verify the signature included in the message. On TelosB platforms, the energy

needed for one verification is about 49.37 mJ [14] (init +verify). Once the public

key is verified, the ECDH key exchange protocol can be used to establish a pairwise

key. One round of ECDH consumes about 33.19 mJ of energy (init+key establish).

Hence, the energy consumed in total will be about 82.56 mJ.

In TelosB, transmitting one bit consumes about 3.0V×18.8mA/(250kbps) ≈
0.2088 µJ of energy, and receiving one bit consumes about 3.0V×17.4mA/(250kbps)

≈0.2256 µJ. Assume that each symmetric key is 8 bytes long, each node ID is 2

bytes long, and each random nonce is 4 bytes long. Each request to or reply from an

assisting node is 14 bytes long. In TelosB, the MAC layer will add 25 more bytes,

and the physical layer will add 6 more bytes. Each request or reply will thus incur

the transmission of 45 bytes. Thus, overall, our protocol incurs the transmission and

receiving of 2× 45 = 90 bytes for each assisting node used in establishing a pairwise

key between two nodes. This will consume 90× 8× (0.2088 + 0.2256)µJ ≈ 0.313 mJ.

Therefore, as long as we do not use more than 82.56
0.313

≈ 264 assisting nodes, the cost

will be less than the cost for using ECDSA-ECDH.

44

Another advantage of our approach when compared with ECC-based approaches

is that ECC-based approaches allow an adversary to launch DoS attacks to easily and

quickly exhaust the energy at sensor nodes [26, 51]. The adversary can simply spam

fake signatures to force sensor nodes to perform a significant large number of expen-

sive but unnecessary signature verifications. Current counter measures either require

shared pairwise keys between sensor nodes [51] or only control the spreading of fake

signatures in the context of broadcast authentication [26]. None of them can be used

to address pairwise key establishment effectively.

3.3.5 Security Performance under Other Typical Attacks

In this section, we will analyze the security of the proposed scheme under some

other attacks in sensor networks. We focus on sybil attacks [46], wormhole attacks

[47], and node replication attacks [48].

Clearly, the sybil attack will not impact the security of pairwise keys shared

between sensor nodes since the adversary cannot generate legitimate master keys for

those fake nodes. Similarly, the wormhole attack will not allow the adversary to

infer the pairwise key shared between sensor nodes. Indeed, wormhole attacks allow

sensor nodes to find more assisting sensor nodes, which actually increases the chance

of establishing pairwise keys and enhances the resilience against node compromise

attacks.

However, the node replication attacks do impact the security of our scheme.

By launching node replication attacks, the adversary tries to fool sensor nodes into

believing that some compromised assisting nodes are in their neighborhood. Thus,

a benign sensor node may communicate with compromised assisting nodes for key

establishment. Fortunately, the final pairwise key is generated from all random keys

provided by neighboring assisting nodes. As long as one of the assisting nodes is

45

benign, the final key will be safe. Therefore, as long as a regular sensor node can

communicate with at least one benign assisting node, its pairwise keys will be always

safe no matter how many malicious assisting nodes are created and placed in its

neighborhood.

On the other hand, if two sensor nodes have no benign assisting node in their

neighborhood to use due to the deployment error, the pairwise key established be-

tween them will be insecure. Specifically, these two victim nodes will accept com-

promised assisting nodes as their only neighboring assisting nodes and use them to

establish their pairwise key. A possible countermeasure is to have sensor nodes peri-

odically use some new assisting node from multi-hop away, which they have not used

before. This will increase the chance of using non-compromised assisting nodes in

generating the final key.

3.3.6 Comparison with Previous Schemes

In this section, we will compare our scheme with previous techniques for pairwise

key establishment in terms of security and overhead. In particular, we will compare

it with the basic probabilistic scheme [3], the q-composite scheme [4], the random

subset assignment scheme [5], and the grid-based scheme [5]. We do not include

those location-based techniques [8, 9, 11, 12] in comparison since our technique does

not require any location knowledge.

Security: We use simulation to compare the performance of different schemes.

Assume that n = 20, 000 regular sensor nodes are evenly deployed in the field, and

each of them have 50 neighbors. Since the average number of neighbors for every

sensor node can be estimated by πr2

L2 × n, we have πr2

L2 = 2.5 × 10−3. For previous

schemes, we assume that each sensor node can store 200 keys or polynomial coeffi-

cients. Hence, for the grid-based scheme [5], the probability of two nodes sharing a

46

direct key is 0.014. For all other previous schemes, we set P = 0.33 to make sure the

network is well connected. From our previous analysis, we know that our approach

can guarantee the establishment of pairwise keys at a very high probability (e.g., 0.9)

using a small assisting node density (e.g., m
L2 = 0.002).

Figure 3.8 shows the fraction of compromised links in the presence of com-

promised nodes for different schemes (”Basic-1” represents the basic probabilistic

scheme with Pe = 0.014; ”Basic-2” represents the basic probabilistic scheme with

Pe = 0.33; ”q-Comp-1” represents the q-composite scheme with q = 2, Pe = 0.33;

”q-Comp-1” represents the q-composite scheme with q = 3, Pe = 0.33; ”RS-1” repre-

sents the random subset assignment scheme with Pe = 0.014; ”RS-1” represents the

random subset assignment scheme with Pe = 0.33; ”Grid” represents the grid-based

scheme with Pe = 0.014; ”Ours” represents the proposed scheme with m
L2 = 0.0005,

and Pe = 0.99). The figure tells us that in terms of protecting the direct keys, our

scheme can provide high resilience to node compromises, which is similar to the ran-

dom subset assignment scheme and the grid-based scheme [5]. In addition, we must

remember that our scheme can guarantee a much higher probability of establishing a

pairwise key between two sensor nodes in a densely deployed sensor network.

Note that the previous schemes need to employ expensive protocols for path

key establishment when two sensor nodes cannot directly setup a pairwise key. As

a result, the attacker might discover not only the direct keys but also the indirect

(path) keys by compromising the intermediate nodes used in the establishment of the

indirect (path) keys. However, our approach does not need to setup path keys. Even

if the attacker has captured the nodes that relay the keying information, the key will

not be disclosed. Figure 3.9 compares the fraction of compromised (direct or indirect)

keys between non-compromised nodes in the presence of compromised nodes (”Basic-

1” represents the basic probabilistic scheme with Pe = 0.014; ”Basic-2” represents the

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The fraction of compromised nodes fc

b
e
tw

e
e
n

n
o
n
-c

o
m

p
ro

m
is

e
d

n
o
d
e
s

Basic−1
Basic−2
q−Comp−1
q−Comp−2
RS−1
RS−2
Grid
Ours

Figure 3.8. The fraction of compromised links between non-compromised nodes in
the different schemes.

basic probabilistic scheme with Pe = 0.33; ”q-Comp-1” represents the q-composite

scheme with q = 2, Pe = 0.33; ”q-Comp-1” represents the q-composite scheme with

q = 3, Pe = 0.33; ”RS-1” represents the random subset assignment scheme with

Pe = 0.014; ”RS-1” represents the random subset assignment scheme with Pe = 0.33;

”Grid” represents the grid-based scheme with Pe = 0.014; ”Ours” represents the

proposed scheme with m
L2 = 0.0005, and Pe = 0.99). The figure clearly shows that our

scheme performs much better than other schemes. For example, when 70% sensor

nodes are compromised, the fraction of compromised pairwise keys between non-

compromised sensor nodes is only around 0.18. For other schemes, the adversary will

be able to infer at least 88% of the pairwise keys in the network.

Additionally, our proposed scheme can guarantee that a single benign assisting

node can protect the keys established by the nodes within its radio range as long as

the communication is reliable. Since only local communication is required, reliable

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The fraction of compromised nodes fc

F
ra

c
ti

o
n

o
f
c
o
m

p
ro

m
is

e
d

k
e
y
s

sh
a
re

d

b
e
tw

e
e
n

n
o
n
-c

o
m

p
ro

m
is

e
d

n
o
d
e
s

Basic−1
Basic−2
q−Comp−1
q−Comp−2
RS−1
RS−2
Grid
Ours

Figure 3.9. The fraction of compromised (direct or indirect) keys between
non-compromised nodes in the different schemes.

communication is possible. Certainly, if the attacker completely jams the radio chan-

nel, there is no way for sensor nodes to get secure random keys from this assisting

node. Fortunately, whenever the attacker stops the jamming attacks, the pairwise

key establishment around this assisting sensor node will be secure again.

Overheads: In the proposed scheme, only a single master key is stored in

every regular sensor node, while the previous schemes have considerable storage re-

quirements for achieving high performance. For instance, in Figure 3.8 and Figure

3.9, the previous schemes require every node to store 200 entries to achieve the desire

performance. In terms of the computation overhead, our approach involves only a few

number of symmetric key operations and hash operations. Hence, it will not incur

much additional overhead.

From our previous discussion, the communication overhead of our scheme mainly

comes from the direct communication in one-hop range. The multi-hop communica-

49

tion in the supplemental key establishment rarely occurs due to the high probability of

establishing pairwise keys in the previous step. On the other hand, for many previous

schemes such as the grid-based scheme [5] and PIKE [7], sensor nodes often need to

go through the path key establishment to setup keys with other sensor nodes. Such

path key establishment could be very expensive in practice since the intermediate

sensor nodes that can help establish the pairwise key may be located far away from

the two sensor nodes that want to establish a shared key. According to the above

discussion, we can clearly see that our proposed approach has significant advantage

over existing schemes in terms of the storage and communication overhead.

3.3.7 Security Reinforcement

From our previous analysis, we note that once an assisting node is compro-

mised, the attacker is able to discover all those random keys generated by this node.

Although the actual pairwise key is combined from multiple random keys generated

by different assisting nodes, it is still not desirable to let the attacker figure out the

old random keys. In the following, we give a simple extension to fix this problem by

updating the keys at the assisting nodes.

The basic idea is to update the key at every assisting sensor node after the

pairwise key establishment. In other words, the hash key at any assisting node will

be changed immediately after it is used. As a result, the attacker won’t be able to learn

any random key generated before even if this assisting sensor node is compromised

later at certain point. To achieve this goal, we will take advantage of the one-way

hash function H(·). We will also maintain a sequence number for every hash key

shared between a regular sensor node and an assisting node. For example, initially,

the hash Hu,i = H(Ku||i) and the sequence number Su = 0 will be stored in the

assisting node i for the regular sensor node u before deployment.

50

Once the assisting node i receives the request from u to setup a pairwise key

with another node v, it will send two encrypted copies of a random key R to u along

with the current sequence numbers Su and Sv via the secure link established based

on the hash key Hu,i shared between i and u. These two copies of the random key R

are encrypted and authenticated by the hash keys Hu,i and Hv,i, respectively. Finally,

the assisting node i will replace Hu,i with H(Hu,i) and Hv,i with H(Hv,i), and also

increase Su and Sv by 1.

When the regular sensor node u receives the message from i, it can easily verify

the authenticity and confidentiality of the message using the same hash key Hu,i,

which can be computed based on Ku, i and Su. Node u can then derive the random

key R for pairwise key establishment. Such sequence number can certainly be used

to deal with the replay attacks as well. Similarly, node v can also derive the random

key R from the other encrypted copy of the random key.

By using the one-way hash function, the improved approach can greatly enhance

the resilience against node captures. Indeed, a compromised assisting sensor node

will not reveal any secret about the pairwise keys established before between non-

compromised sensor nodes. However, compromised assisting sensor nodes can still

participate in the future pairwise key establishment when new nodes are added into

the network. These malicious assisting nodes may disclose valuable information to

adversaries. Fortunately, our scheme guarantees that as long as there are at least one

benign assisting node in a given area, the final key will be safe no matter how many

sensor nodes are compromised. Based on this property, another security reinforcement

idea is to deploy new assisting sensor nodes from time to time to replace the old and

untrustworthy assisting nodes.

51

3.3.8 Performance under Other Deployment Models

In our previous analysis, we assume that the deployment location of a sensor

node follows the uniform distribution, i.e., all the nodes are evenly deployed in the

field. However, this may not always be the case in practical situations. If the sensors

are deployed through different deployment methods, their actual locations may follow

different probability distributions. Figure 3.10 describes four types of sensor node

deployment models. Model (1) is the uniform distribution deployment model, which

is used in analyzing our scheme and many previous schemes. Model (2) is Gaussian

distribution deployment model, in which the sensor node location follows a Gaussian

distribution. In addition to these two models, the sensor nodes may also be deployed

in groups. In model (3), the deployment point of each group center is predetermined

[8], while in model (4), we have no prior knowledge of the group center deployment

point [52].

This section focuses on the performance of the proposed scheme under model

(2), (3), and (4). Note that the theoretical analysis conducted in the previous sections

can also be extended to study the performance under other deployment distribution

models. For example, Equations 3.2 and 3.3 can be directly applied under these

models.

Performance under Gaussian distribution model: In practice, all the

sensor nodes may be deployed into the target field together. For example, they can

be dropped from a helicopter or be launched by a cannon, aimed at the center of

the field. The actual locations of sensor nodes are affected by many factors such as

the carrier speed, the wind speed, the geographic situation, and etc. By this means,

the sensor nodes are scattered to cover the target field. In this case, we use a two-

dimensional Gaussian distribution to model the actual deployment locations of the

52

0 200 400 600 800 1000
0

200

400

600

800

1000

(a)

0 200 400 600 800 1000
0

200

400

600

800

1000

(b)

0 200 400 600 800 1000
0

200

400

600

800

1000

(c)

0 200 400 600 800 1000
0

200

400

600

800

1000

(d)

Figure 3.10. Illustration of different deployment models for sensor networks.
(a) uniform distribution model; (b) Gaussian distribution model; (c) group-based
model with fixed group centers (100 groups); (d) group-based model with random

group centers (100 groups).

sensor nodes. Specifically, the probability density function of sensor node i’s actual

location (X, Y) is the following:

fi(x, y) =
1

2πσ2
e−[x2+y2]/2σ2

, (3.22)

where σ is the standard deviation. This bivariate Gaussian distribution has the

mean (0, 0), which denotes i’s expected deployment location (i.e., the central point of

deployment field). We also note that the abscissa X and ordinate Y are independent

53

−1000 −500 0 500 1000
−1000

−500

0

500

1000

L

(a)

−1000 −500 0 500 1000
−1000

−500

0

500

1000

L

(b)

−1000 −500 0 500 1000
−1000

−500

0

500

1000

L

(c)

−1000 −500 0 500 1000
−1000

−500

0

500

1000

L

(d)

Figure 3.11. Gaussian deployment modes with different standard deviation σ
(L = 1000). (a) σ = L

6
; (b) σ = L

4
; (c) σ = L

3
; (d)σ = L

2
.

and Gaussian distributed random variables with mean 0 and variance σ2 (i.e., X ∼
N(0, σ2), and Y ∼ N(0, σ2)).

When we deploy the sensors into a target field, we certainly want to limit the

number of the waisted nodes (i.e., the nodes out of the target field) as small as

possible. We also want the sensors to be scattered in the field as evenly as possible,

so that every place in the field may be covered with enough nodes. In this Gaussian

distribution model, σ is critical to both the field coverage and the network density

distribution.

On the one hand, σ is related to the coverage area of the sensor nodes. The

Gaussian distribution deployment models with different values of σ are illustrated in

Figure 3.11, where the L × L rectangle denotes the target deployment field. From

the figure, the area of sensor network coverage increases with the increasing σ. When

σ = L
6

in Figure 3.11(a), almost every node falls in the region of target field. When

σ = L
2

in Figure 3.11(d), many nodes fall out of the target region. On the other hand,

σ is also related to distribution of the sensor node density in the field. Intuitively, in

each case in Figure 3.11, the node density in the region close to the center is larger

than the node density in the region far from the center.

To understand the impact of σ, we study the random variable Z =
√

X2 + Y 2,

which denotes the distance between the sensor node location and the expected lo-

54

cation (i.e., the center of target field). Since X and Y are independent and Gaus-

sian distributed (X ∼ N(0, σ2), and Y ∼ N(0, σ2)), Z is Rayleigh distributed (i.e.,

Z ∼ Rayleigh(σ)). Specifically, its probability density function (pdf) fZ(z) and cu-

mulative distribution function (cdf) FZ(z) are given by

fZ(z) =
z

σ2
e−z2/2σ2

, z ≥ 0, (3.23)

FZ(z) = 1− e−z2/2σ2

, z ≥ 0. (3.24)

Equations 3.23 and 3.24 can be derived from Equation 3.22 and the transforma-

tion from rectangular to polar coordinates. The cdf of Z is plotted in Figure 3.12(a).

To evaluate the field coverage, we consider the probability that the sensor nodes fall

in the circumcircle region of the L × L target field. Apparently, this circumcircle is

centered at the expected location (0,0) with radius of L√
2
. If the distance between

sensor node i and the center is larger than L√
2
, i falls out of the field and is considered

as a waisted node. From Figure 3.12(a), given a certain number of sensor nodes, the

larger σ is, the larger area the sensor nodes may cover. When σ = L
6
, L

4
, L

3
, and L

2
,

the fraction of nodes which fall in that circumcircle region is about 99%, 98%, 89%,

and 63%, respectively.

To evaluate the network density in the field, we consider the probability PA

that a sensor node falls into the infinitesimal area dA. Intuitively, PA is a univariate

function of z, because of the symmetry of sensor deployment result. From either

Equation 3.22 or Equation 3.23, PA can be estimated by

PA =
1

2πσ2
e−z2/2σ2

, z ≥ 0. (3.25)

55

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

← z =
L
√

2

z

F
Z
(z

)

σ = L/6
σ = L/4
σ = L/3
σ = L/2

(a)

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

−6

← z =
L
√

2

z

P
A

σ = L/6

σ = L/4

σ = L/3

σ = L/2

(b)

Figure 3.12. Gaussian deployment modes. (a) network coverage and (b) node
density distribution (L = 1000).

Figure 3.12(b) shows PA with different values of σ. From these figures, given

a certain value of σ, PA decreases with increasing z. The smaller σ is, the faster PA

decreases. In other words, larger σ implies that the sensor nodes are deployed in the

field more evenly.

We conduct the simulation experiments to evaluate the performance of our

scheme under this deployment model. Figure 3.13 shows the simulation results, which

include the probability of establishing keys and the resilience against node capture

attacks for the two type of pairwise keys (i.e., the keys between one-hop neighbors

and the keys between any pair of nodes). We note that σ is also a critical parameter

related to these performances. Specifically, given a fixed number of sensor nodes

deployed in the field, a larger σ leads to a lower probability of establishing pairwise

key and a lower level of resilience against the node capture attacks.

Since we have the trade-off between security performance, sensor network cov-

erage, and node density evenness, we need to choose the value of σ carefully. In this

chapter, we set σ = L
3

(shown in Figure 3.11(c)), So that 89% of the actual sensor

deployment locations will fall within the circumcircle region of the L×L target field,

56

2 4 6 8 10

x 10
−4

0

0.2

0.4

0.6

0.8

1

m/L2

P
e
n

σ = L/6

σ = L/4

σ = L/3

σ = L/2

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
n

σ = L/6

σ = L/4

σ = L/3

σ = L/2

(b)

2 4 6 8 10

x 10
−4

0

0.2

0.4

0.6

0.8

1

m/L2

P
e
a

σ = L/6

σ = L/4

σ = L/3

σ = L/2

(c)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
a

σ = L/6

σ = L/4

σ = L/3

σ = L/2

(d)

Figure 3.13. Performance under deployment model (2). Assume r = 40, and
m
L2 = 0.0005 in (b) and (d).

which is shown in Figure 3.12(a). Meanwhile, according to Figure 3.12(b), it is also

a proper choice to even the node density in the network. Figure 3.13 shows that our

scheme can achieve satisfying performance when σ = L
3
.

Performance under group-based deployment model: As discussed be-

fore, one limitation of Gaussian deployment model is the trade-off between the even-

ness of the sensor node densities in difference regions and the proper sensor network

coverage in the target field. The group-based deployments can alleviate this problem

by deploying the sensor nodes in groups. Each of the groups is intended to cover only

a relatively small part of target field. Different groups have the similar sensor node

densities, but have different expected deployment locations (i.e., the group centers)

57

scattered in the field. We hence can cover the field with many groups and narrow the

gap of sensor node densities in different regions.

Since each group only needs to cover a relatively small area, the sensor nodes

can cover the deployment field with a relatively small value of σ in each group.

From the previous discussion, we know that the probability of establishing pairwise

key increases with decreasing σ. Thus, the group-based distribution model has the

potential of increasing the probability of establishing pairwise keys between sensor

nodes.

In the following, we evaluate the performance of the proposed scheme when the

group-based deployments are applied. These models are illustrated in Figure 3.10(c)

and 3.10(d), in which the sensor nodes are deployed in groups, and each group contains

a certain number of regular sensor nodes and assisting sensor nodes.

During the deployment, sensor nodes may not be placed exactly at their ex-

pected locations due to the deployment errors that can hardly be controlled. However,

if the sensor nodes are deployed in groups, the nodes in the same group will likely

be affected by similar factors. In this case, the sensor nodes in the same group will

be closed to each other with a high probability after deployment. This observation has

also been used in previous studies [8, 52]. However, different from their approaches,

our approach needs neither the knowledge of deployment locations nor special key

assignment for different groups. The only requirement is that each group includes

both regular nodes and a few assisting nodes. Intuitively, under the group-based de-

ployment model, it is easy to achieve a satisfying probability that a regular node can

find at lease one assisting node in its nearby area.

Specifically, we evenly group the n regular nodes and m assisting nodes into g

groups {Gj}j=1,...,g. Thus, each group will contain n
g

regular nodes and m
g

assisting

nodes. These groups will be deployed in the L × L field independently. All the

58

sensor nodes in the same group follow the same deployment distribution. We use the

two-dimensional Gaussian distribution to model such sensor deployment. Similar to

Equation 3.22, the probability density function for the sensor nodes in group Gj is

given by

f(x− xj, y − yj) =
1

2πσ2
e−[(x−xj)

2+(y−yj)
2]/2σ2

, (3.26)

where (xj, yj) is the expected deployment location of the sensor nodes in group Gj

(i.e. the group center). In group-based deployment, different groups have different ex-

pected deployment locations to cover the deployment field. The expected deployment

locations may be fixed and evenly distributed in the field [8], as illustrated by Figure

3.10(c), or randomly distributed in the field [52], as illustrated by Figure 3.10(d).

We conduct simulation to evaluate the performance of our scheme under the

group-based deployment model (3) and (4). In the experiments, we set r = 40,

L = 1000, and divide the sensor nodes into g groups, where g is set to be 1, 4, 25, or

100 separately. (When g is equal to 1, it becomes the Gaussian distribution model.)

Thus, each group is deployed to cover the area with the side length l = L√
g
. Based on

the previous discussion, we set the standard deviation σ = l
3

= L
3×√g

to achieve both

satisfying field coverage and node density evenness.

The simulation results for model (3) and (4) are presented in Figures 3.14

and ??, respectively. Figures 3.14(a), 3.14(c), 3.15(a), and 3.15(c) show that we can

improve the probability (Pen and Pea) of establishing pairwise keys by deploying sensor

nodes in groups when the assisting node number is small. Given the limited assisting

node density, the more groups we use, the higher the probability of establishing keys

we get.

We also evaluate the resilience against the node capture attacks by calculating

the fraction of compromised pairwise keys according to Equation 3.20 and 3.21. Figure

59

3.14(c) and 3.14(d) show that model (3) cannot provide better resilience against

the node capture attacks than model (2) the Gaussian deployment model in the

experiments. In model (2), many sensor nodes (including both the regular nodes and

the assisting nodes) fall in the center region of the field, which is illustrated in Figure

3.10(b). Thus, those regular nodes can find several assisting nodes for the pairwise key

establishment. In model (3), the assisting nodes are evenly assigned to each group,

which is illustrated in Figure 3.10(c). The more groups we have, the more evenly the

sensor nodes are scattered in the field. Although this makes it easy for the regular

nodes in any place of the field in model (3) to find the assisting node, the number

of the assisting nodes each regular node in model (3) find is usually smaller than

the number of assisting nodes that each group contains, and is also smaller than the

number of assisting nodes the regular node in model (2) find. For the pairwise keys

between the one-hop neighbors, the neighboring nodes often share the same assisting

nodes. Once their shared assisting nodes are compromised, their pairwise key is no

longer safe. For the pairwise keys between any two nodes in the network, the situation

may be better. Because that pair of nodes may belong to different group, and have

their own neighboring assisting nodes, the total number of the assisting nodes helping

them to set up their pairwise key is usually larger than the number of each node’s

assisting node neighbors.

Different from mode (3), model (4) can provide similar resistance against node

capture attacks to mode (2), which is shown in Figure 3.15(b) and 3.15(d). Figure

3.10(d) shows that the coverage of the groups in model (4) may overlap with each

other. Thus, a regular node may not only find the assisting node neighbors in its

groups, but also find the assisting node neighbors in other groups. Hence, the sensor

nodes in this model usually have more neighboring assisting nodes than the nodes in

model (3).

60

0 2 4 6 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

M/L2

P
e
n

g = 1
g = 4
g = 25
g = 100

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
n

g = 1
g = 4
g = 25
g = 100

(b)

0 2 4 6 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

M/L2

P
e
a

g = 1
g = 4
g = 25
g = 100

(c)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
a

g = 1
g = 4
g = 25
g = 100

(d)

Figure 3.14. The performance under group-based deployment model (3), in which
the expected group center locations are fixed and evenly distributed in the field.

Assume r = 40, L = 1000 and m
L2 = 0.0005 in (c) and (d).

Finally, Figure 3.16 shows the performance of our proposed pairwise key es-

tablishment scheme under the four different sensor deployment models. Under the

current parameter setting, the probability of pairwise key establishment of the uniform

deployment model (1) is in between the performances of the Gaussian deployment

model and group-based models. On the other hand, model (1) can provide the best

resistance against the compromised nodes in the four models. We also notice that the

security performance under model (4) is better than model (3). However, model (4)

also has its own disadvantage. That is, it cannot guarantee the adequacy of sensor

network coverage in the field, which can be observed from Figure 3.10(d).

61

0 2 4 6 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

M/L2

P
e
n

g = 1
g = 4
g = 25
g = 100

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
n

g = 1
g = 4
g = 25
g = 100

(b)

0 2 4 6 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

M/L2

P
e
a

g = 1
g = 4
g = 25
g = 100

(c)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
a

g = 1
g = 4
g = 25
g = 100

(d)

Figure 3.15. The performance under group-based deployment model (4), in which
the expected group center locations are randomly distributed in the field. Assume

r = 40, and L = 1000, and m
L2 = 0.0005 in (c) and (d).

3.4 Implementation

Based on our overhead analysis, we can see that our proposed pairwise key

establishment approach is efficient for resource-constrained sensor nodes. In this

section, we will describe some implementation issues.

We have implemented the prototype protocol for the proposed scheme using

TinyOS platform [53]. We use RC5 module [54] to implement the security primitives

such as hash and MAC operations, assuming 8-byte long hash values and keys. The

protocol is designed to be as transparent as possible to the applications. In the

protocol, the regular sensor node will first send request messages to its neighboring

62

assisting nodes and wait for their responses. An assisting node generates the random

key and send the reply message to every requesting sensor node. After the regular

sensor node collects the random keys, it will combine these keys to derive the final

pairwise key.

Our scheme has been tested on the TelosB [20] motes. For the assisting nodes,

the additional code space is 2598 bytes in the ROM, and the extra usage of data

space in the RAM is 892 bytes. We also make use of the 1M flash memory on the

chip to store the hash values of the regular nodes’ master keys. For the regular nodes

that need to setup secure communication links with 50 neighbors, the additional code

space in the ROM is 2102 bytes, and the extra data space in the RAM is 682 bytes.

Clearly, the proposed scheme is practical for sensor networks in terms of the code

size.

3.5 Summary

In this chapter, we developed a novel scheme to establish pairwise keys in sensor

networks. This scheme takes advantage of special nodes (the assisting nodes) in the

network for key management, exploring a new dimension of using sensor nodes. The

analysis indicates that our scheme has significant advantage over existing approaches.

By making use of these cheap assisting nodes, we reduce the burden of regular sensor

nodes and further extend the lifetime of the whole network.

In this work, we didn’t test our scheme in a real sensor network that consists

of thousands or millions of sensor nodes. It is interesting to study how our tech-

nique performs in such a large sensor network. In addition, we are also interested in

addressing questions like how to tolerate the communication error and delay in bad

channel conditions and how to withstand the large deployment error that causes a

lot of multi-hop communication. We also note that the additional assisting nodes are

63

0 2 4 6 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

M/L2

P
e
n

Model (1)
Model (2)
Model (3)
Model (4)

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
n

Model (1)
Model (2)
Model (3)
Model (4)

(b)

0 2 4 6 8

x 10
−4

0

0.2

0.4

0.6

0.8

1

M/L2

P
e
a

Model (1)
Model (2)
Model (3)
Model (4)

(c)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

fc

P
c
a

Model (1)
Model (2)
Model (3)
Model (4)

(d)

Figure 3.16. The performance under different deployment models illustrated Fig.
3.10. Assume r = 40, L = 1000, and m

L2 = 0.0005 in (c) and (d). For model (2),
σ = 333.3; for model (3) and (4), g = 100 and σ = 33.3.

only deployed to help establish the pairwise keys. It is also interesting to make further

use of these nodes to defend the network against attacks. Finally, in our scheme, each

assisting node has to store a hash key for each sensor node deployed in the field. For

a super large-scale sensor network that consists of millions or even billions of sensor

nodes, the storage overhead at assisting nodes will be a big problem for our protocol.

We are interesting in ideas to address this problem in the future.

CHAPTER 4

PRE-AUTHENTICATION FILTERS: PROVIDING DOS RESISTANCE FOR

SIGNATURE-BASED BROADCAST AUTHENTICATION IN SENSOR

NETWORKS

The significant resource consumption imposed by public key cryptographic op-

erations makes such mechanisms easy targets of denial of service (DoS) attacks. If

digital signatures such as ECDSA [13] are used directly for broadcast authentication

without further protection, an attacker can simply inject forged packets and force

the receiving nodes to perform a large number of unnecessary signature verifications,

eventually exhausting their battery power. This chapter studies how to effectively

mitigate such DoS attacks when signatures are used for broadcast authentication in

sensor networks.

We propose to use pre-authentication filters to remove bogus messages before

verifying the actual digital signatures. Our methods take advantage of the fact that

broadcast in sensor networks is usually done by a network-wide flooding protocol

[55,56], and a flooding message from a sensor node only has a small number of receivers

due to the low-power, short-range radio. Therefore, we focus on the situation where

a sensor node (local sender) needs to re-broadcast a digitally signed message to its

neighbors (local receivers), and filter out forged messages in a “hop-by-hop” manner.

The proposed filtering techniques is based on the fact that a symmetric key

cryptographic operation is much faster than a public key cryptographic operation.

Our schemes let the local sender share some keys with its neighboring receivers.

Before re-broadcasting a message, the sender uses those shared keys to generate some

64

65

commitment values (based symmetric key cryptography), and adds those commitment

values to this message. After receiving the re-broadcasted messages, the receivers will

quickly verify the corresponding commitment values first. If the commitment values

are invalid, the receivers will identify the message is forged, and will simply ignore it

without performing the heavy digital signature verification.

The design of pre-authentication filters essentially focuses on how to manage

the keys between the sender and its receivers and how to generate the commitment

values based on the keys. In this chapter, we develop two filtering techniques, a

group-based filter and a key chain-based filter; the former manages the receivers into

groups and assigns the same key to the same group members, the latter explores the

one-way property of the hash key chain. Both methods can significantly reduce the

number of unnecessary signature verifications that a sensor node has to perform. The

analytical results also show that these two techniques are efficient and effective for

resource-constrained sensor networks.

4.1 Pre-Authentication Filters

This section presents the details of two filtering techniques, a group-based filter

and a key chain-based filter, to handle DoS attacks against signature verification.

Since both filters are independent from the broadcast protocol, we simply assume a

flooding scheme for broadcast and will not discuss how it is achieved and focus on

the situation where a sensor node needs to re-broadcast a digitally signed message to

its neighbors.

4.1.1 Group-Based Filter

A simple method to filter out forged messages is to authenticate the broadcast

message, in a “hop-by-hop” manner, with a (local) group key shared among a (local)

66

Figure 4.1. Example of key trees (m = 2, L = 2, and b = 24).

sender and its neighbor nodes. As a result, an adversary will not be able to forge

messages without compromising the group key. However, sensors could be captured

[45], which allows an adversary to forge as many messages as he wants using the

group key on the compromised nodes. Alternatively, a sensor node can add a message

authentication code (MAC) to a broadcast message for each of its neighbor nodes.

However, this incurs large communication overhead even for a moderate neighbor

size.

The above two simple ideas represent two extreme cases. One achieves high

efficiency (only one MAC for every message), but is vulnerable to a single compro-

mised neighbor; the other achieves high security, but introduces high communication

overhead. In this subsection, we present a group-based method to trade-off commu-

nication efficiency with security. Specifically, every sender divides its neighbor nodes

into multiple groups. Every group uses a group key for pre-authentication filtering.

When a group key becomes suspicious, we divide the corresponding group into smaller

groups to isolate suspicious nodes.

67

4.1.1.1 Protocol Description

The group-based filter consists of three steps: initialization, broadcasting, and

re-keying. In the first step, a (local) sender pre-loads keying materials to its neighbor

nodes. In the second step, the sender re-broadcasts authenticated messages. In the

last step, the sender re-selects keys dynamically to deal with compromised neighbor

nodes.

In this chapter, we assume the existence of a pairwise key establishment protocol

in the network. This protocol can help every pair of sensor nodes to setup a secret

key to protect their communication. A number of key pre-distribution protocols can

be used for our purpose [3–5]. We let Ku,v denote the shared pairwise key between

nodes u and v. We assume that each node can add m MACs into a broadcast message,

where each MAC is q-bit long.

Initialization: For each sender node u, let N(u) be the set of its neighbors.

u first divides N(u) into m equal-sized groups, {g1, ..., gm}. We assume each group

gi has s nodes. For each gi, we further divide it into 2L equal-sized sub-groups,

called unit groups, where L is a system parameter that determines the number of bits

allocated for a unit group for filtering purposes. (Indeed, it is q
2L bits). For example,

in Figure 4.1, we have two groups g1 = {1, 2, ..., 12} and g2 = {13, 14, ..., 24}. Each

of them is further split into 4 unit groups with 3 nodes in each unit group.

For each gi, we construct a full binary tree Ti from the 2L unit groups with

each leaf representing a unit group. Each node in Ti is assigned a unique and random

key. The resulting tree is called the key tree. (In total, we have m key trees for every

sender.) The keying materials for each neighbor in group gi includes the keys on the

path from the corresponding unit group to the root of key tree Ti. For example, in

Figure 4.1, node 16 belongs to g2 and has three keys K16−18, K13−18 and K13−24.

68

Each key k in the j-th level of Ti defines a level-j group, which includes all

nodes that know this key. Hence, every gi is a level-1 group, and every unit group is

a level L + 1 group. Let l(k) be the level number of the group defined by key k in its

key tree. The key tree Ti is used for filtering the messages sent to the nodes in gi. We

only use a subset Ai of the keys in Ti for filtering. This set, called active key set, is

initialized as only including the root of Ti, and adjusted (in the third step) based on

the suspiciousness of the nodes in gi. In general, every path from a leaf to the root

covers exactly one key in this set. The purpose is to make sure that every node in

gi will be able to find a piece of information in Ai to filter out forged messages. For

example, in Figure 4.1, A2 = {K13−18, K19−21, K22−24}. This key set is picked because

K13−24 and K19−24 were reported to be suspicious. We can see that every path from

a leaf to the root of T2 includes exactly one key in the A2.

Broadcasting: Assume node u has received an authenticated, digitally signed

message M , and needs to re-broadcast it according to the flooding protocol. u will

add m commitment values to this message, one for each group gi. The commitment

values are generated as follows.

Consider a given group gi. For every k ∈ Ai, node u computes a commitment

fragment, which is the first q
2l(k) bits of H(k||M), where H is a one-way hash function

and “||” is the concatenation operation. The fragments generated from all the keys in

Ai are then concatenated together, producing a complete commitment value for the

nodes in gi. The overall length of this commitment value will be the same as the length

of a MAC. For example, in Figure 4.1, A2 = {K13−18, K19−21, K22−24}. If q = 64, the

corresponding commitment value includes the first 32 bits of H(K13−18||M), the first

16 bits of H(K19−21||M), and the first 16 bits of H(K22−24||M). Let W be the set of

all the commitment values (there are m of them) generated from all key trees. Node

u will simply broadcast {M, W}.

69

Suppose a neighbor v in group gi receives {M,W}. It will first identify the

fragment in W that is generated based on a key k it knows. The information needed

for identification can be easily obtained from u, as we will show in the third step. If

the fragment is the same as the first q
2l(k) bits of H(k||M), node v will do the actual

signature verification; otherwise, it will ignore the message.

When the signature verification succeeds, node v extracts M and returns M

to the sensor application for various uses. For example, it may also decide to relay

M based on the flooding protocol. When the signature verification fails, node v

checks if the number of failed signature verifications exceeds a threshold τ during the

last w = 2
q

2L forged messages, i.e., the messages that failed either pre-authentication

filtering or signature verification. (We will discuss why we set w in this way in our later

analysis.) If so, node v believes that k is suspicious. In this case, if l(k) < L+1, node

v will stop accepting any message from u and also notify u to adjust the corresponding

active key set. If l(k) = L + 1, v will stop processing the next w messages from u

before returning to normal.

Re-Keying: When the sender u receives a report that the key k of Ti is

suspicious, if the level number l(k) < L + 1, it will use the two keys corresponding to

key k’s two child nodes to replace key k in the active key set Ai. In other words, u

splits the level l(k) group defined by k into two smaller groups to isolate suspicious

nodes. For example, in Figure 4.1, if K13−18 is found to be suspicious, we will use

K13−15 and K16−18 to replace K13−18 in A2. Sender u will also notify the affected

neighbors about the splitting so that they are able to identify the correct fragments

in a broadcast message for pre-authentication filtering.

70

4.1.1.2 Security Analysis

In our approach, a sensor node will not verify the signature unless the corre-

sponding fragment is valid. When none of the sender u and the nodes in N(u) is

compromised, an adversary has to guess the keys on the roots of key trees. Given the

hardness of inverting a one-way hash function, we know that it is computationally

infeasible for the attacker to bypass pre-authentication filtering. This prevents the

adversary from mounting DoS attacks against any of the sensor nodes in N(u).

We now focus on the security when there are compromised sensor nodes. We

will study the security of our approach in the following two cases: (1) the sender is

benign, and (2) the sender is compromised. After the analysis, we will summarize

some important conclusions about the proposed approach.

The group-based approach has many system parameters that need to be con-

figured properly. The configuration of these parameters will be discussed during the

analysis.

Security under Benign Sender: Consider a benign node u that receives an

authenticated message and needs to re-broadcast it according to the flooding protocol.

Assume that the adversary has compromised Nc nodes in N(u). We note that if a level

L + 1 key is compromised, the adversary can forge messages with correct fragments

and disable the broadcast authentication at the sensor nodes who share such key.

We are thus interested in how many benign neighbors will be affected by compromised

neighbors. That is, the number of benign neighbors that from time to time stop

processing messages relayed by sender u.

Note that the most effective way of attacking our protocol is to make sure that

the compromised nodes belong to different unit (level L + 1) groups since a single

71

malicious node in a unit group can disable the broadcast authentication of the nodes

in this group. Hence, the number of benign nodes affected is no more than

Nc × (
s

2L
− 1) (4.1)

For example, when L = 2 and s = 8, the attacker can only affect no more than Nc

benign neighbors. In addition, the attacker has to continuously launch such attack

since otherwise these affected nodes will return to normal situation after w messages

from u. We also note that the number of affected benign nodes can be reduced by

having a smaller s or larger L. However, having a small s leads to a larger m, and

therefore more communication overhead. Having a larger L will reduce the security

of our approach since the adversary is able to force nodes to do more unnecessary

verifications, as we will see next.

When there are compromised neighbor nodes, it is possible that some non-

compromised level L+1 keys are used for pre-authentication filtering. When a benign

node v is using a non-compromised level L+1 key for pre-authentication filtering, we

are interested in the probability of an adversary bypassing pre-authentication filtering.

Since the length of a commitment fragment for a level L + 1 key is q
2L -bit long, this

probability can be estimated by

pf =
1

2
q

2L

(4.2)

Equation 4.2 shows that a larger L may result in more unnecessary signature verifi-

cations at those benign nodes. For example, suppose q = 64, when L = 3, we have

pf = 1
256

≈ 0.0039; when L = 4, we have pf = 0.0625. Together with Equation 4.1,

we may want to find the largest value L that meets the required pf .

When v uses a non-compromised level L + 1 key for pre-authentication filter-

ing, we are also interested in how likely v will stop processing messages from u when

72

2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

τ

Pr

L=2
L=3
L=4

Figure 4.2. Probability pr v.s. τ . Assume q = 64.

the adversary forges messages. This is equivalent to the probability pr of the adver-

sary bypassing pre-authentication filtering τ times in a window of w = 2
q

2L forged

messages. This probability can be estimated by

pr = 1−
τ∑

i=0

(
w

i

)
(
1

w
)i(

w − 1

w
)w−i (4.3)

Figure 4.2 shows that pr decreases quickly with τ . Indeed, a small τ will make

it very difficult for an attacker to disable the broadcast authentication at any benign

node that has a non-compromised level L + 1 key. We also note that the value of

L does not affect such probability much, making it much easier for us to configure

threshold τ . This also explains our configuration of w in the protocol description.

There is a small probability that an adversary can disable the pre-authentication

filter at a node with a non-compromised level L + 1 key. However, this node will

continue the protocol after w messages from the sender, which makes the attacker’s

job much harder. We can thus conclude that the adversary cannot gain much benefit

by attacking those having non-compromised level L + 1 keys.

73

Security under Compromised Sender: When the sender u is compromised,

it can certainly forge broadcast messages with correct commitment values. We con-

sider the worst case scenario where the sender u keeps forging broadcast messages

but the number of failed verifications in any window of 2
q

2L forged messages is always

no more than τ . In this case, obviously, all the neighbor nodes will keep processing

the messages from node u and verifying the corresponding signatures. Fortunately,

due to threshold τ , we can clearly see that the fraction pf of forged messages that

will lead to unnecessary signature verifications is always bounded by

pf =
τ

2
q

2L

(4.4)

For example, when q = 64, L = 3 and τ = 3, we have pf = 0.012. We can see

that our group-based approach can effectively mitigate the DoS attacks launched by

a compromised sender given a reasonable setting of parameters.

Summary: First of all, whenever a benign node receives a true broadcast

message from a benign sender, it will never miss this true message as long as the

pre-authentication filter is not disabled due to a compromised neighbor node in the

same level L + 1 group. The impact of compromised nodes is given by Equation 4.1.

For the forged messages comes from an adversary who may compromised the sender

and some neighbor nodes, we have the following theorem.

Theorem 1. The fraction of forged messages that can lead to unnecessary signature

verifications at a benign node is no more than

(1− fc)
s

2L−1 + τ × [1− (1− fc)
s

2L−1]

2
q

2L

,

where fc is the fraction of compromised sensor nodes.

Proof. Note that the size of a level L + 1 group is s
2L . Hence, for a given neighbor

node, the probability that the sender and all other nodes in the same level L + 1

74

group are benign can be estimated by (1−fc)
s

2L−1. In this case, the fraction of forged

messages that will lead to unnecessary signature verifications is given by Equation

4.2. When either the sender or one of the nodes in the same level L + 1 group is

compromised, the fraction of forged messages that will lead to unnecessary signature

verifications is given by Equation 4.4. Overall, the fraction of forged messages that

will lead to unnecessary signature verifications at a benign node is no more than

(1− fc)
s

2L−1 + τ × [1− (1− fc)
s

2L−1]

2
q

2L

.

Theorem 1 indicates the security of our group-based approach in dealing with

the DoS attacks against signature verification. Since L, s and τ are usually quite

small, we can see that our group-based filter can effectively defeat the DoS attacks

against signature verification. For example, when L = 3, s = 16, τ = 3, q = 64 and

fc = 0.1, the fraction of forged messages leading to unnecessary verifications is only

about 0.0047.

4.1.1.3 Overheads

According to the protocol description, every sensor node needs to store a set of

key trees (as a sender), and L + 1 keys for every neighbor (as a receiver). Since the

keys on each key tree can be derived from a random seed, they only need one master

key. Hence, the storage overhead can be estimated by b× (L + 1)× q bits, where b is

the average neighbor size in the network.

The communication overhead introduced by our protocol comes from three

parts: (1) the distribution of keying materials in the initialization, (2) the reports

from every neighbor node indicating unsafe keys and the notifications to neighbor

nodes indicating the change of active key sets, and (3) the space needed for the com-

75

mitment values in broadcast messages. The distribution of keying materials only

happens during the initialization; it only involves the delivery of L + 1 keys for every

neighbor nodes and only needs to be done once for each neighbor. For the reports

and notifications, we note that they are done between neighbors and the number of

messages is usually limited. Hence, the main communication overhead introduced is

the additional m MACs on every broadcast message.

We use MICAz motes to show the energy consumption for the additional MACs.

With the 250kbps data rate and 3.0V power level, MICAz will keep the current draw

at no more than 17.4mA in TX mode and 19.7mA in RX mode [25]. Assume m = 8

and q = 64. The energy cost of sending the additional MACs can be estimated as

3.0 × 17.4 × 64 × 8/250, 000 = 0.107mJ, and the energy cost of receiving can be

estimated as 3.0× 19.7× 64× 8/250, 000 = 0.121mJ. On the other hand, the current

draw of an active MICAz CPU is 8mA [25]. As discussed before, verifying an ECDSA

signature takes about 1.96s on MICAz motes. Thus, the energy cost of a signature

verification can be estimated as 3.0× 8× 1.96 = 47.04mJ, which is about 400 times

more than the energy cost of sending or receiving the additional MACs. This clearly

explains the benefit of our filtering method.

According to the protocol description, each sender needs to do up to m × 2L

additional hash operations on average. For each receiver, it needs to perform one

additional hash operation to verify the corresponding fragment.

4.1.1.4 Extension: Adaptive Re-Grouping

Our previous analysis indicates that we usually prefer a small L to make sure

that an adversary cannot fool sensor nodes to perform many unnecessary signature

verifications. However, we also mentioned that a smaller L will make it possible for

76

a single compromised sensor node to disable the broadcast authentication at more

benign nodes.

In the following, we present an adaptive re-grouping extension to deal with

compromised neighbor nodes and provide more flexibility in configuring parameter

L. The basic observation is that benign nodes will always report suspicious keys in

the key trees to the sender. This provides evidence for the sender to reason about

the suspiciousness of neighbor nodes. The sender can then rank and group neighbor

nodes according to the suspiciousness, making sure that a benign neighbor is likely

to be in the same group with other benign neighbors and a compromised neighbor is

likely to be in the same group with other compromised neighbors. Achieving this will

makes it much more difficult for an adversary to impact benign sensor nodes.

Adaptive Re-Grouping: We focus on level L + 1 keys. When a level L + 1

key is found to be unsafe, all nodes having this key are suspicious. We consider them

as equally suspicious. A sensor node will send a report to the sender when its level

L + 1 key is found to be unsafe. The adaptive re-grouping protocol works as follows.

The sender u maintains a boolean variable c(i) for every neighbor node i ∈ N(u),

indicating if this neighbor node is suspicious. Initially, we have c(i) = FALSE for

every i ∈ N(u). Whenever the sender u receives a report from its neighbor node i

saying that its level L + 1 key is suspicious, node u will set c(j) = TRUE for every

neighbor node j in the same level L + 1 group as node i.

The sender u periodically re-groups neighbor nodes. During each round of re-

grouping, node u first classifies all current level L + 1 groups into two categories:

the first category includes those with non-suspicious level L + 1 keys, and the second

category includes those with suspicious level L + 1 keys. This classification can be

done using the boolean variables {c(i)}i∈N(u). The sensor nodes in the second category

are then re-grouped randomly, and we expect that some of these randomly organized

77

level L + 1 groups only include benign nodes so that they will be identified as benign

with a very high probability in the next round. In this way, we will build more and

more benign level L + 1 groups.

After re-grouping, sender u then re-generates random keys for every key tree.

After the assignment of new keys, we will have new key trees for the new group

construction. The sender will then distribute new keying materials to neighbor nodes

and reset all the boolean values {c(i)}i∈N(u) to FALSE.

Advantages: The total number of level L + 1 groups can be estimated by

G = m× 2L. Consider the moment right before the i + 1-th re-grouping at sender u.

Let mi be the number of level L + 1 groups that include only benign neighbors. For

each of the groups, the probability of being marked as suspicious after the i + 1-th

re-grouping can be estimated by Equation 4.3. Thus, on average, these mi groups in

the first category will contribute mi(1− pr) to mi+1.

During the re-grouping, the sender will believe that there are up to (G−mi(1−
pr)) suspicious level L + 1 groups. Assume there are Nc compromised neighbors.

After the i+1-th re-grouping, the average number of level L+1 groups in the second

category that include only benign nodes can be estimated by

(G−mi(1− pr))(
G−mi(1− pr)− 1

G−mi(1− pr)
)Nc .

Overall, after the i + 1-th re-grouping, the average number of level L + 1 groups that

include only benign sensor nodes (mi+1) can be estimated by

mi(1− pr) + (G−mi(1− pr))(
G−mi(1− pr)− 1

G−mi(1− pr)
)Nc .

Figure 4.3 shows the performance of our re-grouping approach. We consider the

worst scenario where the compromised nodes belong to different level L + 1 groups.

Hence, m0 = G − Nc = m × 2L − Nc. Clearly, without re-grouping, the number of

78

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

Rounds of re−grouping

be

ni
gn

 u
ni

t g
ro

up
s

Nc=1
Nc=6
Nc=11

Figure 4.3. Performance of adaptive re-grouping (L = 3, τ = 3 and m = 2).

affected groups is Nc. With re-grouping, we can clearly see from the figure that we

significantly increase the average number of unaffected level L + 1 groups.

Overheads: The proposed re-grouping idea does not add much overhead to

sensor nodes. Indeed, for every neighbor node, it only needs to report at most one

extra message and get re-initialized after a certain period of time. There are no other

additional overheads for them. For the sender, it needs to collect at most one report

from each neighbor node and re-initialize the keying materials after a certain period

of time. In addition, it needs to maintain a boolean value for each level L + 1 group,

re-organize category-2 groups, and re-generate all keying materials. These additional

steps will not add too much cost for the sender.

4.1.2 Key Chain-Based Filter

Due to the usage of group keys in the previous method, compromising a neighbor

allows an attacker to bypass the pre-authentication filter at many benign nodes and

fool them to do unnecessary verifications. This is one major issue for the previous

79

method. In the following, we give another pre-authentication filter that doesn’t offer

an adversary much benefit by compromising neighbors.

Our main idea is to introduce an asymmetry property so that a receiver (neigh-

bor) can filter but not forge messages. One-way key chains meet such requirement. A

one-way key chain {K1, ..., Kn} has the following property: from any Kj, all former

keys can be derived by iteratively hashing this key (Ki = Hj−i(Kj), 0 ≤ i < j), but

none of the later keys can be computed. The hash image of the first key K1 is called

the commitment of this key chain. With the commitment, anybody can verify the

authenticity of any later key by only performing hash operations.

With one-way key chains, a simple pre-authentication filter (used by LHAP [57])

works as follows: the sender always adds the next unreleased key in the key chain

into a new broadcast message. When a neighbor receives any message, it will perform

the actual signature verification only when the chained key included in the message is

found to be new to this neighbor. A long key chain is often used to support network

operations continuously. However, an adversary may claim a key close to the end of

key chain and fool a node to perform a large number of unnecessary hash operations,

causing a DoS attack.

We apply a two-layer filter to deal with the DoS attacks on the verification of

signatures and chained keys. The first layer employs a one-way key chain to filter out

fake signatures, and the second layer uses existing pairwise keys to prevent a node

from doing a significant number of unnecessary hash operations. Our approach is

different from LHAP in that we have an additional layer of protection to stop attacks

on the verification of chained keys.

The main intuition of the second layer is to control the number of hash operations

used for verifying a chained key. A receiver (neighbor) will verify a chained key only

when either the verification costs only a few hash operations or there is additional

80

evidence (i.e., a commitment value generated from the shared key with the sender)

about the authenticity of the message. Our design guarantees that a receiver can

always find additional evidence in a small number of consecutive messages. Hence,

when a receiver realizes that it has to do many hash operations to verify the key, it

chooses to wait for additional evidence before doing the verification. This significantly

enhances the security against the DoS attacks on the verification of chained keys

since the attacker has to guess the pairwise key and then forge the evidence. After a

successful verification, this receiver can immediately catch up with the sender since

it knows the most recently released key in the key chain.

4.1.2.1 Protocol Description

The key chain-based filter consists of three steps, initialization, broadcasting,

and re-keying. We assume that every node can add m MAC values and a sequence

number into every broadcast message, where each MAC value is q-bit long.

Initialization: During the initialization, each node u first discovers a set N(u)

of neighbors and generates a one-way key chain of length n: {K1, · · · , Kn}. It then

distributes the key chain commitment K0 = H(K1) to every v in N(u) via a secure

channel established by the pairwise key Ku,v.

Sender u also maintains a variable idx to record the index of the next key in

the key chain. Initially, we have idx = 1. This variable decides which authentication

key in the key chain to use. In addition, u also organizes its neighbors into disjoint

groups and picks one group for use in every round of broadcast authentication in a

round-robin manner. These groups are used in the second layer of pre-authentication

filter. For convenience, we call them layer-2 authentication groups. The value of idx

directly determines which group to use for each broadcast message.

81

When a layer-2 authentication group is picked for a broadcast message, every

node in this group can find additional evidence (a commitment value) in the message

to do the filtering. Let l be the length of a commitment value. Since the first layer

filtering needs space for one key, we have q(m − 1) bits left for additional values.

Hence, we can add q(m−1)
l

commitment values in a broadcast message. The size of an

authentication group is q(m−1)
l

(the last group may have fewer nodes).

Broadcasting: Assume node u has received an authenticated, digitally signed

message M and needs to re-broadcast it according to the flooding protocol. Node

u will first control the broadcast rate. Specifically, it will ensure that there will

be no more than one true broadcast message from itself per T seconds on average,

where T is a system parameter that determines the maximum frequency of relaying

digitally-signed broadcast messages.

After rate-controlling, node u will get the next key Kidx from the key chain

and compute a set W of commitment values. To generate W , node u will first select

the next layer-2 authentication group based on index idx. For every node v in this

group, node u uses the first l bits of H(M ||idx||Kidx||Ku,v) as the commitment value.

The set W includes all commitment values generated in this way. Node u will then

broadcast {M, idx, Kidx,W} and increment the variable idx by one.

Figure 4.4 shows an example of re-broadcasting an authenticated, digitally-

signed message M . In the example, node u has seven neighbors {1, ..., 7}, which are

organized into three layer-2 authentication groups, {1, 2, 3}, {4, 5, 6} and {7}. Node

u first adds i and Ki to the message, and then computes and adds the commitment

values for the second layer-2 authentication group {4, 5, 6} to the message. The final

broadcast packet includes M, i, Ki, and three commitment values {X4, X5, X6}.
Suppose a neighbor node v receives {M, idx,Kidx,W} from sender u. It first

checks if W includes the commitment value generated from the key Kv,u shared with

82

Figure 4.4. Example of the key chain-based approach. Xj is the first l bits of
H(M ||i||Ki||Ku,j).

sender u. This checking can be easily done with the value idx included in the message,

since the sender u always picks a layer-2 authentication group for use in a round-robin

manner. Let Ki be the chained authentication key that node v stores in its memory.

The result of this checking will lead to the following two cases.

• If W does not include the commitment value generated from the key Kv,u, node

v will check whether 0 < idx − i ≤ B, where B is a threshold value that

determines how many hash operations a node is willing to pay for verifying a

chained key. If not, node v will ignore the message.

• If W does include the commitment value generated from the key Kv,u, node v

will first check whether the included commitment value equals the first l bits of

H(M ||idx||Kidx||Kv,u). If not, node v will ignore the message; otherwise, it will

further check whether idx− i > 0 (for freshness). If not, node v will ignore the

message.

Once the message has passed the above checking, node v will verify the key

Kidx using Ki. If such verification fails, node v will check whether the verification of

authentication keys has failed more than τ times during the last 2l forged messages

83

that include the commitment value for node v. If yes, node v will stop processing the

next 2l messages from node u before returning to normal.

When the verification of the chained key Kidx succeeds, node v also checks

whether the sender discloses chained keys at a rate of no more than one key per T

seconds. If not, node v considers sender u as compromised and then removes u from

its neighbor set N(v). Otherwise, node v will perform the actual signature verification

and use the new key Kidx to replace Ki. When the signature verification succeeds,

node v extracts M and returns M to the sensor application for various uses. For

example, it may also decide to relay M based on the flooding protocol.

Re-Keying: After every round of re-broadcast, node u will check whether

idx >= n. If so, node u will generate a new key chain and distribute the initial

commitment of the new key chain to every neighbor node. In addition, it will also

reset idx to 1. When a neighbor node receives the updated key chain commitment,

it will set its copy of chained keys to this commitment for future authentication.

4.1.2.2 Security Analysis

In the key chain-based method, sensor nodes only verify signatures in those

messages that have passed our two-layer filtering. Similar to the security analysis for

the group-based scheme, we will evaluate the security of the key chain-based scheme

in two cases: (1) the sender is benign, and (2) the sender has been compromised.

After security analysis, we will also summarize some important conclusions.

The key chain-based approach has many system parameters that need to be

configured properly. The configuration of these parameters will be discussed during

the analysis.

84

Security under Benign Sender: When the sender is benign, we first consider

the first layer of pre-authentication filtering, which is achieved by an one-way key

chain. This layer of pre-authentication filtering guarantees the following property.

Lemma 1. Given a benign sender, the number of unnecessary signature verifications

a benign receiver performs will not exceed the number of true broadcast messages.

Proof. The freshness requirement of the chained key guarantees that nobody can

forge broadcast messages using undisclosed keys in the key chain. Thus, no matter

how many neighbor nodes are compromised, the total number of failed signature

verifications that a benign neighbor performs will never exceed the total number of

authentication keys in the key chain. Since the sender is benign, the total number

of unnecessary signature verifications a benign neighbor node needs to do will never

exceed the total number of true broadcast messages from the sender.

Lemma 1 clearly indicates that an adversary is not able to convince any benign

sensor node to do a significant number of unnecessary signature verifications. How-

ever, as mentioned before, an adversary can fool a sensor node to do a large number

of unnecessary hash operations, causing a DoS attack. In the following, we will study

how our second layer of pre-authentication filtering addresses this problem.

The second layer of pre-authentication filtering at sender u appends commit-

ment values for q(m−1)
l

neighbors in each broadcast message. When a neighbor v

receives a forged broadcast message that does not include the commitment for node

v, it will perform no more than B hash operations in verifying the chained key in-

cluded in the message.

When the broadcast message does include the commitment value for node v,

the probability that the adversary can successfully generate the correct commitment

value is 1
2l . Node v will need to do one hash operation for an incorrect commitment

85

value and up to n+1 hash operations for a correct commitment value (one for verifying

the commitment value and n for verifying the chained key included in the message).

Thus, for those forged broadcast messages that include the commitment values for

node v, the average number of additional hash operations that node v has to do will

not exceed 1 + n
2l . This tells us that we can simply set n = (B − 1)× 2l to make sure

that a benign neighbor node will not perform more than B additional hash functions

for each forged message on average. For example, when l = 8 and B = 6, we can set

n = 1, 280. As a result, in this chapter, we always set

n = (B − 1)× 2l (4.5)

Equation 4.5 also shows how to configure parameters B, l and n. Parameter B

usually needs to be large enough to make sure that the non-malicious message loss

will not impact the protocol. In other words, a sensor node should be able to receive

at least one of any B consecutive messages from a sender with a very high probability.

We then set parameter n based on the storage and computation costs that a sender

is willing to pay. For example, when n = 900, a sender can allocate space for 30 keys

to save one key per every 30 keys in the key chain, {K30, K60..., K900}, and allocate

space for 30 keys to save the keys for immediate use, {K30j+1, K30j+2, ..., K30j+10}. As

a result, the sender will need to first generate the whole key chain (900 keys) and then

generate the other 870 keys again during the pre-authentication filtering. Overall, the

sender will allocate space for 60 keys for the key chain, and perform no more than

two hash operations on average to find a key to use. In general, the storage overhead

to save a key chain of length n is 2
√

n. After configuring B and n, we can easily set

l.

86

2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

τ

Pr

l=8
l=10
l=12

Figure 4.5. Probability pr v.s. threshold τ .

We also note that when the sender is benign, the adversary still has a small

chance to bypass the second layer of pre-authentication filtering by randomly guessing

the commitment value. If the number of messages that passed the layer-2 filtering

but failed the layer-1 filtering is larger than τ during the last 2l forged messages that

contain the commitment value for a given sensor node, this node will stop accepting

messages from the sender. We are thus interested in the probability pr that a benign

sensor node stops accepting any broadcast message from a benign sender. Since the

probability of the adversary making a correct guess of the commitment value is about

2−l, the probability pr can be estimated by

pr = 1−
τ∑

i=0

(
2l

i

)
(
1

2l
)i(1− 1

2l
)2l−i (4.6)

Figure 4.5 shows that a small τ is sufficient to make pr very low. Also note that

l does not affect pr much. We can thus easily configure τ to tolerate forged messages.

Security under Compromised Sender: If the sender u is compromised,

it can always forge broadcast messages with correct chained keys and commitment

87

values. However, our approach can still effectively prevent a compromised sender from

launching DoS attacks against signature verification by controlling the broadcast rate.

Lemma 2. In case of a compromised sender, the average number of unnecessary

signature verifications a benign node needs to do will never exceed one per T seconds.

Proof. The proof of Lemma 1 indicates that the number of unnecessary signature

verifications a benign neighbor needs to do will never exceed the number of authen-

tication keys in the key chain. We also note that our approach controls the rate of

disclosing chained keys to one per T seconds. Hence, the average number of unnec-

essary signature verifications a benign node needs to do will never exceed one per T

seconds even if the sender is compromised.

Lemma 2 shows that a compromised sender is not able to convince any benign

sensor node to do a significant number of unnecessary signature verifications. How-

ever, a compromised sender can fool a sensor node to perform a significant number

of unnecessary hash functions for a forged message. Similarly, we will also study how

our second layer of filtering addresses this problem.

Similar to the case of a benign sender, when a sensor node receives a forged

broadcast message (from a compromised sender) that does not include the commit-

ment value for itself, it will perform no more than B hash operations in verifying the

chained key included in the message.

However, when the broadcast message does include the commitment value for

the receiver, the adversary can always include a correct commitment since the com-

promised sender knows all the keys. Fortunately, due to the threshold τ , the com-

promised sender cannot force a benign node to do more than n × τ additional hash

operations in a window of 2l forged messages that include the commitment of this

node. The reason is that once the number of messages that failed the first layer fil-

88

tering exceeds the threshold τ , the neighbor node will stop accepting messages from

the compromised sender. Since n is set to (B − 1) × 2l (Equation 4.5), the average

number of additional hash operations a benign neighbor needs to do will not exceed

n× τ

2l
+ 1 = (B − 1)× τ + 1 (4.7)

Summary: First of all, whenever a benign sensor node receives a true broadcast

message from a benign sender, it has a very high chance of being able to authenticate

this true message for a reasonable B. For the forged messages, we have the following

two theorems.

Theorem 2. On average, a benign sensor node will not do more than one unnecessary

signature verifications in every T seconds for a given sender.

The above theorem can be easily derived by generalizing Lemma 1 and Lemma

2. The detail of the proof will be thus skipped for simplicity. This theorem indicates

the security performance of our key chain-based approach in dealing with the DoS

attacks on signature verification.

Theorem 3. The average number of additional hash operations a benign sensor node

needs to do is no more than B(1− fc) + [(B − 1)τ + 1]fc, where fc is the fraction of

compromised sensor nodes.

Proof. Note that when the sender is benign, the average number of additional hash

operations will not exceed B. When the sender is compromised, the average number

of additional hash operations will not exceed (B − 1)τ + 1. Since the probability

of any given sensor node being compromised is fc, the average number of additional

hash operations a benign sensor node needs to do will not exceed B(1− fc) + [(B −
1)τ + 1]fc.

89

Theorem 3 indicates the security performance of our key chain-based filter in

dealing with the DoS attacks on the verification of chained keys. Since B and τ are

usually quite small, we can see that our key chain-based filter can effectively defeat

this kind of DoS attacks.

4.1.2.3 Overheads

From the protocol description, any sensor node u needs to store a one-way key

chain (as a sender) and a key chain commitment for every neighbor sender (as a

receiver). Hence, the overall storage overhead can be estimated by (b+2
√

n)× q bits,

where n is length of the key chain and b is the average neighbor size.

The communication overhead includes two parts: (1) the distribution of the key

chain commitment, and (2) the space for the chained key and the commitment values

in every broadcast message. Note that each key chain can be used for n broadcast

messages. We thus believe that the communication overhead needed for distributing

the initial key chain commitment will not be a problem given a reasonably long

key chain. In addition, each broadcast message will include m × q bits additional

information (i.e., the chained key and the commitment values).

For every broadcast message, a sender u will need to perform |W | hash opera-

tions for generating the commitment values and an average of 2 hash operations for

generating a key in the key chain to use. On the receiver side, Theorem 3 shows

the average number of additional hash operations a benign sensor node needs to do.

Overall, we can see that the key chain-based method is also effective and efficient.

4.1.3 Discussion

The detailed analysis on the security against DoS attacks and the overheads of

the proposed two methods is given in the previous two subsections. In the following,

90

we will discuss the security of these two schemes under some other common attacks

and compare the proposed two methods in terms of security and overheads.

4.1.3.1 Security under Other Attacks

In the following, we will discuss the security of our two methods in the presence

of sybil attacks [46], wormhole attacks [47], and node replication attacks [48].

Sybil Attacks: In sybil attacks, an adversary tries to clone sensor nodes

with different IDs. However, some key pre-distribution techniques (e.g., [5]) can

effectively remove the impact of sybil attacks since the keying materials for pairwise

key establishment is bound with the node ID. When any of these key pre-distribution

techniques is employed, we will be free from sybil attacks.

Wormhole Attacks: Wormhole attacks do impact the security of our pro-

posed approaches since they can increase the size of neighbor nodes for a sensor node.

However, such impact is very limited since a significant increase in the number of

neighbor nodes usually indicates a wormhole attack. In this case, we can simply pick

a subset of them for use in our protocol since as long as a sensor node can deliver

its message to a sufficient number of neighbors, the broadcast protocol will work

correctly.

Node Replication Attacks: By launching node replication attacks, the ad-

versary can increase the fraction of compromised nodes in a local area. According

to Theorem 1, we can see that this attack does impact our group-based approach.

However, as we discussed, we can always configure parameters such as τ properly or

re-grouping sensor nodes to mitigate the impact of increasing the fraction of compro-

mised nodes. On the other hand, according to Theorem 2 and Theorem 3, increasing

the fraction of compromised nodes does not generate much impact on the security

of the key chain-based approach. Moreover, though the probability of finding a ma-

91

licious sender is high, a node can always switch to other nodes if it notices that a

particular sender is suspicious. Therefore, as long as the benign nodes in the network

are well-connected, our protocols will work correctly.

4.1.3.2 Comparison

Both pre-authentication filters have advantages and disadvantages when com-

pared with each other. In terms of security, the main difference between them is that

the group-based approach allows a compromised neighbor node to disable the broad-

cast authentication at a number of other benign neighbor nodes even if the sender is

benign. In contrast, the key chain-based approach does not have this problem. Thus,

the key chain-based method can often perform better than the group-based approach

when there is a large fraction of compromised sensor nodes. In addition, according

to Theorem 2, we know that the key chain-based approach can have better security

when there is a low rate of true broadcast messages from the base station. However,

when there is only a small fraction of compromised sensor nodes, the group-based ap-

proach can be more secure in the sense that the fraction of fake signatures leading to

unnecessary signature verifications can be made very small. In contrast, according to

Theorem 2, we know that even without any compromised node, the key chain-based

approach allows the adversary to fool sensor nodes to perform many unnecessary sig-

nature verifications if there is a high rate of true broadcast messages from the base

station.

In terms of overheads, the group-based method performs slightly better than

the key chain-based approach. First, the storage overhead of the group-based method

(b×(L+1) keys) is comparable to that of the key chain-based method (b+2
√

n keys).

Second, the communication cost of the group-based method only involves the initial

distribution of keying materials and up to L + 1 reports from every neighbor node

92

to the sender. In contrast, the key chain-based method has to update the keys at

neighbor nodes once for a while. Finally, the group-based approach requires up to

m×2L hash operations for a sender and one hash operation for a receiver. In contrast,

the key chain-based approach requires (m−1)q
l

+ 2 hash operations for a sender, which

is comparable to the group-based method, and B(1 − fc) + [(B − 1)τ + 1]fc hash

operations for a receiver, which can be many more than the group-based approach

since B has to be configured to accommodate the lossy channel.

4.2 Summary

ECC-based signature schemes have attracted a lot of attention recently for

broadcast authentication in sensor networks. However, such approaches are vulner-

able to DoS attacks against signature verifications. This chapter shows how the

proposed group-based and key chain-based methods effectively mitigate such DoS

attacks.

It may be desirable to evaluate the performance of our approaches through field

experiments to obtain more useful results such as the energy savings under attacks.

In addition, we will also seek efficient solutions in scenarios where a sender’s signal

range can reach all or most of the sensor nodes in the network.

CHAPTER 5

ADAPTIVE JAMMING-RESISTANT BROADCAST SYSTEMS WITH PARTIAL

CHANNELS SHARING

Wireless broadcast systems are particularly vulnerable to jamming attacks

launched by insiders who know which channel is used for broadcast. The exist-

ing solutions [18, 19] involve a lot of communication overhead. In this chapter, we

propose a novel jamming-resistant broadcast system, which organizes receivers into

multiple channel-sharing broadcast groups and isolates malicious receivers using adap-

tive re-grouping. Instead of sending messages using one channel [18, 19], we divide

such channel into multiple smaller ones and let different receivers partially share their

channels. In this way, the data sent over the shared channels can reach more than

one receivers, saving substantial communication cost.

In addition, we also propose an sequential test based scheme to achieve high

decision accuracy and decision speed even if the resource is limited or the attacker is

very powerful. The basic idea to get more observations about the channel condition

before making any decision, so that we can reduce the decision error rate. We adopt

Lai’s Bayes sequential test scheme [58] to balance the decision accuracy and decision

speed, thus we can make accurate decisions as soon as possible.

The analytic and simulation results show that the proposed approaches greatly

push the performance limit of jamming-resistant broadcast systems towards optimal.

93

94

5.1 Network and Adversary Model

Table 6.1 lists some frequently used notations. In this chapter, we consider that

a benign sender needs to broadcast messages to a set of r receivers, {R1, R2, · · · , Rr}.
We assume that the system contains totally n orthogonal virtual channels, which

are determined by spreading code, frequency-hopping pattern, sub-carriers, or their

combinations. The proposed techniques in this chapter can be considered as group-

based approaches. In a group-based approach, we organize the receivers into multiple

groups and assigns m (m ¿ n) channels to each group for broadcast communication.

The receivers in the same group listen to and receive messages from the m channels

assigned to the group. We assume that the sender and the receivers are well time

synchronized and every receiver knows when to start and stop the transmission at

any given channel.

Let CG be the set of active channels assigned to group G (|CG| = m). Every

broadcast message M will be processed according to certain forward error correction

(FEC) codes at packet-level [35–37] and divided into m packets such that M can be

recovered from any set of (1 − η) ×m + 1 correct packets. These m packets will be

transmitted on the active channels of every group, one for each channel. Thus, a

receiver in group G can always recover the original message M unless η×m or more

channels in CG are jammed.

We assume that each receiver shares a secret key with the sender; this key is

used to select the secret channels for the jamming-resistant one-to-one communication

with the sender. Hence, this private and jamming-resistant channel allows a receiver

to send feedback to the sender for making more informed decisions. In addition, we

also assume that the sender can detect packet loss at every active channel. This can

be achieved by (1) having the sender monitor the active channels, (2) adding extra

95

Table 5.1. Frequently Used Notations

R set of receivers, i.e., R ={R1,R2,· · · , Rr}
R′ set of compromised receivers
CG set of broadcast channels assigned to group G
C ′

G set of jammed channels in CG

t number of the compromised receivers, i.e., t = |R′|
m number of broadcast channels assigned to each receiver
n total number of available channels in the system
j number of channels can be jammed at one time
η fraction of corrupted channels we can tolerate
ρ channel sharing factor, i.e., fraction of shared channels

monitoring nodes in the network, or (3) asking those existing receivers to report the

channel condition.

The attacker’s goal is to prevent as many receivers from receiving broadcast

messages as possible. We assume that the attacker knows all technique specifics,

including configuration parameters. We consider both outsider attackers and insider

attackers. An outsider attacker does not know which channels are used. Thus he

only randomly selects channels to jam. We assume that outsider attackers have

power constraints that only allow them to block no more than j channels at one time.

An insider attacker can compromise some receivers and learn all their secrets,

including their assigned channels. In this chapter, we focus on detecting the active

malicious node, called traitor, whose channel information is currently being used by

the attacker to launch jamming attacks. For those stealthy or selective attackers

that behave normally most of the time, our goal is to catch them after they jam the

communication for more than a small number of times. We let t denote the total

number of compromised receivers.

96

5.2 Scheme I: Adaptive Re-Grouping with Partial Channel Sharing

For each broadcast message, the goals of jamming-resistant broadcast are: (i)

the sender sends as few copies of this message as possible and (ii) the message can be

correctly delivered to as many receivers as possible in the presence of insider jammers.

The former indicates the need for a small number of groups. However, the latter

requires small group size since a traitor can block the messages to all other receivers

in the same group. This usually leads to a large number of groups. In Scheme I, we

address such dilemma by proposing an adaptive re-grouping idea to isolate traitors

without increasing the number of groups and a partial channel sharing idea to reduce

the number of active channels needed to deliver broadcast messages.

Specifically, we classify the groups into trusted groups (TG) and suspicious

groups (SG). There is only one trusted group but could be multiple suspicious groups.

The idea is to adaptively re-group the receivers if the attacker launches the jamming

attack so that the benign nodes are more likely to be merged into the trusted group,

and the traitors are more likely to be included in a number of small suspicious groups.

The high-level description of our protocol is given below. The trusted group

includes all receivers currently believed (by our protocol) to be trustworthy. It is

possible that the trusted group becomes untrusted later when more observations

about the channel condition are available. Once this happens, we split the group into

two suspicious groups (or a suspicious group pair) and set the trusted group to be

empty. We let this pair of suspicious groups partially share their channels for less

communication cost, instead of using completely different set of channels. A group

is said to be a suspicious group if we currently cannot determine whether it contains

traitors; we need more observations about the channel condition to make the decision.

Once we determine one of the group pair contains traitors, we split it into two smaller

suspicious groups for further processing. Meanwhile, if we can not determine the other

97

Table 5.2. Decision Making Criteria in TG examination

Observation Decision
E0 |C ′TG| < ηm Accept H0: R′ ∩ TG = ∅
E1 |C ′TG| ≥ ηm Accept H1: R′ ∩ TG 6= ∅

group contains traitors at that time, we will believe it to be trustworthy and merge it

into the trusted group. In other words, a suspicious group is merged into the trusted

group only when its peer is determined to be untrustworthy. The above procedure

continues until all traitors are isolated or the jamming attack stops.

Given the high-level protocol description, the remaining issues are: (1) how

to detect the existence of traitors in the trusted group, (2) how to partially share

channels between a suspicious group pair, (3) how to detect the untrustworthy group

in a suspicious group pair, and (4) how to identify and remove traitors. We answer

these problems in the following.

Detecting the existence of traitors in the trust group: Initially, all

receivers belongs to the same trusted group TG; they share the same m channels.

Note that if the trusted group contains no traitors, it is very difficult for the attacker

to jam enough (at least ηm) channels to block the communication, as we will show in

Section 5.3. Thus, if the number of jammed channels exceeds ηm, i.e., the receivers

cannot recover the broadcast message, then it is very likely that the trusted group has

traitors at this moment. Hence, we simply monitor whether |C ′
TG|, i.e., the number

of jammed channels in TG, exceeds ηm. If not, the group is still a trusted group;

otherwise, we consider it as untrusted and immediately split it into two suspicious

groups. (The trusted group becomes empty in this case.) Table 5.2 lists the criteria

for making decisions.

98

Table 5.3. Decision Making Criteria in SGP examination

Observation Decision
E2 |C ′SG1

| < ηm and |C ′SG2
| < ηm Accept H2: No traitors

E3 |C ′SG1
| ≥ ηm

|EC ′1| < |EC ′2| Accept H3: SG2 has traitors

E4 |EC ′1| = |EC ′2| Accept H4:or Both have traitors

|C ′SG2
| ≥ ηm

E5 |EC ′1| > |EC ′2| Accept H5: SG1 has traitors

Group splitting with partial channel sharing: When a group is deter-

mined to be untrusted, we randomly split it into two equal-sized suspicious groups,

i.e., a suspicious group pair. We focus on a given suspicious group pair SGP during

the discussion. We let SG1 and SG2 denote the two groups of SGP . We assign m

randomly selected channels to each of these two groups. Let CSG1 and CSG2 be the

channels assigned, respectively, to SG1 and SG2. In this chapter, SG1 and SG2 share

a random fraction ρ of channels. Let SC be the shared common channels and EC1

and EC2 be the private (exclusive) channels for groups SG1 and SG2, respectively.

In each round of re-grouping, a receiver only receive its channel set. The sender

will never leak any information about which channels belong to SC, EC1, or EC2.

Apparently, if both groups in SGP have traitors, the attacker can find out the chan-

nel assignment and figure out all channel sharing information; this impact will be

evaluated in Section 5.3.

Determining the untrusted group in SGP: The goal here is to determine

which group (SG1, SG2, or both) contains traitors. Let us consider an example when

the sender notices that |C ′
SG1

| ≥ ηm. There are three cases. First, when only SG1

contains traitors, the attacker can easily select and jam ηm or more channels in CSG1 .

Second, when only SG2 contains traitors, the attacker can jam some channels in CSG2

expecting to jam some channels in SC and then randomly jam the channels in all

99

other available channels expecting to jam the channels in EC1. It is possible that

|C ′
SG1

| = |SC ′| + |EC ′
1| ≥ ηm. Third, both SG1 and SG2 contains traitors. In this

case, the attacker knows the channel assignment and can arbitrarily jam the channels

in CSG1 . An effective scheme is thus needed to distinguish these three cases given the

observations about the channel condition.

Our scheme takes advantage of the fact that the channel assignment of a traitor-

free group is always kept secret. In other words, the sender only sends CSG1 to the

receivers in SG1, but does not leak anything about which channels belong to EC1 or

SC. Hence, we have the following observation: if only one suspicious group in SGP

has traitors, the probability that its private channels are jammed is usually higher

than the probability that the private channels of the peer (traitor-free) group in SGP

are jammed. The reason is that the adversary does not know which channels are

private to the peer group and can only randomly select channels from all available

channels to jam. Therefore, we can determine which group has traitors by studying

the jammed channels.

More specifically, if any receiver in the suspicious group pair SGP is blocked

from receiving broadcast messages, we mark the group which has more jammed pri-

vate channels as the one that contains traitors. Note that it is possible that both

SG1 and SG2 contain traitors. In this case, the attacker can identify EC1, EC2 and

SC. Thus, he can jam exactly the same number of channels in both EC1 and EC2.

This is, however, unlikely to happen in the case where at most one group contains the

traitor. Therefore, if |EC1| = |EC2|, we mark both SG1 and SG2 as untrusted. Table

5.3 lists the decision criteria on determining untrusted groups. Detailed analysis will

be given in Section 5.3.

Detecting and revoking the traitor: If a traitor keeps attacking the broad-

cast system, the size of its group will be reduced continuously. Once we detect a group

100

4 5 {5}{ }678912345
467 8946789 {5}

RoundIIIIIIIVVVI
1234567896789678945123 TG, {SGP} R

TG (SG1, SG2) is malicious.Shadow denotes we believe this group contains traitors.
{ }{ }{ }

SGP:
12 3

Initially, all nodes TG.I : E1=T, accept H1. TG SGP.II : E5=T, accept H5. {12345} SGP, {6789} TG.III: E4=T, accept H4. {123} SGP, {45} SGP.IV: E3=T, accept H3. Revoke 5, 4 TGV : 4 is active, accept H1. TG SGP.
Comments

12 312 3
Figure 5.1. Illustration of procedure 1.

with only one member has the traitor, we can directly revoke this member from

the system. Procedure 1 shows the pseudocode of our jamming-resistant broadcast

scheme. Figure 5.1 shows an example of our jamming-resistant broadcast scheme.

5.3 Analysis of Scheme I

There are two traitor detection modules in Scheme I, one for detecting the

existence of traitors in TG and the other for detecting which group in SGP cannot

be untrusted. A traitor detection is used to decide one of the hypotheses in Tables 5.2

and 5.3 based on the channel condition. In our analysis, we will focus on the decision

error rate Pr[Accept H|H = F], where F represents FALSE. We will also discuss the

impact of system parameters (m, N , η, and ρ) and the attacker related parameter

(j) on our protocol. We assume ρ > η.

101

(a) (b)

Figure 5.2. The decision error rate of traitor detection on a traitor-free TG. η = 0.1
in (a); m = 40 and n = 103 ×m in (b).

5.3.1 Performance of Traitor Detection for the Trusted Group

Pr[Accept H0|H0=F]: If |C ′
TG| < ηm, the nodes in TG can recover the

broadcast message, the attacker does not block the communication. Although some

receivers may have been compromised, there are no traitors actively involved in jam-

ming the communication. It is therefore reasonable to believe that Pr[Accept H0|H0 =

F] = 0. Nevertheless, we can always determine the existence of malicious receivers

once the attacker starts the jamming attacks.

Pr[Accept H1|H1=F]: If TG contains no traitors, the attacker does not

know which m channels belong to CTG, he can only randomly select j channels from

all n channels to jam. Thus, |C ′
TG|, the number of TG’s jammed channels, follows

the hypergeometric distribution f(i; n, m, j):

f(i; n,m, j) =

(
m

i

)(
n−m

j − i

)/(
n

j

)
. (5.1)

Thus, Pr[Accept H1|H1 = F] can be calculated by

Pr[Accept H1|H1 = F] =
m∑

i=η×m

f(i; n,m, j) (5.2)

Figure 5.2 shows the decision error rate for traitor detection on a traitor-free

TG under different settings. Parameter n is determined by factors like the design

102

of spreading code, the channel hopping patterns, and the available spectrum in a

specific channelization scheme. Intuitively, a larger n means more resistance against

jamming attacks. This is shown in Figure 5.2(a). In multi-carrier systems, m is

often used for resource allocation. If a node requires more bandwidth, we can assign

more channels. On the other hand, we can increase m to improve the resistance

against the jamming attacks as shown in Figure 5.2(a). η is determined by the

forward error correction (FEC) scheme. Figure 5.2(b) shows that we can enhance

the resistance against jamming by increasing η. Based on Figure 5.2, we choose

n/m = 103, j/m = 1 ∼ 100, and η = 0.1, 0.2, 0.3 in all our later analysis.

5.3.2 Performance of Detecting the Untrusted Group in SGP

Pr[Accept H2|H2=F]: Similar to the analysis in the last subsection, it is

reasonable to believe that Pr[Accept H2|H2 = F] = 0 in this case since the commu-

nication is not blocked.

Pr[Accept Hx|Hx=F]|x=3,4, or 5.: Since our scheme has the same perfor-

mance when x = 3 or x = 5, we only discuss the cases when x = 3 or x = 4.

According to the definitions of the hypotheses in Table 5.3, we have

¬H3 ⇔ (¬H4 ∧H5) ∨H2

¬H4 ⇔ (¬H4 ∧H5) ∨ (¬H4 ∧H3) ∨H2.

For simplicity, we define the following four probabilities:

P1 : Pr[Accept H3|¬H4 ∧H5 = T],

P2 : Pr[Accept H3|H2 = T],

P3 : Pr[Accept H4|¬H4 ∧H5 = T],

P4 : Pr[Accept H4|H2 = T],

103

T
ab

le
5.

4.
P

ro
b
ab

il
it

ie
s

th
at

th
e

at
ta

ck
er

su
cc

ee
d
s

in
m

ak
in

g
p
ar

ti
cu

la
r

ev
en

ts
o
cc

u
r

P
r[

E
ve

nt
|C

on
di

ti
on

]
P
ar

am
et

er
s

in
eq

ua
ti

on
5.

1.

E
ve

nt
s

C
on

di
ti

on
s

N
t

N
d

N
s

i

P
1

E
3

=
T

¬H
4
∧

H
5

=
T

|C
S

G
1
|=

m
|E

C
1
|=

(1
−

ρ
)m

|C
′ S
G

1
|∈

[0
,m

−
1]

Se
e

In
eq

ua
lit

y
5.

4.

|C
c S
G

1
|=

n
−

m
|E

C
2
|=

(1
−

ρ
)m

j
−
|C
′ S
G

1
|

Se
e

In
eq

ua
lit

y
5.

5
an

d
5.

6.

P
2

H
2

=
T

|C
|=

n
|C

S
G

2
|=

m
j

|C
′ S
G

2
|∈

[η
m

,m
]

|C
S

G
2
|=

m
|E

C
2
|=

(1
−

ρ
)m

|C
′ S
G

2
|

|E
C
′ 2
|∈

[1
,M

IN
(|C

′ S
G

2
|,(

1
−

ρ
)m

)]

|C
′ S
G

2

c
|=

n
−
|C
′ S
G

2
|

|E
C

1
|=

(1
−

ρ
)m

j
−
|C
′ S
G

2
|

|E
C
′ 1
|∈

[0
,|E

C
′ 2
|−

1]

P
3

E
4

=
T

¬H
4
∧

H
5

=
T

|C
S

G
1
|=

m
|E

C
1
|=

(1
−

ρ
)m

|C
′ S
G

1
|∈

[η
m

,m
]

|E
C
′ 1
|∈

[0
,M

IN
(|C

′ S
G

1
|,(

1
−

ρ
)m

)]

|C
c S
G

1
|=

n
−

m
|E

C
2
|=

(1
−

ρ
)m

N
s
,2
∈

[0
,j
−
|C
′ S
G

1
|]

|E
C
′ 2
|=

|E
C
′ 1
|

P
4

H
2

=
T

|C
|=

n
|C

S
G

2
|=

m
j

|C
′ S
G

2
|∈

[η
m

,m
]

|C
S

G
2
|=

m
|E

C
2
|=

(1
−

ρ
)m

|C
′ S
G

2
|

|E
C

2
|∈

[0
,M

IN
(|C

′ S
G

2
|,(

1
−

ρ
)m

)]

|C
′ S
G

2

c
|=

n
−
|C
′ S
G

2
|

|E
C

1
|=

(1
−

ρ
)m

j
−
|C
′ S
G

2
|

|E
C
′ 1
|=

|E
C
′ 2
|

104

where T represents TRUE. Thus, we have

Pr[Accept H3|H3 = F] ≤ MAX(P1, P2)

Pr[Accept H4|H4 = F] ≤ MAX(P3, P4)

P1 is the probability that event E3 occurs, given the condition that only SG1

contains traitors. In this case, the attacker only knows CSG1 and cannot distinguish

EC1 from SC. To interrupt the communication at SG2, the attacker may first jam

a number of channels in CSG1 expecting to hit some channels in SC, and then jams

(j−|C ′
SG1

|) channels randomly selected from the other available (n−|C ′
SG1

|) channels

expecting to hit some channels in EC2. Event E3 describes the case where (i) at least

one of |C ′
SG1

| and |C ′
SG2

| exceed η × m and (ii) |EC1| < |EC2|. These limit the

ranges of |C ′
SG1

|, |EC ′
1|, and |EC ′

2|. Apparently, we have |C ′
SG1

| 6= m since otherwise

|EC ′
1| = (1− ρ)×m and |EC ′

1| ≥ |EC ′
2|. Thus, we have

0 ≤ |C ′
SG1

| ≤ m− 1. (5.3)

Consequently, we also have

0 ≤ |EC ′
1| ≤ MAX(|C ′

SG1
|, (1− ρ)m− 1), (5.4)

If |C ′
SG1

| < ηm, the attacker has to make |EC ′
2| greater than ηm − |SC ′

1| to

ensure that |C ′
SG2

| ≥ ηm in order to interrupt the communication at SG2. Since

|SC ′
1| = |C ′

SG1
| − |EC ′

1|, we have

|EC ′
2| ≥

MAX(|EC ′
1|+ 1, ηm− |C ′

SG1
|+ |EC ′

1|)

if |C ′
SG1

| < ηm,

|EC ′
1|+ 1 if |C ′

SG1
| ≥ ηm.

(5.5)

Obviously, the upper bound of |EC ′
2| is given by:

|EC ′
2| ≤ MIN((j − |C ′

SG1
|), (1− ρ)m), (5.6)

105

Therefore, P1 can be estimated by:

P1 =
∑

|EC′2|

∑

|EC′1|
f(|EC ′

1|; m, (1− ρ)m, |C ′
SG1

|)

× f(|EC ′
2|; n−m, (1− ρ)m, j − |C ′

SG1
|),

where f(i : Nt, Nd, Ns) is the hypergeometric distribution (i.e. Equation 5.1). The

ranges of |C ′
SG1

|, |EC ′
1|, and |EC ′

2| are given by Inequalities 5.3,5.4, and 5.5, respec-

tively. Similarly, we can calculate P2, P3, and P4. The results are summarized in

Table 5.4.

5.3.3 Performance under Worst-Case Scenarios

In this subsection, we will analyze the worst-case performance of our protocol

when the attacker takes the best possible strategy (i.e., he launches various types

of jamming attacks to introduce the maximum number of wrong decisions). The

analysis is conducted in the following there cases: (1) no group contains traitors;

(2) only one suspicious group contains traitors; (3) both of the suspicious group pair

contain traitors. We skip the case where the trusted group contains traitors, because

once the attacker blocks the communication, we will notice the existence of traitors.

No group in SGP contains traitors: In this case, the attacker is not

aware of any channel assignment, and can only jam randomly selected channels. The

best strategy is to jam as many channels as he could. Apparently, the energy limit

determines the attacker’s jamming ability, i.e., the more channels he can block at the

same time (or the greater the value of j), the higher probability he can interrupt the

communication. This is shown in Figures 5.2 and 5.3.

Only one group in SGP contains traitors: Suppose only SG1 has traitors

and the attacker intends to fool us into believing that SG2 contains traitors. Let us

consider P1 and P3. In addition to j, there is another parameter that can affect the

106

(a) (b)

Figure 5.3. The decision error rate in traitor detection on a traitor-free SGP . (a)
Pr[Accept H3|H2 = T] and (b) Pr[Accept H4|H2 = T]. Assume m = 50, n/m = 103,

and ρ = 0.5.

attacker’s jamming performance, i.e., |C ′
SG1

|. Different from j, which is limited by

the attacker’s energy, |C ′
SG1

| can be controlled by the attacker.

Figure 5.4 shows the impact of |C ′
SG1

|. From Figure 5.4(a), we know that

P1 reaches its maximum value Pmax,1 when |C ′
SG1

| = ηm − 1. This means that

the best jamming strategy is to jam ηm − 1 channels in CSG1 and spend the rest of

energy on jamming the channels randomly selected from Cc
SG1

. Similarly, from Figure

5.4(b), P3 ≤ Pmax,3 = P3||C′SG1
|=ηm. Intuitively, the insider jammer has more impact

than the outsider attacker. Given the same configuration, we have Pmax,1 > P2 and

Pmax,3 > P4, which can be seen from comparing Figure 5.3(a) with Figure 5.4(a),

and comparing Figure 5.3(b) with Figure 5.4(b). As a result, Pr[Accept H3|H3=F] ≤
Pmax,1 and Pr[Accept H4|H4=F] ≤ Pmax,3. The worst-case performance is illustrated

in Figure 5.5. From Figures 5.2, 5.3, and 5.5, we can see that the performance

degrades with a larger j, but can be improved dramatically by increasing η.

Both groups of SGP contain traitors: In this case, the attacker knows

the channel assignment and sharing information. However, this does not mean that

the attacker can evade our protocol and block the broadcast messages arbitrarily. To

107

(a) (b)

Figure 5.4. The decision error rate in traitor detection on SGP . (a)
Pr[Accept H3|¬H4 ∧H5 = T] and (b) Pr[Accept H4|¬H4 ∧H5 = T]. Assume

m = 50, n/m = 103, ρ = 0.5 and η = 0.2.

prevent a victim Ri from receiving the broadcast message, the attacker has to jam at

least ηm channels assigned to Ri, which means one of the events E3, E4, or E5 must

occur. Correspondingly, we will accept either H3, H4, or H5, and split the groups to

isolate traitors. Thus, the attacker’s best strategy here is to “sacrifice” the traitors in

one group to hide the traitors in the other group. Note that the hidden traitors will

be assigned into the trusted group, and have the chance to launch another attack.

However, we note that the hidden traitor can simply be handled at the moment when

its knowledge is reused for launching the jamming attacks in the future.

Overall impact of compromised receivers: In the following, we analyze

how well this protocol performs under various types of jamming attacks including the

selective attacks, where the insider jammers do not launch attacks continuously but

choose to only attack at selected times. We consider the following questions: given

t compromised receivers, how many benign receivers will lose the broadcast message

in each round of jamming attacks, and how many rounds of jamming attacks can the

attacker launch?

From Figure 5.1, we notice that the adaptive re-grouping leads to a tree-like

structure. Each group that is believed to contain traitors is split into two suspicious

108

groups, which can be considered as its children. If a traitor R′
i keeps active, i.e.,

jamming, its group will be split continuously until R′
i becomes the leaf of the tree, i.e.,

it becomes the only member of its group. In this case, if R′
i keeps acting maliciously,

it will be removed from the system. Thus the attacker will keep R′
i inactive at certain

point so that the sender has to keep sending messages to its group, wasting the

sender’s energy.

When we split an untrusted group into two suspicious groups, it is possible that

both contain traitors but later we only detect one of them being untrustworthy. In

other words, the attacker can hide the traitors in one of the groups by simply not

using their secrets to jam the communication, and thus this group will be merged

into the trusted group. The attacker may take advantage of this and make use of the

secrets of its traitor one by one to maximize the interference.

Let R′
x denote the x-th active traitor whose secret is used to launch jamming

attacks. In the beginning, the attacker keeps using R′
1’s secret for jamming until

R′
1 becomes a leaf, producing two suspicious groups and one trusted group. This

introduces dlg(|R|)e rounds of attack. After that, the attacker will make use of

the secret at another traitor R′
2 for jamming until R′

2 becomes a leaf, producing

4 suspicious groups and one trusted group. This introduces dlg(|R| − 2)e rounds

of attacks. This procedure continues until all traitors become leaves, producing 2t

suspicious groups and one trusted group. Hence, R′
x can be used for dlg(|R|−2(x−1))e

times.

Note that the number of receivers affected by the active traitor R′
x varies in

each round of attack. This is because the size of R′
x’s group is reduced by half after

each round of attack. Therefore, the maximum numbers of receivers affected by

R′
x in each round of attack are {|R| − 2(x − 1) − 1, d |R|−2(x−1)

2
e − 1, d |R|−2(x−1)

4
e −

109

(a) (b)
Figure 5.5. The decision error rate in traitor detection on SGP when only one

group contains traitors (m = 50, n/m = 103, and ρ = 0.5). (a) MAX(P1, P2) and (b)
MAX(P3, P4).

1, · · · 1}. Overall, the maximum rounds of jamming attacks can be estimated by

∑t
x=1 dlg(|R| − 2(x− 1))e.

Communication overhead and impact of ρ: Obviously, it is not possible

to merge all the trusted receivers into a single group unless all the traitor nodes can be

exactly pinpointed. However, if a malicious receiver becomes the single member in its

own group, it may choose to hide himself and never attack again. There is no effective

mechanism to detect such non-active attacker, and the sender has to send extra copies

to guarantee that no legitimate receiver will lose the message. The existing solutions

require 2t extra copies [19]. According to the previous analysis, our approach reduces

such extra overhead to (2−ρ)t copies. If ρ = 0.5, the communication overhead is 1.5t

extra messages. Apparently, a larger ρ means fewer copies we need to send for each

broadcast and thus less communication overhead. By properly configuring ρ, we can

have much less communication cost than the previous methods.

However, we note that the value of ρ impacts P1, P2, P3, and P4. Thus, it will

also impacts the decision error rate. Figure 5.6 plots the maximal decision error

rates on testing hypotheses H3 and H4 with different parameters.

110

We first look at Prmax[Accept H4|H4=F]. Based on the previous analysis, we

know that

Prmax[Accept H4|H4 = F] = f(0; m, (1− ρ)m, ηm),

which apparently increases with ρ. Figure 5.6(b) also confirms that the decision error

rate on H4 increases with ρ.

We then look at Prmax[Accept H3|H3=F]. Suppose only group SG1 has traitors,

the attacker’s best strategy is to jam ηm− 1 channels in CSG1 and as many channels

in CSG1

c as possible. If the attacker hits no channel in EC1 and one channel in EC2,

he can fool us into believing that SG1 is traitor-free but SG2 is not. The probability

of this happening can be estimated by

Prmax[Accept H3|H3 = F] = Pr[EC ′
1 = 0]× Pr[EC ′

2 > 1].

We note that this is not a monotonic function. The reason is that

Pr[EC ′
1 = 0] = f(0; m, (1− ρ)m, ηm− 1).

increases with ρ, but

Pr[EC ′
2 ≥ 1] = 1− f(0; n−m, (1− ρ)m, j − ηm + 1),

decreases with ρ. In addition, we also need to consider other parameters such as m,

n, j, and η. Moreover, since Pr[EC ′
2 ≥ 1] is usually small, the decision error rate

on testing H3 is still relatively low even when the decision error rate on testing H4

with the same parameter set is very high, which can be seen from Figure 5.6(a) and

Figure 5.6(b).

From the above discussion, we believe that given a reasonable system configura-

tion and attacker’s jamming ability, our system can resist jamming attacks with very

low decision error rates. However, we also note that if we have very limited resources

111

(a) (b)
Figure 5.6. The impact of ρ in resource-constraint systems. (a) the impact of ρ on

testing H3 and (b) the impact of ρ on testing H4. Assume n/m = 103, and
j/m = 50.

(i.e., very small m, n and η) and strong attackers (i.e., a very large j), our system

will generate a high decision error rate in order to save more cost in terms of com-

munication. This is shown in Fig. 5.6. In the next section, we will present a scheme

to cope with the resource limitation and powerful attackers and also to improve the

performance so that we can set a larger ρ to save more communication cost.

5.4 Scheme II: Sequential Test Based Detection

To reduce the decision error rate, we propose to get more observations about

the channel condition before making any decision. Generally, the more observations,

the lower the decision error rate (and the larger ρ we can set). However, waiting for

more observations increases the cost and the decision delay. For example, the sender

will need to assign new channels to replace those jammed ones.

We propose to use a risk function to capture the impact of detection errors and

delays. Without loss of generality, we consider a loss of 1 if the decision is wrong, and

a loss of 0 if the decision is correct. We then introduce c to represent the ratio of the

112

cost of waiting for one more observation over the cost of making a wrong decision.

Thus, the problem becomes to find a solution to minimize the following risk function:

z = c× E[S] + Pr[The decision is wrong], (5.7)

where variable S denotes the total number of channel observations we have collected

at the moment when we stop the sequential test and make a decision.

5.4.1 Problem Statement

As discussed before, when we detect jamming attacks in SGP (i.e., MAX(|C ′
SG1

|, |C ′
SG2

|) ≥
ηm), we know that at least one of them contains traitors. Note that if both groups

contain traitors, we can always identify at least one untrusted group. The missed one

that also contains traitors can be simply handled in the future. As a result, in this

section, we focus only on the case when only one of these two groups contain traitors.

The main problem now is to tell which group is more likely to contain traitors

given the observations about the channel condition. In the following, we will convert

such traitor detection problem into an estimation problem of two random variables

X and Y that are given by

X =

1, if |EC ′
1| < |EC ′

2|,

0, if |EC ′
1| ≥ |EC ′

2|.
Y =

1, if |EC ′
1| > |EC ′

2|,

0, if |EC ′
1| ≤ |EC ′

2|.

Since only one group contains traitors, we can see that X and Y will both follow a

Bernoulli distribution with a mean of Px and Py, respectively. Specifically, we have

Pr[X = 1] = Px = 1− Pr[X = 0]

Pr[Y = 1] = Py = 1− Pr[Y = 0]

113

Figure 5.7. The risk z v.s. Px or Py (c = 10−4).

Let Pth = Prmax[Accept H3|H3 = F]. We also have Pth = Prmax[X = 1|SG2 has no traitors].

In other words, if SG2 has no traitors, we have Px ≤ Pth. This implies:

Px > Pth ⇒ H3 : SG2 has traitors. (5.8)

Similarly, we have

Py < 1− Pth ⇒ H3 : SG2 has traitors. (5.9)

Py > Pth ⇒ H4 : SG1 has traitors. (5.10)

Px < 1− Pth ⇒ H4 : SG1 has traitors. (5.11)

From 5.8, 5.9, 5.10, and 5.11, we know that we can use Px and Py for detecting

the group that contains traitors. We can then apply Lai’s Bayes Sequential Test [58]

to address the problem.

5.4.2 Applying Lai’s Bayes Sequential Test

We do not use those popular sequential test methods such as the fictitious

optimal fixed sample size test or Wald’s sequential probability ratio test since they

require the knowledge of fixed Px and Py to achieve the optimal results. In our case,

the attacker can arbitrarily change these values.

114

In [58], Lai gives a Bayes sequential test scheme to test the composite hypoth-

esis: H : P < P0 versus K : P > P0. Lai shows that the risk z (i.e., Equation 5.7) of

this sequential test is asymptotically equivalent to that of the fictitious optimal fixed

sample size test that assumes the knowledge of P . The stopping rule of Lai’s Bayes

sequential test is

S = inf{s ≥ 1 : I(P s, P0) ≥ h0(c× s)

2c× s2
},

where inf{s} denotes the infimum of set {s}; I(P̃ , P) is the Kullback-Leibler infor-

mation number given by I(p̃, p) = p̃ log(p̃/p) + (1 − p̃) log((1 − p̃)/(1 − p)). When

p̃ = 0 or 1, we define I(p̃, p) = log 2; h0(·) is a function given in [58], which is also

listed below:

1

h0(x) =

(2/π)1/2(x−1/2 − 5x−5/2/48π)/4, if x ≥ 0.8,

exp(−0.69x − 1), if 0.1 ≤ x < 0.8,

0.39 − 0.015x−1/2, if 0.01 ≤ x < 0.1,

(t(2 log(1/x) + log log(1/x)

− log 4π − 3 exp(−0.016x−1/2)))1/2 if x < 0.01.

The terminal decision rule (the final decision) is to accept H or K according to

P S > P0 or P S < P0.

5.4.3 Bayes Sequential Test Based Detection

Based on Lai’s stopping rule and terminal decision rule, we propose our Bayes

sequential test based detection in Procedure 3, which can be used to replace Line 15

in Procedure 1 to have an improved scheme based on Bayes sequential tests.

115

5.4.4 Performance Analysis

Procedure 3 requires two system parameters, c and Pth. c is introduced to

balance the detection error and delay; Pth is the function of the system parameters

(m, n, ρ, and η) and the attacker’s jamming ability (j), as discussed in Section 5.3.3.

Figure 5.6(a) shows that Pth < 0.5 is usually true. Since the cost of making a wrong

decision is very high, c is usually very small. We thus set c = 10−4 as in [58]. We then

use simulation to evaluate the performance under different values of Px or Py, which

can be controlled by the attacker. The results in Figure 5.7 are based on 50,000

rounds of simulation. It shows that our Bayes sequential test based approach can

achieve a low risk no matter what strategy the attacker takes.

Figure 5.7 also shows that the best strategy for the attacker is to let Px = Pth

or Py = Pth. Figure 5.8 plots both of the expected number of lost messages before

making a decision and the decision error rate. It shows that our scheme can achieve

very good performance even in the worst case scenario where the attacker always takes

the best strategy. It also shows that we can configure c according to the application

to balance the decision delay and the error rate.

Figure 5.8(a) also plots Pth, the probability of making a wrong decision of ac-

cepting H3 using our first scheme when the attacker takes the best jamming strategy.

We can see that our Bayes sequential test based detection dramatically reduces the

decision error rate with very small number of samples (less than 10 in most cases).

Unlike the first scheme, the second scheme can achieve small decision error rates even

if ρ is set large (e.g., 0.9). As a result, our sequential test based detection scheme can

further reduce the communication overhead by configuring a larger ρ.

116

(a) (b)

Figure 5.8. Performance of sequential test based detection in the worst-case
scenario. (a) the wrong decision rate and (b) shows the decision making speed. Pth

is the probability of making a wrong decision of accepting H3 using our first scheme
in the worst-case scenario.

5.5 Summary

In this chapter, we propose an adaptive jamming-resistant broadcast system

with partial channel sharing. Compared to existing approaches, the proposed scheme

significantly reduces the communication overhead without sacrificing security. More-

over, the sequential test based scheme allows us to further reduce the communication

cost, greatly pushing the limit of jamming-resistant broadcast towards optimal.

In the future, we are particularly interested in developing our systems on real

wireless communication platforms. It is also highly desirable to evaluate the perfor-

mance of our approaches through field experiments to obtain more useful results. For

example, the analysis on our jamming-resistant broadcast schemes assumes reliable

communication if no jammer attacks the network. In other words, during the anal-

ysis, we believe that the packet loss is always caused by jammers. We believe that

there exists insider jammers if a receiver cannot recover a message. Although this

is often true in case of reliable communication, we may draw wrong conclusions in

reality since the wireless communication is quite unreliable. The high channel loss

117

may introduce a high decision error rate into our proposed approaches. It is thus

important to conducting a thorough analysis on how channel loss rates impact our

approaches.

In our schemes, if a suspicious group only has one compromised receiver, this

compromise receiver can figure out the group size by looking at how many times the

re-grouping process happened. Thus, if the compromised receiver realizes itself the

only member in the group, it can stop jamming to prevent itself from being caught.

In the future, we are going to make the group size information unpredictable to the

receivers by randomizing the re-grouping process. In this way, we can increase the

chance of detecting traitors.

118

Procedure 1 Jamming-Resistant Broadcast
1: TG ← R

2: CTG ← Randomly select m channels

3: {SGP} ← ∅, R̂′ ← ∅
4: repeat

5: Broadcast according to CTG and {CSGP } and monitor the jammed channels C ′.

6: if TG 6= ∅ then // begin TG examination:

7: if |C ′TG| ≥ ηm then // E1 = T

8: SplitGroup(TG)// Accept H1

9: else

10: Assign new channels to replace the jammed channels.

11: end if

12: end if

13: if {SGP} 6= ∅ then // begin SGP examination:

14: for k = 0 to |{SGP}| do

15: ImmediateDetection(SGPk)

16: if H4 = T then

17: SplitGroup(SGk,1), SplitGroup(SGk,2)

18: else if H3 = T then

19: SplitGroup(SGk,2), TG ← SGk,1 ∪ TG

20: else if H5 = T then

21: SplitGroup(SGk,1), TG ← SGk,2 ∪ TG

22: else

23: Assign new channels to replace the jammed ones.

24: end if

25: end for

26: end if

27: until finish broadcast

119

Procedure 2 ImmediateDetection
Input: SPG = {SG1, SG2}
Output: H3, H4, H5

1: H3 ← F , H4 ← F , H5 ← F

2: if (|C ′SG1
| ≥ ηm) ∨ (|C ′SG2

| ≥ ηm) then

3: if |EC ′1| < |EC ′2| then // E3 = T

4: H3 ← H

5: else if |EC ′1| = |EC ′2| then // E4 = T

6: H4 ← H

7: else // E5 = T

8: H5 ← H

9: end if

10: end if

120

Procedure 3 SequentialDetection
Input: SPG = {SG1, SG2}, c, s, X, Y , Pth

Output: H3, H4, H5

1: H3 ← F , H4 ← F , H5 ← F

2: if (|C ′SG1
| ≥ ηm) ∨ (|C ′SG2

| ≥ ηm) then

3: s ← s + 1

4: if |EC ′1| < |EC ′2| then // E3 = T

5: X ← X + 1

6: else if |EC ′1| > |EC ′2| then // E5 = T

7: Y ← Y + 1

8: end if

9: if (I(X
s , Pth) ≥ h0(c×s)

2c×s2) ∧ (X
s > Pth) then

10: H3 ← T

11: else if (I(X
s , 1− Pth) ≥ h0(c×s)

2c×s2) ∧ (X
s < 1− Pth) then

12: H5 ← T

13: end if

14: if (I(Y
s , Pth) ≥ h0(c×s)

2c×s2) ∧ (Y
s > Pth) then

15: H5 ← T

16: else if (I(Y
s , 1− Pth) ≥ h0(c×s)

2c×s2) ∧ (Y
s < 1− Pth) then

17: H3 ← T

18: end if

19: if (H3 = H) ∧ (H5 = H) then

20: H4 ← T

21: end if

22: end if

CHAPTER 6

MITIGATING JAMMING ATTACKS IN WIRELESS BROADCAST SYSTEMS

WITH UNPREDICTABLE CHANNEL ASSIGNMENT

The technique in Chapter 5 reduces the extra communication cost significantly.

However, this approach requires receivers to listen to multiple channels simultane-

ously, increasing the hardware cost significantly. Another common problem for the

dynamic-grouping approaches is that the attacker can predict the channel assignment

and achieve their maximal jamming impact without being detected.

This chapter proposes a improvement with unpredictable channel assignment,

which prevents the insider attackers from knowing when to stop jamming. The high-

level idea is to reassign the channels periodically, such that two receivers have a certain

probability to share the newly assigned channel. However, we keep the channel sharing

information secret from the receivers. When they share the same channel, we can

reduce the communication overhead by sending only one copy of the message, instead

of two. When they use different channels, and the attacker launches a jamming attack,

then we can identify the malicious node, because the jammed channel has only one

user, i.e., the malicious one. One benefit is that the attacker cannot achieve maximal

jamming impact without being detected. In addition, the proposed technique does

not require a receiver to operate on multiple channels at the same time.

6.1 Network and Adversary Model

In this chapter, we study a wireless broadcast system in which a benign sender

sends messages to a set of receivers. We assume that the system contains n orthogonal

121

122

virtual channels, which are determined by either spreading codes, frequency-hopping

patterns, sub-carriers, or their combinations. The sender will select a subset of those

n channels to broadcast messages. If the sender assigns receivers u and v the same

channel, both of them will listen to that channel and be able to receive the message

from the sender at the same time. We assume that the sender and receivers are time

synchronized and thus every receiver knows when the transmission will start and stop

on any given channel.

Note that spread spectrum has been shown to be very resistant to jamming in

pairwise communication, i.e., one-to-one communication, as long as the channels are

picked securely. Hence, we assume that each receiver shares a secret key with the

sender. This key is used to select a private channel for jamming-resistant pairwise

communication between them. In other words, each receiver can communicate with

the sender individually without being jammed. This private channel allows the sender

to update the channel assignment for this receiver.

The attacker’s goal is to prevent as many receivers from receiving broadcast

messages as possible. We assume that the attacker knows all technique specifics,

including the configuration parameters, and is able to jam up to j channels during

each message transmission. We consider not only outsider attackers but also insider

attackers. The only difference between these two type of attackers is the knowledge of

channel assignment information. The outsider attacker does not know which channel

is used and only selects a random set of channels to jam. The insider attacker can

compromise receivers and learn all their secrets, including the channels assigned to

them, which are often shared with some other benign receivers and thus can be used

to launch jamming attacks effectively. We assume that the adversary can compromise

up to t receivers.

123

Our goal in this chapter is to detect active malicious receivers, which we call

traitors, whose assigned channel information is currently used by the attacker to

launch jamming attacks. For example, the attacker could compromise a receiver and

figure out what channel is currently used for receiving messages. This channel is

very likely to be used by many other receivers for receiving broadcast messages. As

a result, the attacker can jam this channel to block other receivers from getting the

broadcast messages. Certainly, the attacker may choose to jam the channel in an

stealthy way to reduce the chance of being detected. For example, he may only try to

jam the channel when important messages are being sent. In this chapter, we consider

stealthy jammers as well. Specifically, our goal is to ensure that the probability of

detecting a jammer increases with the number of times he jams the channel. In other

words, the stealthy jammer may behave normally and stay in the broadcast system

for a long time. However, if he behaves maliciously more than a small number of

times, our approach will identify him with very high probability.

In this chapter, we assume that the sender can detect whether a channel is

being jammed with jamming detection techniques [59, 60]. This can be achieved by

measuring the packet loss on active channels, i.e., the channels used for broadcasting

messages. For example, we can ask the sender to monitor the active channels, add

extra monitoring nodes in the network, or ask the existing receivers to report the

channel condition.

Table 6.1 lists some frequently used notations in this chapter.

6.2 Unpredictable Channel Assignment

Dynamic-grouping techniques [19] address the jamming problem by trying to

isolate the traitors in the system. The basic idea is to organize receivers into groups

and use different channels for different groups. If the channel assigned to a given

124

Table 6.1. Frequently Used Notations

t Number of compromised receivers
n Total number of available channels in the system
j Number of channels jammed during each message transmission
p Probability that a pair of nodes use two different channels
m Number of messages transmitted through one channel

group is jammed, the sender splits this group into two equal-sized, smaller groups

and assigns a new channel to each of them. In this way, malicious receivers can be

isolated step by step. For simplicity, we assume a network size of 2h for some integer

h. Therefore, at some point, we will have up to t groups with only two members in

each group, where t is the number of compromised receivers.

If the channel assigned to a two-member group is jammed, then one of the group

members must be malicious. However, we cannot determine which one is malicious.

In existing approaches, the jammed two-member group will be split again and each

member will get a new channel to receive messages. After splitting, the attacker

will notice that his channel has been changed h times, which indicates that he is the

only user of the channel currently assigned to him. In this case, he will simply stop

jamming to evade detection. (If a channel is jammed and has only one user, then

this user must be the traitor.) Hence, the attacker can achieve his maximal impact

by forcing the sender to send messages via 2t + 1 channels.

From the above discussion, we can see that insiders know when to stop jamming

to achieve their maximal impact on the system. In this paper, we propose unpre-

dictable channel assignment to prevent insiders from knowing when to stop jamming.

The main improvement of this mechanism relates to how we handle two-member

groups. In other words, we apply one of the existing dynamic-grouping techniques

at the beginning, and switch to our approach when the group being jammed is a

125

two-member group. We call the two nodes in a two-member groups as a suspicious

node pair.

The high-level idea of our approach is as follows. For each suspicious node pair,

we reassign the channels periodically, such that the suspicious node pair has a certain

probability to share the newly assigned channel. In our scheme, each receiver only

knows of which channel he should listen for broadcast messages but has no idea if

that channel is only used by him or shared with the other peer receiver in the pair. In

other words, the channel sharing information is unpredictable to the attacker. When

the suspicious node pair share the same channel, we can reduce the communication

overhead by sending only one copy of each broadcast message, instead of two copies

as required in previous approaches. When the two nodes use different channels, and

the attacker launches a jamming attack, then the traitor can be detected since the

jammed channel has only one user, i.e., the traitor.

In the following, we focus on one suspicious node pair to present and analyze

our unpredictable channel assignment approach.

6.2.1 Basic Approach

Figure 6.1 shows a flowchart of our proposed scheme. We now follow the

flowchart and discuss our solution in detail.

Random Channel Assignment: The sender assigns the node pair new

channels every m broadcast messages. For each channel assignment, the sender will

assign these two nodes two different channels with probability p. In other words, they

will share the same channel with probability 1−p as shown in Figure 6.2. The channels

are always randomly selected from n available broadcast channels. The sender will

update the new channel information to each receiver through their pairwise private

channel. Every receiver only knows of which channel he should listen for the broadcast

126

start

Generate random
number r (0,1); s =0

Broadcast
next message.

s= s +1.

Broadcast
next message.

s= s +1.

Y

end

N

Y

Find the
traitor?

Y

Exclude the traitor,
and group the

benign receivers.

YN

s = m ?
Y

N

N

s = m ?

Y

N

N

Y

N

Assign the same
random channel.

Y

Assign different
random channel.

N

Is the message
blocked?

Is the message
blocked?

r > p ?

More messages? More messages?

Figure 6.1. The wireless broadcast system with insider jammer detection in Section
6.2 and 6.3.1.

messages; he does not know which channel is used by the other receiver or whether

they are sharing the same channel.

Making the channel sharing information unknown to the receiver does not pre-

vent the two nodes in a suspicious node pair from receiving any broadcast message.

However, this unpredictability makes the attacker’s job much harder. Note that be-

fore jamming a channel, a smart insider would want to ensure that there are other

users listening to the same channel for broadcast messages. If he is the only user of

the jammed channel, he will be immediately detected for jamming. In all existing

schemes, the attacker can easily determine whether he is the only user of a given chan-

nel. However, in our scheme, it becomes very hard for the attacker to determine this.

When two receivers are assigned different channels, jamming the channel only used

by the traitor will expose that traitor. We can easily detect and block the traitor from

the system. On the other hand, if the attacker does not jam the traitor’s channel,

127

Each node
use its own

channel.

p

p

1-p

1-p
Two nodes
share the

same channel.

Figure 6.2. Random channel assignment. The probability that each receiver is
assigned different channel from each other is p. The probability that the suspicious

node pair is assigned the same channel is 1− p.

the sender can broadcast messages to both of the receivers through the jamming-free

channel and save communication cost. This creates a dilemma for the attacker: if he

decides to jam the channel, he will be detected with some probability. If he decides

not to jam the channel, the communication cost will be reduced in the system.

Message Broadcast and Channel Reassignment: After sending the new

channel assignment information to each receiver in a suspicious node pair, the sender

will maintain a counter s to track the number of broadcast messages that have been

sent through that channel. If either of the following two conditions is met, the sender

will reassign new channels to the node pair: (1) the sender has sent m messages

through that channel, i.e., s = m; or (2) the message on the assigned channel is

blocked due to jamming attack. Otherwise, the sender will continue to use the current

channel to broadcast messages until no more broadcast messages exist in the queue,

i.e., all broadcast messages have been delivered successfully.

Simple Traitor Detection: As shown in Figure 6.1, when a channel is

blocked, the sender will need to determine which of the two nodes is the traitor. We

will describe a simple but effective traitor detection scheme in this section and will

discuss further enhancements to this scheme in Section6.3.

One simple traitor detection scheme is based on the following observations. If

the attacker does not know which channel is used by a particular benign receiver,

128

it is very hard for him to select and jam the right channel from a large number of

potential channels. To increase his success rate, the attacker may simply jam the

channel assigned to malicious receivers, expecting to affect the other benign receivers

who are sharing that channels. However, if no one else is assigned to use a given

channel, we can easily determine the traitor. Therefore, if the sender assigns node

u an unshared channel, and this unshared channel is blocked, then the sender will

believe that u is malicious.

Once the sender determines that one of the nodes in a suspicious node pair is

malicious and blocks that node from the system, it will simply assume that the other

node is benign. From then on, the sender will put this node into one of the groups that

does not suffer from jamming attacks. Certainly, it is possible that the other node is

an inactive malicious node, i.e., a compromised node that always behaves like a benign

node. However, our approach can handle this very well. This is because once this

node becomes active, it will be eventually isolated by using dynamic regrouping [19]

and excluded from the system by using our scheme if the attacker chooses to maximize

its jamming impact.

The above approach is also applicable to the other suspicious node pairs. We

can directly apply this protocol on each of the suspicious node pairs. If the attacker

keeps launching the jamming attack using the malicious nodes, we will eventually

detect them. Otherwise, we can reduce the communication cost for each pair from

two copies in the previous approaches to 1 + p copies, as we show in Section 6.2.2.

6.2.2 Analysis

In the following, we study the performance of the basic approach in terms of

communication overhead and security.

129

Communication Cost: We focus on the additional communication cost to

tolerate t malicious receivers. Specifically, we calculate the number of extra copies

(denoted by c) to be sent for each broadcast message.

The dynamic regrouping schemes [19] confine the malicious nodes into sus-

picious node pairs. Therefore, a clever attacker will try to maximize its impact by

making the number of suspicious node pairs as large as possible. This can be achieved

by having each suspicious pair contain only one malicious node. In this case, the total

number of suspicious node pairs is t, as shown in [19]. In previous methods, those

suspicious node pairs will eventually lead to 2 × t single-member groups. Therefore,

for each broadcast message, the sender needs to send 2× t extra copies of each broad-

cast message. On the contrary, our approach can reduce the extra communication

cost, as shown in the following theorem.

Theorem 4. In the proposed approach, the expected number of extra copies to be sent

for each broadcast message is no more than (1 + p)× t, i.e., E[c] ≤ (1 + p)× t, where

t is the number of malicious receivers.

Proof. In our protocol, the sender will reassign new channels to each suspicious node

pair every m broadcast messages. Note that two nodes will use different channels

with probability p. As a result, for each message, we have

Pr[The sender sends 2 copies to each pair] = p, and

Pr[The sender sends 1 copy to each pair] = 1− p.

Since t malicious receivers can introduce at most t suspicious node pairs, we have

E[c] ≤ (2× p + 1× (1− p))× t = (1 + p)× t.

130

Therefore, the proposed approach can reduce the extra communication cost of

the existing solutions by (1 − p)/2. The lower the probability p, the smaller the

number of extra copies need to be sent, and thus the more the energy we can save.

In addition, it is shown in [19] that the lower bound of the number of extra copies is

t in the worst case. Thus, this approach actually pushes limit of jamming-resistant

broadcast towards optimal by setting p to a small value. Certainly, a smaller p may

lead to a longer delay in detecting malicious insiders. We will revisit this issue later.

Besides the communication cost of broadcasting messages, the sender also needs

to periodically update the channel information for each receiver. More specifically,

if the attacker stops launching jamming attacks, the sender sends new channel infor-

mation to both nodes in a suspicious node pair every m broadcast messages. If the

attacker keeps jamming the channels before m messages are broadcast, the sender

needs to reassign the channels even more frequently. However, as will be shown later,

if only one of the suspicious node pair is malicious, the attacker can not launch many

jamming attacks, otherwise the traitor is caught. On the other hand, if both of the

nodes are malicious, the attacker is not able to use the traitors’ channel to jam any

other benign nodes. Certainly, the traitors may just try to waste the system’s en-

ergy by jamming their own channels and forcing the sender to reassign the channel

repeatedly. We will present an enhancement protocol to detect and stop this attack

quickly in Section 6.3.2.

Detection Rate and Detection Speed: The attacker will try to maximize

its jamming impact on the system by letting each suspicious node pair contain one

malicious node. Therefore, in the following, we evaluate the performance of traitor

detection in a suspicious node pair consisting of one malicious node and one benign

node. We are interested in the probability Pd that we can identify the active malicious

node whose assigned channel information is used by the attacker to launch at most x

131

5 10 15 20

0.2

0.4

0.6

0.8

1

number of blocked messages (x)

D
et

ec
ti

o
n

 R
at

e
(P

d
)

p =0.8

p =0.5

p =0.2

Figure 6.3. The probability Pd that an insider jammer is detected v.s. the total
number of messages it can blocked x.

jamming attacks. x is used to evaluate the damage caused by the malicious node. In

other words, x implies the speed of detection, and Pd denotes the probability that a

traitor u can block x messages at its benign peer v.

Theorem 5. If a suspicious node pair consist of a benign node and a malicious node,

then Pd = 1− (1− p)x.

Proof. If the insider attacker jams the channel to block the broadcast messages at

the benign node, he will be caught unless the traitor is assigned to the same channel

as the benign node. According to the proposed protocol, the probability that the

suspicious node pair share the same channel is (1− p). Furthermore, the probability

that the attacker succeeds in x rounds of attacks without being caught is (1 − p)x.

Therefore, Pd = 1− (1− p)x.

Figure 6.3 illustrates the relationship between Pd, p, and x. We can see that

Pd increases with both p and x. Obviously, the more likely it is the two nodes in a

suspicious pair use different channels (larger p), the more likely that the attacker will

jam an unshared channel and be exposed as the traitor (larger Pd). In other words, a

132

larger value of p implies a slower number of jamming attacks the jammer can launch

before being caught. On the other hand, according to Theorem 4, a large p implies

higher communication cost; thus, p should be small. Nevertheless, our scheme can

actually detect traitors quickly even if p is small. According to Figure 6.3, we can

see that the active traitor will be caught with very high probability before the 15th

round of jamming, even if p is very small.

If both nodes in a suspicious node pair are malicious, the attacker can not jam

the benign nodes. The only benefit is that He can keep the sender reassigning the

channels frequently. We will make a slight modification of our protocol to address

this problem in Section 6.3.2.

Please note we only analyze the performance of detecting the active traitor

whose assigned channel is used by the attacker to block the broadcast message at the

benign node. We do not try to detect the passive traitor, whose assigned channel is

never used for jamming purpose. Indeed, there is no effective way to identify such

malicious node as long as it behaves normally. However, once it becomes active, we

can easily catch it.

False Alarm Rate: Theorem 5 shows that the proposed approach can identify

the traitor with a very high probability even if the attacker only launches jamming

attacks a few times. Thus, to avoid being caught, a cautious attacker may never jam

the channels assigned to the malicious insiders. Instead, he will make blind guesses

and randomly jam wireless channels, hoping to hit the channels used by some benign

nodes and block their broadcast messages. He will succeed when the nodes in the

suspicious pair are using different channels. In other words, if he happens to hit the

channel used by the benign node in the pair, the sender will make a wrong decision

and consider this benign node to be a traitor. Since every node will be assigned a

new channel every m broadcast messages, we will study the false alarm rate Pf , i.e.,

133

the probability that a benign node is identified as a traitor by mistake during the

period of transmitting m broadcast messages through its assigned channel.

Theorem 6. The probability Pf of a benign node being identified as a traitor by

mistake during the period of broadcasting m messages is

Pf = p×
m∑

i=1

Ps,i, (6.1)

where Ps,i is the probability that the unshared channel of the benign node is jammed

for the first time at the i-th broadcast messages. Ps,i can be estimated by

Ps,i =
1−∑i−1

k=1 Ps,k
n−t

j
− (i− 1)

, (6.2)

where Ps,0 = 0.

Proof. Let us calculate Ps,i first. A clever attacker will avoid not only the t channels

assigned to the t malicious receivers, but also the channels he has already jammed

in the previous i − 1 rounds. Given the attacker’s ability of jamming j channels

during the period of one message transmission, the probability that node u’s unshared

channel is jammed can be estimated by j
n−t−(i−1)×j

. On the other hand, the probability

that u’s unshared channel has not been jammed before is 1 − ∑i−1
k=1 Ps,k. Thus, we

have

Ps,i =
j

n− t− (i− 1)× j
×

(
1−

i−1∑

k=1

Ps,k

)
.

Obviously, the probability that u’s unshared channel is jammed during the period of

broadcasting all m messages is
∑m

i=1 Ps,i. Moreover, the probability that u’s channel

is unshared is P . Therefore,

Pf = p×
m∑

i=1

Ps,i,

134

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

m

S
u

cc
es

s
ra

te
 o

f
th

e
ja

m
m

er

n/j =10

n/j =100

n/j =1000

n/j =10000

Figure 6.4. The probability that the outsider attacker can successfully block the
one-to-one communication system within the period of transmitting m messages.

According to Equations 6.1 and 6.2, Pf is affected by n/j, t/j, p and m. In the

following, we will discuss how these parameters affect Pf .

• Impact of n/j: This is the ratio between the number of total available channels

in the system and the number of the channels the jammer can block in each

round of attack. As a special case in Equations 6.1 and 6.2, if t = 0, the

attacker is an outsider attacker and does not compromise any receiver. In this

case, receivers are all benign and share the same channel. This is equivalent

to a one-to-one communication system. If p is set to be 1, Pf becomes the

probability that the attacker can successfully jam a one-to-one communication

channel within the period of transmitting m messages. Figure 6.4 shows the

relationship between the probability that the jammer succeeds in blocking the

one-to-one communication system and the possible jamming duration (m) with

different values of n/j. Obviously, n should be large enough to combat the

jammer. In practice, n is usually very large in any multi-channel based jamming-

resistant communication system. Thus, in the following analysis, we will n/j to

be 104.

135

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

m

F
al

se
 A

la
rm

 R
at

e
(P

f)

t/j =1000

t/j =1

t/j =0

t/j =0.001

Figure 6.5. Impact of t/j. The false alarm rate Pf is the probability that a benign
node is identified as a traitor by mistake. Assume n/j = 104 and p = 0.5.

• Impact of t/j: t is the number of compromised receivers in the system, and we

usually have n À t. Thus, according to Equation 6.2, t/j will have much less

impact on Pf than n/j. This is shown in Figure 6.5, which plots the relationship

between the false alarm rate Pf and t/j. In the following analysis, we thus set

t/j to be 1.

• Impact of p: p denotes the probability that the sender assigns each node in

the node pair to a different channel. A smaller p implies a higher probability

that the node pair uses the same channel. Since a cautious attacker does not

want to expose the malicious node, he will not jam a channel assigned to any

of the malicious nodes. For a given suspicious pair, the attacker needs to jam

the channel assigned only to the benign node to fool the sender into believing

that this node is malicious. Clearly, the larger the value of p is, the higher the

chance that the attacker can succeed is. According to Equation 6.1, the false

alarm rate Pf increases along with p. This is also shown in Figure 6.6, which

plots the relationship between Pf and p. Therefore, we should choose smaller

136

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

m

F
al

se
 A

la
rm

 R
at

e
(P

f)

p =0.8

p =0.5

p =0.2

Figure 6.6. Impact of p (j/t = 104 and j/t = 1).

p to get a lower false alarm rate Pf . As we showed earlier, we also choose a

smaller p for lower communication cost c.

• Impact of m: m is the number of broadcast messages to be sent before the

sender assigns a new channel. From Equations 6.1 and 6.2, and as shown in

Figures 6.5 and 6.6, Pf increases with m. Thus, the sender needs to update

the channels as frequently as possible. On the other hand, whenever the sender

changes broadcast channels, it needs to send the new channel information to

each receiver, which also increases the communication cost. Therefore, we need

to make m as large as possible while still meeting the security requirement of

a small Pf . In Section 6.3.1, we will present a modification to the scheme to

guarantee a small Pf even if m is very large.

6.3 Enhancements

In this section, we will discuss some techniques to enhance the accuracy, relia-

bility, scalability, and efficiency of the basic scheme presented in Section 6.2.

137

6.3.1 Reducing The False Alarm Rate

In the basic scheme, we monitor whether receiver u’s unshared channel is

jammed. Once this happens, u will be identified as a traitor. However, this de-

cision could be wrong since the attacker may randomly jam wireless channels and

happen to hit u’s unshared channel. From our previous analysis, the false alarm rate

will not be negligible if (1) the system has limited resources (i.e., a small number

of n), (2) the attacker is very powerful (i.e., a large number of jammed channels j),

or (3) the sender uses the same channel too many times (i.e, a large m). To reduce

the false alarm rate, we propose to collect more observations before making a final

decision. Thus, instead of making a decision based on a single jamming event, we

monitor the frequency that the jamming event occurs.

Our intuition is that even if the attacker happens to jam benign node u’s un-

shared channel once, he can hardly block u’s unshared channel repeatedly in a short

period of time. Note that we randomly reassign node u a new channel when u’s

channel is jammed. Thus, we have the following theorem.

Theorem 7. The probability that the outsider attacker blocks u’s channel for at least

τ times during w consecutive messages will not exceed Pτ,w, which is given by

Pτ,w = 1−
τ−1∑
i=0

(
w

i

)
(PJ)i(1− PJ)w−i, where

PJ =
j

n− t− (m− 1)× j
.

Proof. According to Equation 6.2,

Ps,i <
1

n−t
j
− (i− 1)

<
j

n− t− (m− 1)× j
.

138

2 4 6 8 10
0

0.1

0.2

0.3

0.4

τ

P
τ,

w

n/j =1000, m =500

n/j =5000, m =1000

n/j =10000, m =2000

n/j =10000, m =4000

Figure 6.7. The probability of getting at least τ successes in w trials (j
t

= 1).

Thus, if node u is benign, the probability that its assigned channel is jammed during

every broadcast message transmission should not exceed a threshold PJ , where

PJ =
j

n− t− (m− 1)× j
.

On the other hand, let us consider the random variable X, which follows the binomial

distribution with parameters w and PJ , i.e., X ∼ B(w, PJ). The probability of getting

at least τ successes in w trials is given by

Pτ,w = 1−
τ−1∑
i=0

(
w

i

)
(PJ)i(1− PJ)w−i.

Therefore, the probability that the outsider attacker blocks u’s channel for at least τ

times during w consecutive messages will not exceed Pτ,w.

If we set w = 1/PJ , the expected number of times that an outsider attacker can

block u’s channel during w consecutive messages should be less than one. Therefore,

139

2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

n/j

w

m =500
m =1000
m =2000
m =4000

Figure 6.8. The observation window w (j/t = 1).

the chance that the attacker blocks u’s channel multiple times should be very small.

In this case, Pτ,w can be estimated by

Pτ,w = 1−
τ−1∑
i=0

(
w

i

)(
1

w

)i (
w − 1

w

)w−i

, where (6.3)

w =
1

PJ

=
n− t

j
−m + 1. (6.4)

Let w = 1/PJ . Figure 6.7 and Figure 6.8 show Pτ,w under different system

parameters. Figure 6.7 shows that Pτ,w decreases quickly with τ . For example, when

τ = 5, Pτ,w is as low as 0.0037, and it is very difficult for the outsider attacker to

block u’s channel for five times during w messages. Thus, if u’s channel is jammed for

five or more times during w messages, we can identify that u is malicious with a very

high accuracy. Based on this observation, we modify the basic scheme as follows.

Protocol Modification: In the modified protocol, whenever node u’s message

is blocked, we reassign new random channels to u and its peer v and wait for more

evidence. We set w according to Equation 6.4, and set τ to be a small number (e.g,

five). We then keep track of how many times that u’s unshared channel is jammed

during the last w broadcast messages transmitted through u’s unshared channel. If

140

this number exceeds τ , u is considered to be malicious and will be removed from

the system. As it is still possible though unlikely that node u could be a benign

node, another reasonable option is to stop sending messages to u only for the next w

messages. In other words, u will be temporarily removed from the system, and will

be in the system again after w messages.

Performance Analysis: From previous analysis, the false alarm rate should

not exceed Pτ,w given by Equation 6.3 and 6.4. Figure 6.7 also illustrates that Pτ,w

is very small with a small value of τ , even if the available channels are limited or the

attacker can jam many channels in one message transmission (i.e., a small value of

n/j). This enhancement also allows us to reuse the same channel to transmit more

messages than the basic scheme (i.e., a large m).

In addition, the proposed enhancement also limits the damage caused by ma-

licious insiders. A compromised node u can only slightly effect its benign peer v, as

shown in the following theorem.

Theorem 8. Malicious node u can only cause its benign peer v to lose τ × (1− p)/p

messages on average during every w broadcast messages.

Proof. If u is malicious, the attacker is always aware of u’s channel. To block the

communication at its benign peer v efficiently, the attacker needs to jam the channel

assigned to u so that he can succeed when u and v share the same channel. Let Pattack

denote the probability that the attacker jams the channel assigned to u, Punshared

denote the probability that u’s unshared channel is jammed, and Pshared denote the

probability that u’s shared channel is jammed. We have Punshared = Pattack × p and

Pshared = Pattack × (1− p). Thus, Pshared = Punshared × (1− p)/p.

141

On the other hand, a careful attacker will not jam u’s unshared channel τ times.

Otherwise, the malicious node u will be identified. Therefore, the expected number

of lost messages at v will not exceed τ × (1− p)/p.

6.3.2 Dealing with Other Attacks

This section will discuss how to deal with the attacker whose goal is not to

block the legitimate communications but to disrupt our protocol.

Attack Description: In our basic protocol, if a suspicious node pair’s shared

channel is jammed, the sender will simply reassign the new channels and continue

to transmit the messages through the new channels, without any punishment. If the

attacker puts two malicious nodes in the same pair, he will know whether those two

malicious nodes are sharing their channel or not at any time. He may keep on jamming

their shared channels and force the sender to reassign the channels frequently. Such

an attack only blocks the malicious nodes’ own channels and is not very interesting

for the attacker who seeks to jam. However, the attacker may be interested in wasting

the sender’s energy by making him send new channel information continuously. We

thus need to monitor not only the jammed unshared channels but also the jammed

shared channels.

Intuition: In such an attack, the attacker will jam the shared channels with

high frequency so that he can force the sender to send new channel information

frequently. The attacker also needs to avoid jamming the unshared channels since

otherwise the traitor will be detected. On the other hand, if only one of the suspicious

node pair is malicious, the jammed channels will be very likely to include both un-

shared ones and shared ones. Also, among the channels assigned to a suspicious node

pair, the ratio between the number of unshared channels and the number of shared

channels is about p
1−p

. Therefore, if the ratio between the number of jammed shared

142

channels and the number of jammed unshared channels is much larger than p
1−p

, it is

very likely that both of the nodes in the suspicious node pair are compromised.

Protocol Modification: Our protocol should be robust and efficient in all

of the following four situations: (i) M0: neither of the node pair is malicious (i.e.,

the attacker is an outsider attacker); (ii) Mu: u is malicious; (iii) Mv: v is malicious;

(iv) Muv: both nodes in the node pair are malicious. (Please note that those four

situations are not mutually exclusive. In fact, ¬M0 = Mu∪Mv and Mu∩Mv = Muv.)

Specifically, the outsider attacker (M0) can not fool us into believing Mu, Mv, or Muv.

Only one compromised node (either ¬Muv ∩Mu or ¬Muv ∩Mv) should not fool us

into believing Muv. To guarantee a low decision error rate, we propose to identify

Mu, Mv or Muv in the following two steps.

The fist step removes the possibility of M0. Similar to our first enhancement

technique, we make use of Theorem 7. Specifically, we keep tracking of the number

Js,w of jammed shared channels of a suspicious node pair u and v in the most recent

w (Equation 6.4) messages transmitted through their shared channels. If Js,w ≥ τ

(τ is a small integer, e.g., five), at least one of the node pair is malicious. As shown

before, it is very difficult for the outsider attack to fool us with this decision rule.

After we know at least one of u and v is malicious, the second step will be to

determine Mu or Mv. Moreover, if both Mu and Mv turn out to be true, we know

both u and v are malicious (Muv). To identify Mu, let us analyze the situation where

only node v is malicious (i.e., ¬Mu,v ∩Mv). Since we know at least one of u and v is

malicious, if we observe an anomalous event that is impossible to occur when only v

is malicious (¬Mu,v ∩Mv), we can then conclude that u is malicious (Mu). To assist

the decision making, we set a very small threshold ε. If the probability of a particular

event happening is less than ε, we simply consider it as unlikely to occur. Therefore,

ε serves as the maximum decision error rate that the system can tolerate.

143

Suppose only node v is malicious (i.e., ¬Mu,v∩Mv). Let Jv denote the number of

v’s jammed unshared channels and Js denote the number of jammed channels shared

by u and v. Js should follow the binomial distribution with parameters Jv + Js and

1 − P , i.e., Js ∼ B(Jv + Js, 1 − P). The probability of getting exactly Js shared

channels is given by the probability mass function:

f(Js; Js + Jv, 1− p) =

(
Js + Jv

Js

)
(1− p)JspJv .

Since our previous protocol will catch the single malicious node according to

its jammed unshared channels, the traitor v will be careful and keep the number of

its jammed unshared channels less than the threshold. However, the single malicious

node does not know whether its channel is shared or not. Thus, it is quite difficult

for it to jam many shared channels (i.e., large Js) and only a few unshared channels

(i.e., small Jv). In fact, when Js

Jv
> 1−p

p
, f(Js; Js + Jv, 1− p) decreases with increasing

Js. Based on this observation, we calculate f(Js; Js + Jv, 1− p) whenever the shared

channel is jammed. If the probability f(Js; Js +Jv, 1− p) < ε, we believe it is unlikely

that only v is malicious (¬Mu,v∩Mv). Since Js,w ≥ τ already shows that it impossible

that both u and v are benign, we believe u is malicious (Mu). Therefore, based on

the above discussion, we have another criterion to identify malicious node u:

Theorem 9. If (i) Js,w ≥ τ , (ii) Js

Jv
> 1−p

p
, and (iii) f(Js; Js + Jv, 1 − p) < ε, u is

malicious. The false alarm rate of this decision rule is MIN(Pτ,w, ε).

Similarly, we also keep tracking of Ju, the number of u’s jammed unshared

channels. If Js,w ≥ τ , Js

Ju
> 1−p

p
, and f(Js; Js + Ju, 1 − p) < ε, we know that v is

malicious (Mv). Furthermore, if both Mu and Mv are true, Muv is true, i.e., both u

and v are malicious.

In summary, the modification is simple. We just need to keep tracking of Js,w,

Js, Ju, and Jv, and make decisions according to Theorem 9.

144

0.05 0.2 0.4 0.6 0.8
0

100

200

300

400

500

p

J s,
th

ε =0.0001
ε =0.001
ε =0.01
ε =0.1

Figure 6.9. The maximum number of shared channels that a malicious node pair
can jam before being caught during the period, in which no more than 8 messages
are jammed for w consecutive messages transmitted through the unshared channel.

Performance Analysis: Since the attacker aims not to block the commu-

nication but to waste the sender’s energy, we are interested in finding how many

channels the insider attacker can jam before being caught, i.e., the number of channel

assignment messages that a pair of malicious nodes can request from the sender. The

jammed channels are either shared or unshared between the suspicious node pair.

Let Js,th and Jun,th denote the maximum number of shared and unshared channels

that a malicious node pair can jam before being caught, respectively. Furthermore,

Jun,th includes Ju,th and Jv,th, the maximum number of u’s and v’s jammed unshared

channels before the traitor is caught, respectively. In other words, Ju,th + 1, Jv,th + 1,

and Js,th + 1 should be the minimum values that will trigger the traitor detection

thresholds.

We seek to bound the maximum number of jammed unshared channels. Ob-

viously, when u uses its unshared channel, v also uses its unshared channel; when u

uses a shared channel, v also uses the exact same channel. If their unshared channels

are jammed at the same time, the sender will reassign the new channel only once. To

145

reach the maximal possible number of jammed unshared channel, a clever attacker

should not jam both u’s and v’s unshared channel at the same time. Therefore,

Juv,th = Ju,th + Jv,th.

According to the traitor detection criterion in Section 6.3.1, neither Ju nor Jv

should reach τ during every w consecutive messages transmitted through the unshared

channels. Otherwise, either u or v will be identified as the traitor. Thus Juv,th should

not exceed the threshold of 2×τ−2 during every w consecutive messages transmitted

through the unshared channels. In other words, Juv,th may keep increasing along with

the total number of transmitted broadcast messages, but its maximum rate of growth

is limited to 2× τ − 2 during every w consecutive messages transmitted through the

unshared channels.

The detection criterion in this section mainly limits the number of jammed

shared channels Js. If Js does not reach τ during w consecutive messages transmitted

through the shared channels, it will not trigger the traitor detection mechanism.

Such damage is very limited and an aggressive attacker may want Js to exceed that

threshold. However, he must be careful and keep f(Js; Js + Ju, 1 − p) ≥ ε and

f(Js; Js + Jv, 1− p) ≥ ε. Otherwise, either malicious u or v will be identified. When

Js

Ju
> 1−p

p
, f(Js; Js + Ju, 1− p) decreases with Js but increases with Ju. This implies

that the more jammed unshared channels there are (either Ju or Jv), the more Js the

attacker can achieve. Thus, the attacker needs to increase the number of jammed

unshared channel (Jun) to maximize Js. We are looking for a value of Js,th that

satisfies the following criterions:

Js,th = sup{Js : f(Js; Js + Juv,th, 1− p) < ε},

where sup{Js} denotes the supremum of set {Js}.

146

Similar to Juv,th, Js,th may also increase along with the total number of transmit-

ted broadcast messages. In other words, if the attacker wants to jam more channels,

he has to stop blocking the legitimate messages from time to time. Obviously, the

growth of Js,th is limited by the growth of Juv,th.

Therefore, this upper bound is given by the following Theorem 10 and illustrated

in Figure 6.9.

Theorem 10. The rate of growth of Js,th is limited by the rate of growth of Juv,th.

According to Js,th = sup{Js : f(Js; Js + Juv,th, 1− p) ≥ ε}, where the growth of Juv,th

is limited to 2 × τ − 2 for w consecutive messages transmitted through the unshared

channel.

6.3.3 Summary of Enhancement

In summary, the integrated traitor detection algorithm is given in Procedure 4,

and its performance against different types of attackers is listed as follows:

• Outsider Attacker: In this case, neither u nor v is malicious. The probability

that the attacker fools us into making a wrong decision is given by Theorem 7.

• Only u or v is malicious: Theorem 8 provides the expected number of jammed

channels. The probability that the attacker fools us into believing both nodes

are malicious is MIN(Pτ,w, ε), as shown by Theorem 9.

• Both u and v are malicious: Theorem 10 provides the maximum number of

channels that a malicious node pair can jam before being caught.

6.4 Summary

In this chapter, we propose an adaptive jamming-resistant broadcast system

with unpredictable channel assignment. Compared to existing approaches, the pro-

posed approach reduces the communication overhead significantly without increasing

147

the hardware complexity and scarifying resilience against malicious receivers. Ana-

lytic and simulation results show that the proposed approach is both efficient and

effective.

We are considering the following two directions to further improve the proposed

approach. One is to regroup the suspicious nodes according to the jamming pattern.

In this chapter, we do not break a particular suspicious node pair until we identify

the insider malicious node. However, even before we have enough evidence to identify

the traitor, the existing jamming pattern may already give some clue about each

node’s likelihood of being malicious. Based on this likelihood, we can regroup all

node pairs and rearrange them repeatedly, until the malicious nodes are isolated.

Another potential improvement is to adaptively change the value of p according to

the jamming pattern. This will make it even more difficult for the attacker to predict

the channel assignment. Moreover, we plan to implement the proposed approach on

real wireless communication platforms and evaluate it through field experiments.

148

Procedure 4 TraitorDetection
Input: suspicious node pair (u and v), p, ε, τ , w, m

Output: Identify the malicious nodes.

1: Js ← 0, Ju ← 0, Jv ← 0, NoTraitor ← TRUE

2: Js,w ← 0, Ju,w ← 0, Jv,w ← 0

3: repeat

4: s ← 0. Randomly assign new channel Cu to u and Cv to v

5: (Pr[Cu = Cv]= p).

6: repeat

7: For each broadcast message:

8: s ← s + 1,

9: if Cu 6= Cv then

10: Update Ju,w, Ju, Jv,w, and Jv

11: if Ju,w ≥ τ then

12: u is malicious! Stop procedure!

13: end if

14: if Jv,w ≥ τ then

15: v is malicious! Stop procedure!

16: end if

17: else // Cu = Cv

18: Update Js,w and Js

19: if Js,w ≥ τ then

20: NoTraitor ← FALSE

21: end if

22: if NoTraitor = FALSE then

23: if (f(Js; Js + Ju, 1− p) < ε) ∧ (Js
Ju

> 1−p
p

) then

24: v is malicious! Stop procedure!

25: end if

26: if (f(Js; Js + Jv , 1− p) < ε) ∧ (Js
Jv

> 1−p
p

) then

27: u is malicious! Stop procedure!

28: end if

29: end if

30: end if

31: until (s = m)∨(either u or v loses message)

32: until finish broadcast

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Contributions

In this dissertation, I study the problems in the following two areas: (1) funda-

mental cryptographic mechanisms in wireless networks, and (2) security mechanisms

to combat denial of service (DoS) attacks.

• Fundamental cryptographic mechanisms in wireless networks: The communica-

tion between two nodes are usually protected with their pairwise key. As one

of the most fundamental security services, pairwise key establishment has re-

ceived a lot of attention recently. However, the existing solutions are either

vulnerable to a few compromised sensor nodes or involve expensive protocols

for establishing keys.

We develop novel scheme to establish pairwise keys with the help of a small

number of cheap nodes (assisting nodes). This explores a new dimension of using

sensor nodes. The theoretical analysis and simulation results demonstrate its

significant advantage over existing approaches: it is efficient in terms of storage

overhead, communication overhead, and computation overhead; it is resilient to

the compromised nodes; it can achieve a very high probability of establishing

the keys; it does not require any prior or post deployment knowledge, and

is therefore desirable for scenarios where it is difficult to deploy sensor nodes

at their expected locations or correctly estimate the sensors’ locations after

deployment. The implementation also demonstrates the proposed scheme is

practical for wireless sensor networks.

149

150

• security mechanisms to combat denial of service (DoS) attacks: Wireless net-

works usually run with the limited resources, which makes them easy targets of

denial of service attacks. Based on the key management solutions, we develop

the efficient and effective mechanisms to mitigate DoS attacks against two valu-

able resources, battery-supplied energy and wireless communication channels.

One DoS attack strategy is to keep the victim nodes performing expensive

operations and eventually exhaust their limited battery-supplied energy. For

example, wireless networks are vulnerable to such attacks, if broadcast au-

thentication is purely based on the expensive digital signature mechanism. The

attacker can inject a large number of bogus broadcast messages with invalid sig-

nature to waste the victim receivers’ energy. We design two pre-authentication

filter techniques, a group-based filter and a key chain-based filter, based on key

management schemes. The proposed techniques only require fast and cheap

operations to remove bogus messages before verifying the actual digital signa-

tures.

Wireless communication is particularly vulnerable to signal jamming attacks,

especially when the insider attacker exists in the broadcast system. Knowing

which channels are used, the attacker can easily inject enough interference sig-

nals and block the legitimate communication. We borrow the key management

idea and propose adaptive jamming-resistant broadcast systems with partial

channel sharing techniques. The proposed schemes not only manage the wireless

channels efficiently but also isolate the malicious receivers effectively. We also

adopt a Bayes sequential testing technique and push limit of jamming-resistant

broadcast towards optimal. Our further improvement avoids increasing the

hardware complexity and is able to identify the active malicious receivers.

151

7.2 Future Work

The research work of this dissertation can lead to other future work as follows:

• Fundamental cryptographic mechanisms in wireless networks: In our study, the

additional assisting nodes are only deployed to help establish the pairwise keys.

It is also interesting to make further use of these nodes to defend the network

against attacks. Moreover, assisting nodes need to store hash keys for every

other nodes. For a super large-scale network containing millions or even billions

of sensor nodes, the storage overhead at assisting nodes will not be ignorable

any more. This problem needs further investigation.

• security mechanisms to combat denial of service (DoS) attacks: Despite the

advantages of our two pre-authentication filter techniques, both of them have

limitations. Specifically, the group-based filter allows compromised nodes to

send forged messages before they are isolated. Although the key chain-based

filter performs better to tolerate compromised nodes, it defers to the group-

based filter in the ability to tolerate packet losses. It is interesting to integrate

these two techniques together eliminate the limitations.

In our study of jamming-resistant systems, we believe that the packet loss is

always caused by jammers. This is often true when the Media Access Control

(MAC) protocol works well. However, we may draw wrong conclusions in reality

when the wireless communication is quite unreliable. It is thus highly desirable

to conduct a thorough analysis on how channel loss rates impact our approaches.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and D. Tygar, “SPINS: Security

protocols for sensor networks,” in Proceedings of Seventh Annual International

Conference on Mobile Computing and Networks (MobiCom), July 2001.

[3] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed

sensor networks,” in Proceedings of the 9th ACM Conference on Computer and

Communications Security (CCS), November 2002, pp. 41–47.

[4] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for

sensor networks,” in IEEE Symposium on Security and Privacy (S&P), May

2003, pp. 197–213.

[5] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor networks,”

in Proceedings of 10th ACM Conference on Computer and Communications Se-

curity (CCS), October 2003, pp. 52–61.

[6] W. Du, J. Deng, Y. S. Han, and P. Varshney, “A pairwise key pre-distribution

scheme for wireless sensor networks,” in Proceedings of 10th ACM Conference on

Computer and Communications Security (CCS), October 2003, pp. 42–51.

[7] H. Chan and A. Perrig, “PIKE: Peer intermediaries for key establishment in

sensor networks,” in Proceedings of IEEE Infocom, Mar. 2005.

[8] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, “A key management

scheme for wireless sensor networks using deployment knowledge,” in Proceedings

of IEEE INFOCOM, March 2004.

152

153

[9] D. Liu and P. Ning, “Location-based pairwise key establishments for static sensor

networks,” in 2003 ACM Workshop on Security in Ad Hoc and Sensor Networks

(SASN), October 2003, pp. 72–82.

[10] ——, “Improving key pre-distribution with deployment knowledge in static sen-

sor networks,” ACM Transaction on Sensor Networks (TOSN), vol. 1, no. 2,

2005.

[11] Z. Yu and Y. Guan, “A key pre-distribution scheme using deployment knowl-

edge for wireless sensor networks,” in Proceedings of ACM/IEEE International

Conference on Information Processing in Sensor Networks (IPSN), Apr. 2005.

[12] D. Huang, M. Mehta, D. Medhi, and L. Harn, “Location-aware key management

scheme for wireless sensor networks,” in Proceedings of the 2nd ACM workshop

on Security of ad hoc and sensor networks (SASN), October 2004, pp. 29 – 42.

[13] N. Gura, A. Patel, and A. Wander, “Comparing elliptic curve cryptography and

RSA on 8-bit CPUs,” in Proceedings of the Workshop on Cryptographic Hardware

and Embedded Systems (CHES), August 2004.

[14] A. Liu and P. Ning, “TinyECC: A configurable library for elliptic curve cryptog-

raphy in wireless sensor networks,” in Proceedings of the International Conference

on Information Processing in Sensor Networks (IPSN), April 2008.

[15] H. Wang, B. Sheng, C. C. Tan, and Q. Li, “WM-ECC: an Elliptic Curve Cryptog-

raphy Suite on Sensor Motes,” College of William and Mary, Computer Science,

Williamsburg, VA, Tech. Rep. WM-CS-2007-11, 2007.

[16] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure for key

distribution in tinyos based on elliptic curve cryptography,” in Proceedings of

First Annual IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks (IEEE SECON 2004), october 2004, pp. 71–80.

154

[17] R. Poisel, Modern Communications Jamming Principles and Techniques. Artech

House Publishers, 2003.

[18] Y. Desmedt, R. Safavi-Naini, H. Wang, L. Batten, C. Charnes, and J. Pieprzyk,

“Broadcast anti-jamming systems,” Comput. Netw., vol. 35, no. 2-3, pp. 223–236,

2001.

[19] J. Chiang and Y. Hu, “Dynamic jamming mitigation for wireless broadcast net-

works,” INFOCOM 2008. The 27th Conference on Computer Communications.

IEEE, pp. 1211–1219, April 2008.

[20] Crossbow Technology Inc., “Wireless sensor networks,”

http://www.xbow.com/Home/HomePage.aspx, accessed in July 2009.

[21] R. D. Pietro, L. V. Mancini, and A. Mei, “Random key assignment for secure

wireless sensor networks,” in 2003 ACM Workshop on Security in Ad Hoc and

Sensor Networks (SASN), October 2003.

[22] J. Hwang and Y. Kim, “Revisiting random key pre-distribution schemes for wire-

less sensor networks,” in Proceedings of the 2nd ACM workshop on Security of

ad hoc and sensor networks (SASN), October 2004, pp. 43 – 52.

[23] IEEE Computer Society, “IEEE standard for information technology - telecom-

munications and information exchange between systems - local and metropolitan

area networks specific requirements part 15.4: wireless medium access control

(MAC) and physical layer (PHY) specifications for low-rate wireless personal

area networks (LR-WPANs),” IEEE Std 802.15.4-2003, 2003.

[24] Texas Instruments Inc., “2.4 GHz IEEE 802.15.4 / ZigBee-ready RF

Transceiver,” http://focus.ti.com/lit/ds/symlink/cc2420.pdf, accessed in Jan-

uary 2008.

155

[25] Crossbow Technology Inc., “MICAz 2.4GHz Wireless Module,”

http://www.xbow.com/Products/productdetails.aspx?sid=164, accessed in

January 2008.

[26] P. Ning, A. Liu, and W. Du, “Mitigating dos attacks against broadcast authen-

tication in wireless sensor networks,” ACM Transactions on Sensor Networks

(TOSN), vol. 4, no. 1, 2008, to appear.

[27] R. Wang, W. Du, and P. Ning, “Containing denial-of-service attacks in broadcast

authentication in sensor networks,” in MobiHoc ’07: Proceedings of the 8th ACM

international symposium on Mobile ad hoc networking and computing. New

York, NY, USA: ACM, 2007, pp. 71–79.

[28] I. F. Akyildiz, W. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic

spectrum access/cognitive radio wireless networks: a survey,” Comput. Netw.,

vol. 50, no. 13, pp. 2127–2159, 2006.

[29] K. Fazel and S. Kaiser, Multi-Carrier and Spread Spectrum Systems: From

OFDM and MC-CDMA to LTE and WiMAX. Wiley, 2008.

[30] K. Cheun, K. Choi, H. Lim, and K. Lee, “Antijamming performance of a multi-

carrier direct-sequence spread-spectrum system,” Communications, IEEE Trans-

actions on, vol. 47, no. 12, pp. 1781–1784, Dec 1999.

[31] E. Lance and G. Kaleh, “A diversity scheme for a phase-coherent frequency-

hopping spread-spectrum system,” Communications, IEEE Transactions on,

vol. 45, no. 9, pp. 1123–1129, Sep 1997.

[32] S. Zhou, G. Giannakis, and A. Swami, “Digital multi-carrier spread spectrum

versus direct sequence spread spectrum for resistance to jamming and multi-

path,” Communications, IEEE Transactions on, vol. 50, no. 4, pp. 643–655, Apr

2002.

156

[33] H. Zhang and Y. Li, “Anti-jamming property of clustered ofdm for disper-

sive channels,” in Military Communications Conference, 2003. MILCOM 2003.

IEEE, vol. 1, Oct. 2003, pp. 336–340 Vol.1.

[34] M. Simon, J. Omura, R. Scholtz, and B. Levitt, Spread spectrum communications

handbook. McGraw-Hill, Inc., 2001.

[35] M. Luby, “Lt codes,” in FOCS ’02: Proceedings of the 43rd Symposium on Foun-

dations of Computer Science. IEEE Computer Society, 2002, p. 271.

[36] A. Shokrollahi, “Raptor codes,” IEEE/ACM Trans. Netw., vol. 14, no. SI, pp.

2551–2567, 2006.

[37] C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, “Distillation codes and

applications to dos resistant multicast authentication,” in Proc. 11th Network

and Distributed Systems Security Symposium (NDSS), 2004.

[38] M. Strasser, C. Pöpper, S. Capkun, and M. Cagalj, “Jamming-resistant key

establishment using uncoordinated frequency hopping,” in SP ’08: Proceedings of

the 2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE Computer

Society, 2008, pp. 64–78.

[39] M. Strasser, C. Pöpper, and S. Čapkun, “Efficient uncoordinated fhss anti-

jamming communication,” in MobiHoc ’09: Proceedings of the tenth ACM inter-

national symposium on Mobile ad hoc networking and computing. ACM, 2009,

pp. 207–218.

[40] D. Slater, P. Tague, R. Poovendran, and B. Matt, “A coding-theoretic approach

for efficient message verification over insecure channels,” in WiSec ’09: Proceed-

ings of the second ACM conference on Wireless network security. ACM, 2009,

pp. 151–160.

157

[41] Y. Liu, P. Ning, H. Dai, and A. Liu, “Randomized differential dsss: Jamming-

resistant wireless broadcast communication,” in Proceedings of the 29th IEEE

International Conference on Computer Communications (INFOCOM ’10), 2010.

[42] L. Lazos, S. Liu, and M. Krunz, “Mitigating control-channel jamming attacks

in multi-channel ad hoc networks,” WiSec ’09: Proceedings of the second ACM

conference on Wireless network security, 2009.

[43] A. Chan, X. Liu, G. Noubir, and B. Thapa, “Control channel jamming: Re-

silience and identification of traitors,” 2007.

[44] P. Tague, M. Li, , and R. Poovendran, “Mitigation of control channel jamming

under node capture attacks,” IEEE Transactions on Mobile Computing, 2009.

[45] C. Hartung, J. Balasalle, and R. Han, “Node compromise in sensor networks:

The need for secure systems,” U. Colorado at Boulder, Tech. Rep. CU-CS-990-

05, Jan. 2005.

[46] J. Newsome, R. Shi, D. Song, and A. Perrig, “The sybil attack in sensor net-

works: Analysis and defenses,” in Proceedings of IEEE International Conference

on Information Processing in Sensor Networks (IPSN 2004), Apr 2004.

[47] Y. Hu, A. Perrig, and D. Johnson, “Packet leashes: A defense against wormhole

attacks in wireless ad hoc networks,” in Proceedings of INFOCOM, April 2003.

[48] B. Parno, A. Perrig, and V. Gligor, “Distributed detection of node replication

attacks in sensor networks,” in IEEE Symposium on Security and Privacy, May

2005.

[49] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random func-

tions,” Journal of the ACM, vol. 33, no. 4, pp. 792–807, October 1986.

[50] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-low power data

storage for sensor networks,” in Information Processing in Sensor Networks,

2006(IPSN 2006), April 2006.

158

[51] Q. Dong, D. Liu, and P. Ning, “Pre-authentication filters: Providing dos resis-

tance for signature-based broadcast authentication in wireless sensor networks,”

in Proceedings of ACM Conference on Wireless Network Security (WiSec), 2008.

[52] D. Liu, P. Ning, and W. Du, “Group-based key pre-distribution in wireless sensor

networks,” ACM Transactions on Sensor Networks, 2008, to appear.

[53] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. S. J. Pister, “Sys-

tem architecture directions for networked sensors,” in Architectural Support for

Programming Languages and Operating Systems, 2000, pp. 93–104.

[54] R. Rivest, “The RC5 encryption algorithm,” in Proceedings of the 1st Interna-

tional Workshop on Fast Software Encryption, vol. 809, 1994, pp. 86–96.

[55] H. Lim and C. Kim, “Multicast tree construction and flooding in wireless ad

hoc networks,” in Proceedings of ACM Modeling, Analysis, and Simulation of

Wireless and Mobile Systems, 2000.

[56] W. Peng and X. Lu, “On the reduction of broadcast redundancy in mobile ad

hoc networks,” in Proceedings of ACM International Symposium on Mobile and

Ad Hoc Networking and Computing, 2000.

[57] S. Zhu, S. Xu, S. Setia, and S. Jajodia, “LHAP: A lightweight hop-by-hop au-

thentication protocol for ad-hoc networks,” in Proceedings of the Workshop on

Mobile and Wireless Network (MWN), 2003.

[58] T. Lai, “Nearly optimal sequential tests of composite hypotheses,” The Ananals

of Statistics, vol. 16, no. 2, pp. 856–886, 1988.

[59] M. Li, I. Koutsopoulos, and R. Poovendran, “Optimal jamming attacks and

network defense policies in wireless sensor networks,” in INFOCOM 2007. 26th

IEEE International Conference on Computer Communications. IEEE, May 2007,

pp. 1307–1315.

159

[60] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and

detecting jamming attacks in wireless networks,” in Proceedings of ACM Inter-

national Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),

2005.

BIOGRAPHICAL STATEMENT

Qi Dong received his B.S. degree in Electrical Engineering from Jilin University,

China, in 2002, his M.S. degree in Electrical Engineering from Beijing University

of Posts and Telecommunications, China, in 2005, and Ph.D. degree in Computer

Engineering from The University of Texas at Arlington in 2010, respectively. His

current research interest is security and reliability in distributed systems.

160

