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Abstract—Branch-and-bound methods are used in various data analysis problems, such as clustering, seriation and feature selection.

Classical approaches of branch-and-bound based clustering search through combinations of various partitioning possibilities to

optimize a clustering cost. However, these approaches are not practically useful for clustering of image data where the size of data is

large. Additionally, the number of clusters is unknown in most of the image data analysis problems. By taking advantage of the spatial

coherency of clusters, we formulate an innovative branch-and-bound approach, which solves clustering problem as a model-selection

problem. In this generalized approach, cluster parameter candidates are first generated by spatially coherent sampling. A branch-and-

bound search is carried out through the candidates to select an optimal subset. This paper formulates this approach and investigates

its average computational complexity. Improved clustering quality and robustness to outliers compared to conventional iterative

approach are demonstrated with experiments.

Index Terms—Clustering, segmentation, combinatorial optimization, branch-and-bound, model selection.

Ç

1 INTRODUCTION

CLUSTERING is a popular unsupervised learning technique
applied in areas, such as data mining [1], image

processing [2], pattern recognition [3], and bioinformatics
[4]. Clustering organizes the data meaningfully by group-
ing similar data points in a cluster and splitting dissimilar
data points in different clusters. Normally, the similarity
between data points is assessed with the help of a
dissimilarity or distance measure, such as euclidian
distance. Classical clustering method by k-means divides
the data into k partitions so that the sum of square-error
between cluster means and the data in the corresponding
cluster is minimized. The k-means procedure falls under
the category of partitioning methods for clustering.
Hierarchical methods of clustering create a hierarchy of
clusters. In an agglomerative hierarchy, smaller clusters are
merged to construct larger clusters, starting from indivi-
dual data points leading to a single cluster. Under a
divisive hierarchy, larger clusters are divided to form
smaller clusters. The divisive strategy starts with a single
cluster, and finally, each data point corresponds to a
cluster. The desired clustering can be generated by cutting
the hierarchy at a predetermined depth. Density-based
clustering approaches grow clusters based on density of
data points in the clustering space. Unlike partitioning
approaches, the density-based approaches can detect
clusters of arbitrary shapes. In the model-based clustering

approach, each cluster is represented by a parametric
model [5]. A data point is assigned to the cluster whose
model explains the data points best. A model, such as
Gaussian mixture model (GMM) or hidden Markov model
(HMM), is defined a priori based on the domain knowl-
edge. Han and Kamber [1] give detailed descriptions of
contemporary techniques, which follow the aforemen-
tioned clustering paradigms.

Clustering problems involving image data, such as
image segmentation, motion segmentation, stereo disparity
segmentation, and structure-and-motion segmentation, can
be expressed as model-based clustering problems. For
model-based clustering problems, to assign a data point
data to an appropriate cluster, the cluster parameters
should be known. On the other hand, the cluster parameters
can be computed only if the cluster assignments are known.
This “chicken-and-egg” dilemma leads to an iterative
formulation for model-based clustering methods similar to
expectation maximization (EM) algorithm [6]. Clustering
aims to optimize an assignment cost to achieve a (locally)
optimal solution. If the number of clusters is increased,
generally the cost for the same data reduces. The degenerate
case for this happens when one cluster corresponds to one
data point and the corresponding clustering cost is zero.
Clearly, such a scenario is undesirable. Thus the clustering
cost must be penalized for additional clusters. A variety of
model-selection methods exist, which incorporate this idea
[7]. Note that the term “model” in model selection refers to
the ensemble of the number of clusters and the parametric
models for these clusters. To apply model selection to
clustering, candidate models are generated sequentially by
varying the number of clusters, and the best model
according to a model-selection criterion is selected. For
the image data, the iterative and sequential problem of
model selection can be simplified to a one-step optimization
by using the knowledge that the clusters formed in an
image are spatially coherent. The candidates for cluster
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parameters can be generated by sampling spatially coherent
image data points. Once the candidates are known, a subset
of these candidates can be selected by optimizing a model-
selection criterion. This transforms the problem into a one-
step model-selection problem.

This idea is utilized in structure-and-motion segmenta-
tion approaches proposed recently [8], [9], [10]. Schindler
and Suter [9] carry out multibody structure-and-motion
segmentation from two camera views. After correspon-
dences are established between the two views, the
correspondences are grouped together based on the spatial
coherence. From each group of correspondences, a hypoth-
esis for underlying structure-and-motion is generated using
random sample consensus (RANSAC) [11]. A geometrically
robust information criterion (GRIC) [12] is optimized to
select the best subset of candidates. The optimization of the
criterion is carried out with Tabu search [13]. In [8], Li
solves the two-view motion segmentation problem starting
from a set of candidate motions generated by applying
spatial coherence, prior distribution, chirality constraints
etc. The segmentation problem is then formed as a facility
location problem and solved with linear programming
relaxation [14], [15]. In our previous work [10], we generate
candidates for structure-and-motion by applying local
sampling followed by nonmaximal suppression. We opti-
mize the Bayesian information criterion (BIC) [16] with a
branch-and-bound strategy.

The branch-and-bound approach [17] to global optimiza-
tion splits the optimization problem into smaller subpro-
blems and for these subproblems, upper and/or lower
bounds on the cost function are estimated. These bounds
are used to eliminate the subproblems that would not lead
to an optimal solution. The subproblems that survive are
further divided and the bound calculation is continued till
all the subproblems are explored. The branch-and-bound
procedure is applied in diverse areas, such as feature
selection [17], [18], [19], image registration [20], rate-
distortion based coding [21], job scheduling [22], [23] and
clustering [17], [18], [24], where the number of clusters is
known. Our previous work in [25], [26] explores branch-
and-bound for greedy maximum variance clustering of
stereo disparity with unknown number of clusters.

In this paper, we outline a general framework based on
[10] for multihypothesis branch-and-bound model selection
and analyze its average computational complexity. The
average computational complexity of the branch-and-
bound algorithms, which search over random trees, has
been explored by a number of researchers [27], [28], [29],
[30], [31], [32]. The term “random” applies to the structure
of the tree and weights of the tree edges in general.
However, for the multihypothesis branch-and-bound mod-
el-selection problem, the structure of the tree is determi-
nistic, and only the weights of the tree edges are random.
Thus, a separate treatment for the complexity of the
problem becomes necessary.

This paper is organized as follows: Section 2 formulates a
generalized multihypothesis branch-and-bound model-
selection problem. Section 3 develops the framework to
estimate the expected complexity of the branch-and-bound
search for the problem. The computation of various
quantities involved in the estimation of complexity of the

algorithm is discussed in Section 4. Section 5 presents the
results achieved by the model-selection process and its
expected complexity. Conclusions are presented in Section 6.

2 FORMULATION

This section first formulates model-based clustering as a
model-selection problem. Later, a branch-and-bound solu-
tion for the problem is devised, and application of the model
selection to an image processing problem is discussed.

2.1 The Problem

Consider a set of M observations Y, such as image
intensity/color, video motion or stereo disparity,

Y ¼ fy1;y2; . . . ;yMg:

The corresponding cluster memberships for the observa-
tions can be denoted by L ¼ fl1; l2; . . . ; lMg. If an observa-
tion yj belongs to a cluster k then lj ¼ k and vice versa.
Under the model-based clustering paradigm, the data can
be explained with one of the K clusters with parameters
f�1;�2; . . . ;�Kg, respectively. A generic model for estimat-
ing observations from the cluster parameters and the
memberships can be given as [33]

yj ¼ gðxj; �ljÞ þ vj; j ¼ 1; 2; . . . ;M: ð1Þ

In this model, X ¼ fx1;x2; . . . ;xMg are the independent
variables on which the observations Y depend (these can be
quantities, such as spatial locations for images or time
instances for time-series data). If the data do not have
spatial or temporal relationship, which is true for many
clustering problems, the independent variables would not
appear in the model [1]. gðx; �fÞ can be a linear or nonlinear
function or any process that can compute observation y

from x given parameters �f . V ¼ fv1;v2; . . . ;vMg is the
noise corrupting the observation, which is generally
assumed to follow a zero mean independent Gaussian
distribution. The above model appears in the missing data
problems as well [2]. According to the missing data
formulation, the observations Y are available and the
cluster memberships L are missing.

The model-based clustering problems have two unknown
quantities, the cluster parameters � ¼ f�1;�2; . . . ;�Kg and
the memberships L. Given the memberships L, the max-
imum likelihood estimate for the parameters � is given by

�̂ ¼ arg max
�

PrðLj�;YÞ: ð2Þ

Given the parameters �, the maximum likelihood estimate
for the memberships L is given by

L̂ ¼ arg max
L

Prð�jL;YÞ: ð3Þ

After simplification

�̂i ¼ arg min
�

X
8j$lj¼i

kyj � gðxj; �Þk2; ð4Þ

l̂j ¼ arg min
i
kyj � gðxj; �iÞk2: ð5Þ
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Here, i ¼ 1; 2; . . . ; K and j ¼ 1; 2; . . . ;M. Conventional meth-
ods for model-based clustering iterate between estimation of
� and L till one or the other converges. They additionally
require that the number of clusters K is known a priori. This
requirement is unrealistic for most clustering problems. Thus
the number of clusters has to be varied to select the optimal
number of clusters. This process is called model-selection.
The model-selection constitutes to the choice of K and
corresponding �. Since the likelihood of the model increases
as more clusters are added, a criterion which penalizes the
likelihood with increasing clusters, such as Akaike Informa-
tion Criterion (AIC) or Bayesian Information Criterion (BIC)
is used to select the optimal number of clusters [34]. If the
number of free parameters per cluster is N

AICð�Þ ¼ �2 logðL�Þ þ 2KN; ð6Þ
BICð�Þ ¼ �2 logðL�Þ þKN logðMÞ: ð7Þ

Or, a generalized model-selection criterion can be given by

Cð�Þ ¼ � logðL�Þ þ � �K; ð8Þ

where � is a positive constant and L� gives the likelihood of
the data for a model �. The model-selection thus leads to a
sequential process which follows the iterative clustering.

On the other hand, if a linearly ordered set of Nc

candidates C ¼ fC1; C2; . . . ; CNc
g for cluster parameters �i

is given, we can choose a subset � which optimizes the
model-selection criterion given in (8). The likelihood of the
data is proportional to the sum of the residuals for the
current model and is given by

logðL�Þ ¼ �
1

2
M log

SSDð�Þ
M

� �
þ Constant; ð9Þ

where,

SSDð�Þ ¼
XM
j¼1

min
Ci2�

rjðCiÞ

and

rjðCiÞ ¼ kyj � gðxj;CiÞk2 ð10Þ

are the residuals for jth observation for the candidate Ci.
After subsuming the constants, the model-selection

criterion becomes

Cð�Þ ¼M log
SSDð�Þ
M

� �
þ � �K; ð11Þ

which is to be minimized by selecting � � C, where K is
the number of candidates in the subset �.

There are 2Nc possible solutions for this subset selection
problem. Even for a moderate value of Nc, an exhaustive
search is computationally expensive. However, the nature
of the problem allows us to use a branch-and-bound
approach to obtain an optimal solution for the problem in
reasonable time for the practical problems.

2.2 Outliers

Due to their iterative nature, the model-based clustering
problems are especially sensitive to the outliers. In addition
to the candidates above, an alternative candidate C0 can be

added to account for the outliers in the data. According to
this candidate, the residual for all the observations are
assumed to be

rjðC0Þ ¼ r0: ð12Þ

With this setup, if the residuals for the jth observation are
greater that r0 according to the candidates C1; C2; . . . ; CNc

,
the observation is treated as an outlier.

2.3 Branch-and-Bound Algorithm

All the possible solutions of the model-selection problem
can be represented by a rooted tree. It is important that
every solution is listed only once in the tree to avoid
unnecessary computations. This can be ensured by creating
child nodes that are different than:

. left siblings,

. ancestors, and

. left siblings of ancestors.

One simple way of generating such a solution tree for five
candidates is shown in Fig. 1 with an additional candidate
claiming that the data point is an outlier. For ease of
representation, each tree node is labeled by the index of the
most recently added candidate instead of listing indices of
all the candidates in the subset. The subset of candidates
corresponding to a node is given by a walk from the root
node to the node under consideration. The circled node
includes candidates fC0; C1; C3g. The candidate C0 indicates
that the data point is outlier, i.e., the point does not belong
to any of the cluster parameter candidates. Note that, in the
solution tree, the node label zi increases monotonically with
the tree depth and the node label is lesser than its right
sibling’s label. These two conditions ensure that the rule
stated above to generate the child nodes is followed.

Each node of the tree represents a subset of candidates
and two hypotheses, one that the subset gives the optimal
solution of the model-selection problem and the other that
the subset is a partial solution to the problem. A partial
solution is a subset of optimal solution, i.e., adding more
candidates to a partial solution would lead to an optimal
solution. Note that if a partial solution hypothesis for a node
is rejected, then none of the child nodes of the node can be a
partial solution. A branch-and-bound algorithm aims to
validate the hypotheses presented by all the tree nodes
explicitly or implicitly. As the algorithm is a search strategy,
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at any point of search it maintains the best search result till

that point. The best search result, which is nothing but

lowest cost encountered in the search C�, can be used to

validate the optimal solution hypothesis. If the modeling

cost Cð�Þ for current node is higher than C�, the current

node cannot be an optimal solution. The partial solution

hypothesis can be validated with a lower bound on the

modeling cost of all the solutions leading from current

subset of candidates. All the solutions leading from current

subset are represented by child nodes of the current node. If

the lower bound on child nodes is higher than C�, then the

partial solution hypotheses for the node as well as its child

nodes can be safely rejected.
The lower bound on the first term of (11) corresponds to

the lower bound on SSDð�Þ. The lower bound on SSDð�Þ is

reached when a lower bound on residuals of individual

data points is achieved. With candidate subset �, the

residue for jth observation is given by

min
Ci2�

rjðCiÞ:

If the subset � is hypothesized as a partial solution, one can

add a subset of candidates �þ to existing subset � to form a

solution �0. To find the lower bound on the residual, one

must include all the possible candidates to build �þ. By

observing the structure of the solution tree, it is clear that

the candidates Ck 2 �þ must have Ck > maxð�Þ. Note that,

here the hypotheses are compared by their indices. Thus the

lower bound on the residual for jth observation is given by

min
Ci2�0

rjðCiÞ ¼ min min
Ci2�

rjðCiÞ; min
Ck2�þ

rjðCkÞ
� �

¼ min min
Ci2�

rjðCiÞ; min
8Ck>maxð�Þ

rjðCkÞ
� �

:

Thus the lower bound on SSDð�Þ is given by

SSDLowerð�Þ ¼
XM
j¼1

min min
Ci2�

rjðCiÞ; min
8Ck>maxð�Þ

rjðCkÞ
� �

: ð13Þ

As at least one more candidate has to added to the partial

solution of size K to reach an optimal solution, the lower

bound on second term of (11) is given by ðK þ 1Þ. The lower

bound on the hypotheses leading from � is thus given by

CLowerð�Þ ¼M log
SSDLowerð�Þ

M

� �
þ � � ðK þ 1Þ: ð14Þ

From the cost function (11) and the bound (14), the branch-

and-bound algorithm can be implemented.
We adapt a generic queue-based implementation of the

branch-and-bound procedure from [28]. With the queue-

based implementation, the solution tree can be explored

using various search strategies. We list a few of these

methods here [28]:

. Best bound first (BBF),

. Ordered depth first,

. Generation order depth first,

. Ordered breadth first, and

. Generation order breadth first.

These methods prioritize the search of nodes in different
ways, as suggested by their names. As the BBF search
algorithm has the least time complexity, we choose the BBF
search for our implementation and the complexity analysis.
Following gives an implementation of BBF search for the
model-selection problem.

Best bound first branch-and-bound procedure:

1. Insert hypotheses for the root node in the priority
queue Q.

2. Set the optimal cost C� ¼ 1.
3. Pop the first hypothesis from Q which is nothing but

the least cost hypothesis.
4. If the popped hypothesis is an optimal cost hypoth-

esis then terminate the algorithm.
5. For the child nodes of the popped hypothesis,

validate and insert hypotheses in Q. For all the child
nodes:

a. Validate the optimal solution hypothesis.

. Compute cost Cð�Þ for the node.

. If Cð�Þ < C�,

- Insert an optimal solution hypothesis in
Q with priority 1=Cð�Þ.

- Delete hypotheses after the location
where above hypothesis was inserted.

- Set C� ¼ Cð�Þ.
b. Validate the partial solution hypothesis, if the

node is an internal node.

. Calculate bound CLowerð�Þ.

. If CLowerð�Þ < C�, insert a partial solution
hypothesis in Q with priority 1=CLowerð�Þ.

6. Go to Step 3.

2.4 Application to Multibody Structure-and-Motion
Segmentation

The multibody structure-and-motion (MSaM) segmentation
problem groups image correspondences according to
coherent structure and motion. The set of M image
correspondences in this case be given by Y ¼
fy1;y2; . . . ;yMg and X ¼ fx1;x2; . . . ;xMg, where yj and xj
are image coordinates of jth correspondence. If the image
sequence contains K moving rigid objects, jth image
correspondence is related as

yTj Fljxj ¼ 0: ð15Þ

Here F ¼ fF1; F2; . . . ; FKg corresponds to fundamental
matrices [11] of K rigid bodies. We can rewrite (15) as a
generic model shown in Section 2 as

yj ¼ fðxj;FljÞ þ vj: ð16Þ

The function f here corresponds to the triangulation
method [11], which can estimate yj given xj and the
corresponding fundamental matrix. Due to the geometric
nature of the problem, maximum likelihood estimation uses
geometric distance measure such as reprojection error

�ðyj;xj; CiÞ2 ¼ kyj � ŷjk2 þ kxj � x̂jk2; ð17Þ
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where ŷj and x̂j are estimated correspondences by
candidate Ci given by

ŷj ¼ fðxj;CiÞ;
x̂j ¼ fðyj;CT

i Þ:

The candidates for the fundamental matrix can be gener-
ated by spatially local sampling of the correspondences and
estimating the fundamental matrix from the sample. If these
candidates are C ¼ fC1; C2; . . . ; CNc

g, the residual for jth
correspondence for candidate Ci is given by

rjðCiÞ ¼ �ðyj;xj; CiÞ2: ð18Þ

With these residuals, one can proceed to generic imple-
mentation of the branch-and-bound strategy for model
selection outlined at the beginning of the section. Section 5.2
reports results for this implementation.

3 BRANCH-AND-BOUND AS AN EDGE-WEIGHTED

TREE SEARCH PROBLEM

The worst case computational complexity of any branch-and-
bound search algorithm is same as the complexity of the
brute force search. However, a branch-and-bound approach
is generally applied to an NP hard global optimization
problem for which the worst case complexity gives a little or
no insight into the performance of the approach. In such a
situation, the average or expected computational complexity
would give a more reasonable estimate of the performance of
the approach. In this section, we formulate a framework to
estimate the expected computational complexity for the
branch-and-bound model-selection approach presented in
previous section.

Under the current formulation, each node of the solution
tree represents two hypotheses, the optimal solution hypoth-
esis and the partial solution hypothesis. This gives rise to a
binomial tree [35] of order Nc as the representation of the
model-selection problem (see Fig. 2a). However, in a typical
tree search problem only the leaf nodes can represent an
optimal solution. To incorporate this, we modify the original
tree structure and add a “twin” node to each internal node of
the binomial tree. This updated tree structure is shown in
Fig. 2b and will be used for computational complexity
analysis. The circled nodes are the newly added twin nodes.

In the updated tree, the leaf nodes (i.e., leaf nodes from the
original tree and newly added twin nodes) represent the
optimal solution hypotheses and the internal nodes represent
the partial solution hypotheses.

To represent each hypothesis uniquely, we devise a
representation for each hypothesis with symbols f0; 1;Xg
(“zero,” “one,” and “undetermined”). In this Nc elements’
wide representation, if a hypothesis includes a candidate
Ci then ðNc � iÞth element of the representation is one
and if the hypothesis does not include the candidate Ci
then ðNc � iÞth element is zero. For the partial solution
hypothesis represented by internal nodes, an additional
symbol X is used. The symbol X indicates a candidate
that can be included in a solution later in the search. The
ðNc � iÞth element of the representation is set to X, if any
child nodes can include the candidate Ci. One can
quickly get the “twin” node of an internal node by
replacing Xs with zeros.

The cost associated with a leaf node is the cost of the
optimal solution hypothesis Cð�Þ. On the other hand, the
cost associated with an internal node is the cost of the
partial solution hypothesis CLowerð�Þ. From (11) and (14),
one can conclude that the cost of a node is lower than its
child nodes. This also means that each edge of the updated
tree has a nonzero positive weight associated with it. The
cost of reaching a node can be computed by adding weights
of all the edges along the path from the node to the root of
the tree. Note that our formulation does not require explicit
computation of the edge weights as the cost of reaching a
node can be directly computed from (11) or (14). The least
cost leaf node in the edge-weighted tree corresponds to the
optimal solution for the branch-and-bound process. Thus,
our branch-and-bound approach can be seen as a least cost
leaf search problem for the updated edge-weighted tree.

3.1 Average Complexity

To estimate the average complexity, we concentrate on the
BBF approach which explores the least number of nodes
before it reaches the optimal solution [28]. In a BBF
implementation, every time the least cost node is popped
out of the priority queue Q. Child nodes of the currently
popped node are inserted in the queueQ. The priory of a node
is set inversely proportional to its cost. For the edge-weighted
tree, the first leaf node popped from Q during BBF search is
optimal [28]. This also means that the complexity, i.e., the
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number of nodes popped out before the optimal node, is same
as the number of internal nodes which have their costs less
than the optimal cost. Additionally, the optimal node has the
cost less than all the other leaf nodes by definition.

Let T denote the set of all the leaf nodes of the tree and I

denote the set of all internal nodes of the tree. The
optimality probability of the node i, ProðiÞ, denotes the
probability that the node i is optimal, i.e., it has the least
cost among the leaf nodes

ProðiÞ ¼
Y
8j2Tni

PrðCðiÞ < CðjÞÞ: ð19Þ

The cost probabilities PrðCðiÞ < CðjÞÞ are probabilities of
comparison of the sum of edge weights leading to nodes i
and j. These can be seen as probabilities of comparison
between two sums of edge weights, and thus can be given
by PrT ðSm < SnÞ. Here Sm and Sn are the sums of m and
n edge weights, respectively (1 � n � Nc; 1 � m � Nc).
Note that it is not necessarily true that m ¼ depthðiÞ and
n ¼ depthðjÞ. One has to remove the common edges along
the path to the root node from the node depth to get values
of m and n. If the number of common edges is l then m ¼
depthðiÞ � l and n ¼ depthðjÞ � l. We define nodes i and j to
have a relationship of order ðm;nÞ. In graph theory terms,
the relationship between the two nodes can be seen as the
simple path between them, and ðmþ nÞ gives the length of
the simple path.

Due to the recursive structure of the tree, the weight
relationships repeat themselves. Thus ProðiÞ can be written as

ProðiÞ ¼
YNc

m¼1

YNc

n¼1

PrT ðSm < SnÞOiðm;nÞ: ð20Þ

Here Oi is the optimality matrix for the node i and its
ðm;nÞth element indicates the number of times the relation-
ship ðm;nÞ (and hence the term PrT ðSm < SnÞ) appears in
the computation of ProðiÞ.

The complexity for node i, NðiÞ denotes the number of
internal nodes explored by BBF search if the node i is
optimal. When the node i is optimal, the internal node j is
explored only if its cost is less than the cost of the optimal
node i. Thus the complexity, when the node i is optimal, is

NðiÞ ¼
X
8j2I

PrðCLowerðjÞ < CðiÞÞ: ð21Þ

Similar to the optimality probability ProðiÞ, the complexity
NðiÞ of the node can be expressed as

NðiÞ ¼
XNc

m¼1

XNc

n¼1

PrIðSn < SmÞ �Riðm;nÞ: ð22Þ

Here Ri is the complexity matrix for the node i and its
ðm;nÞth element indicates the number of times the relation-
ship ðm;nÞ (and hence the term PrIðSm < SnÞ) repeats in
computation of NðiÞ. Note that different subscripts are used
for probabilities PrT and PrI , as the sums compared by
these probabilities differ slightly. For PrT , one of the
weights in both sums is for an edge from an internal node
to a leaf node while all the other weights are for edges
between internal nodes. For PrI , all the weights correspond

to edges between internal nodes. If we assume that this

difference is negligible, then

PrðSm < SnÞ ¼ PrT ðSm < SnÞ ¼ 1� PrIðSn < SmÞ: ð23Þ

With the optimality probability ProðiÞ and the complex-

ity NðiÞ, the expected complexity N can be estimated as

N ¼
P
8i2T ProðiÞNðiÞP
8i2T ProðiÞ

: ð24Þ

The next section describes the computation of quantities

involved in the estimation of the expected complexity.

4 COMPUTING COST PROBABILITIES, OPTIMALITY

MATRIX AND COMPLEXITY MATRIX

The optimality matrix Oi and the complexity matrix Ri are

different for nodes which do not have relationship ð1; 1Þ and

the matrices change with the order of the tree as well.

However, the cost probabilities PrT ðSm < SnÞ and PrIðSn <
SmÞ are only determined by the distribution of edge

weights. This section first describes how to estimate these

probabilities.

4.1 Cost Probabilities for Uniformly Distributed
Edge Weights

This section estimates cost probabilities for an edge-

weighted tree with edge weights uniformly distributed

between ½0; 1�. We start with the sum of m independently

and uniformly distributed edge weights between ½0; 1�,
given by [36]

fmðSmÞ ¼
1

ðm� 1Þ!
Xm
j¼0

ð�1Þj m

j

� �
½ðSm � jÞþ�

m�1: ð25Þ

Here, ð�Þþ means positive part of ð�Þ. This can be written as

ð�Þþ ¼
ð�Þ þ jð�Þj

2
:

PrðSm < SnÞ when m > n can be derived from fmðSmÞ to be

PrðSm < SnÞ ¼
Xn
q¼1

Xq�1

k¼0

Xq�1

j¼0

ð�1ÞðkþjÞ n
k

� � m

j

� �
Xn
p¼1

ð�1Þðp�1Þ ðx� kÞðn�pÞ

ðn� pÞ!
ðx� jÞðmþpÞ

ðmþ pÞ!

" #q
ðq�1Þ

:

ð26Þ

Here,

fðxÞ½ �qðq�1Þ¼ fðqÞ � fðq � 1Þ:

Refer to the appendix for the detailed derivation. PrðSm <

SnÞ when m < n can simply computed as

PrðSm < SnÞ ¼ 1� PrðSn < SmÞ:

Fig. 3 shows the plot of these probabilities.

4.2 Cost Probabilities by Sampling

For a typical model-selection problem, the distribution for

the sums does not have a closed form solution, or it is
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unknown. In such a case, a close approximation of PrT ðSn <
SmÞ and PrIðSn < SmÞ or PrðSn < SmÞ can be generated
with sampling. The sampling can be implemented as a
simple process listed below.

Sampling:

. For all the possible combinations of m and n repeat
following Ns times.

- Generate a hypothesis �1 of size m and compute
its cost Cð�1Þ.

- Generate a hypothesis �2 of size n such that
�1 \�2 ¼ ; and compute its cost Cð�2Þ.

- Compare the costs of the hypotheses, if
Cð�1Þ < Cð�1Þ, PrðSm < SnÞ ¼ PrðSm < SnÞ þ 1.

. For all the possible combinations ofm and n, normal-
ize the probabilities PrðSm < SnÞ ¼ PrðSm < SnÞ=Ns.

Fig. 4 shows PrðSm < SnÞ generated with sampling when

the edge weights are independent and identically distrib-
uted (iid) as squared zero mean Gaussian with unit
standard deviation.

4.3 Computing Optimality Matrix

The optimality matrix Oi is computed by comparing each
leaf node i with all the other leaf nodes. The edge-
weighted tree can be seen as a binomial tree with an added

“twin” node for all the internal nodes. Thus, recursive
properties of the binomial tree can be used in computation
of Oi. To compute Oi, we transform the edge-weighted tree
back to the binomial tree by merging the twin nodes with

the internal nodes and retaining the representation of the
twin nodes after merging. Thus, the node representation is
now binary.

Computation of Oi relies on the property that a simple

path between two nodes of a binomial tree includes the root node

of only the smallest subtree, including both the nodes. Note the
following important properties before proceeding to com-
pute Oi:

. Depth of a node, dðiÞ is equal to the number of ones
in the binary representation.

. Each node i belongs to a unique combination of
binomial subtrees T0; T1; . . . ; TdðiÞ and location of ones
in the representation indicates the order of binomial
subtrees, e.g., the most significant bit indicates a
binary subtree of orderNc � 1 and the least significant
bit indicates a binomial subtree of order 0. Note that
all the nodes belong to a subtree T0 of order Nc.

. The number of nodes belonging to a subtree Tt at
depth k is given by

NtðkÞ ¼
Tt
k�t
� �

; if 0 � k� t � Tt;
0; otherwise;

�
ð27Þ

where k ¼ 0; 1; 2; . . . ; Nc and t ¼ 0; 1; 2; . . . ; dðiÞ.
Since a node i only belongs to subtrees T0; T1; . . . ; TdðiÞ, to

compute Oi, we have to analyze these subtrees alone. The

binomial tree can be split into these subtrees and can be

analyzed subtree by subtree, starting with the largest

subtree T0. For each subtree, we select the nodes which

exclusively belong to the subtree under consideration. This

can be done by removing the nodes belonging to the next

largest subtree from the subtree under consideration.

Finally, one has to offset the result of merging of the “twin”

nodes. The merging leads to the relationships of the order

ðm; 0Þ and ð0; nÞ which would have been of the order ðmþ
1; 1Þ and ð1; nþ 1Þ otherwise. Also, we have to remove the

relationship ð0; 0Þ which corresponds to comparison of the

node i with itself. The algorithm to compute the optimality

matrix Oi follows:

1. Initialize T ¼ fT0; T1; . . . ; Tdg ¼ the subtree mem-
bership of the node i, dðiÞ ¼ depth of the node i, set
Oið1; 1Þ ¼ �1 and all the other elements of Oi equal
to zero.

2. Set t ¼ 0 such that the current subtree Tt ¼ T0.
3. For the subtree Tt, at each depth k ¼ 0; 1; . . . ; Nc

compute MtðkÞ the number of nodes which belong
exclusively to the subtree tree Tt.
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Fig. 3. PrðSm < SnÞ for uniform iid random variables. Fig. 4. PrðSm < SnÞ for squared Gaussian iid random variables

generated by sampling.
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MtðkÞ ¼
NtðkÞ �Ntþ1ðkÞ; if t < dðiÞ;
NtðkÞ; Otherwise:

�

4. I f k > 0 a n d dðiÞ � t > 0, s e t OiðdðiÞ � t; kÞ ¼
OiðdðiÞ � t; kÞ þMtðkÞ else set OiðdðiÞ � tþ 1; k þ
1Þ ¼ OiðdðiÞ � tþ 1; kþ 1Þ þMtðkÞ.

5. Set t ¼ tþ 1. If t � dðiÞ, then go to step (3), else
terminate the algorithm.

4.4 Computing Complexity Matrix

To compute the complexity matrix Ri, each leaf node i has
to be compared with internal nodes of the cost-weighted
tree. After the “twin” node merging, one has to compare
each node i of the merged tree with all the internal nodes of
the tree. Note that the internal nodes of a binomial tree of
order Nc form a binomial tree of order ðNc � 1Þ. Thus,
similar to (27), the number of internal nodes belonging to
subtree Tt at depth k is given by

LtðkÞ ¼
Tt�1
k�t
� �

; if 0 � k� t � Tt � 1;
0; otherwise:

�
ð28Þ

The algorithm to compute the complexity matrix Ri is
slight variation of the one that calculates Oi.

1. Initialize T ¼ fT0; T1; . . . ; Tdg ¼ the subtree mem-
bership of the node i, dðiÞ ¼ depth of the node i, set
all the other elements of Ri equal to zero.

2. Set t ¼ 0 such that the current subtree Tt ¼ T0.
3. For the subtree Tt, at each depth k ¼ 0; 1; . . . ; Nc

compute MtðkÞ the number of nodes which belong
exclusively to the subtree tree Tt.

MtðkÞ ¼
LtðkÞ � Ltþ1ðkÞ; if t < dðiÞ;
LtðkÞ; Otherwise:

�

4. I f m > 0 and dðiÞ � t > 0, set RiðdðiÞ � t; kÞ ¼
RiðdðiÞ � t;mÞ þMtðkÞ else set RiðdðiÞ � tþ 1; k þ
1Þ ¼ RiðdðiÞ � tþ 1; kþ 1Þ þMtðkÞ.

5. Set t ¼ tþ 1. If t � dðiÞ, then go to step (3), else
terminate the algorithm.

Note that when the internal node j is an ancestor of the
leaf node i the probability PrðSn < SmÞ is 1. We have to
correct the complexity matrix for these cases by setting
Riðk; 1Þ ¼ Riðk; 1Þ � 1 where 0 � k < dðiÞ. With the cor-
rected complexity matrix Ri, the complexity NðiÞ becomes

NðiÞ ¼ dðiÞ þ
XNc

m¼1

XNc

n¼1

PrðSn < SmÞ � Riðm;nÞ: ð29Þ

Since the complexity for computing the optimality matrix
and the complexity matrix increases exponentially with Nc,
the computational complexity analysis for the model
selection can only be done for moderate number of
candidates. In the following section, computational com-
plexity of branch-and-bound model selection is analyzed
for the multibody structure-and-motion segmentation.

5 EXPERIMENTAL RESULTS

The performance of the proposed model-selection frame-
work was studied for the multibody structure-and-motion

(MSaM) segmentation problem. The MSaM segmentation is
carried out on a pair of images. The goal of MSaM
segmentation is to group parts of image which have similar
3D motion. However, the number of motions in the image is
unknown. Initially, patches in the pair of images are matched
to find correspondence between them. As the objects in the
image move, there appearance changes and the matching
becomes challenging. Thus, some of the matches can be
incorrect. For all the motions, the incorrectly matched
patches are outliers. For a motion, the matches from other
motions can be seen as outliers as well. Thus, the MSaM
segmentation problem requires a technique which is immune
to outliers and can detect the number of clusters automati-
cally. The proposed method meets both requirements.

To generate candidates for the proposed model-selection
approach, for each image correspondence, a fundamental
matrix candidate was computed from circular spatial
neighborhood of the correspondences using the “Structure-
and-Motion Toolkit” from [37]. Outlier and inlier correspon-
dences were selected for each fundamental matrix candidate
by applying a threshold �T to the reprojection error of the
correspondences for the candidate. If the reprojection error of
a correspondence for a candidate is less than �T , the
candidate explains the correspondence, and the correspon-
dence can be treated as an inlier for the candidate. On the
other hand, if the reprojection error of a correspondence for a
candidate is greater than �T , the candidate fails to explain the
correspondence. In this scenario, the correspondence has to
be treated as an outlier. The number of inlier correspon-
dences for each candidate indicates the support for the
candidate. To avoid repeated similar candidates, candidates,
with smaller support sharing substantial (>80 percent) inlier
correspondences with a candidate with larger support, were
suppressed. Finally, the surviving candidates were arranged
in decreasing order of their support. An alternative candidate
for outliers C0 was added with rjðC0Þ ¼ �T . Note that for all
the experiments �T was chose to be 3. The Bayesian
information criterion (BIC) was optimized for these candi-
dates to select the optimal hypothesis.

The first two experiments were targeted toward quality of
segmentation while the last experiment was carried out to
verify the proposed computational complexity framework.

5.1 Clustering Quality

The clustering quality of the branch-and-bound model-
selection approach was estimated with synthetic data and
was compared with iterative MSaM segmentation. For the
experiments, 100 different fundamental matrices were
randomly generated. For each fundamental matrix, 50 cor-
respondences were generated with the model given by (16)
adding iid Gaussian noise with � ¼ 1. At a time, corre-
spondences for different fundamental matrices were com-
bined together to form an experimental data set.

First, iterative clustering was carried out with the
experimental data set with 2, 3 and 4 clusters. For iterative
clustering, the number of clusters was assumed to be
known. Initially, each correspondence was assigned to one
of the clusters randomly. From the initial assignment,
fundamental matrix for each cluster was computed with the
“Structure-and-Motion Toolkit” from [37]. This step is
equivalent to parameter estimation step in (4). In the next
step each correspondence was assigned to the cluster for
which the reprojection error is minimized. This corresponds
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to membership estimation step in (5). These two steps were
repeated till the cluster memberships converged. Note that
to compute the fundamental matrix, a robust MLESAC
estimator [38] was used.

For rest of the experiments, 50 randomly selected

correspondences from the remaining motions were added

to the data as outliers. Iterative segmentation was repeated

with the updated data. The correspondences for which the

reprojection errors were larger that a threshold �T were

labeled as outliers after each iteration.
Finally, the data was segmented with the proposed

approach. Average of clustering accuracy for 100 runs is

shown is Table 1. For the iterative approach, the clustering

accuracy starts at 95 percent with two clusters and drops as

number of clusters increases. As the number of clusters and

data points increases, the search space for the clustering

solution expands. As the iterative clustering yields a local

optimum, the quality of the clustering deteriorates with

expansion of the search space. However, the drop in accuracy

for the iterative approach is much steeper when outliers are

added to the data. Note that for the data with outliers, the

accuracy reported corresponds to correctly clustering inliers

in to individual cluster and correctly labeling all the outliers.

Thus with outliers, the accuracy is meaningful for one cluster

unlike the iterative clustering without outliers. The proposed

approach outperforms iterative clustering method even in

presence of outliers. The drop in the clustering accuracy is

minimal (98 percent to 95 percent) as the number of clusters is

increased. Unlike the iterative clustering, the number of

clusters is assumed to be unknown and automatically
detected by the proposed method.

5.2 Real Data

Publicly available image data sets were chosen for the
clustering quality experiments with real data. The chosen
data sets provide images as well as correspondences.

For the first experiment, “Box-book-mag” and “Desk”
image pairs from [9] are used. The “Box-book-mag” pair
has three independently moving objects captured with a
stationary camera. For these image pairs, in addition to
correct correspondences, some incorrect matches are pro-
vided. In Fig. 5a, the detected motions between the image
pair are indicated by different colored lines. Each line
connects a point in an image to the position of its matched
correspondence in the second image. This provides “track”
of the points as the visual indication of the motion overlaid
on one of the images. A group of lines with same color
indicates that they follow the same motion. The red colored
lines are the detected outlier motions. Figs. 5b and 5c show
segmentation results where correspondences marked with
same color are determined to have same motion and belong
to same cluster. The outlier matches corresponding to the
red lines are removed in Figs. 5b and 5c.

For the “Desk” image pair shown in Fig. 6, there are
three moving objects, namely a pile of books, a computer
screen and a journal. Although the camera has also moved,
there are no matches for the background. Thus the back-
ground motion is not detected. The result of segmentation
can be seen in Figs. 6b and 6c.

In the next experiment, our method is applied to the
“car-truck-box” sequence used by Vidal et al. [39], [40]. The
motion between frame 1 and frame 10 of the sequence was
analyzed. In this sequence, there are three different
motions. The box lies on a rotating desk, while the car
and the truck are moved away from each other with hand.
As seen in Fig. 7, three moving objects are correctly
identified; however, some of the motion vectors are
incorrectly assigned. This is due to the sampling scheme
rather than the cost function being optimized.

Finally, the proposed approach was tested with JHU155
database sequences [41], which include traffic sequences
with two or three motions. The “cars2” sequence shown in
Fig. 8 has two moving cars captured by a moving camera.
Fig. 9b gives segmentation results for the “cars3” sequence,
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Fig. 5. Box-book-mag: (a) Motion between two views, each cluster is denoted by different color, motions marked by red are outliers, (b) segmentation
result for the first view, and (c) segmentation result for the second view.
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Fig. 6. Desk: (a) Motion between two views, each cluster is denoted by different color, matches marked by red are outliers, (b) segmentation result
for the first view, and (c) segmentation result for the second view.

Fig. 7. Car-truck-box: (a) Motion between two views, each cluster is denoted by different color, matches marked by red are outliers, (b) segmentation
result for the first view, and (c) segmentation result for the second view.

Fig. 8. JHU-Cars2: (a) Motion between two views, each cluster is denoted by different color, (b) segmentation result for the first view, and
(c) segmentation result for the second view.

Fig. 9. JHU-Cars3: (a) Motion between two views, each cluster is denoted by different color, (b) segmentation result for the first view, and
(c) segmentation result for the second view.
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which depicts two cars captured with moving camera. In all
the experiments, the number of motions is correctly
identified and the segmentation achieved is accurate.

5.3 Computational Complexity

The complexity of the proposed branch-and-bound model-
selection approach was estimated with synthetic data. The
synthetic data were generated similar to the first experiment
and has 4 clusters, each of size 50, and 50 outliers. For the
approach, the number of candidates Nc cannot be explicitly
controlled, and it varies with the number of motions and their
spatial configuration. For the generated synthetic data Nc

was close to 20 to 30. To estimate the probabilities PrT ðSm <
SnÞ for the MSaM segmentation problem, we randomly
generated pairs of hypotheses and compared their BIC
values. To calculate the probabilities PrIðSm < SnÞ, BIC value
of a randomly generated hypothesis was compared to the
lower bound on BIC value of another randomly generated
hypothesis. Figs. 10 and 11 show the probability matrices
PrT ðSm < SnÞ and PrIðSn < SmÞ respectively.

Once the probability matrices PrT ðSm < SnÞ and
PrIðSn < SmÞ are known from sampling, the complexity
for the branch-and-bound search can be estimated by
evaluating (24). Fig. 12 shows the estimated expected

complexity for the MSaM segmentation problem along

with other tree search problems when edge weights are

uniform iids and squared Gaussian iids. The worst case

complexity, which is equivalent to a brute force search, is

also shown for comparison. Clearly, the expected complex-

ity of the branch-and-bound search depends on the

distribution of the edge weights. This distribution is

captured by probabilities PrT ðSm < SnÞ and PrIðSn < SmÞ.
As seen from the plots, although the expected complexity

is much lesser than the worst case complexity for the

branch-and-bound, it remains exponential for the most part.

The rate of exponential depends on how quickly the off

diagonal values of probability matrices PrT ðSm < SnÞ and

PrIðSn < SmÞ drop to near zero/rise close to one. On the

other hand, for the MSaM segmentation problem, the

increase in the complexity as Nc > 15 is not as drastic as

Nc < 15. This again is a result of the off diagonal values of

probability matrices PrT ðSm < SnÞ and PrIðSn < SmÞ almost

all of which drop to near zero/rise close to one for Nc > 15.
Fig. 13 compares the estimated expected complexity of

the problem with the experimentally observed complexity

of the problem for various values of Nc. We ran 400 experi-

ments with different data sets to find the number of nodes

explored before the optimal solution was found. These

experiments were then separated based on the value of Nc,

which was anywhere between 20 and 30, as mentioned

before. Then the experiments corresponding to each value

of Nc were sorted according to increasing complexity. Note

that the figure shows only Nc ¼ 24 to 27, which were the

four most frequent values of Nc. As the number of

experiments for each value of Nc were different, the length

of the plots were normalized to 100 before plotting for easy

comparison of complexity for various values of Nc. As seen

in Fig. 13, although the expected complexity is slightly

overestimated, it still provides a satisfactory estimate for the

observed complexity.
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Fig. 10. PrT ðSm < SnÞ for the MSaM segmentation problem.

Fig. 11. PrIðSn < SmÞ for the MSaM segmentation problem.

Fig. 12. Expected complexity.
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6 CONCLUSION

In this paper, we proposed a branch-and-bound model-

selection algorithm for model-based clustering of image

data and analyzed its expected complexity. The proposed

model-selection-based approach detects the number of

clusters automatically, and it is robust to outliers. When

compared to conventional iterative algorithms for model-

based clustering, the proposed algorithm shows marked

improvement in the clustering quality. It can also be seen

from the experiments that the average complexity of the

algorithm is much lower than the worst case complexity.

Thus the proposed algorithm is practical for model-based

clustering of image data, which has moderate number of

candidates, and when the size of optimal candidate subset

is small. With problem-specific bounds and/or added

heuristics, the complexity of the branch-and-bound algo-

rithm can be further reduced.

APPENDIX

COST PROBABILITIES FOR UNIFORM IID

The sum of m uniform iids is distributed as

fmðSmÞ ¼
1

ðm� 1Þ!
Xm
j¼0

ð�1Þj m

j

� �
½ðSm � jÞþ�

m�1: ð30Þ

Similarly, for the sum of n uniform iids

fnðSnÞ ¼
1

ðn� 1Þ!
Xn
k¼0

ð�1Þk n

k

� �
½ðSn � kÞþ�

n�1: ð31Þ

The corresponding cumulative distributions are

FmðSmÞ ¼
1

m!

Xm
j¼0

ð�1Þj m

j

� �
½ðSm � jÞþ�

m ð32Þ

and

FnðSnÞ ¼
1

n!

Xn
k¼0

ð�1Þk n

k

� �
½ðSn � kÞþ�

n: ð33Þ

For the summation on right-hand side of (32), in interval

j� 1 and j only j terms are nonzero, and for (32), in interval

k� 1 and k only k terms are nonzero.
Assuming Sm and Sn are independent, the joint distribu-

tion of Sm and Sn is same as their product. From the joint

distribution of Sm and Sn

PrðSm < SnÞ ¼
Z n

Sn¼0

Z Sn

Sm¼0

fmðSmÞfnðSnÞdSmdSn: ð34Þ

For n < m,

PrðSm < SnÞ ¼
1

ðn� 1Þ!

Z n

Sn¼0

Xn
k¼0

ð�1Þk n

k

� �
½ðSn � kÞþ�

n�1

1

ðm� 1Þ!

Z Sn

Sm¼0

Xm
j¼0

ð�1Þj m

j

� �
½ðSm � jÞþ�

m�1dSm

 !
dSn:

The bracketed expression is nothing but cumulative

distribution of Sm

PrðSm < SnÞ ¼
1

ðn� 1Þ!

Z n

Sn¼0

Xn
k¼0

ð�1Þk n

k

� �
½ðSn � kÞþ�

n�1

1

m!

Xm
j¼0

ð�1Þj m

j

� �
½ðSn � jÞþ�

m

 !
dSn:

ð35Þ

Since Sn � n, for j > n the bracketed expression is 0, we

change the upper limit of the summation over j to n

PrðSm < SnÞ ¼
1

ðn� 1Þ!
1

m!R n

Sn¼0

�Pn

k¼0
ð�1Þk n

kð Þ½ðSn�kÞþ�n�1

��Pn

j¼0
ð�1Þj m

jð Þ½ðSn�jÞþ�m
�
dSn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

:
ð36Þ

We split integration I in to n segments each of length 1. For

q ¼ f1; 2; . . . ; ng

Iq ¼
Z q

Sn¼q�1

Xq�1

k¼0

ð�1Þk n

k

� �
ðSn � kÞn�1

 !

Xq�1

j¼0

ð�1Þj m

j

� �
ðSn � jÞm

 !
dSn

¼
Xq�1

k¼0

Xq�1

j¼0

ð�1ÞðkþjÞ n
k

� � m

j

� �
Z q

Sn¼q�1

ðSn � kÞn�1ðSn � jÞmdSn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Iqðj;kÞ

:

ð37Þ

Now we solve for integration Iqðj; kÞ

Iqðj; kÞ ¼
Z q

Sn¼q�1

ðSn � kÞn�1ðSn � jÞmdSn: ð38Þ

Let t ¼ ðSn � jÞ, then dt ¼ dSn and ðSn � kÞ ¼ ðtþ j� kÞ.
When Sn ¼ q � 1, t ¼ q � 1þ j, and when Sn ¼ q, t ¼ q þ j

Iqðj; kÞ ¼
Z qþj

t¼q�1þj
ðtþ j� kÞn�1tmdt: ð39Þ
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Fig. 13. Comparison of expected and actual complexity.
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We apply repeated integration by parts to (39) with the

help of Tables 2 and 3. After resubstituting Sn � j for t,

we get

Iqðj; kÞ

¼
"Xn
p¼1

ð�1Þðp�1Þðn� 1Þ . . . ðn� ðp� 1ÞÞðSn � kÞðn�pÞ

ðSn � jÞðmþpÞ

ðmþ 1Þ . . . ðmþ p� 1Þðmþ pÞ

#q
ðq�1Þ

¼
"Xn
p¼1

ð�1Þðp�1Þ ðn� 1Þ!
ðn� pÞ! ðSn � kÞ

ðn�pÞ

m!

ðmþ pÞ! ðSn � jÞ
ðmþpÞ

#q
ðq�1Þ

:

ð40Þ

Combining (36), (37), (39), and (40)

PrðSm < SnÞ

¼ 1

ðn� 1Þ!
1

m!

Xn
q¼1

Xq�1

k¼0

Xq�1

j¼0

ð�1ÞðkþjÞ n
k

� � m

j

� �
"Xn
p¼1

ð�1Þðp�1Þ ðn� 1Þ!
ðn� pÞ! ðSn � kÞ

ðn�pÞ

m!

ðmþ pÞ! ðSn � jÞ
ðmþpÞ

#q
ðq�1Þ

¼
Xn
q¼1

Xq�1

k¼0

Xq�1

j¼0

ð�1ÞðkþjÞ n
k

� � m

j

� �
Xn
p¼1

ð�1Þðp�1Þ ðSn � kÞðn�pÞ

ðn� pÞ!
ðSn � jÞðmþpÞ

ðmþ pÞ!

" #q
ðq�1Þ

:

ð41Þ
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