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Abstract

Fluvial systems are prolific hydrocarbon reservoirs. Accordingly numer-
ous studies have addressed architectural styles and aspect ratios aimed at
the “net” channel-belt reservoirs. Floodplain lake deposits are known to
typically constitute the majority of the “gross” sections of fluvial systems in
high-accommodation settings. Virtually no comparable studies have been
done to quantify lake geometry and evolution. Partly this reflects the few
examples of high-aggradational fluvial systems in the modern. We made a
first attempt to measure trends in floodplain lakes by examining four lake-rich
fluvial sites where lakes were in early developmental stages. These included
two systems located on the Mexican Gulf Coast, one deltaic system in
Alaska, and one interior fluvial section in the Magdalena River Basin, Colum-
bia. We defined lakes as forming on the floodplains next to and between
channel belt levees. Sediment fill is mainly delivered here by smaller second-
ary channels that feed crevasse splay deltas and deliver plumes of mud. We
measured the area of each lake and interfluve satellite images obtained from
Landsat 5 and Google Earth.

The lakes in the study areas ranged widely in area from fractions of a
kilometer width to over one hundred kilometers, with shape and area of the
lakes being highly variable as well. Much of the variability stemmed from the
tendency of large lakes to undergo partitioning into multiple smaller lakes as
they became dissected by avulsive small channels during filling creating
complex relationships between lakes, small feeder channels and splay deltas
(very few lobate splay deltas were observed). Consequently the relationship
between trunk channel/channel belt size and lake size was weak. Channel
belt density however appears to be the primary controlling factor in lake size.
The lakes maximum size is limited by the distance between the channel belts
or the distance between a channel belt and floodplain termination.

Purpose

Floodplain lakes are observed in scattered modern systems (e.g.
Rhine, Berendsen and Stouthamer, 2001; Amazon, Latrubesse and Fran-
zinelli, 1999; Saskatchewan, Morozova and Smith, 2000; Mississippi, Tye
and Coleman, 1989; etc.) but are considered an important and common
part of the geologic record of high-accommodation fluvial settings (e.g.
Browne and Plint, 1994; Plint and Browne, 1994; Glover and O'Beirne
1994). Although progress has been made to understand lake processes
(e.g. Morozova and Smith, 2000; Hill et al., 2001; etc.) and the role of
lakes in avulsions (Smith et al., 1989; Smith et al., 1998; Smith and
Perez-Arlucea, 1994) little has been said about lake dimensions and how
the scale to the fluvial system in which they formed.

This is a first look geomorphic study using Landsat 5 and Google
Earth images to look for generalized relationships between floodplain
lakes and their fluvial systems in a range of settings including delta
(Kobuk River Delta, Alaska), inland (Magdalena River Basin, Columbia)
and coastal settings (Grijalva and Usamucinta Rivers, Mexico). These sites
chosen record some of the few high aggradation fluvial floodplains pre-
served during this relative sea level highstand.

These areas are analogs for fluvial response to base level rise in the
transgressive phase of sequence stratigraphic models.

Metods

for floodplain lakes in high accommodation floodplains
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Hypothesis on formation of dissecting splay channels
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From observation of satellite photos it appears that the floodplain lake dissecting channels are formed by a combination of hyperpycnal flow,
seasonal changes in water level and vegetation. Very similar channels form in the man made accommodation created by daming rivers to form
water reserviors where the river enters the lake. These examples are from lakes in North Texas, USA.
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were calculated.

3) Rasters were converted to vector features in ArcGIS where lake and interfluve areas

4) Lake centroids were calculated with ArcGIS and each interfluve perimeter and valley
edge were drawn as a seperate vector.
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3) During low water level intervals vegetation grows preferentially on the higher,
well drained, levee thus reinforcing it and providing an extension for the hyperpynal
flow during the next flood stage.

1) Hyperpycnal flow jets out at flood stage and forms underwater levees.
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5) Distance from lake centroid to two closest channels or channel and valley edge was 6) Study areas were divided into zones to study relationships between channel density, lake 7) High resolution Google Earth images were acquired, where

calculated and the results were added together to find the width between the channels (or density, lake area and interfluve area.
channel and valley edge) at the lakes location. Results were exported to Excel and lake area

was plotted against distance between channels (or channel and valley edge). Best fit line

was drawn and R2 calculated to determine strength of the relationship.

Grijalva and Usumacinta Rivers, Mexico

Characteristics - An extensional basin has formed in this area due to the Yucatan moving in the southeastward direction in sympathy to the right-lateral displacement along the Orizaba
fault zone (Burkart and Scotese, 1990). This floodplain is mature and many of the lakes have filled. In this tropical setting vegetation has played a key role in filling the lakes.
Dissection by channels is very common and stabilization by vegetation appears to be a factor.
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available, to observe the processes in better detail.
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4) This process continues until long dissecting channels are formed.

Attribute Comparison

Zoned Interfluve Area vs. Zoned Lake Count Zoned Interfluve Channel Density vs. Zoned Lake Area Zoned Interfluve Channel Density vs. Zoned Average Lake
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Larger interfluve area means more lakes (and more total lake area). The more channels that cut an interfluve zone the less total lake area The more channels that cut an interfluve zone the smaller the aver-
The is a basic characteristic of high accomodation settings. is in that zone. age lake size in that zone.
Bigger interfluve = more lakes and lake area. Higher channel density = less total lake area. Higher channel density = smaller lake size.
General Observations
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Ideas for future research . .
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Look for possible missed relationships between floodplain lakes and their related fluvial system. e S e
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Do a ground study of one of the floodplain lake areas to obtain bathymetry data from lakes/channels and take core samples from filled lakes and channels
to map and describe the sediments left behind.
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