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ABSTRACT

In this paper, we present new developed ternary code – punctured
binary sequence-pair, give its definitions and the autocorrelation
properties. We also investigate Doppler shift performance of the
proposed code. The significant advantages of this ternary codes
over conventional pulse compression codes, such as the widely
used Barker codes, are zero autocorrelation sidelobes and the
longer length of the code which can be as long as 31 so far. We
apply our new ternary codes to radar system for target detection
and observe that our codes outperform some other conventional
pulse compression codes.

Index Terms— Ternary, Phase coded waveform, Pulse com-
pression, Radar system.

1. INTRODUCTION

Pulse compression, which allows a radar to simultaneously
achieve the energy of a long pulse and the resolution of a short
pulse without the high peak power required by a high energy
short duration pulse [1], is generally used in modern radar sys-
tem. The main purpose of this technique is to raise the signal
to maximum sidelobe (signal-to-sidelobe) ratio to improve the
target detection and range resolution abilities of the radar system.
The lower the sidelobes, relative to the mainlobe peak, the better
the main peak can be distinguished.

One of the basic waveform designs suitable for pulse com-
pression is the phase-coded waveform, a long pulse of duration T
is divided into N subpulses each of width Ts. Each subpulse has
a particular phase, which is selected in accordance with a given
code sequence. The pulse compression ratio equals to the number
of subpulses N = T/Ts.

The criterion for selecting the subpulse phases is that all the
time-sidelobe of the compressed pulse should be equal and as
low as possible. One family of binary phase code widely used as
a form of phase coding nowadays that can produce compressed
waveforms with constant sidelobe levels equal to unity is the
Barker code. It has special features with which its sidelobe struc-
ture contains the minimum energy which is theoretically possible
for binary codes, and the energy is uniformly distributed among
the sidelobes (the sidelobe level of the Barker codes is 1/N 2 that
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of the peak signal) [2]. Unfortunately, the length N of known
binary and complex Barker codes is limited to 13 and 25, re-
spectively [3], which may not be sufficient for the desired radar
applications. In [4] [5], polyphase codes, with better Doppler tol-
erance and lower range sidelobes such as the Frank and P1 codes,
the Butler-matrix derived P2 code and the linear-frequency de-
rived P3 and P4 codes were intensively analyzed. However, the
low range sidelobe of the polyphase codes can not reach the level
zero either, what is more, the structure of polyphase codes is more
complicated and is not easy to generate comparing with binary
codes. Therefore, we propose and analyze a new ternary code–
punctured binary sequence-pair, whose sidelobe level is as low as
zero and the longest length of which is found 31 so far, and subse-
quently apply it to radar system as pulse compression waveform.
The results show that the new code can be a good alternative for
the current used pulse compression codes in radar system.

The rest of the paper is organized as following. Section 2 in-
troduces the basic concept and properties of our proposed code.
In Section 3, examples of punctured binary sequence-pair are
given and the properties are investigated. In Section 4, the per-
formance of our proposed code is also simulated and analyzed in
radar targets detection system. In Section 5, some conclusions
are drawn about our ternary code.

2. DESIGN OF PUNCTURED BINARY SEQUENCE-PAIR

A CW sequence is made up of N bits of duration Ts. The com-
plex envelope during one period is given by

x(t) =
N∑

i=1

xi[t− (i− 1)Ts], 0 ≤ t ≤ NTs (1)

Definition 1: A sequence-pair (x, y) is made up of two N-length
sequences x = (x0, x1, · · · , xN−1) and y = (y0, y1, · · · , yN−1).

Rxy(τ) = Rxy(rTs) =
N−1∑
j=0

xjy
∗
(j+τ)modN , (2)

0 ≤ r ≤ N − 1, 0 ≤ τ ≤ (N − 1)Ts

is called the periodic autocorrelation function of the sequence
pair, while x = y, the sequence-pair (x, y) turns to be a one-
sequence code.
Definition 2 [6]: Sequence y = (y0, y1, · · · , yN−1) is the punc-
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tured sequence for x = (x0, x1, · · · , xN−1),

yj =
{

0 if yj is punctured
xj if yj is Non-punctured

(3)

Where p is the number of punctured bits in sequence x, sup-
pose xj ∈ [−1, 1], yj ∈ [−1, 0, 1], (x, y) is called a punctured
binary sequence-pair.
Definition 3: The periodic autocorrelation of punctured sequence-
pair (x, y) is defined

Rxy(τ) = Rxy(rTs) =
N−1∑
j=0

xjy
∗
(j+r)modN , 0 ≤ r ≤ N− 1

If

Rxy(τ) =
{

E τ ≡ 0 mod N
0 otherwise

(4)

(x, y) is called optimized punctured sequence-pair [6]. Here,
E =

∑N−1
j=0 xiyi = N − p, is the energy of punctured sequence-

pair. Then binary sequence-pair (x, y) is called a p-punctured
sequence-pair.
Definition 4: The balance of the sequence x is defined as I =∑N−1

j=0 xj = np − nn, while np, nn are the number of ′ + 1′ and
′ − 1′ in x separately.

Assume (x, y) to be an optimized punctured binary sequence-
pair. Several Theorems are deduced to construct more optimized
punctured sequence-pairs easily.
Theorem 1: Mapping property, if x

′
i = x−i, y

′
i = y−i, then

(x
′
, y

′
) is optimized punctured binary sequence-pair.

Theorem 2: Opposite to element symbol property, if x
′
i =

−xi, y
′
i = −yi,then (x

′
, y

′
) is optimized punctured binary

sequence-pair.
Theorem 3: Cyclic shift property, if x

′
i = −x(i+u), y

′
i =

−y(i+u),then (x
′
, y

′
) is optimized punctured binary sequence-

pair.
Theorem 4: Periodically sampling property, if x

′
i = −xki, y

′
i =

−yki, k and N are relatively prime, then (x
′
, y

′
) is optimized

punctured binary sequence-pair.
In [6], the properties, existing necessary conditions and some

constructing methods have been well studied and examples of
length from 3 to 31 are presented there.

3. PROPERTIES

3.1. Autocorrelation Properties

The autocorrelation function is one of the most important prop-
erties that represent the compressed pulse in an ideal pulse com-
pression system, since it is proportional to the matched filter
response in the noise-free condition.
EXAMPLE 1
The autocorrelation property of 31-length punctured binary
sequence-pair (x31 = [++++−−−+−+−+++−−−−
+−−+−−+++−++−] and y31 = [++++000+0+0+
++0000+00+00+++0++0]) (′+′for′1′and′−′ for′−1′)
shown in Fig. 1.

As it is known that a suitable criterion for evaluating code of
length N is the peak signal to peak signal sidelobe ratio (PSR)[7]
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Fig. 1. Periodic autocorrelation property of 31-length punctured
binary sequence-pair

of their autocorrelation function. The only aperiodic uniform
phase codes that can reach the PSRmax are the Barker codes
whose length is equal or less than 13. However, the sidelobe of
the new code shown in Fig. 1 could be as low as 0. Thus, the
peak signal to peak signal sidelobe ratio can be as large as infi-
nite. The length of the new code can expand at least to 31 that is
much longer than the length of the Barker code.

3.2. Ambiguity Function

When the transmitted impulse is reflected by a moving target, the
reflected echo signal includes a linear phase shift which corre-
sponds to a Doppler shift FD [8]. As a result of the Doppler shift
FD, the main peak of the autocorrelation function is reduced as
well as SNR. And the sidelobe structure is also changed thanks
to the Doppler shift.

We use different codes for the transmitter and the receiver,
so the single period ambiguity function of sequence-pair can be
defined as:

AT−pair(τ, FD) ∼= | 1
T

∫ T

0

x(t +
τ

2
)ej2πFDty∗(t− τ

2
)dt| (5)

When the signal is of duration MT , the response of the cor-
relation receiver is the PAF (periodic ambiguity function) for M
periods. After normalization and splitting it into M sections,

AMT−pair(τ, FD) ∼= | 1
MT

∫ MT

0

x(t +
τ

2
)ej2πFDty∗(t− τ

2
)dt|

= AT−pair(τ, FD)|sin(πFDMT )
Msin(πFDT )

| (6)

EXAMPLE 2
Ambiguity functions of our ternary code of length 13 (x 13 =
[+ + +−+ +−−−−+ +−], y13 = [+0 + 0 + +0000 + +0])
is studied, where maximal time delay is 1 unit (normalized to
length of the code, in units of NTs) and maximal Doppler shift
is 5 units (normalized to the inverse of the length of the code, in
units of 1/NTs). The ambiguity function of 13-bit long Barker
code is also presented in Fig. 2 in order to compare with our
ternary code of the same length. According to Fig. 2, the sidelobe
of our ternary code can reach as low as zero. Nevertheless, when
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Fig. 2. Ambiguity function of 13-length codes
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Fig. 3. Contour plot of sequence-pair

there are Doppler shift and time delay, the ambiguity functions of
our code is not as flat as those of Barker code. Our ternary code
is less tolerant of Doppler shifts than Barker code. The reasons
why our code is not tolerant of large Doppler shift could be that
the periodic correlation property of our code is studied instead of
the aperiodic correlation property.
EXAMPLE 3
In order to improve the tolerance of Doppler shift of our proposed
code, we repeat the sequence-pair M times to construct the signal
of duration of MT . We study the performance of the sequence-
pair of M periods in this section. The optimized punctured binary
sequence-pair of length 7 (x7 = [+ + + − − + −], y7 = [+ +
+00 + 0]) is used here.

Figs. 3 presents contour plots of the absolute amplitudes of
the ambiguity function, for the two cases M = 1, 4. The scales
are normalized with respect to the bit duration of Ts. Namely, the
delay axis is of τ/Ts, and the Doppler shift axis is of FDTs. Since
the single period is T = NTs, the ambiguity function repeats
itself every N normalization delay units. The pronounced strips,
parallel to the Doppler shift axis, appear at N normalized delay
units.

The corresponding 3-D plots are given in Figs. 4. The promi-
nent feature of the ambiguity function, when M > 1, the strips
get narrower as M increases. The cuts of periodic ambiguity
function at τ/Ts = nN are independent of the number of peri-
ods M .

3.3. Doppler Shift Performance Without Time Delay

According to the previous work [8], the cut along Doppler axis is
obtained as, namely, when the time delay is zero,

AT (0, FD) = |sin(πFDT )
πFDT

| (7)
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Fig. 4. 3-D view of ambiguity function of sequence-pair (x 7, y7)

It is easy to see that FD = n/T for all but n = 0, (n =
±1,±2, ...), the amplitudes must get a zero. It is known that
Doppler frequency FD is given by

FD = 2
vfc

c
(8)

where v is the speed of moving target, fc is the carrier fre-
quency of radar and c is the speed of light. This states that
Doppler shifts which equal to multiples of the PRF (pulse repeti-
tion frequency) will render the radar blind to the velocities of the
targets. However, the optimized punctured sequence-pairs used
here are in a different case which would be studied in this sec-
tion.

The ambiguity function of single period can be simplified
when there is no time delay:

AT−pair(0, FD) = | 1
T

∫ T

0

x(t)y∗(t)e(j2πFDt)dt| (9)

According to the equation (8), the ambiguity function of du-
ration of M periods could be expressed as:

AMT−pair(0, FD) = AT−pair(0, FD)|sin(πFDMT )
Msin(πFDT )

| (10)

Where M is the number of the periods.
The Doppler shift performance without time delay is pre-

sented in Fig. 5. Without time delay, while the Doppler shift
is less than 1 unit, the amplitude of our 31-length code has a
sharp downward trend and decreases more quickly than P4 code.
However, when the Doppler shift is larger than 1 unit, the perfor-
mances of these codes are distinguished. On one hand, the trend
presented by our 31-length code is not as regular as the other
two codes. On the other hand, for P4 code, its multiples of the
pulse repetition frequency will render the radar blind[1] to the ve-
locities. Nevertheless, ambiguity values of 31-length punctured
binary sequence-pair do not go to zero when Doppler frequen-
cies are equal to multiples of the PRF. According to Fig. 5(c),
7x5-length punctured binary sequence-pair which generally re-
sembles the 31-length P4 code is more tolerant of Doppler shift
than the punctured binary sequence-pair of corresponding length
31, but it has more ambiguity values go to zero when Doppler
shift equals to some multiples of the PRF. Therefore, using the
our ternary code as the compression code could, to some extent,
improve the blind speed problem in moving target detection sys-
tem. Using several periods of punctured binary sequence-pair
could improve the tolerance of Doppler shift when Doppler shift
is larger than 1 unit.
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Fig. 5. Doppler shift of codes(time delay=0): (a) 31-length Punc-
tured binary sequence-pair (b) P4 code (c) 7x5-length Punctured
binary sequence-pair
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Fig. 6. 31-length Punctured binary sequence-pair VS. 31-length
P4 code

4. APPLICATION TO RADAR SYSTEM

According to [8], PD (Probability of Detection), PFA (Probabil-
ity of False Alarm) and PM (Probability of Miss) suffice to spec-
ify all of the probabilities of interest in radar system. Therefore,
the above three probabilities of our newly provided ternary code
in radar system are simulated, as shown in Fig. 6(a) and Fig.
6(b). The performance of 13-length Barker code and 31-length
P4 code are also provided in order to compare with the perfor-
mance of our ternary codes of corresponding lengths. In the sim-
ulation model, we ran Monte-Carlo simulation for 105 times at
each SNR value, the Doppler shift frequency which is kept less
than 1 unit (normalized to the inverse of the length of the code,
in units of 1/NTs) is randomly given by Matlab.

In Fig. 6(a), we plotted the probabilities of miss targets detec-
tion of our 31-length ternary code and those of the same length
P4 code. The probability of miss targets detection of the system
using our 31-length ternary code is less than 31-length P4 code
especially when the SNR is not large. When SNR is larger than
17 dB, both probabilities of miss targets detection of the system
approach zero. However, the probability of miss targets of P4
code is a little lower than our ternary code.

In addition, we also plotted the probability of detection ver-

sus probability of false alarm of the coherent receiver in Fig. 6(b).
Fig. 6(b) illustrates performance of our 31-length ternary codes
and the same length P4 code when the SNR is 12dB and 14dB.
Having the same SNR value such as 12dB or 14dB in the figure,
the PD of our 31-length ternary code is larger than PD of our
31-length P4 code while the PFA of the first code is also smaller
than PFA of the latter code. In some other words, our 31-length
ternary code has much higher target detection probability while
keeping a lower false alarm probability. Furthermore, observe
Fig. 6(b), our 31-length ternary code even has much better per-
formance at 10dB SNR than 31-length P4 code at 14dB SNR.

5. CONCLUSION

A new ternary code and its properties have been investigated
in this paper. The significant advantage of punctured binary
sequence-pair over conventional phase compression code is the
considerably reduced sidelobe as low as zero and correspond-
ingly the significantly improved PSR. We apply the new code to
the target detection in the radar system and obtain better perfor-
mance. In conclusion, the punctured binary sequence-pair, which
has much longer code length and better autocorrelation sidelobe
property than the biphase code such as Barker code, and simpler
structure than those polyphase codes such as P4 code, effectively
increases the variety of candidates for pulse compression codes
especially for long code.
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