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Abstract

In the radar sensor network (RSN), the interferences among different radar sensors can be

effectively reduced when waveforms are properly designed. In this paper, we perform some the-

oretical studies on coexistence of phase coded waveforms in the RSN. We propose a new ternary

codes–optimized punctured Zero Correlation Zone sequence-Pair Set (ZCZPS) and analyze their

properties. Applying the new ternary codes and equal gain combination technique to the RSN,

we study the detection performance versus different number of radar sensors under the different

conditions. The simulation results show that the RSN using our optimized punctured ZCZPS

performs better than the RSN using the same number of common codes such as the Gold codes,

and much better than the single radar system no matter whether the Doppler shift is considered

or not.

Index Terms : Zero correlation zone, optimized punctured ZCZ sequence-pair, radar sensor

network, Doppler shift
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1 Introduction

Much time and effort was devoted to designing the radar waveform for a single active radar.

Among the existing work, Bell [1] who introduced information theory to radar waveform design,

concluded that distributing energy is a good choice to better detect targets. Sowelam and Tewfik [2]

applied a sequential experiment design procedure to select signal for radar target classification. In

their work, each waveform selected maximizes the Kullback/Leibler information number that mea-

sures the dissimilarity between the observed target and the alternative targets in order to minimize

the decision time. Recently, a network of multiple radar sensors are introduced to construct a radar

sensor network (RSN)[4], in order to overcome performance degradation of single radar along with

waveform optimization. In [3], Liang studied constant frequency (CF) pulse waveform design and

proposed maximum-likelihood (ML) automatic target recognition (ATR) approach for both non-

fluctuating and fluctuating targets in a RSN. Furthermore, RSN design based on linear frequency

modulation (LFM) waveform was studied and LFM waveform design was applied to RSN with

application to ATR with delay-Doppler uncertainty by Liang [5] as well.

In addition, pulse compression technique allows a radar to simultaneously achieve the energy

of a long pulse and the resolution of a short pulse without the high peak power which is required

by a high energy short duration pulse [6]. Pulse compression waveforms are obtained by adding

frequency or phase modulation to a simple pulse. In this paper, we will study the pulse compres-

sion by phase coding. The pulse is divided into M bits of identical duration tb = T/M , and each

bit is assigned with a different phase value associated with each bit of a phase code. The criteria

for selecting a specific code are the resolution properties of the resulting waveform (shape of the

ambiguity function), and the ease with which the system can be implemented. However, Doppler

resolution is very complicated, people try to find a code with a good correlation function rather

than an ambiguity function. Since the high correlation sidelobes produce high range sidelobes which
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could mask returns from targets in radar system, there has been considerable interest in study of

reducing range sidelobe of corresponding codes in radar system. Considering the periodic codes,

the m-sequences or Legendre sequences could achieve the lowest periodic autocorrelation function

(ACF) of |Ri(τ ̸= 0) = 1|. For non-binary sequences, the Golomb codes [7] are a kind of two-valued

(biphase) perfect codes which obtain zero periodic ACF but result in large mismatch power loss.

The Ipatov code [8] shows a way of designing code pairs with perfect periodic autocorrelation (the

cross correlation of the code pair) and minimal mismatch loss, but its reference code and construc-

tion method are complicated. Zero periodic autocorrelation function for all nonzero shifts could

be obtained by polyphase codes, such as Frank and Zadoff codes, but the more complicated con-

structing methods and implementation cost are required. In addition to these well-known codes, by

suffering a small S/N loss, the authors [9] present several binary pulse compression codes to greatly

reduce sidelobes. In [10], pulse compression using a digital-analog hybrid technique is studied to

achieve very low range sidelobes for potential application to spaceborne rain radar. Tanner et

al.[11] uses time-domain weighting of the transmitted pulse to achieve a range sidelobe level of -55

dB or better in flight tests. Nevertheless, all the above work have their own disadvantages, such

as the large mismatch power loss for Golomb codes, the high energy of reference code and compli-

cated construction method for Ipatov codes and so on. It is also known that for both binary and

non-binary sequences in the periodic sequence field, the sequences can not obtain ideal impulsive

autocorrelation function (ACF) and ideal zero cross-correlation functions (CCF) simultaneously

although ideal CCFs could be achieved alone. Since the ACF and CCF have to be limited by

certain bounds, such as Welch bound [12], Sidelnikov bound [13], Sarwate bound [14], Levenshtein

bound [15], etc. As a reulst, the concept of Zero Correlation Zone (ZCZ) [16][17][18] during which

ideal impulsive autocorrelation function and ideal zero cross-correlation functions could be achieved

simultaneously is proposed to overcome the above problems.
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In this paper, we theoretically study RSN design based on phase coded waveforms. Motivated

by the concept of ZCZ, we propose a set of new ternary codes– optimized punctured ZCZ sequence-

Pair Set (ZCZPS) and apply them as the phase coded waveforms to RSN. The optimized punctured

ZCZ sequence-Pair Set could reach zero autocorrelation sidelobe and zero mutual cross correlation

values during zero correlation zone. We perform studies on the codes’ properties, especially their

cross correlation properties. We also simulate and analyze the target detection performance of

RSN using different number of radar sensors under the different conditions of Doppler shift and

time delay among transmit radar sensors. Finally, the simulation results show that RSN using

the optimized punctured ZCZ sequence-pairs is superior to RSN using the same number of Gold

codes, and much better than the single radar system, in terms of probability of miss and false alarm

detection.

The rest of the paper is organized as following. In Section 2, we study the coexistence of

phase coded waveforms in a RSN. In Section 3, we provide a ternary codes–optimized punctured

ZCZ sequence-pair set and study their properties. In Section 4, we simulate the target detection

performance of RSN versus different number of radars under the different conditions of Doppler

shift time delay among transmit radar sensors. In Section 5, brief conclusions are drawn on RSN

using our optimized punctured ZCZPS.

2 COEXISTENCE OF PHASE CODED WAVEFORMS IN RSN

2.1 Orthogonal Phase Coded Waveforms Coexist in RSN

First of all, we express the phase coded waveform as

x(t) =

M−1∑
m=0

x(m)(t−mtb) (1)

Here, x(m)(t) is one bit of duration tb and T = Mtb is the period of the waveform.
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Each bit is phase modulated by the phase code β(m) of length M :

x(m)(t) =


exp(j2πβ(m)t) 0 ≤ t ≤ tb

0 elsewhere

(2)

For t > T or t < 0 (within the duration of the waveform), the periodicity implies that the

complex envelope of the transmitted signal x(t) obeys

x(t) = x(t+ nT ), n = 0,±1,±2, ... (3)

We assume that there are N radars working together in a self-organizing fashion in our RSN.

The ith radar sensor transmits a waveform as

xi(t) =

M−1∑
m=0

x
(m)
i (t− ntb) =

M−1∑
m=0

exp(j2πβ
(m)
i (t−mtb)) (4)

The cross correlation between xi(t) and xj(t) could be expressed as:

R(τ) = R(rtb) =
1

T

∫ T/2

−T/2
xi(t)x

∗
j (t− τ)dt (5)

=

M−1∑
m=0

∫ −T/2+(m+1)tb

−T/2+mtb

exp[j2πβ
(m+1)
i (t− (m+ 1)tb)]exp

∗[j2πβ
(M−r+m+1)
j (t− (M − r + n+ 1)tb)]dt

=
1

M

M−1∑
m=0

exp[j2π[β
(M−r+m+1)
j (Mtb − rtb +

T

2
+

tb
2
) + β

(m+1)
i (−T

2
− tb

2
)]]

sinc[tb(β
(m+1)
i − β

(M−r+m+1)
j )]

In order to reduce the interference of different waveforms, we try to make R(τ) as small as

possible when i ̸= j. Observing the equation (5), if πtb(β
(m+1)
i − β

(M−r+m+1)
j ) = kπ, k = 1, 2, 3...,

then R(τ) = 0. This result is used in the latter part of the paper. It is also easy to see that when

i = j and τ = 0, then sinc[tb(β
(m+1)
i −β

(M−r+m+1)
j )] = 1 and R(τ) could be normalized as 1, which

is the desirable situation in a RSN.

The orthogonal waveforms have optimized correlation property which satisfies the above con-
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dition and could be expressed as

1

T

∫ T/2

−T/2
xi(t)x

∗
j (t− τ)dt =


1 i = j and τ = 0

0 i ̸= j or τ ̸= 0

(6)

As a result, orthogonal phase coded waveforms, which could minimize or remove the interference

from one waveform to the other, can work well in the RSN simultaneously.

2.2 The Ambiguity Function of Phase Coded Waveforms in RSN

The effect of Doppler shift also has to be considered in the RSN. Ambiguity function (AF) [6]

generally identified with Woodward [19][20] is usually used to succinctly characterize the behavior

of a waveform paired with its matched filter, so it is an analytical tool for waveform design especially

there are time delay and Doppler shift ambiguity.

PAF (Periodic Ambiguity Function) was introduced by Levanon [21] as an extension of the

periodic autocorrelation for Doppler shift. And the single-periodic complex envelope is expressed

as:

A(τ, FD) ≡ | 1
T

∫ T/2

−T/2
x(t+

τ

2
)ej2πFDtx∗(t− τ

2
)dt| ≡ |Â(τ, FD)| (7)

Where τ is the time delay, T is one period of the signal and FD is the Doppler shift.

Accordingly, we derive the single-periodic ambiguity function of phase coded waveform

A(τ, FD) (8)

= | 1
T

∫ T
2

−T
2

x(t)exp(j2πFDt)x
∗(t− τ)dt|

= | 1
T

M−1∑
m=0

∫ −T
2
+(m+1)tb

−T
2
+mtb

exp[j2πβ(m+1)(t− (m+ 1)tb)]exp
∗[j2πβ(M−r+m+1)(t− (M − r +m+ 1))]

exp(j2πFDt)dt|

= | 1
M

M−1∑
m=0

exp[j2π[β(M−r+m+1)[(M − r)tb +
tb
2
+

T

2
] + β(m+1)(− tb

2
− T

2
) + FD(−

T

2
+ (m+ 1)tb)]

sinc[tb(β
(m) − β(m−r) + FD)]|
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According to equation (8), if πtb(β
(m)−β(m−r)+FD) = kπ, k = 1, 2, 3..., the amplitude of ambiguity

function is zero. Taken the previous result into account that “when πtb(β
(m+1)
i − β

(M−r+m+1)
j ) =

kπ, k = 1, 2, 3..., then R(τ) = 0”, we achieve that “A(τ, FD) = 0, when FD = k
tb
, k = 0, 1, 2...”.

Furthermore, we extend the idea of single-periodic ambiguity to the RSN. In the RSN, all the

radar sensors transmit signals, so the ith radar sensor not only receives its own back-scattered

waveform, but also scattered signals generated by other radars which caused interference to the ith

radar sensor. Assuming that all the transmit radar sensors transmit the signal simultaneously so

that there are no time delay among the transmit radar sensors t1 = t2 = ... = tN = 0, we study

the interferences from all the other N − 1 radars (j ̸= i). In addition, there is time delay τ = mtb

for the matched filer corresponding to the transmitting radar i, the ambiguity function of radar i

with phase coded waveform could be expressed as

Ai(τ, FD1 , ..., FDN
) (9)

= |
N∑
j=1

1

T

∫ T
2

−T
2

xj(t)exp(j2πFDit)x
∗
i (t− τ)dt|

= | 1
M

N∑
j=1

M−1∑
m=0

exp[j2π[β
(M−r+m+1)
i [(M − r +

1

2
)tb +

T

2
] + β

(m+1)
j (− tb

2
+

T

2
) + FDj [−

T

2
+ (m+ 1)tb]]]

sinc[tb(β
(m+1)
j − β

(M−r+m+1)
i + FDj )]|

Here, 0 < i ≤ N and τ = rtb. The equation (9) consists of two parts: useful signal(reflected signal

from the transmitting radar i waveform), the j = i part in (9); and the interferences from other

N − 1 radar waveforms, the j ̸= i part in (9).

3 Optimized Punctured ZCZ Sequence-Pair Set

In this section, we provide a set of ternary codes which satisfy the requirements in the above

section and could be used as phase coded waveforms in RSN.

7



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Zero correlation zone (ZCZ) is a new concept provided by Fan [16][18] [22] [23] in which both

autocorrelation and cross correlation sidelobes are zero while the time delay is kept within the

Zero Correlation Zone instead of the whole period of time domain. Matsufuji and Torii have

provided some methods of constructing ZCZ sequences in [24][25]. Inspired by the ZCZ concept,

we apply optimized punctured sequence-pair [26] to ZCZ to construct the new ternary codes–

optimized punctured ZCZ sequence-pair set. We also analyze and show that the proposed ternary

codes, which have good autocorrelation and cross correlation properties in ZCZ, are good candidates

for phase coded waveforms in a RSN.

3.1 The Definition of Optimized Punctured ZCZ Sequence-Pair Set

In this section, we define the ZCZ sequence-pair set and the optimized punctured ZCZ sequence-

pair set, and introduce some other useful definitions as the preliminary knowledge.

Definition 3-1: Assume (X,Y) is a sequence-pair set that consists of (x
(m)
i , y

(m)
i ), m =

0, 1, 2, ...,M − 1, i = 0, 1, 2, ...,K − 1, where K is the number of sequence-pairs and M is the

length of the sequence-pair. If the following equation is satisfied:

Rxiyj (τ) =

M−1∑
m=0

x
(m)
i y

∗(m+r) mod M
j =



λM, for τ = 0 and i = j

0, for τ = 0 and i ̸= j

0, for 0 < |τ | ≤ Z0tb

(10)

where tb is the duration of each bit, τ = rtb and 0 < λ ≤ 1, then (X,Y) is called ZCZ sequence-

pair set. 0 < |τ | ≤ Z0tb is the Zero Correlation Zone during which the autocorrelation and cross

correlation values could be kept zero. ZCZPS(M,K,Z0) is an abbreviation.

Definition 3-2 [26] Sequence u = (u(0), u(1), ..., u(M−1)) is the punctured sequence for v =

8
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(v(0), v(1), ..., v(M−1)),

u(m) =


0, if m ∈ p punctured bits

v(m), if m ∈ Non-punctured bits

(11)

Where p is the number of punctured bits in sequence v, suppose v(m)ϵ(−1, 1) and u(m)ϵ(−1, 0, 1),

u is p-punctured binary sequence, (u,v) is called a punctured binary sequence-pair.

Definition 3-3 [26]: The autocorrelation of punctured sequence-pair (u,v) is defined

Ruv(τ) = Ruv(rtb) =

M−1∑
m=0

u(m)v∗(m+r) mod M , 0 ≤ τ ≤ (M− 1)tb (12)

If the punctured sequence-pair has the following autocorrelation property:

Ruv(τ) =


E, if r ≡ 0 mod M

0, others

(13)

the punctured sequence-pair is called optimized punctured sequence-pair [26]. Where,

E =
∑M−1

m=0 u
(m)v∗(m+r) mod M = M − p, is the energy of the punctured sequence-pair.

The punctured sequence-pairs’ properties, Fourier transform characteristics, existing necessary

conditions and some construction methods with help of already known sequences have been studied

by Jiang [26]. An amount of optimized punctured sequence-pairs have been found of length from

3 to 31 so far.

Definition 3-4: If (X,Y) in Definition 3-1 is constructed by optimized punctured sequence-pair

and a certain matrix, such as Hadamard matrix or an orthogonal matrix,

x
(m)
i ∈ (−1, 1), i = 0, 1, 2, ...,M − 1

y
(m)
i ∈ (−1, 0, 1), i = 0, 1, 2, ...,M − 1

Rxiyj (τ) =

M−1∑
m=0

x
(m)
i y

∗(m+r) mod M
j =



λM, for τ = 0 and i = j

0, for τ = 0 and i ̸= j

0, for 0 < |τ | ≤ Z0tb

(14)
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where τ = rtb and 0 < λ ≤ 1, then (X,Y) can be called an optimized punctured ZCZ sequence-pair

set, and we use OPZCZPS(M,K,Z0) as its abbreviation.

Definition 3-5: The autocorrelation function (ACF) (here we use autocorrelation to distinguish

the cross correlation between two different sequences of a sequence-pair from the cross correlation

between two different sequence-pairs) of sequence-pair (xi,yi) is defined by:

Rxiyi(τ) =

M−1∑
m=0

x
(m)
i y

∗(m+r) mod M
i (15)

The cross correlation function (CCF) of two sequence-pairs (xi,yi) and (xj ,yj), i ̸= j is defined

by:

Rxiyj (τ) =
M−1∑
m=0

x
(m)
i y

∗(m+r) mod M
j (16)

Where τ = rtb is the time delay and tb is the bit duration.

3.2 Design for an Optimized Punctured ZCZ Sequence-pair Set

Based on an odd length optimized punctured binary sequence-pair and a Hadamard matrix, we

provide a method to construct an optimized punctured ZCZ sequence-pair set.

Step 1: Choosing an odd length optimized punctured binary sequence-pair (u,v), the length

of each sequence is M1

u = u(0), u(1), ..., u(M1−1), u(m) ∈ (−1, 1),

v = v(0), v(1), ..., v(M1−1), v(m) ∈ (−1, 0, 1),

n = 0, 1, 2, ...,M1 − 1

Step 2: Considering a Hadamard matrix B of order M2, the length of each sequence in B
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equals to the number of the sequences as M2. Here, bi is the row vector.

B = [b0;b1; ...;bM2−1)],

bi = (b
(0)
i , b

(1)
i , ..., b

(M2−1)
i ),

Rbibj
=


M2, if i = j

0, if i ̸= j

Step 3: Doing bit-multiplication on the optimized punctured binary sequence-pair and each

row of Hadamard matrix B, then we obtain the sequence-pair set (X,Y),

bi = (b
(0)
i , b

(1)
i , ..., b

(M2−1)
i ), i = 0, 1, ...,M2 − 1,

x
(m)
i = u(m mod M1)b

(m mod M2)
i , 0 ≤ i ≤ M2 − 1, 0 ≤ m ≤ M − 1,

X = (x0;x1; ...;xM2−1),

y
(m)
i = v(n mod M1)b

(m mod M2)
i , 0 ≤ i ≤ M2 − 1, 0 ≤ m ≤ M − 1,

Y = (y0;y1; ...;yM2−1)

Since the optimized punctured binary sequence-pairs used here are of odd lengths and the length of

Walsh sequence in Hadamard matrix is 2k, k = 1, 2, ..., we obtain that GCD(M1,M2) = 1 (greatest

common divisor of M1 and M2 is 1) and M = M1 ∗M2.

To sum up, the sequence-pair set (X,Y) is an optimized punctured ZCZPS and Z0 = M1− 1 is

the Zero Correlation Zone. The length of each sequence in the optimized punctured ZCZ sequence-

pair set is M = M1 ∗ M2 that depends on the product of the length of the optimized punctured

sequence-pair and the length of the Walsh sequence in the Hadamard matrix. The number of

sequence-pairs in (X,Y) rests on the order of the Hadamard matrix. The sequence xi in the

sequence set X and the corresponding sequence yi in the sequence set Y construct an optimized

punctured ZCZ sequence-pair (xi,yi) that can be used as a phase coded waveform pair. The

correlation property of the sequence-pairs in the optimized punctured ZCZ sequence-pair set could

11
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be illustrated as:

Rxiyj (τ) = Ruv((r mod M1)tb)Rbibj ((r mod M2)tb) =



EN2, if r = 0 and i = j

0, if 0 < |r| ≤ M1 − 1 and i = j

0, if i ̸= j

(17)

where τ = rtb is the time delay and tb is one bit duration.

It is easy to prove that the constructed sequence-pair set (X,Y) is an optimized punctured ZCZ

sequence-pair set. The proof in detail could be refered to Appendix 1.

3.3 Properties of Optimized Punctured ZCZ Sequence-pair set

We study the autocorrelation and cross correlation properties of an OPZCZPS which is con-

structed by the above method. For example, the 28-bit long optimized punctured ZCZPS (X,Y) is

constructed by the 7-bit long optimized punctured binary sequence-pair (u,v),u = [++++−−−+

−+−+++−−−−+−−+−−+++−++−],v = [++++000+0+0+++0000+00+00+++0++0]

(using ′+′ and ′−′ symbols for ′1′ and ′ − 1′) and the Hadamard matrix B of order 4. The number

of sequence-pairs in (X,Y) is 4, and the length of the sequence-pair is 7 ∗ 4 = 28. The first row of

each matrix X = [x1;x2;x3;x4] and Y = [y1;y2;y3;y4] constitute a certain optimized punctured

ZCZP (x1,y1). Similarly, the second row of each matrix X and Y constitute another optimized

punctured ZCZ sequence-pair (x2,y2) and so on.

x1 = [+ ++−−+−+++−−+−+++−−+−+++−−+−],

y1 = [+ ++00 + 0 + ++ 00 + 0 + ++ 00 + 0 + ++ 00 + 0];

x2 = [+−++−−−−+−−++++−++−−−−+−−+++],

y2 = [+−+00− 0−+− 00 + 0 +−+ 00− 0−+− 00 + 0].

...

12
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3.3.1 Autocorrelation and Cross Correlation Properties of the Optimized Punctured

ZCZ Sequence-pair Set

The autocorrelation and the cross correlation property of the optimized punctured ZCZ sequence-

pair set (X,Y) constructed by the 28-bit long optimized punctured ZCZ sequence-pairs are illus-

trated in Figs. 1 and 2.

According to Figs. 1 and 2, the autocorrelation function (ACF) sidelobe of one optimized

punctured ZCZ sequence-pair and the cross correlation function (CCF) of two different optimized

punctured ZCZ sequence-pairs can be kept as low as 0 when the time delay is kept within Z0 =

M1 − 1 = 6 (Zero Correlation Zone).

It is known that a traditional criterion for evaluating code of length M is the signal peak to

sidelobe ratio (PSR) of their aperiodic ACF, which can be bounded by [27]

[PSR]dB ≤ 20logM = [PSRmax]dB (18)

The only uniform aperiodic phase codes that can reach the PSRmax are the Barker codes [28]

whose length is equal or less than 13. Considering the periodic sequences, the m-sequences or

Legendre sequences could achieve the lowest periodic ACF of |Ri(τ ̸= 0) = 1| for the binary se-

quences. For non-binary sequences, it is possible to find perfect sequences of ideal ACF. Golomb

codes are a kind of two-valued (biphase) perfect codes which obtain zero periodic ACF but result

in large mismatch power loss. The Ipatov code shows a way of designing code pairs with perfect

periodic autocorrelation (the cross correlation of the code pair) and minimal mismatch loss, but

has a complicated reference code and construction method. Zero periodic ACF for all nonzero

shifts could be obtained by polyphase codes, such as Frank and Zadoff codes, but the more com-

plicated constructing methods and implementation cost are required. In general, for both binary

and non-binary sequences in the periodic sequence field, it is not possible for the sequences to have
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perfect CCF and ACF simultaneously although ideal CCFs could be achieved alone. Nevertheless,

according to Figs. 1 and 2, it is obvious that ACF and CCF sidelobes of the new code could reach

as low as zero. Stating differently, the PSR can be as large as infinite. The reference sequence of

our proposed codes is ternary [−1, 0, 1] which is less complicated than some other perfect codes

such as Ipatvo code. The reference code for Ipatov code is of a three-element alphabet which might

not always be integer.

Nevertheless, there might be the concern that multiple peaks of ACF in Fig. 1 might introduce

ambiguity to range resolution. We are studying the single target system in this paper and assume

that the PRF (pulse repetition frequency) is well controlled. The only concern is that multiple

peaks of one transmit signal reflected by one target may affect determining the main peak of

ACF. However, these multiple peaks could have an advantage for the matched filter. Based on

the multiple peaks, the matched filter could shift at the period of ZCZ length to track each peak

instead of shifting bit by bit after the first peak is acquired. Hence, the matched filter could work

more efficiently in this way. Alike the tracking technology in synchronization of CDMA system,

checking several peaks instead of only one peak guarantee the precision of PD and avoidance of

PFA.

3.3.2 Ambiguity Function of One Optimized Punctured ZCZ Sequence-pair

When the transmitted impulse is reflected by a moving target, the reflected echo includes a

linear phase shift which corresponds to a Doppler shift FD [6]. As a result of the Doppler shift FD,

the main peak of the autocorrelation function is reduced and so as to the SNR degradation shown

as following:

[d]dB = 10log

∫ T/2
−T/2 x(t)x

∗(t)dt∫ T/2
−T/2 x(t)e

j2πFDtx∗(t)dt
(19)
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The sidelobe structure is also changed because of the Doppler shift.

Considering the sequence-pair (x,y) and the periodic correlation property of the sequence-pair,

we use the single-periodic ambiguity function [21] and rewrite it as

A(τ, FD) = | 1
T

∫ T/2

−T/2
x(t)exp(j2πFDt)y

∗(t− τ)dt| (20)

Equation (20) can be used to analyze the autocorrelation performance within Doppler shift, and

is plotted in Fig. 3(a) in a three-dimensional surface plot to analyze the time-Doppler performance

of the OPZCZP. In addtion, the ambiguity function of the Ipatov code of length 24 is also illustrated

in Fig. 3(b). Here, maximal time delay is 1 unit (normalized to length of the code, in units of

Mtb) and maximal Doppler shift is 3 units for ACF (normalized to the inverse of the length of the

code, in units of 1/(Mtb)). From Fig. 3(a), it is easy to see that there is relative uniform plateau

suggesting low and uninform sidelobes, minimizing target masking effect in zero correlation zone

of time domain, where Z0 = 6, −6tb < τ < 6tb, τ ̸= 0. Obeserving Fig. 3(b), zero sidelobe could

be obtained when there is no Doppler shift, however, when Doppler shift increases there is obvious

convex surface comparing with Fig. 3(a). Hence, our codes are better tolerant of large Doppler

shift than the Ipatov codes. Stating differently,

when Dopper shift is introduced to the system, our codes perform better than Ipatov codes.

3.3.3 Ambiguity Function under the Interference from Other Radar Sensors

Considering interference from another radar sensor j, the ambiguity function of ith radar sensor

can be expressed as

Ai(τ, FDi , FDj ) = | 1
T

∫ T/2

−T/2
(xi(t)exp(j2πFDit) + xj(t)exp(j2πFDj t))y

∗
i (t− τ)dt| (21)

Where τ is the time delay between the ith transmit radar sensor and its corresponding matched

filter, FDi and FDj are the Doppler shift for signals transmitting from ith and jth radar sensors

15
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respectively.

Fig. 4(a) is a three-dimensional surface plot to analyze the ambiguity function of ith radar

sensor (considering interference from jth radar sensor). Since there are not mature phase coded

waveforms for RSN available, we provide the time-Doppler performance of the widely used spread

spectrums codes-Gold codes in Fig. 4(b) to compare with our codes. Comparing Fig. 4(a) with

Fig. 3(a), it is easy to see that there is relative uniform plateau suggesting low and uninform

sidelobes, minimizing target masking effect in zero correlation zone of time domain, where Z0 = 6,

−6tb < τ < 6tb, τ ̸= 0 when Doppler shift is not large. As a result, the interference from another

radar j increases the our codes’ unintolerance of large Doppler shift. Observing Fig. 4(b), there is

neither uniform nor low plateau among the whole figure. There are still some high peak sidelobes

due to the unideal AFC of the Gold codes even if the Doppler shift is zero.

The output of matched filter of ith radar sensor (considering interference from jth radar sensor

) is illustrated in Fig. 5 under the condition of no Doppler shift. According to Fig. 5(a), there are

regular high peaks on multiples of period 7 that is the length of the optimized punctured sequence-

pair used in the constructing method. And the sidelobe can be as low as zero when the time delay

is kept among zero correlation zone −6tb ≤ τ ≤ 6tb, τ ̸= 0. The high peak on zero time delay point

can be used to detect targets. However, the Fig. 5(b) shows that the sidelobes of ACF of the Gold

codes are seriously interfered which could have bad effect on the range resolution.

16



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 System Simulation of Radar Sensor Network

4.1 Detection of RSN

Assume that there are N transmit radar sensors in a RSN, the combined signal for ith receiving

radar is

ri(u, t) =
N∑
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t) (22)

where xj(t) is the transmitting signal and FDj is the Doppler shift of the reflected signal of jth

transmit radar sensor. tj is the time delay between the signals reflected by jth transmit radar

sensor and ith transmit radar sensor. When j = i, the time delay between two reflected signals is

zero ti = 0. n(u, t) is the additive white Gaussian noise (AWGN).

According to the structure illustrated in Fig. 6, the received signal ri(u, t) is processed by the

corresponding matched filter yi(t) and the output of branch i is Zi(u, τ). Then the output of branch

i is

|Zi(u, τ)| = |
∫ T/2

−T/2
[
N∑
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t)]y∗i (t− τ)dt| (23)

where τ is the time delay between the matched filter yi(t) and ith transmit radar sensor. Assume

that we could obtain high-resolution measurements of targets in range (τ = 0), the ideal output is

|Zi(u, 0)| = |
∫ T/2
−T/2[

∑N
j=1 xj(t − tj)exp(j2πFDj t) + n(u, t)]y∗i (t)dt| and n(u) =

∫ T/2
−T/2 n(u, t)y

∗
i (t)dt

can be easily proved to be an AWGN.

We investigate |Zi(u, 0)| in three special cases:

1) If all the radar sensors of RSN transmit signals synchronously and the target is not moving,

stating differently, there is neither time delay for each transmit radar sensor nor Doppler shift,

t1 = t2 = ... = tN = 0 and FD1 = FD2 = ... = FDN
= 0, then

|Zi(u, 0)| = |
∫ T/2

−T/2
[
N∑
j=1

xj(t) + n(u, t)]y∗i (t)dt| = |E + 0 + n(u)| (24)
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where E =
∫ T/2
−T/2 xi(t)y

∗
i (t)dt.

2) Considering Doppler shift and all the radar sensors of RSN still transmit signals syn-

chronously, t1 = t2 = ... = tN = 0, then

|Zi(u, 0)| = |
∫ T/2

−T/2
[
N∑
j=1

xj(t)exp(j2πFDj ) + n(u, t)]y∗i (t)dt| (25)

A Doppler shift compensation factor exp∗(j2πFDi) is applied to the ith receive radar sensor and

FDi is the estimated Doppler shift corresponding to the ith receive radar sensor. The equation (25)

can be modified as

|Zi(u, 0)| = |
∫ T/2

−T/2
[
N∑
j=1

xj(t)exp(j2πFDj ) + n(u, t)]y∗i (t)exp
∗(j2πFDit)dt| (26)

≤ |E|+ |
∫ T/2

−T/2
[

N∑
j ̸=i

xj(t)exp(j2π(FDj − FDi))y
∗
i (t)|+ |

∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt|

If the Doppler shift could be precisely estimated on the receive radar sensor, it is reasonable to

have FD1 = FD2 = ... = FDj = FD here. The equation (26) can be further simplified as

|Zi(u, 0)| ≤ |E|+ 0 + |
∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt| (27)

3) Considering Doppler shift and all the radar sensors of RSN transmitting signals asyn-

chronously, the Doppler shift compensation factor is applied to the receive radar sensor as well,

|Zi(u, 0)| (28)

= |
∫ T/2

−T/2
[
N∑
j=1

xj(t− tj)exp(j2πFDj t) + n(u, t)]y∗i (t)exp
∗(j2πFDit)dt|

≤ |
∫ T/2

−T/2
[

N∑
j=1

xj(t− tj)exp(j2π(FDj − FDi))]y
∗
i (t)|+ |

∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt|

Similarly, we assume that FD1 = FD2 = ... = FD, then

|Zi(u, 0)| ≤ |E|+ |
∫ T/2

−T/2
[
N∑
j ̸=i

xj(t− tj)]y
∗
i (t)dt|+ |

∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt| (29)
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Since our codes hold ideal periodic ACF and CCF in ZCZ, we modify the frame of received

data before the matched filter. The frame of received data is illustrated in Fig. 7. The data from

bit M + 1 to bit max(tj) +M are added to the data from bit 1 to bit M , bit by bit. It is easy to

observe that |
∫ T/2
−T/2[

∑N
j ̸=i xj(t− tj)]y

∗
i (t)dt| = 0. Therefore, equation (29) turns to be

|Zi(u, 0)| ≤ |E|+ 0 + |
∫ T/2

−T/2
n(u, t)y∗i (t)exp

∗(j2πFDit)dt| (30)

Observing the equations (27) and (30), it is easy to see that |Zi(u, 0)| in case 2) and case 3) can

be theoretically comparable if the frame is modified before the matched filter in case 3). Stating

differently, the RSN using our codes provide promising performance even if all the radar sensors

transmit signal asynchronously.

Observing equations (24), (27) and (30), n(u) is AWGN and
∫ T/2
−T/2 n(u, t)y

∗
i (t)exp

∗(j2πFDit)dt

can be easily proved to be AWGN as well. Let wi = |Zi(u, 0)|, if there is a target, then wi follows

Rician distribution and the probability density function (pdf) of yi is

fs(wi) =
2wi

σ2
exp[−(w2

i + λ2)

σ2
]I0(

2λwi

σ2
) (31)

where λ = E =
∫ T/2
−T/2 xi(t)y

∗
i (t)dt, σ

2 is the noise power and I0(·) is the zero-order modified Bessel

function of the first kind. If there is no target, then wi follows Rayleigh distribution and the

probability density function (pdf) of wi is

fn(wi) =
wi

σ2
exp[−(w2

i )

σ2
] (32)

where σ2 is the noise power.

Similar to the diversity combining to combat channel fading in communications, we use the

equal gain combining method to combine all the |Zi(u, 0)|. Assume all the radar sensors are

working independently and w = [w1, w2, ..., wN ], then the pdf of ws for targets existence is

f(ws) =
N∑
i=1

fs(wi) (33)
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and

f(wn) =

N∑
i=1

fs(wi) (34)

for wn when there is no target. Finally, we apply Bayesian’s rule to obtain the decision criterion,

which is

f(ws)

f(wn)

Targetexists
>
<

Notarget

Pn

Ps
(35)

where Pn represents the probability of no targets but noise and Ps denotes the probability fo target

occurrence.

4.2 System Simulation

4.2.1 Simulation Environment

We simulated the performance versus different number of radars in RSN under the condition

with Doppler shift or without Doppler shift. According to [29], PD (Probability of Detection),

PFA (Probability of False Alarm) and PM (Probability of Miss) are common parameters of most

interest in the radar system. Note that PM = 1 − PD, thus, PD and PFA suffice to specify the

probabilities of interest in radar system. Hence, we respectively simulated PD and PFA of RSN

consisting of different number of radar sensors. We simulated PD and PFA of a single radar system

using the optimized punctured ZCZ sequence-pairs, and compared its performance with the single

radar system using the Barker code and the Ipatov code respectively. We also simulate PD and PFA

of 4-radar and 8-radar RSNs which use the optimized punctured ZCZ sequence-pairs as the pulse

compression codes and compared their performances with the 4-radar and 8-radar RSNs using the

Gold codes. In addition, we simulate PD and PFA under the three different conditions which are

the multiple radar sensors transmit signal synchronously and the target is immovable, the multiple

radar sensors transmit signal synchronously and the target is moving and the multiple radar sensors
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transmit signal non-synchronously and the target is moving. 105 times of Monte-Carlo simulation

has been run for each SNR value. When multiple radar sensors work in RSN to detect a single

moving target, we assume that the Doppler shift can be precisely estimated and the compensating

factors of the Doppler shift are used in the receiving radar sensors.

4.2.2 Results and Analysis

The PD and PFA of single radar, 4-radar, 8-radar systems are compared respectively in Fig. 8

under the first condition that multiple radar sensors transmit signal synchronously and the target

is immovable. According to Fig. 8(a), to achieve the same PD = 10−0.01, the single radar system

using our codes requires about 0.15dB of SNR greater than the single radar system using the

Barker code, but requires 0.2dB of SNR less than the single radar system using the Ipatov code. In

addition, the 4-radar system using our codes could save 1.1dB of SNR than the single radar system

using the Ipatov code and save 0.3dB of SNR than the 4-radar system using the Gold codes when

PD = 10−0.01. As the number of radar sensors increases to 8, PD of the 8-radar system using our

codes is further increased and much larger than PD of the 8-radar system using the Gold codes.

Fig. 8(b) shows that to obtain the same PFA = 10−2, the SNR of a single radar system using our

code is 0.3dB less than that of a single radar system uing the Barker code and 0.4dB less than

that of a single radar using the Ipatov code. Increasing the number of radar sensors in RSN, when

PFA = 10−2, the 8-radar system using our codes requires about 2dB of SNR less than the single

radar system using the Ipatov code, about 0.7dB of SNR less than the 4-radar system using our

codes and 0.5dB of SNR less than the 8-radar system using the Gold codes. It is easy to see that the

single radar system using our proposed codes works better than the single radar system using the

Barker codes, but worse than the single radar system using the Ipatov codes, which matches up to

the properties of these codes. However, the Ipatov codes have a reference code with a three-element
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alphabet which is more complicated and costs much more energy for implementation comparing

with our codes. Both PD and PFA could be improved by applying more radar sensors to a RSN.

As a result, RSN using our codes could provide promising detection performance which is much

better than that of RSN using the same number of Gold codes.

The PD and PFA of single radar, 4-radar, 8-radar systems are illustrated respectively in Fig.

9 under the second condition that multiple radar sensors transmit signal synchronously and the

target is moving. Observing Fig. 9(a), when PD = 10−0.01, the SNR of a single radar system using

our code is about 0.15dB less than that of a single radar system using the Barker code and about

0.1dB more than that of a single radar using the Ipatov code. The 4-radar system using our codes

could save 1.2dB of SNR than the single radar system using the Ipatov code and save 0.4dB of

SNR than the 4-radar system using the Gold codes. Applying our codes to the 8-radar system,

PD is increased and is much larger than the 8-radar system using the Gold codes. According to

Fig. 9(b), to achieve the same PFA = 10−2, the single radar system using our codes requires about

0.3dB of SNR more than the single radar system using the Barker code, but requires 0.4dB of SNR

less than the single radar system using the Ipatov code. Meanwhile, the 8-radar system using our

codes could gain about 2.2dB of SNR more than the single radar system using the Ipatov code,

about 0.9dB of SNR more than that of 4-radar system using our codes and 0.5dB of SNR more

than the 8-radar system using the Gold codes when PFA = 10−2. In this case, the target is moving,

so the Doppler shift is considered here. It is easy to draw the similar conclusion that the single

radar system using our proposed codes could work better than the single radar system using the

Barker codes, but worse than the single radar system using the Ipatov codes. More radar sensors

could be applied to improve PD and PFA, and our codes could perform better than the Gold codes

in a RSN consisting of the same number of radar sensors.

If multiple radar sensors transmit signal asynchronously, stating differently, there are time delay
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among all the transmit radar sensors, we consider the RSN consisting of no less than two radar

sensors. Hence, we simulate PD and PFA of 4-radar and 8-radar systems in Fig. 10(a) and Fig.

10(b) under the third condition that the multiple radar sensors transmit signal asynchronously and

the target is moving. Observing Fig. 10(a), to obtain the same PD = 10−0.01, the 4-radar system

using our codes requires about 0.7dB of SNR more than the 4-radar system using the Gold codes.

The Fig. 10(b) illustrates that the SNR of 8-radar system using our codes is about 0.5dB less than

that of 8-radar system using the Gold codes and about 1dB more than that of a 4-radar system

using our codes, when PFA = 10−2. Both PD and PFA could be improved by increasing the number

of radar sensors in a RSN. In this case, the advantage of our codes is more obvious over the Gold

codes, because our codes have the better cross correlation property and the modified frame is used.

The RSN using our codes could perform much better than the RSN using the same number of Gold

codes even if the Doppler shift and time delay among transmit radar sensors are both considered.

Comparing Fig. 8 and Fig. 9, it is clear to see that, no matter how many radar sensors have

been exploited in the RSN, the performances of system considering Doppler shift are worse than

but close to the performance of system working under the condition of no Doppler shift. Since the

Doppler shift is assumed to be precisely estimated and well compensated in the receive

radar sensor, the performances under the above two different conditions are so close. However, we

could still discover that the performance reduction of the single radar system is more serious than

that of the RSN consisting of multiple radar sensors when Doppler shift is considered. Therefore, our

codes could be applied to a RSN consisting of multiple radar sensors to cope with the unfavorable

effect of the Doppler shift. It is also clearly see that no matter whether the target is moving

or not, performance of detection of RSN employing our optimized punctured ZCZPS and equal

gain combination are superior to that of the RSN using Gold codes, and are much better than

the single radar system. In conclusion, the more radar sensors the RSN consists of, the better
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performance it provides. When multiple radar sensors transmit signal asynchronously, PD and

PFA of RSN using our codes could still be comparable to those under the condition that multiple

radar sensors transmit signal synchronously. As a result, the optimized punctured ZCZPS could

perform promisingly in RSN under all the three different conditions.

5 Conclusions

In this paper, we have studied the phase coded waveforms design for the radar sensor networks

(RSN). We provide a new ternary codes–the optimized punctured ZCZPS which could be used as

the phase coded waveforms in a RSN. The significant advantage of the optimized punctured ZCZPS

is the considerably reduced sidelobe as low as zero and zero mutual cross correlation value in the

zero correlation zone (ZCZ). Based on the ideal orthogonal property of the proposed codes, they

can coexist in the RSN and achieve better detection performance than that of a RSN using other

orthogonal codes such as the Gold codes. Consequently, the optimized punctured ZCZPS could be

effectively applied to RSN in order to satisfy higher demands criterion for detection accuracy of

the RSN in the modern military and security affairs.

Appendix 1

Proof:

1) When i = j,

r = 0,

Ruv(0) = E,Rbibj (0) = M2, Rxiyj (0) = Ruv(0)Rbibj (0) = EM2;

0 < |r| ≤ M1 − 1,

Ruv(rtb) = 0, Rxiyj (rtb) = Ruv((r mod M1)tb)Rbibj ((r mod M2)tb) = 0;
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2) When i ̸= j,

r = 0,

Rbibj (0) = 0, Rxiyj (0) = Rxjyi(0) = Ruv((r mod M1)tb)Rbibj ((r mod M2)tb) = 0;

0 < |r| ≤ M1 − 1,

Ruv(rtb) = 0, Rxiyj (rtb) = Ruv((r mod M1)tb)Rbibj ((r mod M2)tb) = 0.

According to Definition 3-1 and Definition 3-4, (X,Y) constructed by the above method is

an optimized punctured ZCZ sequence-pair set.
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Figure 1: Periodic autocorrelation property of optimized punctured ZCZPS
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Figure 2: Periodic cross correlation property of optimized punctured ZCZPS
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Figure 3: Ambiguity function of the code itself: the autocorrelation of the code and its reference

code
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Figure 4: Ambiguity function of radar i (considering interference from radar j)
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Figure 5: Output of matched filter of radar i (considering interference from radar j) with no Doppler

shift
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Figure 8: Under the condition that multiple radar sensors transmit signal synchronously and the

target is immovable.
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Figure 9: Under the condition that multiple radar sensors transmit signal synchronously and the

target is moving.
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Figure 10: Under the condition that multiple radar sensors transmit signal asynchronously and the

target is moving.
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