

ADVANCED SOFTWARE TESTING TECHNIQUES BASED ON COMBINATORIAL DESIGN

by

WENHUA WANG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2010

Copyright © by Wenhua Wang 2010

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 I am sincerely grateful to Prof. Lei for his tutoring in my PhD program. Through these

years, he has always been offering motivation and encouragement to me. Without his mentoring

and support, it would not have been possible to make it to this point.

 I also owe my gratitude to Dr. Che, Dr. Fegaras, Dr. Khalili, and Dr. Kung for their

serving in the committee. They instructed me in computer science knowledge and research

methodology. Their valuable advice guided me to gain an insight into my research work.

In my security testing project, Dr. Csallner and Dr. Liu also instructed me in security

knowledge and problem solving skills. I appreciate their tutoring too.

 During my PhD program, many people in UTA also gave me help, especially Ms.

McBride and Ms. Costabile. Thanks for their help!

 Finally, I would not be in this position without my parents’ continuous support in the last

thirty years. I would like to dedicate this work to them.

 July 15, 2010

iv

ABSTRACT

ADVANCED SOFTWARE TESTING TECHNIQUES BASED ON COMBINATORIAL DESIGN

Wenhua Wang, PhD

The University of Texas at Arlington, 2010

Supervising Professor: Yu Lei

 Combinatorial testing refers to a testing strategy that applies the principles of

combinatorial design to the domain of software test generation. Given a system with k

parameters, combinatorial testing requires all the combinations involving t out of k parameters

be covered at least once, where t is typically much smaller than k. The key insight behind

combinatorial testing is that while the behavior of a system may be affected by many

parameters, most faults are caused by interactions involving only a small number of

parameters. Empirical studies have shown that combinatorial testing can dramatically reduce

the number of tests while remaining effective for fault detection.

 Existing work on combinatorial testing has mainly focused on functional requirements,

and has only considered non-interactive systems, i.e., systems that take all inputs up front

without interacting with the user in the middle of a computation. In this dissertation, we propose

three new combinatorial testing techniques, two of which deal with interactive web applications,

and the third one deals with non-functional security requirements: (1) Combinatorial

construction of web navigation graphs: A navigation graph captures the navigation structure of a

v

web application. The main challenge of constructing navigation graphs is handling dynamic web

pages that are only generated at runtime and in response to user requests. We develop a

combinatorial approach that generates user requests to discover these dynamic web pages. We

report a software tool called Tansuo, and demonstrate the effectiveness of our approach using

several real-life open-source web applications. (2) Combinatorial test sequence generation for

web applications: One important aspect of web applications is that they often consist of dynamic

web pages that interact with each other by accessing shared objects. It is nearly always

impossible to test all possible interactions that may occur in a web application of practical scale.

We develop a combinatorial approach to systematically exercising these interactions. Our

experimental results show that our approach can effectively detect subtle interaction faults that

may exist in a web application. (3) Detection of buffer overflow vulnerabilities: Buffer overflow

vulnerabilities are program defects that can cause a buffer to overflow at runtime. Many security

attacks exploit buffer overflow vulnerabilities to compromise critical data structures. We develop

a combinatorial approach to detecting buffer overflow vulnerabilities. Our approach exploits the

fact that combinatorial testing often achieves a high level of code coverage. Experimental

results show that our approach can effectively detect buffer overflow vulnerabilities.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ..iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS... x

LIST OF TABLES .. xi

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

2. RELATED WORK... 7

2.1 Overview .. 7

2.2 Combinatorial Testing .. 7

2.2.1 Combinatorial Test Generation Strategies 7

2.2.2 Empirical Studies ... 8

2.3 Related Work on Web Navigation Graph Generation 10

2.3.1 Web Crawling ... 10

2.3.2 Web Application Testing .. 11

2.4 Related Work on Web Test Sequence Generation .. 12

2.4.1 Model-Based Web Application Testing .. 12

2.4.2 Session-Based Web Application Testing 13

2.5 Related Work on Buffer Overflow Vulnerability Detection 14

2.5.1 Buffer Overflow Detection .. 14

2.5.2 Buffer Overflow Prevention .. 15

vii

2.5.3 Fuzz Testing ... 15

2.5.4 Symbolic Execution .. 16

3. WEB NAVIGATION GRAPH GENERATION ... 18

3.1 Background .. 18

3.2 Challenges and Contributions .. 19

3.3 A Combinatorial Approach for Navigation Graph Generation 24

3.3.1 Basic Concepts .. 24

3.3.2 Algorithm BuildNavGraph... 25

3.3.3 Discussions .. 31

3.4 Tansuo: A Prototype Tool .. 32

3.4.1 Tanuo’s Architecture .. 33

3.4.2 State Restoration Approaches ... 35

3.5 Experiments ... 39

3.5.1 Research Questions ... 39

3.5.2 Metrics .. 40

3.5.3 Experimental Setup .. 40

3.5.4 Results and Discussions .. 44

3.5.5 Threats to Validity .. 49

4. WEB TEST SEQUENCE GENERATION ... 51

4.1 Background .. 51

4.2 Challenges and Contributions .. 52

4.3 An Interaction-Based Test Sequence Generation Approach 54

4.3.1 Basic Concepts .. 54

4.3.2 Algorithm Generate-Sequences ... 56

4.3.3 An Example Scenario ... 60

4.4 Experiments ... 64

viii

4.4.1 Research Questions ... 64

4.4.2 Metrics .. 64

4.3.3 Experimental Setup .. 64

4.4.4 Results and Discussions .. 67

4.4.5 Threats to Validity .. 70

5. BUFFER OVERFLOW VULNERABILITY DETECTION .. 72

5.1 Background .. 72

5.2 Challenges and Contributions .. 73

5.3 A Combinatorial Approach for Buffer Overflow Vulnerability Detection 76

5.3.1 Main Idea ... 76

5.3.2 Algorithm BOVTest .. 78

5.3.3 Discussions .. 83

5.4 Tance: A Prototype Tool .. 84

5.5 Experiments ... 86

5.5.1 Validation of the SEP Hypothesis .. 86

5.5.2 Experimental Setup .. 88

5.5.3 Results and Discussions .. 89

5.5.4 Threats to Validity .. 92

6. CONCLUSIONS AND FUTURE WORK ... 94

6.1 Conclusions .. 94

6.2 Future Work .. 95

REFERENCES ... 97

BIOGRAPHICAL INFORMATION .. 101

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 An Options Configuration Example from Microsoft Word 2003 ... 2

1.2 A 2-Way Test Set ... 3

2.1 A HTTP Request Example ... 16

3.1 A URL Example. ... 19

3.2 A Simplified Example form Bookstore Application ... 23

3.3 Algorithm BuildNavGraph ... 29

3.4 Algorithm Traverse ... 29

3.5 Algorithm ProcessForm .. 30

3.6 Tansuo’s Architecture... 35

3.7 The workflow of hybrid state restoration .. 39

3.8 A 1-Way Test Set ... 43

4.1 Navigation Graph Example 1 ... 56

4.2 Navigation Graph Example 2 ... 56

4.3 Algorithm Generate-Sequences ... 59

4.4 Navigation Graph for Bookstore ... 62

5.1 Algorithm BOVTest ... 79

5.2 An Example Test Set.. 82

5.3 Tance’s Architecture... 86

x

LIST OF TABLES

Table Page

3.1 Real-life Examples for Parameter Interactions .. 24

3.2 Information About Reverse JDBC Calls ... 37

3.3 Server-side Characteristics of Subject Applications .. 43

3.4 Client-side Characteristics of Subject Applications .. 43

3.5 Comparisons on Navigation Graphs Generated with T-Way Coverage 44

3.6 Comparisons on Time Cost between T-Way Coverage ... 45

3.7 Comparisons on Memory Cost between T-Way Coverage.. 45

3.8 Comparisons on Total Combinations between T-Way Coverage .. 45

3.9 Completeness Experiment Results .. 47

3.10 Comparisons on Graph Statistics between Two State Restoration Approaches 48

3.11 Comparisons on Costs between Two State Restoration Approaches 48

3.12 Comparisons to WebSphinx and LCP.. 49

4.1 The Pairs Set for Bookstore ... 63

4.2 Characteristics of Subject Applications .. 66

4.3 Characteristics of Test Cases .. 67

4.4 Program Coverage and Fault Detection: Bookstore .. 70

4.5 Program Coverage and Fault Detection: CPM .. 70

5.1 Validation of the SEP Hypothesis .. 87

5.2 Statistics of Subject Applications ... 88

5.3 External Parameter Models .. 90

5.4 Statistics on Number of Tests .. 90

xi

5.5 Vulnerability Detection Results .. 92

5.6 Comparisons on Detected Buffer Overflow Vulnerabilities between Tance and JBroFuzz 92

1

CHAPTER 1

INTRODUCTION

 Software systems have become ubiquitous in modern society. As more and more

businesses, e.g., enterprise management, healthcare services, and financial services, are

conducted using software systems, our lives are being made more convenient. However, we

are also becoming more dependent on the proper functioning of these software systems.

Consequently, software quality has become a major concern in the software engineering

industry.

Software testing is an effective way to ensure the quality of a software system. It is

nearly always impossible to exhaustively test all the input combinations. Figure 1.1 presents an

options configuration screen in Microsoft Word 2003. In this screen, testers would have to test

24576 combinations, even for a small set of configuration options that includes the 14 options in

the “Show” category of the “View” tab, in order to perform exhaustive testing. The number of

combinations will be astronomical if all the configuration options are considered. Therefore, it is

necessary to select a subset of these combinations to test.

To test software effectively with limited budgets and time, the notion of combinatorial

design has been introduced for test selection [13][14][27]. The key insight behind combinatorial

testing is the following. While the behavior of a software system could be affected by many

parameters, empirical study results [14] show that most faults are caused by individual

parameters or interactions involving only a small number of parameters. Thus, for the purpose

of fault detection, we only need to test the combinations that involve a small number t of

parameters for a software system with n parameters, where t is typically much smaller than n.

2

We will refer to a combination involving t parameters as a t-way combination, and

covering all the t-way combinations as achieving the t-way combinatorial coverage [13][14][27].

Figure 1.1 An Options Configuration Example from Microsoft Word 2003.

To illustrate the notion of t-way combinatorial coverage, consider the following example.

In this example, a form has three parameters P1, P2, and P3, each parameter having two

values “0” and “1”. Figure 1.2 shows a set of 2-way tests for this form. Each row represents a

test, and each column represents a parameter (in the sense that each entry in a column is a

value of the parameter represented by the column). An important property of this test set is that

each of the three possible pairs of columns, i.e., columns P1 and P2, columns P1 and P3, and

columns P2 and P3, contains all the four possible pairs of values of any two (out of three)

parameters, i.e., {00, 01, 10, 11}. Thus, this test set achieves 2-way combinatorial coverage for

this form. Note that an exhaustive test set would consist of 23 = 8 tests. As another example,

only 10 tests are needed to achieve 2-way combinatorial coverage for the example presented in

Figure 1.1, if IPOG algorithm is used [35].

3

Figure 1.2 A 2-Way Test Set

In the last decades, many empirical results [32][33][72] have shown the effectiveness of

combinatorial testing in practical applications. Many approaches [27] have also been reported to

generate test sets that are as small as possible but still achieve a combinatorial coverage

criterion. However, existing research work mainly focuses on functional requirements, i.e.,

ensuring that a system implements all the functions as designed, and has only considered non-

interactive systems, i.e., systems that take all inputs up front without interacting with the user in

the middle of a computation. There has been little work on how to adapt combinatorial design to

dealing with interactive web applications and non-functional security requirements. Tests

generated by existing approaches may not work in web application testing and security testing.

Consider the options configuration example presented in Figure 1.1. The order in which the

different options appear in a combination is insignificant, i.e., it does not affect the testing result.

But, in web application testing, the order in which two web pages are visited is significant. In

particular, two web pages may be visited in one order but not the other. For example, consider a

book review web application that allows a user to vote for a book only once. After the user has

voted for a book, the web application shows the up-to-date voting statistics to the user. In this

example, the “Voting” web page can be visited after the “Result” web page, but not in the

reverse order. Therefore, it is important to consider the order in which the different web pages

appear when we try to test the possible interactions among the different web pages.

 P1 P2 P3

 0 0 0

 0 1 1

 1 0 1

 1 1 0

4

To investigate the potential value of combinatorial testing in web application testing and

security testing, this dissertation presents three projects in adapting combinatorial testing to

these areas. Two of the three projects deal with interactive web applications, and the third one

deals with security requirements. In the three projects, we develop three combinatorial testing

techniques, including a combinatorial approach to building navigation graphs for dynamic web

applications, an interaction-based test sequence generation approach for testing web

applications, and a combinatorial approach to detecting buffer overflow vulnerabilities.

• The combinatorial approach to building navigation graphs for dynamic web

applications is proposed to capture the navigation structure of a web application

and represent it with a web navigation graph. The generated web navigation graph

can facilitate testers in web sequence testing [75] and regression testing. However,

in dynamic web applications, web pages are only generated at runtime and in

response to user requests, which is a big challenge for web navigation graph

generation. To generate practical web navigation graphs, we develop a

combinatorial approach that generates user requests to discover these dynamic

web pages. In addition, a dynamic web application may produce an infinite number

of web pages, which results in an infinite web navigation graph. To control the web

navigation graph size, a URL abstraction mechanism is also proposed in this

approach.

• The interaction-based test sequence generation approach for testing web

applications generates test sequences from web navigation graphs. One important

aspect of web applications is that they often consist of dynamic web pages that

interact with each other by accessing shared objects, e.g., session objects and

databases. As for the faults caused by the interactions between web pages, test

sequences are needed to detect them. However, it is nearly always impossible to

test all the possible interactions that may occur in a web application of practical

5

scale. To effectively detect subtle interaction faults, we develop a combinatorial

approach to systematically exercise these interactions with a small set of test

sequences. When applied to a web application, the generated test sequences

systematically detect the interaction faults that may exist in a web application.

• The combinatorial approach to detecting buffer overflow vulnerabilities adapts

combinatorial testing to detecting buffer overflow vulnerabilities in the software

under test. Buffer overflow vulnerabilities are program defects that can cause a

buffer to overflow at runtime. Many security attacks exploit buffer overflow

vulnerabilities to compromise critical data structures. To systematically detect buffer

overflow vulnerabilities, we develop a combinatorial approach to generate tests by

combining parameter values with combinatorial testing techniques. Our approach

exploits the fact that combinatorial testing often achieves a high level of code

coverage, which helps our approach reach potentially vulnerable statements in the

software under test.

To evaluate the effectiveness of the three approaches, experiments have been

conducted on open source applications. Our empirical results show that combinatorial testing

can be effective in capturing web navigation structures and detecting faults in web applications

as well as security-related faults, which indicates the value of combinatorial testing in web

application testing and security testing.

The remainder of this paper is organized as follows. Chapter 2 discusses research work

related to the three approaches proposed in this dissertation, including research work on

combinatorial testing, web navigation graph generation, web test sequence generation, and

buffer overflow vulnerability detection. Chapter 3 introduces the combinatorial approach to

building navigation graphs for dynamic web applications. Chapter 4 presents the interaction-

based test sequence generation approach for testing web applications. The combinatorial

6

approach to detecting buffer overflow vulnerabilities in the software under test will be introduced

in Chapter 5. Chapter 6 concludes this dissertation and discusses future work.

7

CHAPTER 2

RELATED WORK

2.1 Overview

This dissertation proposes three domain-specific combinatorial testing approaches: (1)

a combinatorial approach to web navigation graph generation; (2) a combinatorial approach to

web test sequence generation; and (3) a combinatorial approach to buffer overflow vulnerability

detection. The first two approaches deal with interactive web applications, and the last one

deals with security testing. The remaining of this chapter is organized as follows. Section 2.2

discusses related work on combinatorial testing in general. Section 2.3 discusses related work

on web navigation graph generation. Related work on web test sequence generation will be

discussed in Section 2.4. Section 2.5 discusses related work on buffer overflow vulnerability

detection.

2.2 Combinatorial Testing

 Combinatorial testing refers to a testing strategy that applies the principles of

combinatorial design to the domain of software test generation [13]. It creates tests by

combining parameter values with combinatorial test generation strategies that will be introduced

in Section 2.2.1. Section 2.2.2 discusses empirical studies in combinatorial testing.

2.2.1. Combinatorial Test Generation Strategies

 Many combinatorial test generation strategies have been proposed to generate test

sets that are as small as possible but still satisfy a given coverage criterion, e.g., 2-way

combinatorial coverage and 3-way combinatorial coverage. Grindal et al. [27] surveyed fifteen

important strategies that have been reported in the literature. Two representative strategies, i.e.,

8

AETG strategy [13] and IPO strategy [35], are described as follows. D. M. Cohen et al. [13]

proposed a greedy algorithm for combinatorial testing, called Automatic Efficient Test

Generation (AETG). In this algorithm, a test is created in a way such that it covers as many

uncovered t-way combinations as possible. First, AETG strategy puts a value v of a parameter p

into a new candidate test ct, if v exists in the greatest number of uncovered t-way combinations.

Second, AETG strategy randomly selects p’ out of the rest parameters, and puts its value v’ into

ct so that {v, v’} exists in the greatest number of uncovered t-way combinations. Third,

completes ct by including values of the rest parameters one by one, with the policy used at the

second step. Fourth, AETG strategy repeats the above three steps to generate 50 candidate

tests, and picks one out of the 50 candidate tests as a final test if this candidate test covers the

greatest number of t-way combinations. AETG strategy repeats the four steps until all t-way

combinations have been covered. Lei et al. [35] proposed another t-way testing strategy called

In-Parameter-Order (IPO). The IPO strategy generates a t-way test set to cover all the t-way

combinations between the first two parameters and then extends the test set to cover the all the

t-way combinations of the first three parameters. This process is repeated until the test set

covers all the t-way combinations of the parameters.

Existing work on combinatorial test generation significantly differs from the work

described in this dissertation. In particular, tests are generated to test functional requirements,

where all the parameter values are considered equal during test generation. This is different

from our work in detecting buffer overflow vulnerabilities, where special values that may trigger

a buffer overflow are treated differently than other values. Moreover, existing work has only

considered non-interactive systems, and they cannot be applied to testing interactive systems,

such as web applications.

2.2.2. Empirical Studies

 Cohen et al. [13] applied ATEG to testing ten UNIX commands. Experiment results

show that 2-way combinatorial coverage helped to achieve more than 80% branch coverage.

9

Burr et al. [7] further evaluated the code coverage of AETG on Nortel internal email system.

Experimental results show that AETG achieved 84% branch coverage and 93% code coverage

with 47 tests generated for 2-way combinatorial coverage. In addition to code coverage,

empirical studies have also been conducted on the effectiveness of fault detection, i.e., how

many faults can be detected by t-way combinations. Cohen et al. [13] applied ATEG to testing

the interface modules of two released Telcordia version: Telcordia-1994 and Telcordia-1995.

With the tests that achieved 2-way combinatorial coverage, 67 new faults were detected in

Telcordia-1994 and 57 new faults were detected in Telcordia-1995. Wallace et al. [74] analyzed

15 years of medical device recall data from US Food and Drug Administration (FDA). In the 109

faults with clear description, 97% reported faults can be detected by tests that achieve 2-way

combinatorial coverage.

Kuhn et al. [32][33] investigated the fault detection effectiveness of t-way combinatorial

coverage (t=1,2,3,4,5,6). In [32], Kuhn et al. examined 194 reported faults of Mozilla web

browser and 171 reported faults of Apache web server in bug tracking databases. Empirical

results show that more than 70% of these faults can be detected by individual parameter values

or 2-way combinations. Moreover, covering all 6-way combinations can detect all the reported

faults. In [33], Kuhn et al. investigated 329 faults reported for a large distributed data

management system from NASA Goddard Space Flight Center. Empirical results show that

tests that achieve 2-way combinatorial coverage can detect 93% reported faults and all reported

faults can be detected by the tests that achieve 4-way combinatorial coverage.

 The work described in this dissertation adds additional results to the literature. In

particular, our results indicate that combinatorial testing can be effective for testing interactive

web applications and for testing non-functional requirements such as security.

10

2.3 Related Work on Web Navigation Graph Generation

2.3.1. Web Crawling

 Web crawling has been an active research area in recent years [10][29][36][42][50].

Web crawling is related to our research work on web navigation graph generation because it

navigates through a collection of web pages, and needs to deal with dynamic web pages.

(There are two types of web crawling: surface/regular web crawling, which does not interact with

web forms, and deep web crawling, which interacts with web forms. We focus our attention on

deep web crawling.) However, web crawling is about “content discovery”, i.e., it aims to discover

as much information as possible from different web pages, while our research work is about

“structure discovery”, i.e., it aims to capture the navigation relationship among different web

pages. Consequently, web crawling employs techniques that are very different from ours.

Specifically, web crawlers often deal with the web page explosion problem by picking web

pages that are information-rich and by discarding the others [10][40]. For example, web crawling

discards web pages for the login functionality because these web pages contain little

information. But the associated navigation behavior of this kind of web pages is very important

in the navigation structure, especially for the security-critical navigation structure. Therefore, our

approach keeps these web pages for the login functionality in generated web navigation graphs.

In our approach, web pages are abstracted based on their URLs, instead of their contents.

Web crawling is also different from our approach in capturing input combination

dependent navigation structure. In web applications, some navigation structure can only be

detected after users provide correct input combinations. For example, the web pages for the

administration functionality can be accessed only after users input the correct administrator

username/password combination. Otherwise, a user will be navigated to an “error” web page, if

the user submits a wrong username/password combination. To capture the navigation structure

behind web forms, most web crawlers have focused on the problem of how to select values for

individual parameters. One common approach used by those crawlers is to build a pre-defined

11

list of values for the parameters that are frequently encountered. This approach is also useful in

our work. However, the problem of how to effectively combine those parameter values has been

largely left open. The very recent work by Madhavan et al. [40] is an exception. Their approach

uses a bottom-up search strategy to identify parameter combinations that could lead to the

largest number of distinct response pages. This differs from our work, where we generate

combinations to achieve a well-defined coverage criterion.

2.3.2. Web Application Testing

 Our research work on web navigation graph generation is related to web application

testing techniques in which test sequences are generated on the fly and by navigating through

an web application [4][38]. In particular, our work is closely related to VeriWeb [4]. VeriWeb

applies a general software model checking technique called VeriSoft [22] to web applications.

To test a web application, VeriWeb tries to explore all possible navigation paths in a systematic

manner. VeriWeb uses an exploration algorithm that is very similar to ours. That is, both

VeriWeb and our approach explore web applications in a depth-first manner, and restore states

after backtrack to a previous web page. However, the two approaches significantly differ in the

way they handle the web page explosion problem and capture the input combination dependent

navigation structure behind web forms. Specifically, VeriWeb addresses the web page

explosion problem by allowing a limit to be set on the length of navigation paths it explores. This

is different from our use of abstract URLs. VeriWeb addresses the input combination dependent

navigation structure capture problem by allowing the user to supply and reuse pre-defined

parameter values. It is unclear which strategy is used to combine parameter values during

exploration.

Several models have been developed and used in model-based web application

testing [1][37][51]. In particular, the UML model proposed by Ricca and Tonella [51] is close to

our web navigation graph generation approach. A fundamental difference between their model

and ours is that they do not abstract dynamic web pages. That is, each dynamic web page is

12

represented as a separate node in their model. In addition, their model did not discuss how

solve the input combination dependent navigation structure capture problem.

2.4 Related Work on Web Test Sequence Generation

2.4.1. Model-Based Web Application Testing

Model-based testing typically builds an abstract model of the web application under

test, and then generates test sequences from the model to satisfy some coverage goals.

Existing model-based testing techniques for web applications extend traditional testing

techniques, e.g., those based on control flow and/or data flow, to the web application domain.

Liu et al. [37] proposed the Web Application Test Model (WATM) to model data flow between

structural artifacts at the following five levels: function, function clusters, object, object clusters

and web application. They later proposed an agent-based approach to manage the web

application testing process [49]. Ricca and Tonella [51] proposed a UML model to represent the

dynamic components of a web application. This model was extended later with control flow

information to facilitate testing boundary conditions associated with the branches in the

code [70]. Lucca et al. [38] proposed an object-oriented model for functional testing at both

levels of unit testing and integration testing. Lucca et al. [39] also presented a state-chart model

to model and test the browser interactions in web applications. They proposed to apply several

coverage criteria presented by Binder [6] to the state chart model. These criteria include all-

states, all-transitions, all-transition-k-tuples, and all-round-trip-paths. The all-states criterion is

similar to a criterion designed to cover all nodes in a web navigation graph. The all-transitions

criterion is equivalent to the AllEdges criterion that we propose to use as a contrast in our

experiments. The all-transition-k-tuples criterion aims to cover all possible sequences of

transitions of size k consecutively. This criterion is different from our AllOrderedPairs criterion

that covers all the web page interaction pairs in a web application (The formal “ordered pair”

definition in Chapter 4). Our AllOrderedPairs criterion does not require that the two web pages

in an ordered pair be connected by a direct edge in the navigation graph of a web application.

13

Similarly, the test sequences do not have to contain web pages in an ordered pair consecutively

one after another. In [1], hierarchical FSM-based models for large web applications are

proposed to perform structural testing based on traditional test coverage criteria, including all-

pages, all-actions, all-links and all-forwards.

Note that our interaction-based testing approach is also a model-based testing

approach. The novelty of our work lies in the fact that we generate test sequences to achieve 2-

way combinatorial coverage, which is a concept unexplored in the current web application

testing domain.

2.4.2. Session-Based Web Application Testing

Several techniques have been developed that record real usage data and use the

usage data to generate test sequences. Elbaum et al. [20] proposed three user session-based

testing strategies: 1) replaying captured user sessions directly; 2) combining interactions from

different user sessions; and 3) inserting user session values into tests generated from the

model proposed by Ricca and Tonella [51]. Sprenkle et al. [61][64] addressed the problem of

testing multi-user interactions by taking the underlying application state into account when

executing tests. They also proposed several oracles for web application testing. To address the

challenge of working with large numbers of user sessions, Sampath et al. [55] proposed a

technique to reduce the size of a user-session-based test suite by clustering user sessions

based on concept analysis. In [62], they compared their concept analysis-based reduction to

requirement-based reduction techniques, in terms of cost, program coverage and fault detection

effectiveness. Sampath et al. [54] also investigated the effectiveness of reducing test suites with

a criterion designed to cover all web page sequences of size 2 that occur in the original suite of

logged user sessions. This study revealed that certain faults are detected only by the

occurrence of a certain sequence of web pages in a test. Note that the approach of covering

sequences of size 2 is different from the approach presented in this dissertation. In the

14

AllOrderedPairs strategy, we do not require that two web pages in an ordered pair appear

consecutively one after another in one test sequence.

Compared to model-based testing, user session-based testing does not need model

construction that can be difficult for large and/or complex web applications. However, the fault

detection ability of user-session-based techniques depends to a large degree on the quality of

collected user sessions [19]. In addition, user-session-based techniques require field

deployment and extensive user participation, which significantly limits the applicability of those

techniques.

2.5 Related Work on Buffer Overflow Vulnerability Detection

2.5.1. Buffer Overflow Detection

 Some existing research work [18][53] focuses on detecting whether a buffer overflow

has occurred at runtime. Their approaches keep track of boundaries of each buffer in a software

system. After each operation on a pointer of a buffer, their approaches check whether this

pointer is still within boundaries of this buffer. If not, their approaches will alarm that a buffer

overflow occurs. In other words, these approaches just detect whether a buffer overflow occurs

in a specific runtime scenario. They do not consider how to develop scenarios to trigger buffer

overflow vulnerabilities in a software system.

In contrast with the above existing research work, our approach on buffer overflow

vulnerability detection focuses on developing tests to detect existing buffer overflow

vulnerabilities in a software system. It means our approach generates a set of tests with a well-

defined criterion. Note that, in Chapter 5, our approach uses the techniques in [18][53] to detect

triggered buffer overflows in runtime scenarios, when testing a software system. From what has

been discussed above, we can conclude that our approach and the existing approaches are

complementary to each other in detecting buffer overflow vulnerabilities in a software system.

15

2.5.2. Buffer Overflow Prevention

Some existing research work focuses on preventing buffer overflows, or more precisely,

preventing the potential damage that may be caused by buffer overflows at runtime [17][65]. For

example, StackGuard [16] may terminate a process after it detects that a return address on the

stack has been overwritten due to the overflow of a buffer that is near this return address.

Existing approaches to runtime prevention of buffer overflows can incur significant runtime

overhead [53]. In addition, these approaches are mainly designed for damage control for the

potentially vulnerable software. This is in contrast with our research work that aims at

developing and releasing the software that are free from buffer overflow vulnerabilities.

In this dissertation, our research work on buffer overflow vulnerabilities focuses on

detecting buffer overflow vulnerabilities during the development stage. In particular, we discuss

testing based approaches, i.e., approaches that involve actual program executions. We will not

discuss approaches that are based on pure static analysis [11], as they involve quite different

techniques. Note that static analysis suffers from the problem of false positives and/or

negatives.

2.5.3. Fuzz Testing

Fuzz testing [67][69] is a most widely used black-box testing approach in the security

testing. It is the most related to our approach. Fuzz testing typically starts from one or several

normal tests, and then randomly mutates parameter values in normal tests with special inputs to

derive new tests. These new tests will be used to trigger buffer overflow vulnerabilities in a

software system. Advanced fuzz testing techniques [24][25][67][69] can also incorporate domain

knowledge and/or employ heuristics, e.g., assigning different weights to different components.

However, poor code coverage is a major limitation of fuzzing [25]. For instance, Figure

2.1 presents a normal HTTP request. JBroFuzz (a web application fuzzer for HTTP/HTTPS

requests) [31] generates its first set of tests by replacing “POST” with its special data for

triggering buffer overflow vulnerabilities. Then, JBroFuzz replaces “cgi-bin/test.php” with its

16

special data to generate its second set of tests. This process will be repeated until all the fields

in this request have been fuzzed. From this instance, we can see fuzz testing does not consider

how to generate tests by combining input values effectively, which causes its poor code

coverage. In contrast, our approach samples the input space and combines input values in a

systematic manner to achieve a t-way combinatorial coverage. Empirical study results on

combinatorial testing have indicated that there is a correlation between input combinatorial

coverage and branch/code coverage. Thus, our approach solves the poor code coverage

problem by introducing combinatorial testing to manipulate input values.

POST /cgi-bin/test.php HTTP/1.1

Content-Length: 20

aaaaaaaaaaaaaaaaaaaa

Figure 2.1 A HTTP Request Example

2.5.4. Symbolic Execution

 Recently there has been a growing amount of interest in the approaches [9][23][58] that

combine symbolic execution and testing to detect the buffer overflow vulnerabilities in the

software under test. In these approaches, symbolic execution is used to collect path conditions

consisting of a sequence of branching decisions. These branching decisions are then negated

systematically to derive test inputs that will explore different paths when executed. In order to

detect buffer overflow vulnerabilities, memory safety constraints are also formulated and solved

together with these path conditions. A potential problem with these approaches is the path

explosion problem. Techniques based on functional summaries[24], generational

search [25][24], and length abstraction [71], have been developed to alleviate this problem.

These approaches generate tests in a fully automatic manner. However, symbolic execution

17

often involves extensive instrumentation, either at the source cod or binary code level. Thus, the

resulting solutions are usually specific to a particular language, build environment, or platform.

In addition, for large and/or complex software system, numerous and complicated constraints

that have to be solved present significant challenges to the capacity of existing constraint

solvers. It is worth noting that symbolic executions are often much slower than actual program

executions.

18

CHAPTER 3

WEB NAVIGATION GRAPH GENERATION

3.1 Background

 A web application navigation graph, or simply a navigation graph, is a representation of

the navigation structure of a web application. In a navigation graph, a node represents a web

page and an edge represents a direct transition between two web pages. Particularly, a web

page is identified by a URL [1]. As is shown in Figure 3.1, a standard URL includes five parts,

i.e., scheme, authority, path, query and fragment. An edge is identified by the two URLs of the

nodes it connects.

In a dynamic web application, a transition from one web page to the other web page

can be triggered in two ways: 1) clicking a link in the current web page, and 2) submitting a form

in the current web page. When a user submits a form, a web application may dynamically

navigate the user to different web pages according the user’s inputs for the form. In other

words, a transition caused by a form submission may be dynamically determined at run time,

according to the specific input combinations. Therefore, it is more difficult to capture the

transitions triggered by form submissions than capture the transitions associated with links. In

dynamic web applications, most navigation structures of web applications are hidden behind

web forms, which has been illustrated by the experiment results in Section 3.5.4. As the

prevalence of dynamic web applications, it is necessary to capture navigation structures behind

web forms during navigation graph generation. However, this also presents a big challenge to

web navigation graph generation, which will be discussed in Section 3.2.

19

The navigation graph can be used as an aid in web sequence testing [75] and

regression testing for a web application. For example, after a web application has been

implemented, testers have to test the conformance between the designed navigation structure

and the implemented navigation structure. It means testers have to check: 1) whether all the

designed (expected) navigation paths have been implemented; and 2) whether an undesigned

(unexpected) navigation path has been introduced. If an unexpected navigation path has been

introduced, it may cause a serious security problem, e.g., the violation of access control.

Therefore, it is valuable to generate navigation graphs to validate the implemented navigation

structure in a web application. As another example, navigation graphs can be used to facilitate

impact analysis, i.e., how to identify web pages that could be potentially affected by a modified

page.

http://129.107. 242.195: 8080/bookstore/BookDetail. jsp? item_id=1# head

scheme authority path query

base query

fragment

Figure 3.1 A URL Example.

3.2 Challenges and Contributions

 The main challenge of generating a practical navigation graph is dealing with dynamic

web pages. (If a web application only consists of static web pages, its navigation graph can be

built using a classical graph traversal algorithm, e.g., a depth-first search algorithm.) Unlike a

static web page, whose content is prescribed and stored on a web server, a dynamic web page

does not physically exist until a request for this web page is submitted, typically through an

HTML form. The existence of dynamic web pages creates two problems for generating a

navigation graph:

• A potentially infinite number of dynamic web pages may be generated in a web

application. If a dynamic web page is directly modeled as a node, the size of a

20

navigation graph may be infinite. For example, after a user logs in, a web application

may dynamically generate a personalized web page to greet the user. Since the

number of user accounts can be infinite, the number of personalized web pages

generated by the web application can be infinite. As another example, Google

searching web application dynamically generates different web pages according to

potentially infinite user requests.

• Some dynamic web pages may not be reached unless appropriate requests (or correct

input combinations) are supplied. In other words, in order to ensure coverage, user

requests must be generated carefully during the construction of a navigation graph. For

example, consider a web application where a user can log in as a regular user or an

administrator. Web pages that can only be visited by an administrator would be missed

if a user do not log in with the correct administrator username/password combination.

The first problem is referred as the web page explosion problem that is popular in the

implementation of dynamic web applications. In dynamic web applications, many web pages

may be generated from the same template, as the dynamically generated greeting web page

example discussed above. Therefore, these web pages share the same navigation structure. If

a navigation graph includes every web page, it may incur a lot of redundancy, which causes two

problems: 1) enormous navigation paths to test, which is not practical, and 2) wasting effort in

testing lots of redundant web pages.

The second problem is referred as the request generation problem (or input

combination dependent navigation structure capture problem). Considering that a request often

consists of multiple parameter values, the request generation problem can be further divided

into two smaller problems: (1) How to select appropriate values for individual parameters? (2)

How to effectively combine individual parameter values to generate requests? In this chapter,

we focus on the second aspect of the request generation problem, i.e., how to combine

parameter values to generate requests, assuming that these values are from default values and

21

option values in web pages or manually generated by users with techniques, e.g., domain

analysis and equivalence partitioning.

To the best of our knowledge, little work has been reported on the effective construction

of navigation graphs. However, the above two problems have been encountered and addressed

in a similar context, i.e., web crawling. Web crawling refers to discovering useful information by

navigating through web applications. Many web applications store information in a database,

and provide the user with an HTML form, through which a query can be submitted to retrieve

information of interest. Therefore, like navigation graph construction, web crawling also has to

deal with the challenge of how to interact with forms. However, unlike the navigation graph

construction, which is interested in “structure discovery”, i.e., how different web pages

interconnect with each other, web crawling is interested in “content discovery”, i.e., how to

discover useful information that is contained in those web pages. This difference has a profound

impact on techniques that are developed in the two different contexts.

In this chapter, a combinatorial approach to building navigation graphs is proposed to

solve the above two problems. To address the web page explosion problem, we use the notion

of an abstract URL. Conceptually, a (concrete) URL can be broken into two components, base

and query, as is shown in Figure 3.1. The query component is optional, and typically consists of

a set of parameter-value pairs. Given a (concrete) URL u, the abstract URL for u is obtained by

removing the values, but retaining the parameter names, in the query component. For example,

given a URL u = “http://test.com/foo.jsp?x=1&y=2”, the abstract URL is

“http://test.com/foo.jsp?x&y”. In this approach, web pages that have the same abstract URL are

represented as a single node in a navigation graph. The rationale behind this abstraction is that

these web pages are likely to be generated from the same template, and are thus similar in their

structures and associated navigation behavior (i.e., they have the same set of

predecessor/successor web pages). For real-life web applications, this abstraction allows us to

22

bound the number of nodes, and in turn the size of the navigation graph, while largely

preserving the navigation structure.

To address the request generation problem, we assume that individual parameter

values are given, and use a combinatorial testing technique to combine the parameter values.

Assume that a form has k parameters, each with d possible values. To reach every possible

web page that could be generated by submissions of this form, we could try to submit the form

with every possible combination of values of those parameters. Doing so, however, can be

prohibitively expensive, due to a potentially large number of combinations. In this approach, we

submit the form with a subset of parameter value combinations that achieve a well-defined

combinatorial coverage, namely t-way (t=1,2,3) combinatorial coverage [13]. That is, given any t

out of the k parameters, we ensure that every combination of the t parameters is covered in at

least one submission test. (In the remainder of this chapter, we will refer to a combination of

values of all k parameters as a submission test, and a combination of values of any t

parameters as a combination, unless otherwise specified.)

The 2-way combinatorial coverage has been shown to be very effective for general

software testing, while dramatically reducing the number of tests that need to be

executed [13][14][33]. In particular, empirical studies indicate that 2-way combinatorial coverage

leads to 84% branch coverage and 93% code coverage in general software testing [7]. Based

on the empirical study results, we assume achieving t-way (t=1,2,3) combinatorial coverage on

form parameters can also help to achieve good web application navigation structure coverage.

The argument for this assumption is that parameter interactions may just exist among a few

parameters in a form. Therefore, submitting tests that achieve t-way combinatorial coverage on

form parameters is enough to trigger most transitions behind web forms. As a consequence,

navigation structures representing these transitions will be captured. Figure 3.2 presents a

concrete example from the Bookstore application [45]. To create a new account, a user has to

input “password” and “confirmation password” in the “Reg” form of the “Registration” page. After

23

the user submits the form, statements {1, 2, 3, 4, 5} will be executed to check the interactions

between these two parameters. If the “password” is the same to the “confirmation password”,

statements {8, 9} will be executed. As a result, the user will be navigated to the “Default” web

page by following the transition “Registration -> Default”. Otherwise, statements {6, 7} will be

executed and the user will go to the “Registration” web page again by following the transition

“Registration -> Registration”. This example shows the relationship between code coverage and

navigation structure coverage. Empirical study results have already presented the correlation

between the t-way input combination coverage and good code coverage [7]. Therefore, we

assume that proper manipulation on form parameter values can also improve the navigation

structure coverage in web applications.

1. ……

2. String fldmember_password = getParam(request, "member_password");

3. String fldmember_password2 = getParam(request, "member_password2");;

4. ……

5. if (! fldmember_password.equals(fldmember_password2)) {

6. sRegErr += "\nPassword and Confirm Password fields don't match";

7. …… }

8. else{

9. response.sendRedict(“Default.jsp”)}

Figure 3.2 A Simplified Example from Bookstore Application.

Table 3.1 summarizes another four real-life examples that need specific input

combinations to trigger input combination dependent transitions behind web forms. If the input

combinations meet the constraints in Table 3.1, the user will be navigated to a normal web page.

Otherwise, the user will be navigated to a web page for error handling. Thus, from what has

24

been discussed above, we believe that it is valuable to apply t-way coverage on the form input

parameters, which can help capture web application navigation structure effectively with

reasonable effort.

Table 3.1 Real-life Examples for Parameter Interactions

Subject Constraints from subject web applications

On-line registration system
(etrade.com)

email and confirm email have to be the same.

Flight ticket booking system
(studentuniverse.com)

1) depart date should not be late than return date.
2) depart city should not be the same to arrival city.

On-line payment system
(citicards.com)

payment amount should be no more than the current balance
amount.

On-line transfer System
(chase.com)

payment account number should be the same to confirm
payment account number.

3.3 A Combinatorial Approach for Navigation Graph Generation

 In this section, the combinatorial approach to building navigation graphs will be

introduced in details. Section 3.3.1 gives a formal definition of a navigation graph. Section 3.3.2

presents an algorithm that implements our approach. Section 3.3.3 provides additional

discussions.

3.3.1. Basic Concepts

 First, we define a navigation graph. Intuitively, a node in a navigation graph represents

a group of web pages that have the same abstract URL. Recall from Section 3.2 that we

abstract a URL by removing the parameter values, while retaining the parameter names, in the

query component, if this component exists. (If a URL does not have a query component, its

abstraction is the same as the URL itself.) Abstracting URLs helps to control the web page

explosion problem while preserving the navigation structure of a web application. There exists

an edge from one node n to another node n’ if there is a direct transition from a web page P

represented by node n to a web page P’ represented by node n’, i.e., web page P’ can be

immediately visited after web page P.

25

In the following, we formalize the definition of a navigation graph. Let abs(P) denote the

abstract URL of a web page P. Let pages(n) denote the group of web pages represented by a

node n. Let P → P’ denote a direct transition from a web page P to a web page P’. Then, a

navigation graph G can be formally defined as follows: G = (V, E), where (1) V is a set of nodes

such that for each node n ∈ V, ∀P, P’ ∈ pages(n), abs(P) = abs(P’); and (2) E ⊆ V × V is a set

of edges such that for each edge (n, n’), there exists at least one direct transition P → P’, where

P ∈ pages(n), P’ ∈ pages(n’).

3.3.2. Algorithm BuildNavGraph

 Figure 3.3 shows algorithm BuildNavGraph, which implements our approach. Algorithm

BuildNavGraph incorporates another two sub algorithms, i.e., algorithm Traverse in Figure 3.4

and algorithm ProcessForm in Figure 3.5. It takes as input the URL of the home page of a web

application, and produces as output the navigation graph of the web application. Algorithm

BuildNavGraph explores a web application in a depth-first manner, so it has a framework that is

similar to that of a classic depth-first search algorithm. Therefore, we will not explain the

algorithm line by line. Instead, we will focus on how algorithm BuildNavGraph differs from a

classic depth-first search algorithm.

First, algorithm BuildNavGraph uses a different approach to decide whether to explore

a newly encountered URL (line 5 in Figure 3.4 and line 19 in Figure 3.5). Specifically, a newly

encountered URL is explored only if its abstraction does not yet exist in the navigation graph. In

other words, we will not explore a newly encountered URL u if some other URL u’, with abs(u’)

= abs(u), has been explored before. This is necessary to ensure that the exploration process

comes to an end. However, it also introduces a risk of missing some web pages that may be

reached only if u is actually explored. More discussions on this risk, as well as an optimization

that can reduce this risk, will be provided in Section 3.3.3.

Second, a classic depth-first search algorithm is designed to traverse all the nodes in a

navigation graph. As a result, it usually does not keep track of all the edges that are visited

26

during the search process. In other words, a classic depth-first search is usually used to build a

spanning tree of the original graph. This is different from our algorithm, which tries to capture

the entire navigation graph structure. Therefore, it is important to add the corresponding edges

into the resulting navigation graph (line 4 in Figure 3.4 and line 18 in Figure 3.5) even if a newly

encountered URL will not be explored (because its abstraction already exists in the graph).

Third, the algorithm ProcessFrom, as is shown in Figure 3.5, deals with each form,

which represents the key contribution of our approach. A web page may contain multiple forms,

each of which is dealt with by one call of ProcessFrom. Suppose that we are dealing with form f.

We first obtain the values of individual parameters in form f (line 2 in Figure 3.5). This can be

done either interactively, i.e., asking the user to provide the parameter values as each form is

encountered, or up front, i.e., asking the user to predefine the possible values for each

parameter that may appear in a form. Note that the latter can be extremely useful for test

automation, but requires a priori knowledge about what parameters may appear in a web

application, as well as what values those parameters can take.

In Figure 3.5, the first loop (lines 4 to 21) deals with each action in the form. An action

may or may not require parameter values to be submitted to the server side. If an action does

require parameter values to be submitted, we will generate a 2-way submission test set for

those parameters. Each submission test is then used once to perform the action. If an action

does not require any parameter value to be submitted, then it can simply be performed, after

which the URL of the succeeding web page is added to list l. Note that list l is used to hold all

the URLs of the succeeding web pages that can be reached from the current web page either

through a link or a form submission.

Finally, after we finish exploring a node, we need to backtrack to its parent node p, in

Figure 3.4. Before we explore another child node of node p, it is important to restore the state of

the application, e.g., the session state and database state, back to the state when p was

encountered but none of its children had been explored (line 10 in Figure 3.4). This state

27

restoration ensures the exploration process to be semantically correct, as the exploration of

different children of a particular node should be independent from each other.

In general, there are two approaches to state restoration. The first approach is referred

to as the snapshot-based approach. In this approach, a state is explicitly represented that

contains all the information that may affect the future behavior of the subject web application,

e.g., the values of program variables. When a state is first encountered, we save all the

information contained in the state. This information is later used to restore the state as needed.

This approach typically requires access to the source code.

The second approach is referred to as the execution-based approach. In this approach,

a state is not explicitly represented. Instead, a state is associated with a sequence of transitions

that can be executed to restore this state. This approach can be further classified into two

approaches. Let S be a state to be restored. The forward execution-based approach saves a

sequence Q of transitions that were executed to reach state S from the web application’s initial

state, and restores state S by restarting the web application (thus bringing the web application

back to the initial state) and then re-executing Q. The backward execution-based approach

saves a sequence Q’ of transitions that were executed from state S to the current state S’, and

restores state S by rolling back the execution of Q’ from S’. Assume that Q’ = t1t2…tn. To roll

back the execution of Q’, we execute a sequence Q’’ = tn’tn-1’…t1’ of transitions from S’, where ti’

is a reverse transition of ti, i.e., ti’s performs an operation that undoes the effect of ti. These two

approaches can be implemented without access to source code, but it may be time-consuming

to re-execute or roll back transitions.

As what has been discussed in the first paragraph of this sub section, we conduct a

depth-first exploration of the navigation structure of the subject web application. During the

exploration, we only need to back up to a state that was visited earlier in the current path, i.e.,

not an arbitrary state. Thus, we only need to store transitions executed on the current path in

the forward execution-based approach or their reverse transitions in the backward execution-

28

based approach. Note that all the transitions executed on the current path are stored on the

search stack. While algorithm BuildNavGraph is presented as a recursive procedure in Figure

3.3, Figure 3.4 and Figure 3.5, it can be easily implemented as an iterative procedure such that

the search stack can be accessed.

Both the forward execution-based approach, and a hybrid approach that combines the

snapshot-based approach and the backward execution-based approach have been

implemented in our tool, named Tansuo. Their implementation details will be introduced in

Section 3.4.

Now, we consider the time and space complexity of algorithm BuildNavGraph. The time

complexity is similar to that of a classic depth-first search, except that we need to take into

account the time for generating t-way submission test sets and for performing those tests.

Assume that a form has at most k parameters, each of which takes at most d values. The size

of a t-way submission test set is)log(kdO t . The time for generating those tests is

)log(11 kkdO tt −+ , if the IPOG algorithm [35] is used. The time for performing all those tests is

)log(kdO tτ , where τ is the longest time required to perform a submission test. Therefore,

the total time complexity of algorithm BuildNavGraph is)loglog|(| 21 kdkkdGO tt τ++ + . The

space complexity of algorithm BuildNavGraph is the same as that of a classic depth-first search

algorithm, i.e., |)(| GO .

29

Algorithm BuildNavGraph

Input: The URL of the home page of a web application

Output: The navigation graph G = (V, E) of the application

1. BuildNavGraph(URL home) {

2. let G = <V, E> be an empty graph

3. Traverse (home, G)

4. return G

5. }

Figure 3.3 Algorithm BuildNavGraph.

Algorithm Traverse

Input: The URL of a page and the navigation graph G of an application

1. Traverse (URL u, Graph G) {

2. for each static link u’ in u {

3. add a node labeled with abs(u’) into V, if it does not exist

4. add an edge labeled with (abs(u), abs(u’)) into E, if it does not exist in E

5. Traverse (u’, G) if abs(u’) is encountered for the first time

6. }

7. for each form f in u {

8. ProcessForm(f, G);

9. }

10. restore the application to the state reached right after u is encountered

 (but not traversed yet)

11.}

Figure 3.4 Algorithm Traverse.

30

Algorithm ProcessForm

Input: The form f and URL of the navigation graph G of an application

1. ProcessForm (Form f, Graph G) {

2. obtain the values of individual parameters in f

3. let l be an empty list

4. for each action a in f {

5. if (action a requires submission of param values) {

6. generate a t-way submission test set s for action a

7. for each submission test t in s {

8. perform action a with test t

9. add the URL of the succeeding page to list l

10. }

11. }

12. else {

13. perform action a

14. add the URL of the succeeding page to list l

15. }

16. for each URL u’ in list l {

17. add a node labeled with abs(u’) into V, if it does not exist in V

18. add an edge labeled with (abs(u), abs(u’)) into E, if it does not exist in E

19. Traverse (u’, G) if abs(u’) is encountered for the first time

20. }

21. }

22. }

Figure 3.5 Algorithm ProcessForm.

31

3.3.3. Discussions

 There are several cases in which our approach may not fully capture the navigation

structure of a web application. First, in our approach, web pages having the same abstract URL

are represented as a single node in a navigation graph. As an abstract URL drops all the

parameter values in the query component of a (concrete) URL, we assume that the navigation

behavior of a web page, in terms of the set of web pages that could be reached from this web

page, does not depend on specific parameter values. This may not be true for some web

applications. In addition, an abstract URL does not contain information about web application

states, e.g., the values of session variables. The same web page may have different navigation

behavior depending on different web application states and such navigation behavior may not

be captured by our approach. Adding more information to the abstract URL, i.e., making the

abstraction finer-grained, would help capture more navigation behavior. However, doing so may

prolong the exploration process, and may unnecessarily increase the size of a navigation graph.

This is because many nodes can have the same navigation behavior even if they have different

parameter values and/or are visited at different application states.

There is an optimization that can be done to make a navigation graph more complete

without adding more information to an abstract URL. In algorithm BuildNavGraph, a newly

encountered URL is explored only if its abstract URL does not yet exist. We can change this

decision so that a newly encountered URL is explored only if the abstract edge leading to the

URL does not yet exist. The rationale for this change is that a web page that is reached by a

different edge may likely be a different web page, even if another web page with the same

abstract URL has been visited before. The reason has been discussed in the first paragraph in

this sub section. This optimization has been used in the experiments in the Section 3.5, and has

been shown to be very effective.

32

There is a second case in which the navigation structure of a web application may not

be fully captured. In order to explore all web pages that could be generated by a form, we

perform a set of submission tests that achieve t-way combinatorial coverage. Obviously, t-way

combinatorial coverage does not cover all the combinations. A web page would not be explored

if it could only be generated by submitting one or more specific combinations that do not appear

in the t-way submission test set. Theoretically, achieving a higher degree of combinatorial

coverage will help to make the resulting navigation graph more complete. To investigate the

value of different degrees of combinatorial coverage, we implemented the BuildNavGraph

algorithm with t-way combinatorial coverage (t=1,2,3). Comparison experiments on t-way

coverage have been conducted in Section 3.5. Experiment results show that 2-way

combinatorial coverage has already captured the most navigation structure. It means 3-way

combinatorial coverage does not contribute to capturing any more navigation structure.

In spite of the cases just described, our experimental results, as presented in the

Section 3.5, suggest that our approach produces close to complete navigation graphs for the

web applications we studied and the costs are affordable.

3.4 Tansuo: A Prototype Tool

 To facilitate exploring navigation structures of web applications, a tool, named Tansuo,

has been developed to explore web applications automatically. Tansuo is programmed in Java,

and integrated with HTTPUnit to explore navigation structures (HTTPUnit provides convenient

interfaces for users to manipulate components in web pages.). As what has been discussed in

Section 3.3, two different state restoration approaches, i.e., the forward execution-based

approach and the hybrid approach, have been implemented for different situations. In the

following, they will be discussed separately.

33

3.4.1. Tansuo’s Architecture

 Figure 3.6 presents the architecture of Tansuo. Tansuo includes seven components:

Builder, Fetcher, Parser, Form Handler, ACTS, State Manager and Viewer.

Builder. This component is the core of Tansuo. It coordinates the other six components

to explore the navigation structure of a web application. First, Builder calls Fetcher to obtain a

designated web page from a web server. Second, Builder calls Parser to extract transitions from

this web page, and Builder will follow those transitions to explore the web application further.

Third, after exploring a navigation path, Builder calls State Manager to restore application states

before it explores a new navigation path.

Fetcher. This component is responsible for fetching a web page from the server side,

upon Builder’s request. In practice, the Fetcher can adapt to various web applications, e.g.,

JSP, ASP and PHP web applications.

Parser. This component is responsible for parsing a web page. Components in the web

page are wrapped into objects, which facilitates handling these components. Parser extracts all

components related to transitions, i.e., links and forms, existing in the current web page and

returns them to Builder.

Form Handler. This component is responsible for interacting with forms. Specifically,

Form Handler is responsible for three tasks: (1) Obtaining parameter values either from a user

interactively or by reading them from a set of XML files; (2) Generating parameter combinations

by using a combinatorial test generation tool, called ACTS [34][35]; (3) Submitting a form with

those combinations.

Note that in the interactive mode, Tansuo pops up a GUI for users to input form

parameter values when a web form is encountered. Form Handler also stores user-provided

values into XML files, so that those values can be reused later. To help users to generate

parameter values, an auxiliary component, named Collector, has been developed to gather

34

default values, option values in the current web page. The collected parameter values will be

presented to users as input candidates.

ACTS. This component is the engine for generating combinations that achieve t-way

combinatorial coverage on form parameters. ACTS [35] gets form parameter values from Form

Handler and gets the degree value of combinatorial coverage from Builder. Then it generates

submission tests that achieve t-way combinatorial coverage and returns them to Form Handler.

State Manager. This component is responsible for restoring the application state. When

Builder backs up to a previous web page, it calls State Manager to restore the application state

before exploring a new navigation path. This state restoration is necessary because exploring

the previous navigation path may have already changed the application state. Two state

restoration approaches have been implemented for different situations (in terms of the

availability of source code). Their details will be discussed in Section 3.4.2.

Viewer. This component is responsible for displaying a web page that is currently being

explored by Builder. When a user is asked to provide parameter values for a form, displaying

the current web page helps the user to understand the context better.

35

parameter
 values

URL

URL

XML Files

user

Tansuo

BuilderParser

Fetcher

ViewerState
Manager

Form
Handler

ACTS

Web Application

parameter
 values

file name

pa
ra

mete
r v

alu
es

form

combinations

URLs

page

page

page

page

transitions

URL

restore
request

URL

parameter
 values

URL

restore
response

 Figure 3.6 Tansuo’s Architecture.

3.4.2. State Restoration Approaches

Tansuo implements two different state restoration approaches, i.e., the forward

execution-based approach and the hybrid approach, for different situations. The forward

execution-based approach can work without access to the source code. But its performance

may not be good when working for large web applications. The hybrid approach takes

advantage of the available source code to improve the performance of Tansuo. The

implementation details of these two approaches will be introduced in the following. An

experimental comparison of these two approaches is presented in Section 3.5.

Forward Execution-Based State Restoration: In this approach, we represent a state

by the sequence of concrete URLs visited to reach the state. Each time we visit a new web

page, we save the concrete URL of this page into the search stack. When we back up to a page

p from a page p’, we first pop out the URL of page p’. Then, we restart the web application on

36

the server side. If the web application uses a database in the backend, the database is also

reset.

Next we re-submit the remaining URLs in the search stack from bottom to top, i.e., in

the order as they were pushed into the stack. Doing so re-exercises the navigation path from

the initial page to page p. This effectively restores the state reached when p was first visited. At

this point, we are ready to explore the next child of page p. Re-submitting the URLs on the

search stack may be time consuming. However, this approach is the only choice if the source

code of a web application is not available.

Hybrid State Restoration: This approach combines the snapshot-based approach and

the backward execution-based approach. We target web applications written using JSP and

Java servlet technologies. We consider that a state consists of two components: (1) the values

of all session variables; and (2) the state of the database, i.e., all the records in the database, if

a database is used for persistent storage in the backend. It is possible that a state may contain

other information. For example, if the web application reads and/or writes a file, this file should

be included in the state of the web application. We believe it is common for practical web

applications to use a database, instead of files, in the backend. This is the case for all the web

applications used in our case studies.

In order to achieve maximal efficiency, we treat the two state components differently, as

is shown in Figure 3.7. Specifically, we use the snapshot-based approach to restore the values

of session variables, and we use the backward execution-based approach to restore the state of

the database. The details of our implementation are described below.

Instrumentation: We use source code instrumentation to insert additional code into the

subject web application. At runtime, it is this additional code that is executed to save and restore

states as requested by the Builder. During instrumentation, we first identify all the session

variables and database operations. A variable is identified to be a session variable if it is

37

declared to be of type HttpSession. We assume that JDBC is used to communicate with the

database. Thus, all the JDBC calls are identified to be database operations.

Next, we generate and insert three types of code into the source code of the subject

application:

(1) SessionStateManager: Code for saving and restoring the values of session

variables. This code saves the values of session variables into a log file and restores these

values at a later point as requested. This code is inserted at the beginning of each web page.

(2) JDBCWrapper: Code for recording JDBC calls. For each JDBC call encountered in a

web page, we replace it with a call to a wrapper. At runtime, this wrapper intercepts three JDBC

calls, including insert, update and delete. Whenever this wrapper receives a request for one of

the three JDBC calls, it records the corresponding reverse call, as well as information needed to

execute this reverse call, into a log file, before it delegates to the actual JDBC call.

Table 3.2 shows the reverse calls of the three JDBC calls we intercept. It also shows

the information we must save for each reverse call. For update and delete, we have to retrieve

the record(s) before they are actually updated and deleted. In practice, these three calls often

deal with a single record. JDBC calls that deal with multiple records are likely to be query calls,

i.e., they do not change the database. Thus, the information we must save for a reverse call is

typically limited.

Table 3.2 Information About Reverse JDBC Calls

Original JDBC call Reverse JDBC call Information to be saved
insert delete primary key(s) of the record(s) to be inserted

update update all the fields of the record(s) to be updated
delete insert all the fields of the record(s) to be deleted

(3) DBStateManager: Code for restoring the state of the database. This code executes

a sequence of reverse JDBC calls to restore the database to a previous state. This code is

inserted at the beginning of each web page.

38

State Management Protocol: The Builder collaborates with the instrumented subject

web application to manage the state restoration process. Specifically, the Builder defines three

new tags, including RestoreState, OldStateID, and NewStateID. The RestoreState tag is always

added into each HTTP request, indicating whether a state needs to be restored. The OldStateID

tag is added into a request only if RestoreState is “true”, and it identifies which state to be

restored. The NewStateID tag is always added into a request to identify the new state that will

be saved as a result of executing a new web page. The Builder is responsible for the ID

management, i.e., assigning proper values to the two tags.

At runtime, the protocol proceeds as follows. The Builder submits a URL request to the

web server. The web server locates the web page identified by the URL. Before the web page is

executed, SessionStateManager and DBStateManager are executed. Recall that the two

managers are added to the beginning of each web page. SessionStateManager first checks

whether RestoreState is set to “true”. If so, it restores the session state identified by OldStateID.

Regardless of the values of RestoreState, SessionStateManager always saves the current

session state into a log entry identified by NewStateID. If RestoreState is set to “true”, then the

session state that was just restored will be saved again, but with the NewStateID. Like

SessionStateManager, DBStateManager restores the database state if RestoreState is set to

“true”. However, it does not save the database state, which is left to JDBCWrapper. Only after

the two managers are executed is the actual requested web page executed. During the

execution of the web page, JDBCWrapper saves, for each JDBC call, the corresponding

reverse call with the necessary information into a log entry identified by NewStateID.

39

RestoreState =true ?

HTTP Request

Save session states
(using NewStateID)

Execute the actual page,
save JDBC calls as encountered

 (using NewStateID)

Undo JDBC calls
(using OldStateID)

Restore session states
(using OldStateID)

no

yes

Figure 3.7 The workflow of hybrid state restoration

3.5 Experiments

 We used Tansuo to generate navigation graphs for five web applications [45] and

measured its runtime performance and costs. In Section 3.5.4, we first studied the effectiveness

and costs of t-way (t=1,2,3) combinatorial coverage. Then, we evaluated the completeness of

the generated web navigation graphs on the five web applications. We also compared Tansuo

with WebSphinx [42] and Link Checker Pro [36] on all five web applications..

3.5.1. Research Questions

RQ1. How effective is Tansuo with t-way (t=1,2,3) combinatorial coverage on

 navigation graph generation?

RQ2. How efficient of Tansuo in terms of time and memory costs?

RQ3. How complete is a navigation graph built by Tansuo?

RQ4. How do the two state restoration approaches compare with each other?

RQ5. How does Tansuo compare with existing tools?

40

3.5.2. Metrics

For RQ1, we compare the effectiveness of t-way (t=1,2,3) coverage by measuring

detected nodes and edges in web navigation graphs. For RQ2, we compare time costs and

memory costs of different combinatorial coverage criteria and total combinations tried in a whole

exploration process. For RQ3, the completeness of a generated navigation graph is measured

by the number of missed nodes and edges when compared with a complete navigation graph

generated by a manually performed static analysis on the source code. For RQ4, we run

Tansuo on each web application twice. At the first time, Tansuo uses the forward execution-

based approach to restore the application state. At the second time, Tansuo uses the hybrid

approach to restore the application state. At last, we compare their generated navigation graphs

and their time and memory costs during the navigation graph generation. For RQ5, we compare

Tansuo with two other tools - WebSphinx and Link Checker Pro - by recording the number of

nodes and the number of edges generated by each tool to capture navigation structures of web

applications.

3.5.3. Experimental Setup

Subject Applications: We used five web applications [45]: Bookstore, Bug Tracking

System (Bugtrack), Classifieds, Links and Portal in our experiments. Table 3.3 shows some

server-side characteristics of the subject applications, including the number of non-commented

lines of code (NLOC), classes, methods, and branches in the five web applications. All these

statistics were collected with Clover [12]. Table 3.4 shows some client-side characteristics of the

subject applications, including the number of forms, actions, parameters (params), the average

number of parameters per action (APA), and the average number of values per parameter

(AVP). Note that these client-side factors affect the size of navigation graphs, as well as the

time for building navigation graphs of these web applications. We note that all of the

applications are implemented in JSP.

41

Test data generation: As what has been introduced in Section 3.2, this approach

focuses on how to generate requests by effectively combining form parameter values. As for the

form parameter value generation, we used existing techniques, e.g., domain analysis and

equivalence partitioning. The parameter generation includes two major steps. First, we prefer

using data from web pages, default values from text fields, option values from menus, option

values from radio buttons and check-box buttons. In reality, some parameters have dozens of

values, e.g., state names, city names, and employee names. In this case, we picked a few

values out of these option values for efficiency. Second, as for parameters without default

values and option values, we generated input data for them manually with existing techniques.

All the input values used in experiments have been verified manually. They can be processed

properly by web applications.

In experiments, we generated only normal input values for form parameters. We did not

use malicious input values, even though navigation graphs generated with both normal input

values and malicious input values will likely be more complete than the navigation graphs

generated with only normal input data. The reason for using only normal input data in

experiments is that there is no good way to systematically generate malicious input data.

Generating test data ad hoc may cause the unfairness in comparison experiments. Fuzz

testing [67][69] may help to generate anomalous input data automatically. But there are two

major disadvantages with the input data generated with fuzz testing techniques. First, the

quality of generated input data is poor. Input data generated from fuzz testing may be easily

rejected for syntax problems, which may lead to capturing only shallow the navigation structure.

However, the goal of our approach is to capture the deep navigation structure behind web

forms. Second, the input data generated from fuzz testing may achieve different effectiveness in

capturing the navigation structure because of the different implementations of syntax checking.

This fact may cause unfair comparisons between different combinatorial coverage criteria.

42

Submission test generation: This approach generates t-way (t=1,2,3) combinatorial

coverage tests with IPOG algorithm [35]. In Chapter 1, a 2-way combinatorial coverage test

generation example has been demonstrated. A 3-way combinatorial coverage test generation is

similar to the 2-way combinatorial coverage test generation, except for the stronger degree of

the combinatorial coverage. In the 3-way combinatorial coverage test generation, we have to

generate submission tests that cover all the combinations of any three parameters.

The 1-way combinatorial coverage requires that every value of a parameter be covered

at least once by the generated tests. Each choice strategy [27] is the simplest 1-way

combinatorial coverage test generation strategy. However, in reality, base choice strategy [27]

is more popular in software testing. Thus, in experiments, we used base choice strategy to

generate 1-way combinatorial coverage tests.

Base choice strategy generates tests with four major steps. First, identify parameters

and their corresponding values. Second, designate a base value for each parameter. Usually,

the base value is the most common value of a parameter. In our experiments, we used a default

value from a web page as the base value for a parameter. As for the parameter that has no

default value, we designated one value as the base value, based on our domain knowledge.

Third, generate a base test with the base value of each parameter. Fourth, derive new tests by

changing the base value of one parameter to one of its non-base values. The fourth step will be

repeated until all the values of every parameter have been covered.

To illustrate base choice strategy clearly, we use an example to show how the base

choice strategy works in the following. First, in this example, each parameter, i.e., P1, P2, and

P3, in this example has two values “0” and “1”. Second, designate “0” as the base value as for

each parameter. Third, generate a base test, i.e., {0,0,0}. Fourth, derive new tests from the base

test, i.e., {1,0,0}, {0,1,0} and {0,0,1}. As is shown in Figure 3.9, every value of each parameter

has been included in at least one submission test.

43

Machine Configuration: The experiments were carried out on a computer with the

following configuration: CPU: 1.66GHz, RAM: 2G, Hard disk: 80G. The machine was running

Windows XP SP2, the Resin 2.1.8 web server, Apache 2.0.48, and the MySQL Server 4.1.

Table 3.3 Server-side Characteristics of Subject Applications

Subject Characteristics
NLOC Classes Methods Branches

Bookstore 18385 27 925 4392
Bugtrack 8094 13 438 1946

Classifieds 11599 18 618 2730
Links 8849 13 499 2074
Portal 17621 27 915 4084

Table 3.4 Client-side Characteristics of Subject Applications

Subject Characteristics
Forms Actions Params APA AVP

Bookstore 18 63 66 1.05 3.35
Bugtrack 8 19 27 1.42 6.15

Classifieds 11 29 27 0.93 5.07
Links 11 24 26 1.08 5.77
Portal 19 39 95 2.44 3.40

 Figure 3.8 A 1-Way Submission Test Set.

 p1 p2 p3

 0 0 0

 1 0 0

 0 1 0

 0 0 1

44

3.5.4 Results and Discussions

RQ1: Effectiveness of Tansuo with t-way combinatorial coverage

 We evaluated the effectiveness of Tansuo with t-way (t =1,2,3) combinatorial coverage

on five web applications with the same test data set. As you can see in Table 3.5 (all the results

have been verified by manually checking the source code of subject web applications), 1-way

combinatorial coverage causes missing lots of navigation structures. The navigation graphs

generated with 1-way combinatorial coverage cover 32.88%-80.49% nodes and 27.91%-

72.49% edges, compared with the navigation graphs generated with 2-way combinatorial

coverage. After compared with 2-way combinatorial coverage and 3-way combinatorial

coverage, we can see that 3-way combinatorial coverage did not help us to capture more

navigation structure. We verified the results by manually checking the source code of subject

web applications. We did not find the navigation structure that requires 3-way input

combinations to capture from their implementation.

Table 3.5 Comparisons on Navigation Graphs Generated with T-Way Coverage

Subject One-way Two-way Three-way
Nodes Edges Nodes Edges Nodes Edges

Bookstore 24 127 73 455 73 455
Bugtrack 12 45 33 135 33 135

Classifieds 33 195 41 269 41 269
Links 25 95 44 232 44 232
Portal 32 286 66 642 66 642

RQ2: Efficiency Tansuo in terms of time and memory costs

Table 3.6 shows the time memory costs (in terms of hours) during generating

navigation graphs with t-way (t =1,2,3) combinatorial coverage criteria. From the empirical

results, we can see the time costs of 1-way combinatorial coverage are 28.62%-55.89% of the

time costs of 2-way combinatorial coverage. Moreover, Table 3.7 shows that the memory costs

(in terms of MB) of 1-way combinatorial coverage are 65.99%-91.84% of the memory costs of 2-

way combinatorial coverage.

45

Recall that Tansuo explores a web application in a depth-first manner. The maximum

memory usage occurs at one of those back-up points, i.e., after Tansuo finishes exploring the

current navigation path, and right before it backtracks to explore the next navigation path. We

recorded the memory usage at each of these back-up points and reported the highest of these

values in Table 3.7.

Table 3.6 Comparisons on Time Cost between T-Way Coverage

Subject One-way Two-way Three-way

Bookstore 0.0469 0.1639 0.1741
Bugtrack 0.0102 0.0235 0.0427

Classifieds 0.0403 0.0721 0.0944
Links 0.0123 0.0344 0.0400
Portal 0.0654 0.3106 0.3542

Table 3.7 Comparisons on Memory Cost between T-Way Coverage

Subject One-way Two-way Three-way

Bookstore 30.6562 46.4585 49.3367
Bugtrack 19.9174 21.6875 21.8633

Classifieds 24.2109 39.9023 39.9844
Links 14.6800 21.2383 22.2852
Portal 64.8672 84.3750 86.3984

Table 3.8 Comparisons on Total Combination between T-Way Coverage

Subject One-way Two-way Three-way

Bookstore 417 1455 2327
Bugtrack 306 978 2130

Classifieds 550 896 1465
Links 242 684 990
Portal 941 2216 3732

In Table 3.6 and Table 3.7, the costs of 3-way combinatorial coverage are similar to the

costs of 2-way combinatorial coverage. The reason is that the time cost is mainly determined by

analyzing/processing web pages and the memory cost is mainly determined by holding parsed

elements, like a form. In Table 3.5, we can see there is no extra navigation structure captured

by 3-way combinatorial coverage, compared with 2-way combinatorial coverage. Therefore, it is

46

reasonable that they have similar time and memory costs. Comparisons between 1-way

combinatorial coverage and 2-way combinatorial coverage also demonstrate that time and

memory costs increases with the navigation graph size.

Table 3.8 shows that 3-way combinatorial coverage tried much more submission tests

than 2-way combinatorial coverage. But that just incurred slightly increases in time and memory

costs, which also illustrates that the major factor for the time and memory costs is the generated

navigation graph size.

RQ3: Completeness

We evaluated the completeness of the navigation graphs on five web applications, as is

shown in Table 3.9. To perform this evaluation, we manually generated complete web

navigation graphs, in terms of abstract nodes and edges, from the source code of the five web

applications. Each JSP file in the source code was studied and abstract URLs were extracted.

Abstract URLs were generated from either form actions or from the value of the attribute href of

the anchor (<a>) tag. Each such abstract URL became a node in the resulting navigation graph.

For each abstract URL, the corresponding web page was studied to find transitions to other web

pages. These transitions were modeled as edges in the resulting navigation graph.

Note that, 2-way combinatorial coverage has achieved the best trade-off between test

coverage and test effort during the navigation graph generation. Therefore, in RQ3, RQ4 and

RQ5, we chose the navigation graphs generated with 2-way combinatorial coverage to compare

with navigation graphs generated by other approaches.

Table 3.9 shows the numbers of nodes and edges of the manually generated navigation

graphs for five web applications. For example, for Bookstore application, the navigation graph

generated by Tansuo missed 12.0% of the nodes and 15.9% of the edges. After carefully

studying the navigation graphs generated by the manual exploration and Tansuo’s exploration,

we found that the reason for missing nodes and edges is that Tansuo missed some scenarios

during its exploration, e.g., the navigation structure for page-flipping. For example, the

47

“OrderGrid” web page, in Bookstore, lists orders placed by a user. If total orders are no more

than 20, all of them will be listed in one web page. But, if a user placed 25 orders, the first 20

orders will be listed in the current web page and, the last 5 orders will be listed in the second

web page. In this case, page-flipping is needed for users to browse all these orders. Bookstore

places a link in the current web page, so that the user can navigate to the second web page by

clicking this link. Initially, there is no order listed in the “OrderGrid” web page. During

exploration, Tansuo only placed one order to drive the exploration for the reason of efficiency.

As a result, there was only one order listed in the “OrderGrid” web page, and Tansuo failed to

capture the navigation structure related to page-flipping.

As another example, the “OrderRecord” web page, in Bookstore, shows detailed

information of an order. If a user accesses this web page, the user’s access right will be

checked. If the user does not have this access right, she/he will be navigated to the “Login” web

page by following the transition “OrderRecord -> Login”. However, this navigation path is

missed by Tansuo. The reason is that before accessing the “OrderRecord” web page, Tansuo

has already logged in as the user that has this access right.

Table 3.9 Completeness Experiment Results

Subject Manual Tansuo
Nodes Edges Nodes % Edges %

Bookstore 83 541 73 88.0 455 84.1
Bugtrack 37 170 33 89.2 135 79.4

Classifieds 51 327 41 80.4 269 82.3
Links 47 257 44 93.7 232 90.2
Portal 75 788 66 88.0 642 81.5

RQ4: Comparisons between the forward execution-based approach and the hybrid approach

In [76], we have pointed out that the application state restoration process was the most

time consuming activity in the forward execution-based approach. The time taken to restore the

application state includes the time taken to reset the database and the time to re-exercise the

path from the home page to the current web page. A large number of submission tests for a

48

form can significantly increase the state restoration time, since the application state has to be

restored before each submission test is performed.

The hybrid approach is proposed to solve the performance problem. As is shown in

Table 3.10, the forward execution-based approach and the hybrid approach generated the

same navigation graphs. But, in Table 3.11, we can see the time cost of the hybrid approach

has been reduced dramatically. Meanwhile, the memory overhead of the hybrid approach has

increased 2.29%-10.86%, which is affordable. There are two reasons for the extra memory

overhead: 1) running extra instrumentation code requires extra memory; 2) keeping state

restoration data also requires extra memory.

Table 3.10 Comparisons on Graph Statistics between Two State Restoration Approaches

Subject

Forward execution Hybrid
Nodes Edges Nodes Edges

Bookstore 73 455 73 455
Bugtrack 33 135 33 135

Classifieds 41 269 41 269
Links 44 232 44 232
Portal 66 642 66 642

Table 3.11 Comparisons on Costs between Two State Restoration Approaches

Subject

Forward execution Hybrid
Time(Hour) Memory(M) Time(Hour) Memory(M)

Bookstore 33.4415 42.6318 0.1639 46.4585
Bugtrack 0.1321 19.5625 0.0235 21.6875

Classifieds 0.2999 39.0078 0.0721 39.9023
Links 0.1275 19.4570 0.0344 21.2383
Portal 1.2218 80.3544 0.3106 84.3750

RQ5: Comparisons with other tools

We compared Tansuo with WebSphinx [42] and Link Checker Pro (LCP) [36]. Note that

WebSphinx and LCP do not handle forms. In addition, they do not make any web page URL

abstraction. For example, “http://test.com/BookDetail.jsp?item_id=1” and

“http://test.com/BookDetail.jsp?item_id=2” are identified as two different web pages in their

49

navigation graphs. If there are thousands of such web pages in a web application, the

navigation graphs generated by WebSphinx and LCP will be very huge, while contributing little

to represent the navigation structure of a web application. Table 3.12 shows the results of our

comparisons. Both WebSphinx and LCP generated similar numbers of nodes and edges, while

Tansuo generated significantly more nodes and edges than WebSphinx and LCP. This

suggests that the ability to interact with forms is vital to build high-coverage navigation graphs.

It would be ideal, if comparisons were made with tools that handle web forms, like

VeriWeb. Unfortunately, we were not able to obtain access to such tools. Alternatively, we can

discuss the value of the input combination generation in capturing the navigation structure

behind web forms in another way. To answer RQ1, we ran Tansuo to generate web navigation

graphs with 1-way combinatorial coverage and 2-way combinatorial coverage separately. In

these experiments, Tansuo handled web forms in the same way. However, as is shown in Table

3.5, the 1-way combinatorial coverage missed 19.51%-67.12% nodes and 27.51%-72.09%

edges, compared with 2-way combinatorial coverage. The comparison results show that poor

input combination coverage may cause losing lots of navigation structures during the web

navigation graph generation, which indicates the value of the t-way input combination

generation in our approach.

Table 3.12 Comparisons to WebSphinx and LCP

Subject WebSphinx LCP Tansuo
Nodes Edges Nodes Edges Nodes Edges

Bookstore 11 11 11 11 73 455
Bugtrack 7 7 7 7 33 135

Classifieds 15 16 9 9 41 269
Links 11 12 11 11 44 232
Portal 17 22 17 22 66 642

3.5.5. Threats to Validity

Although our studies investigated Tansuo with 5 medium to large web applications, the

number, the size (in terms of NLOC), and the specific technologies (HTML, JSP, MySQL) of the

50

subject web applications prevent a generalization of our results to the entire domain of web

applications. All the conclusions are drawn from the experiments we have conducted. Some of

them may not be true for other real-life web applications. For example, in answering RQ1, 3-

way combinatorial coverage did not help to capture more navigation structures. This conclusion

may not be true, if we worked on a more complex web application that requires 3-way or 4-way

input combinations. In fact, this kind of web applications is not rare. For example, when a user

resets her/his password, the user may be required to input values for “old password”, “new

password” and “confirm password”. If the value of “old password” is different from the value of

“new password”, and the value of “new password” is the same to the value of “confirm

password”, the user will be navigated to a “success” web page. Otherwise, any other input

combination of these three parameters will lead to an “error” web page. Within this example, 3-

way combinations are necessary to capture more navigation structures.

We manually explored the source code to generate web navigation graphs for

answering RQ3. Although extreme care was taken to accurately model navigation graphs, the

human involved in the exploration process could have made errors when analyzing the source

code, which may affect the completeness of the web navigation graphs generated by Tansuo.

51

CHAPTER 4

WEB TEST SEQUENCE GENERATION

4.1 Background

 Along with the proliferation of web applications comes a growing amount of concern

about the reliability of those web applications. A failure, even partial functionality loss, may

cause an entire business to standstill and cost millions of dollars [78]. Also, users' confidence in

web applications depends to a large degree on whether their business transactions are handled

correctly by web applications. Reliability is considered to be the biggest challenge in the further

promotion of web applications [66].

One important aspect of web applications is that they often consist of dynamic web

pages that interact with each other by accessing shared objects, e.g., the session objects used

to track a user in a sequence of requests and the persistent data storage like a database used

to exchange data between different web pages users may access. Interactions between

dynamic web pages need to be carefully tested as they may give rise to subtle faults that can

not be detected by testing individual web pages in isolation. For example, a session object may

be spoiled in web page P and this session object would be used later in web page P’. Testing

web page P and web page P’ individually would not detect this fault, because this fault would

not cause any failure when web page P does not interact with web page P’. To detect this fault,

a test sequence that accesses web page P first and then accesses page P’ is required.

Therefore, it is valuable to generate test sequences to detect such faults existing in the

interactions between web pages in a web application.

52

4.2 Challenges and Contributions

A straightforward approach to testing interactions between dynamic web pages is to

test all possible sequences in a web application. The rationale is that each sequence represents

a specific way in which those web pages interact with each other, i.e., one possible interaction

among those web pages. There are, however, two problems with this approach. First, because

the number of test sequences grows exponentially as the size of a web application increases, it

is nearly always impractical to test all possible sequences due to the limited resources and

tough deadlines. Second, faults only manifest in a small number of test sequences. Thus, it is

inefficient to test all possible sequences, many of which do not contribute to fault detection.

Existing research work, as is discussed in Chapter 2, has proposed strategies, like covering all

the edges, to detect interaction faults existing in web applications. The existing strategies can

not guarantee that all the interactions in a web application would be tested systematically.

In this chapter, we propose a novel web test sequence generation approach to address

the above problems. We define the research problem as follows: Given a web application

containing dynamic web pages, how could we generate, in a systematic manner, a small

number of test sequences that are effective for detecting interaction faults? The key idea of this

approach is generating test sequences to cover all 2-way interactions, i.e., interactions between

any two web pages. In other words, if a web page P could reach another web page P’, there

must exist one test sequence in which both P and P’ are visited in the given order (but not

necessarily in a row). Our approach involves three major steps: First, a graph model is built to

capture the navigation structure of a web application under test, where each node represents a

web page (or a portion of it), and each edge represents a direct transition from one node to

another. This navigation graph generation problem has been solved in Chapter 3. Second, all

the 2-way interactions that may occur in a web application are computed from the navigation

graph. Finally, a set of paths are selected from the navigation graph to cover all the 2-way

interactions. These paths are then used as test sequences to test the web application.

53

For the purpose of evaluation, we built a prototype tool and applied our approach to two

web applications, namely, Bookstore [45] and CPM [55]. We compared our approach with an

approach that generated test sequences to cover all the edges in a navigation graph. We refer

to our approach as the AllOrderedPairs approach and the latter approach as the AllEdges

approach. The empirical comparison shows that AllOrderedPairs approach can effectively

detect some interaction faults that cannot be detected by the AllEdges approach.

Our approach is inspired by the research work on 2-way combinatorial testing for

detecting functionality faults in the software [7][13][35]. The 2-way combinatorial testing has

been shown very effective for detecting general software faults. We believe that the notion of

achieving 2-way combinatorial coverage will also be effective for detecting faults in web

applications, for which our case studies have provided some initial evidence.

To the best of our knowledge, our work is the first attempt to apply combinatorial testing

to generating test sequences for web applications. More importantly, our work deals with two

unique challenges in the context of testing web applications. First, for all the existing

combinatorial testing approaches, the order in which different components appear in a

combination is insignificant. This is in contrast to our approach, where the order of the web

pages being visited in an interaction is important. In particular, web page P may reach web

page P’, but web page P’ may not reach web page P, which has been explained with a concrete

example in Chapter 1. Second, existing work provides limited support for handling constraints.

Constraints are used to exclude invalid combinations, based on the domain semantics, from the

resulting test set. In our approach, the possible constraints among different web pages are

implicitly captured in the navigation structure represented by a navigation graph. The notion of

using a navigation graph to represent interaction constraints, as well as the required algorithmic

support, is novel.

54

4.3 An Interaction-Based Test Sequence Generation Approach

4.3.1 Basic Concepts

We first briefly review the notion of a navigation graph. As what has been introduced in

Chapter 3, a navigation graph is used to represent the navigation structure of a web application.

A node in a navigation graph can be a static node, which represents a static web page, or a

dynamic node, which represents a dynamic web page generated by a form submission. We

distinguish the home page of a web application as a special node called home node. There

exists an edge from one node m to another node n if node n can be visited immediately after

node m through a transition. Note that a transition can be represented by a hyperlink or a form

submission in a web page. Formally, a navigation graph G can be denoted as G = (V, E, n0),

where V = Vs ∪ Vd with Vs being a set of static nodes, and Vd being a set of dynamic nodes, and

E ⊆ V × V is a set of edges, and n0 is the home node.

Note that a dynamic web application could potentially generate an infinite number of

web pages. This is because many web pages may be dynamically generated from the same

template, according to different requests from users. Theoretically, users’ requests may be

infinite, which may cause infinite web pages. If a web page was directly represented as an

individual node, the size of a navigation graph would be unbounded. This problem has already

been solved in Chapter 3.

Next, we introduce the notion of 2-way interaction coverage. The term “2-way

interaction” refers to the interaction between two dynamic nodes. Let G = (V, E, n0) be a

navigation graph. Formally, a 2-way interaction in G is an ordered pair (m, n), where m and n

are two dynamic nodes, and there exists a path from m to n in G. Note that static nodes do not

access shared objects and thus have no interaction with other nodes. (Static nodes are included

in a navigation graph to capture the navigation structure, which is needed to generate

executable test sequences.) Also note that the order of nodes in a 2-way interaction is

55

significant, as a node m may reach a node n, but the reverse may not be true. (We only

consider navigations through links and form submissions within a web application. That is, we

do not consider navigations due to actions that are performed on the web browser.)

The 2-way interaction coverage requires that a set of paths be selected from a

navigation graph as test sequences so that every ordered pair is covered in at least one of

those test sequences. Let P = n1n2 ... nl be a path in a navigation graph. Let p = (m, n) be an

order pair. Then, p is covered in P if there exists 1 ≤ i < j ≤ l such that ni = m, and nj = n. Note

that in P, nodes m and n must appear in the given order, but they do not need to appear

consecutively.

To help better understand the notion of the 2-way interaction coverage, let us compare

it with the AllEdges coverage. The latter requires that every edge in a navigation graph be

covered by at least one test sequence. Figure 4.1 shows an example navigation graph. Two test

sequences, ABDEG and ACDFG, are sufficient to cover all the edges in the graph. But these

two test sequences fail to cover two 2-way interactions, namely, (B, F) and (C, E). If a fault is

only triggered by these two interactions, then this fault would be detected by a test set satisfying

the 2-way interaction coverage, but may not be detected by a test set satisfying the AllEdges

coverage.

It is interesting to note that 2-way interaction coverage does not subsume edge

coverage. Figure 4.2 shows a navigation graph that consists of three nodes A, B, and C, and

three edges (A, B), (A, C), and (B, C). In this graph, path P = ABC satisfies the 2-way

interaction coverage but does not satisfy the AllEdges coverage. The reason is that (A, C) as a

2-way interaction is covered by path P, since A and C appear in P in the given order, but (A, C)

as an edge is not covered by this path, since A and C do not appear in P in a row.

56

A

G

FE

D

CB

Figure 4.1 Navigation Graph Example 1.

A

CB

Figure 4.2 Navigation Graph Example 2.

4.3.2. Algorithm Generate-Sequences

 Figure 4.3 shows an algorithm called Generate-Sequences, which implements the

interaction-based test sequence generation approach. Algorithm Generate-Sequences takes as

input a navigation graph G of a web application under test, and produces as output a set seqs

of sequences that covers all the ordered pairs in G. The algorithm begins by computing all the

set pairs of ordered pairs in the navigation graph (line 1). Note that we only consider ordered

pairs involving two dynamic nodes. We point out that this computation basically requires

determining reachability from one node to another, which is a classical problem in the graph

theory and can be solved using the algorithms that have been reported in the literature [15].

Next, the algorithm tries to generate a set of test sequences to cover all the ordered

pairs computed earlier. This is accomplished by a while loop (lines 3 to 13) in which each

iteration generates one test sequence to cover a set of pairs that have not been covered before

until all the pairs are covered. Each iteration of the while loop works as follows: First, a list L of

57

nodes is built in which every two adjacent nodes is an ordered pair in set pairs, i.e., an ordered

pair that has not been covered yet (line 4). The purpose of building this list is to guide the

creation of a test sequence S so that S will cover a good number of ordered pairs that have not

been covered yet. An optimal approach would build L in a way such that the size of the resulting

set of test sequences is minimal. (The size of the resulting test sequence set can be measured

in different ways, e.g., in terms of the total number of requests if we ignore the cost of test setup

and teardown.) It is easy to see that finding an optimal solution is a NP-hard problem, due to the

combinatorial nature of the problem. Here we describe a heuristic approach to building L. In this

approach, we begin by picking an arbitrary pair (m, n) from pairs, and add m and n into L in the

given order, i.e., L = (m, n). Next, we try to extend L using the following three rules: (1) if there is

a pair (m’, m) in pairs, then we add m’ into L at its the beginning, i.e., L = (m’, m, n); (2) if there

exists a pair (n, n’) in pairs, we add n’ into L at its end, i.e., L = (m, n, n’); (3) if there are two

pairs (m, o) and (o, n), we add o into the middle of L, i.e., L = (m, o, n). We will refer to the three

rules as the front-end, back-end, and middle extension, respectively. These three rules can be

easily generalized to keep extending L until L can no longer be extended, i.e., no more nodes

can be added into L. We note that this approach has been implemented in our prototype tool to

conduct our empirical studies.

Now we are ready to discuss how to actually create a test sequence S out of L. This is

done by first initializing S to be an empty sequence (line 5) and then appending to S a shortest

path from the first node to the second node of L, and a shortest path from the second node to

the third node of L, and so on (lines 6 to 9). In other words, S is created by adding into L a

shortest path P between every two adjacent nodes to connect them. Note that node list L itself

is not necessarily a path in the navigation graph G, and thus can not be directly used as a test

sequence. This is because there may not exist an edge connecting every two adjacent nodes in

L. Also note that P can always be found since L is built in a way that every two adjacent nodes,

58

say ni and ni+1, where 1 ≤ i < k, is an ordered pair, implying that there must exist at least one

path from ni to ni+1.

After the sequence S is created, the set covered of pairs that are covered by sequence

S is computed (line 10) and then removed from set pairs (line 11). Note that the indices i and j in

the computation of the set covered do not have to be adjacent. This is because an ordered pair

(m, n) is covered in a path if m and n appear in the path in the given order (not necessarily in a

row).

We comment that the test sequences generated by algorithm Generate-Sequences do

not necessarily start from the home node n0. In practice, some web applications may require

that every test sequence start from the home node. For example, a web application may require

the user to log in before any other web page is visited. In this case, if a sequence does not start

from the home node, it is necessary to add at the beginning of the sequence a shortest path

from the home node n0 to the first node of the sequence.

59

Algorithm Generate-Sequences

Input: A navigation graph G = (V, E, n0) of the web application under test

Output: a set seqs of paths covering all the ordered pairs in G

1. pairs = { (m, n) | m and n are dynamic nodes in G, and there exists a path from m to n in

G }

2. let seqs be an empty set (of test sequences)

3. while (pairs is not empty) {

4. build a list L = (n1, n2, ..., nk)} of nodes such that k ≤ |V| and for 1 ≤ i < k, (ni, ni+1) ∈

pairs

5. let S be an empty sequence (of nodes)

6. for (1 ≤ i < k) {

7. let P be a shortest path from ni to ni+1

8. S = S • P

9. }

10. covered = {(ni, nj) | 1 ≤ i < j ≤ k, ni, nj ∈ L}

11. pairs = pairs − covered

12. add S into seqs

13. }

14. return seqs

Figure 4.3 Algorithm Generate-Sequences.

60

4.3.3. An Example Scenario

 We demonstrate how algorithm Generate-Sequences works by using an example

scenario from Bookstore, one of the two web applications used in our experiments. Figure 4.4

shows a portion of the navigation graph for Bookstore application, where the Default node is the

home node. For the ease of reference, each web page is identified by a name, instead of its

URL. We first generate all the ordered pairs in the navigation graph (line 1 in Figure 4.3). Those

pairs are shown in Table 4.1. Note that in the navigation graph, every node can reach itself

(through other nodes). Therefore, there exists an ordered pair from each node to itself, e.g., D7

= (Default, Default), A7= (AdvSearch, AdvSearch), and so on.

Next, we try to generate test sequences to cover all the ordered pairs in Table 4.1 (lines

3 to 13 in Figure 4.3). We first try to build a node list L (line 4), using the heuristic approach

described in Section 4.3.2. Assume that we first pick D1 = (Default, AdvSearch), and add

Default and AdvSearch into L (and remove D1 from Table 4.1):

L = {Default, AdvSearch}

Now we try to extend L using the three extension rules, i.e., the front-end, back-end,

and middle extension. Without loss of generality, assume that we first apply back-end

extension, where we try to find an ordered pair whose first node is the last node of L, i.e.,

AdvSearch. Note that A1 = (AdvSearch, Books) is one such pair. Thus, we add Books into the

end of L (and remove A1, as well as D2, which is also covered by L, from Table 4.1):

L = {Default, AdvSearch, Books}

Similarly, as B1 = (Books, BookDetail) is an ordered pair, we add BookDetail into the

end of L (and remove B1, as well as D3 and A2, which are also covered by L, from Table 4.1):

L = {Default, AdvSearch, Books, BookDetail}

We keep applying back-end extension to L until we get the following sequence:

L = {Default, AdvSearch, Books, BookDetail, ShoppingCart, ShoppingCartRecord,

Default, MyInfo, ShoppingCart, AdvSearch}

61

At this point, we cannot find any ordered pair whose first node is AdvSearch. Next we

apply front-end extension, where we try to find an ordered pair whose second node is the first

node of L. We find M3 = (MyInfo, Default) to be one such pair. Thus, we add MyInfo to the

beginning of L (and remove M3, as well as M4, M5, M6 and M7, which are also covered by L,

from Table 4.1):

L = {MyInfo, Default, AdvSearch, Books, BookDetail, ShoppingCart,

ShoppingCartRecord, Default, MyInfo, ShoppingCart, AdvSearch}

Note that all the ordered pairs whose second node is MyInfo, namely, D6, A6, B5, BD4,

S4, R2, and M7, are already covered in L, implying that those pairs have been removed from

Table 4.1. Thus, at this point, we cannot find any ordered pair to extend L from the front end.

Next we try to apply middle extension. However, none of the remaining ordered pairs,

i.e., B7, BD6, BD7, S6, S7, R5, and R6, satisfies the condition for middle extension. At this

point, we finish building L.

Now we generate a test sequence out of L such that every two adjacent nodes in L are

connected via a shortest path between the two nodes (lines 5 to 9 in Figure 4.3). It turns out that

most adjacent nodes in L have a direct edge between them, except for adjacent nodes Default

and MyInfo, which can be connected by a shortest path (Default, ShoppingCart, MyInfo), and

adjacent nodes ShoppingCart and AdvSearch, which can be connected by path (ShoppingCart,

Default, AdvSearch). Thus, we generate the following test sequence:

S = {MyInfo, Default, AdvSearch, Books, BookDetail, ShoppingCart,

ShoppingCartRecord, Default, ShoppingCart, MyInfo, ShoppingCart, Default, AdvSearch}

Note that sequence S does not cover all the ordered pairs. For example, BD7 =

(BookDetail, Books) is not yet covered. The same process can be repeated to generate

additional test sequences until all the ordered pairs are covered, which is not explained for the

purpose of brevity.

62

Default

BooksAdvSearch ShoppingCart

ShoppingCart
Record

Book
Detail MyInfo

Figure 4.4 Navigation Graph for Bookstore.

63

Table 4.1 The Pairs Set for Bookstore

Pair Default Pair AdvSearch Node
D1
D2
D3
D4
D5
D6
D7

Default, AdvSearch
Default, Books
Default, BookDetail
Default, ShoppingCart
Default, ShoppingCartRecord
Default, MyInfo
Default, Default

A1
A2
A3

A4
A5
A6
A7

AdvSearch, Books
AdvSearch, BookDetail
AdvSearch, ShoppingCart
(AdvSearch,
ShoppingCartRecord)
AdvSearch, Default
AdvSearch, MyInfo
AdvSearch, AdvSearch

Pair Books BookDetail
B1
B2
B3
B4
B5
B6
B7

Books, BookDetail
Books, ShoppingCart
Books, ShoppingCartRecord
Books, Default
Books, MyInfo
Books, AdvSearch
Books, Books

BD1
BD2

BD3
BD4
BD5
BD6
BD7

BookDetail, ShoppingCart
(BookDetail,
ShoppingCartRecord)
BookDetail, Default
BookDetail, MyInfo
BookDetail, AdvSearch
BookDetail, BookDetail
BookDetail, Books

Pair ShoppingCart Pair ShoppingCartRecord
S1

S2
S3
S4
S5
S6
S7

(ShoppingCart,
ShoppingCartRecord)
ShoppingCart, Default
ShoppingCart, MyInfo
ShoppingCart, ShoppingCart
ShoppingCart, AdvSearch
ShoppingCart, Books
ShoppingCart, BookDetail

R1
R2
R3

R4

R5
R6
R7

ShoppingCartRecord, Default
ShoppingCartRecord, MyInfo
(ShoppingCartRecord,
ShoppingCart)
(ShoppingCartRecord,
AdvSearch)
ShoppingCartRecord, Books
ShoppingCartRecord, Books
(ShoppingCartRecord,
ShoppingCartRecord)

Pair MyInfo
M1
M2
M3
M4
M5
M6
M7

MyInfo, ShoppingCart
MyInfo, AdvSearch

MyInfo, Default
MyInfo, Books

MyInfo, BookDetail
 MyInfo, ShoppingCartRecord

MyInfo, MyInfo

64

4.4 Experiments

4.4.1. Research Questions

 Our experiments are designed to answer the following research questions.

1. How does the AllOrderedPairs test sequence generation approach compare with

AllEdges test generation approach with respect to program coverage?

2. How does the AllOrderedPairs test sequence generation approach compare with

AllEdges test generation approach with respect to fault detection effectiveness?

4.4.2. Metrics

We measure the effectiveness of the two test generation strategies by measuring

statement coverage and number of faults detected.

4.4.3. Experimental Setup

 Subject Applications: We used two web applications, Bookstore [45] and CPM [55], in

our experiments. Bookstore is an online e-commerce application that users can use to browse,

search and buy books [45]. CPM [55] is a course project manager developed at Duke

University. CPM allows course instructors to create grader accounts for teaching assistants.

Instructors and teaching assistants can create student accounts, post student grades and post

available time slots for students to demonstrate their course projects. Students can view their

grades and sign up for specific demo time slots with a grader. New grader/student/course

accounts can be created and deleted as necessary. More details on the applications are

presented in previous work by Sampath et al. [55].

Navigation Graph and Test Case Characteristics: Table 4.2 also shows the

characteristics of navigation graphs (number of nodes and number of edges of the navigation

graph) and Table 4.3 shows characteristics of test cases for each application. From the last row

of Table 4.3, we see that on average, the length of test cases generated by both AllEdges and

AllOrderedPairs test generation strategies is the same (around 8 requests), except for

65

Bookstore’s AllOrderedPairs test cases. The AllOrderedPairs test generation algorithm is

designed to (a) cover as many ordered pairs as possible in a test sequence, and (b) find the

shortest paths between two consecutive nodes in the test sequence. Thus, the length of a

generated test case depends on these two factors above. Since Bookstore’s navigation graph

has high connectivity—each node is connected to several other nodes, and since the algorithm

is designed to find the shortest path between every two consecutive nodes, long test sequences

are created, however, the number of test cases is small—7 AllOrderedPairs test sequences.

Also, since AllOrderedPairs does not subsume AllEdges (as described in Section 4.3.1), we find

that the AllOrderedPairs test sequences for our subject applications do not necessarily cover all

the edges in the graph (AllOrderedPairs test sequences cover 60.7% of edges in Bookstore,

and 78.4% of edges in CPM).

Experimental Framework: We used the framework presented in Sprenkle et al. [61] for

capturing program coverage and fault detection information. The framework has three main

components: a customized tool for replaying the test cases, Clover [12] for instrumenting and

measuring program coverage, and a fault detection component that allows the insertion of

hand-seeded faults into the web application, the application of oracles to determine if a test

case detects a fault or not, and the creation of fault detection reports based on the faults

detected by a test suite [55]. We augmented faults seeded by Sampath et al. [55] with faults that

are likely to occur when two web pages interact with each other. Table 4.4 presents the number

of seeded faults in each web application.

For the fault detection study, we use both the diff and the struct oracle, presented by

Sprenkle et al. [61][63]. The diff oracle applies the Unix utility ‘diff’ on the HTML responses

returned on executing the test sequences on the clean and faulty versions of the application and

reports any difference between the HTML responses as a failure. Since the diff oracle considers

any difference in the HTML as a failure, differences in real-time content, e.g., the current date,

are flagged as a failure by the oracle, thus leading to false positives. The struct oracle is more

66

conservative—it filters the HTML responses and reports only differences in the HTML tags. The

obvious disadvantage of the struct oracle lies in its inability to capture faults that arise from

differences in the content of the HTML page. Sprenkle et al. [63] discuss more about the oracles

and the tradeoffs. In this chapter, we present results from both diff and struct oracles.

We implemented the Generate-Sequences algorithm in our prototype tool to generate

test sequences. This tool generates test sequences that cover all the 2-way interactions

(AllOrderedPairs) and all the edges (AllEdges). After generating the test sequences, our tool

also verifies whether all the 2-way interactions are covered by test sequences for covering all

the 2-way interactions and whether all the edges are covered by test sequences for covering all

edges. It also shows us statistics of the comparisons between the AllOrderedPairs approach

and AllEdges approach. Our web test sequence generation algorithm generates only the base

requests for the test sequences and ensures that 2-way interactions are covered by the

AllOrderedPairs test sequences. To execute the test cases correctly, we manually augment the

requests with name-value pairs. This is similar to how testers provide test inputs to ensure

correct execution of test sequences in traditional programs. We also use an initial data store

state that is reset before each test case is executed, to avoid cascading faults.

Table 4.2 Characteristics of Subject Applications

Statistics Bookstore CPM

Technologies JSP, MySQL Java servlets, File-based data store,
HTML

Non-commented Source LOC 7615 9401
Number of classes 11 75
Number of Methods 319 173

Number of Seeded Faults 72 197
Number of Nodes 41 64
Number of Edges 63 125

67

Table 4.3 Characteristics of Test Cases

Statistics AllEdges AllOrderedPairs
Bookstore CPM Bookstore CPM

Number of test cases
 15 41 7 261

Percent of ordered
pairs covered 53.12% 15.03% 100% 100%

Percent of edges
covered 100% 100% 60.7% 78.4%

Total number of
requests 133 330 154 2273

Longest test case
length 20 25 40 105

Shortest test case
length 4 3 12 3

Average Test Case
length 8.87 8.05 22 8.71

4.4.4. Results and Discussions

 From Table 4.4, for Bookstore application, we observe that both AllEdges approach and

AllOrderedPairs approach have the same code coverage, 85.32%, but AllOrderedPairs detects

6 to 8 more faults than the AllEdges approach. By design, in Bookstore, certain methods are

included in every web page of the web application (through an include JSP statement), even

though these methods are never called by the other methods in the web page—these methods

are designed to be called by a user with different privileges (an admin user), instead of an end-

user. In this chapter, since our tool focuses on covering 2-way interactions of regular user

accessible web pages and functions, we report program coverage results for Bookstore

application after removing such repeated code from the coverage report generated by Clover.

The program coverage is same for AllOrderedPairs and AllEdges because the same web pages

are accessed with the same parameters and values, thus resulting in same code coverage.

That means the test sequences for AllEdges approach and AllOrderedPairs approach should

have the same detection ability for faults in unit testing. The primary advantage of the

68

AllOrderedPairs test sequences is that they can guarantee the 2-way interaction coverage,

while the AllEdges approach cannot.

From our experiments, we observe that all the faults detected by the AllEdges

sequences are also detected by the AllOrderedPairs test sequences. One example of a fault

that is caught by AllOrderedPairs but missed by AllEdges is presented here: we found that a

fault is exposed when the “Login” web page is accessed the second time in a test sequence.

Since (Login, Login) was an ordered pair for Bookstore application, the ordered pair (Login,

Login) appeared in one of the AllOrderedPairs test sequences, and the fault was detected by an

AllOrderedPairs test sequence. However, since there was no direct edge from “Login” web page

to “Login” web page, the AllEdges test sequences were not required to generate a test

sequence with two occurrences of the “Login” web page in them, thus failing to detect the fault.

Table 4.5 presents the program coverage and fault detection results for CPM. Test

sequences from the AllOrderedPairs approach have higher program coverage than sequences

from AllEdges approach. However, we see a large difference between the numbers of faults

detected by each approach. From our experiments, we observe that all the faults detected by

the AllEdges test sequences are also detected by the AllOrderedPairs test sequences. Fault

detection by the AllOrderedPairs test sequences improved by a factor of 2.57 over the AllEdges

test sequences. From Table 4.3, we see that the AllEdges test sequences for CPM cover only

15.03% of the 2-way interactions, whereas the AllOrderedPairs test sequences cover 100% of

the interactions. We also found that test sequences that cover the most ordered pairs (2273 and

1523 ordered pairs), detect the most faults in the web application (35 and 33 faults,

respectively). Thus, we observe that there is a relation between the number of ordered pairs

covered in a test sequence and the number of faults it detects.

Also, CPM application is more complex in logic than Bookstore application. There are

many 2-way interactions through data storage. For example, the 2-way interaction

(CreateCourseServlet, CatchGroupSignupServlet) is not covered by the AllEdges test

69

sequences. If a fault exists in storing the course name of a new course in the

“CreateCourseServlet” web page, the AllEdges test sequences will fail to detect it. But, since

the interaction is present in the AllOrderedPairs test sequences, such a fault can be detected by

test sequences that contain the 2-way interaction (CreateCourseServlet,

CatchGroupSignupServlet).

Another reason for the difference is the complex logic in sequences for AllOrderedPairs

test sequences and the name-value pairs supplied to the test sequences. For example, the

request for creating a grader may just occur once in a test sequence generated by the AllEdges

approach. But in a test sequence created by the AllOrderedPairs approach, the same request

may occur multiple times because we are trying to cover all the 2-way interactions. Thus, when

an existing grader is created again by a request that appears later in the test sequence, the

error tolerance code will be covered, because that grader has already been created. This is also

another reason for the higher code coverage for AllOrderedPairs approach when compared to

the AllEdges approach.

A disadvantage of the AllOrderedPairs test cases is that there are more

AllOrderedPairs test sequences (261) than AllEdges (41) test sequences—thus, the

AllOrderedPairs test cases take longer to execute and require more resources. However, we

believe the tradeoff in improved fault detection effectiveness is worth the increased test

execution time. Also, it is important to note that the fault detection of the AllOrderedPairs test

sequences is still only 36.5% of the total seeded faults (with the struct oracle). But, this is

expected. There are three reasons for this fault detection ratio. First, our AllOrderedPairs test

generation algorithm only generates the base requests—the name-value pairs to the request

are still manually supplied. The particular name-value pairs used in test sequences have a

significant impact on code coverage and fault detection. In the future, we plan to implement

strategies to systematically generate name-value pairs for web application requests, which can

improve the code coverage and the fault detection ratio. Second, some faults can be triggered

70

only in multi-user scenarios, e.g., two users log in with the same account. But, in our

experiments, our test sequences are executed in single user scenarios. Thus, it is reasonable

for missing these faults seeded for multi-user scenarios. Third, the initial database data may

also cause failing to detect faults. When verify the experiment results, we figure out that some

faults should be detected by our approach but they are missed indeed. For example, the price

calculation fault in the “ShoppingCart” web page of Bookstore application is missed. The reason

is that there is no order listed in the “ShoppingCart” web page when it is accessed. As a result,

the statements for calculating prices are not executed at all, which makes our approach miss

this fault. If the initial data in the database contain one or several orders, this fault would be

detected by our approach.

Table 4.4 Program Coverage and Fault Detection: Bookstore

Statistics All Edges All Ordered Paris

Total Faults 72 72
Detected Faults diff oracle: 61

struct oracle:45
diff oracle: 69

struct oracle:51
Statement Coverage 85.32% 85.32%

Table 4.5 Program Coverage and Fault Detection: CPM

Statistics All Edges All Ordered Paris

Total Faults 197 197
Detected Faults diff oracle: 37

struct oracle: 28
diff oracle: 124
struct oracle: 49

Statement Coverage 62.8% 67.5%

4.4.5. Threats to Validity

One important threat to validity of our results is that we conducted our experiments on

only two subject programs. Though the subject applications are fairly large-sized applications,

we cannot generalize our results to all web applications. We also manually generated

parameter-values to the requests generated by our tool—the effectiveness of the test

71

sequences largely depends on parameter-values used in the test sequences. In the future, we

will closely investigate the problem of test input generation for web applications. Also, we do not

report on the time to generate test sequences and the time to execute test sequences for fault

detection effectiveness—these are measures that we plan to evaluate in the future.

72

CHAPTER 5

BUFFER OVERFLOW VULNERABILITY DETECTION

5.1 Background

 As software is at the core of a computerized system, software security is a priority

concern in many security assurance efforts [41][69]. Moreover, most computerized systems are

inter-connected through an intra- or inter-network or both. As a result, software security

breaches can often be accomplished remotely in the cyberspace, i.e., without direct physical

access to a victim system. This makes software a favorite target for security attacks and partly

contributes to the increase of software security breaches in recent years [68].

Computer security, in general, is a very active research area. Significant progress has

been made in areas such as cryptographic algorithms, access control, intrusion detection,

privacy management, and protocol design [26]. However, most research work in these areas

has focused on the algorithmic aspects and/or at the design level. But, unfortunately, secure

algorithms or designs do not necessarily lead to secure implementations, as mistakes are often

made during the implementation. In this chapter, we distinguish software security from general

computer security. Specifically, we use the term software security to refer to security assurance

at the implementation level, i.e., how to ensure that actual software implementations are secure.

Existing approaches to software security can be largely classified into two categories.

The first category is based on static analysis [11][48], which checks security properties by

analyzing the source code of a subject program, i.e., without executing the program. The

second category is based on dynamic analysis or testing [3][52], which executes the subject

program and checks whether the program’s runtime behavior satisfies some expected security

properties. Static analysis can be very fast, but suffers from false positives or false negatives or

73

both. Testing, on the other hand, only reports problems that have actually been detected at

runtime. However, testing requires test input selection and program execution, which can be

difficult and time consuming. Software security properties can also be classified into two types:

application-specific and application-independent properties. The former refers to properties that

are specific to an application domain. For example, a software component responsible for the

access control should ensure that an object under control is accessed only by a subject with

sufficient privilege. The latter refers to properties that are independent from an application

domain. For example, a software implementation, no matter which domain it is in, should be

free from buffer overflow vulnerabilities. Buffer overflow is a typical topic in security testing. In

this chapter, a new idea about buffer overflow vulnerability detection will be introduced.

A buffer overflow occurs when data is written beyond the boundary of an array-like data

structure. Buffer overflow vulnerabilities are program defects that can cause a buffer overflow to

occur at runtime. Many security attacks exploit buffer overflow vulnerabilities to compromise

critical data structures [73], so that they can influence or even take control over the behavior of

a victim system. Therefore, it is valuable to detect buffer overflow vulnerabilities before software

is released.

5.2 Challenges and Contributions

Theoretically, symbolic execution-based buffer overflow vulnerability detection

approaches [9][23][58], as what has been introduced in Chapter 2, are excellent ideas in the

research work. They derive test inputs by analyzing the data and/or control structure of the

source code, which systematically detects buffer overflow vulnerabilities in the software like

human reasoning. But, in reality, they are not practical for two limitations of symbolic execution-

based buffer overflow vulnerability detection: 1) involving instrumentation at the source code or

binary code level, which makes these approaches specific to a particular programming

language, building environment or platform; and 2) depending on the capability of constraint

74

solvers that, currently, are not practical to solve numerous and complicated constraints in real-

life applications, like Gzip [28] and Pine [47].

Black-box testing does not depend on the capability of constraint solvers and it is easy

to be applied to various implementations. Thus, black-box testing is widely used in practice.

However, it often suffers from poor code coverage. Code coverage is considered to be an

important indicator of testing effectiveness [2]. A black-box testing approach that has recently

gained recognition in practice is called fuzz testing or fuzzing [67][69], which generates test data

randomly. A concrete example for fuzz testing has been introduced in Chapter 2. Fuzz testing

has been shown effective for detecting software vulnerabilities. However, like other black-box

testing techniques, poor code coverage is considered to be a major limitation of fuzz

testing [25].

A major design objective of our approach is to achieve good code coverage while retain

the advantages of black-box testing. Our approach was motivated by a reflection on how buffer

overflow vulnerabilities are exploited by an attacker in practice. In most cases an attacker can

influence the behavior of a victim system only by controlling the values of its external

parameters. External parameters are factors that could potentially affect the system behavior.

Examples of external parameters include input parameters, configuration options, and

environment variables. Therefore, launching a successful attack often amounts to a clever way

of exploring the input space, typically by tweaking external parameter values. (In this research

project, we do not consider interactive systems, i.e., systems that require a sequence of user

interactions in the course of a computation, where each interaction may depend on the outcome

of previous interactions.) Security testing essentially needs to do the same thing, but in a more

systematic manner and with a good intent.

In a typical exploit attempt, the tweaking of external parameter values consists of the

following two steps. First, the attacker identifies one external parameter P to carry attack data.

We will refer to P as an extreme parameter. (The name of “extreme parameter” indicates that

75

the parameter will take an “extreme value” in a test, as discussed in Section 5.3.) P is often

chosen such that, during program execution, its value is likely be copied into a buffer B that is

vulnerable to overflow and that is located close to a critical data structure C that the attacker

intends to compromise. A common example of such a data structure is the return address of a

function call on the stack. The attack data is intended to overwrite C in a specific way that

allows the attacker to gain control over the program execution. Second, the attacker tries to

assign proper values to the rest of the external parameters. Some of these parameters can take

arbitrary values, i.e., the exploit attempt will succeed or fail, regardless of the values of these

parameters. However, other parameters are important for steering the program execution to

reach the vulnerable point, i.e., a statement that actually copies the value of P into buffer B and

whose execution may give rise to a buffer overflow. We will refer to these parameters as control

parameters. Note that these two steps can be repeated by taking different parameters as the

extreme parameter.

In this chapter, we present a dynamic approach to detecting buffer overflow

vulnerabilities. It is a specification-based or black-box testing approach. That is, we generate

test data based on the specification of a subject program. Our approach is to systematize the

tweaking of external parameter values in a typical exploit attempt as described above.

Specifically, we identify two conditions that must be met in order to expose buffer overflow

vulnerabilities. Our approach is centered on how to generate tests such that these two

conditions are likely to be satisfied for potentially vulnerable statements. We provide guidelines

on how to identify extreme and control parameters and their values. Moreover, for each value of

an extreme parameter, we adapt combinatorial testing [7][13] to generating a group of tests

such that one of these tests is likely to steer program execution to reach a vulnerable point.

Software testing based on combinatorial design has been shown very effective for functionality

faults in the software under test [33]. In particular, empirical results suggest that there exists a

high correlation between combinatorial coverage and code coverage [7][13]. It is this correlation

76

that is exploited in our approach to increase the likelihood for our tests to reach a vulnerable

point, and thus the likelihood to detect buffer overflow vulnerabilities.

Note that attack data often need to be carefully crafted in order to carry out a real

attack. However, for testing, our goal is to demonstrate the possibility of detecting a buffer

overflow vulnerability, i.e., not to acquire specific control to do any real harm. As discussed in

Section 5.3, this simplifies the selection of parameter values, especially for the extreme

parameters.

For the purpose of evaluation, we implemented our approach in a prototype tool called

Tance. We conducted experiments on five open-source programs: Ghttpd [21], Nullhttpd [44],

Gzip [28], Hypermail [30] and Pine [47]. The experiment results show that our approach can

effectively detect buffer overflow vulnerabilities in these applications. In particular, we examined

vulnerabilities reports in three public vulnerability databases. This examination showed that our

approach detected all the known vulnerabilities except for one for the first four programs. For

Pine, insufficient information was available to determine whether the reported vulnerabilities

were the same as the ones we detected. In addition, our approach detected a number of new

vulnerabilities that have not been reported in the three databases.

5.3 A Combinatorial Approach for Buffer Overflow Vulnerability Detection

5.3.1. Main Idea

We use an example to illustrate the main idea of our approach. Assume that a

statement L copies a string variable S into a buffer B, without checking whether B has enough

space to hold S. Thus, L is potentially vulnerable to buffer overflow. In order for a test T to

detect this potential vulnerability, two conditions must be met:

• C1: L must be executed during the execution of test T. In other words, when T is

executed, the control flow must be able to reach the point where L is located.

77

• C2: When L is executed, either S is a string that is unexpectedly long, or B is a buffer

that is unexpectedly small, or both. In other words, either S, or B, or both, have to take

an extreme value.

Note that extreme values are often syntactically legal but not semantically meaningful.

As a result, extreme values are often unexpected and not tested during normal functional

testing.

Our approach is centered on how to generate tests such that conditions C1 and C2 are

likely to be satisfied for potentially vulnerable statements like L. In our approach, we first identify

a group of extreme parameters and a set of extreme values for each of these parameters. An

external parameter p is identified to be an extreme parameter if p taking an extreme value may

cause variables like S or B to take an extreme value. Next, we identify a set of control

parameters for each extreme parameter, and a set of values for each of these control

parameters. Let p be an extreme parameter. Intuitively, an external parameter p’ is identified to

be a control parameter of p if business logic suggests that the value of p’ may affect how the

value of p is processed. The values of a control parameter, which we will refer to as control

values, are identified such that they could potentially lead to different business scenarios. In our

approach, the extreme and control parameters and their values are identified manually based

on specifications and/or domain knowledge. Some general guidelines on how to perform this

identification are provided in Section 5.3.2.

Now we discuss how tests are actually generated in our approach. Consider the

example again. If we knew that L was a vulnerable statement, ideally we would want to

generate a single test to satisfy both C1 and C2. Unfortunately, vulnerable statements like L are

not known a priori. Our approach takes a different perspective. Instead of trying to generate an

ideal test for a specific vulnerable statement, we try to generate a group of tests for each

extreme value (of each extreme parameter) such that each extreme value can reach as many

vulnerable statements as possible. Specifically, for each extreme value v of each extreme

78

parameter p, we generate a combinatorial test set T such that (1) p takes value v in each test in

T; and (2) T covers all the t-way combinations of all the control parameters of p, where t is a

small integer number that is expected to be no greater than 6 in practice [33]. The reason why

we want to achieve t-way coverage for all the control parameters of p is to exploit the correlation

between combinatorial coverage and code coverage such that, if there is a vulnerable

statement like L where v could cause a variable like S or B to take an extreme value, then one

of the tests in T will be likely to reach this statement.

Intuitively, our approach uses extreme parameters and their values to satisfy C2 and

control parameters and their values to satisfy C1. Observe that in each test we generate, there

is a single extreme parameter. This implicitly assumes that variables like S or B in our example

derive their extreme values from a single external parameter. That is the following hypothesis,

made in our approach:

Hypothesis Single-Extreme-Parameter (SEP): It is often the case that a buffer is

overrun by an extreme value (of an internal variable) that is derived from a single external

parameter.

This hypothesis is consistent with the fact the attacker typically picks one external

parameter to carry attack data, as discussed in Section 5.1. As an effort to validate this

hypothesis, we inspected buffer overflow vulnerability reports in three public databases. The

results of our inspection, as presented in Section 5.5, provide strong evidence for the validity of

this hypothesis in practice.

5.3.2. Algorithm BOVTest

Figure 5.1 presents an algorithm called BOVTest (short for Buffer Overflow Vulnerability

Test) that implements our approach. This algorithm takes as input a program specification M

and an integer t. M is used as the basis for identifying external parameters and their values, and

t is used as the strength for combinatorial test generation. The output of algorithm BOVTest is a

test set T for detecting buffer overflow vulnerabilities in an implementation of M.

79

Algorithm BOVTest

Input: A program specification M , and an integer t

Output: A test set T for detecting buffer overflow vulnerabilities in an implementation of

M

1. let P be the set of all the external parameters of M

2. identify a set Px ⊆ P of extreme parameters and a set of extreme values for each

parameter p in Px

3. initialize T to be an empty test set

4. for each extreme parameter px in Px {

5. identify a set Pc ⊆ P of control parameters of px and a set of control values for each

parameter p in Pc

6. let Pd = P – Pc, and identify a default value d(p) for each parameter p in Pd

7. for each extreme value v of px {

8. build a t-way test set T′ for parameters in Pc using their control values

9. for each test τ′ in T′ {

10. create a complete test τ such that for each parameter p, τ(p) = v if p = px, τ(p)

= τ′(p) if p ∈ Pc, and τ(p) = d(p) otherwise, where τ(p) (or τ′(p)) is the value of parameter

p in test τ (or τ′)

11. T = T ∪ τ

12. }

13. }

14. }

15. return T;

Figure 5.1 Algorithm BOVTest

80

Algorithm BOVTest begins by identifying all the external parameters in M (line 1).

Generally speaking, an external parameter is a factor that could potentially affect the program

behavior. This includes not only input parameters, but also configuration options and

environment variables and other factors that could potentially affect the program behavior.

Next, it identifies a set Px of extreme parameters as well as their extreme values (line

2). To identify extreme parameters and extreme values, we observe that extreme parameters

often have variable lengths, or indicate the sizes of some other parameters (and thus are likely

to be used as the capacity of a buffer). In the former case, an extreme value is often a string

value of an excessive length; in the latter case, an extreme value is often an excessively small

value. Note that in both cases, the specific values of an extreme parameter are often not

significant for the purpose of testing, i.e., in terms of triggering a buffer overflow. A key insight

behind this observation is that buffer overflow vulnerabilities are in essence a mishandling of

certain length/size requirements. This observation can be used as a guideline for identifying

extreme parameters and values. For example, in a network protocol, user payload is likely to be

an extreme parameter, as it is of a variable length. Furthermore, we can identify a payload that

is longer than the typically expected as one of its extreme values. On the other hand, this

observation can also be used to exclude certain parameters from Px. For example, string

parameters of fixed length are typically not extreme parameters.

After we identify extreme parameters and their values, we generate a t-way

combinatorial test set for each extreme value of each extreme parameter (lines 4 to 14). For

each extreme parameter px, we first identify two groups of external parameters, namely, Pc,

and Pd, as well as their values (lines 5 to 6):

• Pc consists of all the control parameters of an extreme parameter px. An external

parameter p’ is a control parameter of px, if business logic suggests that the value of p’

could affect how the value of px is processed, based on specification and/or domain

81

knowledge. For each parameter in Pc, we identify a set of control values. Control values

can be identified using traditional techniques such as domain analysis and equivalence

partitioning. Oftentimes, different control values signal different business scenarios,

leading to different branches in a program. We point out that security testing is often

performed after normal functional testing. Therefore, it is often possible for us to take

advantage of the knowledge and experience accumulated during functional testing. In

particular, we expect that most control values have been identified and tested in

functional testing.

Again, consider a network protocol. Assume that we have identified user payload as an

extreme parameter. Then, message type is likely to be a parameter that could affect

how user payload is processed in the implementation. This is because the payload

often needs to be interpreted differently depending on the type of a message. The

values of this message type parameter, used as a control parameter, would be the

different types that are specified in the protocol specification.

• Pd is the complement set of Pc (line 6). In other words, Pd consists of all the external

parameters that are not control parameters of px. For each parameter in Pd, we simply

identify a single default value, which can be any valid value in the domain of the

parameter. (Note that a value is valid if it is allowed by the specification. Otherwise, it is

invalid.) Note that these default values do not directly contribute to the detection of

buffer overflow vulnerabilities in our approach. Instead, these values are only needed to

construct complete, thus executable, tests.

In general, the fewer the parameters in Pc (and the more the parameters in Pd), the

fewer the tests generated for each extreme value of px. Note that an imperfect identification of

Pc and Pd may increase the number of tests and/or miss some vulnerabilities, but it does not

invalidate our test results. That is, any vulnerability detected by our approach is a real

vulnerability. More discussions on this are provided in Section 5.3.3.

82

The actual generation of a t-way test set for each extreme value v of each extreme

parameter in Px proceeds as follows. We first generate a t-way test set T’ for all the parameters

in Pc, using their control values (line 8). Each test in T’ is then used a base test to create a

complete test by (1) adding v as the value of px, and (2) adding the default value of each

parameter in Pd (and thus not in Pc). Consider the example shown in Figure 5.2. Assume that a

system has five parameters, p1, p2, p3, p4, and p5. Assume that p4 is an extreme parameter,

and has an extreme value LS, indicating a very long string. Also assume that p1, p2, and p3,

with control values “0” and “1”, are in Pc, and p5 is in Pd, with a default value “0”. To generate a

2-way test set for the extreme value LS of p4, we first generate a 2-way test set for p1, p2, and

p3, which is the test set T’ shown in Figure 5.2. Next, we add into each test of T the value LS as

the value of p4, and “0” as the default value of p5. Thus, we obtain the following complete test

set T:

 Figure 5.2 An Example Test Set.

Finally, we analyze the time complexity of algorithm BOVTest, which is dominated by

the three for-loops (lines 4 to 14). Assume that the IPOG [35] algorithm is used to generate a t-

way test set (line 8). The time complexity of the IPOG algorithm for generating a t-way test set

for k parameters, each having at most d values, is)log(1 kkdO tt ××+ , and the size of the test

set is)log(kdO t × [35]. Let dc be the maximal number of control values a control parameter

can take. The time complexity for generating T′ (line 8) is |)|log||(1
c

t
c

t
c PPdO ××+ , and the

 p1 p2 p3 p4 p5

 0 0 0 LS 0

 0 1 1 LS 0

 1 0 1 LS 0

83

size of T′ is |)|log(cc PdO t × . It takes |)(| PO to create a new test (line 10). The time

complexity for the innermost for-loop (lines 9 to 12) is |)|||log(PPdO cc
t ×× . Note that

PPc ≤ . The time complexity for the for-loop in the middle (lines 7-13) is

|)|log||(1 PPdO tt
c ××+ . Let dx be the maximum number of extreme values an external

parameter can take. The time complexity of the outermost for-loops is

|)|log||(11 PPddO t
cx

t ××× ++ . Let d be the maximum of dc and dx. Then, the time complexity

of the entire algorithm is |)|log||(12 PPdO tt ×× ++ . Note that the number of tests generated by

algorithm BOVTest is |)|log||(1 PPdO t ××+ .

5.3.3 Discussions

Recall that a buffer overflow occurs when data is written beyond the boundary of an

array-like structure. Let D be the data to be written. Let B be an array-like structure. As

discussed earlier, if the size of D is larger than the capacity of B (either D is excessively long, or

B is excessively small, or both), then D will be written beyond the boundary of B, i.e., B will

overflow. There is a more subtle case to consider. In languages like C, an array-like structure is

often accessed using a pointer and such a pointer can be moved forward and/or backward

using explicit arithmetic operations. For example, an array variable in C is in fact a pointer that

points to the beginning of the array. It is possible that the pointer may be moved beyond the

upper or even lower boundary of a buffer due to explicit pointer arithmetic operations. If data of

any size is written at this point, a buffer overflow will occur.

The above scenario suggests that attention should be paid to external parameters

whose values may be used as an offset in a pointer arithmetic operation (in addition to external

parameters of variable length, and external parameters that indicate the length of other

parameters). For example, in a record keeping application, the record number may be used as

an offset to locate a record. If proper checks are not performed, a negative value, or an

84

unexpectedly large positive value, of the record number could move the base pointer beyond

the lower or upper boundary of the structure that keeps all the records.

It is worth noting that extreme values matter typically because of their extreme

properties, instead of their specific values. For example, what matters for an extreme string is

typically its length, instead of the specific characters in the string. This observation simplifies the

selection of extreme values.

As mentioned, while the extreme and control parameters and their values are identified

manually in our approach, this identification does not have to be perfect. In practice, we can

exploit this flexibility to scale up or down our test effort. On the one hand, when adequate

resource is available, more parameters and values can be identified to acquire more confidence

at the cost of creating more tests. For example, if we are unsure about whether an external

parameter should be considered to be a control parameter, it is safe to do so. This will likely

create more tests, but will also help to detect vulnerabilities that otherwise would not be

detected. On the other hand, when the resource is constrained, we can focus our effort only on

a subset of parameters and values that we believe are the most important ones to test. Doing

so will reduce the number of tests, but may miss some vulnerabilities. Nonetheless, any

vulnerability that is detected by our approach is guaranteed to be a real vulnerability.

5.4 Tance: A Prototype Tool

 We implemented our approach in a prototype tool called Tance. Figure 5.3 shows the

architecture of Tance, which consists of the following major components:

• Controller. This is the core component of Tance. It is responsible for driving the entire

testing process. In a typical scenario, after Controller receives from the user the

external parameter model of a subject application, it calls Test Generator to generate

combinatorial tests based on the given parameter model. For each test, Controller uses

Test Transformer to transform it into an executable test format, i.e., a format that is

85

accepted by the subject application. Then, Controller calls Test Executor to execute

each test automatically.

• Test Generator. This component is responsible for the actual test generation. In other

words, this component implements algorithm BOVTest. This component first uses a

combinatorial test generation tool, called ACTS (formerly known as Fireeye) [35] to

generate a base combinatorial test set, which is used later to derive a set of complete

tests as discussed in Section 5.3.

• Test Transformer. This component is responsible for transforming each combinatorial

test into a format that is accepted by subject applications. This step is necessary

because a combinatorial test only consists of parameter values, but applications often

require a test to be presented in a particular format. For example, a web server requires

each test to be presented as a HTTP request. This component needs to be customized

for different applications. Tance provides a programming interface that allows the user

to hook a third party component into its testing framework.

• Test Executor. This component is responsible for carrying out the actual test execution

process. For example, this tool will send test requests automatically to HTTP servers. In

addition, Test Executor will restart HTTP servers before running the next test so that

there is no interference between different tests. This component also needs to be

customized for different programs. Tance also provides a programming interface for

integration with an existing test execution environment.

• Bounds Checker. This component is used to detect the actual occurrence of a buffer

overflow. Before running an application, the user has to instrument it with a bounds

checking tool [18].

86

parameter
 values

user

Tance

Controller

Test
Generator ACTS

Test
Transformer

Test
Executor

Bounds
Checker

Application

Requirements

Parameters
and Values

Parameters
and Values

Parameters
and Values

Combinations

Test cases

Test cases

Executable
Test cases

Executable
Test cases

Executable
Test cases

Buffer overflows

Instrument

Instrument

Monitor

Figure 5.3 Tance’s Architecture.

5.5 Experiments

 In Section 5.5.1, we present the results of our inspection on three public vulnerability

databases, as an effort to validate the SEP hypothesis. In Section 5.5.2, we describe subject

applications as well as the computing environment used in our case studies. In Section 5.5.3,

we present the vulnerability detection results of applying our approach to five open-source

applications and compare our approach with fuzz testing on two HTTP server applications.

5.5.1. Validation of the SEP Hypothesis

 To validate the SEP hypothesis, we checked three public vulnerability databases:

SecurityFocus [56], SecurityTracker [57], and the National Vulnerability Database (NVD) [43].

For each database, we conducted a search using the keyword “buffer overflow” to retrieve

reports of buffer overflow vulnerabilities. For SecurityFocus, the reports were sorted based on

87

“ranking”, and we inspected the top 100 reports. For SecurityTracker and NVD, the reports

cannot be sorted, and we inspected the first 100 reports returned by our search. Among the

reports we inspected, there are 15 reports cross-referenced between SecurityTracker and NVD.

Table 5.1 shows the results of our inspection. We classify the reports into three

categories. The first category (Explicitly Stated) includes reports that contain an explicit

statement confirming the satisfaction of the SEP hypothesis. For example, the report CVE-

2010-0361 in NVD contains the following statement: “Stack based buffer overflow … via a long

URI in HTTP OPTIONS request.”. This statement explicitly states that a single parameter “URI”

takes an extreme value. The second category (Reasonably Inferred) includes reports that are

written in a way that reasonably suggests the satisfaction of the SEP hypothesis, despite the

lack of an explicit statement. For example, the report CVE-2007-1997 in NVD contains the

following statement: “… via a crafted CHM file that contains a negative integer … leads to a

stack-based buffer overflow.”. This statement does not explicitly identify a parameter, but it is

reasonable to believe that one of the fields in a CHM file can be modeled as an extreme

parameter taking the negative value. The third category (Not Clear) includes reports that do not

fall into the first two categories. For these reports, we do not have adequate information to make

a reasonable judgment. We did not find any report that explicitly states that two or more

parameters must take extreme values at the same time to trigger a buffer overflow. In other

words, none of the examined reports explicitly disproves the SEP hypothesis.

Table 5.1 Validation of the SEP Hypothesis

Database Explicitly Stated Reasonably
Inferred

Not Clear

SecurityFocus 61 9 30
SecurityTracker 62 29 9

NVD 49 25 26

88

5.5.2. Experimental Setup

Subject Programs: Our case studies use the following five applications:

(1) Ghttpd (version 1.4.4) is a fast and efficient web server that supports a reduced set

of HTTP requests [21].

(2) Nullhttpd (version 0.5.0) is a web server that handles HTTP requests [44].

(3) Gzip (version 1.2.4) is a widely used GNU compression utility tool [28].

(4) Hypermail (version 2.1.3) is a tool that facilitates the browsing of an email archive. It

compiles an email archive in the Unix mailbox format to a set of cross-referenced

HTML documents [30].

(5) Pine (version 3.96) is a widely used tool for reading, sending, and managing

emails [47].

All five applications are programmed in C. Note that Ghttpd and Nullhttpd have been

used in other empirical studies for buffer overflow detection methods [59]. Table 5.2 (LOC =

lines of uncomment code) shows some statistics about the size of these five applications.

Platform Configuration: The five case studies were conducted on a 3GHz machine

that has 2GB RAM, running Red Hat Enterprise Linux WS release 4, gcc-3.4.6 and bgcc-3.4.6.

Table 5.2 Statistics of Subject Applications

Subject Files Functions LOC
Ghttpd 4 16 609

Nullhttpd 11 38 2245
Gzip 34 108 5809

Hypermail 57 401 23057
Pine 449 4883 154301

89

5.5.3. Results and Discussions

In our studies, we identified the extreme and control parameters and their values in a

fairly straightforward manner. In particular, we intentionally avoided the use of any advanced

domain knowledge. On the one hand, this illustrates that while advanced domain knowledge

helps to make our approach more effective, it is not required. On the other hand, this is part of

our effort to reduce the threats to validity, as discussed in Section 5.6.

Specifically, all the string parameters of variable length were identified to be extreme

parameters. For each of these parameters, we identified a single extreme value, which is a

string typically much longer than normally expected. An integer parameter is identified to be an

extreme parameter only if it obviously indicates the length of another parameter such as

“Content-Length”. For each integer extreme parameter, we identified three extreme values,

including a positive number that is smaller than the actual length of the other parameter, zero,

and a negative number whose absolute value is small. For each extreme parameter p, we

identified a parameter p’ to be a control parameter of p only if a very strong connection existed

between p and p’. For example, in Ghttpd and Nullhttpd, a parameter named “Request-Method”

indicates whether the request is a GET or POST request. This parameter was identified to be a

control parameter of an extreme parameter “Message-Body”, which represents the payload

carried in an HTTP request.

Table 5.3 (NP=# of Parameters, NXP=# of Extreme Parameters, ANXV=Average # of

Extreme Values per Extreme Parameter, ANCP=Average # of Control Parameters per Extreme

Parameter, ANCV=Average # of Control Values per Control Parameter) shows statistics on the

number of different types of parameters and values for each subject application. Note that, for

Ghttpd and Nullhttpd, we used the same set of extreme and control parameters and values. The

reason is that both applications are HTTP servers and we identified the parameters and their

values from the same HTTP specification. Also note that Pine has two operational modes, read

90

and write. These two modes are tested separately in our experiments, because these two

modes have very different interfaces and use different sets of parameters.

Table 5.3 External Parameter Models

Subject NP NXP ANXV ANCP ANCV
Ghttpd 42 5 1.4 2.7 4.8

Nullhttpd 42 5 1.4 2.7 4.8
Gzip 16 3 3 13.3 12.3

Hypermail 28 16 2 15.5 12.8
Pine (read) 10 10 1.4 2.4 1.9
Pine (write) 7 7 1.3 2 1.7

Next we present some statistics on the number of tests we generated for the five

subject applications. Recall that we generate a group of tests for each extreme value of each

extreme parameter. Table 5.4 shows the total number of tests generated for each application

(Total), and the minimum (Min), maximum (Max), and average (Avg) number of tests for each

extreme value. Note that algorithm BOVTest generates the same number of tests for every

extreme value of the same extreme parameter.

Table 5.4 Statistics on Number of Tests

Subject Total Min Max Avg
Ghttpd 191 3 36 27.3

Nullhttpd 191 3 36 27.3
Gzip 32 10 12 10.7

Hypermail 200 10 10 10
Pine (read) 89 3 8 6.4
Pine (write) 49 3 8 5.4

Table 5.5 presents information about the buffer overflow vulnerabilities detected by our

approach. Note that we obtained the number of reported vulnerabilities from two databases, i.e.,

SecurityFocus and SecurityTracker. The results show that our approach detected a total of 9

new vulnerabilities for the five applications. In addition, our approach detected all the reported

vulnerabilities for Ghttpd, Nullhttpd, and Gzip. For Hypermail, a buffer overflow vulnerability was

reported but was not detected by our approach. An inspection revealed that this buffer overflow

vulnerability involved a long string returned by a DNS server, which was not modeled as an

91

external parameter in our experiments. For Pine, there are 7 reported vulnerabilities, and our

approach also detected 7 vulnerabilities. However, no adequate information is available for us

to determine whether the 7 reported vulnerabilities are the same as those detected by our

approach. Therefore, we put LOI, the short for Lack of Information, in the table.

To compare our approach with fuzz testing, we applied both Tance and JBroFuzz [31]

to Nullhttpd and Ghttpd. As what has been discussed in Chapter 2, fuzz testing derives new

tests from normal tests by mutating parameter values one by one. Fuzz testing does not

generate the normal tests by itself. The normal tests have to be provided by users. To simulate

this testing process, we applied a typical test generation methodology, i.e., the default

testing [27], to generate a set of normal tests for fuzz testing to mutate. In experiments,

JBroFuzz generated 1152 tests to trigger buffer overflow vulnerabilities in Ghttpd and Nullhttpd.

Table 5.6 shows that JBroFuzz has detected one buffer overflow vulnerability in Ghttpd and

three buffer overflow vulnerabilities in Nullhttpd. We verified these four buffer overflow

vulnerabilities manually. All of them have been detected by Tance in experiments too. One

common characteristic of the buffer overflow vulnerabilities detected by JBroFuzz is that their

positions are shallow and hence are easy to reach. For example, in Nullhttpd, the three buffer

overflow vulnerabilities can be reached easily without passing any checking condition. However,

as for the other two buffer overflow vulnerabilities missed by JBroFuzz, both of them exist in

deep braches, at least two checking conditions have to be passed before reaching vulnerable

points. This comparison also provides extra evidence for the poor code coverage limitation of

fuzz testing.

Note that we just compared our approach with fuzz testing on the two HTTP server

applications. The reason is that HTTP sever applications are popular in use and also have more

security concerns on them. Thus, some testing tools have already been developed for them,

including the fuzz testing tools e.g., JBroFuzz. However, as for the rest three applications, we

92

have not found existing fuzz testing tools for them. Therefore, we did not compare our approach

with fuzz testing on them.

Finally, we point out that care should be taken for counting the number of

vulnerabilities. This is because the same vulnerability could cause multiple buffer overflows to

occur at runtime. Therefore, it would be less meaningful if we simply counted the number of

buffer overflows reported by the bounds checking tool. In our experiments, we consider buffer

overflows reported on the same buffer and reached along the same execution path to be

caused by the same vulnerability. In other words, we only count one buffer overflow vulnerability

for all the buffer overflows that occur on the same buffer and along the same execution path.

Table 5.5 Vulnerability Detection Results
Subject Detected Reported Missed New
Ghttpd 1 1 0 0

Nullhttpd 5 1 0 4
Gzip 2 1 0 1

Hypermail 5 2 1 4
Pine 7 7 LOI LOI

Table 5.6 Comparisons on Detected Buffer Overflow Vulnerabilities between Tance and
JBroFuzz

Subject Tance JBroFuzz
Ghttpd 1 1

Nullhttpd 5 3

5.5.4. Threats to Validity

As discussed in Section 5.3, the effectiveness of our approach depends on the proper

identification of the extreme and control parameters and their values. Since our experiments

use programs that have known vulnerabilities, the validity of our results would be in jeopardy if

knowledge of the known vulnerabilities were used to identify these parameters and their values

in our experiments. To alleviate this potential threat, we tried to only use explicit information that

was available in the specification. In addition, each time we identified a particular type of

parameter or value, we provided an explicit explanation about how our decision was made in a

93

way that only used information available in the specification, rather than other sources. These

explanations were cross-checked by two of the testers and are available for review [77].

The validity of our results also depends on the correctness of two tools, namely

ACTS [35] and the bounds checker [18], used in our experiments. We note that both of these

two tools have been available for public access for a significant amount of time, and have been

used to conduct experiments for other research projects.

The main external threat to validity is the fact that the five open source applications

used to conduct our experiments may not be representatives of true practice. We note that

these applications are real-life applications themselves, and they have been used in other

studies.

94

CHAPTER 6

CONLUSIONS AND FUTURE WORK

6.1 Conclusions

 This dissertation applies the notion of combinatorial design to web application testing

and security testing. Specifically, this dissertation presents three combinatorial testing

techniques to deal with interactive web applications and security requirements, including a

combinatorial approach to building navigation graphs for dynamic web applications, an

interaction-based test sequence generation approach for testing web applications, and a

combinatorial approach to detecting buffer overflow vulnerabilities.

The combinatorial approach to building navigation graphs for dynamic web applications

is developed to capture the navigation structure of a dynamic web application. The generated

navigation graph can facilitate testers in web sequence testing and regression testing. There

are three contributions of this approach: 1) solving the web page explosion problem in dynamic

web applications by proposing a URL abstraction mechanism; 2) solving the request generation

problem with t-way input combination generation for web forms; 3) developing a tool, name

Tansuo, to generate web navigation graphs automatically.

The interaction-based test sequence generation approach to testing web applications is

developed to generate test sequences from web navigation graphs. The generated test

sequences cover all the interactions between any two web pages in a web application. When

applied to testing web applications, these test sequences systematically detect faults that may

be caused by interactions between any two web pages. There are two contributions of this

approach: 1) proposing a new algorithm based on combinatorial design to generate test

95

sequences that achieve 2-way interaction coverage; 2) developing a prototype tool to

automatically generate 2-way interaction coverage test sequences.

The combinatorial approach to detecting buffer overflow vulnerabilities adapts

combinatorial testing techniques to detect buffer overflow vulnerabilities in the software under

test. There are two contributions of this approach: 1) proposing a combinatorial design based

algorithm to generate advanced tests for triggering buffer overflow vulnerabilities; 2) developing

a tool, named Tance, to automatically generate and execute tests and monitor triggered buffer

overflows.

Experiments have been conducted on open source applications to evaluate the

effectiveness of these three approaches. Empirical results show that these approaches are

effective in capturing web navigation structures, detecting faults that are caused by the

interactions between web pages, and detecting buffer overflow vulnerabilities, which indicates

the effectiveness of combinatorial design in web application testing and security testing.

6.2 Future Work

 There are three venues to continue our research work:

• Experiments on large and/or complex real-life applications. Although we have

conducted experiments on several applications of significant size, it is still

valuable to evaluate the effectiveness of our approaches on large and/or

complex real-life applications. For example, experiments conducted on

amazon.com and chase.com will further evaluate the values of our web

navigation graph generation approach and web test sequence generation

approach.

• Automatic identification of testing values for individual parameters. All the three

approaches, proposed in this dissertation, focus on how to automatically

combine individual parameter values that must be provided by users. In the

96

future, we will investigate how to automatically identify individual parameter

values so that we can fully automate the entire test generation process.

• Finally, we plan to improve the user interfaces of our tools developed for the

three approaches so that they are accessible to public users.

97

REFERENCES

[1] A. Andrews, J. Offutt, and R. Alexander, “Testing Web Applications by Modeling with
FSMs”, Software and Systems Modeling, 4(3): 326-345, 2005.

[2] J.H. Andrews, L.C. Briand, Y. Labiche and A.S. Namin, “Using Mutation Analysis for
Assessing and Comparing Testing Coverage Criteria”, IEEE Transactions on Software
Engineering, 32(8): 608-624, 2006.

[3] D. Aitel, “The Advantages of Block-based Protocol Analysis for Security Testing”,
Immunity Inc, 2002. DOI= http://www.net-security.org/article.php?id=378.

[4] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb: Automatically Testing Dynamic Web
Sites”, Proceedings of the 11th International World Wide Web Conference, 2002.

[5] T. Berners-Lee, R.T. Fielding, and L. Masinter, “Uniform Resource Identifier (URI):
General Syntax”. DOI = http://labs.apache.org/webarch/uri/rfc/rfc3986.html.

[6] R. Binder, "Testing Object-Oriented Systems" (Addison Wesley. 2000).
[7] K. Burr, and W. Young, “Combinatorial Test Techniques: Table-based Automation, Test

Generation and Code Coverage”, Proceedings of the International Conference on
Software Testing Analysis and Review, pp. 503-513, 1998.

[8] K. Burroughs, A. Jain, and R.L. Erickson, “Improved Quality of Protocol Testing Through
Techniques of Experimental Design”, Proceedings of the IEEE International Conference
on Communications, pp. 745-752, 1994.

[9] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler, “EXE: Automatically
Generating Inputs of Death”, Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 322-335, 2006.

[10] R. Cai, J. Yang, W. Lai, Y. Wang and L. Zhang “iRobot: An Intelligent Crawler for Web
Forums”, Proceedings of the 17th International World Wide Web Conference, pp. 447-
456, 2008.

[11] B. Chess, and G. McGraw, “Static Analysis for Security”, IEEE Security and Privacy,
2(6):76-79, 2004.

[12] Clover. DOI = http://www.atlassian.com/software/clover/.
[13] D.M. Cohen, S.R. Dalal, J. Parelius and G.C. Patton, “The Combinatorial Design

Approach to Automatic Test Generation”, IEEE Software, 13(5): 83-88, 1996.
[14] D.M. Cohen, S.R. Dalal, M. L. Fredman and G.C. Patton, “The AETG System: An

Approach to Testing Based on Combinatorial Design”, IEEE Transitions on Software
Engineering, 23(7): 437-44, 1997.

[15] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to Algorithms" (The
MIT Press, 2001, Second edn.), pp. 629-632.

[16] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, and Q.
Zhang, “StackGuard: automatic adaptive detection and prevention of bufferoverflow
attacks”, Proceedings of the 7th conference on USENIX Security Symposium, pp. 5-5,
1998.

[17] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer Overflows: Attacks and
Defenses for the Vulnerabilities of the Decade”, Proceedings of Foundations of Intrusion
Tolerant Systems, pp. 227-237, 2003.

[18] R. Dhurjati and V. Adve, “Backwards-compatible Array Bounds Checking for C with Very
Low Overhead”, Proceedings of the 28th IEEE International Conference on Software
Engineering, pp. 162-171, 2006.

http://www.atlassian.com/software/clover/�

98

[19] S. Elbaum, S. Karre, and G. Rothermel, "Improving Web Application Testing with User
Session Data", Proceedings of the 25th International Conference on Software
Engineering, pp. 49-59, 2003.

[20] S. Elbaum, G. Rothermel, S. Karre, and M.F. II, "Leveraging User Session Data to
Support Web Application Testing", IEEE Transactions on Software Engineering, 31(3),
pp. 187-202, 2005.

[21] Ghttpd-1.4.4. DOI= http://gaztek.sourceforge.net/ghttpd/.
[22] P. Godefroid, “Model Checking for Programming Languages using VeriSoft”,

Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 174-186, 1997.

[23] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random Testing”,
Proceedings of the 2005 ACM SIGPAN Conference on Programming Language Design
and Implementation, pp. 213-233, 2005.

[24] P. Godefroid, “Compositional Dynamic Test Generation”, Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 47-
54, 2007.

[25] P. Godefroid, M. Levin, and D. Monlnar, “Automated Whitebox Fuzz Testing”,
Proceedings of the Network and Distributed Security Symposium, 2008.

[26] D. Gollmann, “Computer Security”, Wiley, 2006.
[27] M. Grindal, J. Offutt, and S.F. Andler, “Combination Testing Strategies: A Survey”,

Software Testing, Verification, and Reliability, 15 (3): 167-199, 2005.
[28] Gzip-1.2.4. DOI= http://www.gzip.org/.
[29] B. He, M. Patel, Z. Zhang, and K.C. Chang, “Accessing the Deep Web”, Communications

of the ACM, 50(5):94-101, 2007.
[30] Hypermail-2.1.3. DOI= http://www.hypermail.org/.
[31] JBroFuzz. DOI= http://sourceforge.net/projects/jbrofuzz.
[32] D.R. Kuhn, and M.J. Reilly, "An Investigation of the Applicability of Design of

Experiments to Software Testing", Proceedings of the 27th NASA Goddard Software
Engineering Workshop, pp. 91-95, 2002.

[33] D.R. Kuhn, D.R. Wallace, and A.M. Gallo, "Software Fault Interactions and Implications
for Software Testing", IEEE Transactions on Software Engineering, 30(6): 418-421, 2004.

[34] Y. Lei, R. Carver, R. Kacker, D. Kung, A Combinatorial Strategy for Testing Concurrent
Programs, Software Testing, Verification & Reliability, 17(4):207-225, 2007.

[35] Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J. Lawrence, “IPOG/IPO-D: Efficient Test
Generation for Multi-way Combinatorial Testing”, Software Testing, Verification &
Reliability, 18(3): 125-148, 2007.

[36] Link Checker Pro. DOI = http://www.link-checker-pro.com Feb. 3, 2009.
[37] C. Liu, D.C. Kung, P. Hsia, and C Hsu,

"Structural Testing of Web Applications", Proceedings of 11th International Symposium
on Software Reliability Engineering, pp. 84-96, 2000.

[38] G.D. Lucca, A. Fasolino, and F. Faralli, "Testing Web Applications", Proceedings the
18th International Conference on Software Maintenance, pp. 310-319, 2002.

[39] G.D. Lucca, and M.D. Penta, "Considering Browser Interaction in Web Application
Testing", Proceedings of the 5th International Workshop on Web Site Evolution, pp. 74-
81, 2003.

[40] J. Madhavan, D. Ko, Ł. Kot, V. Ganapathy, A. Rasmussen, and A. Halevy, “Google’s
Deep-Web Crawl”, Proceedings of the 34th International Conference on Very Large Data
Bases, PP. 1241-1252, 2008.

[41] G. McGraw, “Software Security”, IEEE Security & Privacy, 2(2): 80-83, 2004.
[42] R.C. Miller, and K. Bharat, “SPHINX: A Framework for Creating Personal, Site-specific

Web Crawlers”, Proceeding of the 7th International World Wide Web Conference, pp.
119-130, 1998.

http://www.gzip.org/�
http://www.hypermail.org/�

99

[43] National Vulnerability Database. DOI= http://nvd.nist.gov/.
[44] Nullhttpd-0.5.0. DOI= http://www.nulllogic.ca/httpd/.
[45] Open Source Web Applications with Source Code. DOI= http://www.gotocode.com, May.

3, 2010.
[46] S. Pertet, and P. Narsimhan, "Causes of Failures in Web Applications", CMU-PDL-05-

109, Carnegie Mellon University, 2005.
[47] Pine-3.96. DOI= http://www.washington.edu/pine/.
[48] M. Pistoia, S. Chandra, S.J. Fink, and E. Yahav, “A Survey of Static Analysis Methods for

Identifying Security Vulnerabilities in Software Systems”, IBM Systems Journal,
46(2):265-288, 2007.

[49] Y. Qi, D. Kung, and E. Wong, "An Agent-based Testing Approach for Web Applications",
Proceedings of the 29th Annual International Computer Software and Applications
Conference, pp. 45-50, 2005.

[50] S. Raghavan, and H. Garcia-Molina, “Crawling the Hidden Web”, Proceedings of the 27th
International Conference on Very Large Data Bases, pp. 129-138, 2001.

[51] F. Ricca, and P. Tonella, "Analysis and Testing of Web
Applications", Proceedings of the 23rd International Conference on Software Engineering,
pp. 25-34, 2001.

[52] J. Rőning, M. Laakso, A. Takanen and R. Kaksonen, “PROTOS –Systematic Approach
to Eliminate Software Vulnerabilities”. DOI= http://www.ee.oulu.fi/research/ouspg/.

[53] O. Ruwase, and M.S. Lam, “A Practical Dynamic Buffer Overflow Detector”, Proceedings
of the 11th Annual Network and Distributed System Security Symposium, pp. 159-169,
2004.

[54] S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock," Web Application Testing with
Customized Test Requirements—An Experimental Comparison Study", Proceedings of
the 17th International Symposium on Software Reliability Engineering, pp. 266-278, 2006.

[55] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A.S. Greenwald, "Applying Concept
Analysis to User-Ssession-Based Testing of Web Applications", IEEE Transactions on
Software Engineering, 33(10): 643-658, 2007.

[56] SecurityFocus. DOI= http://www.securityfocus.com/.
[57] SecurityTracker. DOI= http://www.securitytracker.com/.
[58] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing Engine for C”,

Proceedings of the 10th European Software Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering (FSE),
pp. 263-272, 2005.

[59] E.C. Sezer, P. Ning, C. Kil and J. Xu, “Memsherlock: An Automated Debugger for
Unknown Memory Corruption Vulnerabilities”, Proceedings of the 14th ACM Conference

[60] on Computer and Communications Security, pp. 562-572, 2007.
[61] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, "Automated Replay and Failure

Detection for Web Applications", Proceedings of the 20th International Conference of
Automated Software Engineering, pp. 253-262, 2005.

[62] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, A. Souter, "An Empirical Comparison of
Test Suite Reduction Techniques for User-session-based Testing of Web Applications",
Proceedings of the 21st International Conference on Software Maintenance, pp. 587-596,
2005.

[63] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S. Ecott, "Automated Oracle
Comparators for Testing Web Applications", Proceedings of the 8th IEEE International
Symposium on Software Reliability, pp. 117-126, 2007..

[64] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, "A Case Study of Automatically
Creating Test Suites from Web Application Field Data", Proceedings of the 2006
Workshop on Testing, Analysis, and Verification of Web Services and Applications, pp. 1-
9, 2006.

http://www.nulllogic.ca/httpd/�
http://www.washington.edu/pine/�

100

[65] Stack Shield. DOI=http://www.angelfire.com/sk/stackshield.
[66] G.A. Stout, "Testing a Website: Best Practices", DOI=

http://home.comcast.net/~glennastout/papers/TestWebsite_Stout.pdf.
[67] M. Sutton, A. Greene, and P. Amini, “Fuzzing: Brute Force vulnerability Discovery”,

Addison-Wesley, 2007.
[68] Symantec Internet Security Threat Report.

DOI=http://www.symantec.com/about/news/release/article.jsp?prid=20090413_01.
[69] A. Takanen, J.D. Demott and C. Miller, “Fuzzing for Software Security Testing and

Quality Assurance“, Artech House, 2008.
[70] P. Tonella, and F. Ricca, “A 2-layer Model for the White-Box Testing of Web applications”,

Proceedings of the 6th IEEE International Workshop on Web Site Evolution, pp. 11-19,
2004

[71] R. Xu, P. Godefroid, and R. Majumdar, “Testing for Buffer overflows with length
Abstraction”, Proceedings of the 2008 International Symposium on Software Testing and
Analysis, pp. 27-38, 2008.

[72] X. Yuan, M. Cohen, and A.M. Memon, "Covering Array Sampling of Input Event
Sequences for Automated GUI Testing", Proceedings of the 22nd IEEE/ACM
International Conference on Automated Software Engineering, pp. 405-408, 2007.

[73] M. Zhivich, T. Leek, and R. Lippmann, “Dynamic buffer Overflow Detection”, Proceedings
of the Workshop on the Evaluation of Software Defect Detection Tools, 2005.

[74] D.R. Wallace, and D.R. Kuhn, “Failure Modes in Medical Device Software: An Analysis of
15 years of Recall Data”, International Journal of Reliability, Quality, and Safety
Engineering, 8(4), 2001.

[75] W. Wang, S. Sampath, Y. Lei and R. Kacker, “An Interaction-based Test Sequence
Generation Approach for Testing Web Applications”, Proceedings of the 11th
International IEEE High Assurance Systems Engineering Symposium, pp. 209-218, 2008.

[76] W. Wang, Y. Lei, S. Sampath, R. Kacker, R. Kuhn, and J. Lawrence, “A Combinatorial
Approach to Building Navigation Graphs for Dynamic Web Applications”, Proceedings of
the IEEE International Conference on Software Maintenance (ICSM), pp. 211-220, 2009.

[77] W. Wang, and D. Zhang, “External Parameter Identification Report”. University of Texas
at Arlington, DOI=
https://wiki.uta.edu/pages/viewpageattachments.action?pageId=35291531.

[78] Web Application Development–Bridging Gap between QA and Development.
DOI=http://www.stickyminds.com.

101

BIOGRAPHICAL INFORMATION

Wenhua Wang received his B.S. Degree in Telecommunication Engineering from

Huazhong University of Science and Technology, Wuhan, China, in June 2002, M.S. Degree in

Software Engineering from Tsinghua University, Beijing, China, in June 2005, and PhD degree

in Computer Science and Engineering from the University of Texas at Arlington in August 2010.

His research interests include combinatorial testing, web application testing and security testing.

	TABLE OF CONTENTS
	2.1 Overview
	2.2 Combinatorial Testing
	2.3 Related Work on Web Navigation Graph Generation
	2.4 Related Work on Web Test Sequence Generation
	2.5 Related Work on Buffer Overflow Vulnerability Detection
	3.1 Background
	3.2 Challenges and Contributions
	3.3 A Combinatorial Approach for Navigation Graph Generation
	3.4 Tansuo: A Prototype Tool
	3.5 Experiments
	4.1 Background
	4.2 Challenges and Contributions
	4.3 An Interaction-Based Test Sequence Generation Approach
	4.4 Experiments
	5.1 Background
	5.2 Challenges and Contributions
	5.3 A Combinatorial Approach for Buffer Overflow Vulnerability Detection
	5.4 Tance: A Prototype Tool
	5.5 Experiments
	6.1 Conclusions
	6.2 Future Work

