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ABSTRACT

BRANCH-AND-CUT-AND-PRICE METHODS FOR LOGISTICS PROBLEMS

WITH LIMITED RISK

Publication No.

Hee-Su Hwang, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Jay M. Rosenberger

There exist many uncertainties in a logistics system, such as unknown demand,

unsteady fuel cost, machine breakdowns, and accidents to name a few. Logistics man-

agement is difficult because logistics managers must solve a global optimization problem,

which includes eliminating as much uncertainty as possible, finding effective methods of

managing uncertainty, and operating the entire logistics system effectively. To cope with

uncertainty, many efforts have been made for vehicle routing problems. On the contrary,

traditional ship-scheduling models ignore uncertainty, even in highly volatile markets.

We present a set-packing model that limits risk using a quadratic variance con-

straint. After generating first-order linear constraints to represent the variance constraint,

we develop a branch-and-cut-and-price (delayed column and cut generation, DCCG) al-

gorithm for medium-sized ship-scheduling problems. Computational results show that

we can significantly limit standard deviation of the profit with a small expected profit

reduction. We also present a lagrangian decomposition method in which the set-packing

model with a quadratic constraint can be reformulated as the sum of two integer prob-

v



lems by introducing linking variables and constraints. We explore a lagrangian-based

heuristic method and a simple rounding heuristic. The heuristic methods are applicable

throughout the branch-and-bound tree and can substantially improve the DCCG algo-

rithm. By incorporating heuristic methods with the DCCG algorithm, we can find very

good solutions effectively and reduce the CPU time significantly. Computational results

are provided, and extensions are discussed.
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CHAPTER 1

INTRODUCTION

Logistics can be defined as getting the right quantity of products and services to

the right locations, at the right time, and for the right price. The activities that take

place in the logistics system include purchasing raw materials, manufacturing products,

transporting them to warehouses for intermediate storage, and shipping finished goods

to retailers or customers. Logistics problems can be viewed as “how these activities

can be operated efficiently,” and logistics managers organize and plan the activities by

solving logistics problems so that there is a coordination of resources in an organization.

These problems are the definition of logistics management, which “plans, implements, and

controls the efficient, effective forward and reverse flow and storage of goods, services and

related information between the point of origin and the point of consumption in order to

meet customers’ requirements.” (CSCMP, 2006)

Effective logistics management introduces three levels of decision-making problems;

from the strategic through the tactical to the operations level. The strategic level de-

cisions can be the number, location, and capacity of facilities, and the tactical level

decisions may include purchasing, production, and fleet size determination. Lastly the

operational level decisions are day-to-day decisions such as staffing, scheduling, routing,

and truck loading. The last step in logistics activities is moving goods from distribu-

tion centers to customers on the most costly link of the logistics network (Bodin et al.,

1983). If a logistics manager wants to manage distribution system effectively, he must ap-

proach the planning and execution of transportation activities in a rational manner. Thus

1
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the operational level decision-making problems, typically vehicle routing and scheduling

problems, have drawn much attention from researchers.

Simchi-Levi et al. (2003) mentioned two general issues to describe the difficulty

of logistics management. First, logistics consists of many systems, so finding the best

systemwide strategy is challenging. It is often difficult to find the best design in a single

facility so as to minimize costs while maintaining service level. When the whole system is

being considered, the difficulty increases exponentially. Second, uncertainty is prevalent

in logistics. Forecasting exact customer demand is almost impossible, travel times and

fuel costs can vary, and machines and vehicles will break down. Thus logistics managers

must be able to eliminate as much uncertainty as possible and to find effective methods

of managing remaining uncertainty. In this dissertation, we focus on the operational level

decision-making problems with uncertainty.

1.1 Uncertainty in Logistics Systems

The world is full of uncertainty and risk, e.g., natural disaster, unusual weather

changes, threats of terrorism, depleted oil reserves, and war, which makes world economy

unstable. In addition to them, there exist many uncertainties in logistics system, such

as unknown demand, unsteady fuel cost, machine breakdowns, and accidents to name a

few.

Major domestic airline carriers experience disruptions everyday. For example, pilot

strikes, mechanical failures, extended in-flight delays and severe weather cause delays

and traffic congestion. Average daily flight delays increased 20% from 1998 to 1999 and

16.5% from 1999 to 2000, which had been mostly caused by weather. Travel delays,

runway delays, and flight cancellations increased 50%, 130%, and 68%, respectively, from

1996 to 2000 (Rosenberger, 2001). Historically, delays and flight cancellations cost multi-

billion dollars per a year. Many efforts have been done to cope with these disruptions
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(see Lettovský et al., 1996; Cao and Kanafani, 1997; Luo and Yu, 1997; Lettovský et al.,

2000; Schaefer, 2000; Rosenberger, 2001; Ehrgott and Ryan, 2003). In airline operations,

typical standard deviations of the demand are 20-50% of the mean demand (Berge and

Hopperstad, 1993), so inappropriate fleet utilization would result in heavy loss from either

empty seats or seat shortage. On the contrary, slight improvement of flight utilization

yields multi-million dollars profit increase in a year. For example, airline fleet assignment

models yeild annual savings of $100 million at Delta, $15 million annually at USAirways,

and a 1.4% improvement in operating margins at American Airlines (Pilla et al., 2005).

Fleet management research is prevalent in academic literature (see Botimer and Belobaba,

1999; Weatherford and Belobaba, 2002; List et al., 2003; Bish et al., 2004; Lohatepanont

and Barnhart, 2004; Listes and Dekker, 2005).

Numerous organizations operate fleets of trucks to move goods. It is no exaggera-

tion to say that every single product is delivered by a truck. The number of large trucks

was over 8 million in 2000, and truck-involved accidents was 28% of total crashes. The

average costs of large truck-involved crashes and multiple combination truck-involved

crashes were $59,153 and $88,483, respectively (Zaloshnja and Miller, 2004). We never

experience a day without accidents that result in delays, changes in fuel costs, and vehicle

breakdowns, which demonstrate the fact that trucking operations are very vulnerable to

uncertainties. Some studies related to trucking under uncertainty are as follows. Fenga

et al. (2004) solved the truck despatching problem for delivering mixed concrete to con-

struction sites, which considers travel time, unknown demand, and job rates at sites.

Powell et al. (2000) captured uncertainties such as customer demands, travel times, and

user noncompliance using myoptic greedy method. Golshani et al. (1996) and Ghiani

et al. (2003) considered real time traffic information to find optimal routes. Haghani and

Jung (2005) and Jula and Dessouky (2006) considered travel times in urban areas due

to a variety of factors, such as accidents, traffic conditions and weather conditions.
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Maritime logistics problems optimize the transportation of commodities, so they are

vital to world trade and military logistics. A ship requires a multi-million dollar capital

investment, and the daily operating costs of a ship can be tens of thousands of dollars.

Consequently, improved fleet utilization can yield significant financial benefit. However,

maritime transportation problems have attracted less attention in comparison with inland

vehicle routing and scheduling problems. Ronen (1983) explains the reason for the low

attention drawn by maritime transportation problems in terms of (1) low visibility —

the use of truck or rail is much larger than that of ships in the U.S.A., so most maritime

transportation studies has been done in European countries, which depend more on ocean

shipping, (2) less structured — problem structures and operating environments are full

of variety, (3) much more uncertainty in ship operations — severe weather, mechanical

problems, and strikes can cause delays, and expensive daily operating cost gives very little

slack in their schedules, (4) a volatile, international, capital intensive, and relatively free

market — different national laws and regulations can be applicable, and the shipping

market is a perfect free market, (5) long tradition — the long tradition of conservative

thinking in shipping industry does not welcome new ideas such as supportive optimization

techniques.

Research for real shipping business cases, such as Chajakis (1997) and Chajakis

(1999), have shown that significant savings can be achieved by managing demand uncer-

tainty and optimizing ship operations. To the best of our knowledge, we can find little

research on disruptions or uncertainties, e.g., market fluctuation, variable fuel cost, ship

breakdowns, or unknown demand, in ship routing and scheduling problems. Some of

them include Lo and McCord (1998), Azaron and Kianfar (2003), and Cheng and Duran

(2004). This fact motivated us for further research on limiting risk of ship scheduling.
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1.2 Dissertation Objectives and Outline

In this dissertation, we formulate a new ship-scheduling model as a set-packing

problem with a quadratic constraint that limits the variance of shipping profit. Then

we develop a branch-and-cut-and-price method that generates both columns and cuts

in branch-and-bound trees, which is an exact algorithm incorporating Kelley’s cutting

plane method. We also propose an alternative model, which reformulates the quadratic

constraint into general packing constraints based on lagrangian decomposition. Then we

explore heuristic methods that include both a lagrangian heuristic utilizing subgradient

optimization and a simple rounding heuristic. The lagrangian heuristic uses a modified

column generation for finding promising columns. The heuristic methods are incorpo-

rated with the branch-and-cut-and-price method. We conduct computational experi-

ments for medium-sized ship-scheduling problems by using the branch-and-cut-and-price

method and the heuristic methods. Computational results are discussed, and future

research topics are identified.

In Chapter 2, a brief background on vehicle routing and scheduling under un-

certainty and solution methods is described. In Chapter 3, the need for managing

risk in logistics problems, risk in ship scheduling, and the ship-scheduling models that

limit variance are developed. Solution approaches and computational results based on a

branch-and-cut-and-price algorithm are presented in Chapter 4. The heuristic methods

incorporating with both a lagrangian-based heuristic and a simple rounding heuristc,

and computational results are presented in Chapter 5. Finally, conclusions and future

research topics are given in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

2.1 Vehicles Routing and Scheduling

The vehicle routing problem (VRP) is a model that determines a set of minimum

cost routes, originating and terminating at a depot, for a fleet of vehicles that services

a set of geographically dispersed cities or customers with known demands (Ahuja et al.,

1993). The VRP arises naturally as a central problem in the fields of transportation,

distribution and logistics. Practical examples of the VRP include the delivery of packages

to customers, the delivery of end-user products to retail stores, the collection of money

from banks, and the routes of school buses to ride students.

The VRP is NP-hard and a well known integer programming problem. The VRP

is defined as follows. Let G = (N, A) be a network, where A is the arc set and N is the

node set. Node 1 represents a common depot while the remaining nodes correspond to

cities or customers. An arc represents a route segment, where each route starts and ends

at the depot. Associated with each node i ∈ V is a non-negative demand di. Associated

with each arc (i, j) ∈ A is a cost or distance cij. There is a fleet of capacitated vehicles

based at the depot. These vehicles are homogeneous and have capacity u. The VRP

determines the minimum cost set of routes for delivering the goods to the customers so

that each customer is serviced exactly once by one vehicle and the total customer demand

on any route does not exceed u. In real world VRPs, many side constraints appear, and

there are different variants. For example, the fleet of vehicles may be nonhomogeneous,

every customer may have to be supplied within a certain time window, several depots

6
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may exist, customers may be served by different vehicles, some values (such as number

of customers, their demands, service time or travel time) are random.

VRPs decide the spatial configuration of vehicle movements and involve the speci-

fication of a sequence of locations that a vehicle may visit, while vehicle scheduling prob-

lems consider the times at which locations are visited. Therefore, the vehicle scheduling

problem can be considered as a VRP with additional constraints related to the times

when various activities take place. For general formulations and solution methods on

vehicle routing and scheduling are described in Bodin et al. (1983), Laporte (1992), Tan

et al. (2001), Teng et al. (2003), and Bräysy and Gendreau (2005a,b).

2.2 Ship-Scheduling

Shipping industries provide maritime transportation services between countries,

which play an important role in international trade moving goods by sea. Growing inter-

national trade requires more and larger ships, and shipping industries enable suppliers

to meet increasing demand thanks to the new technologies, which could build ultra-large

crude carriers, huge container ships, roll-on/roll-off vessels, and ultramodern LPG/LNG

ships. The success of a shipping company lies on the allocation and operation of its ships.

Even if all of the strategic level decisions that are related to fleet size, trade routes, and

ports and terminals to use are made, tactical and operational level decisions, such as ship

scheduling and routing, remain challenging and critical.

Since the pioneering work of Dantzig and Fulkerson (1954), ship-scheduling prob-

lems have been studied extensively in academic literature, and Christiansen et al. (2004)

surveys the literature prior to 2004. Since then, a few more studies on ship-scheduling

have been conducted, e.g., Bhasi (2004), Fagerholt (2004), and Persson and Göthe-

Lundgren (2005). There are three types of shipping operations—industrial operators,

tramp shippers, and liners. Industrial operators deliver their own cargoes on their own



8

ships at minimal cost, while tramp shippers transport cargoes for other companies.

Tramp shippers often have some cargoes under contract that they must ship, contracts

of affreightment, so general optimization models for industrial and tramp shippers are

formulated similarly. Unlike industrial and tramp shippers, liners operate according to

published schedules, so they differ significantly from the other two types of shipping

operations. In this dissertation, we focus on the industrial and tramp-shipper problems.

A cargo is the entire content of a ship transported between two ports, and a schedule

is a sequence of cargoes delivered by the same ship. Ship-scheduling problems are solved

by generating a set of feasible delivery schedules for each ship and optimizing a set-

packing (or set-partitioning) problem so that overall costs (or profits) are minimized (or

maximized). (see Bausch et al., 1998; Kim, 1999; Fagerholt and Christiansen, 2000a,b;

Fagerholt, 2001; Christiansen and Fagerholt, 2002; Bhasi, 2004; Fagerholt, 2004; Persson

and Göthe-Lundgren, 2005). However, most traditional set-packing (or set-partitioning)

models ignore uncertainty.

2.3 Vehicle Routing Under Uncertainty

Approaches to optimization under uncertainty include stochastic programming,

fuzzy programming, and stochastic dynamic programming (Sahinidis, 2004). Because

there are many uncertainties in vehicle routing such as, stochastic demands, stochastic

travel times, and unknown customers, the stochastic vehicle routing problem (SVRP) has

received considerable attention in the literature.

SVRPs are modeled as two-stage stochastic programs (SPs), which consist of two

groups of uncertain decision variables according to the period when these decisions are

taken. A number of decisions have to be taken without full information on some random

events, which is called first-stage decisions. After the uncertainty of these random events

is revealed, further information is available, and a number of decisions can be taken
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as recourse actions, which called second-stage decisions. An SP is modeled either as a

stochastic program with recourse (SPR) or a chance constrained program (CCP). The

goal of an SPR is to determine first-stage decisions so as to minimize the sum of the cost

of first-stage decisions and the expected cost of second-stage decisions, and CCPs don’t

consider the cost of corrective actions in case of failure (Gendreau et al., 1996; Birge and

Louveaux, 1997).

Vladimirou and Zenios (1997), Morton and Wood (1999), Beraldi et al. (2000),

and Sherali and Fraticelli (2002) provided formulations and algorithms for SPRs, us-

ing parametric programs, restricted-recourse bounds, parallel algorithms, and lift-and-

project cutting plane, respectively. Carøe and Tind (1998), Carøe and Schultz (1999),

and Ahmed et al. (2004) developed branch-and-bound algorithms for stochastic integer

programs. L-shaped method is an extension to the stochastic integer case of Benders’

decomposition (Benders, 1962), and Laporte et al. (2002) studied an implementation of

the integer L-shaped method (Laporte and Louveaux, 1993) for the exact solution of the

SVRP. List et al. (2003) and Beraldi et al. (2004) presented formulations and solution

procedures for robust optimization (Mulvey et al., 1995; Takriti and Ahmed, 2004) for

fleet planning under uncertainty. Kleywegt et al. (2004) and Jula and Dessouky (2006)

proposed approximate solution methods based on dynamic programming.

Gendreau et al. (1995), Hjorring and Holt (1999), and Secomandi (2001) presented

SVRP formulations with probabilistic demands and/or customers. Gendreau and La-

porte (1996) described a tabu search algorithm. Haughton (1998, 2000) discussed the

benefits and learning requirements regarding the re-optimization of routes. Swihart and

Papastavrou (1999) developed a stochastic and dynamic model for the pick-up and de-

livery problem. Some studies on the SVRP with random travel and service times include

Laporte (1992) and Kenyon and Morton (2003).
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Cheng and Duran (2004) captured stochastic inventory and transportation system

in crude oil shipping by integrating discrete event simulation and stochastic optimal con-

trol. Azaron and Kianfar (2003) used stochastic dynamic programming to find shortest

paths for the ship routing problem assuming that the environmental variables of the

adjacent nodes are fully known in stochastic dynamic networks. Lo and McCord (1998)

formulated a dynamic programming model to find optimal strategic routes for saving fuel

costs.

2.4 Branch-and-Cut-and-Price for Vehicle Routing

The Branch-and-bound (BB) algorithm is a divide-and-conquer approach for solv-

ing difficult integer programs (IPs). The basic structure of the algorithm is an enumer-

ation tree, and a given IP starts on the root node. The algorithm divides the IP into

simpler subproblems, and each of them is independently solved. The tree grows by using

an appropriate branching scheme, which generates two or more child nodes of the parent

node. Each subproblem at the child nodes is generally created by adding a bound on

a single integer variable of the problem at the parent node. At each node of the tree,

solving a linear programming (LP) relaxation (relaxing the integrality requirement on

the variables) of the current problem yields a bound on the value of an optimal solution,

which is called the bounding phase. If a better feasible solution is found, the current

best solution is replaced with the new solution. If the subproblem is infeasible or the

bound is not better than the value of the best feasible solution thus far, the node is

pruned, otherwise branching occurs. The algorithm continues until an optimal solution

is achieved.

If the IP contains huge number of decision variables (columns), then the branch-

and-price (BP) algorithm considers only a small subset of the columns in the LP relax-

ation of the problem. To check the optimality of the LP solution, new columns that may
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enter the current basis are iteratively identified through the solution of a pricing problem,

which is called column generation (Barnhart et al., 1998). If no columns price out to

enter the current basis and the LP solution is not integral, branching occurs. Applying

a standard BB strategy over the subset of the columns is unlikely to give an optimal so-

lution to the IP. Thus the algorithm, a generalization of BB with LP relaxation, applies

column generation throughout the BB tree.

In the branch-and-cut (BC) algorithm, the LP relaxation of the IP initially contains

only a subset of the constraints of the original problem. An inequality (constraint or cut)

that satisfies all feasible solutions is called a valid inequality. Valid inequalities that are

not part of the current problem and violated by the optimal solution of the current LP

relaxation are called violated cuts. The violated cuts are identified through the solution of

the separation problem, which can be solved by exact or heuristic separation procedures

(see Fischetti et al., 2001; Ralphs et al., 2003a). By adding violated cuts to the LP

relaxation, which is called the cutting plane method (Gomory, 1958; Winston, 1994),

the LP feasible region is tightened without changing the IP feasible region. Then the

modified LP relaxation is resolved, and the procedure repeats until no violated cuts are

found. The algorithm, another generalization of BB with LP relaxation, employs cutting

planes throughout the BB tree.

The branch-and-cut-and-price (BCP) algorithm combines BP and BC methods, so

at each node, both new variables and new cuts can be added. Additional difficulties

arise since the algorithm must dynamically generate cutting planes without destroying

the structure of the column generation subproblem. Developing efficient data structures

for representing the objects as well as implementation of such methods are also very

challenging.
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References on effective modelling, preprocessing, implementation, and the method-

ologies for BCP include Barnhart et al. (2000), Johnson et al. (2000), Toth (2000), and

Pangborn (2002).

Elhedhli and Goffin (2004) proposed adding cuts to recover primal feasibility and

discussed the integration of an interior-point cutting plane method within a branch-and-

price algorithm. Ralphs et al. (2003a) also described separation methodology based on

decomposition. Jüenger and Thienel (2000) and Ralphs et al. (2003b) described the

implementation and parallelization of BCP, respectively.

Barnhart et al. (2000) provided BCP solution strategy for origin-destination integer

multicommodity flow problems and results for test problems arising from telecommuni-

cations. Longo et al. (2006) applied BCP to a capacitated vehicle routing problem that

was transformed from a capacitated arc routing problem, which can be applicable to

street garbage collection, postal delivery, and routing of electric meter readers. Verweij

and Aardal (2003) formulated the pickup and delivery problem of the Dutch logistics

company Van Gend & Loos as a merchant subtour problem (MSP) and used BCP as

well as a tabu search algorithm. After finding a good feasible solution with the tabu

search, they solved the MSP optimally with BCP. Kim et al. (1999) used BCP to solve

an express package delivery problem formulated as a route-based model, which is one of

the large scale transportation service network design problems with time windows that

are prevalent in rail, airline, trucking, and intermodal industries (Kim and Barnhart,

1997).

2.5 Lagrangian Relaxation for Vehicle Routing

To find an optimal solution for a given minimization IP, a good algorithm should

be able to discover good quality upper bounds as well as lower bounds. Lagrangian

relaxation is available to find very good lower bounds for the IP. Upper bounds for
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the IP are found by searching for feasible solutions, for which some heuristics such as,

interchange, tabu search, simulated annealing, and genetic algorithms, can be used.

Lagrangian relaxation involves; attaching lagrange multipliers to some of the hard

constraints in a given IP formulation, adding these constraints into the objective function,

and solving the resulting IP with remaining easy constraints. The quality of the lower

bound depends upon determining values for the lagrangian multipliers, in which two

general techniques are used, i.e., subgradient optimization and multiplier adjustment.

Finding the values for the multipliers that provide maximum lower bound is called the

lagrangian dual problem.

A lagrangian relaxation problem can be separated into the sum of several linear

programs by introducing different artificial variables, adding all possible equality linking

constraints between artificial variables and original variables, and relaxing the equality

linking constraints, which is known as lagrangian decomposition. The solution of the

lagrangian relaxation problem can be converted into a feasible solution for the original

problem by proper adjustment, and this method is called lagrangian heuristics. Refer

to Nemhauser and Wolsey (1988) and Beasley (1992) for more detailed information on

lagrangian relaxation.

Ralphs and Galati (2006) provided a generic theoretical framework for generat-

ing dynamic cuts based on various decomposition methods, which could be extended

to decompose and cut, a decomposition-based separation technique. Kallehauge et al.

(2006) presented lagrangian branch-and-cut-and-price algorithm that used stabilized cuts

(Jüenger and Thienel, 2000) and strong valid inequalities.

Ribeiro and Soumis (1994) and Huisman et al. (2005) combined column gener-

ation and lagrangian relaxation for multiple-depot vehicle scheduling problem and for

integrated vehicle & crew scheduling (Freling et al., 2003), respectively. Fukasawa et al.

(2006) combined BC and BP with lagrangian relaxation for capacitated VRP. Rana and
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Vickson (1988, 1991) provided formulations and solution methods using lagrangian re-

laxation and decomposition for container ship operations.



CHAPTER 3

LIMITING RISK IN LOGISTICS PROBLEMS

Risk is prevalent in today’s global economy. Threats of terrorism, depleted oil

reserves, and war are examples of new sources of instability. Incomes in the United

States have become more volatile, bankruptcies are more frequent, and households are

shouldering more uncertainty (Gosselin, 2004). As economic fluctuation increases, lo-

gistics managers need to find methods of managing risk. We modify here a traditional

set-packing problem for ship scheduling by adding a quadratic constraint to limit the

variance of profit. The new model is formulated as

max cx (3.1)

s.t. Ax ≤ 1 (3.2)

xTQx ≤ d (3.3)

x ∈ {0,1}n, (3.4)

where A is a 0-1 matrix, and Q is a symmetric positive definite matrix in which an entry

in the matrix [qij] is the covariance of profit for selecting both sets i and j. Although

the application considered in this dissertation is commercial ship-scheduling, the use of

the set-packing problem is prevalent in industry. Some applications include air traffic

flow management (e.g., Rossi and Smriglio, 2001), aircraft rescheduling (e.g., Andersson

and Värbrand, 2004), and plant location (e.g., Cho et al., 1983; Canovas et al., 2002).

Moreover, a set-packing problem can be easily transformed into a set-partitioning prob-

lem, and some set-partitioning applications include commercial airline crew scheduling

(e.g., Vance et al., 1997; Klabjan et al., 2001), aircraft rerouting (e.g., Rosenberger et al.,

15
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2003), vehicle routing (e.g., Desaulniers, 2003; Sindhuchao, 2005), political redistricting

(Mehrotra, 1998), and organ transplantation (Kong, 2005).

3.1 Risk in Ship-Scheduling

Both industrial and tramp shippers often transport additional cargoes from the

spot market when capacity is available. When an entire ship is available, they will

place it on the spot charter market, so other shipping companies can charter it. If an

industrial or tramp shipper has a cargo that it cannot transport, this cargo is placed on

the spot market. The importance of spot rate costs is addressed in an example of Fisher

and Rosenwein (1989), the Tanker Division of the Military Sealift Command of the U.S.

Navy, which is responsible for transporting bulk petroleum products world-wide with a

fleet of approximately 20 tanker ships. They calculate total profit by the total spot rate

costs that would have incurred if the cargo had been delivered by spot charters minus

the operating costs of ships in their fleet.

Each year the International Tanker Nominal Freight Scale Association Ltd. (ITN-

FSAL) calculates a set of values that estimate the cost of shipping between any combi-

nation of ports using a standard ship, called Worldscale (WS) 100. In addition to these

values, Worldscale publishes the current market value of shipping freight in terms of a

direct percentage of the WS 100 rates (Worldscale, 2000). The fluctuation of WS, or spot

tanker freight rates, for the past five years (weekly: Jan.2001-Oct.2005) is well depicted

in Figure 3.1.

As shown in the figure, the WS is highly variable, and, in OPEC data (OPEC,

2005), the fluctuation rate is as high as 116% of WS 100 within one month. When we

convert WS into U.S. dollars, the maximum monthly fluctuation is $38.47/tonne, which is

recorded in Gulf/West route during November and December, 2004. Considering the fact

that a Very Large Crude Carrier (VLCC) is in the range of 150,000 to 300,000 tonne, the
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Figure 3.1. Spot Rates; VLCC-AG/WEST (Hanbada Corporation, 2003).

shipping cost increment of a VLCC could be $5,770,500 to $11,541,000 within a month.

Even a small change of WS could easily increase shipping costs tens of thousands of

dollars. Consequently, the cost of shipping on the spot market is extremely volatile,

so managing these fluctuations is critically important for a shipper’s success. In this

dissertation, we limit volatility in ship-scheduling by constraining the variance of shipping

profit.

3.2 New Ship-Scheduling Models

In this section, we formulate a new ship-scheduling model as a set-packing problem

with a quadratic constraint that limits the variance of shipping profit.

Industrial and tramp shippers must transport contracted cargoes from origin to

destination. In addition, they may rent out some of their ships, or they may deliver

additional cargoes from the spot market when capacity is available. Conversely, they may

also ship some contracted cargoes in the spot market. Most industrial and tramp-shipping

problems are modeled as set-packing (or set-partitioning) problems (Christiansen et al.,

2004), but we consider the variability of profit. The operating costs of the fleet are
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relatively constant and controllable compared with the randomness of the spot rate costs,

so we focus on the volatility of the spot market.

Let V be the set of ships to be scheduled, and let K be the set of cargoes. Sup-

pose set K is divided into two sets of cargoes: K1 is the set of cargoes in contracts of

affreightment, and K2 is the set of optionally shipped cargoes from the spot market. For

each ship v ∈ V , let Fv denote a set of candidate schedules, and let random variable g̃v

be the spot rate cost if the company charters out ship v. Let F be the set of all candidate

schedules F =
⋃

v∈V Fv. For each ship v ∈ V and each schedule f ∈ Fv, let constant cvf

be the cost of covering schedule f with ship v, and let the binary variable

xvf =


1, if ship v covers schedule f ;

0, otherwise.

For each ship v ∈ V , each schedule f ∈ Fv, and each cargo k ∈ K, the binary constant

akvf indicates whether ship v delivers cargo k in schedule f . For each cargo k ∈ K, let

random variables r̃k and ẽk be the revenue and the spot rate cost of delivering cargo k

with a spot charter, respectively.
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Then the industrial and tramp shippers ship-scheduling problem can be written as

max
∑

k∈K1∪K2

∑
v∈V

∑
f∈Fv

E [r̃k] akvfxvf −
∑
k∈K1

E [ẽk] sk +
∑
v∈V

E [g̃v] uv −
∑
v∈V

∑
f∈Fv

cvfxvf

(3.5)

s.t.
∑
v∈V

∑
f∈Fv

akvfxvf + sk = 1, ∀k ∈ K1, (3.6)

∑
v∈V

∑
f∈Fv

akvfxvf ≤ 1, ∀k ∈ K2, (3.7)

∑
f∈Fv

xvf + uv = 1, ∀v ∈ V, (3.8)

xvf ∈ {0, 1}, ∀f ∈ Fv, v ∈ V, (3.9)

sk ≥ 0, (3.10)

uk ≥ 0, (3.11)

where, E [·] represents the expected value of [·], sk is a binary variable that is equal to

one if cargo k is serviced by a spot charter and zero otherwise, and uv is a binary variable

that is equal to one if ship v is chartered out on the spot market and zero otherwise.

Variables sk and uv need not be defined as binary variables because of constraints (3.6)

and (3.8). The profit of assigning ship v to cover schedule f is thus given by

∑
k∈K

r̃kakvf +
∑
k∈K1

ẽkakvf − g̃v − cvf .

Observe that ẽk represents the reduction in opportunity cost of having to ship cargo k

on the spot market, and similarly g̃v is the lost opportunity from using ship v instead of

selling it on the spot market.

To simplify notation, let

r̃vf =
∑
k∈K

r̃kakvf ẽvf =
∑
k∈K1

ẽkakvf .
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The ship-scheduling problem with limited profit variance (SPLPV) then becomes

max
∑
v∈V

∑
f∈Fv

(E [r̃vf ] + E [ẽvf ]− cvf − E [g̃v]) xvf (3.12)

s.t.
∑
v∈V

∑
f∈Fv

akvfxvf ≤ 1, ∀k ∈ K, (3.13)

∑
f∈Fv

xvf ≤ 1, ∀v ∈ V, (3.14)

var

(∑
v∈V

∑
f∈Fv

(r̃vf + ẽvf − cvf − g̃v)xvf

)
≤ d, (3.15)

xvf ∈ {0, 1}, ∀f ∈ Fv, v ∈ V. (3.16)

Here, objective function (3.12) maximizes expected profit. The constraints in set (3.13)

ensure that cargoes in contracts of affreightment and profitable spot cargoes are serviced,

while constraint set (3.14) implies that each ship in the fleet is assigned to exactly one

schedule or chartered out on the spot market. Constraint (3.15) limits the variance of

the profit to a fixed value d > 0, a measure traditional ship-scheduling models ignore.

Finally set (3.16) represents the binary requirements on the variables.

We can rewrite constraint (3.15) as

∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

cov(r̃v1f1 + ẽv1f1 − g̃v1 , r̃v2f2 + ẽv2f2 − g̃v2)xv1f1xv2f2 ≤ d. (3.17)

Variance of a random variable is positive, so the covariance matrix must be symmetric

and positive definite (Wu, 2002). For each pair of ships (v1, v2) ∈ V × V , we denote the

covariance of costs from assigning ship v1 to schedule f1 ∈ Fv1 and assigning ship v2 to

schedule f2 ∈ Fv2 as qv1f1v2f2 . Because the covariance matrix Q = [qv1f1v2f2 ] is symmetric

and positive definite, the quadratic function xT Qx is convex. By Kelley’s cutting plane
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method (Kelley, 1960), we can replace the quadratic constraint (3.17) by an infinite set

of first-order constraints given by

2
∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

qv1f1v2f2wv1f1xv2f2 ≤ d +
∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

qv1f1v2f2wv1f1wv2f2 ,

∀w ∈ <|F |. (3.18)

The formulations represented by (3.12)–(3.16) and (3.12)–(3.14), (3.16), and (3.18) are

known to be equivalent in convex programming (Kelley, 1960).

Tightening Constraints

Each constraint in set (3.18) can be tightened to

2wT Qx ≤ 2
√

dwT Qw ∀w ∈ <|F |. (3.19)

By the triangle inequality, for each real vector w ∈ <|F |,

2
√

dwT Qw ≤ d + wT Qw,

so constraints in set (3.19) are at least as tight as those in set (3.18).

Proposition 1. For all w ∈ <|F |, the associated constraint in set (3.19) is a valid

inequality.

Proof. The constraints in both (3.18) and (3.19) for which w = 0 are redundant. For a

vector w ∈ <|F | \
{
0|F |
}
, wT Qw > 0 because Q is a positive definite matrix. Let u = hw,

where h is a positive constant equal to
√

d
wT Qw

. The constraint

2uT Qx ≤ d + uT Qu
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in the set (3.18) is a valid inequality. This implies

2wT Qx ≤ d + h2wT Qw

h

=⇒ 2wT Qx ≤
√

wT Qw√
d

d +

√
d√

wT Qw
wT Qw

=⇒ 2wT Qx ≤ 2
√

dwT Qw.

Note that the constraints in set (3.19) are tangent to the quadratic constraint (3.15).

3.3 Modeling Random Profits

Market shortages and surpluses may cause large increases and decreases on all

chartering rates. Consequently, the spot rate cost ẽk will be given by

ẽk = αe
k + βe

kM̃ + γ̃e
k,

where M̃ is an independent random variable representing the fluctuation of spot market

prices, αe
k is the expected cost of chartering a ship on the spot market, βe

k is a constant rate

for how the market random variable M̃ changes the spot rate, and γ̃e
k is an independent

random variable for the fluctuation from αe
k. An implicit assumption is that shipping

rates are linearly related to a single market chartering rate. Because of the dominance

of WS on shipping rates, this assumption is reasonable. This type of random profit

modeling can often be found in calculating the return on a portfolio (Sharpe, 1970).

The values αe
k, βe

k, and γ̃e
k can be adjusted so that, without loss of generality,

E[M̃ ] = E[γ̃e
k] = 0, E[ẽk] = αe

k, var(M̃) = 1, and var(ẽk) = βe
k
2 + var [γe

k]. For each cargo
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not under contract k ∈ K2, we let αe
k = βe

k = γ̃e
k = 0. The random variables r̃k and g̃v

are analogously defined; that is,

r̃k = αr
k + βr

kM̃ + γ̃r
k,

g̃v = αg
v + βg

vM̃ + γ̃g
v .

To simplify notation, let αk = αr
k + αe

k, βk = βr
k + βe

k, γ̃k = γ̃r
k + γ̃e

k, and βvf =∑
k∈K βkakvf + βg

v . For each pair of ships (v1, v2) ∈ V × V , the covariance of costs

for assigning ship v1 to schedule f1 and assigning ship v2 to schedule f2, qv1f1v2f2 , is given

by

qv1f1v2f2 = βv1f1βv2f2 +
∑

k∈f1∩f2

var(γ̃k) + var(γ̃g
v1

)Iv1=v2 , (3.20)

where the binary constant Iv1=v2 is defined as

Iv1=v2 =


1, if ships v1 and v2 are the same ship;

0, otherwise.



CHAPTER 4

BRANCH-AND-CUT-AND-PRICE APPROACH

In Chapter 3, we described two formulations for ship-scheduling with constrained

risk; one used a single quadratic constraint, while the other included an infinite set of

first-order constraints. In this chapter, we develop a branch-and-cut-and-price to solve

the latter model.

4.1 Delayed Column-and-Cut Generation

The simplest method to solve the continuous relaxation of SPLPV (CSPLPV) is

Enumerated Kelley’s Cutting Plane algorithm (EKCP), which is summarized in Algo-

rithm 1.

Algorithm 1 Enumerated Kelley’s Cutting Plane Algorithm (EKCP)

Restricted Master Problem (RMP) Step: LetW ⊂ <|F | be a finite set, and solve

the linear programming relaxation of (3.12)–(3.14), (3.16), and a subset of constraints

(3.19) using W to obtain x∗.

if x∗T Qx∗ > d + ε, where ε > 0 is a very small constant then

Cut Generation Step: W ←W ∪ {x∗} and return to the RMP Step.

else

Return the optimal solution x∗.

end if

In this section, we develop a new delayed column-and-cut algorithm which combines

delayed column generation with EKCP to solve CSPLPV. Let π and ρ be dual vectors

24
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for constraint sets (3.13) and (3.14), and (3.19), respectively. For any optimal solution

(x∗, π∗, ρ∗) of CSPLPV, the reduced cost cvf of each variable xvf is non-positive; that is

cvf = E [r̃vf ] + E [ẽvf ]− cvf − E [g̃v] −
∑
k∈K

akvfπ
∗
k − π∗v − 2

∑
w∈W

∑
ṽ∈V

∑
f̃∈Fṽ

ρ∗wqvfṽf̃wf̃ ≤ 0,

∀f ∈ Fv, v ∈ V. (4.1)

Consider the delayed column-and-cut generation algorithm (DCCG), represented by Al-

gorithm 2, for solving CSPLPV. For the column generation step, we use a topological

Algorithm 2 Delayed Column-and-Cut Generation Algorithm (DCCG)

Let W ← ∅ be a subset of linear constraints from (3.19). Generate a subset of ship

schedules F v ⊂ Fv, ∀v ∈ V .

RMP Step: Solve CSPLPV over the set of subsets F =
⋃

v∈V F v and first-order

constraint set W to get a solution (x∗, π∗, ρ∗).

if x∗T Qx∗ > d + ε then

Cut Generation Step: Update the constraint set W ← W ∪ {x∗} and return to

the RMP Step.

else

Find a ship v and a ship schedule f ∈ Fv \ F v that maximizes the reduced cost cvf

from (4.1).

if cvf ≤ 0 then

Return the optimal solution (x∗, π∗, ρ∗).

else

Column Generation Step: F ← F ∪
{
f
}

and return to the RMP step.

end if

end if
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sorting algorithm to find a new ship schedule with maximum reduced cost (4.1) on a

directed acyclic graph described in Section 4.2.

Traditional EKCP assumes all columns are available, and it adds first-order linear

constraints in place of convex constraints as in the cut generation step of DCCG. For

large-scale problems, however, enumerating all of the ship schedules is often impractical.

Even for medium sized SPLPV problems we need to generate the covariance matrix Q

which increases quadratically as the number of columns increases. The computations for

constructing such problems grow exponentially, as noted in Section 4.4.1. Consequently,

the use of DCCG is inevitable.

4.2 Simplified Reduced Cost

For each ship v ∈ V , each schedule f ∈ Fv, and a subset of schedules F v, the

reduced cost from (4.1) is also given by:

cvf =
∑
k∈K

αk − π∗k − 2
∑
w∈W

∑
bv∈V

∑
bf∈F

bv

(
βkβ

bv bf + ak bfbvvar(γk)
)

ρ∗ww
bv bf

 akvf − cvf

+ αg
v − π∗v − 2

∑
w∈W

∑
bv∈V

∑
bf∈F

bv

(
βg

vβ
bv bf + Iv=bvvar(γg

v)
)

ρ∗ww
bv bf .

(4.2)

The operating cost cvf is a linear function of the ship v and each consecutive pair of cargo

deliveries in the schedule f . Consequently, we can generate a directed network for each

ship v, similar to the one in Kim and Lee (1997), to find the schedule f with maximum

reduced cost. Each node in the network represents the transportation of each cargo, and

each arc represents a consecutive pair of cargo deliveries. The cost of an arc includes the

operating cost component of cvf minus the coefficient of akvf in (4.2) for the cargo k at

the head of the arc. Using this network, we can find a shortest path for each ship v ∈ V

and subtract the lower term in (4.2) to find the schedule with maximum reduced cost.
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The coefficient for a constraint in (3.19) is given by

2awxvf
=2
∑
k∈K

∑
w∈W

∑
bv∈V

∑
bf∈F

bv

(
βkβ

bv bf + ak bfbvvar(γk)
)

w
bv bf

 akvf

+ 2
∑
w∈W

∑
bv∈V

∑
bf∈F

bv

(
βg

vβ
bv bf + Iv=bvvar(γg

v)
)

w
bv bf .

(4.3)

Suppose

awk =
∑
bv∈V

∑
bf∈F

bv

(
βkβ

bv bf + ak bfbvvar(γk)
)

w
bv bf , (4.4)

awv =
∑
bv∈V

∑
bf∈F

bv

(
βg

vβ
bv bf + Iv=bvvar(γg

v)
)

w
bv bf , (4.5)

then the coefficient is simplified to

2awxvf
= 2awv + 2

∑
k∈f

awf . (4.6)

The reduced cost simplifies to the following:

cvf =
∑
k∈K

(
αk − π∗k −

∑
w∈W

awkρ
∗
w

)
akvf + αg

v − π∗v −
∑
w∈W

awvρ
∗
w − cvf . (4.7)

The arc costs in the network are now the operating cost component of cvf decreased by

αk − π∗k −
∑
w∈W

awkρ
∗
w. (4.8)

Similarly, the reduced cost of using a ship v ∈ V is given by

αg
v − π∗v −

∑
w∈W

awvρ
∗
w. (4.9)

For implementation purpose, the cut structure may only include coefficients awk and awv

instead of awxvf
. These coefficients are easier to manage, because the number of cargoes

|K| and ships |V | are fixed, while the number of schedules in the subset F varies as

DCCG is executed.
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4.3 Follow-On Branching

Vance et al. (1997) showed that follow-on branching, which is a variant of Ryan-

Foster branching (Ryan and Foster, 1981), improves the computational efficiency of the

deterministic airline crew-scheduling problem. Considering their success, we use follow-on

branching for ship-scheduling applications. One advantage to using follow-on branching

is ease of applying the branching logic to the column-generation subproblem of DCCG.

For the ship scheduling network, follow-on branching implies that we fix or delete certain

edges representing a connection between two consecutive cargo deliveries or a deployment

of a ship to the first cargo in a candidate schedule.

4.4 Computational Experiments

In this section, we present the computational results on SPLPV instances. For

small problems, we tested EKCP. We implemented the first-order constraint set (3.19)

and the DCCG method within a branch-and-bound tree using COIN/BCP (COIN-OR,

2005). CPLEX 9.120 was used as the LP engine to solve the CSPLPV. To generate

columns that have the maximum reduced costs we used the topological sorting algo-

rithm on the network described in Section 4.2. We branched on follow-on variables as

explained in Section 4.3. Our experiments were conducted on a Dual 3.06-GHz Intel

Xeon Workstation.

4.4.1 Problem Instances

In our computational analysis, we used modified instances of Kim and Lee (1997),

which are similar to those in logistics for world-wide crude oil transportation of a major

oil company. A set of cargoes and a set of ships are given for the planning period. In

addition to the ship and cargo data, a distance matrix is given. There are two sets of

cargoes. The first set of cargoes is contracts of affreightment. The second set of cargoes
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is from the spot market and may not be shipped depending on the schedule feasibility

and/or profit. Each cargo is characterized by size, type, loading date, discharging date,

loading port, discharging port, and revenue for lifting cargoes. A ship is assumed to carry

only one cargo and can visit several ports in the planning period. Some ships may be

chartered out if they have no feasible schedule, or they may also ship contracted cargoes

in the spot market. Additional ships may be rented from the spot charter market. Each

ship is characterized by size, permitted types of cargo, initial open position, initial open

date, speed, fuel consumption, and the daily running costs.

Data sets from Kim and Lee (1997) include 96 ports, 30 ships, and 120 cargoes.

Of course, we could create many additional combinations of port, ship, and cargo sets.

However, we found that small-sized problems were trivial, so we focused only on medium-

sized problems. We created SPLPV instances with the combinations of 30 ships and 30,

60, 90, 120 cargoes for the experiments. The number of variables increased exponentially

with respect to the number of cargoes, and SPLPV instances have 1,409 variables, 4,561

variables, 414,369 variables, and 849,498 variables, respectively.

Each SPLPV instance was solved without constraint (3.15), which is equivalent to a

traditional ship scheduling problem, and the variance of schedules in the optimal solution

(var) was calculated. Each instance was divided into six different levels of limited profit

variability by setting the value of
√

d to constraint (3.15) equal to 70, 75, 80, 85, 90, and

95 percent of standard deviation
√

var . We solved SPLPV instances in all levels using

both traditional EKCP and DCCG within branch-and-bound trees, and using a ten-hour

time limit.

The variability of spot rates was decided by β and γ. We randomly generated β

values between 0 and α/3, and γ values between (0.05α)2 and (0.15α)2. To see these

values are practical, we calculated the mean squared percent error of OPEC data men-

tioned in Section 2, using an exponential growth trend and 6 months of prices to predict
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next months price. The mean squared percent error lies between 40% and 60%, and that

is higher than that of our estimations, 17.7%, which suggested that our instances are

conservative. Fifteen medium sized ship scheduling problems were constructed from the

ship and cargo data sets, and these β and γ values.

To use EKCP, we had to generate all feasible schedules a priori and compare them

with each other for constructing a covariance matrix. Though our instances are medium-

sized problems, time consumed on constructing ship schedules and covariance matrices

grew exponentially as the number of variables increased, which is shown in Figure 4.1.

SPLPV instances with 90 and 120 cargoes could not be constructed within the time

Figure 4.1. Time spent on constructing models.

limit, which have 414,369 and 849,498 variables, respectively. As a result, we did not

use EKCP for these instances. Both EKCP and DCCG can reduce standard deviation

to desired levels with reasonable costs, which is shown in Section 4.4.2.



31

4.4.2 Computational Results

Computational results using EKCP are shown in Table 4.1. The first column values

are seven different levels of limited standard deviation
√

d. None of the instances with

constrained variance solved to optimality, but in each instance very good solutions were

found. The second column shows the standard deviation values of the best solution

found within the time limit, while the third column displays the percentages of standard

deviation reduction from
√

var . The fourth column values are the expected profit of the

best solutions found, and the fifth column gives the proportions of the fourth column to

the optimal solution found without the quadratic constraint. The column labeled “CPU

BS” shows the time spent to the best solution in seconds, and the last column is the

number of Kelley cuts generated.

Table 4.1. Enumerated Kelley’s cutting plane method results

√
d SD SD (%) BS Profit (%) CPU BS Cuts

30 ships, 30 cargoes, 1409 vars x 60 constraints
7434.02 7430.57 30.03 1560313 88.51 6530 88204
7965.02 7933.40 25.30 1627119 92.30 6612 73456
8496.02 8362.04 21.26 1665673 94.49 3568 15825
9027.02 8950.39 15.72 1721997 97.68 2490 9894
9558.03 9435.60 11.15 1760981 99.90 2 6
10089.03 9962.40 6.19 1762489 99.98 2 8
10620.03 10620.03 0.00 1762832 100.00 0 0

30 ships, 60 cargoes, 4561 vars x 89 constraints
12767.97 12742.84 30.14 2528840 85.61 1744 361
13679.97 13608.75 25.39 2682384 90.81 34188 7483
14591.96 14454.00 20.76 2738172 92.70 14636 3315
15503.96 15389.90 15.63 2826678 95.69 19010 2699
16415.96 16376.45 10.22 2886632 97.72 6902 746
17327.96 17312.22 5.09 2920067 98.85 19629 1480
18239.96 18239.96 0.00 2953939 100.00 0 0
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With a small expected profit reduction, we can significantly limit standard devia-

tion. For example, with less than 5% profit reduction, we can decrease standard deviation

by 15.63%, which is shown in the results with 30 ships and 60 cargoes. The relationship

between standard deviation restriction and profit reduction is depicted by the efficient

frontiers in Figure 4.2.

Figure 4.2. Enumerated Kelley’s cutting plane method.

Table 4.2 presents computational results using DCCG for instances that have 30,

60, 90, and 120 cargoes. The first to seventh columns are the same as those in Table 4.1.

The column labeled “Vars” displays the number of ship schedules generated to the best

solution found, and “CPU Vars” shows the time spent generating ship schedules.

DCCG becomes the practical method as the problem size increases, although EKCP

performs better than DCCG for small instances. DCCG can also significantly limit

standard deviation with a small profit reduction. For example, with only 4.17% profit
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Table 4.2. Delayed column-and-cut generation results

√
d SD SD (%) BS Profit (%) CPU BS Cuts Vars CPU Vars

30 ships, 30 cargoes, 1409 vars x 60 constraints
7434.02 7367.90 30.62 1443665 81.89 2146 209606 97652 405
7965.02 7942.22 25.21 1507933 85.54 720 28200 27213 124
8496.02 8475.97 20.19 1553957 88.15 3201 431175 192270 658
9027.02 8981.53 15.43 1608842 91.26 76 3390 1850 11
9558.03 9516.31 10.39 1659654 94.15 57 2118 2303 10
10089.03 10044.60 5.42 1698373 96.34 8984 473007 509687 2079
10620.03 10620.03 0.00 1762832 100.00 2 0 90 0

30 ships, 60 cargoes, 4561 vars x 89 constraints
12767.97 12728.12 30.22 2472711 83.71 21502 213467 198496 5163
13679.97 13679.66 25.00 2575115 87.18 28262 257952 249273 7095
14591.96 14551.91 20.22 2671811 90.45 61 232 670 18
15503.96 15454.84 15.27 2756273 93.31 73 151 627 22
16415.96 16383.86 10.18 2830737 95.83 31452 207321 294414 9052
17327.96 17326.48 5.01 2894907 98.00 22033 93115 290519 7426
18239.96 18239.96 0.00 2953940 100.00 11 0 190 3

30 ships, 90 cargoes, 414369 vars x 119 constraints
22678.81 22667.33 30.04 4155973 81.15 35392 16541 17307 21182
24298.73 24235.86 25.19 4331288 84.58 5403 2597 3035 3794
25918.64 25892.53 20.08 4498549 87.84 33254 14105 19828 20356
27538.56 27534.32 15.01 4665335 91.10 24544 3764 15939 18780
29158.47 29149.92 10.03 4803991 93.81 35625 16975 19904 20004
30778.39 30664.88 5.35 4958686 96.83 4872 683 3009 3604
32398.30 32398.30 0.00 5121210 100.00 1059 0 550 1045

30 ships, 120 cargoes, 849498 vars x 148 constraints
24989.61 24982.95 30.02 5116365 85.79 18805 3499 4661 14942
26774.58 26674.91 25.28 5315988 89.14 34197 5415 8262 27085
28559.55 28556.75 20.01 5489632 92.05 17923 2630 3926 15098
30344.52 30315.64 15.08 5591225 93.76 22301 1451 4919 18051
32129.50 32058.70 10.20 5748335 96.39 16705 1328 3975 14307
33914.47 33885.69 5.08 5847119 98.05 19288 703 4224 16643
35699.44 35699.44 0.00 5963505 100.00 3891 0 686 3735
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reduction, we can restrict the deviation to 10.18% as shown in the instance with 30 ships

and 60 cargoes instance. The efficient frontiers are depicted in Figure 4.3.

Figure 4.3. Delayed column and cut generation.



CHAPTER 5

HEURISTIC METHODS

Efficient optimal algorithms often find good upper bounds and lower bounds quickly.

At each node of the branch-and-bound tree used for DCCG, the optimal solution values

of the sub-problems of CSPLPV and the feasible solution values to SPLPV played the

roles of upper bounds and lower bounds, respectively. Generating both cuts and columns,

DCCG solves sub-problems of CSPLPV at each node, which is based on the continuous

relaxation. According to the branch-and-bound algorithm, if the optimal solution value

of a sub-problem is smaller than the current global upper bound, we can replace the

upper bound with the solution value, and if the feasible solution value with respect to

SPLPV is better than the current global lower bound, then the lower bound can be

updated consequently.

Another well-known technique for finding upper bounds is lagrangian relaxation.

With a careful examination on the ship-scheduling problem with a quadratic constraint,

we found that a lagrangian decomposition method is well suited for dividing the hard

problem (SPLPV) into the sum of easier problems. We may find better upper bounds

by solving lagrangian relaxation problems instead of the continuous relaxation problems

at each node of the branch-and-bound tree, and we can update lower bounds quickly by

using a simple rounding heuristic method if solutions of lagrangian relaxation problems

are not integral. The simple rounding heuristic rounds up the optimal solution values of a

sub-problem that are greater than or equal to 0.5, and discards others. If the rounded-up

values satisfy all the constraints of SPLPV, then they form a feasible solution, and we

can utilize the solution to renew the lower bound. Lagrangian relaxation is prevalent

35
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in large-scale optimization. In this chapter, therefore, we explore a lagrangian-based

heuristic method that can improve DCCG dramatically.

5.1 Reformulation of the New Ship-Scheduling Model

In this section, we revisit the new ship-scheduling model as a set-packing problem

with a quadratic constraint (SPQC). Introducing linking variables, y, we can replace the

quadratic constraint of SPQC by the general packing constraints. Thus, SPQC can be

reformulated as (RSPQC):

max cx (5.1)

s.t. Ax ≤ 1 (5.2)

qy ≤ d (5.3)

xi + xj − 1 ≤ yij, ∀(i× j) ∈ (F × F ) (5.4)

x ∈ {0,1}|F | (5.5)

y ∈ {0,1}|F×F | (5.6)

xi ≥ yij, xj ≥ yij, ∀(i× j) ∈ (F × F ), (5.7)

where A is a 0-1 matrix; F is the set of all candidate schedules F =
⋃

v∈V Fv; entry qij

of the coefficient vector q for all (i× j) ∈ (F ×F ) is the covariance of profit for selecting

both sets i and j; and yij is the variable that links both variables xi and xj. Constraints

(5.4)—(5.7) ensure

yij =

 1, only if xi = xj = 1;

0, otherwise.

In most practical cases, however, if the profits of delivering cargoes increase, the spot

market rates also rise, which implies the profits are positively correlated to the spot mar-

ket rates, i.e., q ≥ 0. As a result, we can drop constraints (5.7). Constraint set (5.6) can

be relaxed as 0 ≤ y ≤ 1 because of constraint sets (5.4) and (5.5). Constraint sets (5.3),
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(5.4), and the relaxed constraint of (5.6) are standard means to linearize the quadratic

constraint of SPQC. In fact we need only

 |F |+ 1

2

 constraints in (5.4), but we leave

them all in the formulation for clarification. It is obvious that the optimal solution value

of SPQC is same as that of RSPQC. However, the continuous relaxation of SPQC (CR-

SPQC) and the LP relaxation of RSPQC (LR-RSPQC) may not have the same optimal

solution value. Let x̃∗ and (x̂∗, ŷ∗) be the optimal solution of CR-SPQC and that of

LR-RSPQC, respectively. The optimal solution value of LR-RSPQC is always greater

than or equal to that of CR-SPQC, i.e., cx̃∗ ≤ cx̂∗.

Proposition 2. Let x̃∗ and (x̂∗, ŷ∗) be the optimal solutions of CR-SPQC and LR-

RSPQC, respectively. Then, cx̃∗ ≤ cx̂∗.

Proof. For any pair of variables x̃i and x̃j for both sets i and j, x̃ = x̂ and ŷij =

max{0, x̃i + x̃j − 1}.

Case 1: Suppose x̃i + x̃j − 1 > 0, then ŷij = x̃i + x̃j − 1. This implies qijx̃ix̃j ≥ qijŷij,

because

x̃ix̃j − x̃i − x̃j + 1

=⇒ (1− x̃i)(1− x̃j) ≥ 0

=⇒ qij(x̃ix̃i − x̃i − x̃j + 1) ≥ 0

=⇒ qijx̃ix̃j ≥ qijŷij.

Case 2: Suppose x̃i + x̃j − 1 ≤ 0, then ŷij = 0. This implies qijx̃ix̃j ≥ qijŷij, because

x̃ix̃j ≥ 0

=⇒ qijx̃ix̃j ≥ qijŷij.
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Thus,
∑

(i×j)∈(F×F ) qijx̃ix̃j ≥
∑

(i×j)∈(F×F ) qijŷij, which implies any feasible solution x̃ to

CR-SPQC is feasible to LR-RSPQC.

Therefore, cx̃∗ ≤ cx̂∗.

5.2 Lagrangian Relaxation Approach

We use lagrange multipliers on constraint set (5.4) and in the objective function to

get following lagrangian upper bound problem (LUBP).

z(λ) = max cx +
∑

(i×j)∈(F×F )

λij(yij − xi − xj + 1) (5.8)

s.t. Ax ≤ 1 (5.9)

qy ≤ d (5.10)

x ∈ {0,1}|F | (5.11)

y ∈ {0,1}|F×F |, (5.12)

where λij ≥ 0,∀(i × j) ∈ (F × F ). Any solution to the continuous relaxation of LUBP

provides an upper bound on the optimal solution to the original problem. A lower bound

on the optimal solution can be found by the simple rounding heuristic. By tightening

these bounds we can approach to the optimal solution of the original problem. Thus

we are interested in finding the value for the multipliers that gives the minimum upper

bound, which is called the lagrangian dual problem

min
λ≥0
{z(λ)}.

To decide lagrange multipliers, we may use (1) subgradient optimization, (2) mul-

tiplier adjustment, and (3) dual ascent. We use a subgradient optimization to determine

lagrange multipliers, as it provides very good upper bounds and works better than oth-

ers (Beasley, 1992). From an initial set of multipliers, the subgradient optimization
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iteratively generates further lagrange multipliers in a systematic fashion, which can be

viewed a procedure to minimize the upper bound value obtained from LUBP with a suit-

able choice of multipliers. To solve the lagrangian dual problem, we used the subgradient

optimization iterative procedure, which is described in Algorithm 3.

Algorithm 3 Subgradient Optimization

Let the relaxed constraints be xi + xj − yij ≤ 1,∀(i× j) ∈ (F × F ).

Step 1 Set θItr = 2; best upper bound (ZUB) =∞; best lower bound value (ZLB) = 0;

Itr = 1. Decide on an initial vector of multipliers, λItr .

Step 2 Solve the continuous relaxation of LUBP with current λItr to get a solution

(xItr ,yItr) and update ZUB according to the value of LUBP. Using the simple rounding

heuristic, find a feasible solution (x∗Itr ,y∗Itr) for SPLPV and update ZLB, if possible.

Step 3 Define the vector of subgradients, G, for the relaxed constraints, and evaluate

them at the current solution by:

GItr
ij = max{0, yItr

ij − xItr
i − xItr

j + 1},∀(i× j) ∈ (F × F ).

Step 4 Define a step size T by: T = θItr(ZUB − ZLB)/
∑

(i×j)∈(F×F ) GItr
ij

2
.

Step 5 If termination rules are satisfied, go to Step 7. Otherwise, update λItr+1 using

λItr+1 = max{0, λItr + TG}.

Step 6 Update the profit vector with the new λItr+1 : i.e.,

cItr+1 = c1 + λItr+1 (yItr
ij − xItr

i − xItr
j + 1). Go to Step 2.

Step 7 STOP. (xItr ,yItr) is the best solution for ZUB.

This procedure can terminate based on termination rules; for example, (1) limit the

number of iterations or (2) reduce the value of θ during the course of the procedure and

terminate when θ is small.
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Observe that LUBP can be decomposed into the sum of two integer sub-problems

and a constant:

(LD1) max cx−
∑

(i×j)∈(F×F )

λij(xi + xj) (5.13)

s.t. Ax ≤ 1 (5.14)

x ∈ {0,1}|F | (5.15)

+

(LD2) max
∑

(i×j)∈(F×F )

λijyij (5.16)

s.t. qy ≤ d (5.17)

y ∈ {0,1}|F×F |

+∑
(i×j)∈(F×F )

λij (5.18)

Sub-problems LD1 and LD2 are a set-packing problem and a knapsack problem, respec-

tively.
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5.3 Alternative Ship-Scheduling Model

We revisit the ship-scheduling problem with limited profit variance (SPLPV), which

was modeled as (3.12)-(3.16). With linking constraints and variables, SPLPV can be

formulated as following mixed integer programming model (SPLPV-MIP).

max
∑
v∈V

∑
f∈Fv

(E [r̃vf ] + E [ẽvf ]− cvf − E [g̃v])xvf (5.19)

s.t.
∑
v∈V

∑
f∈Fv

akvfxvf ≤ 1, ∀k ∈ K (5.20)

∑
f∈Fv

xvf ≤ 1, ∀v ∈ V (5.21)

∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

cov(r̃v1f1 + ẽv1f1 − g̃v1 ,r̃v2f2 + ẽv2f2 − g̃v2)yv1f1v2f2 ≤ d (5.22)

xv1f1 + xv2f2 − yv1f1v2f2 ≤ 1, ∀f1 ∈ Fv1 , f2 ∈ Fv2 , v1, v2 ∈ V (5.23)

xvf ∈ {0, 1}, ∀f ∈ Fv, v ∈ V (5.24)

0 ≤ yv1f1v2f2 ≤ 1, ∀f1 ∈ Fv1 , f2 ∈ Fv2 , v1, v2 ∈ V. (5.25)

SPLPV has the quadratic constraint that makes the problem harder than the traditional

set-packing problems for ship scheduling. On the other hand, SPLPV-MIP contains only

linear constraints, which seems to make the problem easier. However, we need

 n + 1

2


constraints in set (5.23) and the same number of y variables, where n is the number of

x variables, which makes a huge mixed integer problem. Moreover, column generation is

inevitable as enumerating all the columns is not practical. Unfortunately, there is not an

easy way to accommodate column generation technique to SPLPV-MIP, so we explore a

lagrangian decomposition method in following sections.
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5.4 Lagrangian-based Heuristic

As explained in Section 5.2, LUBP of SPLPV-MIP is separable into the sum of

two sub-problems and a constant. One of the lagrangian decomposition sub-problems is

a set packing problem (LDS-SPP), and the other sub-problem is a knap-sack problem

(LDS-KP). With lagrangian multiplier λ, LUBP of SPLPV-MIP can be formulated as

follows:

(LDS-SPP) max
∑
v∈V

∑
f∈Fv

(E [r̃vf ] + E [ẽvf ]− cvf − E [g̃v]) xvf

+
∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

λv1f1v2f2(xv1f1 + xv2f2)

(5.26)

s.t.
∑
v∈V

∑
f∈Fv

akvfxvf ≤ 1, ∀k ∈ K (5.27)

∑
f∈Fv

xvf ≤ 1, ∀v ∈ V (5.28)

xvf ∈ {0, 1}, ∀f ∈ Fv, v ∈ V (5.29)

+

(LDS-KP) max
∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

λv1f1v2f2yv1f1v2f2 (5.30)

s.t.
∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

cov(r̃v1f1 + ẽv1f1 − g̃v1 ,r̃v2f2 + ẽv2f2 − g̃v2)yv1f1v2f2 ≤ d (5.31)

0 ≤ yv1f1v2f2 ≤ 1, ∀f1 ∈ Fv1 , f2 ∈ Fv2 , v1, v2 ∈ V (5.32)

+

(LDS-CONST)
∑
v1∈V

∑
f1∈Fv1

∑
v2∈V

∑
f2∈Fv2

λv1f1v2f2 (5.33)

where, λv1f1v2f2 ≥ 0, ∀f1 ∈ Fv1 , f2 ∈ Fv2 , v1, v2 ∈ V . The lagrangian relaxation of LDS-

SPP may be solved by using a modified column generation technique, and LDS-KP can



43

be easily solved by a greedy method. As we are solving the LP relaxation of SPLPV-

MIP with a set of lagrangian multipliers, the solution values of linking variables in (5.32)

can be fractional. By solving the LP relaxation of LUBP of SPLPV-MIP, we can get

promising columns for SPLPV-MIP as well as an upper bound to SPLPV-MIP. Let δ be

the dual vector for constraint sets (5.27) and (5.28). For any optimal solution (x∗, δ∗; λ∗)

of the continuous relaxation of LDS-SPP, the reduced cost cvf of each variable xvf is

non-positive; that is

cvf = E [r̃vf ] + E [ẽvf ]− cvf − E [g̃v] +
∑
f̃∈Fv

λ∗
ff̃
−
∑
k∈K

akvfδ
∗
k − δ∗v ≤ 0,

∀f ∈ Fv, v ∈ V. (5.34)

If lagrangian multipliers are all zero, i.e., λ = 0, then the lagrangian relaxation of LDS-

SPP turns to be a pure set-packing problem, which finds a schedule f with the maximum

reduced cost. If not, there exists difficulty in finding an exact method to incorporate la-

grangian multipliers with column generation, which is regarded as a longest-path problem

with side constraints and known as NP-hard. As a result, we generate a new schedule

that has the most positive reduced cost using a heuristic method: We drop λ∗ in (5.34)

and find a schedule with maximum reduced cost. Then, it is likely to generate the same

schedule repeatedly. To prevent the same schedule from being regenerated, therefore, we

maintain a list of schedules that have already been generated. The heuristic method is

shown in Algorithm 4.

Now, we can solve SPLPV-MIP at each node in a branch-and-bound tree by the

lagrangian-based heuristic algorithm (LHA) shown in Algorithm 5.
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Algorithm 4 Modified Column Generation Algorithm (MCGA)

Generate a subset of ship schedules SL ⊂ Fv, ∀v ∈ V as a schedule list.

Column Generation Step (CG): Solve the continuous relaxation of the LDS-SPP

sub-problem with both SL and a set of non-negative λ. We drop λ∗ in (5.34) and find

a ship schedule f̃ ∈ Fv with maximum reduced cost.

if CG found f̃ then

if f̃ ∈ SL then

Modify the graph so as not to generate f̃ again, i.e., disconnect an arc in f̃ , and/or

reconnect previously disconnected arc(s). Go to CG step.

else

SL← SL ∪ {f̃}. Update the set of λ. Go to CG step.

end if

else

The current sub-problem with SL provides the optimal solution to the lagrangian

relaxation of LDS-SPP. STOP.

end if

5.5 Computational Experiments

To test the heuristic methods within a branch-and-bound tree structured by

COIN/BCP, we used the same machine, LP solver, problem instances and number of

levels of limited profit variability as those described in Section 4.4. At first, we tried to

apply LHA through the branch-and-bound tree. However, one LHA iteration would take

more than one minute for larger instances. To compensate this expensive computation,

we combined LHA with DCCG. To see the merit of the LHA and the simple rounding

heuristic, we performed three different computational experiments. For the first experi-

ment, we applied ten iterations of LHA at the root node and DCCG at the other nodes.
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Algorithm 5 Lagrangian-based Heuristic Algorithm (LHA)

Set the number of iteration, Itr = 0. Generate a subset of ship schedules F v ⊂ Fv,

∀v ∈ V , and solve optimally the continuous relaxation of a sub-problem of LDS-SPP

using general column generation.

Restricted Mater Problem (RMP) Step: Itr ← Itr + 1 . Determine the set of

non-negative λ for the variables appeared in the sub-problem of LDS-SPP (SLDS-SPP)

at hand, i.e., λv1f1v2f2 , ∀v1, v2 ∈ V, ∀f1, f2 ∈ F v. Solve the continuous relaxation of

SLDS-SPP to get a solution (x∗, δ∗).

if cvf > 0 then

Column Generation Step: Find a ship schedule f ∈ Fv \ F v using MCGA.

F v ← F v ∪
{
f
}
. Return to the RMP step.

else

Sub Problem Step: Solve a sub-problem of LDS-KP corresponding to RMP.

if Stopping Criteria are met then

Return the optimal solution (x∗, δ∗)

else

With a positive constant T , update the set of λ by:

λv1f1v2f2 ← [(λv1f1v2f2 + T (1 + yv1f1v2f2 − xv1f1 − xv2f2)]
+, ∀v1, v2 ∈ V, ∀f1, f2 ∈ F v.

Return to RMP Step.

end if

end if



46

For the second one, we solved optimally the continuous relaxation of SPLPV-MIP with-

out the quadratic constraint at the root node, then used DCCG at the other nodes. The

simple rounding heuristic is applied to both experiments. For the last one, we generated

30 columns at the root node and used only DCCG with the simple rounding heuristic.

None of the instances with constrained variance solved to optimality within the ten-hour

time limit, but in most instances the solution values are better than those reported in

Section 4.4. However, there is not that much difference between solution values (less than

1%), which suggests that the best solutions at hand are close to the optimal solutions

to SPLPVs. To compare these three different methods with DCCG, we measured CPU

times to find good solution values as reported in Table 4.2.

All of three experiments showed that heuristic methods substantially improve

DCCG with similar results. We calculated the average savings over different coefficients

of variance in order to show overall performance. The average CPU times over different

variance limits to the best solutions are depicted in Figure 5.1, which clearly shows that

the heuristic methods significantly outperform DCCG. The average numbers of cuts

and columns are also substantially reduced, which result in the significant CPU time re-

duction. The average CPU time reductions are 11,647, 10,358, and 12,402 seconds (3.24,

2.88, and 3.45 hours), respectively. The largest CPU time reductions are 33,837, 32,943,

and 34,113 seconds (9.40, 9.15, and 9.48 hours), respectively, which were found in the

instances with 90 cargoes. The average savings in generating cuts and columns as well

as the average CPU times are listed in Table 5.1. The first column labeled “Cargoes”

shows the number of cargoes in each problem instance. The columns “Cuts” and “Vars”

display the average numbers of Kelley’s cuts and ship schedules generated to the best

solutions, respectively. The columns “CPU Vars”, “CPU BS”, and “Max CPU saving”

show the average CPU times spent on generating ship schedules and on finding the best

solutions, and the largest average CPU times to the best solutions, respectively.
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Figure 5.1. The average CPU times to the best solutions.

Table 5.1. Average savings over different variance limits. (CPU in hours)

Cargoes Cuts Vars CPU Vars CPU BS Max CPU Saving
LDA 10 Iterations at the root node

30 161,602 132,558 0.1 0.4 0.3
60 123,270 168,200 1.3 4.1 5.8
90 8,177 10,262 3.5 3.8 8.8
120 2,440 4,273 4.6 4.9 7.4

Full column Generation at the root node
30 169,430 126,385 0.1 0.4 1.2
60 113,865 163,429 1.2 3.3 8.4
90 8,117 8,705 3.1 3.5 9.2
120 2,261 4,036 4.1 4.2 7.1

Rounding Heuristic
30 135,175 130,463 0.1 0.6 2.1
60 14,907 149,924 1.2 4.3 8.6
90 6,615 3,569 2.1 4.2 9.5
120 2,113 4,018 3.7 4.7 7.9
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Detailed computational results of the three experiments are summarized in Tables

5.2, 5.3, and 5.4, respectively. The first column shows the standard deviation values

of the best solution found within the time limit, while the second column displays the

percentages of standard deviation reduction from
√

var . The third column values are the

expected profit values of the best solutions found within the time limit, and the fourth

column gives the proportions of the third column to the optimal solution found without

the quadratic constraint. The columns labeled “Vars” and “Cuts” display the number

of Kelley’s cuts and the number of ship schedules generated to the best solution found,

respectively. “CPU Vars”, “CPU BS”, and “CPU saved” show the time spent generating

ship schedules, the time spent to find BS, and the CPU time saved to find BS compared

with that of “CPU BS” in Table 4.2. The times are measured in seconds.

In general, as the number of cargoes increases, the CPU times to find the best

solutions are greatly reduced. As we can see in the last two columns, the CPU times to

find BS are significantly reduced, and most of the best solutions could be found within

two hours. Both the number of Kelley’s cuts and the number of columns generated in

DCCG procedures are considerably reduced, which may contribute to less CPU time.

On the other hand, there are two cases in which the CPU time increased. The first

and the second experiments with 90 cargoes experience the CPU time increments of

659 and 4,010 seconds (0.18 and 1.11 hours), respectively. Increased CPU time may

imply that the selection of columns for sub-problems throughout the branch-and-bound

tree are very important to reduce the search space. Therefore, we can conclude; (1) If

we combine the heuristic methods with DCCG, good solutions can be found far earlier

than when we use DCCG method only. In other words, the heuristic methods greatly

accelerate DCCG. (2) We are able to identify promising columns in the column generation

step of the lagrangian heuristic. (3) We can find good solutions at very reasonable

computational expense. (4) We can limit standard deviation significantly with only a
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small reduction in expected profit. Although the method combined with LHA doesn’t

significantly outperform the others, the results draw meaningful interpretations. For

example, if we could find a problem instance that can be formulated as a lagrangian

decomposition model and solved really fast, then LHA may significantly improve the

performance of DCCG; if we could generate as many promising columns as possible at

the root node, then DCCG may identify near optimal solutions very quickly. Nonetheless,

both manipulating a hard mixed integer problem to comprise decomposed sub-problems

and finding a way to incorporate lagrangian multipliers into column generation technique

are really challenging.
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Table 5.2. Results of LHA 10 iterations at the root node with DCCG

Variance Deviation BS Profit ratio Cuts Vars CPU Vars CPU BS CPU saved
30 ships, 30 cargoes, 1409 vars x 60 constraints

7368 30.62 1443508 81.89 19062 2986 102 921 1225
7942 25.21 1507933 85.54 5864 530 20 466 254
8374 21.15 1546066 87.70 111557 17042 384 2364 837
8982 15.43 1608844 91.26 2 0 0 5 71
9516 10.39 1659654 94.15 70 15 1 11 46
9949 6.32 1697321 96.28 41329 15053 321 2640 6344
10620 0.00 1762832 100.00 345 2 2

30 ships, 60 cargoes, 4561 vars x 89 constraints
12730 30.21 2473756 83.74 4998 5511 320 3559 17943
13675 25.03 2572938 87.10 15559 9571 584 7541 20720
14552 20.22 2671811 90.45 31 19 0 29 32
15455 15.27 2756273 93.31 19 14 0 23 50
16384 10.18 2831017 95.84 282 220 6 149 31303
17327 5.01 2894397 97.98 11728 9467 273 3850 18182
18240 0.00 2953940 100.00 562 8 9

30 ships, 90 cargoes, 414369 vars x 119 constraints
22666 30.04 4156930 81.17 2469 5957 4177 20038 15354
24236 25.19 4331283 84.58 530 1562 1129 6062 -659
25890 20.09 4500339 87.88 29 268 252 1687 31567
27533 15.02 4663868 91.07 1733 7644 5774 22018 2526
29092 10.21 4808830 93.90 173 219 172 1788 33837
30692 5.27 4961844 96.89 669 1802 892 4430 443
32398 0.00 5121210 100.00 2126 175 303

30 ships, 120 cargoes, 849498 vars x 148 constraints
24928 30.17 5117950 85.82 190 656 1893 6450 12354
26675 25.28 5315984 89.14 366 590 1944 7488 26709
28520 20.11 5490203 92.06 33 173 913 3674 14249
29775 16.59 5603400 93.96 55 445 1448 4533 17769
32054 10.21 5781226 96.94 155 436 1372 4968 11737
33881 5.09 5893962 98.83 13 160 638 2657 16631
35699 0.00 5963505 100.00 2004 474 803



51

Table 5.3. Results of full column generation at the root node with DCCG

Variance Deviation BS Profit ratio Cuts Vars CPU Vars CPU BS CPU saved
30 ships, 30 cargoes, 1409 vars x 60 constraints

7368 30.62 1443509 81.89 19522 5610 93 698 1448
7942 25.21 1507933 85.54 1101 148 3 86 634
8374 21.15 1546515 87.73 5904 2005 38 244 2957
8982 15.43 1608844 91.26 13 5 0 3 72
9516 10.39 1659654 94.15 86 70 1 13 44
9949 6.32 1698314 96.34 104290 64829 858 4829 4156
10620 0.00 1762832 100.00 345 2 2

30 ships, 60 cargoes, 4561 vars x 89 constraints
12730 30.21 2473667 83.74 11010 13074 622 5685 15817
13647 25.18 2576341 87.22 74381 37609 2165 24165 4097
14552 20.22 2671811 90.45 29 22 1 22 40
15455 15.27 2756273 93.31 18 18 0 17 56
16384 10.18 2830993 95.84 3561 2673 71 1243 30209
17238 5.49 2893511 97.95 50 29 1 29 22004
18240 0.00 2953940 100.00 562 8 9

30 ships, 90 cargoes, 414369 vars x 119 constraints
22640 30.12 4154578 81.12 2822 7022 5988 21330 14061
24236 25.19 4331283 84.58 23 436 600 2393 3010
25893 20.08 4501282 87.89 384 3219 2555 7140 26114
27533 15.02 4663593 91.06 2340 15675 11659 28554 -4010
29092 10.21 4811698 93.96 291 272 411 2682 32943
30776 5.01 4970536 97.06 101 168 276 1416 3457
32398 0.00 5121210 100.00 2126 175 303

30 ships, 120 cargoes, 849498 vars x 148 constraints
24762 30.64 5118114 85.82 583 3869 9021 16422 2383
26675 25.28 5316024 89.14 569 814 3004 8568 25629
28520 20.11 5490031 92.06 52 309 1571 3614 14310
29941 16.13 5621132 94.26 26 450 1843 3789 18513
31840 10.81 5775933 96.85 219 181 1052 3597 13108
33896 5.05 5902297 98.97 11 126 705 1737 17551
35699 0.00 5963505 100.00 2004 474 803
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Table 5.4. Results of DCCG with the simple rounding heuristic

Variance Deviation BS Profit ratio Cuts Vars CPU Vars CPU BS CPU saved
30 ships, 30 cargoes, 1409 vars x 60 constraints

7423 30.11 1450055 82.26 164 147 2 7 2140
7942 25.21 1507933 85.54 1810 477 4 24 696
8476 20.19 1555077 88.21 52549 19467 167 606 2595
8982 15.43 1608844 91.26 186 92 0 4 71
9516 10.39 1659652 94.15 1089 1290 8 28 29
10045 5.42 1697516 96.29 280651 26723 339 1269 7716
10620 0.00 1762832 100.00 345 2 2

30 ships, 60 cargoes, 4561 vars x 89 constraints
12730 30.21 2473260 83.73 27554 57716 1799 5123 16379
13647 25.18 2575719 87.20 42713 56285 1433 4388 23873
14552 20.22 2671811 90.45 143 188 4 14 47
15455 15.27 2756273 93.31 117 188 4 14 59
16384 10.18 2830865 95.83 5928 7028 143 518 30934
17238 5.49 2893510 97.95 6343 13051 253 764 21269
18240 0.00 2953940 100.00 562 8 9

30 ships, 90 cargoes, 414369 vars x 119 constraints
22676 30.01 4156242 81.16 7384 19150 13708 16195 19197
24282 25.05 4332432 84.60 1548 4330 3824 4486 916
25893 20.08 4501257 87.89 257 648 996 1096 32158
27533 15.02 4664119 91.07 4372 30242 19870 23149 1395
29092 10.21 4810160 93.93 643 889 1276 1513 34113
30776 5.01 4970523 97.06 774 2351 2455 2943 1929
32398 0.00 5121210 100.00 2126 175 303

30 ships, 120 cargoes, 849498 vars x 148 constraints
24928 30.17 5119972 85.86 370 1007 4180 4413 14392
26747 25.08 5319667 89.20 914 1422 5287 5743 28455
28520 20.11 5490171 92.06 239 720 3738 3931 13992
30308 15.10 5652738 94.79 227 759 3796 3997 18304
32040 10.25 5780781 96.94 447 1242 4678 5043 11662
33911 5.01 5902291 98.97 152 711 3763 3965 15323
35699 0.00 5963505 100.00 2004 474 803



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This dissertation focussed both on a way to limit risk in logistics problems and

on solution methods to solve them. Logistics problems are difficult not only because

they consist of many systems, but because they involve many uncertainties such as,

natural disaster, unusual weather changes, threats of terrorism, depleted oil reserves,

and war. As a result, logistics managers have to resolve global optimization problems

and manage the risk. As the world economy becomes vulnerable with increasing risk,

many efforts of coping with uncertainties have been made, e.g., stochastic vehicle routing.

Contrary to the stochastic vehicle routing problems that have drawn much attention, few

traditional ship-scheduling models consider uncertainty, which motivated our research on

ship-scheduling with limited risk.

Contributions of this dissertation include:

• We presented a new set-packing model for ship-scheduling problems, which lim-

its the risk (variance) of the fluctuation in the spot market by using a quadratic

constraint.

• We developed a branch-and-cut-and-price algorithm (DCCG) to solve the model,

in which the quadratic constraint is represented by first-order constraints.

• We proposed an alternative model, which reformulates the quadratic constraint

into general packing constraints.

• We explored heuristic methods not only to solve the alternative model, but to

improve the DCCG; The methods incorporate a lagrangian heuristic and a simple

rounding heuristic with DCCG.

53
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We used traditional Kelley’s cutting plane algorithm and DCCG on medium-sized ship-

scheduling problems with restricted variance. To use Kelley’s cutting plane algorithm,

we enumerated all feasible schedules a priori with the covariance matrix. As the number

of schedules increased, the time for constructing instances grew exponentially and using

Kelley’s cutting plane algorithm became impractical, a fact that motivated us to develop

DCCG. In each iteration of DCCG, we added either a new Kelley’s cut or a new schedule

with maximum reduced cost. The new schedule was found by using a topological sorting

algorithm on a directed acyclic graph. Computational experiments with instances sim-

ilar to those in logistics for world-wide crude oil transportation of a major oil company

showed that both Kelley’s cutting plane algorithm and DCCG can reduce variance sig-

nificantly with reasonable expected profit reduction. Even though neither method could

optimize medium-sized instances within a ten-hour time limit, very good solutions were

found. With a careful examination of the model, we could utilize a lagrangian-based

heuristic, and other heuristics are employed, i.e., a simple rounding heuristic and a col-

umn generation heuristic. The current lagrangian-based heuristic becomes not useful as

the size of the problem increase. To overcome this difficult, we incorporated the heuristic

with DCCG. Computational experiments showed that heuristic methods substantially

improved DCCG. CPU times to find best solutions within the time limit are signifi-

cantly reduced, and the numbers of Kelley’s cuts and columns generated in the DCCG

procedures are considerably reduced.

Future research topics are identified throughout this dissertation:

• Developing methods to add multiple cuts and columns in each iteration of DCCG,

as adding multiple cuts and columns in each iteration of branch-and-price-and-cut

often improves computational efficiency.



55

• Generating as many promising columns as possible at early algorithm stages, be-

cause computational experience indicated that current methods work better with

meaningful columns not with just many columns.

• Manipulating the hard mixed integer problem (P2) to encompass lagrangian relax-

ation and developing efficient solution methods to handle lagrangian sub-problems.

• Finding methods to incorporate lagrangian multipliers into column generation.

• Explorign different approaches, e.g., stochastic programming, stochastic dynamic

programming.



REFERENCES

S. Ahmed, M. Tawarmalani, and N. V. Sahinidis, “A Finite Branch-and-Bound Algorithm

for Two-Stage Stochastic Integer Programs,” Mathematical Programming Ser. A 100,

355–377 (2004).

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows , Prentice Hall (1993).

T. Andersson and P. Värbrand, “The Flight Perturbation Problem,” Transportation

Planning & Technology 27, 91–117 (2004).

A. Azaron and F. Kianfar, “Dynamic Shortest Path in Stochastic Dynamic Networks:

Ship Routing Problem,” European Journal of Operational Research 144, 138–156

(2003).

C. Barnhart, C. A. Hane, and P. H. Vance, “Using Branch-and-Price-and-Cut to Solve

Origindestination Integer Multicommodity Flow Problems,” Operations Research 48,

318–326 (2000).

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and P. Vance,

“Branch-and-Price: Column Generation for Solving Huge Integer Programs,” Oper-

ations Research 46, 316–329 (1998).

D. O. Bausch, G. G. Brown, and D. Ronen, “Scheduling Short-Term Maritime Transport

of Bulk Products,” Maritime Policy and Management 25, 335–348 (1998).

J. Beasley, Lagrangean Relaxation, The Management School Imperial College, London

SW7 2AZ, England (1992).

56



57

J. F. Benders, “Partitioning Procedures for Solving Mixed Variables Programming Prob-

lems,” Numerische Mathematics 4, 238–252 (1962).

P. Beraldi, M. Bruni, and D. Conforti, “Designing robust emergency medical service

via stochastic programming,” European Journal of Operational Research 158, 183–193

(2004).

P. Beraldi, L. Grandinetti, R. Musmanno, and C. Triki, “Parallel algorithms to solve

two-stage stochastic linear programs with robustness constraints,” Parallel Computing

26, 1189–1908 (2000).

M. E. Berge and C. A. Hopperstad, “Demand Driven Dispatch: A Method for Dynamic

Aircraft Capacity Assignment, Models and Algorithms,” Operations Research 41, 153–

168 (1993).

M. Bhasi, “A Simulation Based Model for Scheduling of Barges for Ship Lightering,”

Bulk Solids Handling 24, 248–251 (2004).

J. R. Birge and F. Louveaux, Introduction to Stochastic Programming , Springer, New

York, New York (1997).

E. K. Bish, R. Suwandechochai, and D. R. Bish, “Strategies for Managing the Flexible

Capacity in the Airline Industry,” Naval Research Logistics 51, 654–685 (2004).

L. Bodin, B. Golden, A. Assad, and M. Ball, “Routing and Scheduling of Vehicles and

Crews: The State of the Art,” Computers & Operations Research 10, 63–211 (1983).

T. Botimer and P. Belobaba, “Airline Pricing and Fare Product Differentiation: A New

Theoretical Framework,” Journal of the Operational Research Society 50, 1085–1097

(1999).



58
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