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ABSTRACT

WAVELET BASED ARRAY COMPARATIVE GENOMIC HYBRIDIZATION

AND MASS SPECTROMETRY DATA ANALYSIS

Nha Nguyen, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Soontorn Oraintara and Heng Huang

As a highly efficient technique, array-based comparative genomic hybridization

(aCGH) methods allow the simultaneous measurement of genomic DNA copy num-

ber at hundreds or thousands of loci and the reliable detection of local one-copy-level

variations. The identification of these DNA copy number changes provides insights to

facilitate both the basic understanding of cancer and its diagnosis. In order to effec-

tively analyze aCGH data, various techniques have been proposed to help researchers

smooth the DNA copy number data and subsequently to quantify the alterations. In

this dissertation, many wavelet based methods are proposed to smooth and segment

the aCGH data that is the key step to detect DNA copy number alterations. The pro-

posed smooth methods are combinations of shift-invariant wavelet transforms (such

as dual tree complex wavelet transform and stationary wavelet packet transform)

and bivariate shrinkage estimators. The proposed segmentation method includes two

main steps such as heavy-tailed noise suppression and derivative wavelet scalogram

based segmentation. The proposed method is performed on both synthetic and real

v



datasets. The experimental results show that proposed method outperforms the pre-

vious approaches.

Mass Spectrometry (MS) is increasingly being used to discover diseases related

proteomic patterns. The smooth and peak detection steps are important steps in the

typical analysis of MS data. Recently, many new algorithms have been proposed to

increase true position rate with low false discovery rate in peak detection. In this

dissertation, two peak detection methods are proposed. The first proposed method is

GaborEnvelop method which is a combination of Gabor filters and envelope analysis.

The second proposed method is GDWavelet method which is used to process mass

spectrometry based on Gaussian derivative wavelet. Both the proposed methods can

detect more true peaks with a lower false discovery rate than previous methods. The

proposed methods have been performed on the real SELDI-TOF spectrum with known

polypeptide positions and on two synthetic data with Gaussian and real noise. The

experimental results demonstrate the proposed methods outperform other common

used methods in the Receiver Operating Characteristic (ROC) curve.
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CHAPTER 1

INTRODUCTION

1.1 Array-based Comparative Genomic Hybridization Data Processing

As a highly efficient technique, array-based comparative genomic hybridiza-

tion (aCGH) methods allow the simultaneous measurement of genomic DNA copy

number at hundreds or thousands of loci and the reliable detection of local one-

copy-level variations. The identification of these DNA copy number changes provides

insights to facilitate both the basic understanding of cancer and its diagnosis. In

order to effectively analyze aCGH data, various techniques have been proposed to

help researchers smooth the DNA copy number data and subsequently to quantify

the alterations. In chapter 2, with Gaussian noise assumption, a framework using

the stationary wavelet packet transform with new adaptive bivariate shrinkage func-

tions is proposed to smooth the aCGH data that is the key step to detect DNA copy

number alterations.

Current array comparative genomic hybridization (array CGH) data analysis

methods and evaluation data model assumed that probability density function (PDF)

of noise in the array CGH data is a Gaussian distribution. However, in practice this

noise distribution is peaky and heavy-tailed. Therefore a Gaussian PDF is not ade-

quate to behaviors of noise in the array CGH data and can introduce wrong detections

of chromosomal aberrations and lead misunderstanding on disease pathogenesis. A

more accurate and sufficient model of noise in the array CGH data is necessary and

beneficial to detection of DNA copy number variations. In chapter 3, first, the real

array CGH data in many platforms is analyzed. Distribution of noise in the array

1
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CGH data is fitted very well by generalized Gaussian distribution (GGD). Next, a

novel array CGH analysis method combining the advantages of both smoothing and

segmentation approaches is proposed. The proposed method, DWSS, uses generalized

Gaussian bivariate shrinkage function and one-direction derivative wavelet scalogram

in generalized Gaussian noise. In smoothing step, with the new generalized Gaus-

sian noise model, the heavy-tailed noise suppression algorithm is derived in stationary

wavelet domain. In segmentation step, the 1-D Gaussian derivative wavelet scalogram

is applied to suppress heavy-tailed noise and obtain the final segmentations.

Many simulated array CGH data with different noises (such as Gaussian noise,

GGD noise and real noise) and many real array CGH data are used in experiments.

New fast method performs better than other most commonly used methods, in terms

of both Root Mean Squared Errors (RMSEs) and Receiver Operating Characteristic

(ROC) curves.

1.2 Mass Spectrometry Data Processing

Mass Spectrometry (MS) is increasingly being used to discover diseases related

proteomic patterns. Peaks are the key information in Mass Spectrometry (MS) which

has been increasingly used to discover diseases related proteomic patterns and im-

prove biological studies. Peak detection is an essential step for MS based proteomic

data analysis. Recently, several peak detection algorithms have been proposed with

good performance. However, in these algorithms, there are three major deficiencies:

1) noise is removed as much as possible, but the true signal could also be removed;

2) baseline removal step may get rid of true peaks and create new false peaks; 3) in

peak quantification step, a threshold of signal-to-noise ratio (SNR) is usually used to

remove false peaks. However, noise estimations in SNR calculation are often inaccu-
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rate in time or wavelet domain. In this dissertation, serveral proposed MS processing

methods will be introduced in chapter 4 and chapter 5.

In chapter 4, two novel methods (GaborLocal and GaborEnvelop) are proposed.

Both of them can detect more true peaks with a lower false discovery rate than

previous methods. The Gaussian local maxima is employed to detect peaks, because

it is robust to noise in signals. A new approach, peak rank, is defined at the first

time to identify peaks instead of using the signal-to-noise ratio. Meantime the Gabor

filter is used to amplify important information and compress noise in the raw MS

signal. Moreover, the envelope analysis is also proposed to improve the quantification

of peaks and remove more false peaks.

In chapter 5, new algorithm is proposed to solve these problems and improve MS

peak detection. First, a bivariate shrinkage estimator is used in stationary wavelet

domain to avoid removing true peaks in denoising step. Second, without baseline

removal, zero-crossing lines in multi-scale of derivative Gaussian wavelets are investi-

gated with using mixture of Gaussian to estimate discriminative parameters of peaks.

Third, in quantification step, a novel approach using frequency, standard deviation,

height, and rank of peaks is used to detect both high and small energy peaks with

robustness to noise. A novel Gaussian Derivative Wavelet (GDWavelet) method is

proposed to more accurately detect true peaks with a lower false discovery rate than

existing methods.

The proposed methods have been performed on the real Surface-Enhanced Laser

Desorption/Ionization Time-Of-Flight (SELDI-TOF) spectrum with known polypep-

tide positions and on two synthetic data with Gaussian and real noise. All experi-

mental results demonstrate the proposed method outperforms other commonly used

methods. The standard receiver operating characteristic (ROC) curves are used to

evaluate the experimental results.



CHAPTER 2

WAVELET BASED ARRAY COMPARATIVE GENOMIC HYBRIDIZATION
DATA SMOOTHING

2.1 Array Comparative Genomic Hybridization

2.1.1 Introduction

The enormous recent progress has been achieved in understanding cancer at a

molecular level, but the precise details are still elusive for many types of carcinomas.

Recently the lack of large-scale genome-wide mutation or DNA copy number data

has been addressed by SNP arrays and array Comparative Genomic Hybridization

(aCGH) [2] that reveals important molecular features of human genetics and disease.

The research achievement in the genome-wide identification and localization of genetic

alterations by high resolution aCGH technologies have furthered author’s understand-

ing of gene mutations, oncogene amplifications, or deletions of tumor-suppressor genes

that could be very helpful in cancer understanding and diagnosis. Bacterial Artificial

Chromosomes (BAC) based CGH arrays were amongst the first genomic arrays to be

introduced [3] and are routinely used to detect single copy changes in the genome, ow-

ing to their high resolution in the order of 1 Mb [3, 4]. More recently Oligonucleotide

aCGH [5, 6] was developed to allow flexibility in probe design, greater coverage, and

much higher resolution in the order of 35-100 Kb.

Because aCGH is very noisy, many diseases related chromosomal aberrations

are buried by noise. For example, in cDNA array CGH data, the signal to noise

ratio is often approximately 1 (0 dB) [7]. In order to develop effective methods to

identify aberration regions from array CGH data, many research works focus on both

smoothing/denosing-based and segmentation-based data processing. Segmentation-

4
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based methods target to model data as a series of discrete segments with unknown

boundaries and unknown heights. Since the boundary points are highly possible to be

identified as aberration region, the false positives are introduced. Smoothing-based

methods reduce noise by comparing each data point to its adjacent ones and reduce

the number of identified false aberration regions.

In previous research, many approaches have been proposed to smooth/denoise

aCGH data. More recently, wavelet transform is considered as one of the best tools

to remove noise from the aCGH data. Lai (2005) [8] compared 11 different algorithms

for analyzing array CGH data. Lai concluded that the Wavelet [9], Quantreg [10] and

Lowess method [11] give better detection results (higher TPR and lower FPR) than

the others. The MODWT is also stationary wavelet transform (SWT). Besides the

MODWT, there are many different kinds of wavelet transforms which can capture

more information from the aCGH data and can be more useful for aCGH smoothing.

Therefore, the wavelet based smoothing is considered as the promising approach.

In this chapter, shift invariant SWPT with two novel adaptive bivariate shrink-

age estimators (called SWPT-AdaBi) is proposed to use for aCGH data smoothing.

In the SWPT, all sub-bands are shift invariant and each sub-band provides a shiftable

description of signal in a specific scale as same as the SWT or the MODWT. Such shift

invariant property is crucial to apply wavelet based method into aCGH data smooth-

ing. Although the Discrete Wavelet Transform (DWT) with the redundant ratio of

1 : 1 is efficient for computation, it is not suitable for aCGH smoothing application.

Because DWT creates artifacts around the discontinuities of the input signal [12]

and is shift-variant. Because the SWPT also decomposes signal to many uniform

frequency sub-bands, information in both of low and high frequency sub-bands are

captured. However the previous wavelet based methods lose the information in high

frequency [9, 13, 14].
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Moreover, three improved bivariate shrinkage functions are proposed to exploit

the dependency between child and cousin coefficients in SWPT to improve the perfor-

mance. The performance of proposed approach is validated through theoretical and

experimental explorations of a set of aCGH data. The performance between proposed

method and previous methods is compared by two standard performance evaluation

criterions: root mean squared error (RMSE) and receiver operating characteristic

(ROC) curves. The experimental results show that new methods outperform the

previous approaches consistently on both synthetic and real data.

2.1.2 Artificial Chromosome Generation

A wide variety of methods have been proposed for pre-processing aCGH data.

Not surprisingly, it can be difficult to determine which methods are better than the

others. Simulated aCGH data will be used to overcome that problem. Willenbrock

and Fridlyand [15] proposed a simulation model to create the synthetic array CGH

data. In their model, a primary tumor dataset of 145 samples is segmented and

the probes are equally spaced along the chromosome. Actually, real aCGH data

has randomly space between two probes. More recently Y. Wang and S. Wang [13]

extended this model by placing unequally spaced probes along chromosome. The

primary tumor data set is segmented using DNAcopy number levels from the empirical

distribution of segment mean values smv as

c =





0 (0 copies) : smv < −0.4,

1 (one copy) : −0.4 < smv < −0.2,

2 (two copies) : −0.2 < smv < 0.2,

3 (three copies) : 0.2 < smv < 0.4,

4 (four copies) : 0.4 < smv < 0.6,

5 (five copies) : smv > 0.6.
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The synthetic DNA copy number data on a chromosome was generated as follows

1. Determine copy number probability and the distribution of segment length. As

suggested in [15] and [13], the chromosomal segments with DNA copy number

c = 0, 1, 2, 3, 4 and 5 are generated with probability 0.01, 0.08, 0.81, 0.07, 0.02

and 0.01. The lengths for segments are picked up randomly from the corre-

sponding empirical length distribution given in [15].

2. Compute log2ratio. Each sample is a mixture of tumor cells and normal cells.

A proportion of tumor cells is Pt, whose value is from a uniform distribution

between 0.3 and 0.7. As in [15], the log2ratio is calculated by

log2ratio = log2

(
cPt + 2(1− Pt)

2

)
, (2.1)

where c is the assigned copy number. The expected log2ratio value is then the

latent true signal.

3. Add Gaussian noises. Gaussian noises with zero mean and variance σ2
n are added

to the latent true signal. Till now, the equally spaced aCGH signal is obtained.

4. Create unequally spaced probes. Because the distances between probe i and probe

i + 1 are randomly, the best way to get these distances is from the UCSF Hu-

mArray2 BAC array. Thus, a real aCGH signal is created from the equally

spaced aCGH signal when the unequally spaced probes are placed on the chro-

mosome. Now, many artificial chromosomes of length 200 Mbase are created

by many noise levels σn = 0.1, 0.125, 0.15, 0.175, 0.2, 0.225 and 0.25.

2.1.3 New Synthetic Data Model

In new synthetic data model, the four above steps should be followed but in the

third step, the real noise should be added instead of Gaussian noise. There are many

aCGH data source such as [16], [17], [18], but only data from [18] can be used to get
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Figure 2.1. Normalized distribution of real noise from chromosome 13 of GSM232967.

real noise. The number of probes in [16] and [17] are not enough. Data from [16] has

hundreds of probes and data from [17] has about several thousand probes. Both of

them have not enough probes to estimate the correct distribution of noise. However,

the length of data from [18] is long enough (more than ten thousands of probes). For

example, from [18], chromosome 13 of GSM232967 has 18323 probes. If 64 bins are

used, the distributions of noise from the above chromosomes are shown in Fig. 2.1.

Now, it is easy to create arrays with random values under the above distributions.

These arrays are added into true signal to create simulated data with real noise.

During this step, chromosomes that only have the copy two (zero means) are selected

randomly. There are many chromosomes which can be used to extract real noise

model, e.g. chromosome 1, 3, 4, 6, 8, 9, 10, 12, 13, 14, 17, 18, 19, 20 of GSM232967 and

chromosome 18 of GSM232968.
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Figure 2.2. The 3 level DWT filter bank structure.

2.2 Wavelet Transforms

Four wavelet transforms including discrete wavelet transform, discrete wavelet

packet transform, stationary wavelet transform and stationary wavelet packet trans-

form will be introduced briefly.

1. Discrete Wavelet Transform: The discrete wavelet transform (DWT), showed

in Fig. 2.2, based on the octave band tree structure, can be viewed as the

multiresolution decomposition of a signal. It takes a length N sequence, and

generates an output sequence of length N using a set of lowpass and highpass

fiters followed by a decimator. It has N/2 values at the highest resolution, N/4

values at the next resolution, and N/2L at the level L. Because of decimation,

the DWT is a critically sampled decomposition. However, the drawback of DWT

is the shift variant property. In signal denoising, the DWT creates artifacts

around the discontinuities of the input signal [12]. These artifacts degrade the

performance of the threshold-based denoising algorithm. From the structure in

Fig. 2.2, the DWT has non-uniform frequency supports.

2. Discrete Wavelet Packet Transform: Similarly to the DWT, the discrete wavelet

packet transform (DWPT) is a critically sampled decomposition. However, it

has uniform supports shown in Fig. 2.3. All of DWPT scales are performed

at the same level j. The jth level DWPT decomposes the frequency interval

[0, 1/2] into 2j equal and individual intervals, each of which has N/2j values if
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Figure 2.3. The 3 level DWPT filter bank structure.

taking a length N sequence. The drawback of the DWPT is the shift variance

as the DWT.

3. Dual-Tree Complex Wavelet Transform A dual-tree structure that produces

a dyadic complex DWT is proposed by Kingsbury [19, 20]. Since array CGH

data are one dimensional signals, in this chapter, only the 1-D case of dual-tree

CWT is mentioned. The DTCWT filter bank structure is shown in Fig. 2.4. The

analysis FB for the DTCWT is an iterative multiscale FB. Each resolution level

consists of a pair of two-channel FBs. The input signal is passed through the first

level of a multiresolution FB. The low frequency component, after decimation

by 2, is fed into the second level decomposition for the second resolution. The

outputs of the two trees are the real and imaginary parts of complex-valued

subbands. To reconstruct the signal, the real part and imaginary part are

inverted to obtain two real signals, respectively. These two real signals are then

averaged to obtained the final output. For more details of the construction of

the dual-tree, the reader is referred to [21].
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Figure 2.4. The 3 level DTCWT filter bank structure. (a) Analysis FB, (b) Synthesis
FB.

The most important property of the DTCWT is that all complex subbands are

shift invariant in the sense that there is no significant aliasing in the decimated

complex subbands. Therefore, each complex subband provides a shiftable de-

scription of signal in a specific scale. By construction of the dual-tree CWT,

each pair of corresponding filters has the Hilbert transform relation [21]. It is

therefore an overcomplete representation with a redundant ratio of 2 : 1. In the

two trees, the filters are designed in such a way that the aliasing in one branch

in the first tree is approximately canceled by the corresponding branch in the

second tree. The relation between the wavelet filters of the two trees yields shift
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invariant property [19]. The equivalent complex filter for each subband has one-

sided frequency support. The real part of the complex filter is symmetric while

the imaginary part is anti-symmetric.

4. Stationary Wavelet Transform: The stationary wavelet transform (SWT) [12],

showed in Fig. 2.5, is similar to the DWT except that it does not employ a

decimator after filtering, and each level’s filters are up-sampled versions of the

previous ones. The SWT is known as the shift invariant DWT. The absence of a

decimator leads to a full rate decomposition. Each sub-band contains the same

number of samples as the input. So for a decomposition of L levels, there is a

redundant ratio of (L+1) : 1. However, the shift invariant property of the SWT

makes it preferable for the usage in various signal processing applications such

as denoising and classification because it relies heavily on spatial information. It

has been shown that many of the artifacts could be suppressed by a redundant

representation of the signal [12]. The SWT has the same non-uniform sub-bands

as the the DWT.

5. Stationary Wavelet Packet Transform:

Stationary wavelet packet transform (SWPT), showed in Fig. 2.6, is a gener-

alization of stationary wavelet decomposition (SWT). First, a signal is decom-

posed into a low frequency subband and a high frequency subband by using
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two channel filter bank. Similar to the SWT, the SWPT does not employ a

decimator after filtering. Then the low frequency subband as well as the high

frequency subband can be decomposed into a second-level low and high fre-

quency subband, and the process is repeated as in Fig. 2.6. Each level’s filter

are upsampled versions of the previous ones. The absence of a decimator leads

to a full rate decomposition. Each subband contains the same number of sam-

ples as the input. So for a decomposition of L levels, there is a redundant ratio

of 2L : 1. However, the absence of a decimator makes the SWPT shift invariant.

In the SWT, the low frequency subband is itself decomposed into two second-

level subbands. Therefore, the SWT has nonuniform frequency supports while

the SWPT has uniform frequency supports. So, the SWPT offers a richer range

of possibilities for signal analysis. With the uniform shift-invariant subbands,

the SWPT may capture more information from the aCGH data. So, the SWPT

is proposed for denoising of aCGH data.

2.3 Previous Works

• Loess: The locally weighted scatter plot smooth using least squares quadratic

polynomial fitting has been used in previous work [11].

• Lowess: This is the locally weighted scatter plot smooth using least squares

linear polynomial fitting. It uses a first-degree polynomial instead of second-

degree polynomial in Loess. This method was compared to other methods in

[8].

• Quantreg: This is a quantile regression method which has been proposed by

Eilers in [10]. The total variation was used as the roughness penalty. In 2007,

Li [22] modified this method by incorporating the physical distance between

adjacent clones.
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Figure 2.6. The 3 level SWPT filter bank structure.

• Smoothseg: A smooth segmentation method [23] for aCGH data analysis is

based on a doubly heavy-tail-random-effect model. This heavy-tailed model on

error term deals with outliers in observations. To deal with possible jumps in

the copy-number pattern, the i.i.d Cauchy distribution is proposed for modeling

the second-order differences of original data. The denoised data is estimated by

the iterative weighted least-squares algorithm.

• Moving-Average: This is exactly a low pass filter which takes the average of

neighboring data points. In this case, sliding window spanning 30 probes is

used.
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• SWTi: SWTi method comes from paper [13]. Compared with SWPT-bi, SWTi

method has three different steps: 1) the aCGH data which has the unequal

distances between two samples is interpolated to reduce the difference of those

distances; 2) the array CGH signal is decomposed by the SWT; 3) the term by

term thresholding is applied to estimate the SWT coefficients [13].

2.4 DTCWTi and DTCWTi-bi Algorithms

2.4.1 Proposed Methods

The complex coefficients Wi are obtained by decomposing the data Y with

the DTCWT. All complex coefficients whose magnitudes are less than a particular

threshold are set to zero as follows

Wi =





0 if |Wi| ≤ δU ,

Wi if |Wi| > δU .
(2.2)

After that, the subband coefficients denoised are used to reconstruct the data D̂.

Next, how to choose the threshold values is discussed. The universal threshold is

defined in [24, 25] by:

δU ≡ σn

√
2 log10(N), (2.3)

where N denotes the number of samples in data Y and σn is the standard deviation

of Gaussian noise which is removed. In real situations, the variance of noise to be

removed is unknown. So Donnoho [24] proposed a special method to estimate this

value by using the following equation:

σn ≡
median

(
|W (D)

1,0 |, |W (D)
1,1 |, ..., |W (D)

1,N1−1|
)

0.6745
, (2.4)

where N1 is the length of DWT subband at level 1.

Noise in the DNA data is assumed as IID. The DTCWT with interpolating

(DTCWTi) method can be summarized as follows
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Step 1 : Interpolate and insert zeros into Y . Next, new data is decomposed by using

the DTCWT.

Step 2 : Estimate the noise variance σ2
n by (2.4).

Step 3 : Calculate the threshold by (2.3)

Step 4 : Find the denoised coefficients from noisy coefficients by (2.2).

Step 5 : Reconstruct data D̂ from the denoised coefficients by taking inverse DTCWT.

For the SWT, only the scaling coefficients are denoised. However, for the

DTCWT, all sub-band coefficients are denoised. In DTCWT method, complex sub-

bands are obtained, thus the absolute values of the real SWT coefficients are replaced

by the magnitudes of complex coefficients. This gives out a better result than the

method using real and imaginary sub-bands separately.

A simple denoising algorithm via wavelet transform consists of three steps: de-

compose the noisy signal by wavelet transform, denoise the noisy wavelet coefficients

according to some rules and take the inverse wavelet transform from the denoised

coefficients. To estimate wavelet coefficients, some of the most well-known rules are

universal thresholding, soft thresholding [25, 24, 26] and BayesShrink [27]. In these

algorithms, the authors assumed that wavelet coefficients are independent. However,

recently, algorithms utilizing the dependency between coefficients can give better re-

sults if compared with the ones using an independency assumption [1]. Sendur [1] has

exploited this dependency between coefficients and proposed a non-Gaussian bivariate

pdf for the child coefficient w1 and its parent w2 as follows

pw(w) =
3

2πσ2
exp(−

√
3

σ

√
|w1|2 + |w2|2). (2.5)

The marginal variance σ2 is dependent on the coefficients index k. Using this bivariate

pdf and the Bayesian estimation theory, the MAP estimator of w1 [1] is derived to be

ŵ1 =
(
√
|y1|2 + |y2|2 −

√
3σn

2

σ
)+√

|y1|2 + |y2|2
.y1, (2.6)
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where ()+ is defined by

(u)+ =





0 if u < 0,

u otherwise.
(2.7)

This estimator can be called as a bivariate shrinkage function. In (2.6), σ can be

estimated by

σ̂ =
√

(σ̂y
2 − σ̂n

2)+, (2.8)

where σ̂n is the noise deviation which is estimated from the finest scale wavelet coef-

ficients by using a robust median estimator [24] as follows

σ̂n
2 =

median(|yi|)
0.6745

. (2.9)

σ̂y is the deviation of observation signal estimated by

σ̂y
2 =

1

M

∑

yi∈N(k)

|yi|2, (2.10)

where M is the size of the neighborhood N(k).

The proposed method as called the DTCWTi-bi can be summarized as follows

Step 1 : Interpolate the DNA copy number data Y and get the interpolated DNA

copy number data Y
′
.

Step 2 : Insert zeros into Y
′
and decompose new data Y

′′
by the DTCWT.

Step 3 : Calculate the noise variance σ̂n
2 and the marginal variance σ̂2 for wavelet

coefficient yk by using (2.9), (2.10) and (2.8).

Step 4 : Estimate the coefficients ŵk as in (2.6).

Step 5 : Reconstruct data D̂ from the denoised coefficients ŵk by taking inverse

DTCWT.

2.4.2 Performance Evaluation by RMSE

One thousand artificial chromosomes with six different noise levels σn = 0.125,

0.15, 0.2, 0.25, 0.275 and 0.3 are denoised.
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Table 2.1. Comparison of average RMSEs obtained from the 1,000 artificial chromo-
somes with each of 6 noise levels using the SWT, the SWTi, the DTCWTi and the
DTCWTi-bi.

σ SWT SWTi DTCWTi DTCWTi-bi
0.125 0.0460 0.0422 0.0350 0.0347
0.15 0.0548 0.0497 0.0393 0.0387
0.2 0.0715 0.0631 0.0469 0.0463
0.25 0.0874 0.0751 0.0530 0.0525
0.275 0.0952 0.0810 0.0558 0.0555
0.3 0.1027 0.0867 0.0587 0.0585

The denoising results of all methods are shown in table 2.1. The proposed

DTCWTi-bi method yields the better performance than the others. The DTCWTi-

bi outperforms the SWT by 24.6%− 43%, the SWTi [13] by 17.8%− 32.5% and the

DTCWTi by 0.9%−1.5% in terms of the RMSEs. Moreover, the DTCWTi-bi is more

efficient and has less computation than the SWTi because the redundancy ratio of

the DTCWT 2 : 1 is much less than that of the SWT 4 : 1 (if the number of level

decomposition L = 3). For all noise levels, the DTCWTi-bi consistently achieves

much better results than the SWT and SWTi.

From table 2.1, the evidence to prove that the bivariate shrinkage function

should be applied to the CGH data denoising instead of the universal thresholding or

the term by term thresholding. For example, at the noise level σn = 0.15, the RMSE

of the DTCWTi-bi method is 0.0387, but that of the DTCWTi method is 0.0393. In

this case, the DTCWTi-bi outperforms DTCWTi by 1.5%.

2.5 Improved Bivariate Shrinkage Model for SWPT

In this section, the bivariate shrinkage function which describes the relationship

of child and parent (Fig. 2.7(a)(b)) coefficients will be reminded. Because SWPT,
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Figure 2.7. The positions of child, parent and cousin coefficients. (a) DWT, (b) SWT
and (c) SWPT.
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Figure 2.11. The joint distribution of w1 and w3 created from decomposition of true
aCGH signal.

which decomposes a signal into many subbands at the same scale, just has child and

cousin (Fig. 2.7(c)) at the same level, three new adaptive bivariate shrinkage functions

will be developed to exploit the relationship of child and cousin coefficients.

Sendur and Selesnick [1] have recently exploited the dependency between coef-

ficients and proposed a non-Gaussian bivariate pdf for the child coefficient wc and its

parent wp in the complex wavelet transform domain. Nguyen et el [14] applied that

function in the complex wavelet transform domain to recover aCGH data successfully

and got some promising results.

From the previous section, the SWPT offers a richer range of shift-invariant

subbands than the DTCWT and the SWT, and the SWPT is proposed for denoising

of aCGH data. However the SWPT, which decomposes a signal into many uniform

subbands at the same scale, just has child and cousin coefficients as in Fig. 2.7. In-

spired by the idea of dependency between child coefficients and its parent in [1], in this

section, two new adaptive bivariate shrinkage functions which model the relationship

of child and cousin coefficients in the SWPT operation of aCGH data are developed.
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Figure 2.12. The proposed pdf with two variables w1 and w3.

The aCGH data Y which includes the deterministic signal D and the independent

and identically distributed (IID) Gaussian noise N are obtained. This Gaussian noise

has zero mean and variance σ2
n.

Y = D +N . (2.11)

After decomposing the data Y by the SWPT, the coefficients yk are obtained and

those coefficients can be formulated as

y = w + n,

y = w + n,
(2.12)

where y and y are noisy wavelet coefficients, w and w are true coefficients, w

represents the cousin of w (child), n and n are independent Gaussian noise coef-

ficients. If the cousin scale y is decomposed, detail and approximation coefficients

should be obtained. Let us call y as approximation coefficients of y. y from y can

be calculated by the following equations:

y = w + n,

y[n] = h[n] ∗ y[n] =
∑N

i=(h[n− i].y[i]),
(2.13)
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where h[n] is the wavelet filter and N is the length of signal y2. In general, Y can be

written as follows

Y = W +N , (2.14)

where Y = (y, y), W = (w, w) and N = (n, n). The noise pdf should be followed

as

pn(n) =
1

2πσn
2

exp(−n2
1 + n2

3

2σ2
n

). (2.15)

The standard MAP estimator [1] of w from y is obtained as follows

ŵ(y) = arg max
w

[loge(pn(y-w)) + loge(pw(w))]. (2.16)

The Fig. 2.8 illustrates the histogram of the wavelet coefficient w (child) and

the approximation coefficient w of w(cousin). The w and w are computed from

aCGH data without noise by using the SWPT. Fig. 2.9 shows the joint distribution

of w and w. Three pdfs will be proposed to fit that joint distribution.

1. Model 1 : the idea from [1] is imitated and a non-gaussian bivariate pdf for w

and w is proposed as
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pw(w) =
k

2πσ2
exp(−

√
2k

σ

√
|w1|2 + |w3|2). (2.17)

This pdf (2.17) is sketched in Fig. 2.10. With this pdf, two variables w and w

are really dependent. Let us define:

f(w) = loge(Pw(w)) = loge(
k

2πσ2
)−

√
2k

σ

√
|w1|2 + |w3|2. (2.18)

By using (2.15), (2.16) becomes:

ŵ(y) = arg max
w

[loge(
1

2πσn
2
)− (y1 − w1)

2 + (y3 − w3)
2

2σ2
n

+ f(w)]. (2.19)

Solving (2.19) is the same as solving the two following equations:

(y1 − w1)

σ2
n

+ fw1(ŵ) = 0, (2.20)

(y3 − w3)

σ2
n

+ fw3(ŵ) = 0, (2.21)

where fw1 and fw3 represent the derivative of f(w) with respect to w1 and w3,

respectively. fw1 and fw3 can be obtained from (2.18)

fw1(ŵ) = −
√

2kw1

σ
√
|w1|2 + |w3|2

. (2.22)

fw3(ŵ) = −
√

2kw3

σ
√
|w1|2 + |w3|2

. (2.23)

substituting (2.22) and (2.23) into (2.20) and (2.21) gives:

ŵ1.(1 +

√
2kσ2

n
σr ) = y1, ŵ3.(1 +

√
2kσ2

n
σr ) = y3, (2.24)

where r =
√
|ŵ1|2 + |ŵ3|2. Drawing r from (2.24):

r = (
√
|y1|2 + |y3|2 −

√
2kσn

2

σ
)+. (2.25)

The MAP estimator can be obtained by replacing r from (2.25) into (2.24)

ŵ1 =
(
√
|y1|2 + |y3|2 −

√
2kσn

2

σ )+√
|y1|2 + |y3|2

.y1, (2.26)
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where ()+ is defined by

(u)+ =





0 if u < 0,

u otherwise.
(2.27)

Replacing y3 from (2.13) to (2.26), the MAP estimator can be rewritten as

ŵ1 =
(
√
|y1|2 + |∑N

i=1(h[n− i].y2[i])|2 −
√

2kσn
2

σ
)+

√
|y1|2 + |∑N

i=1(g[n− i].y2[i])|2
.y1, (2.28)

where K is called the adaptive parameter. In (2.28), σ can be estimated by

σ̂ =
√

(σ̂2
y − σ̂2

n)+, (2.29)

where σ̂n is the noise deviation which is estimated from the finest scale wavelet

coefficients by using a robust median estimator.

2. Model 2 : The second model in which the variance of the w and the w are

different is proposed.

pw(w) =
k

2πσ1σ3

exp(−
√

2k

√
(
w1

σ1

)2 + (
w3

σ3

)2). (2.30)

From (2.30), the distribution shape of the model 2 in Fig. 2.12 matches the one

in Fig. 2.11. This pdf is more general than the pdf of the model 1 because if

σ1 = σ3, the model 2 becomes the model 1. In the model2, f(w) can be written

as follows

f(w) = loge(Pw(w)) = loge(
k

2πσ1σ3

)−
√

2k

σ

√
|w1

σ1

|2 + |w3

σ3

|2. (2.31)

fw1 and fw3 are obtained from (2.31)

fw1(ŵ) = −
√

2kw1

σ2
1

√
|w1

σ1

|2 + |w3

σ3

|2
, (2.32)
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fw3(ŵ) = −
√

2kw3

σ2
3

√
|w1

σ1

|2 + |w3

σ3

|2
. (2.33)

Substituting (2.32) and (2.33) into (2.20) and (2.21) gives:

ŵ1.(1 +

√
2kσ2

n

σ2
1r

) = y1, ŵ3.(1 +

√
2kσ2

n

σ2
3r

) = y3, (2.34)

where r =

√
|ŵ1

σ1

|2 + |ŵ3

σ3

|2. From (2.34), one can get:

(σ1y1)
2

(σ2
1r +

√
2kσ2

n)
2 +

(σ3y3)
2

(σ2
3r +

√
2kσ2

n)
2 = 1. (2.35)

With aCGH data, σ1 and σ3 are small and σ2
1 ≈ σ2

3. w can be approximately

as follows

ŵ1 =

(

√
|y1

σ1

|2 + |y3

σ3

|2 −
√

2k
σn

2

σ2
1

)+

√
|y1

σ1

|2 + |y3

σ3

|2
.y1. (2.36)

y is replaced by y in (2.13). This following equation is really an improved

bivariate shrinkage function:

ŵ1 =

(

√
|y1

σ1

|2 + |
∑N

i=1(h[n− i]y2[i])

σ3

|2 −
√

2k
σn

2

σ2
1

)+

√
|y1

σ1

|2 + |
∑N

i=1(h[n− i].y2[i])

σ3

|2
.y1. (2.37)

If the assumption σ2
1 ≈ σ2

3 does not happen, a simple closed-form solution of

(2.34) cannot be found. The successive substitution method can be used to find

solution Ŵ1 as follows

(a) Set up the initial values of Ŵ
[0]
1 and Ŵ

[0]
3 . For example, Ŵ

[0]
1 = y1 and

Ŵ
[0]
3 = y3.

(b) Find r vector by replacing two above values to the following equation

r =

√
|Ŵ

[i]
1

σ1

|2 + |Ŵ
[i]
3

σ3

|2.
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(c) Estimate new values of Ŵ
[i]
1 and Ŵ

[i]
3 by using (2.38) as:

Ŵ
[i+1]
1 = y1

(1+

√
2kσ2

n

σ2
1r

)

, Ŵ
[i+1]
3 =

y3

(1 +

√
2kσ2

n

σ2
3r

)

.
(2.38)

(d) Calculate the error of Ŵ [i+1] and Ŵ [i] as follows

ε1 = Ŵ
[i+1]
1 − Ŵ

[i]
1 , ε3 = Ŵ

[i+1]
3 − Ŵ

[i]
3 . (2.39)

(e) Terminate the iteration if ε1 and ε3 are small enough. Otherwise, jump to

step (b) and continue the iteration.

3. Model 3 :

First, the joint distribution can be assumed as an independent Laplacian as

follows

pw(w) =
1

2σ2
exp(−

√
2

σ
|w1|+ |w3|). (2.40)

It is clear that the independent Laplacian distribution in Fig. 2.15 (a) does not

fit well the empirical histogram. So, it is not possible to model the empirical

histogram with the independent Laplacian distribution. In [1], a general joint

pdf which is combined by the independent Laplacian pdf and the dependent

component is proposed for image in CWT. However, the parameters of the

model is tunable. So, in the case of the SWPT coefficients of the aCGH data,

this bivariate model with two specific parameters is proposed to use as follows

pw(w) =
1

2πσ2
exp(−

√
3

σ

√
|w1|2 + |w3|2 −

√
2

σ
(|w1|+ |w3|)). (2.41)

The proposed bivariate pdf in Fig. 2.15 (b) fits well the empirical histogram in

Fig. 2.14. With this pdf, two variables w1 and w3 are really dependent and the

Eq.(2.41) is named as dependent Laplacian bivariate model.
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Figure 2.14. Joint distribution of w1 and w3 which are created from decomposition
of true CGH signal.

Let us define

f(w) = loge(Pw(w)) = loge(
1

2πσ2
)−

√
3

σ

√
|w1|2 + |w3|2 −

√
2

σ
(|w1|+ |w3|).

(2.42)

By using Eq.(2.15), Eq.(2.16) becomes:

ŵ(y) = arg max
w

[loge(
1

2πσn
2
)− (y1 − w1)

2 + (y3 − w3)
2

2σ2
n

+ f(w)]. (2.43)

Solving (2.43) is the same as solving two following equations:

(y1 − w1)

σ2
n

+ fw1(ŵ) = 0, (2.44)

(y3 − w3)

σ2
n

+ fw3(ŵ) = 0, (2.45)

where fw1 and fw3 represent the derivative of f(w) with respect to w1 and w3,

respectively. fw1 and fw3 can be obtained from (2.42) as

fw1(ŵ) = −(

√
3w1

σ
√
|w1|2 + |w3|2

+

√
2

σ
sign(w1)), (2.46)

fw3(ŵ) = −(

√
3w3

σ
√
|w1|2 + |w3|2

+

√
2

σ
sign(w3)), (2.47)
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Figure 2.15. (a) The Laplacian pdf with two variables: w1 and w3, (b) The proposed
pdf with two variables: w1 and w3.

where sign(w) is defined as follow:

sign(w) =





0 if w = 0,

w

|w| otherwise.
(2.48)

Substituting (2.46) and (2.47) into (2.44) and (2.45) gives

ŵ1 · (1 +
√

3σ2
n

σr
) = (|y1| −

√
2σ2

n

σ
)+ · sign(y1) = soft(y1,

√
2σ2

n

σ
),

ŵ3 · (1 +
√

3σ2
n

σr
) = (|y2| −

√
2σ2

n

σ
)+ · sign(y2) = soft(y2,

√
2σ2

n

σ
),

(2.49)

where r =
√
|ŵ1|2 + |ŵ3|2 and ()+ is defined by

(u)+ =





0 if u < 0,

u otherwise,
(2.50)

and soft(y, t) can be calculated by

soft(y, t) = (|y| − t)+ · sign(y). (2.51)

Drawing r from (2.49)

r2 =
soft(y1,

√
2σ2

n

σ
)

(1 +
√

3σ2
n

σr
)

+
soft(y2,

√
2σ2

n

σ
)

(1 +
√

3σ2
n

σr
)

,
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(r +

√
3σ2

n

σ
)2 = soft(y1,

√
2σ2

n

σ
) + soft(y2,

√
2σ2

n

σ
),

r = (

√
soft(y1,

√
2σ2

n

σ
) + soft(y2,

√
2σ2

n

σ
)−

√
3σ2

n

σ
)+

= (R−
√

3σn
2

σ
)+ .

(2.52)

The MAP estimator can be obtained by replacing r from (2.52) into (2.49)

ŵ1 =
(R−

√
3σn

2

σ
)+

R
· soft(y1,

√
2σ2

n

σ
), (2.53)

where R is as follows

R =

√
soft(y1,

√
2σ2

n

σ
)2 + soft(y3,

√
2σ2

n

σ
)2. (2.54)

Eq.(2.53) is called as dependent Laplacian bivariate shrinkage function. Packet

wavelet transform does not include any parent scale. In this case, hard thresh-

olding estimator [25] can be used to recover cousin coefficients ŵcs:

ŵcs = (ycs − σn

√
2 log10 N)+. (2.55)

In (2.37), σ1 and σ3 can be estimated by

σ̂1 =
√

(σ̂2
y1
− σ̂2

n)+,

σ̂3 =
√

(σ̂2
y3
− σ̂2

n)+,
(2.56)

where σ̂2
y1

and σ̂2
y3

are the variances of y1 and y3. They can be estimated by

σ̂2
y1

= 1
M1

∑
y1i∈N1(i) |y1i|2,

σ̂2
y3

= 1
M3

∑
y3i∈N3(i) |y3i|2,

(2.57)

where M1 and M3 are the size of the neighborhood N1(i) and N3(i) respectively. N1(i)

and N3(i) are two windows with y1i and y3i at the center. The y3i can be created by

applying (2.13). The relationship of child and cousin coefficients was really exploited
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Table 2.2. Comparison table of the improved bivariate shrinkage function and function
in [1].

Method Improved function. Old function [1].
Applying to aCGH data. image.
Relationship child and cousin coefficient. child and parent coefficient.
adaptive k use k from 1 to 2.05. no use.
Model2 a simple-closed-form (2.37). no simple-closed-form.
Transform SWPT and DWPT. DWT and DTCWT.

Extension ExtensionSignal

Zero-padding

Extension ExtensionSignal

Wraparound

Extension ExtensionSignal

Symmetric extension

Figure 2.16. Three extension methods [28]: Zero-padding, Wraparound and Symmet-
ric extension.

as (2.28) , (2.37) and (2.53). In those estimators, the way choosing value of k is very

interesting. If the value of k depends on each scale, those estimators can be called as

adaptive bivariate shrinkage function. The distribution of k is showed in Fig. 2.13.

In the packet wavelet transform, the cousin scales have not any parent scale. In this

case, hard thresholding estimator [25] can be used to recover cousin coefficients ŵcs:

ŵcs = (ycs − σn

√
2 log10 N)+. (2.58)

Now, after improved bivariate shrinkage functions are obtained, these new two func-

tions should be compared to the bivariate function of Sendur [1] as table. 2.2. From

this table, these functions have five different parts with Sendur’s. So, three func-

tions (2.28), (2.37) and (2.53) can be considered as really new ones.
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aCGH data
aCGH
 Data

Figure 2.17. The flowchart of SWPT-LaBi method.

2.6 SWPT-LaBi Algorithm

2.6.1 Signal Extension

Array CGH data is a finite signal. If real data is denoised directly, error may

be obtained at the border of denoised signal. So, extension step is a very important

preprocessing step before denoising. There are three main extension methods shown

in Fig. 2.16. According to the book [28] (chapter 8), symmetric extension is the

best if applied to a filtered image because information can be saved at the border

better. With aCGH data, saving the information is necessary at the border. In 2.7.2,

three extension methods are applied and agreed with [28]. From the results of the

section 2.7.2 and Fig. 2.21, the symmetric extension method should be use as a

preprocessing step before denoising. Let us assume that the length of the aCGH

signal is N . In order to get the best performance in the wavelet denoising algorithm,

the length of the input signal is required to be a power of two [29]. If N is not a power

of two, signal can be extended to make sure N = 2j by using symmetric extension

method.

2.6.2 Proposed Method

Fig. 2.17 is the flowchart of SWPT-LaBi algorithm which can be summarized

as follows
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Step 1 : Extend aCGH data Y using symmetric extension method and decompose

new data Y
′
by the SWPT to L levels as Eq.(2.61). The number of decomposi-

tion levels [30] (at the remark 11) can be computed by

L = log2(N)− J, (2.59)

where J = 3, 4, 5, 6. This is a perfect number of levels [30] which yields the best

denoising result. In this chapter, J = 4 can be used as the same as [9] and [13].

Step 2 : Calculate the noise variance σ̂2
n and the marginal variance σ̂2 for wavelet

coefficient yk by using Eq.(2.9), Eq.(2.10) and Eq.(2.8).

Step 3 : Estimate the child coefficients ŵc = ŵ1 as in Eq.(2.53) and estimate the

counsin coefficients ŵcs as in Eq.(2.55).

Step 4 : Reconstruct data D̂ from the denoised coefficients ŵc and ŵcs by taking the

inverse SWPT.

The error of smoothing result could be measured by the root mean squared

error (RMSE) that is defined as:

RMSE =

√√√√ 1

N

N∑
i

(D̂i −Di)2, (2.60)

where N is the number of input samples, D = {Di} and D̂ = {D̂i} are the values of

data points before and after smoothing.

2.6.3 Performance Evaluation by RMSE

In this section, the experimental results of Lowess [8], Quantreg [10, 22], Smooth-

seg [23], SWTi [13], DTCWTi-bi [14], and SWPT-LaBi methods will be compared.

One thousand artificial chromosomes with Gaussian noise in seven different levels

σn = 0.1, 0.125, 0.15, 0.175, 0.2, 0.25 and 0.275 are denoised. Meantime, simu-

lated chromosomes with real noise are also used to test above six methods.
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Lowess 0.0522 0.0588 0.0657 0.0729 0.0802 0.0878 0.0954

Sm oothseg 0.0580 0.0624 0.0675 0.0729 0.0787 0.0848 0.0911

Quantreg 0.0488 0.0604 0.0720 0.0835 0.0949 0.1064 0.1178

SW Ti 0.0335 0.0416 0.0487 0.0554 0.0617 0.0678 0.0736

DTCW Ti-bi 0.0287 0.0334 0.0374 0.0410 0.0442 0.0474 0.0505

SW PT-LaBi 0.0247 0.0288 0.0325 0.0362 0.0401 0.0441 0.0480

0.100 0.125 0.150 0.175 0.200 0.225 0.250

Figure 2.18. Comparison of average RMSEs obtained from the 1,000 artificial chro-
mosomes with each of 7 noise levels (Gaussian noise).

The denoising results of all methods are shown in the Fig. 2.18. The proposed

SWPT-LaBi method has a better performance than the others. The SWPT-LaBi

outperforms the Lowess by 49.7% − 52.7%, the Quantreg by 47.3% − 57.4%, the

Smoothseg by 49.4% − 59.3%, the SWTi by 26.3% − 35% and the DTCWTi-bi by

5%−13.9% in terms of the root mean squared errors. For all noise levels, the SWPT-

LaBi consistently achieves much better results than others.

In the experiments using real noise synthetic data, 15 chromosomes are used

to create real noise for synthetic data. One thousand chromosomes are tested with

six above methods. Fig. 2.19 shows that the RMSE of the SWPT-LaBi (0.0453) is

the smallest one when compared to the Lowess (0.0771), the Smoothseg (0.0813), the

Quantreg (0.0940), the SWTi (0.0700), and the DTCWTi-bi (0.0492). The proposed

method outperforms all previous methods between 7.9% and 51.8% on the synthetic

data with real noise.
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Figure 2.19. Comparison of average RMSEs obtained from the 1,000 artificial chro-
mosomes with real noise.

2.6.4 Performance Evaluation by ROC curves

Paper [8] introduced another method to evaluate aCGH smoothing algorithms

by ROC curve. Several hundred artificial chromosomes, consisting of 100 probes

and with the square-wave signal at the center of the chromosome, are created from

four templates. In 2007, Huang et al. [23] modified this setting to make the problem

harder. The modification decreased the width of the center square-wave and increased

the noise level. However people usually want to test the performance of methods not

only at the middle of signal but also at the border of signal. Therefore, four templates

with the aberration widths of 5, 20, 30 and 40 are kept. Three more templates (one

or two aberrations) with the aberration widths of 20, 10 and 5 should be added at

the border.

From seven genomic templates with one or two aberrations, 270 samples are

generated with unequal space probes. The ROC profiles of SWTi, DTCWTi-bi,
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Figure 2.20. Receiver operating characteristic (ROC) curves obtained from 270 arti-
ficial chromosomes (generated from 7 genomic templates) with each of the different
noise levels using the SWPT-LaBi and other most common used CGH algorithms
such as SWTi, DTCWTi-bi, Lowess, Quantreg, and Smoothseg.

Lowess, Quantreg, Smoothseg, and SWPT-LaBi methods are calculated. Fig. 2.20

illustrates the ROC curves with different noise levels: σ = 0.125, 0.175, 0.2. The TPR

is defined as the number of probes inside the aberration whose absolute values are

above the threshold level divides by the number of probes in the aberration. The FPR

is defined as the number of probes outside the aberration or the number of probes

inside the copy two region whose absolute value are above the threshold level divides

by the total number of probes outside the aberration. The threshold level is changed

from 0 to 1.
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In Fig 2.20 (a,b,c), SWPT-LaBi method clearly performs better than other

methods. If some methods in time domain such as Lowess and Quantreg are just

compared, the Lowess looks better. This result also agrees with the experimental

results in [8]. In low noise level (σ = 0.125), in Fig 2.20 (a), most methods operate

well except Smoothseg. If noise is increased, the Quantreg gets worse in Fig 2.20

(b,c). Of course, with Gaussian noise, the Smoothseg always gets worse than the

others because it is designed to operate with the student’t noise. From three above

figures, the proposed method always gives out the best results.

Real noise from the chromosome 13 of GSM232967 is extracted and 270 simu-

lated aCGHs are created with real noise from seven genomic templates with one or

two aberrations. Fig 2.20 (d) shows the ROC curve results of 270 above simulated

aCGHs with real noise. The performance of Smoothseg becomes better but it still

gets worse than the proposed method. In this case, the SWPT-LaBi is the best in the

low FDR area that is more meaningful in practical aCGH applications. In summary,

the proposed method is the best one in ROC curve comparison.

2.7 SWPT-AdaBi Algorithm

2.7.1 Proposed Method

The proposed method is named as SWPT-AdaBi. Before configuration of

SWPT-AdaBi, a simpler method is set up: SWPT-bi. The method as called the

SWPT-bi can be summarized as follows

Step 1 : Extend Y by using symmetric extension method and decompose new data

Y
′
by SWPT to L levels as (2.61). The numbers of decomposition levels [30]

(at the remark 11) can be computed by

L = log2(N)− J, (2.61)
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where J = 3, 4, 5, 6. This is a perfect number of levels [30] which yields the best

denoising result. In this chapter, J = 4 is used as the same as in [9] and [13].

Step 2 : Calculate the noise variance σ̂2
n and the marginal variance σ̂2 for wavelet

coefficient y by using (2.9), (2.10) and (2.8).

Step 3 : Estimate the child coefficients ŵc = ŵ1 as in (2.28) and estimate the counsin

coefficients ŵcs as in (2.58). In this case, k = 1.45 should be chosen.

Step 4 : Reconstruct data D̂ from the denoised coefficients ŵc and ŵcs by taking the

inverse SWPT.

Two models have been developed in model 1 and model 2. That is the reason why two

methods are proposed. They are SWPT-AdaBi (with model 1 ) and SWPT-AdaBi2

(with model 2 ). The ”Ada” means using adaptive parameter k in functions (2.28)

and (2.37). The SWPT-AdaBi uses the estimator (2.28) from the model 1 and the

adaptive parameter k. Both of two adaptive methods will give the better results than

SWPT-bi. It is an evidence that the adaptive parameter k will be a right choice

instead of a fixed k = 1.45.

2.7.2 Comparisons of Extension Methods

The reason why the symmetric extension method is chosen in the prepro-

cessing step will be demonstrated. Three extension methods such as zero-padding,

wraparound, and symmetric extension are applied to extend at both sides of origi-

nal aCGH signal, respectively. After that, extended signals will be denoised using

SWPT-AdaBi. From the results in Fig. 2.21, the RMSE of denoised signal using

symmetric extension is the best. The next is wraparound method. The worst one

is the zero-padding method. Results are consistent with [28] when they are applied

to denoise images. If SWPT is used directly, the transform will use circular convo-

lution [28]. In MATLAB, they use the function “wextend” with extension mode as
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Figure 2.21. Comparison of average RMSEs obtained from the 1,000 artificial chro-
mosomes with each of 7 noise levels using SWPT-Adabi with three extension methods
in the preprocessing step.

period or wraparound before taking convolution in wavelet transform. That means

the result can be obtained as the same the middle line (wraparound) in the Fig. 2.16

if SWPT is applied to aCGH data directly. In conclusion, symmetric extension is the

best choice to preprocess aCGH data before denoising.

2.7.3 Experiments Design

In order to compare the performance of SWPT-AdaBi to other most commonly

used methods and also observe how new bivariate shrinkage functions improved per-

formance, the previous methods are separated into two groups: five most commonly

used methods in literature and three other methods using wavelet transform from

other researchers.
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Figure 2.22. Comparison of average RMSEs obtained from the 1,000 artificial chro-
mosomes with each of the 7 noise levels using the proposed method SWPT-AdaBi
and some methods in time domain such as Loess, Lowess, Moving Average, Quantreg,
Smoothseg.

The first group includes other most commonly used methods that analyze aCGH

in time domain [8], such as Loess, Lowess, Quantreg, Smoothseg, and Moving Average.

The second group includes previous works using various wavelet transforms such

as SWTi [13], DTCWTi [31] and DTCWTi-bi [14]. The MODWT method [9] which

was compared in [13] is worse than SWTi method. Thus, the proposed method will

be compared to SWTi method.

2.7.4 Performance Evaluation by RMSE

One thousand artificial chromosomes with seven different levels σn = 0.1, 0.125,

0.15, 0.175, 0.2, 0.225 and 0.25 are smoothed. The SWPT-AdaBi method will be

compared to the other methods without using wavelet transform in Fig. 2.22, with

using wavelet transform in the previous work in Fig. 2.23.
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Figure 2.23. Comparison of average RMSEs obtained from the 1,000 artificial chro-
mosomes with each of the 7 noise levels using the proposed method SWPT-AdaBi and
some previous methods using wavelet transform such as SWTi, DTCWTi, DTCWTi-
bi.

From Fig. 2.22, the proposed SWPT-AdaBi method yields the performance

much better than the others such as Loess, Lowess, Moving Average, Quantreg and

Smoothseg. The SWPT-AdaBi outperforms Loess by 60%−61.1%, Lowess by 48.9%−
55.2%, Moving Average by 45%− 66.4%, Quantreg by 50.5%− 58% and Smoothseg

by 46.6%− 60% in terms of the RMSEs.

From Fig. 2.22 and the above discussion, the proposed method gives the best

performance if compared to some denoised methods in time domain.

The RMSE of SWPT-AdaBi is still the lowest if compared to the other wavelet

methods such as SWTi, DTCWTi and DTCWTi-bi showed in table and Fig. 2.23.

The SWPT-AdaBi achieves the results better than SWTi by 28.3%− 36%, DTCWTi

by 7.6%− 20% and DTCWTi-bi by 6.6%− 19.5% in terms of the RMSEs.
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Figure 2.24. Receiver operating characteristic (ROC) curves obtained from the 280
artificial chromosomes (generated from 7 genomic templates) with each of the different
noise levels using SWPT-AdaBi and some aCGH algorithms such as SWTi, DTCWTi-
bi, Loess, Lowess, Moving Average, Quantreg, Smoothseg.

2.7.5 Performance Evaluation by ROC Curve

From seven genomic templates with one or two aberrations (the other copies

except for copy two), 280 samples are generated with unequal space probes. The

ROC profiles of many algorithms such as SWTi, DTCWTi-bi, Loess, Lowess, Moving

Average, Quantreg, Smoothseg and SWPT-AdaBi method are caculated. Fig 2.24

illustrates the ROC curve at different noise levels: σ = 0.15, 0.175, 0.2, 0.225.

In Fig 2.24, SWPT-AdaBi method clearly performs better than the other meth-

ods. If some methods (Loess, Lowess, Moving Average, Quantreg, Smoothseg) which
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are performed in time domain method are compared, Lowess looks better. This result

also agrees with the result in [8]. MODWT [9] should be not compared because it is

worse than SWTi [13]. In the lower noise (not showed here), most of methods work

very well and their TPRs are very close 1 with FPRs less than 0.1 except for Moving

Average. The Moving Average does not work well because it is very difficult to choose

a right window for this method. In summary, proposed method still is still the best

if compared by ROC curve.

2.8 Conclusion

In this chapter, three novel models which exploit the dependency of child and

cousin coefficients of aCGH data in SWPT domain are proposed. Three improved

bivariate shrinkage estimators are derived to adaptively estimate noise thresholding.

The proposed methods were compared to most commonly used methods in literature

by using standard synthetic aCGH data. The denoising results from SWPT-AdaBi

are much better than previous time domain methods with 45% − 66.4% improve-

ment and better than previous wavelet transform based methods with 6.6% − 36%

improvement in terms of the root mean squared error measurements at different noise

levels. Furthermore, the performance of the proposed methods are also demonstrated

by using the real aCGH data.



CHAPTER 3

HEAVY-TAILED NOISE SUPPRESSION AND DERIVATIVE WAVELET
SCALOGRAM BASED SEGMENTATION OF ARRAY-CGH DATA

3.1 Introduction

When designing and evaluating chromosomal aberration detection algorithms,

most researchers assume that noise in array CGH follows Gaussian distribution [10, 32,

13, 15, 8, 31, 14]. However, this important assumption has been queried and discussed

by Hu et. al. [33]. They showed that array CGH noise distribution is heavy-tailed, but

they did not make conclusion on array CGH noise distribution. Huang et. al. [23]

considered array CGH noise distribution as a student’s t distribution. To address

this important problem, in this chapter, noise in real array CGH data is explored

and any deviations from zero values in normal or self-self test samples (true signal

is expected zero over whole sample) are considered as noise. After the real array

CGH data are analyzed, noise distribution of array CGH data should be assumed

as generalized Gaussian distribution (GGD) which also covers Gaussian distribution.

Five real array CGH data sets with different resolutions are used to support for

new noise model assumption. Based on new noise model, two new synthetic array

CGH data models with GGD noise and real noise are introduced. Hybridization bias

problem [34] is also considered in synthetic array CGH data models. New synthetic

array CGH data models are more accurate than traditional models to evaluate array

CGH analysis algorithms.

In order to develop effective methods identifying aberration regions from ar-

ray CGH data, the previous research works focus on two major issues: smoothing-

based and segmentation-based methods. In 2005, Lai et al. [8] compared 11 different

44
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array CGH analysis algorithms through empirical experiments and concluded that

segmentation-based methods perform consistently well and when the noise is high,

smoothing methods work better.

Smoothing-based methods based on frequency domain to remove noise can dis-

cover small amplitude aberration regions and reduce the number of identified false

aberration regions. However, smoothing-based method could not detect exactly

breakpoints of abberation regions because changing points in array CGH are cor-

responding to high frequency which could be cut in denoising process. Segmentation-

based methods targeted to model data as a series of discrete segments under certain

optimization criterion try to detect breakpoints and directly give out the final results

with visible gain, deletion or normal cases. The segmentation-based methods could

more accurately detect the boundary points. Since the small aberration regions are

highly possible to be buried into its neighbors in high noise case, the false positives

are introduced. It would be very desirable to develop new methods to analyze array

CGH data with advantages from both smoothing and segmentation approaches [33].

In this chapter, a novel derivative wavelet scalogram based segmentation (DWSS)

method that is integrated by both smoothing and segmentation steps is proposed.

This method works well with heavy-tailed noise. DWSS method includes two main

steps: heavy-tailed noise suppression and breakpoint detection. In [8], Wave method

using stationary wavelet transform works very well with Gaussian noise signal. In-

stead of hard threshold [9], generalized Gaussian bivariate shrinkage function will

be designed in stationary wavelet transform to suppress heavy-tailed noise in array

CGH. In 2008, Ben et al. [9] proposed HaarSeg algorithm using simple wavelet based

pattern-matching or wavelet footprint to detect breakpoints in array CGH. HaarSeg

algorithm running very fast gave a promising result in array CGH’s segmentation.

More pattern-matching by Gaussian derivative wavelet scalogram will be studied to
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segment processed array CGH. From 2008 to 2009, Pique-Regi et al. [35] [34] pro-

posed two GADA algorithms in which GADA1 is designed with an assumption that

measurements are unbiased, GADA2 works well with probe hybridization bias. It

is necessary to have a segment method working with both bias and unbias cases.

Our method is designed to be robust with probe hybridization biases [34] in array

CGH. Both Root Mean Square Errors (RMSE) and Receiver Operating Characteris-

tic (ROC) curves are calculated to demonstrate performance. In all experiments, the

new DWSS method whose speed is faster than two previous methods in state of the

art outperforms the previous most commonly used array CGH analysis algorithms

3.2 Array CGH Noise Characteristic

In this section, array CGH noise distribution analysis which used to be studied

by Hu et. al. [33] will continue being analyzed. More datasets which include some

self-test samples will be used to fit noise models in array CGH data. Generalized

Gaussian distribution is proposed as a fittest noise model for this data. Relative

entropy will be used to validate new array CGH noise model.

3.2.1 Data Description

Five real array CGH datasets such as Lee 2008 array [36], Snijders 2001 ar-

ray [37], Bredel 2005 array [38], Smith 2007 array [39] and Nicolas 2009 array [40]

are analyzed. They are the public array CGH data that could be used to study array

CGH noise. Since the true signal of a normal chromosome should only include copy

two, deviations from zero (log2(2/2) = 0) values in real signal of normal chromosome

are considered as noise in array CGH.

In the Lee 2008 array [36] whose platform is Nimblegen Macaque Whole genome

CGH 385K array, there are two self-self test samples (GSM232967, GSM232968) of
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Figure 3.1. Examples of array CGH and their empirical histograms: (a) Chromo-
some 15 of GSM232967, (b) Empirical histogram of chromosome 15 of GSM232967,
(c) Chromosome 13 of GSM215042, (d) Empirical histogram of chromosome 13 of
GSM215042.

Table 3.1. Five datasets which are used to analyze noise in array CGH with many
platforms

Dataset Number Platform
of Arrays

Lee 2008 array [36] 40 Nimblegen Macaque Whole genome
CGH 385K array

Snijders 2001 array [37] 15
Bredel 2005 array [38] 26
Smith 2007 array [39] 69 Agilent-015366 Custom Human

244K CGH Microarray
Nicolas 2009 array [40] 23 Custom Nimblegen array CGH chip

targeted to canFam2 segmental duplications
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log2-transformed ratios (CH1/CH2) with some ten-thousand probes. Totally there

are 40 (2 samples × 20 chromosomes) chromosomes, whose true segmentation results

are zero everywhere, to analyze real noise in this data source. The Snijders 2001

array [37] is from Stanford University with 15 human cell lines. One chromosome in

this data just contains around one hundred of probes. The Bredel 2005 array [38] data

is from Harvard Medical School. This data includes 26 samples, and each sample has

thousands of probes. Many normal chromosomes of the same sample are combined

together, because the number of probes of one chromosome in these data is not

enough for noise analysis (fitting noise model). The Smith 2007 data, whose platform

is Agilent-015366 Custom Human 244K CGH Microarray, includes three control self-

self hybridization samples, and each sample has twenty-three chromosomes. From this

data, there are 69 chromosomes with ten-thousand probes each to study real noise

model because their true signals are expected to be zero everywhere. In the Nicolas

2009 [40] whose platform is Custom Nimblegen array CGH chip targeted to canFam2

segmental duplications, there are 23 chromosomes in self-test sample (GSM334824)

for noise analysis.

3.2.2 Distribution Noise Candidates in Array CGH

After these five datasets are analyzed, the noise distribution of array CGH is

bell-shaped and symmetric. Two samples are shown in Fig. 3.1. They are chromosome

15 of GSM232967 in Fig. 3.1(a) from the Lee 2008 array, and chromosome 13 of

GSM215042 in Fig. 3.1(c) from the Smith 2007 array. Fig. 3.1(b) and Fig. 3.1(d) are

empirical histograms of two above signals. These two histograms are bell-shaped and

symmetric. There are four probability distribution candidates for these noise models

such as Gaussian distribution, generalized Gaussian distribution (GGD), Student’s
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t distribution, and Cauchy distribution. There is another bell-shaped distribution,

extreme value distribution but it is not symmetric.

Fig. 3.2 shows four distribution candidates. Gaussian distribution with zero

mean, shown in Fig. 3.2(a), has PDF as follows

p(x; σ) =
1

σ
√

2π
e−x2/(2σ2), (3.1)

where σ is the standard deviation. Fig. 3.2(c) represents the PDF of Student’s t

distribution as follows

p(x; ν) =
Γ(ν+1

2
)√

νπΓ(ν
2
)
(1 +

x2

ν
)−( ν+1

2
), (3.2)

where ν is the number of degrees of freedom and Γ is the Gamma function. The

last distribution candidate is Cauchy distribution, shown in Fig. 3.2(d), with PDF as

follows

p(x; γ) =
1

πγ[1 + (x2

γ
)]

, (3.3)

where γ is the scale parameter.

GGD, shown in Fig. 3.2(b), will be discussed next. The probability density

function (PDF) of a generalized Gaussian random variable x, with zero mean, is

defined as

p(x; α, β) =
β

2αΓ(1/β)
e−(|x|/α)β

, (3.4)

where Γ(.) is the Gamma function, Γ(z) =
∫∞

0
e−ttz−1dt, with z > 0. Here α is the

standard deviation, while β is inversely proportional to the decreasing rate of the

peak. α is referred to the scale parameter and β is called the shape parameter. The

Gaussian and Laplacian PDF are only special cases of GGD at α = 2 and α = 1,

respectively. If compared to three other distributions, GGD can fit the data with

sharp peak and heavy-tail better. Thus, GGD is proposed to use to capture noise of

array CGH data. The parameters α and the β can be estimated as in [41].
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Figure 3.2. Four probability density candidates with zero mean: (a) Gaussian density
with σ = 0.2, 0.4 and 0.6; (b) Generalized Gaussian density with α = 0.1, β = 0.5, 1,
and 2; (c) Student’s t density with ν = 1, 2 and 10; (d) Cauchy density with γ = 0.5, 1
and 2.

In probability theory or information theory, Kullback-Leibler Divergence (KLD)

is commonly used to measure the difference between two probability distributions.

The following definition is used to calculate KLD between real probability distribution

P and estimated probability distribution Q, .

KLD(P ||Q) =
∑

i

P (i) log10

P (i)

Q(i)
. (3.5)

The entropy of distribution P can be calculated by:

H(P ) =
∑

i

P (i) log10(P (i)). (3.6)
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From Eq. (3.5) and Eq. (3.6):

KLD(P ||Q)

H(P )
=

H(P, Q)−H(P )

H(P )
=

∆H

H
, (3.7)

where ∆H = H(P, Q)−H(P ). KLD(P ||Q)
H

or ∆H
H

can be used to see how the estimated

probability distribution Q fits to real probability distribution P. ∆H
H

is also called as

relative entropy. The fitting between P and Q is better when ∆H
H

is smaller.

3.2.3 Validation of New Array CGH Data Noise Model

In this part, four candidates including Gaussian, GGD, student’s t, and Cauchy

are employed to fit noise distribution. The real noise of array CGH signal is obtained

from five sources: Lee 2008 array [36], Snijders 2001 array [37], Bredel 2005 array [38],

Smith 2007 array [39] and Nicolas 2009 array [40]. To estimate the parameters of

Gaussian, Student’s t, and Cauchy models, the nonlinear curve-fitting method is

used. ∆H/H (relative entropy) between each model and empirical noise PDF can

be calculated by Eq. (3.7). This ∆H/H value represents the difference between two

PDFs. A model fits an empirical PDF better than another one if its ∆H/H is smaller.

Two examples of fitting models are shown in Figs. 3.3 and 3.4. Histogram

of GSM232967’s chromosome 15 and fitting results in Fig. 3.3 illustrate that the

difference between GGD model and empirical noise PDF is much less than that of

other models. KLD between GGD model and empirical PDF is 0.0061, while KLDs

between Gaussian, student’s t, Cauchy model and empirical PDF are 0.0155, 0.0135

and 1.7583, respectively. This result also agrees with chromosome 13 of GSM215042 in

Fig. 3.4. Relative entropy ∆H/H of GGD is 0.0108, smallest, while KLDs of Gaussian,

Student’s t and Cauchy are 0.0339, 0.0251 and 0.4692, respectively. From the above

fitting results, the relative entropy ∆H/H between GGD and noise histogram is

always smallest. GGD outperforms other distributions in fitting evaluations. Both
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Table 3.2. Average ∆H/H of five distributions. Lee 2008 array includes 60 samples.
Snijders 2001 array includes 15 samples. Bredel 2005 array includes 26 samples.
Smith2007 array includes 69 samples. Nicolas2009 array has 23 samples

Data Gaussian GGD Student t Cauchy
Lee 2008 0.0200 0.0083 0.0172 0.8846
Snijders 2001 0.0471 0.0216 0.0252 0.3154
Bredel 2005 0.0846 0.0227 0.0588 0.5770
Smith 2007 0.0298 0.0184 0.0259 0.7997
Nicolas 2009 0.0311 0.0243 0.0461 0.4238

student’s t distribution and GGD fit better than Gaussian model. Therefore, noise

in array CGH is really heavy-tailed. This result also agrees with the conclusion of

paper [33] in which array CGH data noise is a highly non-Gaussian with heavy tail.

Relative entropy ∆H/H is also calculated between each model and individual

empirical PDF of 40 arrays from Lee 2008 array, 15 arrays from Snijders 2001 array, 26

arrays from the Bredel 2005 array, 69 arrays from the Smith 2007 array and 23 arrays

from Nicolas 2009. Then the average KLDs between each model and each data source

are calculated as shown in Table. 3.2. The difference between the GGD model and

noise PDF is the smallest in all data sources with many platforms. Compared with

Gaussian, student’t and Cauchy models, GGD model is more accurate and sufficient

for fitting empirical noise PDF in the array CGH data than the others. It can capture

behaviors of the real noise PDF. Therefore, GGD model is proposed as a new noise

model assumption in the array CGH data. Then, a smoothing algorithm will be

developed based on this GGD noise model.

3.3 Proposed Methods

How to reduce heavy-tailed noise in array CGH and how to detect breakpoints

of array CGH data are two problems which will be solved in this section. Generalized
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Figure 3.3. The relative entropy between the histogram of the chromosome 15 of
GSM232967 and four distribution candidates such as (a) Gaussian: ∆H/H = 0.0155,
(b) Generalized Gaussian: ∆H/H = 0.0061, (c) student’s t: ∆H/H = 0.0135, and
(d) Cauchy: ∆H/H = 1.7583.

Gaussian bivariate shrinkage function based de-noising procedure in wavelet domain

will be mentioned in the first sub-section. In the second sub-section, wavelet deriva-

tive scalogram in 1-D will be defined to detect breakpoints which mark changing

points of segments in array CGH. In the last sub-section, the main method which

is combination of heavy-tailed noise suppression and wavelet pattern-matching for

breakpoint detection will be proposed.
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Figure 3.4. The relative entropy between the histogram of the chromosome 13 of
GSM215042 and four distribution candidates such as (a) Gaussian: ∆H/H = 0.0339,
(b) Generalized Gaussian: ∆H/H = 0.0108, (c) student’s t: ∆H/H = 0.0251, and
(d) Cauchy: ∆H/H = 0.4692.

3.3.1 Heavy-Tailed Noise Suppression

As discussed in section ”Array CGH Noise Characteristic”, generalized Gaus-

sian should be a better noise assumption than Gaussian or the others. With this

new noise assumption, de-noising becomes a challenging problem. According to com-

parison in [8], with Gaussian noise assumption, Wave [9] in which SWT and hard

thresholding are used is a really good method. So, SWT will be continued to use

for noise reducing in this chapter. However, the hard threshold based estimator is

replaced by a new estimator which is designed to operate with heavy-tailed noise.
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Figure 3.5. The position of child and parent coefficients in stationary wavelet domain.

Huang et al.[42] and Nguyen et al.[43] applied that function in the complex

wavelet transform domain to recover array CGH data successfully and got promising

results. However, noise here is assumed as generalized Gaussian. So, the idea in [1]

will be imitated to build new algorithm for new noise in SWT. Generally the array

CGH data Y can be obtained by:

Y = D +N , (3.8)

where D is the deterministic signal and N represents for generalized Gaussian noise

which has distribution as Eq. (3.4). The coefficients yk can be obtained by decom-

posing the data Y with the SWT and those coefficients can be formulated as

y1 = w1 + n1,

y2 = w2 + n2,
(3.9)

where y1 and y2 are noisy wavelet coefficients, w1 and w2 are true coefficients. The

noise pdf should be followed as

pn(n) = K(α, β) exp(−|n1|β + |n2|β
αβ

), (3.10)

where K(α, β) = β
2αΓ(1/β)

. The standard MAP estimator [1] of w from y is followed

as

ŵ(y) = arg max
w

[loge(pn(y-w)) + loge(pw(w))]. (3.11)
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Figure 3.6. The histograms computed from true array CGH signals. (a) Histogram
of w1 , (b) Histogram of w2.

Fig. 3.6 illustrates the histogram of w1 (child) and w2 (parent). The w1 and

w2 are computed from array CGH data without noise by using the SWT. Fig. 3.7

shows the joint distribution of w1 and w2. Two pdfs are being proposed to fit the

joint distribution.

The imitated idea [1] is used to propose a non-Gaussian bivariate pdf for w1

and w2 as

pw(w) =
3

2πσ2
exp(−

√
3

σ

√
|w1|2 + |w2|2). (3.12)

This pdf (3.12) is sketched in Fig. 3.8. With this pdf, two variables w1 and w2 are

really dependent. Let us define

f(w) = loge(Pw(w)) = loge(
3

2πσ2
)−

√
3

σ

√
|w1|2 + |w2|2. (3.13)
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Figure 3.7. The joint distribution of w1 and w2 which are created from decomposition
of true array CGH signal.
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58

By using Eq.(3.10), Eq.(3.11) becomes:

ŵ(y) = arg max
w

[loge(K(α, β))− |y1 − w1|β + |y2 − w2|β
αβ

+ f(w)]. (3.14)

Solving Eq.(3.14) is equivalent to solving two following equations:

sign(y1 − w1)× β × |y1 − w1|β−1

αβ
=

√
3w1

σ
√
|w1|2 + |w2|2

, (3.15)

sign(y2 − w2)× β × |y2 − w2|β−1

αβ
=

√
3w2

σ
√
|w1|2 + |w2|2

. (3.16)

If this is Gaussian noise (β = 2 and σn
2 = α2

2
), according to [1], the solutions

can be formulated as

ŵ1(β = 2) =
(
√
|y1|2 + |y2|2 −

√
3σn

2

σ
)+√

|y1|2 + |y2|2
.y1, (3.17)

ŵ2(β = 2) =
(
√
|y1|2 + |y2|2 −

√
3σn

2

σ
)+√

|y1|2 + |y2|2
.y2, (3.18)

where ()+ is defined by

(u)+ =





0 if u < 0,

u otherwise.
(3.19)

In Eq. (3.17) and Eq. (3.18), σ can be estimated by

σ̂ =
√

(σ̂2
y − σ̂2

n)+, (3.20)

where σ̂n is the noise deviation which is estimated from the finest scale wavelet coef-

ficients by using a robust median estimator [24] as follows

σ̂2
n =

median(|yi|)
0.6745

. (3.21)

σ̂y is the deviation of observation signal estimated by

σ̂2
y =

1

M

∑

yi∈N(i)

|yi|2, (3.22)
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where M is the size of the neighborhood N(i).

The successive substitution method can be used to get solution in general case

of β.

Step 1 Initialize ŵ1
[0] = ŵ1(β = 2) and ŵ2

[0] = ŵ2(β = 2) at k = 0

Step 2 Calculate r1
[k] and r2

[k] using

r1
[k] =

√
(ŵ1

[k])2 + (ŵ2
[k])2 × |y1 − ŵ1

[k]|(β−1) × sign(y1 − ŵ1
[k]). (3.23)

r2
[k] =

√
(ŵ1

[k])2 + (ŵ2
[k])2 × |y2 − ŵ2

[k]|(β−1) × sign(y2 − ŵ2
[k]). (3.24)

Step 3 Find ŵ1
[k+1] =

βσr1
[k]

αβ
√

3
and ŵ2

[k+1] =
βσr2

[k]

αβ
√

3
Step 4 Find the differences ε1 = ŵ1

[k+1] − ŵ1
[k] and ε2 = ŵ2

[k+1] − ŵ2
[k]

Step 5 If both ε1 and ε2 are small, then terminate the iteration. Otherwise, set k = k+1

and go to step 2.

3.3.2 One-Directional Derivative Wavelet Scalogram

After noise suppression step, beakpoints in processed array CGH will be de-

tected by 1D scalogram whose theory is studied as the following section. True array

CGH is considered as a mixture of step functions as follows

f(t) =
N∑
i

fi(t) =
N∑
i

Ai × u(t− t0i). (3.25)

The continuous wavelet transform can be written as a convolution product in Eq. 3.26:

Wf(u, s) =

∫ +∞

−∞
fi(t)

1√
s
Ψ?(

t− u

s
)dt, (3.26)

where ? is the conjugate. According to [44], the wavelet transform in Eq. 3.26 can be

rewritten as a multi-scale differential operator in Eq. 3.27

Wnf(u, s) = sn dn

dun
(fi ∗ θ̄s(t))(u), (3.27)
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where ∗ is convolution. In HaarSeg method [45], the simple derivative wavelet (Haar

filters) has been used. The result in HaarSeg method is really promising because

of not only segment result but also algorithm speed. However, Haar wavelet is so

sensitive with heavy-tailed noise. In this paper, Gaussian wavelet is used instead of

Haar wavelet to make sure that our method is robust with noise. So, θ̄s(t) can be

written as follows

θ̄s(t) =
1√
s
exp(− t2

s2
). (3.28)

Taking convolution fi ∗ θ̄s, one gets

Wf(u, s) = Ai ×
∫ +∞

t0i

1√
s
e
−(t−u)2

s2 dt, (3.29)

W1f(u, s) = −Ai ×
√

s× e
−(u−t0i)

2

s2 . (3.30)

W1f(u, s) gets maximum at u = t0i. The scalogram in 2D is obtained by:

WS(u, s) = 100×
(W1f(u,s)√

s
)2

∑N
i=1 (W1f(u,s)√

s
)2

. (3.31)

However, breakpoint detection using wavelet pattern-matching could not be finished

easily in 2D scalogram. So, scalogram in 2D will be transformed into 1D by using

two following steps. In the first step, ridge lines [44] are identified by linking the

local maxima of 2-D scalogram at each scale level. LR and U(u) represent linking line

length and a vector including linked maxima position with position u at scale one.

Also in this step, ridge line whose length is smaller than a certain threshold should

be reset to zero. Step one can be formulated as

U =





0 if LR <threshold ,

u1 u2 ...usmax otherwise.
(3.32)
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In this chapter, threshold is selected as 32. In the second step, 1-D scalogram

is built as follows

WS1D(u) =





0 if U = 0,

∑
u∈U WS(u, s) otherwise,

(3.33)

where u = U(u) =
u1 + u2 + ... + usmax

smax

3.3.3 Derivative Wavelet Scalogram based Segmentation Method

Derivative wavelet scalogram based segmentation (DWSS) proposed in this

chapter is based on two steps as follows

Step 1: Noise Suppression

First, heavy-tailed noise in array CGH signal will be removed by generalized

Gaussian bivariate shrinkage function in stationary wavelet domain. After array

CGH is decomposed by SWT, noise suppression should be done by five steps in

Section ”Heavy-Tailed Noise Suppression”. Just high frequency scales should be

applied to remove noise. Approximation scales are kept to make sure that true

signal should not be removed in de-noising process. After that, noise suppressed

array CGH signal is obtained back by taking inverse SWT.

Step 2: Breakpoint Detection

1-D Gaussian derivative wavelet scalogram is used to detect breakpoints in noise

suppressed array CGH. Mean value of processed signal in each segment will be

considered as log2ratio of that segment.

Fig 3.9(a) illustrates two steps of DWSS. This real noise simulated sample is

just removed outlier. Noise in that sample is also reduced but there is still noise

inside signal to keep true signal and make algorithm run faster. Gaussian derivative

wavelet scalogram in 2D is built from denoised signal. 96 scales are used to build
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(a)

(b)

Figure 3.9. One example of DWSS method. (a) Demo of two steps in DWSS: this
sample is real noise simulated array CGH with bias of 0.2. Noise suppression step
and breakpoint detection step are illustrated. (b) Segment Result by DWSS on one
sample: DWSS detects exactly four segments (two normals, one deletion and one
gain) in this sample.
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this scalogram. Even though footprints of breakpoints are visible in 2-D scalogram,

breakpoints could not be detected easily. So, scalogram in 1D is defined and used

to detect breakpoints. 1D scalogram has large value at positions corresponding to

breakpoints in array CGH in the fourth sub-figure in Fig 3.9(a). The final segmenta-

tion result of DWSS in this example is shown in Fig 3.9(b) in red points. The black

line represents true signal and blue points are noise simulated data. Evaluation of

the proposed method will be discussed in next section.

3.4 Results

In this section, how to improve array CGH synthetic data model will be in-

troduced. Next, a comparison of the proposed method to previous works by using

RMSE and ROC curves will be mentioned. In conclusion, DWSS works robustly and

accurately with heavy-tailed noise and probe hybridization bias.

3.4.1 Improved Synthetic Data Model

Synthetic array CGH data is very important for array CGH study and algorithm

evaluation. Because the ground truth of array CGH aberration regions is known

in synthetic array CGH data, the different smoothing or segmentation algorithms’

performance can be measured. However if the synthetic array CGH data model cannot

correctly represent the natural properties of real array CGH data, the evaluation

results based on them will mislead the array CGH studies. So far, the most commonly

used synthetic array CGH data model was proposed by Willenbrock and Fridlyand

[15] in 2005. They segmented a primary tumor dataset of 145 samples using DNA

copy number levels from the empirical distribution of segment mean values. They got

results such as copy number probabilities and the distributions of segment length.

The expected log2ratio for each clone was computed as log2(
cPt+2(1−Pt)

2
) where c was
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Table 3.3. Estimated values for the parameters α, β of real array CGH noises

Data Source α β
Lee 2008 (40 samples) 0.1998 → 0.3032 1.165 → 1.9109
Smith 2007 (69 samples) 0.1221 → 0.2010 1.0538 → 1.7342
Nicolas 2009 (23 samples) 0.2547 → 0.3032 1.7841 → 2.3764

the assigned copy number with Pt is a proportion of tumor cells whose value is from

a uniform distribution between 0.3 and 0.7. The probe hybridization bias proposed

in [34] is also added to true signal.

Y = D +R+N , (3.34)

where D is true signal, R is hybridization bias and N is noise. b can be used as a

ratio of from zero to one to change bias value in simulated data.

R = b× (0.5 sin(2π0.001m) +N (0, 0.25)), (3.35)

Where m is the length of simulated signal, b is the bias value. Following this standard

model, true array CGH signal without noise can be used. In order to improve their

model [15] in which Gaussian noise is used, two different types of noises (GGD noise

and real noise) are proposed to add to true signal to create two new synthetic array

CGH data models.

3.4.1.1 GGD Noise

As discussed in the previous section, GGD fits very well noise PDF in the array

CGH data. Parameters α and β are estimated as shown in table 3.3. From table. 3.3,

the parameter α ranges from 0.12 to 0.3 and the parameter β ranges from 1.05 to

2.38. Therefore, GGD noise model with α and β values as Table. 3.3 should be used

for synthetic array CGH data generation.
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3.4.1.2 Real Noise

The real noise is extracted from array CGH data as following steps. First,

histogram of a real array CGH data containing noise only is shown in Fig. 3.10 (a).

From this histogram, a discrete PDF with number of bins of 64 is formed as Fig. 3.10

(b). Then the 64 bins-PDF is interpolated and new PDF is normalized to get with

some thousands of bins as Fig. 3.10 (c). Finally a new random noise vector will be

yielded from this PDF. In the experiments, 40 arrays of the Lee 2008 array [36],

69 arrays of the Smith 2007 array [39] and 23 arrays of Nicolas 2009 array [40] are

used with ten thousands probes which contain noise only. Therefore, there are 132

high standard deviation PDFs to create thousands of random noise vector which are

added to true signal to create real noise simulated array CGH data. One example to

illustrate how to get real noise is shown in Fig. 3.10.
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Figure 3.10. The procedure to create real noise from chromosome 19 of GSM232967
(a) Histogram with number of bins of 64 (b) PDF number of bins of 64 (c) PDF
number of bins of 1024.

After noise is added, unequally spaced probes [13] are created. The intuition

of this step is that the distances between probe k and probe k + 1 are randomly and

the best way to get these distances from the real array CGH data, such as Lee 2008

array [36] for high resolution. Then unequally spaced probes on chromosomes are
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Figure 3.11. Summary result: average RMSEs of all testing methods on three simu-
lated data-sets and real data set are shown in this table. Eight methods in this table
are Lowess, Wave, SmoothSeg, HaarSeg, CBS, GADA1, GADA2 and DWSS meth-
ods. Different bias levels are tested with each simulated data-set and average RMSEs
are obtained. Three real data-sets are used and also average RMSEs are obtained.

placed. Number of probes can be low, high and very high. Now, there are many

artificial chromosomes of length 200 Mbase with three resolutions and two kinds of

noise including generlized Gaussian noise and real noise.

3.4.2 Performance Evaluation of DWSS Method

DWSS method is compared to other most commonly used methods in literature,

such as Lowess [8], Wave [9], Smoothseg [23], HaarSeg [45], CBS [32], GADA1 [35]

and GADA2 [34]. R package DNAcopy version 1.14 for CBS, R package smoothseg

for smoothseg, and R package waveslim for Wave are used. With Lowess, HaarSeg,

GADA1, GADA2 and the proposed method, Matlab has been used. HaarSeg, GADA1

and GADA2 ’s implement are downloaded from sharing link in [45] and in [34].
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3.4.2.1 RMSE Comparison

One thousand high resolution simple chromosomes are created with three kinds

of noise such as Gaussian, GGD and real noise. The root mean square errors (RMSEs)

of all methods are calculated and shown in Table. 3.11. With these simulated data,

the DWSS method has the best performance. The DWSS outperforms averagely the

Lowess by 78%, the Wave by 77%, the Smoothseg by 82%, the HaarSeg by 51%, the

CBS by 78%, the GADA1 by 78% and the GADA2 by 40% in terms of the RMSEs.

For all noises, the DWSS consistently achieves much better results than the others.

Real array CGH data is also used to evaluate performances of eight methods.

Lee 2008 array [36] array including 40 samples, Smith2007 array including 69 samples

and Nicolas 2009 including 23 samples are three real data with the known ground

truth. In table.3.11, the performance of DWSS method is much better than that of

the others. Average RSME of the proposed method is smaller than SmoothSeg by

5.7, Lowess, CBS and GADA1 by 4.5 times, Wave by 4.3 times, HaarSeg by 2 times

and GADA2 by 1.7 times.

In general, when both simulated and real data are considered, the proposed

method improved 41% to 77% when compared to previous methods.

3.4.2.2 ROC Curve Comparison

A comparison of array CGH detection algorithms was studied by Lai et. al. [8].

They used the ROC curve to evaluate 11 algorithms with aberration widths of 5,

10, 20 and 40, and signal-to-noise ratios (SNRs) of 1, 2, 3 and 4. Many synthetic

chromosomes consisting of 100 probes are created from four templates with Gaussian

noise and square-wave signal at the center of chromosome . In 2007, Huang et al. [23]

improved this setting by decreasing the width of the center square-wave and increasing
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the noise level. In [45], 2008, Ben and Eldar proposed using very high resolution data

and real noise to improve the quality of evaluation. In this section, the performance

of all methods will be evaluated not only at the middle of signal but also at the

border of signal. Therefore, four templates with the aberration at the center and four

more templates with the aberration at the border are used. The aberration widths

used in this section are 5%, 10%, 15% and 20% of whole chromosome length. Both

Gaussian and real noise are used to evaluate all methods. The real noise from forty

self-self test arrays of Lee 2008 array [36] is also used to add to these templates.

In all cases, bias of 0.8 will be added to make problem harder. Using all eight

genomic templates, 100 noise array CGH arrays are generated with unequally spaced

probes. Segmentation performances of all methods are tested on three true segment

amplitudes of log2
3
2
, log2

4
2

and log2
5
2
. In Fig. 3.12, when real noise simulated data

which has gain segmentation amplitude of log2
5
2

is used, the performances of DWSS

and GADA2 are the best. HaarSeg and CBS work well and their ROC curves are very

close together. Wave method also work well. The next ones are GADA1, SmoothSeg

and Lowess. With Gaussian noise (not shown here), except for Lowess’ performance,

all methods’ ROC curves are very close together and perfect. Simulated data makes

more difficult to segment in Fig. 3.13. The gain segment amplitude is reduced to

log2
4
2

and log2
3
2
. With copy of four in Fig. 3.13 (b)(d), DWSS and HaarSeg still

work well. Performance of GADA2 gets worse fast and is worse than DWSS and

HaarSeg’s ones. With copy of three in Fig. 3.13 (a)(c), most of methods get worse.

However, DWSS is still the best method. The next ones are HaarSeg and GADA2.

These results confirmed above results when RMSEs are used.

When both RMSEs and ROC curves are used, DWSS has the best performance.

GADA2 and HaarSeg are good methods being robust with bias. GADA2 is more

robust with heavy-tailed than HaarSeg. HaarSeg detects segments which have small
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Figure 3.12. One hundred real noise simulated samples which true abnormal segments
have amplitude of log2

5
2

are used. Bias of 0.8 is used in this case. ROC curves are
obtained from arrays which are generated from 8 genomic templates and real noise
source. DWSS is compared to other most common used array CGH algorithms such as
Lowess, Wave, SmoothSeg, HaarSeg, CBS, GADA1 and GADA2. The performances
of DWSS and GADA2 are the best. HaarSeg and CBS also work well and their ROC
curves are very close together.

Signal-Noise ratio better than GADA2. GADA1 and CBS are comparable. About

algorithm speed, DWSS runs faster than GADA2 by 1.6 times and CBS by 7.4 times.

3.5 Discussion

In this section, eight methods will be discussed more. Two concepts which will

be used to study these methods are robustness with heavy-tailed noise and sensitivity

with hybridization bias. Pros and cons of seven previous methods will be studied.

First, based on table. 3.4 and two figures (Fig. 3.12 and Fig. 3.13), eight methods are

tested with Gaussian and heavy-tailed noise. In this testing, biases of 0.2, 0.4 and

0.8 are used.
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Lowess method [8] is robust with heavy-tail but so sensitive with bias. In

general, performance of Lowess is not really good. Wave method [9] should be used

with Gaussian noise and without bias because of its’ nice result and fast speed. Wave

method is designed for Gaussian noise so it is not robust with heavy-tailed noise

and it is also sensitive with bias. With small SNR, Wave method’s performance

is comparable with that of CBS and GADA1 methods. SmoothSeg method [23] is

designed for heavy-tail noise so it operates well with generalized Gaussian noise in

which β is smaller than 2. However, if compared to other methods, SmoothSeg

method’s performance is the worse. HaarSeg method [45] uses wavelet based pattern

matching so it is so robust with bias. However, Haar filter is used in stationary wavelet

domain, so it is so sensitive with outlier or it is not robust with heavy-tailed noise.

However, this method gives a promising result. HaarSeg is better than denoising

methods and two segmentation methods such as CBS and GADA1. If compared by

ROC curves, HaarSeg works even better than GADA2 in case of small SNR. CBS

method [32] is the best in case without bias. That means that CBS is really robust

with heavy-tailed noise. However, it is so sensitive with bias. That is the reason

it get worse when signal has bias. GADA1 method [35] can be comparable with

CBS. However robust property with heavy-tailed noise is not good as CBS. This

method runs much faster than CBS. It still has a problem with bias as CBS. GADA2

method [34] is designed to operate with probe hybridization bias. It is also robust

with heavy-tailed noise. This method is better than GADA1, CBS, HaarSeg and all

denoising methods. Becuase GADA2 is designed to be robust with hybridization, it

will lost some segment with small energy. This is its disadvantage. With small SNR

segments, GADA2 works worse than DWSS and HaarSeg. However, except for that

disadvantage, this method was the best method so far.
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With Gaussian noise and no bias, there are three methods whose RMSEs are

smaller than 0.001. They are Wave, CBS, GADA1 and DWSS. With this case, Wave

method is good enough because its’ RMSE is small enough and it’s speed is fast. With

heavy-tailed noise and no bias, Wave and GADA1 methods get worse. Two methods

which still work well with heavy tailed noise are CBS and DWSS. So, CBS is best

method with simulated data (Gaussian and GGD) without bias. However, with bias,

CBS gets worse so fast. Just DWSS is robust with hybridization bias and heavy

tailed noise. Some methods being sensitive with bias are Lowess, Wave, SmoothSeg

and GADA1. With real noise without bias, DWSS is the best, CBS is the second

and GADA1 is the third. In both Gaussian noise and real noise, DWSS is on the

top, GADA2 is the second one, HaarSeg is the third one. In real data, GADA2 is the

second, DWSS is the best. HaarSeg gets worse in this data because of heavy-tailed

noise.

Two samples in Fig. 3.14 and Fig. 3.15 are used to illustrate how heavy-tailed

noise and bias effect to performances of Wave, HaarSeg, CBS, GADA1, GADA2

and DWSS. Wave represents denoising methods. The rest methods are segmenta-

tion methods. In Fig. 3.14, a real noise simulated sample without bias is used to

show that Wave is sensitive with outlier or heavy-tailed noise. Also in this example,

HaarSeg and GADA2 lose the second segment (deletion), while CBS, GADA1 and

DWSS segmented enough three segments. In Fig. 3.15, also with real noise simulated

sample, however, bias of 0.2 (see Eq.(3.35)) has been added to this sample to test

how hybridization bias effect to testing methods. Wave is smoothing method so it

is so sensitive with hybridization bias. CBS and GADA1 are not designed for bias

problem so their performances get worse with bias. In this sample, HaarSeg, GADA2

and DWSS are robust with hybridization bias. However, only DWSS detects exact

three segments( two normal and one deletion). Through this sample, HaarSeg is not
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really robust with outlier. Heavy-tailed noise suppression step helps DWSS be robust

with outlier.

3.6 Conclusion

In this chapter, noise distribution has been studied in array CGH data using

five real datasets in many platforms with different resolutions. As discussed, almost

all previous array CGH data processing and analysis methods assumed that the noise

PDF is Gaussian. However the recent work and experimental results show that array

CGH noise is heavy-tailed noise. When compared with other distributions used in

previous research such as Gaussian and Student’s t distributions, generalized Gaussian

distribution fits very well noise PDF in the array CGH data. Therefore GGD has been

proposed for modeling noise assumption in the array CGH data and developed a novel

smoothing-segmentation method based on this generalized Gaussian noise. Bivariate

shrinkage’s theory in SWT is built with an approach to suppress heavy-tailed noise

in array CGH. One-directional Gaussian wavelet derivative scalogram is defined and

proposed to detect breakpoints in array CGH. Because the ground truth aberration

regions are not clear in real array CGH datasets, synthetic array CGH data plays an

important role in array CGH analysis algorithm evaluation. By generalized Gaussian

noise and real noise are used, the synthetic array CGH data models which are closer

to the real array CGH data than the most commonly used standard [15] and [34]

have been improved. Both synthetic data and real data are used to evaluate the

performance of the proposed method, DWSS. New method outperforms other most

commonly used algorithms in array CGH literature both in terms of RMSE and ROC

curve.
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Figure 3.13. One hundred simulated samples whose true abnormal segments have
amplitudes of log2

3
2

and log2
4
2

are used. Bias of 0.8 is also used in these figures.
ROC curves are obtained from arrays which are generated from 8 genomic templates
and both Gaussian as well as real noise source. DWSS is compared to other most
common used array CGH algorithms such as Lowess, Wave, SmoothSeg, HaarSeg,
CBS, GADA1 and GADA2. In four cases, DWSS still yields the best performance.
The second one is HaarSeg. (a)Gaussian Noise-Segment gain of log2

3
2
, (b)Gaussian

Noise-Segment gain of log2
4
2
, (c)Real Noise-Segment gain of log2

3
2
, (d)Real Noise-

Segment gain of log2
4
2
.
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Table 3.4. Comparison of average RMSEs obtained from six simulated data-sets
with 1,000 arrays each will be shown in this table. Gaussian noise and GGD
noise representing for heavy-tail noise will be added to true signal. Bias of 0,
0.2 and 0.4 (see Eq.(3.35)) are used in each kind of noise. Eight tested meth-
ods are Lowess(L), Wave(W), SmoothSeg(S), HaarSeg(H), CBS(C), GADA1(G1),
GADA2(G2) and DWSS(D). Gauss(.2) means Gaussian(σ = 0.2). GG(.2,1.2) means
GGD(α = 0.2,β = 1.2).

Noise Bias L W S H C G1 G2 D
Gauss(.2) 0 .0492 .0071 .0448 .0124 .0041 .0063 .0128 .0058
Gauss(.2) 0.2 .0677 .0610 .0867 .0244 .0721 .0703 .0189 .0113
Gauss(.2) 0.4 .1077 .1305 .1550 .0488 .1436 .1418 .0446 .0281
GG(.2,1.2) 0 .0473 .0179 .0386 .0125 .0048 .0145 .0118 .0057
GG(.2,1.2) 0.2 .0679 .0624 .0850 .0261 .0714 .0700 .0189 .0122
GG(.2,1.2) 0.4 .1071 .1305 .1550 .0497 .1434 .1417 .0456 .0293

Table 3.5. Comparison of average RMSEs obtained from three real noise simulated
data-sets with 1,000 arrays each. Biases of 0, 0.2 and 0.4 (see Eq.(3.35) are used in this
case. Eight tested methods are Lowess(L), Wave(W), SmoothSeg(S), HaarSeg(H),
CBS(C), Gada1(G1), Gada2(G2) and DWSS (D).

Bias L W S H C G1 G2 D
0 .0522 .0345 .0492 .0330 .0161 .0199 .0239 .0107
0.2 .0706 .0710 .0896 .0425 .0742 .0725 .0286 .0168
0.4 .1089 .1344 .1567 .0588 .1446 .1427 .0482 .0312

Table 3.6. Comparison of average RMSEs obtained from Lee 2008 array including 40
samples, Smith2007 array including 69 samples and Nicolas2009 array including 23
samples. Six tested methods are Lowess(L), Wave(W), SmoothSeg(S), HaarSeg(H),
CBS(C), GADA1(G1), GADA2(G2) and DWSS(D).

Data Source L W S H C G1 G2 D
Lee 2008 .0257 .0436 .0555 .0352 .0286 .0301 .0156 .0017
Smith 2007 .0330 .0581 .0551 .0515 .0425 .0390 .0154 .0127
Nicholas 2008 .0386 .0338 .0697 .0217 .0439 .0308 .0185 .0128
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Figure 3.14. With real noise simulated data without bias, CBS, GADA1 and DWSS
get good results. Wave is sensitive with heavy-tailed noise. HaarSeg and GADA2
miss some segments.
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Figure 3.15. With real noise simulated data with bias of 0.2 (see Eq.(3.35)), just
DWSS provides good result. CBS and GADA1 are so sensitive with bias. GADA2
is better but it cannot give good result. HaarSeg and Wave are not robust with
heavy-tailed noise.



CHAPTER 4

GABOR FILTERS AND ENVELOPE ANALYSIS BASED MASS
SPECTROMETRY PEAK DETECTION

4.1 Introduction

Mass Spectrometry (MS) is an analytical technique that has been widely used

to discover diseases related proteomic patterns. From these proteomic patterns, re-

searchers can identify bio-markers, make an early diagnosis, observe disease progres-

sion, response to treatment and so on. Peak detection is one of the most important

steps in the analysis of mass spectrum because its performance directly affects the

other processing steps and final results such as profile alignment [46], bio-marker

identification [47], and protein identification [48].

There are two peak detection approaches: denoising [49, 50] and non-denoising

(or decomposing) [51, 52] methods. There are several similar steps between these two

approaches such as baseline correction, alignment of spectrograms, and normalization.

They also use local maxima to detect peak positions and use some rules to quantify

peaks. Specially, both approaches use the signal to noise ratio (SNR) to remove the

small energy peaks whose SNR values are less than a threshold. However, in the

denoising approach, before peak detection, a denoising step is used to reduce the

noise of mass spectrum data. In the non-denoising approach, a decomposition step is

used to analyze mass spectrum into different scales before the peak detection by local

maxima. When the smoothing step is applied into denoising approach, it possibly

removes both noise and signal. If the real peaks are removed by smoothing step, they

can never be recovered in the other processing steps. As a result, some important

information is lose and error is introduced into MS data analysis. Thus, the way of

77
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decomposistion a signal into many scales without denoising is a really better approach

with great potentials.

The SNR is used to identify peaks in both denoising and non-denoising meth-

ods. Du et al [51] estimated the SNR in the wavelet space and got much better

results than the previous work. However, they still failed to detect some peaks with

small SNRs [51]. This problem came from the SNR value estimation and all previous

methods estimated the SNR values by using the relationship between the peak ampli-

tude and the surrounding noise levels. Since some sources of noise can also have high

amplitudes, the high amplitude peak does not always guarantee to be a real peak.

On the other hand, some low amplitude peaks can also be real peaks. It is clear that

the way using SNR to quantify peaks is not efficient and not accurate.

In this chapter, two novel robust MS peak detection approaches such as Gabor-

Local and GaborEnvelop are proposed. First the Gabor filters are used to create

many scales from the original signal without smoothing. The Gaussian local maxima

is exploited to detect peaks in the GaborLocal method instead of the local maxima

that is less robust to the noise of mass spectrum. Furthermore, the envelope analysis

is also proposed and applied to detect peaks in the GaborEnvelop method. Finally,

the peak rank (PR) is used to remove some false peaks instead of the SNR. The real

SELDI-TOF spectrum with known polypeptide composition and position is used to

evaluate the proposed methods. The experimental results show that new approaches

can detect both high amplitude and small amplitude peaks with a low false discovery

rate and are much better than the previous methods. Two proposed methods are also

compared in section 4.5.3.
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Figure 4.1. Frequency supports of complex Gabor filters. (a) uniform filters, and (b)
non-uniform filters.

4.2 Complex Gabor Filters

The Gabor filters are developed to create Gaussian transfer functions in the

frequency domain. The Gabor filters have been shown to have optimal combined

localization in both spatial and spatial-frequency domains ([53, 54]). A generic one-

dimensional Gabor function and its Fourier transform are given by:

h(t) =
1√
2πσ

exp(− t2

2σ2
) exp(j2πFit),

H(f) = exp(−(f − Fi)
2

2σ2
f

),
(4.1)

where σf = 1/(2πσ) represents the bandwidth of the filter and Fi is the central

frequency. In certain applications, this filtering technique has been demonstrated to

be robust and fast ([55]) and the recursive implementation of 1D Gabor filtering has

been shown in [56]. This recursive algorithm for the Gabor filter possibly achieves

the fastest implementation. For a signal consisting of N samples, this implementation

requires O(N) multiply-and-add operations.

The Gabor filter can be viewed as a Gaussian modulated by a complex sinusoid

(with center frequencies Fi). This filter responds to some frequency, but only in a
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localized part of a signal. The coefficients of Gabor filters are complex. Therefore,

the Gabor filters have one-side frequency support as shown in Fig. 4.1.

4.3 Envelope Analysis

In this section, a novel analysis method, envelope analysis which is based on

the Gaussian local maxima, minima, and interpolation algorithms is proposed. A

signal can be decomposed into three envelopes including maximal envelope, minimal

envelope, and median envelope that will be defined and described below.

Gaussian local maxima and minima: Local maxima and local minima of

y(t) will be found. Two steps should be followed such as computing derivative of

y(t) and finding zero crossing. The derivative of y(t) is approximated by the finite

difference as follows:

d(y(t))

dt
= lim

h−>0

y(t + h)− y(t)

h
≈ y(t + 1)− y(t). (4.2)

At t = t0, if the derivative of y(t) equals to zero and has a change from positive to

negative or from negative to positive, there is zero-crossing. If the derivative of y(t)

changes from positive to negative at t0, there is local maxima at t0. Otherwise, if the

derivative of y(t) changes from negative to positive at t0, there is local minima at t0.

With discrete signal, Eq. 4.2 can be rewritten as follows

d(y(n))

dn
= y(n + 1)− y(n) = y(n) ∗ [1 − 1]. (4.3)

Unfortunately, MS data always have noise. Thus, Gaussian filter g(t, σ) is used to

make the proposed methods more robust to noise in MS data. This is not a denoising

step because the noise is not removed. Finally, derivative of y(t) ∗ g(t, σ) will replace

the derivative of y(t) as follows

d(y(t) ∗ g(t, σ))

dt
=

d(
∫∞
−∞(y(τ).g(t− τ, σ)dτ))

dt
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Table 4.1. The values of vector v(k) with different lengths.

length k = 1 2 3 4 5 6 7 8 9
5 0.0007 0.2824 0 -0.2824 -0.0007
6 0.0007 0.1259 0.7478 -0.7478 -0.1259 -0.0007
7 0.0007 0.0654 0.6572 0 -0.6572 -0.0654 -0.0007
8 0.0007 0.0388 0.4398 0.6372 -0.6372 -0.4398 -0.0388 -0.0007
9 0.0007 0.0254 0.2824 0.7634 0 -0.7634 -0.2824 -0.0254 -0.0007

=

∫ ∞

−∞
(y(τ).

d(g(t− τ, σ))

dt
dτ) = y(t) ∗ d(g(t, σ))

dt
, (4.4)

where

g(t, σ) = exp(− t2

2σ2
). (4.5)

Taking the derivative of g(t, σ) in Eq. 4.5,

d(g(t, σ))

dt
=
−t

σ2
exp(− t2

2σ2
). (4.6)

From Eq. 4.4 and Eq. 4.6,

d(y(t) ∗ g(t, σ))

dt
= y(t) ∗ d(g(t, σ))

dt
= y(t) ∗ (

−t

σ2
exp(− t2

2.σ2
)). (4.7)

Instead of zero crossing of
d(y(t))

dt
, zero-crossing of

d(y(t) ∗ g(t, σ))

dt
is found by Eq. 4.7.

With discrete signal, Eq. 4.7 can be rewritten as follows

d(y(n) ∗ g(n, σ))

dn
= y(n) ∗ v(n), (4.8)

where v(n) is listed in Table 4.1. Using Gaussian filters makes the Gaussian local

maxima and minima method more robust with noise.

Definition 1 Maximal envelope (MAX) of a signal y(t) is a signal of the same length

containing all Gaussian local maxima of y(t) and all interpolation points between

them.

Maximal envelope is created from y(t) by two following steps:



82

• Step 1: Finding Gaussian local maxima of y(t) and their indices;

• Step 2: Performing interpolation of the maximal points obtained from step 1

so that the lengths of maximal envelope and y(t) are the same.

Definition 2 Minimal envelope (MIN) of a signal y(t) is a signal of the same length

containing all Gaussian local minima of y(t) and all interpolation points between them.

Minimal envelope is created from y(t) by two following steps:

• Step 1: Finding Gaussian local minima of y(t) and their indices;

• Step 2: Performing interpolation of the minima points obtained from step 1 so

that the lengths of minimal envelope and y(t) are the same.

Definition 3 Median envelope (MED) of a signal y(t) is a signal of the same length

containing non-maxima and non-minima of y(t) and all interpolation points between

them.

Median envelope is created from y(t) by two following steps:

• Step 1: Finding points of y(t) which are not maximal and minimal as well and

their indices;

• Step 2: Performing interpolation of the median points obtained from step 1 so

that the lengths of median envelope and y(t) are the same.

Fig. 4.2(a) shows the flowchart of envelope analysis. Any finite energy signal

y(t) can be analyzed into three envelope signals including MAX, MIN and MED

envelopes at the first level. Each of these envelopes can be considered as a signal and

will be decomposed into three envelopes. Therefore, there are 32 = 9 envelopes at

the second level. This process is iterated and there are 3i envelopes at the ith level.

In general, the envelope analysis can be formulated as follows
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Figure 4.2. (a) General flowchart of envelope analysis. (b) An example of envelopes.
The solid lines represent MAX, MED and MIN envelopes of the 6th MS signal of
CAMDA 2006 ([57]) at the first level. The dash lines here show the real MS signal.
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Level1 = [M11, M12,M13],

Level2 = [M21, M22, ..., M29],

...

Leveli = [Mi1,Mi2, ..., Mi3i ],

(4.9)

where Mij represents the jth envelope at level i. With k ≥ 0, when j = 1 + 3k, Mij

is the maximal envelope. And when j = 2 + 3k or j = 3 + 3k, Mij is the median

envelope or the minimal envelope, respectively. Fig. 4.2(b) shows an example of the

envelope analysis.

In some cases, a signal can be analyzed into some specific Mij envelopes. This

option depends on some different applications. In this chapter, MAX and MED en-

velopes are used to detect peaks because MIN envelopes contain no peak. Eq. (4.10)

describes the structure of envelope analysis used in the proposed method.

Level1 = [M11],

Level2 = [M21,M22],

Level3 = [M31,M32,M34,M35],

...

Leveln = [Mn1,Mn2,Mn4,Mn5], (4.10)

where n is the number of levels chosen to satisfy the threshold of number of peaks.

How to choose the value of n will be discussed in next section. In this peak detection

application, the original signal is decomposed into one MAX envelope at level 1, one

MAX and one MED envelope at level 2 and four envelopes which comprises two

MAX envelopes and two MED envelopes at level n > 2 as shown in Fig. 4.3.
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Figure 4.3. Proposed envelope analysis for peak detection.

4.4 GaborLocal and GaborEnvelop Methods

The main idea is to amplify the true signal and compress the noise of mass

spectrum by using the Gabor filter bank. After that, the Gaussian local maxima

is used to detect peaks and the peak rank which will be defined later to quantify

peaks. This method is named as Gabor filter - Gaussian local maxima (GaborLocal).

Envelope analysis can be also used to detect and quantify peaks and this method

is called as Gabor filter - envelope analysis (GaborEnvelop). Fig. 4.4 and Fig. 4.5

are the flowchart of GaborLocal and GaborEnvelop methods. Each method can be

detailed into the four steps including the full frequency MS signal generation, the peak

detection, the peak quantification, and the intersection. Both methods have the same

first step (full frequency MS signal generation) and the same last step (intersection).

They are different at the peak detection and the peak quantification steps.
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Figure 4.4. Flowchart of GaborLocal method in the MS peak detection.

4.4.1 Full Frequency MS Signal Seneration

Mass spectrum is decomposed to many scales by using the Gabor filters after the

baseline correction. The purpose is to emphasize some hidden peaks buried by noise.

When 60 MS signals of the CAMDA 2006 are analyzed in the frequency domain, the

valuable information of these signals locate from zero to around 0.06 (rad/s) and the

noises locate from 0.06 to π (rad/s).

Therefore, the bandwidth σf of the Gabor filters which enhances peaks must

be less than 0.06. In experiments, σf = 0.01 is used. If the uniform Gabor filter is

used, the number of scales must be

N =
π

0.01
≈ 314 scales. (4.11)
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Figure 4.5. Flowchart of GaborEnvelop method in the MS peak detection.

With 314 scales in Eq. 4.11, the uniform Gabor filter is not efficient. If the non-

uniform Gabor filter is used, the number of scales should be calculated as follows:

σf =
π

2N
,

N = log2(
π

σf

),

N ≈ 8.3 scales with σf = 0.01. (4.12)
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Based on Eq. 4.12, the non-uniform Gabor filters are used with 9 scales to de-

compose the MS data (CAMDA 2006 data [57] is used for experiments). If yi(t), hi(t)

and x(t) are transformed into the frequency domain

Yi(f) = X(f) ·Hi(f), (4.13)

where X(f) is the frequency response of the raw MS signal, Hi(f) is the frequency

response of the ith Gabor filter, and Yi(f) is the frequency response of the ith scale.

After we get 9 signals according to 9 frequency sub-bands in complex values, the full

frequency signal A will be created by summing above signals in complex values first

and taking their absolute values at the final. To create the full frequency signal B,

the absolute values are taken for each sub-band and then sum all these sub-bands.

After this step, there are two full frequency signals A and B. Let us denote y(t) and

Y (f) as the full frequency signal in time domain and frequency domain, respectively.

Y (f) =
∑
i=Ni

Yi(f), (4.14)

where Ni are the scales which are used to create the full frequency signal. From

Eq. 4.13 and 4.14

Y (f) =
∑
i=Ni

X(f)Hi(f)

= X(f)
∑
i=Ni

Hi(f) = X(f)Hs(f), (4.15)

where Hs(f) =
∑

i=Ni
Hi(f) is called the summary filter. The summary filter can be

formulated as follows

Hs(f) =
∑
i=Ni

exp(−(f − Fi)
2

2σ2
f

). (4.16)

Illustration: Intuition using Gabor filters The purpose of this step is to amplify

the true signal and to compress the noise. The black line in Fig. 4.6(a) is Hs(w)

which can amplify the true signal from 0 to 0.06 rad
s

and compress noise from 0.06 to
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Figure 4.6. (a) The frequency response of the summary filter. (b) The frequency
response of one MS data before and after using the summary filter. In amplification
area, amplitude of full frequency MS signal is higher than raw MS signal. In com-
pression area, amplitude of full frequency MS signal is smaller than raw MS signal.(c)
One example is used to show how Gabor filters to affect MS signal in time domain.
The intensity values of peaks are gained and noise is compressed after using Gabor
filters. Raw MS data which is used in (b) and (c) is the 19th MS signal of CAMDA
2006.

π. In this case, if using Ni = [1 2 ... 9] the summarized filter can be represented by

the blue line in Fig. 4.6(a). Fig. 4.6(b) shows the frequency response of the 19th raw

MS signal (blue line) and that of full frequency signal (red line). The signal from 0

to 0.06 is amplified and the noise from 0.06 to π is compressed. In Fig. 4.6(c), after

using Gabor filters, the intensity values of true peaks have increased and the standard

deviations of noise have decreased in time domain. Therefore, in both full frequency

MS signal A and B, all peaks have been emphasized to help the next peak detection

step. In this step, baseline correction is also used before applying Gabor filters and

is detailed as follows

Baseline correction: The chemical noise or the ion overloading is the main

reason causing a varying baseline in mass spectrometry data. Baseline correction is
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Figure 4.7. One example of the step named full frequency MS signal generation. Raw
MS data is the 19th MS signal of CAMDA 2006.
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an important step before using Gabor filter to get the full frequency MS signals. The

raw MS signal xraw includes some real peaks xp, the baseline xb, and the noise xn.

xraw = xp + xb + xn. (4.17)

The baseline correction is used to remove the artifact xb. In this chapter, ‘msbackadj’

function of MATLAB is used to remove baseline. The msbackadj function estimates

a low-frequency baseline first which is hidden among the high-frequency noise and

the signal peaks and then subtracts the baseline from the spectrogram. This function

follows the algorithms in Andrade et al.’s paper [58].

Illustration: In order to understand this step easier, one example of the way

to create full frequency MS signal is shown in Fig. 4.7. In this example, the 19th

MS signal of CAMDA 2006 is chosen as raw MS data. After the baseline correction,

MS signal is used as the input of the Gabor filters. A Gabor filter bank with 9

non-uniform sub-bands is employed to create 9 MS signals with 9 different frequency

sub-bands. In Fig. 4.7, the signals of scale 1, 4, 8 and 9 are visualized. Some noises

in high frequency are separated from the MS signal of the scale 1, 2, ..., 5. In the

MS signal under the scales 6, ..., 9, all high intensity peaks are still kept. After the

MS signals of all scales are combined in two ways, the full frequency MS signal A

and B are created. The comparison between the raw MS and full frequency signal in

frequency and time domain is shown in Fig. 4.6(a)(b)(c). These figures show how to

amplify the important signal and compress the noise. This is just a compression of

noise instead of removing noise. As the outputs, two full frequency MS signal A and

B will be used to detect peaks in the next step instead of raw MS data.
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Table 4.2. Definition of peak rank in GaborLocal. Y means that the peak can be
detected at that loop. N means that the peak cannot be detected at that loop. The
peak with the peak rank equaling to 1 is able to be detected at all of the loops. The
peak with the peak rank equaling to n only appeared at the first loop.

Peak Rank Loop 1 Loop 2 Loop 3 Loop 4 ... Loop (n− 1) Loop n
1 Y Y Y Y ... Y Y
2 Y Y Y Y ...Y N
... ... ... ... ... ... ...
n Y N N N ...N N

4.4.2 Peak Detection and Peak Quantification in GaborLocal

All peaks are detected as many as possible by using Gaussian local maxima with

the full frequency MS signal A as well as the full frequency MS signal B. The Gaussian

local maxima is used instead of local maxima because Gaussian local maxima is robust

with noise in peak detection. Before peak detection, pre-processing step is also applied

such as peak elimination in the low-mass region.

After many peaks are detected in full frequency MS signals, a new signal is ob-

tained from these peaks. This new signal will be the input of the next peak detection

loop where the Gaussian local maxima method is also applied. Then, many loops are

repeated until the number of peaks obtained is less than a threshold. Now, the peak

rank of peaks is defined as follows:

Peak rank in GaborLocal: n loops are used and get m1 peaks at the loop

1, m2 peaks at loop 2,...and mn peaks at the loop n. There are m1 > m2 > ... > mn.

Peak rank (PR) is defined as Table 2.

There are mn peaks with PR = 1, mn−1−mn peaks with PR = 2,...and m1−m2

peaks with PR = n. In the proposed algorithm, the probability of the true peaks

with PR = i is higher than with PR > i.
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Demonstration: Fig. 4.8(a) shows an example of the step named the peak

quantification by using the peak rank. First, the full frequency MS signal A is used

to detect peaks by using Gaussian local maxima. At loop 1, 1789 peaks can be

detected. From these 1789 peaks, a new signal is created with 1789 positions. At the

next loops 2, 3, 4, 509, 143, 39 peaks can be detected, respectively. At loop 5, 15

peaks can be detected. If a threshold of 16 and number of peaks of 15 are selected,

the algorithm will stop at loop 5. Actually, the threshold can be selected from 38 to

16 and also get 15 peaks at the final loop. Now, there are 15 peaks with PR = 1,

39−15 = 24 peaks with PR = 2, 143−39 = 104 peaks with PR = 3, 509−143 = 366

peaks with PR = 4 and 1789−509 = 1280 peaks with PR = 5. In this case, 15 peaks

are only kept with PR = 1. The same on the full frequency MS signal B is done and

12 peaks can be detected with PR = 1 at the last loop.

4.4.3 Peak Detection and Peak Quantification in GaborEnvelop

After using Gabor filter, we have visible peaks in the full frequency MS signal

A and the full frequency signal B. Envelope analysis of both signal A and signal B is

used to detect MS peak instead of Gaussian local maxima. The MAX and the MED

are used at the final level to find peaks. Fig. 4.5 shows that MAX and MED are

used instead of MAX, MED, and MIN because peaks of data do not appear at MIN

envelope. Of course, before envelope analysis of signal A and B are obtained, peak

elimination in low-mass region is also applied.

Peak rank in GaborEnvelop: envelope analysis of data is taken at level

n. Because only MAX is used at the first level, there are 2n − 1 groups of peaks

corresponding 2n − 1 thresholds of peak. Let us assume there are m1 peaks at the

MAX1, m2 peaks at group of MAX2 and MED2,...and mn peaks at the MAXn. We

have m1 > m2 > ... > mn. Peak rank (PR) is defined in Table 3.
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Figure 4.8. One example of GaborLocal in peak detection (a) peak detection and
quantification step, (b) intersection step.
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Figure 4.9. One example of envelope analysis. Maximum envelope, median envelope,
and minimum envelope of a MS data at level 6 and level 7. The input MS data is the
39th MS signal of CAMDA 2006. The circle sign represents peaks which are from the
MAX1 (peaks of the input MS signal) and are the identified peaks.

Table 4.3. Definition of peak rank (PR) in GaborEnvelop. MAXi column means that
peaks of MAX envelope are taken at level i. If peaks are detected in both of MAX
and MED envelope at level i, that column is named as MAXi, MEDi. ”Y” is the
peak can be detected. N means that the peak cannot be detected. The peak with
the peak rank equaling to 1 is able to be detected at all of envelopes. The peak with
the peak rank equaling to n only appeared at the envelope of level 1.

PR MAX1 MAX2, MED2 MAX2 MAX3, MED3 ... MAXn,MEDn MAXn
1 Y Y Y Y ... Y Y
2 Y Y Y Y ...Y N
... ... ... ... ... ... ...
n Y N N N ...N N
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Figure 4.10. One example of GaborEnvelop at intersection step. Raw MS data is the
39th MS signal of CAMDA 2006.

There are mn peaks with PR = 1, mn−1−mn peaks with PR = 2,...and m1−m2

peaks with PR = n. In the proposed algorithm, the probability of the true peaks

with PR = i is higher than with PR > i.

Demonstration: Fig. 4.9 shows an example of envelope analysis of the 39th

MS signal at level 6 and 7. Only MAX and MED are used in this case. The input

signal of envelope analysis is full frequency MS signal A without pre-processing. At

the MAX scale of level 6, 14 peaks are detected. If continuing level 7, 4 peaks are

obtained at the MAX scale and 6 peaks at the MED scale. If pre-processing is applied

to full frequency MS signal A, 5 peaks are just obtained at the MED scale of level 7.

Finally, there are 4 + 5 = 9 peaks from signal A and 19 peaks from signal B.
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4.4.4 Intersection

Now, there are two results of peak detection from two full frequency MS signals.

The intersection of two above results will be the final result. For example, Fig. 4.8(b)

shows how to do the intersection of two results. There are 15 peaks in signal A and

12 peaks in signal B, but there are only 9 peaks as the final result. With this result,

there are 7 true peaks and 2 false peaks. With example in Fig. 4.10, after intersection,

there are 9 peaks. There are only 7 true peaks and 2 false peaks. These results show

that the true position rate (or sensitivity) equals to 7
7

= 1 and the false discovery rate

equals to 2
9
≈ 0.22.

In general, the GaborEnvelop includes the GaborLocal. In envelope analysis, if

MAX envelope signals are just used, the GaborEnvelop will become the GaborLocal

method which uses many loops to quantify peaks. The GaborEnvelop uses both

MAX and MED envelopes to keep the number of true peaks (TPR) and decrease the

number of false peaks (FDR).

4.5 Experiments and Discussions

In this section, GaborLocal and GaborEnvelop methods will be compared to

two other most commonly used methods: the Cromwell [49, 50] and the CWT [51].

The performance of those methods will be evaluated by using the ROC curve that is

the standard criterion in this area.

4.5.1 Cromwell Method

Cromwell method is implemented as a set of MATLAB scripts which can be

downloaded from [59]. The algorithms and the performance of the Cromwell were

described in [50, 49]. The main idea of the Cromwell method can be summarized as

follows
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• Denoise the individual spectrum using the undecimated discrete wavelet trans-

form. The hard thresholding method was used to reset small wavelet coefficients

to zero. In these papers, the authors used the median absolute deviation (MAD)

to estimate the thresholding.

• Estimate and remove the baseline artifact by using a monotone local minimum

curve on the smoothed signal.

• Normalize the spectrum by dividing the total ion current, defined to be the

mean intensity of the denoised and baseline corrected spectrum.

• Identify peaks by using local maxima and signal to noise ratio (SNR).

• Match peaks across spectrum and quantify peaks using either the intensity of

the local maximum or computing the area under the curve for the region defined

to be the peaks.

4.5.2 CWT Method

The algorithm of CWT method has been implemented in R (‘MassSpecWavelet’)

and the Version 1.4 can be downloaded from [60]. This method was proposed by Pan

Du et al. [51] in 2006 and can be summarized as follows:

• Identify the ridges by linking the local maxima. Continuous wavelet transform

(CWT) is used to create many scales from one mass spectrum. The local max-

ima at each scale is detected. The next step is to link these local maxima as

lines.

• Identify the peaks based on the ridge lines. There were three rules to identify

the major peaks. They are the scale with the maximum amplitude on the ridge

line, the SNR being larger than a threshold and the length of ridge being larger

than a threshold. Notice that the SNR is estimated in the wavelet space. This

is a nice motivation of this method.
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Figure 4.11. Detailed ROC curves obtained from 60 MS signals using Cromwell,
CWT, and GaborLocal and GaborEnvelop methods. The sensitivity is the true posi-
tion rate.

• Refine the peak parameter estimation.

4.5.3 Evaluation Using ROC Curve

The CAMDA 2006 dataset [57] of all-in-1 Protein Standard II (Ciphergen Cat.

# C100 − 007) is used to evaluate four algorithms: the Cromwell, the CWT, and

two proposed methods. Because polypeptide composition and position are known,

the true position rate (TPR or sensitivity) and the false discovery rate (FDR) can be

estimated. Another advantage of this dataset is that it is real data and better than

the simulated data in evaluation.

The TPR is defined as the number of identified true peaks divided by the

total number of true peaks. The FDR is defined as the number of falsely identi-

fied peaks divided by the total number of identified peaks. An identified peak is

called as true peak if it is located within the error range of 1% of the known m/z

value of true peaks. There are seven polypeptides which create seven true peaks at

7034, 12230, 16951, 29023, 46671, 66433 and 147300 of the m/z values. Fig. 4.11
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Figure 4.12. Average receiver operating characteristic (ROC) curves obtained from
60 MS signals using Cromwell, CWT, and GaborLocal and GaborEnvelop methods.
The sensitivity is the true position rate.

shows the TPR and the FDR of four above methods with an assumption that there

is only one charge. To calculate the ROC curve of Cromwell and CWT methods, the

SNR thresholding values are changed. The SNR thresholding values are chosen from

0 to 20 for Cromwell method, from 0 to 65 for CWT method. In GaborLocal method,

the threshold for the number of peaks is changed from 2000 to 10 to create the ROC

curve. In GaborEnvelop method, the level is changed from seven to one to build

the ROC curve. In Fig. 4.11, the performance of Cromwell method is much worse

than CWT and GaborLocal and GaborEnvelop methods. Most of the ROC points

of Cromwell method locate at the bottom of right corner and most of ROC points of

CWT, GaborLocal, and GaborEnvelop methods are well placed on the top regions.

In the proposed methods, some ROC points appear at the top line with TPR = 1

and some ROC points go with TPR = 1 and FDR = 0. However, it does not happen

to the CWT. Therefore, GaborLocal and GaborEnvelop are better than CWT and

Cromwell in peak detection.
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If the average of those detailed ROC results is taken in Fig. 4.11, there is

the average ROC curve as in Fig. 4.12. Notice that average of all ROC points is

taken with the same SNR threshold (for Cromwell and CWT) and with the same

peak threshold and the same level (for the proposed methods). From Fig. 4.12, the

results of the proposed methods and CWT are much better than the Cromwell’s

one. Therefore, the decomposing approach without smoothing (SWT, GaborLocal

and GaborEnvelop) is more efficient than the denoising approach (like Cromwell). At

the same FDR, the TPRs of the proposed methods are consistently higher than the

TPRs of CWT. Because the peak rank was used to identify peaks in the GaborLocal

and GaborEnvelop methods instead of the SNR. It is clear that the utilizing peak

rank to identify peak gives out valuable results. These methods have a significant

contribution to detect both high energy and small energy peaks. Another advantage of

these methods is that the threshold for the number of peaks can be created easier than

the SNR. Therefore, the GaborLocal and GaborEnvelop method are more efficient

and accurate methods for real MS data peak detection.

As shown in Fig. 4.12, GaborEnvelop is slightly better than GaborLocal in ROC

curve. With the same TPR, GaborEnvelop gives out smaller FDR than GaborLocal.

However, peak quantification step using many loops in GaborLocal method is simpler

than using envelope analysis in GaborEnvelop one. If a simple method which can

also detect almost true peaks is necessary, GaborLocal is a good option. During

more complicated analysis, GaborEnvelop can be employed to improve the results of

peak detection in MS signal. Since the number of detected peaks increase gradually

when the peak rank increases, GaborEnvelop is useful for many applications, e.g.

protein identification. They are also the reasons that two methods are proposed in

this chapter.
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4.6 Conclusion

In this chapter, two new approaches including GaborLocal and GaborEnvelop to

solve peak detection problem in MS data with promising results have been proposed.

GaborLocal method is a combination of the Gabor filter and Gaussian local maxima

approach. The integration of Gabor filter and envelope analysis is further developed as

GaborEnvelop method. The peak rank method is presented and used at the first time

to replace the previous SNR method to identify true peaks. With real MS dataset,

the proposed method gave much better performance in the ROC curve comparison

with two other most common used peak detection methods.



CHAPTER 5

GAUSSIAN DERIVATIVE WAVELET BASED MASS SPECTROMETRY DATA
PROCESSING

5.1 Introduction

Most peak detection methods employed denoising step by removing noise in

each scale of wavelet, such as commonly used Cromwell ([49, 50]) and CWT ([51, 61])

methods. However, true peaks in MS could have large frequency response and be

removed by denoising step. As a result, these true peaks cannot be detected. Bivariate

shrinkage model, which considers relationship of two neighbor scales, is proposed

to remove noise in stationary wavelet domain. Utilizing relationship between two

neighbor coefficients or two scales of wavelets can keep high frequency true signal

([62]). Stationary wavelet transform (SWT) utilizes spatial information of signals

and suppress artifacts by redundant representations.

Baseline removal step was widely used in peak detection methods, but it often

got rid of true peaks and creates new false peaks. To avoid removing baseline, the

CWT-based pattern-matching algorithm was introduced in [51]. Using Mexican Hat

wavelet in multi-scale, this method gave good results in peak detection with high sen-

sitivity and low false discovery rate (FDR). However, the more important property of

multi-scale in wavelet domain was not used in this method ([44]). Instead of consid-

ering peaks as the sum of delta functions, more generally, MS peaks are considered

as a mixture of Gaussian in which each peak corresponds to one Gaussian. Gaussian

derivative wavelet is proposed to use instead of Mexican Hat wavelet which is only

the second derivative of Gaussian wavelet. Zero-crossing lines which are robust to

103
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noise are also introduced to replace Ridge-lines in [51]. The zero-crossing lines are

studied in multi-scale wavelet and new theoretical analysis is presented.

In most of the peak detection methods, signal to noise ratio (SNR) was used to

remove the small energy peaks with SNR values less than a threshold. But MS noise

cannot be correctly estimated in either time domain or wavelet domain. Thus, in this

chapter, instead of SNR, frequency response, height, and standard deviation of Gaus-

sian peaks calculated by zero-crossing in Gaussian derivative wavelet domain are used

to remove false peaks. In order to improve sensitivity, the Envelope analysis ([63]) is

also used to save some important peaks which have small energy.

In this chapter, a new Gaussian derivative wavelet (GDWavelet) based peak de-

tection method is proposed for Surface-Enhanced Laser Desorption/Ionization Time-

Of-Flight (SELDI-TOF) spectrum. Both simulated and real spectrum with known

polypeptide compositions and positions are used to evaluate proposed method. With

simulated data, different peak detection algorithms are compared by both Gaussian

noise and real noise. All experimental results show that new approach can detect

more peaks (in both high amplitude and low amplitude) with a lower false discovery

rate than state-of-the-art methods.

In this chapter, new Gaussian derivative wavelet based method (GDWavelet)

will be introduced. In GDWavelet, bivariate smoothing model, Gaussian derivative

wavelet, and envelope analysis are used. First, bivariate shrinkage estimator in SWT

domain will be used to reduce noise and to keep whole true signal. Second, how to

detect peaks using Gaussian derivative wavelet through peak properties such as fre-

quency response, standard deviation and height will be introduced. Finally, envelope

analysis is performed to save true small energy peaks which will be missed if only

peak properties are used.
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5.2 Smoothing by Bivariate Shrinkage Function

Noise smoothing in MS is an important step which should remove noise and keep

true peaks. In Myers et al. (2004), they tried to remove noise as much as possible.

However, in that case, some true peaks are also removed. Utilizing bivariate shrinkage

estimator in SWT domain is proposed to reduce noise and keep whole true signal.

More precisely, the noise level is decreased without removing most of them. SWT

is chosen due to its fast speed and redundant representations. The later step will

further handle the remain noise.

The MAP estimator of w1 ([1]) is written as

ŵ1 =





0 if
√
|y1|2 + |y2|2 <

√
3σn

2

σ
,

√
|y1|2 + |y2|2 −

√
3σn

2

σ√
|y1|2 + |y2|2

.y1 otherwise.

(5.1)

where y1 is noisy child coefficient, y2 is noisy parent coefficient.This estimator is a

bivariate shrinkage function. It has been used to smooth many kinds of signals such

as image ([1]), DNA copy number ([42, 43]), etc. In this chapter, bivariate shrinkage

estimator is used to smooth MS signals. An example of denoising result is shown in

Fig. 5.3(a). This example will be discussed in § 5.5.

5.3 Peak Detection by Gaussian Derivative Wavelet

In previous work ([49, 50]), MS peaks were considered as the sum of delta

functions. That means only heights of peaks have been used for peak detection

throughout SNR. Du et al. (2006) utilized width of peaks to improve peak detection

results a lot. MS peaks are considered as a mixture of Gaussian in which each peak

corresponds to one Gaussian:
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f(t) =
N∑

i=1

fi(t) =
N∑

i=1

Ai exp(−(t− µi)
2

2σ2
i

). (5.2)

With this assumption, four parameters provide intrinsic differences between true

peaks and noise. They are peak position, standard deviation, height, and frequency

response of peak. To find these parameters of a peak, using zero-crossing lines in

multi-scale of Gaussian derivative wavelet is proposed instead of ridge-lines in multi-

scale of Mexican hat wavelet that was used by [51].

5.3.1 Theory of Zero-Crossing Lines in Multi-Scale

Scaling theory for zero-crossings has been studied and applied to many applica-

tions. Yuille et al. ([64]) assumed that signal is the sum of delta functions. Another

similar assumption of signal, bandlimited signal, has been studied in [65]. However,

studying zero-crossing of signals with Gaussian mixture assumption still is a new and

challenging problem. New theory of zero-crossing lines is built in multi-Scale in fol-

lowing sections. Through proposed theory, parameters (position, standard deviation,

height, and frequency response) of a Gaussian peak can be accurately estimated.

The first derivative of fi(t) is used to locate local maxima corresponding to

peak position: f ′i(t0) = 0 with t0 = µi. The second derivative and third derivative

of fi(t) continue to be used to estimate height and standard deviation of Gaussian

peak: f ′′i (t0) = 0 with t0 = µi ± σi, f ′′i (t0) = 0 with t0 = µi and t0 = µi ±
√

3σi.

Because smoothing was performed in denoising step just to reduce noise and to

keep small true peaks, multi-scales of Gaussian derivative wavelet are used to make

local maxima and minima more robust to noise instead of only one Gaussian filter

in [63]. The wavelet transform can be written as convolution product in Eq. 5.3:

Wf(u, s) =

∫ +∞

−∞
fi(t)

1√
s
Ψ?(

t− u

s
)dt, (5.3)
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where ? is the conjugate. According to chapter 6 in [44], the wavelet transform in

Eq. 5.3 can be rewritten as a multi-scale differential operator in Eq. 5.4

Wnf(u, s) = sn dn

dun
(fi ∗ θ̄s(t))(u), (5.4)

where * is convolution. In this paper, the Gaussian wavelet is used. So, θ̄s(t) can be

followed as Eq. 5.5:

θ̄s(t) =
1√
s
exp(− t2

s2
). (5.5)

Convoluting fi(t) and θ̄s(t), one gets result in Eq. 5.6

(fi ∗ θ̄s)(u) = K1 exp(−K2(u− µi)
2), (5.6)

where K1 = A
√

1

2πσ2
i s

3 and K2 = 1

s2 + 2σ2
i

.

Remark: The zero-crossing points of W1f(u, s) and W2f(u, s) belong to connected

curves that are never interrupted when the scale decreases.

Proof: With the first derivative, Eq. 5.4 can be rewritten as Eq. 5.7

W1f(u, s) = 2sK1K2(u− µi) exp(−K2(u− µi)
2) (5.7)

if W1f(u, s) = 0, it got u0 = µi, then u0(s + 1) − u0(s) = 0 with any scale s.

With the second derivative, Eq. 5.4 can be rewritten as Eq. 5.8

W2f(u, s) = 2s2K1K2[−2K2(u− µi) + 1] exp(−K2(u− µi)
2). (5.8)

If W2f(u, s) = 0, one gets u0 = µi±
√

σ2
i +

s2

2
, then 0 < u0(s+1)−u0(s) <= 1

with any scale s.

With the third derivative, Eq. 5.4 can be rewritten as Eq. 5.9

W3f(u, s) = −2s3K1K2(u− µi)[2K2(u− µi)
2 − 3] exp(−K2(u− µi)

2) (5.9)

If W3f(u, s) = 0, one gets u0 = µi or u0 = µi ±
√

3

√
σ2

i +
s2

2
. If s = 100 and

σi = 0.1 are selected then u0(100+1)−u0(100) = 1.2247. In conclusion, 0 <= u0(s+
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1) − u0(s) <= 1 with the first and second derivative and zero-crossing lines belong

to connected curves. Another conclusion is that zero-crossing lines is discontinuous

lines if the third derivative Gaussian wavelet is used. Thus, only the first and second

derivative Gaussian wavelets should be used in peak detection.

If fi is a discrete signal, Eq. 5.3 can be rewritten as follows:

Wf(u, s) =
∑

k

fi(k)

∫ K+1

k

1√
s
Ψ?(

t− u

s
)dt. (5.10)

One gets f(k) by sampling fi(t) with Ts:

fi(k) = fi(kTs) = Ai exp(−
(k − µi

Ts

)2

2(
σi

Ts

)2
). (5.11)

If W2f(u, s) = 0, it gets u0 = µi ±
√

σ2
i +

(s× Ts)
2

2
. if W3f(u, s) = 0, it gets

u0 = µi or u0 = µi ±
√

3

√
σ2

i +
(s× Ts)

2

2
.

Note: Zero-crossing line is more robust to noise than ridge-line. This conclusion is

illustrated in an example in Fig. 5.1. Fig. 5.1(c)(e) show that zero-crossing lines are

detected easier than ridge lines linking local maxima or local minima points.

5.3.2 Application of Zero-Crossing to Peak Detection

From section 5.3.1, parameters of a Gaussian peak could be estimated as follows

Estimation of Peak Position: There are three ways to estimate peak posi-

tions throughout zero-crossing of three kind Gaussian derivative wavelets.

1. The First Gaussian Derivative Wavelet (Gaus1): a zero-crossing line corre-

sponds to a peak position. In multi-scale, this zero-crossing line is a continuous

line with length N . Peak position should be estimated by

µi =
1

N

N∑
s=1

u0(s). (5.12)
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Figure 5.1. An illustration of zero-crossing line and ridge line comparison: (a) A peak

sample whose shape follows (10 exp(− (t−5)2

2×0.52 )) with Gaussian noise (std=1); (b) By
using Gaus1, the zero-crossing line corresponds to peak position, t = 5; (c) By using
Gaus2, two zero-crossing lines correspond to two peak edges whose distances to peak
position are σi = 0.5; (d) By using Gaus1, two ridge lines are corresponding to two
peak edges whose distances to peak position are σi = 0.5; (e) By using Gaus3, three
zero-crossing lines are corresponding to one peak position and two peak edges whose
distances to peak position are

√
3σi = 0.866; (f) By using Gaus2, three ridge lines

are corresponding to one peak position and two peak edges whose distances to peak
position are

√
3σi = 0.866.

2. The Second Gaussian Derivative Wavelet (Gaus2): There are two zero-crossing

lines corresponding to two edges of Gaussian peak. They are u0left and u0right.

Because two zero-crossing lines are symmetric at peak position, peak position

should be estimated by

µi =
1

N

N∑
s=1

u0left(s) + u0right(s)

2
. (5.13)

3. The Third Gaussian Derivative Wavelet (Gaus3): we get three zero-crossing

lines if using the third Gaussian derivative wavelet. They are u0left, u0midle and
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u0right. Because u0left and u0right are non-continuous lines, they should not be

used to estimate peak position. From u0midle, peak position can be found by

µi =
1

N

N∑
s=1

u0midle(s). (5.14)

Estimation of Peak’s Standard Deviation: Another parameter of Gaussian

peak is standard deviation σi. There are two ways to estimate σi as follows

1. The Second Gaussian Derivative Wavelet (Gaus2): From Remark, σi at scale s

can be calculated by

σi−left(s) =

√
(u0left(s)− µi)2 − s2

2
, (5.15)

σi−right(s) =

√
(u0right(s)− µi)2 − s2

2
. (5.16)

After σi−left(s) and σi−right(s) are calculated at all scales, σi should be estimated

by

σi =
1

Nl

∑Nl

s=1 σi−left(s) + 1
Nr

∑Nr

s=1 σi−right(s)

2
, (5.17)

where Nl and Nr are length of left and right zero-crossing lines.

2. The Third Gaussian Derivative Wavelet (Gaus3): Also from Remark, σi at scale

s can be calculated by

σi−left(s) =

√
1

3
(u0left(s)− µi)2 − s2

2
, (5.18)

σi−right(s) =

√
1

3
(u0right(s)− µi)2 − s2

2
. (5.19)

After σi−left(s) and σi−right(s) are calculated at all scales, σi should be estimated

by

σi =
1

Nl

∑Nl

s=1 σi−left(s) + 1
Nr

∑Nr

s=1 σi−right(s)

2
, (5.20)

where Nl and Nr are the lengths of left and right zero-crossing lines. However,

zero-crossing lines at left and right sides of the third Gaussian derivative wavelet
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are disconnected lines, so it is not easy to estimate σi through Eqs. 5.18, 5.19

and 5.20.

Estimation of Peak Height: Finally, a way to estimate real height of Gaus-

sian peak is developed. With Gaussian peak fi(t) = Ai exp(−(t− µi)
2

2σ2
i

), it has

Ai =
fi(µi)− fi(µi − σi)

0.3935
. (5.21)

Eq. 5.21 can be used to estimate height of Gaussian peak after µi and σi are calculated.

An Example: To illustrate the above theory, a Gaussian peak is assumed as

follows

x(t) = Ax exp(−(t− µx)
2

2× σx
2

), (5.22)

where Ax = 10, µx = 5 and σx = 0.5. Gaussian noise and baseline are added as

follows

f(t) = x(t) + G(σ, µ) + b, (5.23)

where b is a constant, a representation of base line, µ = 0 and σ = [0.25; 0.5; 0.75; 1].

With each σ value, 200 signals, f(t), have been created. One sample f(t) is shown

in Fig. 5.1(a). µx, σx and Ax are estimated by using above zero-crossing theory.

Error rate which is defined in Eq. 5.24 will be used to compare accuracy of different

estimation methods:

error rate =
|true value− estimated value|

true value
× 100. (5.24)

Fig. 5.1(b), (c), and (e) show zero-crossing lines in 128 scales using Gaus1,

Gaus2 and Gaus3. These zero-crossing lines will be used to estimate µx, σx and

Ax. Table. 5.1 lists error rates of four methods to estimate peak position µx. With

Gaus1, Gaus2, and Gaus3 method, µx values are calculated by Eq. 5.12, Eq. 5.13,

and Eq. 5.14 correspondingly. The term “with denoise” means bivariate shrinkage
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Table 5.1. Error of Peak Position Estimation. By using zero-crossing lines in multi-
scale of Gaussian derivative wavelet, there are three ways to estimate peak position
as in Eq. 5.12, Eq. 5.13 and Eq. 5.14. Errors of these estimations and CWT’s estima-
tion ([51, 61]) are compared. The error rate is defined by Eq. 5.24. In each Gaussian
noise level, σ, two hundred signals have been created. Error value shown in this table
is average value.

σ in Gaus1 Gaus1 Gaus2 Gaus2 Gaus3 Gaus3 Mexh
Eq. 5.23 without with without with without with ([51, 61])

Denoise Denoise Denoise Denoise Denoise Denoise
0.25 0.0519 0.0365 0.1533 0.1434 0.4890 0.2652 1.979
0.50 0.1319 0.0809 0.2253 0.1943 0.6918 0.3851 2.0170
0.75 0.1658 0.1034 0.3382 0.2353 0.7008 0.4855 2.1137
1.00 0.2118 0.1469 0.4630 0.2672 0.8681 0.5874 2.1618

estimator is used to denoise Gaussian noise in signal f(t). The Mexh, Mexican hat

wavelet, which corresponds to Gaus2, is used as core part to detect peak in CWT

method ([51, 61]) and peak tree method ([66]). Based on the table. 5.1’s result,

the error rate when using Mexh wavelet ([51, 61]) is the largest. Note that Package

“MassSpecWavelet” ([60]) which uses denoising with DWT ([61]) and finds peak po-

sition using ridge lines ([51]) with Mexh wavelet is used. With “Gaus1 with denoise”,

error rate is the smallest. However, error rates in Gaus1 without denoising and in

Gaus2 are still acceptable and much better than in Mexh wavelet.

The σx can be estimated by Eq. 5.17 or Eq. 5.20. However, with Gaus3, zero-

crossing lines are not continuous lines (see Remark in section 5.3.1). Thus, estimation

of zero-crossing in 128 scales of Gaus3 is a problem. This problem causes a larger

error in calculating the σx. From result of Table. 5.2, Gaus2 with denoising should

be used to estimate σx because its’ error rate is the smallest.

By using Eq. 5.21 with zero-crossing lines of both Gaus2 and Gaus3, the height

of Gaussian peak is estimated. In this case, baseline b which is used in Eq. 5.23 is
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Table 5.2. Error of Peak ’s Standard Deviation Estimation. σx can be estimated by
Eq. 5.17 with Gaus2 or Eq. 5.20 with Gaus3. Error rate here is defined by Eq. 5.24.
These error values are average values which are gotten from 200 signals with each
added Gaussian noise level, σ.

σ in Gaus2 Gaus2 Gaus3
Eq. 5.23 without Denoise with Denoise without Denoise
0.25 1.6560 1.3829 2.3371
0.50 2.5626 2.3392 3.7318
0.75 3.3841 2.5087 4.7881
1.00 3.9726 2.8529 5.9220

Table 5.3. Error of Peak ’s Height Estimation. Peak height Ax can be calculated by
Eq. 5.21. Error rate here is defined by Eq. 5.24. These error values are average values
which are gotten from 200 signals, with each added Gaussian noise level, σ.

σ in Gaus2 Gaus2 Gaus3
Eq. 5.23 without Denoise with Denoise without Denoise
0.25 4.1032 1.7544 4.8886
0.50 7.8084 2.6869 8.2126
0.75 11.0612 2.8954 14.3860
1.00 13.6141 3.0502 16.9405

a constant. From Table. 5.3, Gaus2 with denoising gives the smallest error rate and

should be used to calculate Ax.

From above example, the best way to estimate peak position µx is from the

first Gaussian derivative wavelet, Gaus1. The second Gaussian derivative wavelet,

Gaus2, should be used to estimate standard deviation σx and height Ax of a Gaus-

sian peak. Fig. 5.1(d)(f) show Ridge lines which correspond to zero-crossing lines in

Fig. 5.1(c)(e). It is clearly that detecting Ridge-lines is more difficult than detect-

ing zero-crossing lines. Ridge-lines in Du et al. (2006) are similar to Ridge-lines in

Fig. 5.1(f), corresponding to zero-crossing line in Gaus3 which should not be used

because of its high error in calculating parameters of peaks.
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5.4 Saving Small Energy Peaks by Envelope Analysis

Envelope analysis has been introduced by [63]. Any finite energy signal y(t) can

be analyzed into three envelope signals including MAX, MIN , and MED envelops

at the first level. Each of these envelops can be considered as a signal and will be

decomposed into three envelopes. In this chapter, MAX and MED envelops are

used to detect peaks because MIN envelops contain no peak. The original signal is

decomposed into one MAX envelop at level 1, one MAX and one MED envelops at

level 2 and four envelops which comprise two MAX envelops and two MED envelops

at level n > 2.

5.5 Gaussian Derivative Wavelet based Method (GDWavelet)

MS Data Smoothing

Peak Identification
in Multi-Scale

Gaussian Derivative
Wavelet

Peak
Rank

ResultUnion

Peak

Height

Quantification

Figure 5.2. GDWavelet Method’s Flowchart: Raw MS data is smoothed by bivariate
shrinkage estimator in SWT domain to keep true signal and to reduce noise. Without
removing baseline, smoothed signal is used in next step to estimate parameters of
peaks by zero-crossing lines in multi-scale Gaussian derivative wavelet domain. After
removing peaks whose zero-crossing line’s length and width are less than a threshold,
all peak candidates are obtained. All peak candidates will be quantified by peak rank
in envelop analysis and peak height. Union results are final output.

The framework of the proposed GDWavelet method is shown in Fig. 5.2. First,

raw MS data is smoothed by bivariate shrinkage estimator (Eq. 5.1) in SWT domain

to keep true signal and to reduce noise. Note that, the lowest frequency detail scale

and approximate scale which may include true signal should not be applied with any
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estimator, so that true signal will not be removed. As a result, noise in signal is

reduced and smoothed signal still has a little noise. Second, without being applied

with baseline removal that often discards true peaks and creates some new peaks,

smoothed signal is used to estimate frequency response, position, height, and standard

deviation of Gaussian peak by zero-crossing lines in multi-scale Gaussian derivative

wavelet domain. Zero-crossing lines are more robust to noise than ridge lines ([51]).

Frequency response of Gaussian peak is proportional to the length of zero-crossing

line if the first derivative Gaussian (Gaus1) is used. Peak position, µi, is estimated by

Eq. 5.12. Standard deviation, σi, of Gaussian peak is calculated by Eq. 5.17. Result

of Eq. 5.21 with Gaus2 will give heights of peaks. Using the first and the second

derivative Gaussian wavelet, all parameters of a Gaussian peak can be estimated.

After peaks whose frequency response and standard deviation are less than a threshold

are removed, all peak candidates are obtained. Third, in peak quantification step,

two rules are used to remove false peaks: 1) All peak candidates are quantified by

peak rank (PR) ([63]) in envelop analysis. Peaks with PR = 1, even small peaks,

are important peaks. 2) Peak height is used to remove peaks with height smaller

than threshold. Peak height is used to substitute SNR that was used by Morris et

al. (2005) and Du et al. (2006), because noise cannot be exactly estimated in either

time domain or wavelet domain. Finally, the union results of two quantifying rules

are the final detected peaks.

The 19th sample of [57] is selected randomly to illustrate how GDWavelet

method operates to detect peaks in MS signal. In Fig. 5.3(a), blue signal represents

raw signal and red one is signal smoothed by using Eq. 5.1. A zoom in subfigure

draws the peak which is used to show its’ zero-crossing lines in Fig. 5.3(b). Using one

zero-crossing line in multi-scale of the Gaus1 and two zero-crossing lines in multi-

scale of the Gaus2, position, height, standard deviation, and frequency response of
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Figure 5.3. An Illustration of GDWavelet: the 19th sample of [57] dataset is selected
to illustrate how GDWavelet method operates to detect peak in MS signal. (a) Blue
signal line represents for a raw signal and red one is a signal smoothed by bivariate
shrinkage estimator in wavelet domain. (b) Parameters of peaks are estimated by zero-
crossing lines. This figure shows zero-crossing lines of only one zoom peak in figure
(a). (c) Peaks are quantified by two rules: peak height and peak rank (in Envelope
analysis). Union results include peaks whose heights are larger than a threshold and
peak ranks equal to one. (d) ROC curves of four methods’ performance. With this
sample, GDWavlet yields the best performance.

this peak are estimated. In Fig. 5.3(c), peaks are quantified by two rules: peak height

and peak rank (in envelope analysis). The circles are results from peak height based

quantification. The stars are from peak rank based quantification. Union results

include all peaks with heights larger than a threshold or peak rank one. Fig. 5.3(d)
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shows ROC curves of four methods’ performance that will discussed in next section.

GDWavlet gives the best performance.

5.6 Experiments and Discussions

5.6.1 Experimental Setup

Cruz-Marcelo et al.(2008) and Emanuele et al. (2009) presented the results of

an extended and up-to-date study that compares the performance of current popular

methods for SELDI data pre-processing, including CWT ([51]), Cromwell ([49, 50]),

PROcess ([67]), Ciphergen and SpecAlign ([68]). They concluded that CWT ([51])

has the best performance in term of peak detection. Another method which also works

well is Cromwell ([49, 50]). In this section, GDWavelet method will be compared to the

Cromwell ([49, 50]), the CWT ([51]), and the previous method, GaborEnvelop ([63]).

These methods are state-of-the-art MS peak detection methods. Cromwell method

is implemented by MATLAB and can be downloaded from [59]. The CWT method

([51]) has been implemented in R (called ‘MassSpecWavelet’) and Version 1.12 can

be downloaded from [60]. GaborEnvelop ([63]) is implemented in MATLAB.

The performances of above methods are evaluated by the ROC curve that is

the standard validation criterion. Both simulated and real data are used in this

chapter. The first simulated data was proposed by Morris et al. (2005) and Coombes

et al. (2005) and are available for download at [69]. In this data, hundreds of mean

spectrum samples with hundreds of proteomics datasets are generated.

Based on the simulation engine developed by [49] and code (R and MATLAB)

to generate simulated data proposed by Cruz-Marcelo et al. (2008) and Zhang et

al. (2009), two simulated datasets are also used to investigate noise affection on

different algorithms. The 100 spectrums with 20 − 30 true peaks are created first,
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and Gaussian and real noise are added separately to get two datasets. When Gaussian

noise is added, each sample includes 20% of protein peaks which are below three of

SNR. Real noise is extracted from real data in which there is not any true peaks.

There is only noise from 26000 (index) to end in the 1st sample of [57]. Real noise

probability density function is built. Using this function, noise with different standard

deviation will be created. Based on this configuration, 20 − 30 true peaks and more

small energy peaks are created in simulated data.

The CAMDA dataset (2006) of all-in-1 Protein Standard II (Ciphergen Cat.

# C100− 007) is the real dataset used in this chapter. Because polypeptide compo-

sition and position are known in this dataset, the sensitivity and the false discovery

rate (FDR) can be estimated. Another advantage of this dataset is that they are

real data and better than the simulated data in evaluation. There are seven polypep-

tides which create seven true peaks at 7034, 12230, 16951, 29023, 46671, 66433, and

147300 of the m/z values.

The sensitivity and FDR of four methods are calculated for 60 real MS signals

and three simulated MS datasets with 100 signals each. The SNR thresholding values

are increased gradually to calculate the ROC curves of Cromwell and CWT methods.

The SNR thresholding values are chosen from 0 to 20 for Cromwell method and from

0 to 120 for CWT method. In GDWavelet method, the peak height ratio, which is

defined as the ratio of current peak height over average height of peaks, is changed

from zero to ten to build the ROC curve. The average ROC curves are plotted

in Fig. 5.4 and Fig. 5.5. Notice that average of all ROC points is taken with the

same SNR threshold (for Cromwell and CWT) and the same peak height rate (for

GDWavelet method).
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5.6.2 Experimental Results

Three simulated datasets and one real SELDI-TOF dataset are used to create

ROC curves in Fig. 5.4 and Fig. 5.5. In all four datasets, the performance of Cromwell

is not stable and gets worse than CWT and GDWavelet. Between GaborEnvelop used

envelope analysis and CWT used ridge lines, GaborEnvelop is better than CWT in

real data in Fig. 5.4 (b). However, CWT is better than GaborEnvelop in simulated

data. In all cases, GDWavelet method has much better performance than GaborEn-

velop and CWT methods. At the same FDR, the sensitivity of proposed method is

consistently higher than GaborEnvelop’s and CWT’s sensitivity. It is clear that utiliz-

ing both of envelope analysis and Gaussian derivative wavelet in peak quantification

made a significant contribution to detect both high energy and small energy peaks.

Note that GDWavelet is designed from three nice techniques such as wavelet denois-

ing, multi-scale wavelet, and envelop analysis ([63]). Bivariate shrinkage estimator

in wavelet domain guarantees that denoising step in the proposed method saves true

signal much better than [49]. Zero-crossing lines based peak parameters estimations

in this chapter are more accurate and robust to noise than ridge lines in [51]. Enve-

lope analysis is more efficiently used in GDWavelet than in GaborEnvelop. Therefore,

the GDWavelet has better peak detection results than Cromwell, GaborEnvelop, and

CWT. Thus, it is an efficient and accuracy method to detect peaks in both real and

simulated MS data. In Fig. 5.4 and 5.5, CWT’s ROC curves is limited in small FDR

because two thresholds of the length of ridge lines and the scale corresponding to the

maximum amplitude on the ridge line are used as default in MassSpecWavelet ([60]).
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Figure 5.4. ROC Curves - Simulated data with Gaussian noise: Average ROC curves
of four methods (Cromwell, CWT, GaborEvelop, and GDWavelet). (a) Obtained
from 100 mean simulated MS signals which can be downloaded from [69]. There are
149 true peaks in this data. (b) Obtained from 100 simulated MS signals in which
Gaussian noise is added. There are 20− 30 true peaks in this data.
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Figure 5.5. ROC Curves - Simulated data with real noise and real data: Average
ROC curves of four methods (Cromwell, CWT, GaborEvelop, and GDWavelet). (a)
Obtained from 100 simulated MS signals in which real noise is used. There are 20−30
true peaks in this data. (b) Obtained from 60 MS signals ([57]). There are seven true
peaks in this data.

5.7 Conclusion

In this chapter, new zero-crossing line theory in multi-scale of Gaussian deriva-

tive wavelet has been proposed to estimate parameters of peaks in mass spectrometry
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which has been assumed as a mixture of Gaussian. A novel GDWavelet method

was proposed to efficiently and accurately detect MS peaks by integrating bivariate

shrinkage model, Gaussian derivative, and envelope analysis. The bivariate shrink-

age estimator in SWT domain was used to reduce noise and still keep true peaks.

All parameters of a Gaussian peak, estimated by multi-scale in Gaussian derivative

wavelet and envelope analysis, have been used to remove false peaks. The peak

height and peak rank were introduced as a nice substitution of the previous SNR

method to identify true peaks. Both simulated data and real MS data are used to

evaluate GDWavelet method. Simulated data was created with both Gaussian noise

and real noise. The GDWavelet method gave out a much better performance in the

ROC curves than three other state-of-the-art peak detection methods. Based on

GDWavelet method, many MS data related applications will be improved, such as

protein identification, biomarker discovery, cancer classification, etc.



CHAPTER 6

CONCLUSION

6.1 Array-CGH

In this dissertation, at the chapter 2, the stationary wavelet packet transform

method has been explored with the new bivariate shrinkage estimators in array CGH

data denoising study. The dependent Laplacian bivariate shrinkage estimator has

been proposed to improve the SWPT method in aCGH data denoising study. In

experiments, the denoising results of SWPT-LaBi method are much better than the

previous methods in terms of the root mean squared error measurement and the ROC

curve at different Gaussian noise levels. The denoising results from SWPT-AdaBi are

much better than previous methods. Furthermore, real noise is also used to improve

the traditional aCGH synthetic data generation. Since new synthetic data generation

model is a better approximation of real aCGH data, it can more accurately evaluate

the aCGH smoothing algorithms. This new synthetic aCGH with real noise is also

exploited in evaluation, and proposed method still outperforms others. Meantime,

the real aCGH data is also used to demonstrate proposed approach is better than

other most common used smoothing methods.

In chapter 3, noise distribution has been studied in array CGH data using five

real datasets in many platforms with different resolutions. As discussed, almost all

previous array CGH data processing and analysis methods assumed that the noise

PDF is Gaussian. However the recent work and experimental result show that array

CGH noise is heavy-tailed noise. When compared with other distributions used in

previous research such as Gaussian and Student’s t distributions, generalized Gaus-
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sian distribution fits very well noise PDF in the array CGH data. Therefore, using

GGD for modeling noise assumption is used in the array CGH data and a novel

smoothing-segmentation method based on this generalized Gaussian noise has been

proposed. Bivariate shrinkage function’s theory in SWT is built with an approach to

suppress heavy-tailed noise in array CGH. One-directional Gaussian wavelet deriva-

tive scalogram is defined and proposed to detect breakpoints in array CGH. Because

the ground truth aberration regions are not clear in real array CGH datasets, syn-

thetic array CGH data plays an important role in array CGH analysis algorithm

evaluation. By using generalized Gaussian noise and real noise, the synthetic array

CGH data models which are closer to the real array CGH data than the most com-

monly used standard [15] and [34] have been improved. Both synthetic data and real

data are used to evaluate the performance of proposed method, DWSS. New method

outperforms other most commonly used algorithms in array CGH literature both in

terms of RMSE and ROC curve.

6.2 Mass Spectrometry

Mass spectrometry data analysis has been discussed in chapter 4. In the results

of traditional MS peak detection algorithms, there exist massive true negative and

false positive, i.e., the real peaks with small amplitude are easily missed and the false

peaks with high amplitude are always detected. In this dissertation, a new complex

Gabor-Envelope approach has been proposed to solve these problems with promising

results. Gaborlocal and GaborEnvelop methods are a combination of the complex

Gabor filter and envelope analysis approaches. Envelope analysis is proposed as a new

theory to discover important signals from a large range of frequency. Most of all peaks

in mass spectrometry are visible after using complex Gabor filters. Envelope analysis

is employed to classify peaks into many groups corresponding their importance. The
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peak ranking method is introduced and used at the first time to replace the previous

SNR method to identify true peaks. The real MS dataset, the CAMDA 2006 data,

was used in validations. The proposed method gives out a much better performance

in the ROC curve comparison with two other state-of-the-art peak detection methods.

In chapter 5, new zero-crossing line theory in multi-scale of Gaussian derivative

wavelet has been proposed to estimate parameters of peaks in mass spectrometry

which has been assumed as a mixture of Gaussian. A novel GDWavelet method

was proposed to efficiently and accurately detect MS peaks by integrating bivariate

shrinkage model, Gaussian derivative, and envelope analysis. The bivariate shrink-

age estimator in SWT domain was used to reduce noise and still keep true peaks.

All parameters of a Gaussian peak, estimated by multi-scale in Gaussian derivative

wavelet and envelope analysis, have been used to remove false peaks. The peak

height and peak rank were introduced as a nice substitution of the previous SNR

method to identify true peaks. Both simulated data and real MS data are used

to evaluate GDWavelet method. Simulated data was created with both Gaussian

noise and real noise. GDWavelet method gave out a much better performance in

the ROC curves than three other state-of-the-art peak detection methods. Based on

GDWavelet method, many MS data related applications will be improved, such as

protein identification, biomarker discovery, cancer classification, etc.



APPENDIX A

ABBREVIATION LIST
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1-D One-Directional

aCGH Array Comparative Genomic Hybridization

array CGH Array Comparative Genomic Hybridization

BAC Bacterial Artificial Chromosome

CBS Circular Binary Segmentation Method

cDNA complementary DNA

CWT Continuous Wavelet Transform

DNA Deoxyribonucleic acid

DTCWT Dual-Tree Complex Wavelet Transform

DTCWTi Dual-Tree Complex Wavelet Transform

and Interpolation Method

DTCWTi-Bi Dual-Tree Complex Wavelet Transform,

Interpolation and Bivariate Shrinkage Function Method

DWPT Discrete Wavelet Packet Transform

DWSS Derivative Wavelet Scalogram Segmentation Method

DWT Discrete Wavelet Transform

FDR False Discovery Rate

FPR False Position Rate

GaborEnvelop Gabor filters and Envelope Analysis based Method

GaborLocal Gabor filters and Gaussian Local Maxima based Method

GADA Genome Alteration Dectection Analysis

Gaus1 First Derivative Gaussian Wavelet

Gaus2 Second Derivative Gaussian Wavelet

Gaus3 Third Derivative Gaussian Wavelet

GDWavelet Gaussian Derivative Wavelet based Method
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GGD Generalized Gaussian Distribution

HaarSeg Haar Wavelet - Segmentation Method

IID Independent Identically Distributed

KLD Kullback-Leibler Divergence

MAP Maximum A Posteriori Probability

MAX Maximal Envelope

MED Median Envelope

MIN Minimal Envelope

MS Mass Spectrometry

PDF Probability Density Function

Quantreg Quantile Regression Method

RMSE Root Mean Squared Error

ROC curve Receivever Operating Characteristic curve

SELDI-TOF Surface-enhanced laser desorption/ionization-time-of-flight

SmoothSeg Smooth Segmentation Method

SNP Single-Nucleotide Polymorphism

SNR Signal to Noise Ratio

SWPT Stationary Wavelet Packet Transform

SWPT-AdaBi SWPT and Adaptive Bivariate Shrinkage based Method

SWPT-LaBi SWPT and Laplacian Bivariate Shrinkage based Method

SWT Stationary Wavelet Transform

SWTi Stationary Wavelet Transform

and Interpolation based Method

TPR True Position Rate
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