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ABSTRACT

SOLUTION TO INCOMPRESSIBLE NAVIER STOKES EQUATIONS

BY USING FINITE ELEMENT METHOD

WANCHAI JIAJAN, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Brian Dennis

The finite element method has become a popular method for the solution of

the incompressible Navier-Stokes equations. High Reynolds number cases require

fine meshes so computational efficiency becomes an important factor in algorithm

and code development. In this work, a Galerkin finite element method is proposed

to solve the two dimensional incompressible Navier-Stokes equations. This approach

typically leads to a sparse and indefinite matrix that is difficult to solve efficiently. The

formation of an indefinite matrix is avoided in the present work by introducing an ar-

tificial compressibility term in the continuity equation. The concept of this method is

to transform the elliptic incompressible equation to the hyperbolic type compressible

system which can be solved by standard implicit or explicit time-marching methods.

The primitive variables are used for flow properties. The method features un-

equal order interpolation for the velocity variables and pressure. The Taylor Galerkin

formulation is introduced as a stabilization procedure to eliminate the numerical os-

cillations that occur in convection dominated flows. The Newton-Raphson method is

used to resolve the non-linearity at each time step.
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In order to test the method, a finite element code was developed for triangu-

lar meshes. The code was applied to the standard lid driven cavity problem. The

numerical results were compared with benchmark results from the literature.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Most of every real situation in fluid flows is characterized by the Navier Stokes

equations that are the model of nonlinear partial differential equation. The nonlin-

earity is due to convective acceleration, which is an acceleration associated with the

change in velocity over position. These nonlinearities make most problems difficult or

impossible to solve. However, it is very useful for engineering to describe and analyze

not only the physics of fluid flow problems but also more complex materials if the

Navier Stokes equations can be solved. There are many cases in fluid flows that can

be represented by the Navier Stokes equation such as ocean currents, water flow in a

pipe, air flow around a wing, and blood flow.

At the present time, there are many approaches that can be employed to solve

these equations such as the finite difference, finite volume, and finite element method.

These methods are widely used in the numerical solution of Navier-Stokes equations.

For example, the finite different scheme based on artificial compressibility method to

solve unsteady incompressible Navier-Stokes equations was discussed by Chorin [1],

and the finite different scheme based on SIMPLE, SIMPLER and Vorticity-Stream

function approaches have been studied by Matyka [2]. For these schemes, both of

primitive variable and vorticity-stream function approaches were employed as the

main variables to solve incompressible Navier-Stokes equations for both of unsteady

and steady case.

1
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However, as presented in numerous literature of numerical method, the finite

element method has emerged as a valuable tool for the solution of the Navier-Stokes

equations, especially where complex geometries or boundary conditions render ana-

lytical or other numerical solutions difficult or impossible. To indicate this numerical

is more popular than the others, we can summarize the comparing of advantage and

disadvantage for three different schemes in the table 1.1.

Table 1.1. Comparing the advantage and disadvantage of Finite element, Finite
difference, and finite volume scheme

FEM
+high accuracy

+ easy to treatment of complex geometries
- mesh and order(hp)-adaptation difficult

FDM
+easy implementation

-problems along curved boundaries
- difficult stability and convergence analysis

- mesh adaptation difficult

FVM
+based on physical conservation properties

- problems on unstructured meshes
- difficult stability and convergence analysis.

- only heuristic mesh adaptation

From table 1.1, although the finite element method is better than the the others,

there are many studies of the solution to Navier-Stokes equations by using finite

difference method that have been succeed and widely used such as finite difference

scheme based on artificial compressibility method (AC method). Because of the AC

method can be used to deal with the difficulty of incompressibility condition by using
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the concept of the transformation of continuity equation, this method has been widely

used for both of finite different and finite element method.

The AC method was originally introduced by Chorin (1967) with the objective

of solving the steady state incompressible Navier-Stokes equations [3]. Moreover,

it was also used to solve for unsteady case. For example, [4] and [5] were some of

the first to extend the AC method to the solution of the unsteady incompressible

Navier-Stokes equations. The concept of this method is to transform the elliptic

incompressible continuity equation to hyperbolic compressible system by adding the

artificial compressibility term in continuity equation. As a result, the new transformed

equations can be solved directly by standard time-dependent approaches that is not

complicated to apply in the solution. We find numerous example of the AC method

used for solving both of steady and unsteady case such as [4],[6], [7], [8], [9] and [10].

Following the success of the finite difference scheme based on AC method, sev-

eral finite element solution based on AC methods have been presented for example

the Characteristic-Based-Split algorithm (CBS method) based on AC method which

features equal order of all variables was employed to solve steady and unsteady in-

compressible Navier-Stokes equations by [11]. They used both of implicit and explicit

scheme as the time integration approach to deal with the time dependent problem.

The advantages of the proposed CBS scheme based on AC method include easy

parallelization and implementation procedure. However, this method make the large

number of iterations to reach the steady state when using both of explicit and implicit

scheme.

In this paper, the Galerkin finite element formulation based on AC method of

two dimensional unsteady incompressible Navier Stokes equations will be discussed.

The unequal order primitive variable of velocity components and pressure will be

employed as the main approach. The Taylor Galerkin technique will be employed
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as the stabilization procedures to deal with the numerical oscillations due to the

convection dominated at the high Reynolds number. For the numerical solution,

the iterative method of Newton-Raphson will be used to solve the set of non-linear

equations and the backward different scheme will be employed as the time-integration

approach to deal with the time dependent term.

The numerical method is verified by the benchmark of lid-cavity driven that

have been become standard problem to test incompressible Navier-Stokes flow. The

efficiency, the accuracy, and the steady-state convergence of the Galerkin finite el-

ement formulation based on AC method are verified by comparing with numerical

solutions available in the literature of Ghia et al. [12].

1.2 Thesis Overview

This paper is organized as follows. chapter 2 discusses the finite element pro-

cedure of incompressible Navier-Stokes equation based on AC method. Additionally,

the selection of interpolation functions for finite element model and the coefficient

matrices construction will be discussed. chapter 3 details the numerical solution and

express the finite element programming. chapter 4 presents the results of numerical

solution. chapter 5 gives the conclusions and recommendations for future work.



CHAPTER 2

INCOMPRESSIBLE NAVIER STOKES EQUATION

2.1 Introduction

As mentioned in previous chapter, the Galerkin finite element formulation based

on AC method will be employed to solve the unsteady incompressible Navier-Stokes

equations. Before solving, in this chapter, we will present the physical of mathematic

model of these equations and dicretize these equations into the weak forms by using

weak formulation throughout transform these weak forms to the finite element matrix

that is suitable for programming construction.

In the section 2.2, the derivation of the governing equations of the two dimen-

sional unsteady incompressible Navier Stokes equations will be expressed. Under

isothermal condition, the energy equation is uncoupled from the momentum equa-

tions (energy equation can be neglected). Thus, only Incompressible Navier Stokes

equation (momentum) and continuity equation need to be solved [13].

For the section 2.3, to deal with the difficulty of convection dominated due

to the high Reynolds number fluid flows, the stabilized method will be presented.

The incompressible Navier-Stokes equations based on stabilized tecniques will be

discretized by the finite element method. The finite element models are developed

base on the weak formulation of the viscous, incompressible fluid under isothermal

condition [13].

In order to deal with the difficulty of incompressible continuity, the AC method

will be presented in section 2.4. This scheme will be employed to transform the

5
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incompressible elliptic to compressible hyperbolic continuity equation. As a result, the

new transformed equations can be solved by the standard time integration approaches.

The section 2.5 will be devoted to the selection of interpolation functions to

finite element model. Because of the interpolation function have more effect with the

accuracy result, this section will explain how to choose the shape function that satisfy

LBB compatibility condition and suitable for the solutions.

For the last sections, the construction of finite element matrix formulas will be

derived. In order to establish the coefficient matrices easily, the transformation of

shape function will be presented.

2.2 Governing Equations

Let us start with the governing equations of unsteady incompressible Navier-

Stokes equations. These equations are the conservative form of continuity equation,

momentum equation, and energy equation. The momentum equations consist of the

set of nonlinear partial differential equations in the terms of velocities components.

As mentioned before, under isothermal condition, the energy equation is uncoupled

from the momentum equations. Thus, only Incompressible Navier Stokes equations

and continuity equation need to be solved [13].

The equations are written here is the 2-D unsteady Incompressible Navier-

Stokes equations which are expressed into the form of Cartesian derivative compo-

nents.

Continuity equation:

∂u

∂x
+

∂v

∂y
= 0 (2.1)

Where u and v represents the velocity components. For the finite element method

based on artificial compressibility, it should be noted that the artificial compressibility
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term will be added to the continuity equation in order to transform the incompressible

elliptic partial differential equation to compressible hyperbolic mathematic form. This

method will be discussed in section 2.4.

Momentum equation:

x- direction:

ρ

[

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

=
∂(σx − p)

∂x
+

∂τxy

∂y
(2.2)

y- direction:

ρ

[

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]

=
∂τxy

∂x
+

∂(σy − p)

∂y
(2.3)

Constitutive equations:

σx = 2µ
∂u

∂x
(2.4)

σy = 2µ
∂v

∂y
(2.5)

τxy = µ

[

∂u

∂y
+

∂v

∂x

]

(2.6)

Where u and v represents the velocity components, p is the pressure, ρ is the density,

and µ is the viscosity. It should be note that the body forces does not appear in (2.2),

and (2.3) because they may be grouped with the pressure terms when the body force

can be expressed as the gradient of a potential function. Substitute (2.4)-(2.6) into

(2.2), and (2.3). Thus, the final momentum equation can be expressed as follow

x- direction:

−ρ

[

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

+
∂

∂x

[

2µ
∂u

∂x
− p

]

+ µ
∂

∂y

[

∂u

∂y
+

∂v

∂x

]

= 0 (2.7)

y- direction:

−ρ

[

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]

+
∂

∂y

[

2µ
∂v

∂y
− p

]

+ µ
∂

∂x

[

∂u

∂y
+

∂v

∂x

]

= 0 (2.8)

From the equations (2.7) and (2.8), it is obvious that the first term of these

equations consist of nonlinear term that is due to convective inertia term. As we have
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mentioned before, the nonlinearity will make the problem difficulty to solve. Thus,

we have to apply some formulations that can be employ to deal with the non-linear

term. In this paper, the iterative method of Newton-Raphson will be chosen to solve

this problem. This method will be discussed in chapter 4.

The second and the third term are due to the force from viscosity. If the ratio of

convective and viscosity term close to zero, these equations will be changed to Stokes

equation that is the linear partial differential equation.

2.3 Finite Element Method

Before introducing finite element techniques for the numerical of the unsteady

Navier-Stokes equations, we will present the two main difficulties that encounter in

the solution.

A first difficulty is due to the presence of nonlinear and non-sysmetric con-

vective terms in the momentum equation (2.7) and (2.8). The nonlinearity in these

equations make the problem difficult or complicate to solve. To deal with this dif-

ficulty, the iterative method such as Newton-Raphson and Picard method must be

employed to reduce a set of non-linear algebraic equations to a linear algebraic sys-

tem. In this paper, the iterative method of Newton-Raphson will be selected as the

main algorithm in the solutions. This method will be discussed in the next chap-

ter. In addition, this difficulty will increase when the large value of the Reynolds

number apply in the solutions. When the Reynolds number is increased, the flows

are convection dominated. As a result, the unpredicted oscillations encounter in the

solutions. Thus, in order to deal with this problem, stabilization techniques such as

SUPG, GLS, SGS or LS, and Taylor Galerkin method must be used to provide the

meaningful finite element solutions at high Reynolds number [14]. In this paper, for

time dependent problem, the Taylor Galerkin stabilized method will be selected to
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stabilize the numerical oscillations in the solutions of the unsteady incompressible

Navier-Stokes equations.

Another difficulty is the incompressibility condition. From the continuity equa-

tion and momentum equations as expressed in (2.1),(2.7), and (2.8), it can be seen

that the continuity equation consists of a constraint on the velocity field which must

be divergence free and the momentum equations consist of both of velocity field and

pressure. From these equations, the pressure term has to be considered as a vari-

able not related to any constitutive equation. However, the pressure term represents

an addition degree of freedom that needed to satisfy the compressibility constraint.

Thus, in order to satisfy the divergence-free velocity, the pressure must adjust itself

instantaneously that means the pressure is acting as a Lagrangian multiplier of the

incompressibility constraint and thus there is a coupling between the velocity and the

pressure unknowns [14].

There are many formulations that have been proposed in the literature to deal

with the difficulty of incompressibility condition such as penalty formulation and

mixed finite element method. In this paper, the mixed finite element method based

on artificial compressibility method will be chosen to solve this problem.

2.4 Taylor Galerkin Stabilized Method

In order to deal with the difficulty of convection dominated, the stabilized

techniques need to be required for the solutions. As we have mentioned, in this study,

the Taylor Galerkin Stabilized formulation will be selected to deal with the spatial

oscillations due to the discretization of convection transport term at high Reynolds

number. The concept of Taylor Galerkin method is to transform the time domain of

momentum equations (2.7) and (2.8) to the second order accuracy of Taylors series

expansion [14]. After derivation as shown in reference [14], the equations of (2.7) and
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(2.8) are replaced as follow

x-direction:

−ρ

[

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

+
∂

∂x

[

2µ
∂u

∂x
− p

]

+ µ
∂

∂y

[

∂u

∂y
+

∂v

∂x

]

+u
∆t

2

∂

∂x

[

u
∂u

∂x
+ v

∂u

∂y

]

+ v
∆t

2

∂

∂x

[

u
∂u

∂x
+ v

∂u

∂y

]

= 0 (2.9)

y-direction:

−ρ

[

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]

+
∂

∂y

[

2µ
∂v

∂y
− p

]

+ µ
∂

∂x

[

∂u

∂y
+

∂v

∂x

]

+u
∆t

2

∂

∂x

[

u
∂v

∂x
+ v

∂v

∂y

]

+ v
∆t

2

∂

∂x

[

u
∂v

∂x
+ v

∂v

∂y

]

= 0 (2.10)

From the equation of (2.9) and (2.10), it is obvious that not only the convective

terms but also the Taylor Galerkin Stabilized that express in the last two terms are

non-linear equations. As we mentioned in previous section, although the nonlinearity

make the problem difficult to solve, this difficulty can be solve by the iterative method

that will be discussed in the next chapter.

2.5 Primitive variable formulation (velocity and pressure variable)

As mentioned in previous section, the difficulty of incompressibility condition

can be solved by the primitive variable formulation. It was also called mixed finite

element method. In order to present how to deal with this difficulty, let us recall the

pressure acts as a Lagrangian multiplier of the incompressibility constraint. Then, the

algebraic system for the nodal values of velocity and pressure in a Galerkin formulation

will be governed by a partitioned matrix with a null submatrix on the diagonal.

Solvability of the algebraic system depends on a proper choice of finite element spaces

for velocity and pressure. These choices must satisfy a LBB compatibility condition

[14].
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In order to make more understanding how to deal with the difficulty of in-

compressibility condition, the procedure of finite element method based on primitive

variable formulation will be shown as step by step. We will start with the dicretization

of incompressible Navier-Stokes equation into weak form by using weak formulation.

Then, the selection of finite element spaces for velocity and pressure will be discussed.

Step1: Discretize to weak form, let us start with the discretization of the equa-

tion of (2.1), (2.9), and (2.10). The finite element models of these equations will be

developed into their weak forms. The weighted-integral statements are taken into

these equations over a typical element in domain. Thus, the weak form of equation

(2.1), (2.9), and (2.10) are expressed as follow.

∫

Ωe

Q

[

∂u

∂x
+

∂v

∂y

]

dΩ = 0 (2.11)

∫

Ωe

W

[

−ρ

[

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

+
∂

∂x

[

2µ
∂u

∂x
− p

]

+ µ
∂

∂y

[

∂u

∂y
+

∂v

∂x

]]

dΩ

+

∫

Ωe

W

[

u
∆t

2

∂

∂x

[

u
∂u

∂x
+ v

∂u

∂y

]

+ v
∆t

2

∂

∂x

[

u
∂u

∂x
+ v

∂u

∂y

]]

dΩ = 0 (2.12)

∫

Ωe

W

[

−ρ

[

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]

+
∂

∂y

[

2µ
∂v

∂y
− p

]

+ µ
∂

∂x

[

∂u

∂y
+

∂v

∂x

]]

dΩ

+

∫

Ωe

W

[

u
∆t

2

∂

∂x

[

u
∂v

∂x
+ v

∂v

∂y

]

+ v
∆t

2

∂

∂x

[

u
∂v

∂x
+ v

∂v

∂y

]]

dΩ = 0 (2.13)

Where Q and W are weight functions that will be equated in the Rayleigh-Ritz-

Galerkin finite element models. The first weight function represents pressure and the

second represents velocities components.

Step2: Selection of the approximated function, since the Incompressible Navier

Stokes equations have already discretized to weak form, the selection of the approx-

imated functions to these weak forms will be discussed in this section. As we have
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mentioned, solvability of the algebraic system depends on a proper choice of finite

element spaces for velocity and pressure. Moreover, these choices must be satisfied

by LBB compatibility condition. From these conditions, the choice of the weight

functions must be restricted to the spaces of approximation functions that used for

the pressure and velocity fields. Thus, it is clear that the dependent variables of u, v,

and p are approximated by expansions form.

u(x, y, t) =
n

∑

i=1

ψ(x, y)ui(t) (2.14)

v(x, y, t) =
n

∑

i=1

ψ(x, y)vi(t) (2.15)

p(x, y, t) =
n

∑

i=1

φ(x, y)pi(t) (2.16)

Where ψ and φ are vectors of Interpolation functions,u and v are the vectors of nodal

values of velocity components, and p are the vectors of nodal values of pressure. For

the condition of LBB compatibility, we will discussed in next section,

From the expansion of approximate function (2.14)-(2.16), as the weight func-

tions (Q,W ) and (φ, ψ) are identical, we can substitute the interpolation functions

(2.14)-(2.16) into the weak form of (2.11)-(2.13) and integrate them by using by part

integration. Thus, the result of incompressible Navier Stokes equation in the finite

element form can be expressed as follow.

Continuity equation:
∫

Ωe

[

φ
∂ψT

∂x
u+ φ

∂ψT

∂y
v

]

dΩ = 0 (2.17)
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Momentum equations:

x-direction:

∫

Ωe

[(

ρψψT ∂u

∂t

)

+ ρ

(

ψ(ψTu)
∂ψT

∂x
+ ψ(ψTv)

∂ψT

∂y

)]

udΩ

+

∫

Ωe

[(

2µ
∂ψ

∂x

∂ψT

∂x
+ µ

∂ψ

∂y

∂ψT

∂y

)]

udΩ

+
∆t

2

∫

Ωe

[

uu
∂ψ

∂x

∂ψT

∂x
+ uv

∂ψ

∂x

∂ψT

∂y
+ vu

∂ψ

∂y

∂ψT

∂x
+ vv

∂ψ

∂y

∂ψT

∂y

]

udΩ

+

∫

Ωe

[(

µ
∂ψ

∂y

∂ψT

∂x

)

v −

(

∂ψ

∂x
φT

)

p

]

dΩ =

∫

Ωe

ρψfidΩ (2.18)

y-direction:

∫

Ωe

[(

ρψψT ∂v

∂t

)

+ ρ

(

ψ(ψTu)
∂ψT

∂x
+ ψ(ψTv)

∂ψT

∂y

)]

vdΩ

+

∫

Ωe

[(

2µ
∂ψ

∂x

∂ψT

∂x
+ µ

∂ψ

∂y

∂ψT

∂y

)]

vdΩ

+
∆t

2

∫

Ωe

[

uu
∂ψ

∂x

∂ψT

∂x
+ uv

∂ψ

∂x

∂ψT

∂y
+ vu

∂ψ

∂y

∂ψT

∂x
+ vv

∂ψ

∂y

∂ψT

∂y

]

vdΩ

+

∫

Ωe

[(

µ
∂ψ

∂y

∂ψT

∂x

)

u−

(

∂ψ

∂y
φT

)

p

]

dΩ =

∫

Ωe

ρψfidΩ (2.19)

Thus, the equations (2.17)-(2.19) can be written in the form of matrix













M 0 0

0 M 0

0 0 0

























u̇

v̇

ṗ













+













C(u, v) 0 0

0 C(u, v) 0

0 0 0

























u

v

p













+













2K11 +K11 K21 −Q1

K21 K11 + 2K11 −Q1

−QT
1 −QT

1 0

























u

v

p













+













Kse(u, v) 0 0

0 Kse(u, v) 0

0 0 0

























u

v

p













=













F1

F2

0













(2.20)
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Table 2.1. Coefficient matrix formulas of incompressible Navier-Stokes equations
based on artificial compressibility method

Abbriviation Formulas Represent
M

∫

Ωe ρψψ
TdΩ Mass matrix

C(u,v)
∫

Ωe ρ
(

ψ(ψTu)∂ψ
T

∂x
+ ψ(ψTv)∂ψ

T

∂y

)

Convective matrix

Kij

∫

Ωe

(

µ ∂ψ

∂xi

∂ψT

∂xj

)

dΩ Diffusion matrix

Qi

∫

Ωe

(

∂ψ

∂xi
φT

)

dΩ Gradient matrix

Kse(u, v) ∆t
2

∫

Ωe

(

uiuj
∂ψ

∂xi

∂ψT

∂xj

)

dΩ Stabilized matrix

Fi

∫

Ωe ρψfidΩ Force vector

or

[M ]U̇+ [K(u)]U = {F} (2.21)

Where the coefficient matrices shown in equations (2.20) are defined in table 2.1

From the matrix form of (2.20), one more difficulty that encounter in the nu-

merical solution is the presence of zeros on the matrix diagonals corresponding to the

time derivative of pressure. Because of the lack of time derivative for the pressure

in continuity equation, the element mass matrix is singular. Thus, the explicit algo-

rithm cannot be applied to this equation. However, such method can be used with

the artificial compressibility method that will be discussed in the next section. The

concept of this method have been well known as continuity transformation by adding

artificial time derivative term of pressure. As the result, the difficulty of singular

mass matrix cannot encounter in the solutions.

2.6 Artificial Compressibility Method (AC method)

One of the early techniques proposed for solving the incompressible N-S equa-

tion in primitive variable form was the artificial compressibility method of Chorin

(1967). The concept of this method is to transform the elliptic partial incompressible
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equation to hyperbolic compressible partial differential form by adding the artificial

term into continuity equation. The addition of artificial compressibility term will

be vanished when the steady state solution is reached [15]. With the addition of

this term to continuity equation, the N-S equation will be changed to a mixed type

of hyperbolic-parabolic equations which can be solved by standard time- dependent

approach . In order to describe this method, let us apply the artificial term into

continuity equation. Thus, the equation (2.1) is replaced by

∂ρ

∂t
+

∂u

∂x
+

∂v

∂y
= 0 (2.22)

where ρ is the artificial density. The artificial density is related to the pressure by

the artificial equation of state.

p = ρβ (2.23)

Substitute (2.23) into (2.22), we got the new form of artificial compressibility conti-

nuity equation as

1

β

∂p

∂t
+

∂u

∂x
+

∂v

∂y
= 0 (2.24)

In order to get the new matrix formula of Incompressible Navier Stokes equations, let

us repeat the procedure step of discretization as mentioned in previous section. From

the discretization of (2.24) based on artificial compressibility method, the weak form

of (2.22) can be expressed as

∫

Ω

(

Q

β

∂p

∂t
+Q

∂u

∂x
+Q

∂v

∂y

)

dΩ = 0 (2.25)

or
∫

Ω

(

φφT

β

∂p

∂t
+ φ

∂ψT

∂x
u+ φ

∂ψT

∂y
v

)

dΩ = 0 (2.26)

Take equation (2.26) into the matrix form (2.20) by using the same procedure

as mentioned in previous section. As a result, we got the final matrix form of 2-D
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unsteady incompressible Navier Stokes equation based on artificial compressibility

method as expressed in (2.30)













[M ] 0 0

0 [M ] 0

0 0 −[Mp]

























u̇

v̇

ṗ













+













C(u, v) 0 0

0 C(u, v) 0

0 0 0

























u

v

p













+













2K11 +K11 K21 −Q1

K21 K11 + 2K11 −Q1

−QT
1 −QT

1 0

























u

v

p













+













Kse(u, v) 0 0

0 Kse(u, v) 0

0 0 0

























u

v

p













=













F1

F2

0













(2.27)

or

[M ]U̇+ [K(u)]U = {F} (2.28)

WhereMp =
1
β

∫

Ωe φφ
TdΩ represents mass matrix (pressure term). From the equation

(2.27), it is obvious that the mass matrix is not singular anymore. Thus, the standard

time-dependent approach can be employed to solve this equation.

In addition, the coefficient matrices in table 2.1, it can be seen that the inte-

gration form of coefficient matrix is depended on the type of element area or type of

interpolation function. As we mentioned before in section 2.4, the accuracy result is

depended on the selection of interpolation functions. Thus, it is necessary to select

the interpolation functions that proper for incompressible Navier Stokes equation.

For the choice of interpolation function, we will discuss more detail in next section.
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2.7 The Choice of Interpolation Functions

As mentioned in previous section, the difficulty of incompressibility have en-

countered in the incompressible Navier Stokes equations, the selection of interpolation

functions must be concerned in order to get the accuracy result. Thus, the condition

to select the interpolation functions for these equations should be written here for

guiding how to choose.

2.7.1 The condition of interpolation functions

The choice of interpolation functions used for the pressure variable in the mixed

finite element model is further constrained by the role of pressure. As we have men-

tioned, the pressure can be interpreted as a Lagrange multiplier that serve to enforce

the incompressibility constraint on the velocity field. For this reason, in order to

prevent an overconstrained system of discreted equations:

1. The interpolation used for pressure must be at least one order lower than

that used for the velocities (unequal order interpolation)[13].

2. Pressure need not be made continuous across element because the pressure

variable does not constitute a primary variable of the weak form.

From these conditions, it is clear that 2-D linear interpolation functions must

be the lowest order that is represented by the form of pressure. In this thesis, 2-

D quadratic interpolation functions will be selected to substitute into the table of

coefficient matrix formulas. In order to compute the matrix form easily, we will

choose the quadratic triangular element (6-nodes) as the interpolation functions.

In addition, in order to get the convergent solutions, the mixed finite element

method must satisfy the LBB compatibility condition which state that the existence

of stable finite element approximate solution (U, p)to Navier-Stokes equations de-
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pends on choosing a pair of weight function (Q,W ). However, the discussion of LBB

condition is beyond the scope of the present study and will not be discussed here.

2.7.2 Quadratic triangular elements (6-nodes)

In this paper, the quadratic triangular element (6-nodes) will be selected as the

interpolation functions in order to directly compute the finite element matrix form by

using the exact integral formula. To satisfy the conditions of shape functions which

state that the order for pressure must be at least one order lower than that used

for the velocities, the pressure variable should be located at corner nodes (3-nodes

triangular) and velocity components are located at all of six nodes as shown in figure

2.1.

From the figure 2.1 that expresses the location of velocity components and

pressure, it is obvious that this element consist of 6 unknowns for velocities and 3

unknowns for pressure. Thus, the quadratic interpolation functions represent velocity

components while linear interpolation function represents the form of pressure. As

a result, the unknown variables for velocities and pressure will be represented as 15

unknowns per each element. Thus, the expansions of dependent variable u, v,and p

are expressed as

u(x, y, t) =
6

∑

i=1

ψ(x, y)ui(t) (2.29)

v(x, y, t) =
6

∑

i=1

ψ(x, y)vi(t) (2.30)

p(x, y, t) =
3

∑

i=1

φ(x, y)pi(t) (2.31)

From expansion of approximated function of (2.29)-(2.31), it can be seen that the vec-

tors of interpolation functions in these equations are the main functions that must be

employed to substitute in the weak form (2.27). In this paper, in order to construct
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Figure 2.1. Quadratic triangular elements.

the finite element matrix easily by using the exact integral formula, the interpola-

tion functions from the theory of area coordinate will be employed as the quadratic

and linear triangular interpolation functions for velocities and pressure, respectively.

These interpolation functions are expressed in (2.32) and (2.33).

































ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

































=

































L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)

4L1L2

4L2L3

4L3L1

































(2.32)

And












φ1

φ2

φ3













=













L1

L2

L3













(2.33)
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WhereL1, L2 andL3 are the functions of Cartesian coordinate(x, y) and elements area

as expressed in (2.34)












L1

L2

L3













=













1
2A
(a1 + b1x+ c1y)

1
2A
(a2 + b2x+ c2y)

1
2A
(a3 + b3x+ c3y)













(2.34)

Where A is an element area and ai, bi and ci are depended on the coordinate by point

to point.




















































a1

a2

a3

b1

b2

b3

c1

c2

c3





















































=





















































(x2y3 − x3y2)

(x3y1 − x1y3)

(x1y2 − x2y1)

y2 − y3

y3 − y1

y1 − y2

x3 − x2

x1 − x3

x2 − x1





















































(2.35)

At this time, the unsteady incompressible Navier Stokes equations have been

computed to the finite element matrix form based on artificial compressibility method

and the area coordinate forms of quadratic triangular interpolation functions are

completed. In order to compute the coefficient matrices, the equation of (2.32) and

(2.33) will be substituted in the equation (2.28). For the construction of finite element

matrix formulas, we will discuss in the next section.

2.8 The Construction of Finite Element Matrix Formulas

Before construction the finite element matrix, let us recall the coefficient ma-

trices formulas in table 2.1
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As shown in table 2.1, the coefficient matrices will be derived by the substitu-

tion of the interpolation function (2.32) and (2.33). In order to derive the coefficient

matrices formulas easily, we will start with the transformation of interpolation func-

tions.

2.8.1 The transformation of interpolation functions.

Form the equation (2.32), the vector of interpolation functions can be trans-

formed to the new matrix that consist of the coefficient matrix [A] and the vector

form of matrix [R] as expressed in equation (2.36).

ψ =

































1 0 0 −1 0 −1

0 1 0 −1 −1 0

0 0 1 0 −1 −1

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4

































































L2
1

L2
2

L2
3

L1L2

L2L3

L3L1

































(2.36)

Where

[A]6x6 =

































1 0 0 −1 0 −1

0 1 0 −1 −1 0

0 0 1 0 −1 −1

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4

































(2.37)
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And

[R]6x1 =

































L2
1

L2
2

L2
3

L1L2

L2L3

L3L1

































(2.38)

As we got the new transformation of interpolation function in equation (2.36),

we will substitute this matrix into the coefficient matrices formulas in table 2.1.

2.8.2 The coefficient matrices construction

Once the matrix transformation for the interpolation functions are completed,

the coefficient matrices formulas in table 2.1 will be derived. Let us start with the

coefficient matrix of time derivative term of velocity components and pressure(mass

matrix).

Mass matrix: M = ρ
∫

Ωe ψψ
TdΩ

Let us take the new matrix transformation into mass matrix and integrate this

form by using the exact integral formula of
∫

Ae L
a
1L

b
2L

c
3dA = a!b!c!

(a+b+c+2)!
2A, we got

M = [A][A]T
2A

360

































12 2 2 3 1 3

2 12 2 3 3 1

2 2 12 1 3 3

3 3 1 2 1 1

1 3 3 1 2 1

3 1 3 1 1 2

































(2.39)
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Where A is an element area. The derivation of mass matrix is available in APPENDIX

B.

Mass matrix: Mp =
1
β

∫

Ωe φφ
TdΩ

φφT =













L1

L2

L3













[

L1 L2 L3

]

=













L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3













(2.40)

Let us call the integration of equation (2.40) as [G] matrix, we got

G =

∫

Ae













L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3













dA =
A

12













2 1 1

1 2 1

1 1 2













(2.41)

Thus, the final form of mass matrix Mp (Artificial compressibility term) is

Mp =
1

β

∫

Ae













L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3













dA =
1

β
[G] (2.42)

Diffusion matrix: K11 =
∫

Ωe µ
∂ψ

∂x

∂ψT

∂x
dΩ and K22 =

∫

Ωe µ
∂ψ

∂y

∂ψT

∂y
dΩ

The derivative form of interpolation function can be expressed as

∂ψ

∂x
= [A]

∂

∂x

































L2
1

L2
2

L2
3

L1L2

L2L3

L3L1

































= [A]
1

2A

































2b1 0 0

0 2b2 0

0 0 2b3

b2 b1 0

0 b3 b2

b3 0 b1













































L1

L2

L3













(2.43)
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And

∂ψ

∂y
= [A]

∂

∂x

































L2
1

L2
2

L2
3

L1L2

L2L3

L3L1

































= [A]
1

2A

































2c1 0 0

0 2c2 0

0 0 2c3

c2 c1 0

0 c3 c2

c3 0 c1













































L1

L2

L3













(2.44)

Or, we can abbreviate these forms as

∂ψ

∂x
= [A][B][H] (2.45)

∂ψ

∂y
= [A][C][H] (2.46)

Then, substitute (2.45) and (2.46) into diffusion matrix, we got

K11 =

∫

Ae

µ
∂ψ

∂x

∂ψT

∂x
dA = µ[A][B][A]T [B]T

∫

Ae

[H][H]TdA (2.47)

K22 =

∫

Ae

µ
∂ψ

∂y

∂ψT

∂y
dA = µ[A][C][A]T [C]T

∫

Ae

[H][H]TdA (2.48)

Let us recall [G] matrix to substitute into (2.47) and (2.48), we got the final diffusion

matrix formula for x and y direction, respectively as

K11 = µ[A][B][G][B]T [A]T (2.49)

K22 = µ[A][C][G][C]T [A]T (2.50)

Similarly procedure for

Diffusion matrix: K12 =
∫

Ωe µ
∂ψ

∂x

∂ψT

∂y
dΩ and K21 =

∫

Ωe µ
∂ψ

∂y

∂ψT

∂x
dΩ

We got

K12 =

∫

Ωe

µ
∂ψ

∂x

∂ψT

∂y
dΩ = µ[A][B][G][A]T [C]T (2.51)

K21 =

∫

Ωe

µ
∂ψ

∂y

∂ψT

∂x
dΩ = µ[A][C][G][B]T [A]T (2.52)
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Stabilized matrix:

Kse(u, v) =
∆t

2

∫

Ωe

[

uu
∂ψ

∂x

∂ψT

∂x
+ uv

∂ψ

∂x

∂ψT

∂y
+ vu

∂ψ

∂y

∂ψT

∂x
+ uu

∂ψ

∂y

∂ψT

∂y

]

dΩ(2.53)

Kse(u, v) =
∆t

2
[uu[A][B][G][B][A] + uv[A][B][G][C][A] + vu[A][C][G][B][A]]

+ [vv[A][C][G][C][A]] (2.54)

Stiffness Gradient matrix: Q1 =
∫

Ωe

∂ψ

∂x
φTdΩ and Q2 =

∫

Ωe

∂ψ

∂y
φTdΩ

Substitute the equation (2.43)and (2.44) into the both mixed term of stiffness

matrix. Thus, we got

Q1 = [A][B]

∫

Ωe

[H][H]TdΩ = [A][B][G] (2.55)

Q2 = [A][C]

∫

Ωe

[H][H]TdΩ = [A][C][G] (2.56)

Convective matrix: C(u, v) =
∫

Ωe ρ
(

ψ(ψTu)∂ψ
T

∂x
+ ψ(ψTv)∂ψ

T

∂y

)

dΩ

Let us start with substitution the equation (2.43) into the derivative form of x

direction

The first term:

Cx(u) =

∫

Ωe

ρψ(ψTu)
∂ψT

∂x
dΩ = [A][A]T [A][B]

∫

Ωe

[R][R]T [u][H]dΩ (2.57)

The second term:

Cy(v) =

∫

Ωe

ρψ(ψTv)
∂ψT

∂y
dΩ = [A][A]T [A][C]

∫

Ωe

[R][R]T [v][H]dΩ (2.58)

Let us apply [F] matrix represent as F =
∫

Ωe [R][R]T [u][H]dΩ and

F =
∫

Ωe [R][R]T [v][H]dΩ. The integration of [F ] matrix will be derived in APPENDIX

B.
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From the integration of [F ] matrix, we got the final form of convective matrix

for derivative form in x-direction as

Cx(u) =
2A

5040
[A][A]T [A][B][F ] (2.59)

In similar way, we can get the convective matrix for derivative form in y-direction as

Cy(v) =
2A

5040
[A][A]T [A][C][F ] (2.60)

At this time, finite element matrix formulas have already been proved to the

final general forms. In order to make more convenient for MATLAB codes construc-

tion, we will summarize the general forms of finite element matrix in Appendix B.



CHAPTER 3

FINITE ELEMENT SOLUTIONS AND PROGRAMMING

3.1 Introduction

As we have mentioned in chapter two, the unsteady incompressible Navier-

Stokes equation based on artificial compressibility scheme consist of nonlinear term

and time dependent problem. Thus, in order to deal with these problems, the solution

of iterative methods for nonlinear equation and time-approximation schemes for time

dependent problem will be discussed in this chapter.

The first section explain the iterative method of Newton-Raphson and time

approximate scheme that can be used to solve the non linear equation and time

dependent problem. The derivation of these schemes will be presented in this section.

Moreover, this section demonstrates how to select the best time approximate scheme

that suitable for the set of equations. For the last two sections, the algorithm of time

dependent approach and iterative method will be tested by the benchmark of lid-

driven cavity. This problem will be constructed by the finite element programming

codes by using MATLAB program. The procedure of finite element programming

will be demonstrated and constructed in the last section.

3.2 Solutions to incompressible Navier-Stokes equations

Once the local element matrices are assembled to the form of the system equa-

tions and boundary conditions are imposed, the set of equation (2.27) are ready to

solve. As we know, the solution of nonlinear incompressible Navier Stokes equa-

tions either for steady and unsteady flow is a significant computational challenge.

27
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Thus, before solving these equations, the choice of effective solution algorithms must

be considered. From the equation (2.27), these equations can be divided into two

parts. The first part is time derivative term and the second part is nonlinear ma-

trix. Thus, we can solve these equations by combining a transient time integration

algorithm with the iterative method at each time step [16]. For an iteration scheme,

Newton-Raphson method is the most popular and widely used because of its superior

convergence properties. Thus, Newton- Raphson method will be selected to solved

the part of nonlinear matrix. For the transient time integration schemes, in order to

reduce the number of time step, backward Euler scheme will be chosen to deal with

the time derivative term.

3.3 Newton- Raphson method

As mentioned before, in order to improve the rate of convergence, Newton

Raphson method must be discussed. The concept of this method is to balance the

stiffness matrix and load vector. And then, modify the balance set of nonlinear stiff

matrix by using derivation form respect to the velocity component and pressure. In

order to derive this equation, let us start with the second term of equation (2.27) that

is non-linear equations as












C + 2K11 +K11 +Kse K12 −Q1

K21 C +K11 + 2K11 +Kse −Q1

−QT
1 −QT

1 0

























u

v

p













=













F1

F2

0













(3.1)

or

[K(u)]U = {F} (3.2)

Let us transform the equation (3.2) into Newton-Raphson form as

R(U) = [K(u)]U− {F} = 0 (3.3)
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Newton-Raphson method is based on a truncated Taylors series expansion of R(U)

about the known solution Un

0 = R(Un) +
∂R

∂U
4 U + 0(4U2) (3.4)

Where 4U = Un+1 − Un. Omitting the terms of order two and higher, we obtain

R(Un) = −
∂R

∂U
(Un+1 − Un) ∼= −J(Un)(Un+1 − Un) (3.5)

Where J is the Jacobean matrix

J = −
∂R

∂U
(3.6)

By solving equation (3.4), we got

Un+1 = Un − J−1(Un)R(Un) (3.7)

Let the equation (3.1) apply to (3.3), we got

R1 = C1(u)u+ C2(v)u+ (2K11 +K22)u+K12v −Q1p− F1

+
∆t

2
[Ks11(uu)u+Ks12(uv)u+Ks21(vu)u+Ks22(vv)u]

R2 = C1(u)u+ C2(v)u+ (2K11 +K22)u+K12v −Q1p− F2

+
∆t

2
[Ks11(uu)v +Ks12(uv)v +Ks21(vu)v +Ks22(vv)v]

R3 = −QT
1 u−QT

2 v

(3.8)

To evaluate the Jacobian matrix, substitute (3.8) into (3.6),We got the derivative of

stiffness matrix in the Newton-Raphson form

J = −
∂R

∂U
= −













∂R1
∂u

∂R1
∂v

∂R1
∂p

∂R2
∂u

∂R2
∂v

∂R2
∂p

∂R3
∂u

∂R3
∂v

∂R3
∂p













(3.9)
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Where

∂R1

∂u
= C1(u) + C2(1)u+ C2(v) + 2K11 +K22

+
∆t

2
[Ks11(uu) +Ks11(2u)u+Ks12(uv)]

+
∆t

2
[Ks12(v)u+Ks21(vu) +Ks21(v)u+Ks22(vv)]

∂R1

∂v
= C2(1)u+K12 +

∆t

2
[Ks12(u)u+Ks21(u)u+Ks22(2v)u]

∂R1

∂p
= −Q1

∂R2

∂u
= C1(1)v +K21 +

∆t

2
[Ks12(v)v +Ks21(v)v +Ks22(2u)v]

∂R2

∂v
= C1(u) + C2(v) + C2(1) +K11 + 2K22

+
∆t

2
[Ks11(uu) +Ks12(uv) +Ks12(u)v]

+
∆t

2
[Ks21(vu) +Ks21(u)v +Ks22(vv) +Ks22(2v)v]

∂R2

∂p
= −Q2

∂R3

∂u
= −QT

1

∂R3

∂v
= −QT

2

∂R3

∂p
= 0

(3.10)

Substitute the Jacobian matrix (3.10) into (3.5), we got

R(Un) = −
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(Un+1 − Un) (3.11)

Thus, the equation (3.1) can be replaced by
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where












4un+1

4vn+1

4pn+1













=













un+1 − un

vn+1 − vn

pn+1 − pn













(3.13)

Once we got the set of Newton-Raphson equation (3.12), this equation will be sub-

stituted into the original equation (2.27). As the result, the equation (2.27) will be

replaced by equation (3.14) as
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(3.14)

or

[M ]U̇+ [K(U)]4U = {R} (3.15)

Let us called this equation as AC Newton Raphson Equation

3.4 Backward Euler Time-Approximation scheme

From the AC Newton Raphson Equation (3.15), it can be seen that this equation

represents a discrete space and continuous time approximation to the original system

of partial differential equations. In order to solve the time dependent problem, the

choice of time approximation schemes must be considered. There are three types of

time dependent approach: Explicit, Implicit, and Semi- implicit integration methods.

These methods have many different advantages and disadvantages. As the reference

[15], from the comparing with these methods, Implicit Euler Scheme (Backward Euler

finite difference method) is the best choice that suitable for the solution of AC Newton

Raphson Equation because this method is unconditional stability and save more CPU

time to iterate. However, this scheme makes more computationally expensive than

the others.
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In addition, although the implicit Euler scheme make more computationally

expensive than the others, this scheme are desirable due to their increased stability

and the consistent treatment of the pressure. Moreover, number of the time steps can

be reduced by this scheme. However, although this scheme is unconditional stability,

the time step size of this method must be concerned because of the nonlinearity of

AC Newton Raphson equation can make the unpredicted oscillation value.

To derive the solution of time approximation method by using Implicit method,

let us start with the time derivative term of AC Newton Raphson Equation. This term

can be transformed to the new form by using Taylor series expansion as expressed in

(3.16).

U̇ =
∂U

∂t
=

Un+1 − Un

4t
(3.16)

Substitute (3.16) into (3.15), we got

[M ]Un+1 = 4t[R(Un+1)−K(Un+1)(Un+1)] + [M ]Un (3.17)

Or in a form more suitable for computation

[M +4tK(Un+1)]Un+1 = 4t[R(Un+1)− [M ]Un (3.18)

As we have derived previously, it can be seen that the Newton Raphson method

and Backward Euler scheme are employed to modify the equation(2.25) until we got

the new equation as expressed by (3.18). This equation represents the final form

of two dimensional unsteady incompressible Navier Stokes equation based on AC

method by using the solution of Newton Raphson method for nonlinear term and

Backward Euler scheme for time dependent matrix. Thus, let us call the equation of

(3.18) as AC Backward Newton Raphson Equation.

Once we got the final form of AC Backward Newton Raphson Equation, this

equation will be verified by the benchmark of lid-driven cavity problem that is the
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standard benchmark test for incompressible flows. The application problem of cavity

flow will be discussed in next section.

3.5 The Benchmark of Lid-driven cavity

3.5.1 Boundary conditions

As we mentioned previously, the flow in a lid-driven cavity is one of the most

widely use benchmark problems to test the incompressible Navier Stokes codes. This

example become a standard benchmark test for incompresiible flows. We will show

the procedure how to set the boundary condition for the physical of incompressible

Navier Stokes problem. The boundary conditions are indicated in figure 3.1. There

are various ways to assume the boundary conditions but the most common use is

one in which the velocity along the top surface increase from the left corner node to

the driven value in the length of element (ramp condition)[14]. The fixed velocity is

located at along the bottom wall and along the both of vertical wall. As the figure

3.1, it is obvious that Dirichlet boundary conditions are imposed on every boundary

in this example. Thus, a singulary in the pressure should be located at the lower left

corner of the cavity, the reference value p=1 is prescribed [14].

3.5.2 Meshing

To demonstrate the influence of mesh density on the solution procedure, four

different meshes are selected for this problem. These meshes consist of 25x25 nodes

structure mesh, 25x25 nodes new refine mesh, 41x41 nodes structure mesh, and 41x41

nodes new refined mesh. Both of the new refined mesh 25x25 and 41x41nodes are

generated by refining the mesh at the corner and coarsening the mesh at the center

of cavity. These meshes are shown in figure 3.2.
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Figure 3.1. Boundary conditions of the benchmark of lid-driven cavity.

Once the boundary conditions have already set, we will solve the equation

(3.18) by using the standard Galerkin formulation. The numerical result of steady

state solution will be obtained when the calculation is continued until the maximum

difference of the variables u, v, and p between two consecutive time steps became

less than 10−6. For the formula of steady state checking, we will discuss in the next

section.

To verify the numerical of steady state solutions, the standard value from this

problem need to be employed for comparing. As we know, this problem have been

studied by many researchers who quoted many solutions and data result for different

number of Reynolds number. The data set of those Ghia et al.[12] is one of the

standard value that we want to select for comparison. In this thesis, the Reynolds

numbers of 100, 400, 1,000, and 3,200 are selected as the initial input data. The

Reynolds numbers can be expressed by the form

Re =
ρUL

µ
(3.19)
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Where ρ, U, µ are density, velocity, and viscosity, respectively. L is the unit length

of cavity. For the numerical results of steady state solution at different Reynolds

number, the velocity distributions along the centre-line from these Reynolds numbers

will be compared to those of Ghia value. Moreover, streamline plots and pressure

contours will be compared by using different meshes. The part of result will be

discussed in the next chapter.

3.6 Finite Element Programming

When the derivation of AC Backward Newton Raphson equations are completed

and the boundary condition have already set, the finite element programming codes

will be constructed to solve these equations. These programming codes are written

by MATLAB program. In order to construct the programming codes easily, the

procedure of finite element programming will be explained as step by step.

3.6.1 The procedures of finite element programming

The finite element program consist of one main program and three sub programs

(three sub functions). Let us call this program as Complete Incompressible Navier

Stoke. The detail of this program is available in Appendix C. Howver, in order to

make more understanding with finite element programming, we can summarize the

procedure into 7 steps as following.

Step 1. For the first time step, the program start with the input data of the

lid-cavity driven problem such as initial guess value, number of nodes, elements,

iterations, time steps, coordinates, and boundary conditions. These properties will

be set as the numbering of nodes.

Step 2. The input data will be constructed as the local element matrices that

have the numbering at each elements. Once the construction of local element matrices
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(mass matrix, convective matrix, stiffness matrix, and load vector) are completed, the

subfunction programming will be called to assemble these matrices to Global matrix

that is the system of equations. This function program is called TRI1.

Step 3. Once the assembling matrices are completed, the boundary conditions

must be applied to the global system. In this step, the boundary subfunction pro-

gramming will be called to apply the boundary value at some nodes in the problem.

The boundary programming is called APPLYBC1.

Step 4. In this step, the global system will be solved when the boundary

conditions have already applied to the equation. For solving part, Gauss eliminate sub

function programming will be called to solve the set of equations system. As the result,

velocity components and pressure variables will be obtained for the first iteration at

this step. Step 5. Once we got the numerical results for the first iteration from step

4, these results will be sent to test the iteration convergence by the convergence test.

The equation of convergence test can be expressed as

ε =
n

∑

i=1

∣

∣

∣

∣

Un+1 − Un

∆t

∣

∣

∣

∣

(3.20)

If the value of equation (3.20) is greater than 0.01, the result from this step will be

sent to compute again in step 2 for the next iteration until the result of last iteration

is less than 0.01. Once the result is satisfy the convergence condition, these values

will be set as the initial value for the next time step. Thus, the procedure of first step

will be restarted again. As we mentioned in chapter 2, the artificial compressibility

will be vanished when the steady state is reached. Thus, the artificial compressibility

term must be checked by the pressure convergence test as

ε =
1

β

n
∑

i=1

∣

∣

∣

∣

pn+1 − pn

∆t

∣

∣

∣

∣

(3.21)

We will assume the value of pressure convergence test as 10−6 . If the result for the

last iteration is satisfied pressure convergence test (3.21), the process for the next
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time step will be stopped. As a result, the final value of velocity components and

pressure are obtained. In order to make more clear in the process of the finite element

programming procedure, these steps will be shown in the chart 3.1.
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Figure 3.2. Four different quadratic triangular mesh of (a) Mesh1: 25x25 nodes, (b)
Mesh2: New refined 25x25nodes (c) Mesh3: 41x41 nodes and (d)Mesh4: New refined
41x41nodes.
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Figure 3.3. The procedure of finite element programming.



CHAPTER 4

NUMERICAL RESULTS AND DISCUSSIONS

4.1 Introduction

Once the finite element programming codes in the previous chapter have al-

ready constructed and tested by the benchmark of lid-driven cavity, the numerical

results will be presented and analyzed in this chapter. As mentioned before in previ-

ous chapter, in order to verify the finite element programming codes, the numerical

results from finite element programming will be compared with the numerical results

obtained from finite element analysis done by Ghia et al.[12]. The velocity stream

line and contour plots at the different Reynolds numbers and different meshes will

be compared together in order to demonstrate the influence of mesh density on the

solution procedures. However, these results must be satisfied by the condition of

steady-state convergence checking in the finite element programming.

4.2 Comparing the velocity streamlines plot and pressure contours

As mentioned in section 3.4, before using the numerical results to present, these

results must be satisfied by the convergence checking as expressed in the equation 3.21.

To demonstrate the numerical results that are satisfied by this test, in this section,

the steady-state convergence history of different meshes (refined mesh 2 and mesh 4)

at different Reynolds number of 100, 400, 1000, and 3200 are presented as shown in

figure 4.1-4.2

From the figure 4.1-4.2, it can be seen that the convergence history depend on

the time step size, different meshes, and different Reynolds number.

40
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(a) (b)

(c) (d)

Figure 4.1. The convergence history graph at different Reynolds number (a)Re 100:
∆t=0.8, 580 iterations, 35 time steps, (b)Re 400: ∆t=0.8, 890 iterations, 20 time
steps,(c)Re 1000: ∆t=0.1, 1050 iterations, 15 time steps and (d)Re 3200: ∆t=0.1,
3000 iterations, 56 time steps by using New mesh 25x25 nodes.

Once the steady state in the solutions is reached, the numerical results will

be obtained. As mentioned in previous chapter, four different meshes: 25x25 nodes

structure mesh, 25x25 nodes new refined mesh, 41x41 nodes structure mesh, and

41x41 nodes new refined mesh are employed to apply in the finite element solution in

order to compare the behavior of velocity components and pressure that occurred in

the cavity. For the general cases, the velocity streamlines plot and pressure contours

can be the best graph that clearly demonstrate the influence of these different meshes
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(a) (b)

(c) (d)

Figure 4.2. The convergence history graph at different Reynolds number (a)Re 100:
∆t=0.8, 1050 iterations, 25 time steps, (b)Re 400: ∆t=0.8, 2000 iterations, 25 time
steps, Re 1000: ∆t=0.05, 2705 iterations, 40 time stepsand (d)Re 3200: ∆t=0.05,
3500 iterations, 40 time steps by using New mesh 41x41 nodes.

on the numerical solutions. Thus, the numerical results will be presented here in the

term of velocity streamlines plot and pressure contour at different Reynolds numbers

of 100, 400, 1,000, and 3,200 as shown in figure 4.3 - 4.10.

From figure 4.3-4.10, it can be seen that the numerical results in terms of the

streamlines plot and pressure contour graph by using the last two meshes(41x41 and

41x41 nodes new mesh) are smoother contour than the first two meshes(25x25 and

25x25 new mesh). However,from comparing the streamline plot by using the same
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number of nodes, it is obvious that the new refined meshes can generate the second

and third smooth vortex at the bottom right-hand corner and left-hand corner. And

these vortexes will become larger when the Reynolds number is increased to Re 400,

1,000, and 3,200 respectively. From the velocity streamlines plot at high Reynolds

number of 3200, it can be seen that mesh 4 can generate the forth vortex appears at

the top left corner of the cavity while the others are failed to generate this occurrence

because of insufficient mesh resolution. In the general for this problem, if we can

generate the smooth vortex at the left and right bottom corner, some oscillations in

the process can be reduced. Thus, the very fine meshes near the wall are required if we

want to achieve the good results. These ideas can be demonstrated by the comparison

between the present results and the numerical results from those of Ghia et al. [12] in

the term of vertical and horizontal velocity distributions at the center-line of cavity

by using different meshes at the same Reynolds number. The comparing of these

numerical results will be presented in next section.

From the comparing pressure contour at Re 100, it can be seen that some

oscillations appear at the top left and right corner of cavity. And these oscillations

disappear become larger when the Reynolds number is increased to Re 400, 1000,

and 3200 respectively. However, these oscillations will be reduced by using mesh 4.

Thus, from the numerical results in term of velocity streamlines plot and pressure

contour, we can predict the very fined near the wall or mesh 4 can give numerical

results better accuracy than that used for mesh 1, mesh 2, and mesh 3.

4.3 Comparing the velocity distributions at central line

In order to verify the finite element codes, the comparison between present

results and other numerical data obtained by Ghia et al. will be presented in the

term of velocity distributions at vertical and horizontal central line by using differ-
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ent meshes. Both of horizontal and vertical velocity distributions are presented at

Reynolds number of 100, 400, 1,000, and 3,200 as shown in figure 4.11 - 4.18.

From the comparisons in figure 4.11-4.18, it can be seen that the numerical

results by using different four meshes at the low Reynolds number of Re 100 are very

close to the numerical results of Ghia who use very fine mesh 121x121 to the solutions.

Thus, these present numerical results show excellent agreement when compared with

Ghia. When the Reynolds number is increased to Re 400 ,and 1,000 respectively,

numerical oscillations due to the convection dominated encounter the solutions. As

a result, some error occur in the solutions. However, although the inaccurate result

will be occur when the Reynolds number is increased, both of the new refined mesh

25x25 nodes (mesh 2) and 41x41 nodes (mesh 4) can make the result more accuracy

than both of structure meshes when compared with those of Ghia value. Therefore,

in order to compute the accurate result, the very fine mesh near the wall of cavity

must be required.

As we have mentioned in chapter 2, the main difficulty of high Reynolds number

of Re 3200 which is due to the presence of nonlinear and non-sysmetric convective

terms in the momentum equation encountered in the numerical solutions. When

the Reynolds number is increased (more than Re 1000), the velocity gradients will

be developed near the cavity walls. This behavior will generates the non-physical

oscillations in the Galerkin finite element solution for the velocity. For this reason,

the mesh 4 or the refined mesh near the wall is not enough to deal with this difficulty.

In order to deal with this difficulty, the very fine meshes near the wall need to be

required. However, although the difficulty of high Reynolds number can be dealt

with by using these meshes, the number of equations based on Galerkin finite element

method becomes larger. As a result, the finite element programming makes more CPU

time to iterate the system of equations. Thus, as mentioned in chapter 2, to avoid
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using these meshes, the Taylor Galerkin Stabilized technique is the main technique

to deal with this problem. From the numerical results at Re 3200 by using different

meshes as shown in figure 4.6, it can be seen that the Taylor Galerkin stabilized

formulation can be used to solve this difficulty. It is also found that this method

can save more CPU time to iterate the system of equations as can be seen in the

convergent history graph.
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(a) (b)

(c) (d)

Figure 4.3. The velocity streamlines plot at Re 100 by using different meshes of
(a)Mesh1, (b)Mesh2, (c)Mesh3, and (d)Mesh4.
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(a) (b)

(c) (d)

Figure 4.4. The velocity streamlines plot at Re 400 by using different meshes of
(a)Mesh1, (b)Mesh2, (c)Mesh3, and (d)Mesh4.
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(a) (b)

(c) (d)

Figure 4.5. The velocity streamlines plot at Re 1000 by using different meshes of
(a)Mesh1, (b)Mesh2, (c)Mesh3, and (d)Mesh4.



49

(a) (b)

(c) (d)

Figure 4.6. The velocity streamlines plot at Re 3200 by using different meshes of
(a)Mesh1, (b)Mesh2, (c)Mesh3, and (d)Mesh4.
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Figure 4.7. The pressure contours at Re 100 by using different meshes of (a)Mesh1,
(b)Mesh2, (c)Mesh3, and (d)Mesh4.
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Figure 4.8. The pressure contours at Re 400 by using different meshes of (a)Mesh1,
(b)Mesh2, (c)Mesh3, and (d)Mesh4.
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Figure 4.9. The pressure contours at Re 1000 by using different meshes of (a)Mesh1,
(b)Mesh2, (c)Mesh3, and (d)Mesh4.
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(a) (b)

(c) (d)

Figure 4.10. The pressure contours at Re 3200 by using different meshes of (a)Mesh1,
(b)Mesh2, (c)Mesh3, and (d)Mesh4.



54

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Re100

u(x=0.5,y)

y

 

 

Ghia
Mesh 25x25

(a)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Re100

u(x=0.5,y)

y

 

 

Ghia
Newmesh 25x25

(b)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Re100

u(x=0.5,y)

y

 

 

Ghia
Mesh 41x41

(c)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Re100

u(x=0.5,y)

y

 

 

Ghia
Newmesh 41x41

(d)

Figure 4.11. The comparison of horizontal velocity distributions at Re 100 with Ghia
et al. by using different meshes.
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Figure 4.12. The comparison of horizontal velocity distributions at Re 400 with Ghia
et al. by using different meshes.
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Figure 4.13. The comparison of horizontal velocity distributions at Re 1000 with
Ghia et al. by using different meshes.
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Figure 4.14. The comparison of horizontal velocity distributions at Re 3200 with
Ghia et al. by using different meshes.
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Figure 4.15. The comparison of vertical velocity distributions at Re 100 with Ghia
et al. by using different meshes.
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Figure 4.16. The comparison of vertical velocity distributions at Re 400 with Ghia
et al. by using different meshes.
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Figure 4.17. The comparison of vertical velocity distributions at Re 1000 with Ghia
et al. by using different meshes.
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Figure 4.18. The comparison of vertical velocity distributions at Re 3200 with Ghia
et al. by using different meshes.



CHAPTER 5

CONCLUSION AND RECOMMENDATION FOR FUTURE WORK

In this paper, a standard Galerkin finite element method which features unequal

order interpolation for velocity variables and pressure for the conservative formulation

of the unsteady incompressible Navier Stokes equations was discussed. The artificial

compressibility method was employed to transform the elliptic incompressible conti-

nuity equation to hyperbolic compressible system by adding artificial compressibility

term to continuity equation in order to deal with the difficulty of incompressibil-

ity constraint conditions and singular matrix. The Taylor Galerkin formulation was

employed as the stabilization procedures to deal with the difficulty of numerical os-

cillations due to the convection dominated at high Reynolds number flows. The co-

efficient matrices associated with the continuity equation and momentum equations

are directly constructed by employing the transformation of interpolation functions

of quadratic triangular element and the time derivative of mass terms are linearized

by using the first order of Taylor expansion.

In the solution, unsteady incompressible Navier Stokes equations were solved

by the combining a transient time integration algorithm with an iterative method at

each time plane. The Newton-Raphson iterative method was used to solve the set of

non-linear equations and backward difference scheme was employed to dealt with the

problem of time derivative term. The mixed set of these algorithms are called the AC

Backward Newton-Raphson method. The finite element programming codes of these

methods were set by MATLAB program. The final numerical result were tested by

the convergence checking associated with velocity components and pressure.

62



63

The numerical method is verified by solving the flow in the benchmark of lid-

driven cavity. In order to demonstrate the influence of very fine mesh with numerical

results, four different meshes of 25x25 nodes structure grid, 41x41 nodes structure

grid, 25x25 nodes new refined mesh, and 41x41 nodes new refined mesh were em-

ployed in the solutions. As mentioned in previous chapter, the iteration method of

Newton-Raphson can make the solution very fast convergence. However, although

the number of iterations can be reduced by this method, the CPU time is still large

for a conventional PC because of the Galerkin formulation make the matrix that in-

volve in the solution became large. Thus, the large CPU time for solving the set of

equations still encountered in the solution. For this reason, the very big meshes (very

fined mesh) cannot be used to reduce some errors in the process. Therefore, the small

vortices at the bottom right and left corner can not be generated. For solving this

problem, the refined mesh near the wall of cavity need to be required. In this paper,

to avoid using very fine meshes that can make more CPU times in the solutions, the

structure meshes (25x25 and 41x41 nodes) would be refined to new refined mesh near

the wall 25x25 and 41x41 nodes. However, these meshes were not enough to deal with

the numerical oscillations due to the convection dominated at high Reynolds number

of Re 3200. Thus, to deal with this difficulty, the Taylor Galerkin stabilized method

need to be required. From using these meshes to the solutions and employing the

Taylor Galerkin method to stabilize the numerical results, it was found that the final

numerical results were obtained when CPU time involved is less than one hour in a

conventional PC, depending on Reynolds number.

The numerical results were compared with those of Ghia et al. [1] for Reynolds

number of 100, 400, and 1000 by using different meshes. From the comparing, it

was found that the method seems to achieve good result for low Reynolds number

(Re 100) as can be seen in figure 4.7-4.13. When the Reynolds number is increased



64

to Reynolds number of 400, and 1000, respectively, some errors encountered in the

solution. However, the very fine mesh near the wall of cavity can make the results

accuracy than the structure meshes when compared by using the same number of

nodes. Moreover, it was also found the smooth vortices can be generated at the

bottom right and left corner by using these meshes. For the high Reynolds number

at Re 3200, as show in figure 4.14, it was found that the difficulty of the numerical

oscillations due to convection dominated can be solved by the stabilized method of

Taylor Galerkin. Moreover, it was also found that the accuracy numerical results

were obtained when the very fine mesh near the wall was selected in the solutions.

From these numerical results, the advantage of the solution to incompressible

Navier-Stokes equations by using numerical finite element method based on artificial

compressibility method and Taylor Galerkin stabilized technique can be concluded as

follow

1. The program seems to achieve good results when compared with numerical

results of Ghia et al.(121x121mesh) at Re 100, 400, 1000, and 3200) with even less

refined meshes to the solutions.

2. The numerical solutions of Newton and Raphson method can give the nu-

merical results are very fast convergence to reach steady state.

3. The finite element programming can save more CPU time to iterate the

system of equations because the stabilized technique can be employed to deal with

the difficulty of numerical oscillations due to convection dominated instead of using

very fine meshes to the solutions that can make more CPU times.

As the future work, there are two extensions of this work,

Firstly, in order to improve the accuracy numerical results at Re 100, 400, 1000,

and 3200 the very big fine mesh near the wall of cavity need to be refined for example

64x64 nodes new refined mesh is enough to get the accuracy results.
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in additionally, in order to reduce the CPU time, the language of C++ and

FORTRAN program can be the best choice to solve the system of equations instead

of MATLAB program. Moreover, the Characteristic-Based-Split algorithm based on

artificial compressibility method can be employed to solve incompressible Navier-

Stoke equations by using both of implicit and explicit scheme[17]. This method is

widely used at the present time because not only the CPU time can be reduced but

also the finite element programming codes by using this method can be constructed

easily.



APPENDIX A

THE CONSTRUCTION OF FINITE ELEMENT MATRIX FORMULAS
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In this appendix, the coefficient matrices formulas in table 2.1 will be derived to

the general form of matrix. Moreover, the summary of matrix form will be expressed

in order to make more convenient for finite element programming codes construction.

A.1 The construction of coefficient matrix formulas

Let us start with the transformation of interpolation functions

ψ =

































L1(2L1 − 1)

L2(2L2 − 1)

L3(2L3 − 1)
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L2
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1 0 0 −1 0 −1

0 1 0 −1 −1 0

0 0 1 0 −1 −1

0 0 0 4 0 0

0 0 0 0 4 0
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(A.1)

Where

[A]6x6 =

































1 0 0 −1 0 −1

0 1 0 −1 −1 0

0 0 1 0 −1 −1

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4

































(A.2)
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and

[R]6x1 =
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(A.3)

Mass matrix:M = ρ
∫

Ωe ψψ
TdΩ

ψψT = [A][A]T
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L2
1 L2

2 L2
3 L1L2 L2L3 L3L1

]

(A.4)

Substitute [A.4] into mass matrix [M ] and apply this formula
∫

Ae L
a
1L

b
2L

c
3dA = a!b!c!

(a+b+c+2)!
2A

to integrate. The results of integrations are shown below.

∫

A

L4
1dA =

4!0!0!

(4 + 0 + 0 + 2)!
2A =

2A

30

∫

A

L2
1L

2
1dA =

2!2!0!

(2 + 2 + 0 + 2)!
2A =

2A

180
∫

A

L1L
2
2L3dA =

2!1!1!

(2 + 1 + 1 + 2)!
2A =

2A

360
∫

A

L3
2L3dA =

3!1!0!

(3 + 1 + 0 + 2)!
2A =

2A

120
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M = [A][A]T
2A

360

































12 2 2 3 1 3

2 12 2 3 3 1

2 2 12 1 3 3

3 3 1 2 1 1

1 3 3 1 2 1

3 1 3 1 1 2

































(A.5)

Thus, we got the final form of mass matrix as expressed in (A.5). Where A is an

element area.

A.2 Integration of [F ] matrix

F =

∫

Ωe
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(A.6)

Integrate (A.6) by using
∫

Ae L
a
1L

b
2L

c
3dA = a!b!c!

(a+b+c+2)!
2A. The result of integration are

shown below
∫

Ae L
5
1dA = 5!0!0!

(5+0+0+2)!
2A = 2A

42

∫

Ae L
4
1L2dA = 4!1!0!

(4+1+0+2)!
2A = 2A

210

∫

Ae L
2
1L

2
2L3dA = 2!2!1!

(2+2+1+2)!
2A = 2A

1260

∫

Ae L
3
2L

2
2dA = 3!2!0!

(3+2+0+2)!
2A = 2A

420

∫

Ae L
3
1L2L2dA = 3!1!1!

(3+1+1+2)!
2A = 2A

840

∫

Ae L
3
2L2dA = 3!1!0!

(3+1+0+2)!
2A = 2A

210
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Thus, we got [F] matrix as

F =
2A

5040













F (1, 1) F (1, 2) F (1, 3) F (1, 4) F (1, 5) F (1, 6)

F (2, 1) F (2, 2) F (2, 3) F (2, 4) F (2, 5) F (2, 6)

F (3, 1) F (3, 2) F (3, 3) F (3, 4) F (3, 5) F (3, 6)













(A.7)

where

F (1, 1) =

[

120 12 12 24 6 24

]

[u]

F (1, 2) =

[

12 24 14 12 6 4

]

[u]

F (1, 3) =

[

12 4 24 4 6 24

]

[u]

F (1, 4) =

[

24 12 4 12 4 6

]

[u]

F (1, 5) =

[

6 6 6 4 4 4

]

[u]

F (1, 6) =

[

120 12 12 24 6 24

]

[u]

F (2, 1) =

[

24 12 4 12 4 6

]

[u]

F (2, 2) =

[

12 120 12 24 24 6

]

[u]

F (2, 3) =

[

4 12 24 4 12 6

]

[u]

F (2, 4) =

[

12 12 4 12 6 4

]

[u]

F (2, 5) =

[

4 24 12 6 12 4

]

[u]

F (2, 6) =

[

6 6 6 4 4 4

]

[u]

F (3, 1) =

[

24 12 24 6 4 12

]

[u]

F (3, 1) =

[

4 24 12 6 12 4

]

[u]

F (3, 1) =

[

12 12 120 6 24 24

]

[u]

F (3, 1) =

[

6 6 6 4 4 4

]

[u]

F (3, 1) =

[

4 12 24 4 12 6

]

[u]
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F (3, 1) =

[

12 4 24 4 6 12

]

[u]

A.3 The summary of coefficient matrix formulas

These are the coefficient matrix formulas of incompressible Navier-Stokes equa-

tions. Let start with mass matrix: M = ρ
∫

Ωe ψψ
TdΩ

M = [A][A]T
2A

360

































12 2 2 3 1 3

2 12 2 3 3 1

2 2 12 1 3 3

3 3 1 2 1 1

1 3 3 1 2 1

3 1 3 1 1 2

































(A.8)

Mass matrix Mp (Artificial compressibility term):Mp =
1
β

∫

Ωe φφ
TdΩ

Mp =
1

β

∫

Ae













L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3













dA =
1

β
[G] (A.9)

Diffusion matrix: K11 =
∫

Ωe µ
∂ψ

∂x

∂ψT

∂x
dΩ and K22 =

∫

Ωe µ
∂ψ

∂y

∂ψT

∂y
dΩ

K11 = µ[A][B][G][B]T [A]T (A.10)

K22 = µ[A][C][G][C]T [A]T (A.11)

Diffusion matrix: K12 =
∫

Ωe µ
∂ψ

∂x

∂ψT

∂y
dΩ and K21 =

∫

Ωe µ
∂ψ

∂y

∂ψT

∂x
dΩ

K12 =

∫

Ωe

µ
∂ψ

∂x

∂ψT

∂y
dΩ = µ[A][B][G][A]T [C]T (A.12)

K21 =

∫

Ωe

µ
∂ψ

∂y

∂ψT

∂x
dΩ = µ[A][C][G][B]T [A]T (A.13)
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Stiffness mixed matrix: Q1 =
∫

Ωe

∂ψ

∂x
φTdΩ and Q2 =

∫

Ωe

∂ψ

∂y
φTdΩ

Q1 = [A][B]

∫

Ωe

[H][H]TdΩ = [A][B][G] (A.14)

Q2 = [A][C]

∫

Ωe

[H][H]TdΩ = [A][C][G] (A.15)

Stabilized matrix:

Kse(u, v) =
∆t

2
[uu[A][B][G][B][A] + uv[A][B][G][C][A] + vu[A][C][G][B][A]]

+ [vv[A][C][G][C][A]]

(A.16)

Convective matrix: C(u, v) =
∫

Ωe ρ
(

ψ(ψTu)∂ψ
T

∂x
+ ψ(ψTv)∂ψ

T

∂y

)

dΩ

Cx(u) =
2A

5040
[A][A]T [A][B][F ] (A.17)

Cy(v) =
2A

5040
[A][A]T [A][C][F ] (A.18)

Where

[A]6x6 =

































1 0 0 −1 0 −1

0 1 0 −1 −1 0

0 0 1 0 −1 −1

0 0 0 4 0 0

0 0 0 0 4 0

0 0 0 0 0 4

































(A.19)

B =
1

2A

































2b1 0 0

0 2b2 0

0 0 2b3

b2 b1 0

0 b3 b2

b3 0 b1

































(A.20)
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C =
1

2A

































2c1 0 0

0 2c2 0

0 0 2c3

c2 c1 0

0 c3 c2

c3 0 c1

































(A.21)

G =
A

12













2 1 1

1 2 1

1 1 2













(A.22)

where element area:

A =
1

2
[x2(y3 − y1) + x1(y2 − y3) + x3(y1 − y2)] (A.23)

Element coefficient coordinates:




















































a1

a2

a3

b1

b2

b3

c1

c2

c3





















































=





















































(x2y3 − x3y2)

(x3y1 − x1y3)

(x1y2 − x2y1)

y2 − y3

y3 − y1

y1 − y2

x3 − x2

x1 − x3

x2 − x1





















































(A.24)

Matrix [F ] formula for convective term:

F =
2A

5040













F (1, 1) F (1, 2) F (1, 3) F (1, 4) F (1, 5) F (1, 6)

F (2, 1) F (2, 2) F (2, 3) F (2, 4) F (2, 5) F (2, 6)

F (3, 1) F (3, 2) F (3, 3) F (3, 4) F (3, 5) F (3, 6)













(A.25)
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where

F (1, 1) =

[

120 12 12 24 6 24

]

[u]

F (1, 2) =

[

12 24 14 12 6 4

]

[u]

F (1, 3) =

[

12 4 24 4 6 24

]

[u]

F (1, 4) =

[

24 12 4 12 4 6

]

[u]

F (1, 5) =

[

6 6 6 4 4 4

]

[u]

F (1, 6) =

[

120 12 12 24 6 24

]

[u]

F (2, 1) =

[

24 12 4 12 4 6

]

[u]

F (2, 2) =

[

12 120 12 24 24 6

]

[u]

F (2, 3) =

[

4 12 24 4 12 6

]

[u]

F (2, 4) =

[

12 12 4 12 6 4

]

[u]

F (2, 5) =

[

4 24 12 6 12 4

]

[u]

F (2, 6) =

[

6 6 6 4 4 4

]

[u]

F (3, 1) =

[

24 12 24 6 4 12

]

[u]

F (3, 1) =

[

4 24 12 6 12 4

]

[u]

F (3, 1) =

[

12 12 120 6 24 24

]

[u]

F (3, 1) =

[

6 6 6 4 4 4

]

[u]

F (3, 1) =

[

4 12 24 4 12 6

]

[u]

F (3, 1) =

[

12 4 24 4 6 12

]

[u]
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In this appendix, the standard Galerkin finite element programming codes for

the unsteady incompressible Navier-Stokes equations based on artificial compressibil-

ity method will be written here. The finite element programming codes are con-

structed by MATLAB program. These codes consist of one main program and three

sub functions as mentioned in chapter 3.

B.1 The Main programming codes

B.1.1 Input data

Incompressible Navier-Stokes equations program

NAME: Wanchai Jiajan, Aerospace Engineering

clc

clear all

Parameter input

Mxpoiv=625;

Mxpoip=169;

Mxele=288;

Mxfree=1;

Mxneq=2*Mxpoiv+Mxpoip; Number of equation in system

Npoiv=625; Number nodes of velocity components

Npoip=169; Number nodes of pressure

Nelem=288; Number of elements

Reynolds number (density*velocity*lenght/viscosity)

den=1;

vis=0.01;

Artificial parameter
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betha=8;

Matrix dimensions

Uvel=zeros(Mxpoiv,1);

Vvel=zeros(Mxpoiv,1);

Pres=zeros(Mxpoiv,1);

SysM=zeros(Mxneq,Mxneq); size of Mass matrix

SysK=zeros(Mxneq,Mxneq); size of stiffness matrix System

SysR=zeros(Mxneq,1);

SysN=zeros(Mxneq,1); size of force matrix system

Sol=zeros(Mxneq,1); size of result solution

Dsol=zeros(Mxneq,1); size of result solution

nodes=zeros(Mxele,6);

nodesf=zeros(Mxfree,4);

Ibcu=zeros(Mxpoiv,1); number of boundary for U

Ibcv=zeros(Mxpoiv,1); number of boundary for V

Ibcp=zeros(Mxpoiv,1); number of boundary for P

deltt=0.1; time step size for transient analysis

stime=0.0; initial time

ftime=0.0005; termination time

ntime=fix((ftime-stime)/deltt); number of time increment

Read input file (element connectivity)

fid = fopen(’Mesh288elements.txt’, ’r’);

data1 = textscan (fid, ’

nodes=[data1{1} data1{2} data1{3} data1{4} data1{5} data1{6} ];

Read input file ( Node co-ordinates)

fid = fopen(’Meshnodes625.txt’, ’r’);
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data2 = textscan(fid, ’

X1=data2{1} ;

Y1=data2{2} ;

gcoord=[X1 Y1];

Plot mesh

figure(1)

clf

plot(X1,Y1,’.r’,’MarkerSize’,10)

hold on

tri=nodes;

triplot(tri,X1,Y1);

Boundary condition

fid = fopen(’625BC.txt’, ’r’);

data1 = textscan(fid, ’

Ibcu=data1{1} ;

Ibcv=data1{2} ;

Ibcp=data1{3} ;

Uvel=data1{4} ;

Vvel=data1{5} ;

Pres=data1{6} ;

B.1.2 Loop for number of equations

Neq=2*Npoiv+Npoip;

Loop for initilize force vector

for i=1:Neq

SysR(i)=0;
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end

Loop for initilize stiffness matrix

for i=1:Neq

for j=1:Neq

SysK(i,j)=0;

end

end

Loop for initilize mass matrix

for i=1:Neq

for j=1:Neq

SysM(i,j)=0;

end

end

B.1.3 Mass matrix construction

[SysM]=TRInew1(Npoiv,Nelem,den,vis,gcoord,nodes,SysM);

B.1.4 Initial guess value input

for i=1:Npoiv loop for velocity components

Sol(i)=0.0356;

Sol(i+Npoiv)=0.00032272;

end

for i=1:Npoip loop for pressure

Sol(i+Npoiv+Npoiv)=0.998;

end
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B.1.5 Numerical programming codes ”AC Backward Newton-Raphson Method”

SysK=SysM+deltt*SysK;

sum=zeros(ntime,1);

check=zeros(ntime,1);

for it=1:ntime iteration in each time plane

for iter=1:100 number of iterations

Newton-Raphson Non-linear matrix construction

[SysK,SysR]=TRI(Npoiv,Npoip,Nelem,Nfree,Neq,den,vis,

gcoord,nodes,SysK,SysR,Sol);

Backward different scheme

SysN=deltt*SysR+SysM*Sol;

apply boundary condition call ”ApplyBC55”

[SysK, SysN]=ApplyBC55(Npoiv,Npoip,Neq,Ibcu,Ibcv,Ibcp,

SysK,SysN,Uvel,Vvel,Pres);

Solve equations

Sol=inv(SysK)*SysN

iteration checking

for i=1:Npoip

Psol(i,it)=Sol(2*Npoiv+i);

Psol(i,it+1)=Sol(2*Npoiv+i);

end

Iteration=iter

end

Ntime=it

end

Convergence Checking
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for it=1:ntime

for i=1:Npoip

sum(it)=sum(it)+(Psol(i,it+1)-Psol(i,it))/deltt;

check(it)=abs(1/betha*sum(it));

end

Check(it,1)=check(it);

if(abs(check(it))¡1e-6)

fprintf(’Pressure converged in iterations’);

break;

end

Ntime=it;

end

B.1.6 Output

plot the history of convergence

figure(2)

time=0:deltt:Ntime*deltt;

semilogy(time,(Check(:,1)),’-’);

xlabel(’Time’)

ylabel(’Pressure convergence’)

title(’Convergence history’)

Print output

for i=1:Npoiv

Uvelocity(i)=Sol(i);

Vvelocity(i)=Sol(Npoiv+i);

end
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for i=1:Npoip

Pressure(i)=Sol(i+2*Npoiv);

end

Velocity=[Uvelocity’ Vvelocity’]

Pressure=Pressure’

plot velocity vector

x=X1;

y=Y1;

scale=2;

u=Uvelocity’;

v=Vvelocity’;

figure(3)

quiver ( x, y, u, v, scale, ’b’ );

axis equal

hold on

k = convhull ( x, y );

plot ( x(k), y(k), ’r’ );

hold on

xmin = min ( x );

xmax = max ( x );

ymin = min ( y );

ymax = max ( y );

delta = 0.05 * max ( xmax - xmin, ymax - ymin );

plot ( [ xmin - delta,xmax + delta,xmax + delta,xmin - delta, xmin - delta ],

[ ymin - delta, ymin - delta,ymax + delta,ymax + delta,ymin - delta ],

’w’ );
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hold off

B.2 Sub programming ”Functions”

B.2.1 Mass matrix Coefficient Function ”TRInew1”

function [SysM]=TRInew1(Npoiv,Nelem,den,vis,gcoord,nodes,SysM)

A=zeros(6,6);B=zeros(6,3);C=zeros(6,3);G=zeros(3,3);

M11=zeros(6,6);M22=zeros(6,6);M33=zeros(3,3);Mele=zeros(15,15);

Rele=zeros(15,1);

Set up matrix [A]

for i=1:6

for j=1:6

A(i,j)=0;

end

end

A(1,1)=1;A(2,2)=1;A(3,3)=1;A(4,4)=4;A(5,5)=4;

A(6,6)=4;A(1,5)=-1;A(1,6)=-1;A(2,4)=-1;A(2,6)=-1;

A(3,4)=-1;A(3,5)=-1;

betha=8;

Anew=vis/den; kinematic viscosity

for iel=1:Nelem loop for the total number of elements

II=nodes(iel,1);

JJ=nodes(iel,2);

KK=nodes(iel,3);

LL=nodes(iel,4);

MM=nodes(iel,5);
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NN=nodes(iel,6);

x1=gcoord(II,1); y1=gcoord(II,2);

x2=gcoord(JJ,1); y2=gcoord(JJ,2);

x3=gcoord(KK,1); y3=gcoord(KK,2);

Area=0.5*((x2*y3)+(x1*y2)+(x3*y1)-(x2*y1)-(x1*y3)-(x3*y2));

Area2=2*Area;

b1=(y2-y3)/Area2;

b2=(y3-y1)/Area2;

b3=(y1-y2)/Area2;

c1=(x3-x2)/Area2;

c2=(x1-x3)/Area2;

c3=(x2-x1)/Area2;

Compute matrix [B] [C] and [G]

for i=1:6

for j=1:3

B(i,j)=0;

C(i,j)=0;

end end

B(1,1)=2*b1;B(5,1)=b3;B(6,1)=b2;B(2,2)=2*b2;

B(4,2)=b3; B(6,2)=b1; B(3,3)=2*b3; B(4,3)=b2; B(5,3)=b1;

C(1,1)=2*c1; C(2,2)=2*c2; C(3,3)=2*c3; C(5,1)=c3;

C(5,3)=c1; C(6,1)=c2; C(6,2)=c1; C(4,2)=c3; C(4,3)=c2;

Fac=Area/12;

Fac2=2*Fac;

G(1,1)=Fac2; G(2,2)=Fac2; G(3,3)=Fac2; G(1,2)=Fac; G(1,3)=Fac;

G(2,1)=Fac; G(2,3)=Fac; G(3,1)=Fac; G(3,2)=Fac;
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Set up mass matrix

D(1,1)=12; D(2,2)=12; D(3,3)=12; D(4,4)=2; D(5,5)=2; D(6,6)=2;

D(1,2)=2; D(1,3)=2; D(1,4)=1; D(1,5)=3; D(1,6)=3; D(2,3)=2; D(2,4)=3;

D(2,5)=1; D(2,6)=3; D(3,4)=3; D(3,5)=3; D(3,6)=1; D(4,5)=1;

D(4,6)=1; D(5,6)=1;

for i=1:6

for j=1:6

D(j,i)=D(i,j);

end

end

M11=2*Area/360*den*A*D*A’;

M22=2*Area/360*den*A*D*A’;

M33=G/betha;

Then the matrix (15x15) on LHS is

for i=1:15

for j=1:15

Mele(i,j)=0;

end

end

Final local mass matrix

for i=1:6

for j=1:6

Mele(i,j)=M11(i,j);

Mele(i+6,j+6)=M22(i,j);

end

end
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for i=1:3

for j=1:3

Mele(i+12,j+12)=M33(i,j);

end

end

Assembly Global mass matrix

[SysM]=ASSEMBLEnew1(iel,nodes,Mele,SysM,Npoiv);

end

B.2.2 Assembly to Global mass matrix function ”ASSEMBLEnew1”

function [SysM]=ASSEMBLEnew1(iel,nodes,Mele,SysM,Npoiv)

Contribution of coeficients assocoated with u,v velocities

for i=1:6

for j=1:6

II=nodes(iel,i);

JJ=nodes(iel,j);

k=i+6;

l=j+6;

KK=Npoiv+II;

LL=Npoiv+JJ;

SysM(II,JJ)=SysM(II,JJ)+Mele(i,j);

SysM(II,LL)=SysM(II,LL)+Mele(i,l);

SysM(KK,JJ)=SysM(KK,JJ)+Mele(k,j);

SysM(KK,LL)=SysM(KK,LL)+Mele(k,l);

end

end
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Contribution of coeficients assocoated with P pressure

for i=1:3

for j=1:3

II=nodes(iel,i);

JJ=nodes(iel,j);

k=i+12;

l=j+12;

KK=2*Npoiv+II;

LL=2*Npoiv+JJ;

SysM(II,LL)=SysM(II,LL)+Mele(i,l);

SysM(KK,LL)=SysM(KK,LL)+Mele(k,l);

end

end

B.2.3 Local stiffness coefficient matrix function ”TRI”

function [SysK,SysR]=TRI(Npoiv,Npoip,Nelem,Neq,den,vis,

gcoord,SysK,SysR,Sol);

A=zeros(6,6);B=zeros(6,3);C=zeros(6,3);G=zeros(3,3);F=zeros(6,6,3);

Uele=zeros(6,1);Vele=zeros(6,1);Pele=zeros(3,1);

Sxx=zeros(6,6);Sxy=zeros(6,6);Syx=zeros(6,6);Syy=zeros(6,6);

Qx=zeros(3,6);Qy=zeros(3,6);Qxt=zeros(6,3);Qyt=zeros(6,3);

ABGXUG=zeros(6,6);AGBXUG=zeros(6,6);AGBYVG=zeros(6,6);

ABGYVG=zeros(6,6);ABGXVG=zeros(6,6);ABGYUG=zeros(6,6);

Gxx=zeros(6,6);Gyy=zeros(6,6);Alx=zeros(6,6);Aly=zeros(6,6);

Akele=zeros(15,15);Rele=zeros(15,1);FX=zeros(6,1);FY=zeros(6,1);

FI=zeros(3,1);
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Set up matrix [A]

for i=1:6

for j=1:6

A(i,j)=0;

end

end

A(1,1)=1; A(2,2)=1; A(3,3)=1; A(4,4)=4; A(5,5)=4;

A(6,6)=4; A(1,5)=-1; A(1,6)=-1; A(2,4)=-1; A(2,6)=-1;

A(3,4)=-1; A(3,5)=-1;

Anew=vis/den;

for iel=1:Nelem loop for the total number of elements

II=nodes(iel,1);

JJ=nodes(iel,2);

KK=nodes(iel,3);

LL=nodes(iel,4);

MM=nodes(iel,5);

NN=nodes(iel,6);

x1=gcoord(II,1); y1=gcoord(II,2);

x2=gcoord(JJ,1); y2=gcoord(JJ,2);

x3=gcoord(KK,1); y3=gcoord(KK,2);

Area=0.5*((x2*y3)+(x1*y2)+(x3*y1)-(x2*y1)-(x1*y3)-(x3*y2));

Area2=2*Area;

b1=(y2-y3)/Area2;

b2=(y3-y1)/Area2;

b3=(y1-y2)/Area2;

c1=(x3-x2)/Area2;
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c2=(x1-x3)/Area2;

c3=(x2-x1)/Area2;

Compute matrix [B] [C] and [G]

for i=1:6

for j=1:3

B(i,j)=0;

C(i,j)=0;

end

end

B(1,1)=2*b1; B(5,1)=b3; B(6,1)=b2; B(2,2)=2*b2;

B(4,2)=b3; B(6,2)=b1; B(3,3)=2*b3; B(4,3)=b2;

B(5,3)=b1; C(1,1)=2*c1; C(2,2)=2*c2; C(3,3)=2*c3;

C(5,1)=c3; C(5,3)=c1; C(6,1)=c2; C(6,2)=c1;

C(4,2)=c3; C(4,3)=c2;

Set up [G] matrix

Fac=Area/12;

Fac2=2*Fac;

G(1,1)=Fac2; G(2,2)=Fac2; G(3,3)=Fac2; G(1,2)=Fac; G(1,3)=Fac;

G(2,1)=Fac; G(2,3)=Fac; G(3,1)=Fac; G(3,2)=Fac;

Set up matrix [F]

Factor=2*Area/5040;

F4=Factor*4;

F6=Factor*6; F12=Factor*12; F24=Factor*24; F120=Factor*120;

F(1,1,1)=F120; F(1,2,1)=F12; F(1,3,1)=F12; F(1,4,1)=F6;

F(1,5,1)=F24; F(1,6,1)=F24; F(2,2,1)=F24; F(2,3,1)=F4;

F(2,4,1)=F6; F(2,5,1)=F4; F(2,6,1)=F12; F(3,3,1)=F24;
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F(3,4,1)=F6; F(3,5,1)=F12; F(3,6,1)=F4; F(4,4,1)=F4;

F(4,5,1)=F4; F(4,6,1)=F4; F(5,5,1)=F12; F(5,6,1)=F6; F(6,6,1)=F12;

for i=1:6

for j=1:6

F(j,i,1)=F(i,j,1);

end

end

F(1,1,2)=F24; F(1,2,2)=F12; F(1,3,2)=F4; F(1,4,2)=F4;

F(1,5,2)=F6; F(1,6,2)=F12; F(2,2,2)=F120; F(2,3,2)=F12;

F(2,4,2)=F24; F(2,5,2)=F6; F(2,6,2)=F24; F(3,3,2)=F24;

F(3,4,2)=F12; F(3,5,2)=F6; F(3,6,2)=F4; F(4,4,2)=F12;

F(4,5,2)=F4; F(4,6,2)=F6; F(5,5,2)=F4; F(5,6,2)=F4; F(6,6,2)=F12;

for i=1:6

for j=1:6

F(j,i,2)=F(i,j,2);

end

end

F(1,1,3)=F24; F(1,2,3)=F4; F(1,3,3)=F12; F(1,4,3)=F4;

F(1,5,3)=F12; F(1,6,3)=F6; F(2,2,3)=F24; F(2,3,3)=F12;

F(2,4,3)=F12; F(2,5,3)=F4; F(2,6,3)=F6; F(3,3,3)=F120;

F(3,4,3)=F24; F(3,5,3)=F24; F(3,6,3)=F6; F(4,4,3)=F12;

F(4,5,3)=F6; F(4,6,3)=F4; F(5,5,3)=F12; F(5,6,3)=F4; F(6,6,3)=F4;

for i=1:6

for j=1:6

F(j,i,3)=F(i,j,3);

end
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end

Extract element nodal u v and p

Uele(1)=Sol(II);

Uele(2)=Sol(JJ);

Uele(3)=Sol(KK);

Uele(4)=Sol(LL);

Uele(5)=Sol(MM);

Uele(6)=Sol(NN);

Vele(1)=Sol(II+Npoiv);

Vele(2)=Sol(JJ+Npoiv);

Vele(3)=Sol(KK+Npoiv);

Vele(4)=Sol(LL+Npoiv);

Vele(5)=Sol(MM+Npoiv);

Vele(6)=Sol(NN+Npoiv);

Pele(1)=Sol(II+Npoiv+Npoiv);

Pele(2)=Sol(JJ+Npoiv+Npoiv);

Pele(3)=Sol(KK+Npoiv+Npoiv);

Compute [sxx] [sxy] [syx] [syy] matrices

for IA=1:6

for IB=1:6

K11=0;

K22=0;

K12=0;

K21=0;

for i=1:6

for j=1:3
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for k=1:3

for l=1:6

K11=K11+A(IA,i)*B(i,j)*A(IB,l)*B(l,k)*G(j,k);

K22=K22+A(IA,i)*C(i,j)*A(IB,l)*C(l,k)*G(j,k);

K12=K12+A(IA,i)*C(i,j)*A(IB,l)*B(l,k)*G(j,k);

K21=K21+A(IA,i)*B(i,j)*A(IB,l)*C(l,k)*G(j,k);

end

end

end

end

Sxx(IA,IB)=2*Anew*K11+Anew*K22;

Sxy(IA,IB)=Anew*K12;

Syx(IA,IB)=Anew*K21;

Syy(IA,IB)=Anew*K11+2*Anew*K22;

end

end

Compute stabilize term matrices

for IA=1:6

for IB=1:6

Ks11uu=0;

Ks112uu=0;

Ks22vv=0;

Ks222vv=0;

Ks222vu=0;

Ks222uv=0;

Ks12uv=0;
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Ks12uu=0;

Ks12vu=0;

Ks12vv=0;

Ks21vu=0;

Ks21uv=0;

Ks21uu=0;

Ks21vv=0;

for i=1:6

for j=1:3

for k=1:3

for l=1:6

Ks11uu=Ks11uu+A(IA,i)*B(i,j)*A(IB,l)*B(l,k)*G(j,k)*Uele(l)*Uele(i);

Ks112uu=Ks112uu+A(IA,i)*B(l,k)*A(IB,l)*B(i,j)*G(j,k)*2*Uele(l)*Uele(i);

Ks22vv=Ks22vv+A(IA,i)*C(i,j)*A(IB,l)*C(l,k)*G(j,k)*Vele(l)*Vele(i);

Ks222vv=Ks222vv+A(IA,i)*C(l,k)*A(IB,l)*C(i,j)*G(j,k)*2*Vele(l)*Vele(i);

Ks12uv=Ks12uv+A(IA,i)*C(i,j)*A(IB,l)*B(l,k)*G(j,k)*Uele(l)*Vele(i);

Ks12vu=Ks12vu+A(IA,i)*C(l,k)*A(IB,l)*B(i,j)*G(j,k)*Vele(l)*Uele(i);

Ks21vu=Ks21vu+A(IA,i)*B(i,j)*A(IB,l)*C(l,k)*G(j,k)*Vele(l)*Uele(i);

Ks222vu=Ks222vu+A(IA,i)*C(i,j)*A(IB,l)*C(l,k)*G(j,k)*2*Vele(l)*Uele(i);

Ks222uv=Ks222uv+A(IA,i)*C(i,j)*A(IB,l)*C(l,k)*G(j,k)*2*Uele(l)*Vele(i);

Ks12uu=Ks12uu+A(IA,i)*C(i,j)*A(IB,l)*B(l,k)*G(j,k)*Uele(l)*Uele(i);

Ks12vv=Ks12vv+A(IA,i)*C(i,j)*A(IB,l)*B(l,k)*G(j,k)*Vele(l)*Vele(i);

Ks21uv=Ks21uv+A(IA,i)*B(i,j)*A(IB,l)*C(l,k)*G(j,k)*Uele(l)*Vele(i);

Ks21uu=Ks21uu+A(IA,i)*B(i,j)*A(IB,l)*C(l,k)*G(j,k)*Uele(l)*Uele(i);

Ks21vv=Ks21vv+A(IA,i)*B(i,j)*A(IB,l)*C(l,k)*G(j,k)*Uele(l)*Uele(i);

end
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end

end

end

KS11uu(IA,IB)=Ks11uu;

KS112uu(IA,IB)=Ks112uu;

KS22vv(IA,IB)=Ks22vv;

KS222vv(IA,IB)=Ks222vv;

KS222vu(IA,IB)=Ks222vu;

KS222uv(IA,IB)=Ks222uv;

KS12uv(IA,IB)=Ks12uv;

KS12uu(IA,IB)=Ks12uu;

KS12vu(IA,IB)=Ks12vu;

KS12vv(IA,IB)=Ks12vv;

KS21vu(IA,IB)=Ks21vu;

KS21uv(IA,IB)=Ks21uv;

KS21uu(IA,IB)=Ks21uu;

KS21vv(IA,IB)=Ks21vv;

end

end

for i=1:6

for j=1:6

Kse1(i,j)=deltt/2*(KS11uu(i,j)+KS112uu(i,j)+KS22vv(i,j)+

KS12uv(i,j)+KS12vu(i,j) +KS21vu(i,j)+KS21vu(i,j));

Kse2(i,j)=deltt/2*(KS11uu(i,j)+KS22vv(i,j)+

KS12uv(i,j)+KS12uv(i,j)+KS21vu(i,j)+KS21uv(i,j)+KS222vv(i,j));

Kse3(i,j)=deltt/2*(KS12uu(i,j)+KS21uu(i,j)+KS222vu(i,j));
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Kse4(i,j)=deltt/2*(KS12vv(i,j)+KS21vv(i,j)+KS222uv(i,j));

end

end

Compute [Q1] and [Q2]

for IA=1:3

for IB=1:6

Cx=0;

Cy=0;

for i=1:6

for j=1:3

Cx=Cx+A(IB,i)*B(i,j)*G(j,IA);

Cy=Cy+A(IB,i)*C(i,j)*G(j,IA);

end

end

Qx(IA,IB)=Cx/den;

Qy(IA,IB)=Cy/den;

end end

Then the corresponding two matrices on the upper right

for IA=1:3

for IB=1:6

Qxt(IB,IA)= -Qx(IA,IB);

Qyt(IB,IA)= -Qy(IA,IB);

end

end

Compute all matrices associated with the inertia term

for IA=1:6
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for IB=1:6

Cabgxug=0;

Cagbxug=0;

Cagbyvg=0;

Cabgyvg=0;

Cabgxvg=0;

Cabgyug=0;

for i=1:6

for j=1:6

for k=1:6

for l=1:6

for m=1:3

Cabgxug=Cabgxug+A(IA,i)*A(IB,j)*A(k,l)*B(l,m)*F(i,j,m)*Uele(k);

Cagbxug=Cagbxug+A(IA,i)*A(k,j)*A(IB,l)*B(l,m)*F(i,j,m)*Uele(k);

Cagbyvg=Cagbyvg+A(IA,i)*A(k,j)*A(IB,l)*C(l,m)*F(i,j,m)*Vele(k);

Cabgyvg=Cabgyvg+A(IA,i)*A(IB,j)*A(k,l)*C(l,m)*F(i,j,m)*Vele(k);

Cabgxvg=Cabgxvg+A(IA,i)*A(IB,j)*A(k,l)*B(l,m)*F(i,j,m)*Vele(k);

Cabgyug=Cabgyug+A(IA,i)*A(IB,j)*A(k,l)*C(l,m)*F(i,j,m)*Uele(k);

end

end

end

end

end

ABGXUG(IA,IB)=Cabgxug;

AGBXUG(IA,IB)=Cagbxug;

AGBYVG(IA,IB)=Cagbyvg;
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ABGYVG(IA,IB)=Cabgyvg;

ABGXVG(IA,IB)=Cabgxvg;

ABGYUG(IA,IB)=Cabgyug;

end

end

Take in system equation

for i=1:6

for j=1:6

Gxx(i,j)=ABGXUG(i,j)+AGBXUG(i,j)+AGBYVG(i,j)+Sxx(i,j)+Kse1(i,j);

Gyy(i,j)=ABGYVG(i,j)+AGBYVG(i,j)+AGBXUG(i,j)+Syy(i,j)+Kse2(i,j);

Alx(i,j)=ABGXVG(i,j)+Sxy(i,j)+Kse3(i,j);

Aly(i,j)=ABGYUG(i,j)+Syx(i,j)+Kse4(i,j);

end

end

Then the matrix (15x15) on LHS is

for i=1:15

for j=1:15

Akele(i,j)=0;

end

end

for i=1:6

for j=1:6

Akele(i,j)=Gxx(i,j);

Akele(i+6,j+6)=Gyy(i,j);

Akele(i,j+6)=Aly(i,j);

Akele(i+6,j)=Alx(i,j);
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end

for j=1:3

Akele(i,j+12)=Qxt(i,j);

Akele(i+6,j+12)=Qyt(i,j);

end

end

for i=1:3

for j=1:6

Akele(i+12,j)=Qx(i,j);

Akele(i+12,j+6)=Qy(i,j);

end

end

Begin computing the residuals on RHS of element equation

for i=1:6

Term1=0;

Term2=0;

Term3=0;

Term4=0;

Term5=0;

Term6=0;

Term7=0;

Term8=0;

Term9=0;

for j=1:6

Term1=Term1+ABGXUG(i,j)*Uele(j);

Term2=Term2+ABGYUG(i,j)*Vele(j);
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Term4=Term4+Sxx(i,j)*Uele(j);

Term5=Term5+Sxy(i,j)*Vele(j);

Term6=Term6+KS11uu(i,j)*Uele(j);

Term7=Term7+KS12uv(i,j)*Uele(j);

Term8=Term8+KS21vu(i,j)*Uele(j);

Term9=Term9+KS22vv(i,j)*Uele(j);

end

for j=1:3

Term3=Term3+Qxt(i,j)*Pele(j);

end

FX(i)=Term1+Term2+Term3+Term4+Term5+

deltt/2*(Term6+Term7+Term8+Term9);

end

for i=1:6

Term1=0;

Term2=0;

Term3=0;

Term4=0;

Term5=0;

Term6=0;

Term7=0;

Term8=0;

Term9=0;

for j=1:6

Term1=Term1+ABGXVG(i,j)*Uele(j);

Term2=Term2+ABGYVG(i,j)*Vele(j);
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Term4=Term4+Syx(i,j)*Uele(j);

Term5=Term5+Syy(i,j)*Vele(j);

Term6=Term6+KS11uu(i,j)*Vele(j);

Term7=Term7+KS12uv(i,j)*Vele(j);

Term8=Term8+KS21vu(i,j)*Vele(j);

Term9=Term9+KS22vv(i,j)*Vele(j);

end

for j=1:3

Term3=Term3+Qyt(i,j)*Pele(j);

end

FY(i)=Term1+Term2+Term3+Term4+Term5+

deltt/2*(Term6+Term7+Term8+Term9);

end

for i=1:3

Term1=0;

Term2=0;

for j=1:6

Term1=Term1+Qx(i,j)*Uele(j);

Term2=Term2+Qy(i,j)*Vele(j);

end

FI(i)=Term1+Term2;

end

Thus the residual vector on RHS of element equation is

for i=1:6

Rele(i)=-FX(i);

Rele(i+6)=-FY(i);
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end

for i=1:3

Rele(i+12)=-FI(i);

end

[SysK SysR]=ASSEMBLE(iel,nodes,Akele,Rele,SysK,SysR,

Npoiv,Neq,Nelem);

end

B.2.4 Assembly to Global stiffness matrix function ”ASSEMBLE”

function [SysK SysR]=ASSEMBLE(iel,nodes,Akele,Rele,

SysK,SysR,Npoiv,Neq,Nelem)

Contribution of coeficients assocoated with U, and V velocity

for i=1:6

for j=1:6

II=nodes(iel,i);

JJ=nodes(iel,j);

k=i+6;

l=j+6;

KK=Npoiv+II;

LL=Npoiv+JJ;

SysK(II,JJ)=SysK(II,JJ)+Akele(i,j);

SysK(II,LL)=SysK(II,LL)+Akele(i,l);

SysK(KK,JJ)=SysK(KK,JJ)+Akele(k,j);

SysK(KK,LL)=SysK(KK,LL)+Akele(k,l);

end

end
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Contribution of coeficients assocoated with P pressure

for i=1:6

for j=1:3

II=nodes(iel,i);

JJ=nodes(iel,j);

k=i+6;

l=j+12;

KK=Npoiv+II;

LL=2*Npoiv+JJ;

SysK(II,LL)=SysK(II,LL)+Akele(i,l);

SysK(KK,LL)=SysK(KK,LL)+Akele(k,l);

SysK(LL,II)=SysK(LL,II)+Akele(l,i);

SysK(LL,KK)=SysK(LL,KK)+Akele(l,k);

end

end

Assembly load vector system

Contribution of value with U, and V velocity

for i=1:6

II=nodes(iel,i);

k=i+6;

KK=Npoiv+II;

SysR(II)=SysR(II)+Rele(i);

SysR(KK)=SysR(KK)+Rele(k);

end

Contribution of value with P pressure

for i=1:3
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II=nodes(iel,i);

k=i+12;

KK=2*Npoiv+II;

SysR(KK)=SysR(KK)+Rele(k);

end

Apply boundary conditions function ”ApplyBC55”

function [SysM, SysN]=ApplyBC55(Npoiv,Npoip,Neq,Ibcu,SysM,

SysN,Uvel,Vvel,Pres);

Apply boundary condition for nodal U-velocity

IEQ1=1;

IEQ2=Npoiv;

for IEQ=IEQ1:IEQ2

IEQU=IEQ;

if(Ibcu(IEQU) =0)

for IR=1:Neq

if(IR==IEQ)

SysN(IR)=SysN(IR)-SysM(IR,IEQ)*Uvel(IEQU);

SysM(IR,IEQ)=0;

end

end

for IC=1:Neq

SysM(IEQ,IC)=0;

end

SysM(IEQ,IEQ)=1;

SysN(IEQ)=Uvel(IEQU);

end
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end

Apply boundary condition for nodal V-velocity

IEQ1=Npoiv+1;

IEQ2=2*Npoiv;

for IEQ=IEQ1:IEQ2

IEQV=IEQ-Npoiv;

if(Ibcv(IEQV) =0)

for IR=1:Neq

if(IR==IEQ)

SysN(IR)=SysN(IR)-SysM(IR,IEQ)*Vvel(IEQV);

SysM(IR,IEQ)=0;

end

end

for IC=1:Neq

SysM(IEQ,IC)=0;

end

SysM(IEQ,IEQ)=1;

SysN(IEQ)=Vvel(IEQV);

end

end

Apply boundary condition for nodal P-pressure

IEQ1=2*Npoiv+1;

IEQ2=Neq;

for IEQ=IEQ1:IEQ2

IEQP=IEQ-2*Npoiv;

if(Ibcp(IEQP) =0)
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for IR=1:Neq

if(IR==IEQ)

SysN(IR)=SysN(IR)-SysM(IR,IEQ)*Pres(IEQP);

SysM(IR,IEQ)=0;

end

end

for IC=1:Neq

SysM(IEQ,IC)=0;

end

SysM(IEQ,IEQ)=1;

SysN(IEQ)=Pres(IEQP);

end

end
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