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ABSTRACT

INFORMATION-DRIVEN DATA GATHERING IN WIRELESS SENSOR

NETWORKS

Jing Wang, Ph.D.

The University of Texas at Arlington, 2010

Supervising Professor: Sajal K. Das, Yonghe Liu

Since the advance of wireless technology enables the mass production of low-

cost, small-sized sensor nodes, sensor nodes can be densely deployed in an area for

high tolerance to node failure or to achieve better coverage statistically. The redun-

dancy of sensor nodes results in the temporal and spatial correlation of sensory data,

which motivates the information-driven data gathering approaches for wireless sensor

networks (WSNs).

Since existing approaches target at the sensory data that are already highly

correlated with each other, little attention has been paid to the idea of changing

the sampling schedules of the sensor nodes to reduce the correlation among sensory

data. In this dissertation, sampling strategies and the relevant medium access control

(MAC) protocol are presented to demonstrate how the correlation can be reduced

through adjusting the sampling time shifts of sensor nodes.

The asynchronous lossless data gathering strategy aims at extending the sam-

pling cycle of individual node while guaranteeing the original signal to be fully recov-

ered by the sink. Based on the correlation signal model, details of the collaborative
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reconstruction of the original signal are presented. An exponential temporal-spatial

correlation model is introduced for presenting lossy data gathering strategies. It is

justified by real data collected from wireless sensor networks. Regarding lossy data

gathering applications, the sensor nodes take samples asynchronously to obtain more

informative samples. Furthermore, the entropy of the joint Gaussian random variables

is adopted to quantify the improvement on the quality of information obtained from

the asynchronous samples. Oppeinhem’s inequality is applied to prove the entropy

is increased by introducing a non-zero temporal correlation parameter. A recursive

algorithm is designed to solve the optimal asynchronous sampling problem with a

set of sub-optimal sampling time shifts. Bounds on the performance of the three

asynchronous sampling strategies are derived respectively.

Motivated by the benefit of asynchronous sampling strategies, an information-

driven MAC protocol is proposed to avoid the severe collisions of event reports in

the event detection applications. Other than choosing a subset of nodes to report to

the sink, the proposed protocol assigns sampling shifts to nodes in order to change

the bursty traffic into a streamlined traffic. Consequently, the MAC performance is

improved by essentially replacing the collision prone traffic with the streamlined one.

An optimal probability model is adopted for selecting nodes’ transmission slots that

minimize collisions and in turn reduce the correlation among event reports. Through

theoretical analysis and simulations, it is shown that the protocol relates the MAC

performance with the information quality of event reports, which is quantified by the

Cramer-Rao lower bound (CRLB) of parameter estimation. In addition to the benefit

of reduced collision probability, the CRLB is lowered by the proposed MAC protocol

after the nodes’ s sampling time moments are shifted from each other.
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CHAPTER 1

INTRODUCTION

With the advance of integrated circuit technology, sensor nodes, composed of

micro-processor, wireless radio and small sensors, are capable of sensing, processing

and communicating [1, 2]. A network formed by low-cost, small-sized sensor nodes

attracts extensive attentions in recent years, because it enables a vast number of

applications to collect information within a certain area and supply the information

to remote computers. However, the implementation of wireless sensor networks suf-

fers from resource constraints such as battery capacity, memory size, communication

range, bandwidth. Various solutions have been proposed in the literature to relief

the network from these constraints. Among them, information-driven strategies are

motivated by the observation on data correlations in dense wireless sensor networks.

To avoid the energy consumption on unnecessary data transmissions, it is favorable to

send only data containing useful information to the sink. Aiming at the tradeoff be-

tween energy consumption and the quality of information, a set of information-driven

data gathering strategies is proposed in this dissertation. It is able to reduce the

correlation of sensory data through carefully scheduling the sampling time instances

of sensor nodes. The resulted asynchronous sampling strategies can effectively reduce

the correlation without requiring additional resources to process sensory data by in-

dividual node. Furthermore, an information-driven medium access control (MAC)

protocol is introduced to apply asynchronous sampling to streamline the collision

prone traffic in event detection and reporting scenario.
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A brief overview of wireless sensor networks (WSNs) is presented first in this

chapter. After that, the challenges for widespread deployment of WSNs are dis-

cussed along with existing solutions extending the lifetime of network. Specifically,

approaches in the literature that exploit data correlations are presented before a brief

description of the information-driven data gathering strategies is provided. The con-

tributions of this dissertation are summarized too. Finally, the organization of the

dissertation is introduced.

1.1 Background

Wireless sensor networks (WSNs) have been envisioned to revolutionize the

interaction between humans and the physical world. As shown in Fig. 1.1, a vast

number of sensor nodes can be deployed to collect the sensory data about the physi-

cal world. With the help of wireless links between each other, they are able to relay

the sensory data or the aggregated data from one node to another until the data reach

their destination. Usually, the sink, a node that bridges the network to the remote

computer or other networks, is the destination of the data packets from sensor nodes

and consumes the data according to instructions from humans. Furthermore, deci-

sions can be made according to the collected data about the physical world. Typical

applications of WSNs include smart environment, machine monitoring, environment

and habitat monitoring, health care applications and intelligent transportation.

From the application’s point of view, the applications of WSNs can be grouped

into three categories: data gathering, information gathering, query-based data gath-

ering. Data gathering applications require that sensor nodes transmit the collected

sensory data to the sink for further processing. Examples of data gathering applica-

tions include habitat monitoring, environmental monitoring etc [3, 4, 5]. Information

gathering applications require that the sensor nodes apply on-board data processing
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Figure 1.1: Overview of wireless sensor networks

and report the result to the sink. Target tracking is a typical information gathering

application that keeps localizing the mobile nodes and sends the observed trajectory

to the sink [6, 7]. Query-based data gathering does not demand constant transmis-

sions of sensory data or the processed result. The sink or remote computer actively

queries the sensor node about particular sensory data or specific processed result

instead of passively retrieving all available data from sensor nodes [8, 9]. In this

dissertation, data gathering application is the focus.

Besides, density of the sensor nodes plays an important role in the design and

operation of WSNs [10, 11]. For sparse WSNs, the key is to maintain coverage and

connectivity in order to provide the desired service to users [12, 13, 14]. While for

dense WSNs, the critical issues are collisions and redundancy of nodes [15, 16]. In

this dissertation, dense WSNs with data correlation is the focus.

The implementation of WSNs is still restricted to experimental practices rather

than what had been anticipated at the emergence of the idea. Although more and

more implementations of WSNs are reported, the lifetime of the WSNs usually lasts

to the end date of the academic project due to the lack of maintenance. The value

of these implementations mostly lies in verifying the research approaches and bench

marking the proposed protocols or design methods.
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The reasons for the above situation are the follows.

(1) Lifetime: The lifetime of the WSNs depends on the capacity of the battery

equipped on the sensor nodes. Given the current power level of sensor nodes, the

lifetime of the WSNs is usually several months without recharging the batteries. For

the applications of WSNs, especially for those deployed in the remote area, it is

difficult to recharge the batteries every several months.

(2) Cost: Since WSNs has not been widely deployed, the manufacture cost of

sensor nodes is still high due to the small scale of production. Implementations of

WSNs are subject to at most hundreds of nodes, which is far less than the assumptions

of thousands of nodes in the simulations of WSNs [17]. The cost issue of WSNs will

be resolved after the lifetime problem is tackled.

1.2 Existing Solutions

Since the major bottleneck for widely deploying WSNs is the battery lifetime.

Solutions to this problem fall into two categories: to extend the battery lifetime

through constantly charging it; and to reduce the energy consumption of operating

the WSN. The first category greatly relies on the advance of battery technology and

energy harvesting techniques [18]. Although the last few decades have seen expo-

nential development advances in semiconductor industry that lead to the widespread

usage of smart devices, the progress on battery technology lags far behind. For in-

stance, the camera sensor that is able to capture images or even videos is getting

considerably smaller and cheaper due to the changes of ICs integrated in it. Conse-

quently, camera sensors are integrated into many electronic devices, such as mobile

phones and laptops. Noticeably, the energy consumption of the camera sensor still

requires it to either share the power supply of the devices that can be recharged

frequently or get the power supply through USB connections. Although studies on
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Figure 1.2: Energy budget of a sensor node

visual sensor network reveal its potential in providing more vivid observation on the

environment, the energy consumption issue remains to be a great challenge [19]. Solar

energy technology provides WSNs a way to extend the lifetime of outdoor applica-

tions with abundant sunlight. With the help of the solar panel and the rechargeable

batteries, the lifetime of the WSN can be extended from several months to years [20].

However, the solar energy solution is not applicable in the area with little sunshine.

Other energy harvesting techniques have been proposed in recent years [21]. Unless

the advance of battery technology and the energy harvesting techniques are able to

provide abundant energy to the sensor nodes with small-form factor and low-cost,

energy consumption will remain to be the key issue for the widespread deployment

of WSNs.

The second category of solutions sprawls into a range of aspects of the energy

consumption problem, as demonstrated in Fig. 1.2. Depending on different sensing

goals, sensors themselves could hold a significant share of the energy budget of the

whole node. For instance, the soil moisture sensor consumes 15mW power while it

is working [22]. Given the energy-hungry sensors, reducing the number of samples

taken by the sensor nodes becomes the goal of a series of energy efficient protocols

for WSNs [23, 24]. However, the number of samples also affects the decision-making

process based on the sensory data. The tradeoff between the energy consumption

and the performance of the application is at the center of the approaches leveraging

on the number of samples.
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Table 1.1: Power breakdown for processor integrated with radio

processor radio flash USB
power save 0.5µA 200µA 1µA 100µA
active state 5∼12mA 15mA 4mA 100mA

For sensors with little energy consumption or even no energy consumption at

all, the number of samples still plays an important role in designing energy efficient

communication protocols for WSNs. The reason is that there are two other major

energy-consuming tasks: on-board processing of sensory data and communicating be-

tween pairs of sensor nodes. Table 1.2 shows a detailed breakdown of energy budget

for a node when its wireless radio is integrated with its processor [25, 26]. It is worth

noticing that processing sensory data consumes much less energy than relaying them

to another sensor node. Inspired by this, data aggregation has been proposed to re-

duce the amount of data traffic in the network through relaying the aggregation result

to the other sensor nodes rather than the raw sensory data [27, 28, 29]. Although

in-network aggregation is able to significantly reduce the communication costs, it is

subject to the loss of useful information if not applied with additional care on the

application’s requirement on estimation or regression performance.

Since the sensor node consumes little energy during the idle state, duty-cycle

scheduling methods have been proposed to let sensor nodes go to sleep whenever it is

possible. Ideally, sensor nodes’ working states should exactly follow traffic pattern of

the network in order to avoid unnecessary energy spending on idle listening. Fig. 1.3

illustrates the ideas of scheduling the radio or the entire node respectively. The sched-

ule of wireless radios leads to energy efficient MAC protocol of WSNS [30], while the

schedule of the sensor node faces the problem of maintaining connectivity and cov-

erage with a subset of the deployed sensor nodes [31]. The drawbacks of introducing

the scheduling protocols include the reduced band-width, end-to-end delay and the
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Figure 1.3: Scheduling of sensor nodes and radios

additional costs to maintain highly synchronized clocks of the neighboring nodes in

order to schedule the radio [32, 33]. In addition, the changes in the connectivity and

coverage of the network need to be addressed in the routing protocols for WSNs with

duty-cycled sensor nodes [34, 35, 36].

Mobility-based approaches tackle the energy consumption problem through in-

troducing a number of mobile elements to assist the operations of the network. Since

mobile elements are exempt from resource constraints, scalability and cost issues,

they traverse the area where the static sensors are deployed to perform data col-

lection, localization etc in order to save energy consumption of the static sensors

[37, 38, 39]. However, mobility-enabled nodes require complex method to control and

manage their own operations and are limited to the applications whose deployment

area is accessible to mobile nodes.
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1.3 Exploiting Data Correlation

Recognizing that the amount of traffic in the network affects both lifetime of

WSNs and the application’s performance, researchers investigated the problem of de-

termining the amount of traffic needed to accomplish tasks and to extend lifetime of

the network. Aiming at reducing the amount of data to be transmitted by sensor

nodes, distributed compressive sensing [40, 41, 42] has been attracting extensive at-

tentions recently. It provides a promising approach to reduce the amount of traffic

while preserving the necessary amount of information in the transmitted data re-

quired by application tasks. It is motivated by the observation that sensory data are

spatially correlated when nodes are closely located to each other [43]. The idea is

to use a subset of the samples to restore all the samples when the samples are from

correlated sources. It has been proved that the sensor data can be reconstructed with

high probability from a reduced number of samples projected to a linear basis.

Compressive sensing is attractive to the applications of WSNs because it does

not require complicated computation at the nodes’ side. The total amount of traffic

can be reduced greatly while the amount of information at the sink’s side is guaran-

teed. A recent study on compressive sensing demonstrated that the capacity of the

network can be increased by adopting the compressive sensing technique [44]. It is

necessary to consider routing path of the samples from the nodes to the sink when

implement distributed compressive sensing. Therefore, joint design of routing scheme

and compressive sensing is critical to the success of compressive sensing.

Beside, correlation in sensory data leaves space for squeezing the number of

bits needed to represent the data given the other correlated sources [45, 46]. A

typical compression-based approach consists of two processes: compression process,

reconstruction process. It was shown that sensory data can be fully reconstructed

at the sink when properly compressed. The key of compression-based sensing is to
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determine the compression rate, which is directly related to the amount of traffic

flow in the network. However, compression algorithm may overload the resource

constrained sensor nodes due to its complexity.

Given the correlation between each pair of neighboring sensor nodes, a dom-

inating correlated minimum set was proposed to select a subset of sensor nodes to

perform sensing and transmitting to the sink [47]. The difference between the node

selection method and compressive sensing is that the dominating correlated minimum

set is subject to be updated constantly throughout the lifetime of the network to bal-

ance energy level of the nodes. Consequently, additional costs are introduced each

time the set is updated.

Being able to reduce energy consumption of WSNs, distributed source encod-

ing was widely adopted in multimedia communication applications [48]. According

to the Slepian-Wolf theorem [49, 50], correlated data sources can be encoded sepa-

rately and the compressed data from the sources can be jointly decoded by the sink.

The attracting feature of distributed source encoding is that sensor nodes are able

to encode sensory data without communicating with the other correlated sources.

However, the theorem claims the achievable compression rate without hints on de-

riving specific codecs. Therefore, researches on distributed source encoding has been

focused on finding the right codecs that can approximate the theoretically achievable

compression rate [64, 51].

The proposed information-driven data gathering approach consists of two parts.

One is the set of asynchronous sampling strategies, the other is the information-driven

medium access control (MAC) protocol. The asynchronous sampling strategies focus

at the sampling process taken place at the individual sensor nodes and the signal

recover or regression process at the sink respectively. Whereas, the information-driven
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MAC protocol aims at reducing the collisions between nodes’ attempts to access the

medium and improving lower bound of the estimation accuracy.

Recall the discussions on correlation motivated approaches to extend the life-

time of WSNs, advantages of the existing approaches are summarized in the following:

1. The amount of traffic is reduced through various techniques managing to reduce

the communication cost of data transmissions from nodes to the sink.

2. It is preferable for sensor nodes to perform necessary computations indepen-

dently with each other in order to avoid the additional communication costs on

facilitating compression or encoding process.

3. Computation load of the resource constrained sensor nodes is restricted to avoid

excessive energy consumption on computation.

The information-driven approach presented in this dissertation manages to ex-

tend WSNs’ lifetime and preserve sufficient amount of information for accomplishing

application tasks. It also shares advantages of the existing approaches exploiting cor-

relations of sensory data in WSNs. In addition to spatial correlations, the proposed

approach takes temporal correlations into consideration to further reduce energy con-

sumption. The correlation of sensory data is reduced through explicitly introducing

shifts of the sampling time moments among sensor nodes. The asynchronous sampling

strategies are proposed for two scenarios: lossless data gathering; lossy data gather-

ing. For lossless data gathering, the asynchronous sampling strategy is able to reduce

the number of samples needed to fully recover the original signal through collabora-

tive reconstruction. For lossy data gathering, the asynchronous sampling strategy is

able to improve the regression performance through increasing the entropy of sensory

data. Furthermore, the information-driven MAC protocol proposes to schedule the

sampling time moments of sensor nodes at the MAC layer. Consequently, the colli-
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sion prone traffic generated by sensor nodes can be streamlined, while less correlated

event reports leads to a better lower bound of the estimation accuracy.

1.4 Summary of Contributions

Information-driven data gathering strategies proposed in this dissertation in-

troduces the scheduling of sampling time instances. As a result, the tradeoff between

energy consumption and quality of information is improved. Specifically, the contri-

butions can be summarized as follows:

1. The proposed asynchronous sampling strategy for lossless data gathering in

WSNs is able to reduce the number of samples needed by the sink to fully

recover the original signal observed by correlated sensor nodes. Therefore, en-

ergy consumption of transmitting the samples from sensor nodes to the sink is

reduced significantly. The theoretical analysis is verified through simulations

conducted on both synthetic and real sensory data.

2. A set of asynchronous sampling strategies is proposed to improve quality of

information for lossy data gathering in WSNs. Through quantifying the qual-

ity of information contained in sensory data, it is proved that the amount of

information contained in the asynchronous samples from correlated sources is

greater than that in the synchronous samples at the same sampling rate from

the same sources. Consequently, the regression performance in terms of regres-

sion distortion is improved through introducing sampling time shifts for sensor

nodes. The results of applying asynchronous sampling strategies are validated

through simulations on both real and synthetic sensory data.

3. The ID-MAC protocol is proposed to reduce collisions between nodes’ attempts

to send their event reports about the same event in event detection and reporting

applications and to improve the quality of event reports through reducing the
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correlation. Since the protocol is based on slotted CSMA/CA MAC model, the

optimal probability for each sensor node to select the slots is derived. Quality of

event report is quantified by the Cramer-Rao lower bound (CRLB) of estimation

accuracy. It is shown that the CRLB can be reduced as the result of the ID-

MAC protocol as well as collisions at the MAC layer.

1.5 Dissertation Organization

The rest of the dissertation consists of seven chapters. Chapter 2 discusses

the related work that exploits the correlation among sensory data. The comparison

between the proposed data gathering strategies and the existing strategies is also

provided at the end of Chapter 2. Before proceeding with the details of the proposed

strategies, the preliminaries, including motivating scenarios, signal model, correlation

models, event detection model and the adopted slotted CSMA/CA MAC protocol

model, are introduced in Chapter 3.

Based on the deterministic signal model and the relevant correlation model,

Chapter 4 presents the asynchronous lossless data gathering strategy, which focuses

on gathering asynchronous samples for fully recovering of the original signal. It is

presented with detailed description of the strategy and discussions on solving an

optimization problem for scheduling the sampling time moments of sensor nodes.

Based on a different correlation model, the asynchronous lossy data gathering strategy

is proposed in Chapter 5. It demonstrates the benefits of the strategy in terms of

the increased entropy of sensory data through quantifying the amount of information

with the entropy model. An optimization problem maximizing the entropy of sensory

data is formulated and solved accordingly. Consequently, a suboptimal strategy along

with two other candidate strategies are described.



13

After that, Chapter 6 describes the ID-MAC protocol, which apply the idea

of asynchronous sampling the MAC layer. The sampling shifts of sensor nodes are

determined by the MAC layer when the traffic is collision prone in the event detection

and reporting scenario. Analysis on the impact of the ID-MAC protocol shows that

the tradeoff between the collision probability and the lower bound of the estimation

accuracy can be improved. In order to verify the theoretical analysis in the previous

chapters and to demonstrate benefits of the proposed strategies and protocol, sim-

ulation study has been conducted on both synthetic and real data set. Simulation

results on reduced energy consumption, increased entropy, event reconstruction and

lower bound of estimation accuracy are presented in Chapter 7. Finally, Chapter 8

concludes the dissertation and discusses future work can be further explored.



CHAPTER 2

RELATED WORK

As energy efficiency is the bottleneck for widespread implementation of wireless

sensor networks, it has become the prevailing goal of approaches designed for different

levels of the protocol stack. Aiming at correlations of sensor nodes, information-

driven data gathering strategies manage to extend lifetime of WSNs through avoiding

unnecessary energy consumption on sending highly correlated sensory data to the

sink. In order to incur less communication cost, existing approaches either process

the raw sensory data for less amount of packet transmissions or reduce the number

of samples to be sent to the sink. The challenges facing these approaches include

the difficulty in fully recovering the original samples at the sink from the processed

data and the request to guarantee the application level performance given a limited

number of samples. This chapter describes the existing approaches in addressing these

challenges. More importantly, a comparative analysis on the energy consumption

of different approaches is provided to show the differences among them. Finally, a

taxonomy of the information-driven strategies is proposed to summarize their common

features and differences.

2.1 Overview

Various energy efficient approaches have been proposed for data gathering in

wireless sensor networks. Among them, a group of approaches focus on the quality

of information obtained by the sink. Since the application’s goal is to retrieve the

information about certain physical process from sensory data, the amount of sensory

14
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data to be transmitted and the quality of the information can be retrieved from the

sensory data are at the center of the investigation on achieving energy efficiency.

The amount of sensory data usually depends on the number of samples that has

been taken by individual sensor node, if no compression or little preprocessing of the

sensory data is performed. The information-driven approaches aim at maximizing

the quality information while reducing the communication costs. In order to reduce

the amount of data to be transmitted, the approaches either reduce the number of

samples to be taken or compress the raw sensory data.

Regarding data gathering applications, the efforts of achieving energy efficiency

reside in different processes of collecting the sensory data and sending them to the

sink. Compression and coding based approaches propose to exploit the sparsity of

the sensory data, while the sampling based approaches aim at reduce the sparsity

of the sensory data through selecting node placements and sampling time instances.

Aside from the sparsity of sensory data, correlations among sensory data from closely

located sensor nodes motivate the research on distributed compressive sensing, dis-

tributed source coding and optimal sampling. Given the prior knowledge of the spatial

correlations of sensory data, the raw sensory data can be further compressed to reduce

communication cost.

When prior knowledge of spatial correlations is not available or time variant,

adaptive sampling approach determines the time instance to take samples according

to the feedbacks from the regression or estimation process. The goal of adaptive

sampling is to take the least number of samples while guaranteeing the regression

performance. It is capable of capturing the changes of the correlations while the

other approaches can not without additional efforts.
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2.2 Distributed Compressive Sensing

Distributed compressive sensing [52, 53, 54] is proposed to exploit spatial cor-

relations among sensory data from closely located sensor nodes in addition to the

sparsity of sensory data from individual sensor node. Since the spatial correlation

model is the basis of the distributed compressive sensing, it is presented before the

detailed discuss on compression ratio. At the end this section, implementation issues

of distributed compressive sensing are discussed.

2.2.1 Models

In order to further compress the sensory data, the strategy assumes that spatial

correlations among sensory data exist when the sensor nodes are deployed densely in

an area [55, 56]. Distributed compressive sensing terms the joint sparsity as the

sparsity of the entire sensory data in comparison to the sparsity of the sensory data

from one individual sensor node. It addresses not only the intra-signal sparsity but

also the inter-signal sparsity. The joint sparsity is usually smaller than the simple

addition of the sparsities of the sensory data from individual nodes [57]. An example

of the correlation model is shown in Eq. (2.1).

Si = Xc +Xi (2.1)

where Si is the sensory data from the ith sensor node, Xc is the common part signal

that is shared by all the sensor nodes, and Xi is the innovation part signal that is

specific to the ith sensor node. Either the common part signal, the innovation part

signals or both can be sparse. For a signal represented by a weighted sum of N
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basis vectors, being sparse means that K out of the N coefficients are non-zero. The

sparsity of the signal can be formulated in Eq. (2.2).

x =
N∑

n=1

δnφn =
K∑
k=1

δnk
φnk

(2.2)

Consequently, a K sparse signal can be recovered given the non-zero (or significant)

coefficients and their locations (the corresponding series number nk). However, com-

pressive sensing goes beyond that by only requesting the non-zero coefficients. It

projects the sensory data to a second set of M functions. Only the M (M < N)

coefficients are requested for recovering the original K-sparse sensory data, when the

sparse basis and the projection vectors are incoherence. The compressive sensing

outperforms the conventional compression based approaches because it eliminates

the communication costs on sending the locations of the non-zero (or significant)

coefficients.

It has been proved that K + 1 coefficients are sufficient for the recovering of

the K-sparsity sensory data with known sparse basis. To recover the original sensory

data from the linear projection to ϕ, an optimization problem, shown in Eq. (2.3),

needs to be solved.

Minimize U st. χ = ϕψδ (2.3)

where U is the number of non-zero entries in δ, χ is the linear projection of the sensory

data x = ψδ, and δ is the coefficient vector of the sparse sensory data.

The incoherence of the basis ψ and the projection vector ϕ guarantees that the

coefficient vector δ is the unique solution to the optimization problem. With the

knowledge of basis ψ and the coefficient vector δ, the original sensory data can be

recovered accordingly.
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In solving the optimization problem, the search for the coefficient vector δ that

has the least number of non-zero entries is NP-hard. In order to obtain computa-

tion tractability, the objective is changed to minimizes the sum of the coefficients.

Although the new optimization problem can be solved with linear programming tech-

niques, it requires M ≥ cK number of projected coefficients, where c > 1.

Regarding the correlation model given in Eq. (2.1), the typical scenarios for

applying distributed compressive sensing include: (i) the common part signal, Xc, is

Kc sparse, and the innovation part signal of the ith sensor node, Xi, is Ki sparse; (ii)

the common part signal is zero, and the innovation part signal of the ith sensor node

is K sparse; (iii) the common part signal is not sparse, and the innovation part signal

of the ith sensor nodes is Ki sparse. The corresponding joint sparsity D is given in

the following:

D =


Kc +

∑V
i=1Ki (i)

V ×K (ii)

N +
∑V

i=1Ki (iii)

(2.4)

whereKc is the sparsity of the common part signal, Ki is the sparsity of the innovation

part signal of the ith sensor node, V is the number of sensor nodes, K is the sparsity

of the sensory data.

2.2.2 Compression Ratio

Given the correlation models, distributed compressive sensing can be applied

to a set of spatially correlation sensor nodes to reduce the sensing cost of the com-

mon part signal while taking advantage of the sparsity of the sensory data. For the

correlation model with sparse common part signal and sparse innovation part signal,

the total number of projected coefficients needed to recover the sensory data is the
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sum of the number of projected coefficients obtained from each sensor node, Mi. The

distributed compressive sensing requires that:

V∑
i=1

Mi ≥ Kc +
V∑
i=1

Ki + V −Kr (2.5)

where Kr is represents the number of coefficients that are shared by the common part

signal and the innovation part signal.

Therefore, the sensing cost of the common part signal can be greatly reduced

from V × (Kc + 1) to Kc + V .

Apparently, the distributed compressive sensing can not reduce the sensing cost

when the common part signal is zero in the second scenario of the correlation model.

Although the common part signal is no longer sparse in the third scenario of the

correlation model, the distributed compressive sensing is still able to take advantage

of the correlated sensory data to amortize the sensing cost of the common part signal

among all the sensor nodes. The total number of projected coefficients requires that:

V∑
i=1

Mi ≥ N +
V∑
i=1

Ki + V −Kr (2.6)

where N is the number of samples required to recover the non-sparse common part

signal.

2.2.3 Implementation Issues

There are two main issues in implementing distributed compressive sensing:

computation load and communication cost. Benefits of applying distributed compres-

sive sensing also come from these two aspects. The strategy leverages prior knowledge

of the sparsity of sensory data to reduce the communication cost and shift the com-
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putation load to the sink. The joint sparsity of sensory data enables sensor nodes

to cooperate with each other on sharing the sensing cost of the common part signal.

However, computation load of the sink is increased because of the additional efforts

needed to solve the optimization problem seeking the original sensory data from a

smaller set of projected coefficients sent by sensor nodes.

Computation Load As the sink usually has more power supply and better hard-

ware support in terms of computation speed and memory usage, the computation

load tends to be shifted from the sensor node to the sink in the strategies for wire-

less sensor networks. Less computation load at the sensor node is always favorable

because the energy consumption of computation will not increase significantly. Al-

though distributed compressive sensing follows the same trend with the conventional

compression based strategies to trade the computation load on the sensor node for the

saving on the communication cost, it replaces the computation intensive compression

algorithm with the multiplication between the data sample and a random number,

which consumes far less energy and takes little process time. While at the sink’s side,

an optimization problem needs to be solved in order to recover the original sensory

data, which can be NP-hard. Requiring a greater number of projected coefficients,

another optimization problem can be solved with traditional linear programming

techniques trading the saving on computation for the reduced communication cost.

Communication Cost The communication cost of the distributed compressive sens-

ing strategy includes two main part: the cost to propagate the random seed to the

sensor nodes, and the cost to send the projected coefficients from the sensor nodes

to the sink. The cost for broadcasting the random seed from the sink to the sensor

nodes is a one-time cost and depends on the cost of the broadcasting protocol. The

cost of sending the projected coefficients is determined by the number of the coeffi-

cients and the routing paths to the sink. Distributed compressive sensing strategy
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successfully reduces the communication cost of the sensor nodes by decreasing the

number of coefficients transferring from the nodes to the sink.

2.3 Distributed Source Coding

Distributed source coding consists of a set of strategies that exploits the corre-

lation among sensor nodes [58, 59, 60], including the distributed compressive sensing

strategy. It is based on Slepian-Wolf coding theorem [49] and Wyner-Ziv coding

theorem [50]. The fundamental assumption of distributed source coding is the corre-

lated data sources. Slepian-Wolf coding theorem provides a lower bound on encoding

rate for lossless compression, while Wyner-Ziv coding theorem corresponds to a lower

bound on encoding rate for the compression with losses.

2.3.1 Overview

The idea of distributed source coding can be demonstrated with an example

of two correlated sources X and Y . Apparently, the coding rate R ≥ H(X|Y ) is

sufficient for describing X when the side information is available to both the encoder

and decoder of X. Whereas, Slepian-Wolf theorem says that the coding rate R ≥

H(X|Y ) is still sufficient for describing X when the side information is available to

the decoder but the encoder.

In detail, X and Y are composed of binary words of length 3. They are cor-

related in the sense that the hamming distance between two words from X and Y

is 1. Then it suffices to send 2 bits for X and to decode X without loss given side

information Y . The reason is that as the hamming distance between X and Y is no

more than 1, then binary words 000 and 111, having a hamming distance of 3, could

be encoded using same code given the fact that its impossible to find a binary word

in Y having hamming distance of 1 with both 000 and 111. 100,011, 110, 001, 101,
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010 are the other pairs of binary words in X that share one code. As a result, the 4

pairs of binary words require only 2 bits to be encoded. In this example, the prior

knowledge of the correlation is embodied by the known hamming distance between

the two words.

Similarly, Wyner-Ziv theorem states a generalization of Slepian-Wolf theorem

considering encode distortion. It says that coding rate R(d) ≥ RX|Y (d) suffices, where

R(d) is the coding rate with distortion d when the side information is available to the

decoder but the encoder and RX|Y (d) is the coding rate with distortion d when side

information is available to both the decoder and the encoder.

Encoding the correlated sources without knowledge of side information is of

great importance to wireless sensor networks, because it is no longer necessary for

the correlated sensor nodes to talk to each other in order to encode their data at

the sufficient rate. Remarkable saving on communication is achieved by applying

Slepian-Wolf or Wyner-Ziv coding schemes.

As Slepian-Wolf coding and Wyner-Ziv coding only provide theoretical limits

on the coding rate, the implementation of encoding schemes requires the knowledge

of correlation, the source coding algorithm, the channel coding algorithm and the

estimation algorithm, all of which demand a careful design in order to approach the

theoretical coding rate limits.

2.3.2 Typical Applications

As wireless multimedia sensor networks exhibit strong inter-sensor correlation

and intra-sensor correlation [61], distributed source coding strategies find wireless

multimedia sensor networks promising to achieve energy efficiency through encoding

the heavily correlated images.
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Figure 2.1: DISCUS: A Framework of Applying Distributed Source Coding

A framework of applying distributed source coding, namely DISCUS, was pro-

posed [62]. As shown in Fig. 2.1, it is composed of an encoder and a decoder. The

encoder not only quantizes the source with certain fidelity, but also constructs coset

containing the code words of the source X. The decoder firstly looks up the code

words in the coset with the help of the side information, Y , which is correlated to X.

Then the decoder estimates X using the resulted code words and the side information.

The source coding algorithm is able to encode the source at the rate Rs by

dividing the source space into 2LRs number of index set, where L is the length of the

code words corresponding to the quantized source. Because the correlation between

X and Y implies the correlation between W and Y , it is assumed that there exists

a fictitious channel between the input W and the output Y . The channel coding

algorithm achieves the rate of Rc given the correlation model of the source X and

the side information Y . Consequently, the final encoding rate of the encoder in the

framework is R = Rs −Rc.

Design of the source coding algorithm aims at minimizing Rs, while design of the

channel coding algorithm targets at maximizing Rc. An approach using trellis-coded

scalar-quantization (TCSQ) [63] and the construction of the corresponding coset is

reported to obtain the performance 2-5 dB from the Wyner-Ziv bound when the
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correlated sources are identically distributed Gaussian sources with side information

in the form of a noisy source.

A similar approach of applying Wyner-Ziv coding schemes was presented [64].

A nested lattice quantizer is proposed to take the place of TCSQ in the preceding

framework. Turbo and low-density parity check (LDPC) code [65] is discussed as the

promising channel coding method to approach the Slepian-Wolf limits. Regarding

the practical deployment of distributed source coding, the issue of modeling the cor-

relation of sensor nodes is emphasized since the performance of Slepian-Wolf coding

greatly relies on the correlation model.

Besides, approaches for constructing low-complexity video encoding based on

Wyner-Ziv coding was summarized in [66]. In contrast to the conventional inter-frame

coding, the proposed scheme encodes individual frames independently and decodes

them jointly. It benefits the video compression process carried out on the encoder

in terms of low cost because the independent encoding of frames only involves intra-

frame process with low complexity. The complexity of inter-frame processing is shifted

to the decoder in order to achieve performances that are comparable to the conven-

tional inter-frame coding.

There are two types of approaches introduced respectively: the pixel-domain

encoding and the transform-domain encoding. As shown in Fig. 2.2, the pixel-domain

encoding compresses the frames through independently applying Wyner-Ziv coding

on a set of frames and performing conventional intra-frame compression scheme on the

other frames, which are the key frames regularly spaced in the frame sequence. The

Wyner-Ziv frames are decoded with the knowledge of the side information provided

by the decoded key frames and the other available decoded Wyner-Ziv frames. A

Rate-Compatible Punctured Turbo (RCPT) code [67] is applied in the Slepian-Wolf

encoder. Its flexible coding rate enables the decoder to require more encoded bits in
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the effort to adapt to the varying correlation between the encoded frames and the key

frames. Through the repeated process of acquiring more encoded bits, the decoder is

able to provide stream bits that are good enough for reconstruction of the Wyner-Ziv

frames. Side informations involvement in the reconstruction process is the key of

compressing the video frames, because only k bits are requested from the encoder

to estimate the 2M quantization bins, where k ≥ M . However, the feedback of the

request bits is not favorable in wireless multimedia sensor networks. The benefit of

compressing the video frames transmitted from the encoder to the decoder could be

easily wiped off due to the extra communication cost by the feedback mechanism

from the decoder to the encoder.

The transform-domain encoding has a similar structure with the pixel-domain

one. But it applies Slepian-Wolf coding on the independently quantized transform

coefficients of the source vectors. The side information is generated through applying

the same blockwise DCT [68] on the previously available frames. Source vectors are

reconstructed from the outputs of the Slepian-Wolf decoders and their corresponding

side information using a band of turbo decoders. In the simulation conducted in the

paper, at most 2 dB gain of the PSNR is obtained because of the higher complexity

of the encoder compared to that of the pixel-domain encoding system. Nevertheless,

the transform-domain coding is able to obtain a performance comparable to the inter-

frame process at a cost comparable to the intra-frame process.

Based on the preceding discussions, the following conclusions on the distributed

source coding can be obtained.

• Distributed source coding based on Slepian-Wolf theorem and Wyner-Ziv theo-

rem takes advantage of the correlation of distributed sources in order to reduce

the communication cost.
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Figure 2.2: Pixel-domain Wyner-Ziv Coding Scheme

• Slepian-Wolf theorem and Wyner-Ziv theorem only provide the theoretical lim-

its on coding rate. Practical solutions involve modeling the correlation; de-

signing the source-coding algorithm, the channel coding algorithm and the re-

construction algorithm. The goal of practical solutions of wireless multimedia

sensor networks is to approach the theoretical limits with reasonable encoder

complexity.

• There are two types of solutions for wireless multimedia sensor networks to

apply distributed entropy coding. One targets on the correlation of sensory data

from the spatially correlated sensor nodes. The other focuses on the correlation

among the video frames from one individual video sensor. Both of them are

capable of reducing the communication cost to transmit the encoded data from

the encoders to the decoders implemented in nodes equipped with comparatively

abundant resources.

• Solutions based on either Slepian-Wolf theorem or Wyner-Ziv theorem vary

from each other in that they deal with different correlations. The approaches

discussed in this section fall into two categories: correlation of sensory data

within one sensor; correlation of sensory data from multiple sensors. Future

work in wireless multimedia sensor networks is expected to explore the corre-
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lation of video frames within one sensor in conjunction with the correlation of

video streams from multiple sensors.

2.4 Optimal Sampling

Other than compressing or encoding the original sensory data for less commu-

nication costs, optimal sampling strategies achieve energy efficiency through selecting

the most informative samples and sending them to the application. In other words,

optimal sampling strategies attempt to avoid wasting bandwidth and energy on un-

necessary samples while performing applications’ tasks. The criteria of selecting sam-

ples is based on metrics of the amount of information or the accuracy of parameters

estimation. Optimal sampling strategies focus on a better tradeoff between sensing

cost and application performance without introducing additional computation load

to sensor nodes with limited resources. However, they assume that prior knowledge

of either the sensory data correlation or the estimator for processing sensory data.

2.4.1 Optimal Node Placements

The optimal node placements approach [69] embodies the idea of optimal sam-

pling at the individual node’s level. It assumes that the sensor network is dense thus

sensor nodes are spatially correlated with each other. Intuitively, the idea of select-

ing a subset of less correlated sensor nodes helps to reduce the communication cost

without affecting the application performance. The tradeoff between communication

cost and the amount of information inspires two optimization problems: minimiz-

ing communication cost while guaranteeing the quality of mutual information; and

maximizing mutual information while restraining communication cost below a certain

threshold.
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In order to formulate the optimization problems, communication cost is quan-

tified through a simplified transmission model with unit transmission cost. Conse-

quently, the optimization problems can be interpreted as finding the most informative

placements of at most V sensor nodes and finding the placements of sensor nodes pro-

viding a certain amount of mutual information. The amount of mutual information is

the conditional entropy H(Xs|XA), where Xs is the data source and XA is the data to

be estimated. As the data sources are modeled as Gaussian Process [70], the mutual

information is given:

H(Xs|XA) =
1

2
log((2πe)ndetKs|A) (2.7)

where Ks|A is the estimation covariance matrix representing the covariance between

the sensory data and the estimated data.

To solve the NP-hard optimization problem of finding the most informative

placements of sensor nodes, an approximation algorithm based on the submodularity

and monotonicity of the mutual information function is presented. The key of the

approximation algorithm is to generate a modular approximation graph and solve

two optimization problems respectively.

The approach actually involves three steps:

• Collect data from the initial dense deployment of sensor nodes.

• Establish the probabilistic models of sensing quality and wireless link quality.

• Approximately solve the optimization problems based on the probabilistic mod-

els.

It is worth noticing that the solutions are based on the learning process that

extracts the probabilistic models from the initial deployment. The approach implicitly

assumes that the statistical characteristic of the measured physical signal is time

invariant.
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2.4.2 Optimal Adaptive Sampling

In contrast to the optimal node placements approach, the optimal adaptive

sampling approach [71] aims at selecting the informative samples from regression’s

perspective or estimation’s perspective. The uniqueness of the approach lies in its

iterative nature. The sink performs multi-output Gaussian Process formulation based

on the sensory data it collects. A probabilistic model based on Gaussian Process

enables the sink to decide the time instance of the next sample and the location of

the sensor node to take the next sample. Therefore, energy savings are obtained

through avoiding unnecessary samples to be taken. The correlation of sensor nodes is

addressed in the covariance function model. Since the correlation of the sensor nodes

leads to unnecessary samples, the optimal adaptive sampling approach skipped the

samples to save sensing cost.

Due to the approach’s adaptive nature, the actual selection of sampling time

instances and sensor nodes depends on the correlation of sensory data. When the

correlation of sensory data is time-variant, for instance, sensor nodes are mobile, the

approach is able to adjust to the changes along time. Furthermore, the approach

does not assume regular samples, which indicates that the selection of sampling time

instances may not follow the regular sampling pattern due to the nature of the sensory

data. Interestingly, as shown in the experimental results, the spatial correlation of

the sensory data leads to the result that samples are taken at different sensor nodes

at different time instances.

The adaptive nature comes with the price of additional computation load, com-

munication costs of assigning the sampling time instances to sensor nodes. It is shown

in Fig. 2.3 that the selection of sampling time instances is determined by the sink

after it evaluates the utility function. The utility function is a function of the predic-

tion uncertainty. It assures that the sink selects a shorter time to wait before taking
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Figure 2.3: The optimal adaptive sampling approach

the next sample when the prediction uncertainty tends to increase, and vice versa.

The goal is to keep the prediction uncertainty below a certain threshold. Therefore,

the resulted sampling time instances could be regular, irregular or a concatenation of

regular samples and irregular samples. Although the additional computation load is

not a burden to the sink with abundant resources, the communication costs becomes

an unnecessary overhead when the resulted samples follow a regular pattern, which

can be predefined during the initial deployment.

2.5 Summary

Although information-driven strategies focus on the tradeoff between quality

of information and energy consumption, they vary from each other in defining the

correlations, quantifying the quality of information, sampling patterns, algorithmic

aspects etc. The comparative study of information-driven strategies leads to a set of

taxonomy to category them and to compare them under the taxonomy.
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2.5.1 Taxonomy

Correlation: There are two types of correlations considered in information-driven

strategies. One is the temporal correlation, which is the autocorrelation of sensory

data from an individual sensor node, and the other is the spatial correlation, which is

the correlation among sensory data from different sensor nodes. Therefore, temporal

correlation is also called intra-node correlation, while spatial correlation is called inter-

node correlation. Especially, compressive sensing strategies consider the sparsity of

sensory data. Temporal correlation is thus called sparsity, while spatial correlation

is called joint sparsity. When sensor nodes are located closely to each other, spatial

correlation is significant. For mobile sensor networks, spatial correlation can be time-

variant, since the it is related to the distance between a pair of sensor nodes. Despite

the different names, information-driven strategies target the same phenomenon to

achieve the same goal of reducing energy consumption.

Quality of information: In order to quantify the quality of information to be

extracted by the sink from the received data, several metrics have been proposed

depending on the application’s tasks. For lossless data gathering task, the application

expects to recover the original sensory data with a high probability. For lossy data

gathering task, the application expects to have the most informative sensory data,

which implies that the parameter estimation or prediction can be accomplished with

high accuracy. Specifically, the metrics include reconstruction probability, entropy,

conditional entropy, estimation accuracy, and prediction uncertainty.

Sampling: As information-driven strategies deal with sensory data taken by sen-

sor nodes, data samples and the way the they are taken play an important role in

the process of compression, encoding or selection of samples etc. Sensor nodes can

synchronize the sampling time instances or not, take samples regularly or irregularly,
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and take samples synchronously or asynchronously. The choice of sampling pattern

also depends on the hardware capabilities of sensor nodes.

Algorithmic aspects: The algorithmic aspects of information-driven strategies lay

in the centralized process at the sink and the distributed process performed by indi-

vidual node to extract useful information from sensory data. In addition, an iterative

or one-time process is necessary for the strategies to adjust to different degrees of

correlations. The centralized process at the sink can afford computation intensive

tasks, while the distributed process at the individual sensor node favors light-weight

calculations that demand less energy and memory usage. The one-time process is

sufficient for time invariant correlations, while the iterative process is necessary for

time variant correlations.

Protocol layers: The key of information-driven strategies is the tradeoff between

energy consumption and application performance. Therefore, they mostly reside at

the application layer. However, efforts to introduce the information-driven concept

into the MAC layer have shown promising results.

2.5.2 Comparative Analysis

The comparison of information-driven strategies is shown in Table 2.1. Since

distributed compressive sensing is originated from distributed source coding, it has

identical entries with the distributed source coding in the table. However, the differ-

ence between these approaches lies in the technique processing the original sensory

data. Distributed compressive sensing focuses on the linear projection of sensory

data, while distributed source coding usually applies encoding schemes. Although

the asynchronous sampling strategy shares the similar set of characteristic with dis-

tributed compressive sensing, it does not require processing sensory data at individual



33

sensor node. Thus, the asynchronous sampling strategy is ideal for applications with

extremely strict budget on the computation power of sensor nodes.

Table 2.1: Comparison of Information-driven Strategies

Quality Algorithmic
Strategy Correlations of Information Sampling Characteristic Protocol Layer

Compressive Sensing temporal recover probability regular one-time application
Distributed temporal

Compressive Sensing and spatial recover probability regular one-time application
Distributed temporal

Source Coding and spatial recover probability regular one-time application
Optimal temporal

Node Placements and spatial conditional entropy regular one-time application
Optimal prediction

Adaptive Sampling spatial uncertainty irregular iterative application
Asynchronous temporal recover probability asynchronous

Sampling and spatial entropy regular one-time application
Information-driven temporal estimation asynchronous MAC

MAC protocol and spatial accuracy regular one-time and application

In order to demonstrate different performances of information-driven strategies,

an energy model is established for a specific data gathering application. The data

gathering scenario is described in the following:

• There is one sink in the network to collect sensory data from sensor nodes,

which take samples of the physical phenomena regularly.

• The network of sensors is organized in a hierarchical architecture, in which a

node with abundant resources serves as the cluster head of a number of neigh-

boring sensor nodes. The cluster head collects sensory data and forward them

to the sink.

• Sensor node is equipped with sufficient resources to process sensory data before

transmitting the processed result to the cluster head.

The above specifications are also applicable for the event reporting application,

since the requirement on data gathering is same.
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Accordingly, the energy model is given:

P = (Es + bs × ec + bt × et +m× em)× fs + Pn (2.8)

where

P is the power of one sensor node.

Es is the energy consumed by the sensor to take one sample.

bs is the number of bits in one data sample.

ec is the average energy consumed by the node to process one bit of data.

bt is the number of bits per sample to be transmitted to the cluster head.

et is the energy consumed by the wireless radio to transmit one bit of data.

m is the average number of backoffs per sample before the node obtain the channel

for transmission.

em is the energy consumed by the wireless radio per backoff.

fs is the sampling frequency, which equals to the average number of samples per

second.

Pn is the share of node’s power on maintaining the network.

Specifically, bs is able to quantify how many bits of data are needed to repre-

sent one sample; and the average computation cost in terms of the average energy

consumed by processing one bit of data is represented by ec. Therefore, the energy

consumed by processing one sample can be calculated by multiplying the number of

bits processed and the energy of processing one bit of the samples. Apparently, the

number of bits to be processed is actually the total number of bits of the samples.

After processing the samples, sensor node will attempt to access the wireless

medium for transmitting the processed result to the cluster head. The total energy
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spent on access the medium can be calculated by multiplying the average energy

consumed per sample, m× em, and the number of samples.

Then, sensor node will transmit the processed result to the cluster head. The

total energy for transmitting the data obtained from one sample equals to the multi-

plication of bt and et.

Given the energy consumed for taking, processing and transmitting one sample,

the power of one sensor node can be obtained by multiplying the energy per sample

and the sampling frequency. In addition to the sensing and transmitting tasks, the

sensor node is also subject to tasks related to maintaining the connectivity and time

synchronization etc. Therefore, the power of one sensor nodes is composed of two

parts: the power for sensing and transmitting, and the power for network mainte-

nance.

Although parameters in the model can vary with different hardware and soft-

ware specifications, it is still of interest to the comparison study of information-

driven strategies to choose a set of parameters for the data gathering application.

Regarding the energy consumed by taking samples, Es, let take the typical value of

a soil moisture sensor [22], which requires 5mW for 10ms for one sample. Therefore,

Es = 50µJ . However, the typical value for a low power temperature sensor [72] results

in Ps = 0.025µJ .

For distributed compressive sensing, the computation cost of linear projection is

negligible. However, for distributed source coding, the computation cost can be com-

parable to the communication cost. Therefore, let ec ≈ 0 for distributed compressive

sensing strategies, while let ec ≈ 0.4× et for distributed source coding strategies.

The average transmitting energy per bit, et, can be determined by the trans-

mitting power and the average length of time needed to transmit one bit of data.
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Take the popular radio CC1100 [73] for example, the transmitting power is 25mW .

According to the transmitting rate of 802.15.4 [74], 20kbits/S, et = 1.25µJ/bit.

Each attempt of the node to access the channel leads to a certain length of

backoff idle time subject to the configuration of the CSMA/CA protocol, The random

backoff time of the 802.15.4 protocol vary from 0 to (23 − 1)× 320µs. For the sake of

tractability, let the average backoff time to be 1ms. Accordingly, em = 20µJ .

Since Pn is irrelevant to the parameters of sensing and transmitting, the focus

of the comparison among information-driven data gathering strategies will be P −Pn.

Regarding synchronous sampling strategies, let the sampling frequency to be

0.01Hz, which means the node takes one sample every 100 seconds. A typical A/D

converter can convert one sample to be 16 bits of data [75]. Ideally, the average

number of attempts needed to access the medium for sending one packet is one. Let

the average number of attempts per sample to be 0.03. Finally, the total power for the

sensor node applying synchronous sampling strategies and IEEE 802.15.4 protocol is

0.76µW + Pn for the moisture sensor, and 0.26µW + Pn for the temperature sensor.

If the asynchronous sampling strategy for lossless data gathering is able to

reduce the sampling rate by half, while guaranteeing the recover of the original signal,

the power of the sensor node without applying the asynchronous sampling strategy

is 1.52µW + Pn and 0.52µW + Pn respectively.

Regarding the distributed compressive sensing with the same set of parameters,

the power of the sensor node is 1.26µW + Pn for the moisture sensor, and 0.26µW +

Pn for the temperature sensor. Energy consumption of the distributed compressive

sensing is greater than the asynchronous sampling strategy when the sampling cost

is significant. Furthermore, the computation task at the sensor node may require

additional hardware than the asynchronous sampling strategy.
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Regarding the distributed source coding with the same set of parameter, the

power of the sensor node is 1.34µW + Pn for the moisture sensor, and 0.34µW + Pn

for the temperature sensor. The energy consumption of the distributed source coding

strategy is higher than the others due to the computation cost of encoding the sensory

data. However, multimedia applications still depend on distributed source coding to

enable streaming of videos or images.

Regarding the optimal adaptive sampling strategies, the energy consumed by

feeding back the desired sampling time instances can be comparable to the energy

consumed by transmitting the samples to the cluster head. Therefore, the power of the

sensor node can be twice of the distributed compressive sensing or the asynchronous

sampling strategies.

Regarding the ID-MAC protocol, the energy savings lie in the sampling process

and the medium access process. Assume the ID-MAC is able to reduce the average

number of attempts needed to access the medium from 0.03 to 0.02, the power of the

sensor node can be 0.74µW + Pn and 0.24µW + Pn respectively.

After comparing the power of sensor node for different strategies given a par-

ticular set of parameters, the following conclusions can be reached:

• Asynchronous sampling strategies save energy through reducing the number of

samples needed to recover the original signals.

• Distributed compressive sensing is able to achieve energy efficiency through

reducing the number of bits to be transmitted.

• Further energy savings can be achieved by the ID-MAC protocol through re-

ducing the number of attempts to access the medium for transmitting.

• Distributed source coding consumes more energy than the other information-

driven strategies due to the computation intensive encoding algorithms.
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• Optimal adaptive sampling strategy is less energy efficient than the others due

to the iterative process to assign the sampling time instance to the sensor nodes.



CHAPTER 3

PRELIMINARIES

The scenarios motivating the asynchronous sampling and the information-driven

MAC protocol are introduced firstly in this chapter. As data correlation is the basis

of the study on information-driven approaches, signal model of lossless data gather-

ing, exponential correlation model of lossy data gathering are presented. After that,

event detection model and CSMA-based MAC model are introduced to facilitate the

discussions on the proposed MAC protocol.

3.1 Motivating Scenarios

Data gathering is one of the most important applications of WSNs. The focus is

on continuous data gathering scenarios where sensory data are collected consistently

and periodically from the monitored field. As energy consumption of the sensor net-

work is directly determined by the amount of data samples transmitted to the sink,

the goals here are either to transmit fewer samples or to gain more knowledge about

the monitored physical phenomena. The first goal is pursued in lossless data gath-

ering, while the second goal is approached in lossy data gathering. In fact, these

two goals lead to a better tradeoff between energy consumption and sensing quality

from different perspectives. As the monitored signals are to be fully reconstructed

in lossless data gathering scenarios, it is desirable to use fewer numbers of samples

in the reconstruction, thus saving energy consumption without affecting the sensing

quality. In contrast, lossy data gathering would have more informative samples con-

taining increased amount of information due to the proposed asynchronous sampling.

39
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Figure 3.1: Cluster-based correlation model of a WSN.

As a result, the sensing quality is significantly improved without increasing energy

consumption in lossy data gathering with asynchronous sampling strategies.

A few assumptions on the targeting scenario are made before proceeding fur-

ther. Firstly, it considers densely deployed WSNs, where redundancy of the sensor

nodes results in spatial correlation among the sensory data. As spatial correlation

is usually strong among neighboring nodes, this dissertation aims at cluster-based

WSNs in establishing the correlation models. Without loss of generality, discussions

on correlation will be limited to only sensors within a cluster. Fig. 3.1 illustrates

an example of clustering in sensor networks. Furthermore, it is also assumed that

clocks of different sensor nodes within a cluster are synchronized with each other. In

order to exploit temporal-spatial correlation of sensory data, it is assumed that the

correlation knowledge is available at the sink through, for example, exploration of

existing sensory data to derive the correlation coefficients.

Instead of calculating precisely the energy consumed by the network, the num-

ber of samples during a particular time period is used to represent energy consumption

of the sensor nodes. This allows the work to isolate the performance of the proposed
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strategy from those of the other components of the network such as routing and

medium access control (MAC) layers. Event detection applications involve two dis-

tinct processes: detection and monitoring, as shown in Fig. 3.2. Normally, the event

sprawl in a certain space, in which the deployed sensor nodes are able to detect the

event by examining the samples of the relevant physical value continuously. In order

to reconstruct the event or estimate its parameters, the sink (the laptop shown in

Fig. 3.2) requests the reports from the nodes that monitor the event throughout its

duration. �������� ����
INTERNET��Reporting/Routing Nodes

Routing Nodes

Base Node

Idling Nodes

Figure 3.2: Event detection and monitoring with a wireless sensor network
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The sensor nodes located within the event area detect the happening of the

event through evaluating the predefine triggering criteria. Each sensor node attempts

to send the event reports to the sink immediately after the event is detected. The

event reports can be a simple binary value, a set of data describing the characteristics

of the event observed by an individual sensor node, or a series of samples of a physical

value to be processed by the sink. In the dissertation, the last type of event reports

is considered.

3.2 Signal Model

Collaboration among spatially correlated sensor nodes has been proposed in

[76] as an approach to achieve energy efficiency of WSNs. Previous efforts [77, 46,

78, 79] focused on distributed algorithms for signal processing or aggregating data

from different nodes. In this section, the correlation among sensor nodes in WSNs

is explored from a novel perspective in the context of lossless data gathering. In the

proposed strategy, the sampling time instances of each node are shifted from each

other along the time line. Through theoretical analysis and simulation results, it is

shown that the original signal can be recovered from the asynchronous samples with

a lower sampling rate.

Given a cluster of sensor nodes, let the physical signal monitored by the ith

node at time t in the cluster be denoted by Zi(t), which is time variant and composed

of two parts as shown in Eq. (3.1). Let Xc(t) be the common part and Xi(t) the

innovation part. The common part refers to global effects on the physical phenomena

that can be observed by all the nodes in the cluster, while the innovation part refers

to local effects that are observable only to an individual node.

Zi(t) = Xc(t) +Xi(t) (3.1)



43

This correlation model has been adopted to exploit the redundancy of sensor

nodes [80]. Clearly, this model fits well into certain monitoring applications such as

habitat monitoring in that the common part represents the contribution from the

global factors, such as sunlight, while the innovation part is due to the local factors,

such as rain falls, affecting the physical phenomena.

Besides, it is worth noticing the frequencies of the signals when considering

monitoring the physical phenomena from the viewpoint of signal processing. Let fc

be the frequency of the common part signal and let fi be that of the innovation part

signal. In order to examine the relationship between Xc(t) and Xi(t), the bandwidth

of these signals are defined as follows:

fc,l ≤ fc ≤ fc,h

fi,l ≤ fi ≤ fi,h (3.2)

where fc,l and fc,h are the lowest and highest frequencies of fc, whereas fi,l and fi,h

are the lowest and highest frequencies of fi. If fi,h << fc,l, the following argument

will be satisfied.

fi,l ≤ fi ≤ fi,h << fc,l ≤ fc ≤ fc,h (3.3)

Another interpretation of the argument is that the global factors vary at a

frequency much higher than that of the local factors. For instance, temperature

measurements of an outdoor environment show that the global factors, such as daily

variation of sunlight, change much faster than the local factors like rain falls. The

spectrum of an example signal, Z1(t), that satisfies the argument is displayed in

Fig. 3.3. The bandwidth of the common part signal, Xc(t), is within 15% to 20% of
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Figure 3.3: Spectrum of Z1(t) sampled at fs.

the synchronous sampling frequency, fs. The innovation part signal, Xc(t), has the

bandwidth from 1% to 5% of fs. Fig. 3.4 shows the spectrum of the signal sampled

at a reduced frequency, fu. Although the spectrum is shifted and suppressed to some

extent, the separation between the common part signal and the innovation part signal

is preserved.

The argument indicates that the reconstruction of the physical signal requires

a sampling rate higher than two times of fc,h, although the reconstruction of Xi(t)

only requires a sampling rate higher than two times of fi,h, which is much lower than

that of Zi(t). In the next section, it will be further demonstrated how to tackle this

discrepancy in sampling rates.
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Figure 3.4: Spectrum of Z1(t) sampled at fu.

3.3 Exponential Correlation Models

The key benefit of asynchronous sampling is redundancy reduction in the sen-

sory data, which can in turn be exploited to maximize entropy of the information or

minimize the energy consumption (through reduction of the sampling rate). Before

detailing the asynchronous sampling strategies, discussions on the correlation model

considered in this chapter are presented.

3.3.1 Exponential Correlation Model

This dissertation considers a dense WSN monitoring a physical process such as

wind speed or temperature field. The data gathered by a sensor node consists of the

true measurement value and a noise. Assuming that the location of the sensor node

i is denoted by (xi, yi, zi), a sensory sample Ui at time t can be expressed as

Ui(t) =M(xi, yi, zi, t) + P (xi, yi, zi, t), (3.4)
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whereM represents the (true) measurement value determined by (xi, yi, zi) and t, and

P is the corresponding noise introduced by the environment or the sampling process.

Spatial correlation is due to the spread of the physical process in the space.

If sensor nodes sample the physical value in a synchronized pattern, the correlation

among sensory data is mainly determined by the locations of the nodes. Specifically,

suppose the sensory data given in Eq. (3.4) are Joint Gaussion Random Variables

(JGRVs) with zero mean and σ2
M variances, and the noise Pi is independent and

identically distributed (i.i.d.) Gaussian random variable with zero mean and σ2
P

variances. Then the spatial correlation between the sensor nodes i and j can be

expressed as

ρs(i, j) =
E[UiUj]

σ2
M + σ2

P

. (3.5)

As a commonly employed model [81], the spatial correlation is assumed to be

inversely proportional to the distance di,j between two nodes i and j:

ρspatiali,j = e−αdi,j = e−(α(
√

(xi−xj)2+(yi−yj)2+(zi−zj)2) (3.6)

where α > 0 denotes a constant for spatial correlation intensity.

Temporal correlation often denotes the correlation between the data sampled

at different time instances. Similarly, for a wide-sense stationary process [82] as a

Gaussian random process, the temporal correlation can be expressed as

ρtemporal
i,j = e−βτi,j (3.7)

where τi,j = |tj − ti| is the difference between the sampling time of nodes i and j, and

β is the constant measuring the temporal correlation intensity.
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For synchronous sampling, τi,j is close to zero and hence the correlation among

the data is often the largest. In the asynchronous sampling strategy, τ will vary

according to the network, which intuitively will increase the entropy of the sensory

data. Combining both spatial and temporal correlations, the correlation of sensory

data between nodes i and j is defined as:

ρi,j = e−(αdi,j+βτi,j) (3.8)

Although ρi,j may vary with time, it is assumed that β is a constant in the

further discussions on the asynchronous sampling strategies. As the correlation among

the sensory data could vary slowly in comparison with the sampling rates, it can be

assumed that β remains to be a constant for a short period of time during which

the asynchronous sampling strategy can be applied. Furthermore, for asynchronous

sampling strategies that do not require prior knowledge of the correlation among

sensory data, the assumption of a constant β can be discarded.

3.3.2 Correlation Example

Two examples are presented to verify the above exponential correlation model.

One is a stochastic process whose covariance is an exponential model. The other is

the covariance of experimental data from spatially correlated sensor nodes.

Denoting a Brownian motion process as {X(t), t > 0}, a stochastic process is

given as

V (x, y) = e−
1
2
(αx+βy)X(e(αx+βy)) (3.9)

where α > 0, β > 0.
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Figure 3.5: Histogram of temperature readings from one node

Then, its expected value and covariance are computed as follows:

E[V (x, y)] = 0

Cov[V (x, y), V (x+∆x, y +∆y)]

= e−
1
2
(αx+βy)e−

1
2
(α(x+∆x)+β(y+∆y))Cov[X(e(αx+βy)), X(e(αx+βy)+(α∆x+β∆y))]

= e−(αx+βy)e−
1
2
(α∆x+β∆y)e(αx+βy) (by property of Brownian motion process)

= e−
1
2
(α∆x+β∆y) (3.10)

The above derivation shows that the stochastic process given in Eq. (3.9) has

exponential covariance that fits the correlation model in Eq. (3.8).
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Figure 3.6: Coefficients and distances

A set of experimental data from Intel Berkeley Lab [83] is considered to demon-

strate the correlation among data. Temperatures at different locations in the lab

space were measured by sensor nodes. Given temperature measurements and loca-

tions of sensor nodes, the measurement covariances between any pair of sensor nodes

are calculated. In Fig. 3.5, the histogram of the temperature readings from one

node resembles a Gaussian distribution, which agrees with the assumption of JGRVs.

Fig. 3.6 shows the relationship between the covariance coefficients and the distance

between two sensors. It is obvious that the experimental data do not fit the spatial

correlation model in Eq. (3.6), although the covariance coefficients decrease with the

distance between sensors. The covariance coefficients are calculated using decibel to

transform exponential relationship into linear relationship for the sake of simplicity

in the plots.
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Figure 3.7: Coefficients and time lags

It is observed that the covariance coefficient of temperature measurements from

one sensor and those taken after a certain time lag from another sensor exponentially

decreases with the time lag as shown in Fig. 3.7. Each dashed line corresponds to

a pair of sensor nodes. For each pair, its covariance coefficient in decibel declines

approximately linearly with time lag between temperature measurements taken at

the two nodes. Therefore, the observed covariances can be approximated through the

exponential model described in Eq. (3.8). More generally, the ordered exponential

model, given in Eq. (3.11), can be introduced to model the coefficients for a broad

range of applications.

ρi,j = e−(αdi,j+βτξi,j) (3.11)

When the model type constant ξ = 1, Eq. (3.11) is the same as the exponential

model adopted in the previous discussions. When ξ = 2, it leads to the squared
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exponential model that is common in the literature of Gaussian processes and usually

leads to a close approximation of the covariance coefficients.

Although spatial correlation of the experimental data is irregularly dispersed,

its temporal correlation nicely follows the exponential model, which enables the work

to apply asynchronous sampling to reduce the correlation among sensory data by

adopting the exponential temporal correlation model.

3.4 Event Detection Model

In WSNs performing event detection, each node takes samples frequently and

makes its own decision according to the samples. The decision making procedure

could be formulated as follows. Assume N sensors within the event area A. The

signals being measured by each node, xi(t) is composed of two parts: the real signal

si(t) and the noise vi(t). The event detection decision can be made according to a

certain threshold h. Normally, the detection of an event is accomplished at individual

nodes. After detecting the event, each node tries to send the sensory data about the

event to the sink for further analysis. Let the moment when the event is detected by

each node be denoted by ∆td. It is a small time period, during which nodes residing

in the area A detect the event. Thus,

xi(t) = si(t) + vi(t), for i = 1, 2, ..., N (3.12)

Fi =
1

tL − t1

L∑
j=1

x2i (tj) > h, i = 1, 2, ..., N, j = 1, 2, ..., L (3.13)

and

∆td =Max{ti} −Min{ti}, i = 1, 2, ..., N (3.14)
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Figure 3.8: Traffic pattern of event reporting

where tj is the sampling moments at the jth sampling instances, ti is the sam-

pling moments for the ith node, and Fi is the event detection criteria, which is usually

the power of the signal during a time period. Starting from the moment of detection,

the data traffic is generated continuously while the nodes take samples at a constant

rate 1/T , where T is the sampling cycle. The duration of the data traffic is equal to

the duration of the event ∆te. When sensor nodes are synchronized with each other,

they are supposed to detect the event simultaneously, albeit ∆td ≈ 0. The traffic

pattern is shown in Fig. 3.8. Clearly, the bursty traffic poses a significant challenge

to the MAC layer by requiring the shared channel simultaneously.

Given the event detection model, to achieve energy efficiency and fulfill the

realtime requirement greatly rely on the event report procedure. WSNs that work

for event detection applications consumes little energy when no event is detected.

The majority of the energy consumption is thus spent on event reporting. Therefore,

the lifetime of the network mainly depends on the event reporting procedure. In
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addition to energy efficiency, the sink is expected to make timely decisions based on

the collected sensory data to fulfill the realtime requirement in many applications.

3.5 CSMA-based MAC Model

Although TDMA-based MAC protocols outperform CSMA-based protocols, the

latter are more popular in real applications due to their simplicity and effectiveness.

For CSMA-based protocols, the focus is how to adapt to the traffic and avoid col-

lisions. Considering the traffic pattern discussed in the previous section, collisions

are severe due to the bursty traffic. Therefore, to avoid collisions outweighs the goal

to adapt to the traffic in the event detection scenario. CSMA/CA protocols apply

carrier sensing to find out the availability of the channel. As shown in Fig. 3.9,

the result of CSMA/CA protocol is the streamlined transmissions along the timeline.

Compared with the original traffic pattern shown in Fig. 3.8, the real transmissions of

the data packets in a neighborhood of nodes are finally streamlined along the timeline

sharing the same medium. Here, the single channel transmission is taken into account

without loss of generality.

Normally, the goal of the CSMA/CA protocols is to avoid collisions and also

achieve low latency. When a node senses a busy channel, it waits for the end of the

current transmission. Given the slotted CSMA protocol, each node chooses a slot

based on a probability distribution. The number of slots is the length of the collision

window CW . Let pj be the probability for a node to choose the jth slot. Assuming

uniform distribution, it has

p1 = p2 = ... = pM =
1

M
(3.15)

where M is the number of the slots.
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The probability of a node to choose a certain slot could be optimized accord-

ing to different criteria. For instance, minimizing collisions over the slots could be

achieved by tuning the probabilities instead of assigning the same probability to each

slot as shown in (3.15). Transmission collisions not only increase energy consumption

for retransmitting the packets but also lead to longer delay on the arrivals of pack-

ets at their destinations. Although packet delay at the MAC layer is inevitable for

bursty traffic, it could be an optimization goal for the MAC protocol besides the goal

of minimizing collisions.

Figure 3.9: Streamlining the transmissions

3.6 Summary

The specific models that are the basis of the proposed approaches are formu-

lated respectively. The correlation model of deterministic signals is based on the

addition of two signals, while the correlation model of statistical signals is based on
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the covariance that is exponentially proportional to distance, time or both. Besides,

the event detection model reveals the inherently bursty traffic from the nodes that

detects the event. And the slotted CSMA-based MAC protocol allows the traffic to

be streamlined to reduce collisions.



CHAPTER 4

ASYNCHRONOUS LOSSLESS DATA GATHERING

Given the correlation model of the deterministic signals provided in the previous

chapter, the asynchronous sampling gathering strategy is presented, which includes

the motivation, overview and details of the strategy. In addition, an optimization

problem is formulated to address the energy saving of the proposed strategy. It

is shown that the optimal sampling schedule can be derived through solving the

optimization problem. After that, methods of reconstructing the original signal from

asynchronous samples and even the irregular samples.

4.1 Asynchronous Sampling Strategy

Correlation among sensory data makes it possible to maintain a certain level

of sensing quality at a reduced sampling rate. It has been explored in the context

of scheduling the duty-cycle of sensor nodes. The key to exploiting the correlation

among sensor nodes is how to collaboratively process the data collected from different

nodes. In this section, it will be described how to meet the goal of energy conservation

through asynchronous sampling strategy.

4.1.1 Motivation

Referring to the correlation model presented in the previous section, suppose

that a user is not interested in the innovation part signal, Xi(t). Instead, only the

common part signal, Xc(t), is critical to the monitoring task of the WSN. Therefore,

the nodes within one cluster would be able to sample the same signal Xc(t) containing

56
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noise Xi(t). Since the nodes take samples of the same signal, an immediate solution

to achieve energy efficiency is to schedule the nodes’ duty-cycle.

Figure 4.1: Schedule sampling of 4 nodes in one cluster

Before considering the innovation part signal at hand, an alternative sampling

schedule of the sensor nodes is shown in Fig. 4.1. Assume in each sampling round, each

node takes one sample in turn. The samples are taken at times t1, t1, · · · , tN , where

N is the number of nodes in a given cluster. A longer sampling round, L, is always

favorable in WSNs due to the reduced amount of data to be reported to the base

station, especially for data gathering applications. However, the sampling schedule

should also guarantee the reconstruction of Xc(t). The problem of reconstructing

band-limited signals from irregular samples has been investigated in [84], in which

the proposed reconstruction algorithm requires that the length of the interval between

two samples should not exceed the length of the interval corresponding to the Nyquist

sampling rate in order to uniquely recover the signal through the irregular samples.

Therefore, the maximal length of the sampling round is achieved when the samples

are taken regularly along the time line. Specifically for Xc(t), the Nyquist rate is

2fc,h. Fortunately, the Nyquist rate of each node is 1/L, which is much lower than

2fc,h. In fact,

L = N(
1

2fc,h
) (4.1)
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which implies that the Nyquist rate of each node is reduced from 2fc,h to
2fc,h
N

, where

N is the number of sensor nodes in the cluster.

By collaboratively sampling and processing the samples, it is shown that the

reconstruction of Xc(t) is accomplished even when each node takes samples at a

significantly reduced sampling rate. At this point, it almost becomes requisite to

explore the possibility of extending this approach to the case of considering both the

common part and the innovation part signals.

The main challenge of implementing collaborative signal processing on Zi(t) lies

in dealing with Xi(t), since it no longer represents noises contained in the samples but

a meaningful and indispensable interpretation of the monitored physical phenomena.

Recall the assumption on the bandwidths of Xc(t) and Xi(t). The Nyquist rate

with respect to Xi(t) is much lower than that of Xc(t), which suggests that if Zi(t) is

sampled by each node at a reduced rate, it is possible to reconstruct Xi(t) except for

Xc(t).

Given the samples are taken asynchronously at a reduced rate, a potential

solution would be to reconstruct Xc(t) collaboratively from samples of the spatially

correlated sensor nodes and to reconstruct Xi(t) independently from samples of the

corresponding node. The feasibility of this solution greatly lies in the successful

separation of the common part signal and the innovation part signal.

As digital filters are able to suppress particular frequencies in the signal, the as-

sumption that is made in Eq. (3.3) warrants the validity of the digital filters regarding

the separation of the common part and the innovation part signals.

Motivated by the above insights, an asynchronous sampling strategy is proposed

in the following section that exploits the data correlation.
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Figure 4.2: Reconstruction of Correlated Signals from Asynchronous Samples

4.1.2 Strategy Overview

Based on the knowledge of correlation structure, the nodes sample the moni-

tored field asynchronously at a reduced sampling rate as compared to the Nyquist

rate of the common part signal. The reconstruction process of Xi(t) and Xc(t) is

shown in Fig. 4.2. Before reconstructing the desired signal from the asynchronous

samples, the common part signal is filtered out of the sample sequences according

to its frequency distribution. Then the innovation part signal of each node can be

reconstructed through the respective filtered results. After that, the samples of the

common part signal are obtained by subtracting the recovered innovation part from

the original asynchronous samples. Finally, the common part samples resulting from

each node is combined to form a new sequence for its reconstruction.

4.1.3 Strategy Description

Continuing the example in the previous section, an asynchronous sampling and

reconstruction of the signal are presented with the previously discussed correlation

model. The signals are sampled asynchronously by five sensor nodes. The spectrum



60

5200 5220 5240 5260 5280
−30

−20

−10

0

10

20

30

40

Sequence Number of Samples

C
om

m
on

 p
ar

t s
ig

na
l X

c(
t)

 

 

Recovered Signal
Original Samples

Figure 4.3: Recontruction of Xc(t).

of Z1(t) sampled asynchronously at fu, where fu < 2fc,h < fs, is shown in Fig. 3.4.

As shown, the spectrum of the common part signal is shifted and depressed. Due to

the space limitation, this section does not include the spectrum analysis of the other

signals, Z2(t), · · · , Z5(t), which are similar to that of Z1(t).

After the asynchronous samples being filtered by an equiripple finite impulse

response (FIR) low-pass filter, they are subtracted from the original asynchronous

samples. Thus, the common part signal is reconstructed through sequentially com-

bining the subtracted samples from each sensor node. The reconstructed common

part signal is shown in Fig. 4.3, while one of the innovation part signals reconstructed

from the filtered samples is shown in Fig. 4.4.

As the digital low-pass filter cannot produce ideal results due to its own the-

oretical limitations, it is worth noticing that the reconstruction of Xc(t) is not ideal

too. The spectrum of the original and reconstructed Xc(t) are compared in Figs. 4.5
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Figure 4.4: Reconstruction of X1(t).

and 4.6, respectively. In Fig. 4.6, the spectrum includes a few small spikes caused by

the imperfection of the digital filter.

In summary, each node’s role in the asynchronous strategy is determined by

its sampling rate and time shift. Since the reconstruction algorithm provided in [84]

requires that the distance between two samples along the time-line should be smaller

than Nyquist rate of the signal to be reconstructed. The sampling rates and shifts

are subject to the following conditions:

∆tl <
1

2fc,h
(4.2)

where

∆tl = (t̂l − t̂l−1), for l ∈ N, t̂1 < t̂2 < · · ·

t̂l ∈ {ti,k = φi + kTi, i = 1, 2, · · · , N, k ∈ N}
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Figure 4.6: Spectrum of the reconstructed Xc(t).
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and

Ti <
1

2fi,h

Here φi is the sampling shift, while Ti is the sampling rate of the ith node.

4.1.4 Energy Savings

For the sake of simplicity, but without loss of generality, it is assumed that

the communication cost of each node is proportional to its sampling rate. Therefore,

the energy efficient goal for data gathering can be achieved by taking samples at the

lowest possible rates. This section formulates the following optimization problem on

asynchronous sampling rates in order to obtain an upper bound on the improvement

brought by the asynchronous sampling strategy. Given the set of frequencies of the

innovation part signals {fi,h, i = 1, 2, · · · , N} and the frequency of the common part

signal fc,h, the problem is defined as follows:

max
∑
Tj∈Ω

Tj (4.3)

such that Ω ⊆ {Ti, i = 1, 2, · · · , N}.

Ti <
1

2fi,h
.

Tj <
|Ω|
2fc,h

.

The sampling rates and shifts that maximize the energy saving are derived from

the following algorithm.

Algorithm 1 Deriving sampling rates for spatially correlated sensor nodes

1. sort fi,h so that f1,h < f2,h < · · · < fn,h.

2. forK = 1 to N , sort
fi,h
i

and fc,h so that ∀i 6 K,
fi,h
i
< fc,h and ∀i > K,

fi,h
i
> fc,h.

3. ∀i 6 K, Ti <
1

2fK−1,h
, φi <

fK−1,h

K
; and ∀i > K, Ti <

1
2fi,h

, φi = 0.
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Note that there are two extreme cases for the above algorithm. In the first case

fi,h <
fc,h
N
, ∀i 6 N , in which Algorithm 1 results in Ti <

N
2fc,h

, φi <
1

2fc,h
. This leads

to an upper bound of 1
N
, which indicates the smallest ratio between the asynchronous

sampling frequencies and the synchronous sampling frequencies. In contrast, for the

second case, fi,h > fc,h
i
, ∀i 6 N . The result produced by Algorithm 1 will be Ti <

1
2fi,h

, φi = 0, which means the asynchronous sampling strategy degenerates into the

synchronous sampling strategy.

4.2 Collaborative Reconstruction

Reconstruction of all the signals sampled by the nodes is a three-stage pro-

cess. First, the common part signal is filtered out from the asynchronous samples of

each node. The filtered results provide enough information to reconstruct the inno-

vation part signal. Secondly, the innovation part of the samples is subtracted from

the original samples in order to obtain the common part of each sample sequence.

Combining asynchronous samples after subtraction, enough samples are obtained for

the reconstruction of the common part signal. Finally, the original signal could be

approximated from the previous reconstruction results of the common part and the

innovation part signals.

4.2.1 From Asynchronous Samples

The key idea behind collaborative reconstruction of the common part signal

is combining the filtered asynchronous samples from sensor nodes. As shown in Eq.

(4.4),m asynchronous samples from one node are filtered by a low-pass filter F (a, b, r),

where a, b are the filter coefficients, and r is order of the filter.
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y(i) = b(1)x(i) + z1(i− 1) (4.4)

z1(i) = b(2)x(i) + z2(i− 1)− a(2)y(i)

· · ·

zr−2(i) = b(r − 1)x(i) + zr−1(i− 1)− a(r − 1)y(i)

zr−1(i) = b(r)x(i)− a(r)y(i)

The filtered result y contains only the innovation part signal since the com-

mon part signal is filtered out by the low-pass filter. State-of-art digital filters are

available for various filtering purposes [85]. Therefore, this section does not elaborate

on specifications of low-pass filters since the focus of this chapter is to propose the

asynchronous sampling strategy.

Next, the common part signal is reconstructed with the help of the following

equation:

xc(t) =
m∑
k=1

D[k] ·
sin(π( t−kT

T
))

π( t−kT
T

)
(4.5)

where D[i+ (j − 1)n] = xi[j]− yi[j].

As the innovation part signal captured by each node can be reconstructed

through the filtered result y, the original signal sampled by each node can be ob-

tained accordingly.
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4.2.2 From Irregular Samples

This section discusses the impact of the local clock drifts on the reconstruction

of the sampled signals. It is necessary to implement the reconstruction method for

irregular samples resulting from clock drifts of sensor nodes.

Impact of Local Clocks: Time synchronization plays an important role in wire-

less sensor networks. Every node has its own local clock. The differences between

the local clocks pose significant challenges on the wake-up schedule, communication

protocols, and so on. Although the samples of one particular node are taken regularly,

the samples from different sensor nodes are taken irregularly because of the different

local clocks. When reconstructing the common part of the signal from the corre-

lated data, the irregularity of the sample sequences may corrupt the reconstruction

result. Various time synchronization approaches have been proposed in the litera-

ture for wireless sensor networks [86]. Specifically, Cluster-based synchronization of

WSNs has been proposed in [87]. However, the most energy efficient synchronization

method for WSNs may not often guarantee synchronization of local clocks at any

time. Therefore, the reconstruction of the common part signal should be able to cope

with the irregularity of the samples shown in Eq. (4.6). Fortunately, there exist

algorithms to reconstruct the signal from irregular samples.

s′i = si +∆si (4.6)

where ∆si = |tclki − t0|, and tclki is the time indicated by node i’s clock, while t0 is

the time indicated by a non-drift clock.

Reconstruction From Irregular Samples: An adaptive weights method based on

iterative reconstruction is provided in [84], where the sampling set and the weighted
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frame are as in Eq. (6.3) and Eq. (4.8), respectively. The algorithm can be drawn

from Eq. (6.4).

µ = sup
n∈Z

(xn+1 − xn) <
π

ω
(4.7)

(1− µω

π
)∥f∥2 6

∑
n∈Z

xn+1 − xn−1

2
|f(xn)|2 6 (1− µω

π
)∥f∥2 (4.8)

f0 = Sf =
π2

π2 + µ2ω2

∑
n∈Z

xn+1 − xn−1

2

ω

π
f(xn) sin c(ωx− xn) (4.9)

fk+1 = fk + S(f − fk), k > 0

where µ is the largest difference between two sampling time instances, ω is 2π times

the Nyquist rate of the sampled signal, and S is an operator described in Eq. (6.4).

The reconstruction error of the algorithm is bounded by Eq. (6.5).

f = lim
k→∞

fk

∥f − fk∥ 6 λk+1∥f∥ (4.10)

λ =
2πµω

π2 + µ2ω2

The asynchronous sampling rate introduced in Section 4.1.2 should be adjusted

to meet the requirement on the sampling set. Given the irregularity of the samples

in Eq. (4.6), the sampling rates of nodes need to be modified as follows:

T ′
i = Ti −∆si (4.11)
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From the above adjustments on the sampling rate, it is concluded that the

energy saving performance of the asynchronous sampling is impacted by the drift of

local clocks.

4.3 Summary

This chapter starts with the motivation of the proposed strategy based on the

signal model and the correlation model provided in the previous chapter. Followed

by the description of the proposed strategy, the motivation behind the strategy is

explained. The frequencies of the correlated signal enables the asynchronous sampling

strategy to take less samples and to recover the original signal through collaborative

reconstruction. Detailed demonstration on the filtering of the samples, combining

the filtered samples and recovering the original signal is shown too. Furthermore,

the benefit of applying the strategy is discussed based on solving the optimization

problem formulated for maximizing the energy saving. Finally, the reconstruction

method dealing with irregular samples is presented to show the feasibility of the

strategy even for applications with clock jitters.



CHAPTER 5

ASYNCHRONOUS LOSSY DATA GATHERING

In this chapter, the discussion focuses on how to improve the tradeoff between

network lifetime and sensing quality in lossy data gathering applications. Since the

sampling rate is subject to certain bandwidth limitation and battery capacity of

nodes, the limited number of samples can not guarantee complete knowledge of the

monitored physical phenomena in such applications. This dissertation proposes asyn-

chronous sampling to improve the quality of the sensory data in terms of increasing the

entropy thereof. The benefit of increased entropy using examples of data regression

is showcased. An optimization problem is formulated to achieve maximal entropy

with the help of asynchronous sampling. Specifically, two asynchronous sampling

strategies are proposed to compliment the computation-expensive optimal strategy.

5.1 Benefits of Asynchronous Sampling

Given temporal-spatial correlation model of the sensory data, it is shown next

that the asynchronous sampling strategy, if employed, can indeed increase the entropy

of the data and hence reduce the regression distortion as a result of increased entropy.

5.1.1 Asynchronous Sampling Increases Entropy

For tractability, it is assumed that the sensory data are Jointly Gaussian Ran-

dom Variables (JGRVs). The probability density function for zero-mean JGRVs is

given by

fχ(χ) =
1

(2π)n/2
√
detΛχ

e−
1
2
χTΛ−1

χ χ, (5.1)
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where Λχ is the covariance matrix of χ, whose entry is the covariance of elements in

χ and det denotes the determinant.

The entropy of the sensory data composed of the samples U1, · · · , Un following

JGRVs can then be derived as

H =
1

2
log(2πe)ndetΛn − log∆. (5.2)

Here entry κi,j in the covariance matrix Λn corresponding to sensor data samples Ui

and Uj from nodes i and j can be expressed as

κi,j =

 σ2
i i = j, for i 6 n, j 6 n,

σiσjρi,j i ̸= j, for i 6 n, j 6 n,

where σi and σj are the standard deviation of the samples Ui and Uj, respectively, and

log∆ is a constant due to quantization. For the sake of simplicity, a normalization

on the covariance matrix Λn is applied in order to get a correlation coefficient matrix

An, whose entry is:

ai,j =

 1 i = j, for i 6 n, j 6 n,

ρi,j i ̸= j, for i 6 n, j 6 n,
(5.3)

Then the determinant of Λn can be derived as

detΛn =
n∏

i=1

σ2
i detAn (5.4)

According to the properties of ρi,j, the matrix An is positive symmetric implying

ai,j = aj,i. Now the following theorem is derived.



71

Theorem 5.1.1 The entropy of sensory data samples U1, · · · , Un increases through

asynchronous sampling.

Proof: From the temporal-spatial correlation model, observe that the redun-

dancy of sensory data can be reduced by asynchronous sampling, which results in a

non-zero τi,j. The goal here is to show that the determinant of Λn will be increased

if some of its entries are decreased due to asynchronous sampling and consequently

the entropy of the sensory data will be increased.

Suppose that An is constructed from synchronous sampling. Now if the sam-

pling sequence of the jth sensor node is shifted from tj to tj + τ . The correlation ρi,j

between the jth node and the other sensor nodes changes to ρ̂i,j, where

ρ̂i,j = ρi,je
−βτi,j for i 6 n, j 6 n,

Then Ân corresponding to asynchronous sampling is given by Ân = An ◦ Bn, where

Bn is the sampling shift matrix whose entry is defined as follows:

bi,j =

 1 i = j, for i 6 n, j 6 n,

e−βτi,j i ̸= j, for i 6 n, j 6 n,
(5.5)

Here An ◦Bn is the Hadamard product, the element-wise product of two matri-

ces. Because A and B are correlation matrices, they are positive definite or positive

semidefinite. The Hadamard product of two positive definite matrices are also pos-

itive definite because of the closure property. According to Oppenheim’s Inequality

[82], det(An ◦ Bn) > detAn

∏n
i=1 bi,i = detAn (the equality holds if and only if An is

a diagonal matrix), which shows detAn < detÂn. Therefore, detΛn < detΛ̂n, which

infers that H < Ĥ = 1
2
log(2πe)ndetΛ̂n − log∆.



72

Recalling the generalized exponential correlation model, it is apparent that

the proof remains to be true with the squared exponential model, in which ξ = 2.

Specifically, the matrix Ân corresponding to the asynchronous sampling strategies is

given by Ân = An ◦Bn, where an entry of Bn is defined as:

bi,j =

 1 i = j, for i 6 n, j 6 n,

e−βτ2i,j i ̸= j, for i 6 n, j 6 n,
(5.6)

AsBn remains to be positive definite, the Oppenheim’s inequality can be applied

to reach the same conclusion with the approximated exponential model, in which

ξ = 1.

5.1.2 Benefits of Increased Entropy

While the entropy provides an abstract quantification of the amount of infor-

mation embedded in the data, it is hard to picture its true impact in real applications.

Here one further step is taken to show that asynchronous sampling can indeed help

an application improve the regression of the physical process from the asynchronous

data.

An important goal of data collection in WSNs could possibly be to reconstruct

the physical field under measurement. Instead of reconstruction, the regression of the

physical field is implemented when reconstruction is unreachable due to insufficient

data. In this section, through an example of linear regression, how asynchronous

sampling improves the performance of regression is shown.
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A regression model for a physical process is given below:

G̃(x, y, z, t) =
∑
i

wiJi(x, y, z, t)

where wi is the ith weight, and Ji is the ith basis function of regression.

Then the distortion of the regression can be calculated from:

Rr = E[(G− G̃)2]

the optimal regression is achieved when w = (JTJ)−1JT Ĝ, where Ĝ represents

sensory data. Thus,

Rr = E[(G− J(JTJ)−1JT Ĝ)2]

Letting Q = J(JTJ)−1JT , it is obtained that

G̃j =
n∑

i=1

qi,jĜi

where qi,j is the covariance coefficient between data samples from nodes i and j.

Therefore,

Rr = σ2
G+

1

n

n∑
i=1

n∑
j=1

q2i,jĜ
2
i +

1

n

n∑
k=1

n∑
i=1

n∑
j=i+1

qi,kqj,kρi,jĜ
2
k −

2

n

n∑
k=1

n∑
i=1

qi,kρG,iG
2
k (5.7)

If sensory data are collected asynchronously, only ρi,j will decrease due to non-

zero τi,j introduced in the correlation model. Therefore, it is concluded that asyn-

chronous sampling is capable of reducing the regression distortion.
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5.2 Designing Asynchronous Sampling Strategies

While it has been shown that asynchronous sampling can indeed benefit WSNs,

different asynchronous sampling strategies can affect the amount of benefits. A key

factor here is how each sensor shall determine its sampling time and when an opti-

mal performance (i.e., the maximum entropy) can be achieved. In this section, the

optimization problems related to asynchronous sampling is presented firstly. As the

optimization problem is shown to be NP-hard, a heuristic algorithm is proposed to de-

sign an asynchronous sampling strategy, called O-ASYN, which uses local optimum

to approximate the global optimum. Two other asynchronous sampling strategies,

called R-ASYN and E-ASYN, are also proposed. R-ASYN is an asynchronous sam-

pling strategy based on randomly assigning sampling shifts, whereas E-ASYN just

equally shifts sampling moments of sensor nodes. Bounds on R-ASYN and E-ASYN

are derived using inequalities of the Hadamard product. Discussions on the imple-

mentation of the strategies are presented at the end of this section.

5.2.1 Optimal Asynchronous Sampling Strategy

Asynchronous sampling strategy increases the entropy of the sensory data by

introducing shifts in the sampling time instances among different sensor nodes. With-

out loss of generality, it is assumed that the sampling time instances of the sensor

nodes will be increasing along with their indices. In other words,

t1 6 t2 6 · · · 6 tn. (5.8)



75

It is also assumed that

τi =

 ti+1 − ti, for i = 1, · · · , n− 1

T + t1 − ti, for i = n

where T is the sampling interval of the sensor nodes. Thus

n∑
k=1

τk = T

Subsequently, the entry of the correlation matrix An has the following form:

ai,j =

 1 i = j, for i 6 n, j 6 n,

ρi,je
−βτi,j i ̸= j, for i 6 n, j 6 n,

where

τj,i = τi,j =

j−1∑
k=i

τk for i < j

To best benefit from the asynchronous sampling strategy, the goal is to deter-

mine the best set of {τi} so that the entropy of the sensory data can be maximized.

Formally, the goal is

maxH(S1, ..., Sn, τ1, ..., τn) (5.9)

subject to
n−1∑
k=1

τk 6 T ,
n∑

k=1

τk = T , and τk > 0

It is argued that the above optimization problem is NP-hard because it is a

special case of the Assignment Problem with Extra Constraints (APEC), which is

shown to be NP-hard [88].
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5.2.2 O-ASYN Strategy

Since the optimal asynchronous sampling is NP-hard, an approximate solution

called the O-ASYN strategy is proposed. It is based on finding local optimum of a

subproblem by recursively applying Lagrange Multiplier.

First, a subproblem is defined, which optimizes entropy with a given index of

the sensor nodes.

max logdetAn (5.10)

subject to
n−1∑
k=1

τk 6 T ,
n∑

k=1

τk = T , and τk > 0

Notice that in the formulation (5.10), the problem is under inequality con-

straints on the time shifts. As equality constraints of an optimization problem may

lead to smaller size of feasible solution sets than the inequality constraints, it is de-

sirable to first examine the objective function and the inequality constraints in order

to reduce the size of the feasible solution set.

Here, it is proved by contradiction that the optimization problem given in (5.10)

is equivalent to the optimization problem shown in (5.11), which has an equality

constraint on the sum of time shifts.

max logdetAn (5.11)

subject to
n−1∑
k=1

τk = T and τk > 0

Proposition 5.2.1 The optimization problem given in (5.10) is equivalent to that in

(5.11).

Proof: Suppose there is an optimal solution {τ1, ..., τn−1} to the problem such

that
∑n−1

k=1 τk < T . Then the maximum entropy Hmax is obtained by applying time
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shifts {τ1, ..., τn−1}. Let δ = T −
∑n−1

k=1 τk. A new time shift series {τ1, ..., (τn−1 +

δ)} is derived. According to Theorem 5.1.1, the entropy is increased by shifting

sampling time points of the nth node from the other nodes. It is obtained that

entropy Hδ corresponding to the new time shift series, is greater than or equal to

Hmax. Since it contradicts the assumption thatHmax is the maximum entropy possible

under the constraints
∑n−1

k=1 τk 6 T , it is concluded that the entropy is less than the

maximum value as long as
∑n−1

k=1 τk < T . Therefore, the optimization problem with

the inequality constraints is equivalent to the optimization problem given in (5.11)

with an equality constraint on the sum of time shifts.

A recursive algorithm is proposed below, named O-ASYN, to approximate the

global optimum using the local optimum. O-ASYN is described in Algorithm 2.

Given the indices of sensor nodes, the algorithm starts with three sensor nodes. Since

the linearity of the local optimum with k sensor nodes is maintained while searching

for the local optimum with k + 1 sensor nodes, Lagrange Multiplier can be applied

recursively to obtain the local optimum for n sensor nodes. The recursion starts from

the initial case with three sensor nodes. The optimization problem of three sensor

nodes is indeed an optimization problem given by Eq. (5.12).

max detA3 (5.12)

subject to τ1 + τ2 = T and τ1, τ2 > 0

where detA3 = 1− ρ21,2e
−2βτ1 − ρ22,3e

−2βτ2 − ρ21,3e
−2βT + 2ρ1,2ρ2,3ρ1,3e

−4βT .

The solution to this problem can be obtained easily because the maximum value

of detA3 is achieved when ρ1,2e
−βτ1 = ρ2,3e

−βτ2 and e−βτ1e−βτ2 = e−βT .
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Algorithm 2 O-ASYN algorithm
1. index the sensor nodes

S: set of sensor nodes
V: set of sensor nodes with index
ui: the ith indexed sensor node
u: the sensor node without a index
V=∅
for i = 1 to |S|

ui = argmaxu⊂SEntropy(V
∪

u)
V=V

∪
ui

S = S − ui
end

2. find sampling shifts of the indexed nodes
τ1 :

T
2 + 1

2β (ln ρ1,2 − ln ρ2,3)

τ2 :
T
2 + 1

2β (ln ρ2,3 − ln ρ1,2)
are local optimum of sampling shifts for sensor nodes u1, u2 and u3
for k = 1 to n− 3

for j = 1 to k + 1
τj = τj(T − τk+2)/(

∑k+1
i=1 τi)

end
τk+2 = argmaxEntropy(τ1, · · · , τk+1, τk+2)

subject to
∑k+1

i=1 τi + τk+2 = T and τi ≥ 0
end

5.2.3 R-ASYN and E-ASYN Strategies

In addition to O-ASYN, two other simple strategies are proposed: R-ASYN

strategy that randomly assigns the sampling time shifts to sensor nodes with a certain

sampling rate, and E-ASYN strategy that assigns equal sampling time shifts to sensor

nodes no matter how they are spatially correlated with each other.

Thanks to the inequality of the Hadamard product, several bounds on the

performance of R-ASYN and E-ASYN can be derived in terms of the percentage of

the increase in the entropy value.

Since R-ASYN and E-ASYN assign time shifts to the sensor nodes without con-

sidering the correlation intensity between pairs of sensor nodes, the bounds on their

performances indicate their effectiveness regarding different correlation scenarios.
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The upper bounds for R-ASYN and E-ASYN are based on the following in-

equality:

Proposition 5.2.2

(det(A ◦B))2 6 (
1

2
)n

n∏
i=1

(
n∑

j=1

a4ij +
n∑

j=1

b4ij) (5.13)

where aij (resp. bij) is the entry of matrix A(resp. B) at ith row and jth column.

Equality holds when aij = bij, for i 6 n and j 6 n and both A and B are diagonal

matrixes.

Proof: According to the inequality of the determinant (detA)2 6
∏n

i=1(
∑n

j=1 a
2
ij)

(Equality holds when A is a diagonal matrix), it has

(det(A ◦B))2 6
n∏

i=1

(
n∑

j=1

(aijbij)
2),

where ◦ denotes the Hadamard product. Then

n∏
i=1

(
n∑

j=1

(aijbij)
2) 6 (

1

2
)n

n∏
i=1

(
n∑

j=1

(a4ij + b4ij)), because (a2 − b2)2 > 0.

Assume A is the correlation matrix given in Eq. (5.3) and B is the sampling

shift matrix given in Eq. (5.6). Observe that in Eq. (5.13) the equality holds when

aij = bij. It can be inferred from the spatial correlation model in Eq. (3.6) that it is

only possible when the sensor nodes are placed on a straight line.

Next, an upper bound on the performance improvement brought by R-ASYN

is derived. Since
∑

i b
4
ij = nE[b4ij], it has

(det(A ◦B))2 < (
1

2
)n

n∏
i=1

(
n∑

j=1

a4ij + nE[b4ij])
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Therefore, an upper bound on the performance improvement brought by R-

ASYN is

E[
logdet(A ◦B)

logdetA
− 1] <

1
2
log[(1

2
)n

∏n
i=1(

∑n
j=1 a

4
ij + nE[b4ij])]

logdetA
− 1

Considering E-ASYN,

max
j

∑
i

b4ij =

 2
∑ j

2
k=1 e

−4β kT
n−1 , j is even

2
∑ j−1

2
k=1 e

−4β kT
n−1 + e−4β j+1

2
T

n−1 , j is odd
(5.14)

The upper bound on the performance improvement brought by E-ASYN can

be obtained accordingly.

From the inequality of determinant,

det(A ◦B) > detA× detB

The equality holds when A and B are diagonal matrixes, and hence a lower bound

on E-ASYN can be derived.

Since detB = (1 − e−β 2T
n−1 )n−1, when bi,j = e−β

|j−i|T
n−1 , thus logdet(A ◦ B) >

logdetA+ (n− 1)log(1− e−β 2T
n−1 ). Accordingly, the lower bound on the performance

improvement of E-ASYN can be derived.

5.2.4 Implementation Issues

The O-ASYN strategy is different from R-ASYN and E-ASYN in that it re-

quires prior knowledge of correlation between the pairs of sensor nodes. In order

to implement the proposed strategy, the key is to compute the temporal correlation

parameter, β. Before applying O-ASYN, it is necessary to study the synchronous
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samples in order to get the correlation matrix An and β. As the correlation between

the time shifted samples can be computed, β is estimated using statistical method

given the exponential model.

After deriving the optimal sampling time shifts and indices of sensor nodes

through approximation, the sink is able to broadcast the sampling time shifts to all the

nodes. Then the sensor nodes can adjust their sampling time instances accordingly.

Furthermore, the reconstruction or estimation process does not request the

information of the sampling instances from the sensor nodes because the sampling

sequences are deterministic given the corresponding time shifts. Thus, the com-

munication load of the system will not increase after introducing the asynchronous

sampling strategy.

While the benefits of asynchronous sampling have been discussed mainly in

terms of increased entropy and decreased regression distortion, there are other benefits

of this strategy.

Incremental Implementation: Notice that the asynchronous sampling can be

implemented incrementally over existing designs of communication layers, as it only

regulates the sampling time of the sensor nodes. Asynchronous sampling strategies

can be easily augmented on top of other methods such as aggregation and compression

approaches.

Asymmetry of Operation: Asynchronous sampling also suits well in the highly

resource constrained environment and, in particular, the asymmetry between the sink

and sensor nodes. By performing asynchronous sampling, a sensor node does not

need to perform any additional computation. This is in contrast with other schemes

such as compressed sensing [89], where a senor node has to compress sensory data

and exchange information with neighboring nodes. In this scheme, the computation
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intensive work, such as determining the time shifts as well as the reconstruction, is

performed at the sink usually having abundant resources.

Remark : The discussions have been mainly focused on deriving O-ASYN to

determine the order and time shifts for asynchronous sampling. However, even simpler

strategies as R-ASYN and E-ASYN can benefit the sensor network as well.

5.3 Summary

The asynchronous lossy data gathering strategy is presented in this chapter. Ac-

cording to the exponential correlation model given in the preliminaries of the disseta-

tion, the spatial correlation does not strictly follow the exponential model. However,

it does not affect the feasibility of the strategy because the strategy does not require

specific pattern of the spatial correlation as shown in the entropy model. Based on

the entropy model of the sensory data, the benefits of applying asynchronous sam-

pling for lossy data gathering are discussed. Furthermore, an optimization problem

is formulated in the discussion on designing the strategy given the knowledge on the

sensory data correlation. Aside from the suboptimal solution, two simple yet effective

solutions are presented with the derived bounds on their performances. Finally, the

implementation issues are discussed including the benefits and the restrictions of the

strategy when implemented.



CHAPTER 6

INFORMATION-DRIVEN MEDIUM ACCESS CONTROL

Motivated by the collision prone traffic generated by the nodes in the event

detection scenario, the information-driven medium access control (ID-MAC) is pre-

sented in this chapter. The protocol handles the two types of packets differently in

order to streamlining the traffic. A method of obtaining the optimal probability for

the individual node to choose a transmission slot is adopted. The analysis on the

event reports and the estimation accuracy are presented accordingly.

6.1 Motivation

Event detection and monitoring is an important application of wireless sensor

networks (WSNs). The sensor nodes observe the detected event and continuously

reports to the sink within the duration of the event for further analysis. Examples

of event detection and monitoring applications include environment surveillance, fire

rescue, border security, and so on.

The biggest challenge of deploying WSNs lies in its limited lifetime due to the

small form factor of the devices and the slow progress on boosting the battery capac-

ity. In the detection process, energy consumption can be reduced through scheduling

the nodes’ duty cycle while guaranteeing the detection performance [90]. Distributed

detection of events is also able to conserve energy through eliminating the commu-

nication cost for transmitting the raw samples to the central processing node [91].

However, for the monitoring process, when observations on the detected event are

collected throughout the event area, the energy consumed by the communications

83
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between the sink and the nodes plays a key role in determining the lifetime of the

WSNs. Therefore, energy efficient event reporting is of great importance to the suc-

cess of WSN applications, especially when the event detection does not contribute

significantly to the energy consumption.

The monitoring process exhibits two characteristics that motivate the work

presented in this section. They are:

1) The observations on the detected events from different nodes are correlated

(or even duplicated) with each other.

2) The data packets traffic from the nodes to the sink has a bursty pattern, in

which every node in the event area attempts to send their reports simultaneously.

The correlation among the event reports implies that the performance of the

system can be improved by transmitting less correlated data to the sink. In-network

data processing [92], compressive sensing [93] and node selection [94] have been pro-

posed to exploit the spatial correlation among the sensory data to achieve energy

efficiency.

The bursty traffic generated by the nodes poses additional challenge to the MAC

layer by introducing conflicted transmission requests from nodes within a neighbor-

hood. The widely adopted IEEE802.15 protocol is not specifically designed to handle

bursty traffic. The delay performance and the packet drop rate are severely impacted

by the bursty traffic in the event reporting process. In [95], a MAC protocol was

proposed to resolve the problem by selecting a subset of the nodes to transmit their

reports to the sink. This approach managed to change the data packets traffic in order

to improve the MAC performance without sacrificing the application’s performance.

Inspired by the idea of changing the traffic of data packets, a novel information-

driven MAC (ID-MAC) protocol is proposed to solve the problems of correlated re-

ports and bursty traffic simultaneously. Instead of choosing a subset of nodes to report
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the event, the ID-MAC protocol assigns sampling shifts to nodes in order to change

the bursty traffic into a streamlined traffic. Consequently, the MAC performance is

improved by essentially replacing the bursty traffic.

The basic idea is that the MAC protocol advises the node on its sampling shift

and the transmission slot. For enroute packets to be relayed by the node, the node

applies normal CSMA/CA (carrier sense multiple access/collision avoidance) protocol

to send the packets in a timely manner. For data packets, ID-MAC suggests node

on its sampling moment to reduce correlation with other nodes. At the same time,

collisions at the MAC layer are also reduced. As a result, the data packets traffic

is no longer bursty after the intervention of the MAC protocol. In addition, the

event reports are also less correlated because nodes takes samples at different time

moments. An optimal probability model is adopted to select nodes’ transmission slots

that minimize the transmission collision and in turn reduce the correlation among

event reports.

6.2 Protocol Description

The proposed information-driven MAC protocol is described in the following

considering two different types of packets: the data packets and the enroute packets.

6.2.1 Overview

Motivated by the conflicts between the bursty traffic of event reporting and the

shared medium for transmissions, the ID-MAC protocol changes the bursty traffic

through assigning the sampling moments instead of adapting to the bursty traffic.

ID-MAC belongs to the class of CSMA/CA protocols. Upon detecting the event, a

node senses the channel for a short period of time. After finding out that the channel

is idle, the node sends out a message to all the neighboring nodes not to transmit
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and then sends its own packets. When the channel is busy, the node will choose a

sampling shift from the current detection moment randomly and independently from

the other nodes in order to avoid collisions. The whole process will be repeated when

the new data packet is ready for transmission. The optimization goal for transmission

of data packets is the minimum number of collisions among the neighboring nodes.

The probabilities of the slotted non-persistent CSMA/CA protocol are determined

by the least collision criteria.

Besides data packets, the node is also responsible for relaying packets from other

nodes. Such enroute packets deserve a different scheme, since the goal would be to

transmit the packets to the next hop with least delay. Therefore, the node applies

the normal CSMA/CA protocol for enroute packets, which aims at the least delay.

The protocol details are discussed in the following.

6.2.2 Data Packets

Data packets refer to those generated by the node intending to transmit them

to the next node toward the sink. When the event is detected by the node, it begins

to carrier sense the channel. Initially, the nodes in the event area A attempts to

access the medium simultaneously. the ID-MAC protocol assigns the node a new

sampling moment when it detects the channel is busy and a data packet is ready to

be transmitted at the same time. The new sampling moment is determined according

to the probability distribution pi. According to [96], the probabilities are given in as a

recursive formula, thus leading to minimum collisions for each slot. Different from the

usual slots for MAC protocols, the slots for accessing the medium is not continuous.

The sampling cycle T is divided by M slots. As shown in Fig. 6.1, the node will

only choose K slots (denoted by the black slots) out of all the slots. The probability

for one node to choose the (a × i)th slot is pi, where a is the distance between two
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black slots. In contrast, the probability for choosing the rest of the slots (denoted by

the white slot) is simply zero. For the sake of convenience, the black slots are called

available slots, while the white slots as non-available slots in the rest of the chapter.

The optimal probabilities for the ID-MAC protocol in terms of minimum collisions

are given as [96]:

pa×i =
1− fK−i(N)

N − fK−i(N)
(1− pa − p2a − · · · − pa×(i−1)) (6.1)

where

fj(N) = (
N − 1

N − fj−1(N)
)N−1 (6.2)

and fj(N) is a recursive function such that f1(N) = 0. The maximum success proba-

bility ζopt for all the slots being selected without collisions is basically a function of K

and N . It is proved in [96] that ζopt = fK(N). Apparently, a larger K and a smaller

N lead to higher success probability, although a larger K results in a longer sampling

cycle, not favorable to the application in achieving the goal of abundant and timely

knowledge about the detected event.

Figure 6.1: Slots allocation of ID-MAC

From the MAC layer’s point of view, the proposed protocol increases the colli-

sion probability because a smaller number of slots are available for nodes to choose

from. However, the length of the sampling cycle is much greater than that of the

collision window of CSMA/CA protocols. The number of available slots is still com-
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parable to the number of slots in the collision window. Consequently, the collision

probability does not increase significantly.

In addition, the chosen slots are the suggested moments for the nodes to take

the samples in the next sampling cycle. The collision probability does not represent

the severity of the collision problem in the MAC layer; rather it implies how close

could the observations be on the same event from different nodes. Since the collision

of observations is not desirable in dense networks, ID-MAC adopts the CSMA/CA

protocol to find out the sampling moments, that is, the observation moments for the

nodes. More discussions on the observations from nodes are presented in Section 6.3.

When there is an incoming data packet from a neighboring node, the node also

applies the ID-MAC protocol to find out the sampling moment for itself to avoid

collision with relaying the data packets from neighboring nodes.

After the node successfully transmits the packet generated at the suggested

sampling moment, it sticks to the sampling moment until the next time the packet

collides with others. From a single node’s point of view, the samples are taken peri-

odically with the sampling shift suggested by ID-MAC to avoid collisions.

The design parameters of ID-MAC include the sampling cycle T and the dis-

tance, a, between two consecutive available slots. With these parameters, the nodes

are able to determine the medium access rule by computing the optimal probabilities.

Since the parameters are closely related to the quality of event reports, the details on

the design parameters are presented in Section 6.3.

6.2.3 Enroute Packets

As long as the data packets arrive at the other nodes on its path to the sink,

they become enroute packets, which need to be forwarded to the sink. The goal for

the MAC layer is to transmit the enroute packets to the next hop in a timely manner.
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Since the enroute packets originate from the data packets, the collisions involving

enroute packets are much less than the expected collisions of the bursty traffic.

The ID-MAC protocol applies a different MAC scheme for the enroute packets

from the collision minimizing scheme for the data packets. As collisions are already

minimized when the traffic is generated, ID-MAC aims at reducing the transmission

delay when processing the enroute packets. In ID-MAC, the node tries to access the

medium immediately after the arrival of the enroute packets. The state transitions

of the protocol, including those involving enroute packets, is shown in Fig. 6.2. The

idle state of the protocol is interrupted by the periodically generated data packets

(denoted by ¬) and the incoming enroute packets (denoted by ). When there is no

contention for the medium, either the data packets or the enroute packets are sent out

by exchanging RTS/CTS signals. After that, the protocol returns to the idle state

through (denoted by ®) and (denoted by ¯). When there are contentions, collisions

bring the states back to the ready states waiting for the next trail. The successes of

resolving the contention result in returning to the initial idle state.

The focus of ID-MAC is to resolve three contentions: (i) between data packets,

(ii) between enroute packets, and (iii) between data packets and enroute packets. The

contention between data packets is dealt with the rule of selecting a slot from a limited

number of slots within the sampling cycle. The contention between enroute packets

is dealt with the normal CSMA/CA protocol, in which nodes uniformly randomly

choose a slot from the contention window. Distinctive from these contentions, the

contention between data packets and enroute packets in ID-MAC always ends with

the success of the enroute packets. The priority of the enroute packets is guaranteed

by the condition: CW < a, where CW is the length of the collision window. The

enroute packets succeed in competing for the medium due to its faster back off than

the data packets obeying the rule of choosing a slot at least a slots away.
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Figure 6.2: State transitions for enroute packets

6.3 Event Reports and Estimation

In this section, the impact of adopting ID-MAC on the application’s perfor-

mance is discussed. The link between the MAC performance and the application’s

performance is revealed through the analysis on the success probability of the slots

and the quality of the event reports in terms of the highest signal frequency to be

reconstructed and the lower bound on the estimation accuracy respectively.

6.3.1 Event Reports

It is common that the nodes in area A observes the same event, which is rep-

resented by a band-limited signal f(t). Thus, si(t) = f(t). The sink collects the

data packets from the nodes adopting ID-MAC, according to which the data samples

taken by the nodes are not synchronized. In other words, the observations on the

same events are taken at different moments to avoid the bursting traffic containing

mostly similar observations. Regarding the event in terms of the signal f(t), the

goal of collecting the observations is to reconstruct the original signal with the data
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packets. Given the suggested sampling moments by ID-MAC, the reconstruction of

f(t) relies on a set of irregular samples collected from the data packets.

An adaptive weights method for signal reconstruction with irregular samples is

provided by [84]. The method is based on an iterative process, which has the sampling

set as shown in Eq.(6.3). The algorithm is described in Eq.(6.4).

µ = sup
n∈Z

(xn+1 − xn) <
π

ω
(6.3)

where xn+1 and xn are the sampling moments of two consecutive samples and π
ω
is

half of the Nyquist rate.

f0

= π2

π2+µ2ω2

∑
f(xn)

xn+1−xn−1

2
ω
π
sin c(ωx− xn)

fk+1 = fk + S(f − fk), k ≥ 0

(6.4)

Reconstruction error of the algorithm is bounded by the inequality (6.5).

f = limk→∞ fk

∥f − fk∥ ≤ λk+1∥f∥

λ = 2πµω
π2+µ2ω2

(6.5)

In order to reconstruct the event signal f(t), the time difference between the

sampling moments of two consecutive samples is less than the Nyquist rate of the event

signal. Since the samples are taken at the chosen slots in ID-MAC, the difference, d,

between two consecutive chosen slots is bounded by the following:[96]

d < a[
K2 − 1

3KfK(N)
+ (

1

fK(N)
− 1)(K + lpacket)] (6.6)
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where lpacket is the transmission duration of one packet.

Recall that the design parameters of ID-MAC are subject to the requirement on

the quality of the event reports. Regarding the sampling cycle T , it is determined by

the band-width of the event signal and the least difference between two consecutive

samples. Given the bandwidth of the event signal, the least difference between two

consecutive available slots is derived with the help of inequaltiy (6.3), thus

a[
K2 − 1

3KfK(N)
+ (

1

fK(N)
− 1)(K + lpacket)] <

π

ω
(6.7)

The left side of the inequality results from ID-MAC, and the right side relates to the

highest frequency of the event signal. With fixed N , K, a and lpacket, the highest

frequency of the event signal that can be reconstructed is bounded. Recall that the

maximum success probability ζopt in the MAC layer is a function of N and K. Then

the value of K depends on the desired maximum success probability and N , which

depends on the density of the nodes and the size of the event area A. Therefore, the

design parameter a can be tuned to achieve a tradeoff between ζopt and ω, where ω

represents the quality of the event reports.

6.3.2 Processing the Reports

Instead of reconstructing the detected event, the sink seeks an alternative goal

to estimate certain parameters from the collected reports from the nodes residing in

the event area. Even when the collected reports do not contain sufficient information

for the reconstruction of the whole event, the sink is still be able to estimate the

parameters with certain level of accuracy.

As the nodes observe the same event, their event reports from different nodes are

generally correlated. The correlation between two sets of reports from pairs of nodes
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is modeled by the exponential model, when the event reports are jointly Gaussian

random variables (JGRVs). The covariance matrix of the JGRVs is C, whose element

ci,j is given by:

ci,j = cov(si(t), sj(t)) = E[sisj]

The JGRVs are x ∼ NormalN(µ(θ), C(θ)), where θ = [θ1, θ2, · · · , θh] is the

vector of the deterministic parameters to be estimated. Cramer-Rao lower bound

(CRLB) is the lower bound on the variance of estimators of the deterministic param-

eters. It states that the variance of an unbiased estimator could not exceed the inverse

of the Fisher information matrix (FIM), whose element is given in the following [97]:

Ii,j =
∂µT

∂θi
C−1 ∂µ

∂θj
+

1

2
tr

(
C−1∂C

∂θi
C−1 ∂C

∂θj

)

Then the variance of the unbiased estimators U is bounded as follows:

V ar(U) > 1

I(θ)

Since ID-MAC requests that the nodes generate data packet at particular time

slots, the correlation among the event reports is subject to the time shifts of the

nodes’ sampling moments due to ID-MAC. Specifically, the covariance coefficient

ci,j is modeled by e−αti,jρi,j, where ti,j is the time difference between the sampling

moments of nodes i and j, and ρi,j is the covariance coefficient of the samples taken

at the same time moments. When the nodes take the samples at approximately the

same time, then ci,j ≈ ρi,j. The result of applying ID-MAC is the time shifts of the

nodes, which lead to a lower CRLB.
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Consider the estimation of parameters θ from the following signal model:

x(t) = A(θ)s(t) + e(t)

in which, the signals s(t) are from m sources, e(t) is the noise signal and A(t) is the

steering function. The received signals x(t) are Gaussian N(A(θ)s(t), C), in which C

is the variance of noise e(t).

Let the CRLB for estimating the parameters θ to be denoted by CRLBθ, thus

as shown in [98]

CRLBθ =
1

2n
[V ⊙ P ]−1

where V is the matrix resulted from manipulating matrix A and C, and P is the

covariance matrix of the source signals s(t).

Since the source signals are correlated with each other, the covariance matrix

of the shifted source signals is P ′. According to the temporal correlation model,

P ′ < P because P − P ′ is positive semi-definite. Therefore, CRLBθ > CRLB′
θ,

which indicates that the CRLB of parameter estimation is indeed lowered by shifting

the sampling moments of the source signals.

Notice that the introduction of the exponential factor in the correlation coef-

ficient model actually helps to improve the achievable CRLB given the correlated

event reports. ID-MAC intentionally introduces the non-zero ti,j into the correlation

model in its effort to convert the bursting traffic into a streamlining one. The tradeoff

between the MAC performance and the estimation accuracy is embodied in tuning

the time shifts for the sensor nodes. From ID-MAC’s point of view, the time shifts

are the result of maximizing the success probability for selecting the slots. On the
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other hand, the value of the corresponding CRLB also depends on the set of time

shifts.

Through theoretical analysis and simulations, the following results are obtained:

1) The proposed ID-MAC protocol relates the MAC performance with the in-

formation quality of the event reports. For scenarios requiring reconstruction of the

event signal, the tradeoff between the MAC performance and the highest frequency of

the reconstructed signal enables the network to achieve the design goals of both the

MAC layer and the application layer through adjusting the number of transmission

slots.

2) Energy consumption of the event monitoring process is also related with the

MAC performance through the length of sampling cycle of the nodes. High success

probability can be achieved at the MAC layer, while nodes consume small amount of

energy due to a long sampling cycle.

3) Regarding parameter estimation at the application layer, the Cramer-Rao

lower bound is decreased by introducing the ID-MAC protocol to shift the nodes’

sampling time instances from each other.

6.4 Summary

Discussion on the event detection and reporting application is presented after

the details of the ID-MAC protocol is described. Because of the potentially competi-

tive nature of the event reports, the idea of streamlining the traffic of event reports is

revealed through the CSMA-based MAC protocol. In the ID-MAC protocol, there are

two types of packets: data packets and enroute packets. The two types of packets are

handled differently by the protocol. After applying the ID-MAC protocol, the event

reports not only contain more informative sensory data, but also incur less collisions

at the MAC layer. Furthermore, the Cramer-Rao lower bound is proposed to quantify
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the improvement on the application’s performance. It bounds the estimation accuracy

that can be achieved by the application through the obtained sensory data. Simula-

tion study reveals the tradeoff between the MAC performance and the application’s

performance, which can provide guidelines for designing real applications.



CHAPTER 7

SIMULATION STUDY

The simulation study on the proposed asynchronous sampling strategies and

the ID-MAC protocol is presented in this chapter. The simulations are conducted on

both synthetic and real data set. The results on the reduced energy consumption,

the increased entropy, the event reconstruction and the lower bound on estimation

accuracy are shown respectively.

7.1 Reduced Energy Consumption

Simulation experiments are conducted on a real data set using the reconstruc-

tion method discussed in previous sections. The simulation results show that the

reconstruction performance is guaranteed when the sampling interval is adjusted to

the clock jitter.

7.1.1 Data Set

In order to show the benefits of asynchronous sampling to the lossless data

gathering applications, a real data set is taken as an example. It consists of the soil

temperature readings from a WSN deployed at Huntington Gardens in San Marino,

CA (http://www.sensorwaresystems.com). The soil temperature readings come from

the sensor nodes numbered 3 and 5 located at difference positions. This section will

show how the high frequency part signal can be preserved through the asynchronous

sampling strategy that shifts the sampling time instances evenly and reduce the sam-

pling rate by half.

97
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The soil temperature readings are collected from 2007-02-19 8:49 to 2007-10-

06 16:39 every 5 minutes. The corrupted samples were removed and the average of

every 100 samples were taken in order to reduce the impact of noises. Furthermore,

the mean of the soil temperatures was subtracted from the two data sequences, re-

spectively. The spectrum of the obtained data sequences are shown in Figs. 7.1 and

7.2. Observing that the spectra resemble those of the signal models discussed in

Section 4, the asynchronous sampling strategy was applied to reduce the number of

samples needed for the reconstruction of the signals. Due to the remaining noises in

the data, neither the low frequency nor the high frequency part of the signals from

the two nodes is equal to each other. However, as shown in the figures, the high

frequency part of the signals do approximate to each other. In order to illustrate the

benefit of the asynchronous sampling strategy, the high frequency part of the signals

is regarded as the common part signal in the following. Given the sampling rate of

the obtained data series at 1 sample per 500 minutes, the high frequency part of the

signal, centered at 36% of the sampling frequency, represents the changes of the soil

temperature at a daily basis, whereas, the low frequency part represents the other

long term changes.

7.1.2 Reconstruction Performance

In the asynchronous sampling scheme, the data with odd sequence numbers

are chosen from the first sequence and those with even sequence numbers from the

second sequence. The spectrum of the resulting asynchronous data is presented in

Figs. 7.3 and 7.4, respectively. Notice that the high frequency part of the signals are

attenuated in terms of both its power and frequency.

Following the steps described in Fig. 4.2, the data are recovered accordingly.

The results are shown in Figs. 7.5 and 7.7, respectively. In comparison, the results
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Figure 7.1: Spectrum of the data from node 3
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Figure 7.2: Spectrum of the data from node 5
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Figure 7.3: Spectrum of the undersampled data from node 3
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Figure 7.4: Spectrum of the undersampled data from node 5
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Figure 7.5: Data from node 3 recovered with asynchronous sampling

from the synchronous data are shown in Figs. 7.6 and 7.8. It is worth noticing that

the results from the asynchronous data contain more high frequency component than

those from the synchronous data. The observation is validated through the spectrum

analysis on the recovered data sequences. As shown in Fig. 7.9, the results from the

asynchronous data do preserve the high frequency component with a sampling rate

that is half of its synchronous counterpart. Similar observations can also be found in

Fig. 7.10.

7.1.3 Impact of Local Clocks

The impact of local clocks on the performance of the reconstruction method

is also simulated in the experiments. The simulation is implemented using two cor-

related sample sequences. The clock jitter is defined according to its ratio to the

sampling interval. In Fig. 7.11, the clock jitter ratio varies from 0 to 0.1, while the

reconstruction error of the common part signal remains around 1% for sampling in-
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Figure 7.6: Data from node 3 recovered with synchronous sampling
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Figure 7.7: Data from node 5 recovered with asynchronous sampling
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Figure 7.8: Data from node 5 recovered with synchronous sampling
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Figure 7.9: Spectrum of data from node 3 with asynchronous sampling
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Figure 7.10: Spectrum of data from node 5 with asynchronous sampling

terval 1.5 times the Nyquist interval; and the reconstruction error increases to more

than 9% for sampling interval 1.8 times the Nyquist interval.

7.2 Increased Entropy

Similarly, the simulation of the increased entropy also has been conducted on

both synthetic and real data sets, which are illustrated respectively.

7.2.1 Synthetic Data Set

Before presenting the simulation results, the correlation model for 10 sensor

nodes is set up. It is assumed that the sensor nodes are located in three-dimensional

space, and the spatial correlation between two sensor nodes is determined by their

distance from each other. Locations of the sensor nodes are randomly distributed in

a 10m× 10m× 10m space as shown in Fig. 7.12.
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Figure 7.13: Asynchronous strategies on synthetic data

Given the locations of the sensor nodes, the correlation between sensory data

generated by different sensor nodes can be obtained accordingly through applying the

exponential correlation model with spatial correlation constant α.

7.2.2 Real Data Set

Firstly, it is shown how to find the correlation parameter β from the syn-

chronous samples by using a data set containing temperature measurements in a

room. Through the simulated correlation model and experimental data, it is shown

that the O-ASYN strategy produces satisfying results for a group of randomly cor-

related sample sequences. Besides, it is shown that R-ASYN and E-ASYN strategies

can increase the entropy or decrease the distortion without searching for the optimal

assignment of the time shifts.
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The correlation matrix given in Eq. (5.3) is obtained accordingly with α = 0.5

and β = 0.2. First, the entropy is simulated using the correlation matrix without

asynchronous sampling. Then R-ASYN and E-ASYN strategies are simulated, and

finally O-ASYN is applied to the same correlation matrix.

The simulation experiment is repeated with respect to T ranging from 1s to

50s. The results are shown in Fig. 7.13. O-ASYN produces a partition of T , implying

that the entropy converges to the maximum value. Whereas, R-ASYN and E-ASYN

outperform the synchronous sampling and get closer to the approximation algorithm

when T increases.

As the implementation of asynchronous sampling strategy relies on the prior

knowledge of temporal correlation model, it is shown that the correlation parameter β

is obtained through statistical study on the synchronous samples. The data set from

the Intel Berkeley Lab. [83] is adopted. It contains temperature measurements in a

room for about one month. Among the 54 sensor nodes deployed, there are 50 nodes

which transmitted valid sample series to the sink. They take samples of temperature

and other environment parameters at the same time. Due to uncertainties of multi-

hop communication, samples taken at some epoch time are missing and some of the

measurements are beyond the normal range. Before computing correlation of the time

shifted samples, the corrupted data are excluded from the samples. In order to deal

with missing samples, an average of samples during a time period of several epochs

is computed as the value for the epoches with no samples that successfully received

by the sink.

As shown in Fig. 7.14, the correlation parameter β = 0.0012, which fits in the

statistical model of temporal correlation.
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7.2.3 Regression Performance

Based on the value of β, the simulation is conducted on the asynchronous sam-

pling strategy with the data set from the 50 sensor nodes. The simulation experiment

is conducted in two stages. First, the indices of the sensor nodes are obtained through

recursion. Then the optimal sampling shifts are determined using numerical method.

The maximum time shift varies from 10 minutes to 50 minutes. The simulation result

on the entropy gain is shown in Fig. 7.15. It is shown that when the sampling rate has

to be traded off for longer lifetime of WSNs, asynchronous sampling produces more

informative samples. Simulation results on entropy of samples from sensor nodes

provide quantified improvement on the information of the physical process retrieved

from sensor nodes.

More specifically, the regression distortion of the temperature values is com-

puted given the sensory data sampled at reduced sampling rate. The regression re-

sults corresponding to synchronous samples and asynchronous samples are shown in

Figs. 7.16 and 7.17, respectively, while the sensory data sampled at the original sam-

pling rate are shown in Fig. 7.18. Regression distortion of synchronous sampling and

asynchronous sampling are compared in Fig. 7.19. Observe that the overall regression

distortion of asynchronous sampling is lower than that of synchronous sampling.

7.3 Event Reconstruction

Simulation results for the MAC performance and the reconstruction perfor-

mance are presented first to show the tradeoff between them under ID-MAC. Then

the simulation result on the MAC performance and the lower bound on the estimation

accuracy is shown to demonstrate the ID-MAC’s improvements on MAC performance

and the estimation performance.
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Figure 7.16: Synchronous sampling at reduced rate

Figure 7.17: Asynchronous sampling at reduced rate
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Figure 7.18: Synchronous sampling at original rate
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Figure 7.19: Comparison of regression performance
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Given ID-MAC and its design parameters, such as the number of slots, it shows

the tradeoff between the MAC performance and the quality of event reports. Since

the goal is to reconstruct the event with the reports from the nodes, the sampling

shifts suggested by ID-MAC should be able to meet the reconstruction algorithm’s

requirement on the largest difference between two consecutive sampling moments.

The tradeoff between MAC performance and the quality of event reports also relies on

the condition stated in the inequality (6.7). Although the event reports are sufficient

for the reconstruction, the higher the frequency of the event signal, the more reports

are required during certain period of time. The challenge of collecting more reports

is also true at the MAC layer. The more the reports transmitted from nodes to the

sink, the busier is the medium for the nodes. ID-MAC aims at changing the bursty

traffic by selecting sampling shifts for nodes, which in turn introduces the interaction

between the MAC layer and the application’s task. Specifically, the frequency of the

event signal that can be reconstructed decreases when ID-MAC increases the number

of available slots for better success probability.

As mentioned, in ID-MAC, the success probability is determined by K and N .

Since the number of nodes in the event area is normally a constant after the nodes

are deployed, the protocol can choose to have more available slots in order to improve

the success probability. In the simulated example, N = 5, 10, 15 and K starts from

16 to 86, 24 to 74 and 32 to 82, respectively. The difference between ID-MAC and the

optimal CSMA/CA protocol is the non-available slots in between two available slots.

Here, the number of non-available slots is a = lpacket + 5, which guarantees that the

node would be able to send the packet before the next available slot. According to

the inequality (6.7), the highest frequency of the recoverable event signal is computed

given K, N , a and lpacket. Since the result is with respect to a unit length of the slot,

a reasonable value was assigned to the length of the slot in order to get the exact
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Figure 7.20: Tradeoff between MAC performance and the quality of event reports

frequency. On the other hand, the success probability is also computed according to

Eq. (6.2). Therefore, the tradeoff is obtained as shown in Fig. 7.20. The success

probability is above 80%, however the highest frequency decreases sharply when the

success probability exceeds 90%. The simulation results show that the design of ID-

MAC involves the tradeoff between MAC performance and the quality of the event

reports. The key parameter is K, which determines not only the success probability

but also the highest frequency that can be recovered.

Additionally, the number, K, of available slots in ID-MAC, also plays an impor-

tant role in achieving energy efficiency. Because the reconstruction of the event signal

is accomplished through the cooperation among nodes observing the same event, the

sampling cycle of each node equals to a×K. Apparently, the communication cost in

terms of energy consumption is positively proportional to the amount of reports sent

to the sink, which is directly related to the sampling cycle of each node. The larger

the number of reports to be sent to the sink, the more energy has to be consumed to
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accomplish the transmission. The goals of energy efficiency and better MAC perfor-

mance are met by adjusting K. The simulation on the energy efficiency is conducted

using the same set of parameters and the results are shown in Fig. 7.21. As the suc-

cess probability increases, the length of the sampling cycle increases sharply, which

leads to much fewer number of reports generated by each node.

0.92 0.93 0.94 0.95 0.96 0.97 0.98
Success Probabilty
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Figure 7.21: Sampling cycle and the MAC performance

The two simulations on the quality of event reports and energy efficiency reveal

that ID-MAC links the MAC performance with the application’s performance. The

existing literature shows that energy efficiency can be achieved separately at the MAC

layer and the application layer. In ID-MAC, the goal is cooperatively achieved at both

layers.
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7.4 Lower Bound of Estimation Accuracy

Regarding the estimation of parameters from the event reports, the MAC per-

formance and the estimation accuracy are both improved with the help of the ID-MAC

protocol. The estimation accuracy is represented by CRLB of the event reports. The

simulation is based on the example case discussed in Section 6.3.2. The event re-

ports are correlated random variables with Normal distribution. The parameter to

be estimated is the average of the samples. The covariance matrix of the reports is

computed through the exponential model of correlation. The event is detected by five

nodes, whose reports are correlated. Thus N = 5. The sampling shifts for the five

nodes are randomly chosen. And K increases from 26 to 520. For the example case,

the lowest CRLB is σ2/5 when the collected event reports do not have correlation

with each other.

0.95 0.96 0.97 0.98 0.99 1
Success Probability

 

CRLB with ID−MAC
CRLB without ID−MAC

Figure 7.22: Lower bound of the estimation accuracy and the MAC performance
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The simulation results are shown in Fig. 7.22. As the success probability

increases, the CRLB decreases sharply, which is also the result of a greater K. The

CRLB value is in terms of its percentage to the variance of the event reports. The

CRLB ratio of the original event reports without ID-MAC is shown in the figure to

provide the comparison with the CRLB under ID-MAC. Notice that the CRLB ratio

approaches the lowest value at 0.2. However, ID-MAC can not obtain the lowest

CRLB ratio since the correlation among the event reports can not be reduced to zero

through ID-MAC.

7.5 Summary

Asynchronous sampling strategies are applied not only to the synthesized data

but also to real data to show their benefits. On one hand, an under-sampled signal

can be reconstructed with the help of shifted sampling instances. On the other hand,

the entropy of sensory data is increased by shifting the sampling instances. Simula-

tion experiments show that data regression performance is improved as a result. The

simulation study on the asynchronous strategies include two aspects of the tradeoff

between the energy consumption and the quality of the information, which is the

center of the asynchronous strategies. One is the to reduce the energy consumption

while guaranteeing the recovering of the original signal, the other is to increase the

entropy of the sensory data without additional communication cost. Both synthetic

and real data sets are presented to demonstrate the performance of the asynchronous

sampling strategies. Since lossless data gathering applications always assume the

fully recovering of the original signal, the simulation study on the reduced energy

consumption is conducted regarding lossless data gathering. Whereas, the simulation

study of lossy data gathering lies on increase the entropy of the sensory data. The im-

pact of clock jitters on the lossless data gathering strategy is also studied. Simulation
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results show that the asynchronous strategies are able to improve the performance of

the application for both lossless data gathering and lossy data gathering.

The simulation results on the ID-MAC protocol are based on the analysis of

the event reconstruction and the lower bound on estimation accuracy. The tradeoff

between the sampling rate and the energy consumption is verified by the simulation

of the event reconstruction scenario, while the tradeoff between the lower bound on

estimation accuracy and the collision probability demonstrates the benefit of applying

ID-MAC protocol.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Three scenarios for data gathering are studied in this dissertation: lossless

data gathering, lossy data gathering and event reporting. Asynchronous sampling

strategies have been proposed for the data gathering applications, while the ID-MAC

protocol is proposed to address the problem of collision prone traffic generated by the

correlated sensor nodes detecting the same event.

According to the theoretical analysis and simulation results on the asynchronous

sampling strategy for lossless data gathering applications, the following conclusions

are reached:

1. For correlated signals, the asynchronous sampling strategy is able to reduce

energy consumption through extending the sampling cycle of sensor nodes. The

energy saving ratio depends on the degree of correlation.

2. The asynchronous sampling strategy does not introduce additional computation

load to individual sensor node.

Similarly, the study of asynchronous sampling strategies for lossy data gathering

applications can be concluded as follows:

1. For temporal-spatial correlated data sources, the quality of information obtained

from the sensory data is improved in terms of increased entropy of the sensory

data. Consequently, the application’s regression performance is improved in

terms of decreased regression distortion.

2. The sampling time shifts of sensor nodes can be scheduled to maximize the

entropy of sensory data collected through the asynchronous sampling strategy.

118
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However, assigning equal time shifts or random time shifts to sensor nodes

are simple yet effective alternatives to the sub-optimal asynchronous sampling

strategy.

Introducing the idea of sampling time shifts to MAC layer, the information-

driven MAC protocol accomplishes the following:

1. The collision prone traffic generated by sensor nodes observing the same event

can be streamlined by assigning sampling shifts to sensor nodes according to

the feedbacks from MAC layer.

2. The quality of information is improved in terms of the decreased lower bound

on estimation accuracy. Thus a better tradeoff between MAC layer perfor-

mance and application performance is obtained by applying the proposed MAC

protocol.

Simulation experiments have been conducted on both synthetic and real data

set. The advantages of asynchronous sampling strategies and the information-driven

MAC protocol are verified respectively. Comparison with the other information-

driven data gathering approaches shows that asynchronous sampling strategies along

with the proposed MAC protocol are able to further reduce the energy consumption

without requiring additional resources.

Inspired by the information-driven data gathering strategies, future work in-

cludes information-driven cluster formation for the asynchronous sampling strategies

and the ID-MAC protocol. As the proposed strategies assume that the problem is

within one cluster of sensors that are spatially correlated with each other, the size of

the cluster and the nodes in the clusters play important roles in the performance of

the information-driven strategies that are applied within each cluster.
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