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ABSTRACT 

 
DISPERSION ENGINEERING WITH LEAKY-MODE  

RESONANCE STRUCTURES 

Xin Wang, M.S.  

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Robert Magnusson 

 In the thesis, a numerical method for the analysis of optical pulses propagation through 

leaky-mode/guided-mode resonance (GMR) structures is implemented by integrating a Fourier 

decomposition technique and the rigorous coupled-wave analysis (RCWA) method. Dispersion 

properties of several GMR structures such as single-grating-layer GMR filters, coupled GMR 

filters, and cascaded GMR filters are studied and their interaction with optical pulses 

investigated. For device applications, a high-Q transmission filter is formed by coupling GMR 

reflection filters which can withstand typical attenuation in silicon. Wavelength division 

multiplexing (WDM) filters are proposed by cascading a number of GMR transmission filters. 

Generally, a N channel DWDM filter can be realized by cascading N+1 GMR transmission 

filters. The channel bandwidth in this structure is sensitive to the gap width between the two 

neighboring GMR filters. Both the channel bandwidth and channel spacing are inversely 

proportional to the number of cascaded GMR filters for a given gap width. For slow light 

applications, a conceptual optical delay line device with desired time delay and flat-dispersion is 

proposed by treating double GMR transmission filters as a cavity and then cascading such 

cavities.     
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CHAPTER 1 

INTRODUCTION 

1.1 Dispersion Types 

 In optics, dispersion is a phenomenon in which each spectral component of an optical 

pulse propagates with a slightly different group velocity, resulting in pulse broadening in time. 

Dispersion is one of the key factors limiting the transmission bandwidth in today’s optical 

communication systems. Generally, dispersion effects are discussed in the context of pulse 

propagation over a long distance within a waveguide (most commonly, an optical fiber). 

However, with recent advances toward ultrahigh-bandwidth transmission and shorter pulses 

being used, dispersion issues become increasingly significant, even for propagation over short 

distances. There are five principal sources of dispersion: modal dispersion, material dispersion, 

waveguide dispersion, polarization-mode dispersion and nonlinear dispersion [1]. In most 

cases, pulse broadening results from the combined contributions of these effects, although they 

are not strictly additive.  

In multimode fibers, modal dispersion occurs due to the different group velocities of 

various modes. The pulse broadening arising from modal dispersion is roughly proportional to 

the fiber length. Material dispersion occurs in a dispersive medium which has a wavelength (or 

frequency) dependent refractive index n(λ). The group velocity of an optical pulse travelling 

through such a medium is defined by νg = c0/N, where N = n-λ0dn/dλ0 (c0 and λ0 are the vacuum 

speed and wavelength of light, respectively) is called the group index. The corresponding 

material dispersion coefficient Dλ is [1]  

Dλ = - (λ0/ c0)(d
2
n/d λ0

2
).            (1.1) 
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It is called normal dispersion when Dλ is negative, meaning that the spectral 

components of longer wavelengths travel faster than those of shorter wavelengths [1]. If Dλ is 

positive, we call it anomalous dispersion, meaning that spectral components of longer 

wavelengths travel slower than those of shorter wavelengths. Waveguide dispersion, in 

essence, is the dependence of the group velocity on the wavelength for each mode in the 

waveguide [1]. Polarization mode dispersion is a special case of modal dispersion, where two 

different polarizations (TE and TM) of light travel at different velocities due to the random 

imperfections and asymmetries of waveguides. When light intensity in a waveguide is so high 

that the refractive index becomes intensity dependent, the waveguide will exhibit nonlinear 

dispersion.  

This thesis primarily deals with waveguide dispersion, which is also referred  to as 

chromatic dispersion (CD) to emphasize the wavelength dependence, or group-velocity 

dispersion (GVD) to emphasize the role of group velocity, because this type of dispersion 

occurs in optical fibers, which are most commonly used in today’s telecommunication systems. 

GVD is one of the most important limiting factors determining the data rate that can be 

transported through a single-mode fiber. In general, for a waveguide mode with an angular 

frequency ω and a propagation constant β, the group velocity dispersion is defined as [1]  

GVD = - (2πc0/λ
2
)(d

2
β/dω

2
) = (2πc0/λ

2
vg

2
)(dvg/dω),        (1.2) 

where λ = 2πc0/ω is the vacuum wavelength and vg = dω/dβ is the group velocity. 

 

1.2 Dispersion Engineering 

Since waveguide dispersion limits the performance of single-mode fibers, more 

advanced fiber designs aim at reducing this effect by using special refractive-index profiles to 

alter the chromatic dispersion characteristics. Dispersion-shifted fibers (DSF) [2] have been 

successfully fabricated by using a linearly tapered core refractive index and a reduced core 

radius; this type of fiber can shift the zero-chromatic dispersion wavelength from 1.3 µm to 1.55 
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µm, where the fiber has its lowest attenuation. Dispersion-flattened fibers have been 

implemented by using a quadruple-clad layered grading. Dispersion-compensating fiber (DCF) 

[3] has a reversed dispersion coefficient compared with that of a conventional fiber. In addition, 

dispersion management and control in modern communication systems have motivated various 

research efforts toward development of dispersion management techniques and devices, such 

as chirped Bragg gratings [4]. Dispersion can also be controlled by use of an achromatic Fourier 

transformer [5]. Another technique is cascading a number of all-pass filters to attain a desired 

group velocity delay [6-8]. A summary of various dispersion management techniques can be 

found in [9]. 

Leaky-mode (or guided-mode) resonance occurs when the incident wave is coupled 

with a guided mode supported by a periodically-modulated dielectric medium under phase 

matching conditions. The amplitude-based spectral properties of resonant leaky-mode elements 

have been intensively studied both numerically and experimentally due to their unique 

properties and functionalities. Plenty of work has been performed in the aspects of diffraction 

efficiency, device applications, design, simulation and fabrication. The external spectral 

resonance signatures can have complex shapes with high efficiency in both reflection and 

transmission [10-18]. It has been shown that subwavelength periodic leaky-mode waveguide 

films with one-dimensional periodicity provide diverse spectral characteristics such that even 

single-layer elements can function as narrow-line bandpass filters, polarized wideband 

reflectors, wideband polarizers, polarization-independent elements, and wideband antireflection 

films [19-20]. The spectra can be further engineered with additional layers [21-22].  The relevant 

physical properties of these elements can be explained in terms of the structure of the second 

(leaky) photonic stopband and its relation to the symmetry of the periodic profile [23]. The 

interaction dynamics of the leaky modes at resonance contribute to sculpting the spectral 

bands. The leaky-mode spectral placement, their spectral density, and their levels of interaction 
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strongly affect device operation and functionality [19]. Thus, there has been a considerable 

amount of research performed on the spectral attributes of these elements. 

In contrast, little work has been done to investigate the temporal responses of such 

nanostructures or their interaction with optical short pulses
 
until recently [24-31]. Schreier et al. 

treated a sinusoidally-modulated waveguide grating at oblique incidence, computing the phase 

variation of the reflectance near resonance relative to modulation strength. They quantified the 

degree to which the structural parameters control the amount of delay achievable with 

computed values of delay ranging from sub-ps to ~40 ps depending on conditions [24-25]. 

Using a finite-difference time-domain (FDTD) computational approach, Mirotznik et al. evaluated 

the temporal response of a subwavelength dielectric grating that was designed previously [26] 

as a reflection-type GMR element. The model input pulse was Gaussian with center wavelength 

of 510 nm, spectral width of 5000 nm, and temporal pulse width of ~5 fs. They noted that the 

reflected energy persisted for ~1 ps after the incident field decayed [27]. Later, Suh et al. 

designed a 2D photonic-crystal-slab-type GMR transmission filter computing the resonance 

amplitude, transmission spectrum, and group delay. For a 1.2 µm thick slab, a peak delay of 

about 10 ps was obtained at 1550 nm; the spectral width of the response was ~0.8 nm [28]. 

Nakagawa et al. presented a method to model ultra-short optical pulse propagation in periodic 

structures, based on the combination of Fourier spectrum decomposition and rigorous coupled-

wave analysis (RCWA) [29].  They simulated an incident pulse (167 fs) on a resonant grating 

supporting two modes and found that two pulses were transmitted with shapes similar to the 

excitation pulse shape. Vallius et al. modeled spatial and temporal pulse deformations 

generated by GMR filters. They illuminated the structure with a Gaussian temporal pulse of 2 ps 

duration centered at 633 nm wavelength. Lateral spread and temporal decompression were 

observed in the reflected and transmitted pulses [30]. As the spectrum of the pulse was not well 

accommodated by the GMR element, the reflection efficiency of the pulse was relatively low. 
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Ichikawa et al also presented an analysis method for femtosecond-order optical pulses 

diffracted by periodic structure based on FDTD [31-32].  

This thesis will address the introduction of dispersion engineering with leaky-mode 

resonance structures. Moreover, by cascading a number of single-grating-layer GMR filters, we 

find device applications of dispersion properties of leaky-mode resonance structures in optical 

delay lines, GMR filters with high Q-factor, dense wavelength division multiplexing (DWDM) 

filters, and slow light techniques. Specifically, Chapter 2 discusses the numerical formalism and 

dispersion engineering with one-dimensional leaky-mode resonance structures. Coupled leaky-

mode resonance reflection filters can provide tunable sensitivity, time delay, and attain high Q-

factors. Transmission filters with a desired time delay and flat dispersion are realizable by 

cascading a number of identical leaky-mode resonance transmission elements. Chapter 3 deals 

with the various practical applications of dispersion characteristics of leaky-mode resonance 

structures including GMR filters with high Q-factor, DWDM filters and slow light element. A 

summary of the thesis and conclusions is the content of Chapter 4.   
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CHAPTER 2 

ONE-DIMENSIONAL LEAKY-MODE RESONANCE STRUCTURES 

2.1 Time Delay and Dispersion  

A leaky waveguide mode can be represented by a pole in the complex propagation 

constant (γ = β+jα) plane. For a waveguide grating structure with a periodicity of Λ, the field 

solutions are Bloch waves represented by complex poles with separation of 2π/Λ in the real axis 

β (i.e. β = β0+m2π/Λ, here β0 is the propagation constant for  the fundamental TE0 mode and 

can be calculated from planar waveguide dispersion relation; m is the wave number). The 

magnitude of the imaginary part α is the radiation coefficient (leakage) [17]. The complex 

reflection amplitude is given by  

r = η/(k-(β+ jα)),          (2.1) 

where η is a constant related to the coupling strength between the incident wave and guided 

mode field in the waveguide, k = nc2πsinθ/λ is the tangential incident wave vector and θ is the 

incident angle. When the coupling relation k = β is satisfied, a leaky-mode resonance occurs 

due to the excitation and rescattering of a leaky mode in the waveguide. For a zero-order 

resonant leaky-mode structure, only zero-order diffraction field can propagate through the 

structure and all higher orders are cutoff, meaning the propagation constant is  

β = β0-2π/Λ.     (2.2) 

The group delay and dispersion are derived from the phase of the complex reflection 

amplitude [33]. Specifically, if we denote φ = arg(r) as the phase of reflection coefficient and 

expand φ in a Taylor series about the resonance frequency ω0, the first derivative dφ/dω is 

considered as a measure of the group delay τ; the dispersion D is essentially the rate of change 

of delay with wavelength, so we obtain  
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τ = dφ/dω = -λ
2
/(2πc) dφ/dλ        (2.3) 

D = dτ /dλ.                                (2.4) 

 
 2.2 Numerical Formalism 

 Let’s consider a transform-limited, TE-polarized Gaussian pulse as represented by the 

following equation 

)](exp[]
)(

exp[)( 002

2

0
0 ttj

T

tt
EtEy −

−
−= ω ,      (2.5) 

where E0 is the amplitude of the pulse; T is the temporal pulse width (T = σ (2ln2)
-1/2

; σ is the full 

width at half maximum (FWHM) of the |Еy(t)|
2
); t0 is the offset of the pulse peak; ω0 = 2πc0/λ0 is 

the central angular frequency; c0 and λ0 are the speed of light and central wavelength in vacuum 

respectively [30-32, 34]. 

To use rigorous coupled-wave analysis method (RCWA), such a Gaussian pulse has to 

be decomposed into its monochromatic Fourier components (plane waves), which is performed 

by the Fourier transform and proper discretization. The corresponding Gaussian continuous 

spectrum of the given pulse is given by  

]exp[]
)/2(

)(
exp[)( 02

2

0
0 tj

T
TEE y ω

ωω
πω −

−
−= .    (2.6) 

In numerical simulation, this continuous spectrum is discretized by imposing a finite 

bandwidth ∆ω= 2Mδω centered at ω0, where δω is frequency sampling rate. Thus, the incident 

pulse is represented by a finite number (2M+1) of discrete frequency components at 

frequencies ωn = ω0 + nδω (where n = {-M,…,0,…,M}). The cutoff frequencies of the bandwidth 

are ωc = ω0 ± Mδω
 

[29]. These discrete monochromatic components are then treated 

independently by the well-established RCWA analysis technique, which, at a given incident 

angle, provides the complex reflection coefficients R(ωn) (or R(λn)) and complex transmission 

coefficients T(ωn) (or T(λn)) of every diffraction orders. In addition, the independent analysis of 

each monochromatic component can facilitate the inclusion of material dispersion effects. The 
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reflected pulse ЕR(ωn) and transmitted pulse ЕT(ωn) in frequency-domain for a specific 

diffraction order are thus respectively given by the following two equations:  

)()()( nnynR REE ωωω = ,    (2.7) 

)()()( nnynT TEE ωωω = .    (2.8) 

To obtain the time-domain representation of the reflected and transmitted pulses, the 

standard inverse Fourier transform is performed. Since the frequency domain representation of 

the fields is discrete and finite, Riemann sum can substitute the integral in the inverse Fourier 

transform. In other words, the reflected and transmitted fields can be obtained by superimposing 

the resulting spectral components, as is given by Eq. (2.9) and Eq. (2.10), assuming that the 

Fourier kernel is included in the expression for the fields ЕR(t; ωn) and ЕT(t; ωn) [29].  

∑∫
∞

∞−

==
n

nRRR tEdtjEtE δωω
π

ωωω
π

);(
2

1
)exp()(

2

1
)( ,     (2.9) 

 
∑∫

∞

∞−

==
n

nTTT tEdtjEtE δωω
π

ωωω
π

);(
2

1
)exp()(

2

1
)( .    (2.10) 

Figure 2.1 clarifies the flow of this computational method.  Utilizing this technique, we 

find the time delay of the pulse as well as incident, reflected, and transmitted pulse shapes over 

a wide range of incident pulse widths (from ~several fs to hundreds of ps).  The time delay (τ) 

and delay dispersion (D) for transmission elements are calculated as  

λϕπλτ ddc)2/(
2=           (2.11) 

λτ ddD −= .                     (2.12) 

where φ is the wavelength (λ) dependent phase in transmission [32,35-36]. Note that for 

reflection elements, the sign change of time delay (τ) and delay dispersion (D) should be 

placed.   
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Figure 2.1 Flow chart of the computational procedure utilized to obtain the output pulse shapes 
in wavelength and time domains. FFT: Fast Fourier Transform, RCWA: Rigorous Coupled-
Wave Analysis, and IFFT: Inverse Fast Fourier Transform. 
 

  

2.3 Simulation Results 

The results presented in this thesis are calculated by combining the Fourier 

decomposition techniques and RCWA method. Details about the formalization and 

implementation of RCWA method can be found in references [35-36]. Some of the structures 

are designed with the particle swarm optimization (PSO) technique [37-38]. 

2.3.1 Single-grating-layer GMR Structures 

 Figure 2.2 illustrates a typical single-grating-layer leaky-mode resonant structure. A 

four-parts grating layer with high-index nsi (silicon) and low-index 1.0 (air) is sandwiched 

between two semi-infinite media: cover region and substrate region. The cover region is usually 

assumed as air and the substrate region is taken as glass with a refractive index of ns = 1.48. 

The average refractive index of the grating layer has to be higher than the substrate and cover 

refractive indices for wave guiding and leaky-mode resonances to occur. Filling factors F1, F3 

indicate the fractional grating period with high-index and F2, F4 indicate the fractional grating 

period with low-index. Other parameters are the thickness d and period Λ of the grating layer. 
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The single waveguide grating layer functions as both the diffraction and guiding of light, 

assuming the structure is transversely infinite.  

To attain highly efficient filters, a high spatial frequency grating (Ʌ < λ) or 

subwavelength grating is chosen to prevent higher diffraction orders from propagating. This type 

of structure operates in the zero-order regime, indicating that only zero order diffracted waves 

propagate with higher orders cutoff.  All the materials used in the structures are lossless and 

free of dispersion, except, as specified. The incident wave is assumed to be a normally-incident 

TE polarized (the electric field vector is perpendicular to the paper) plane wave.  

 
Figure 2.2 Schematic of single-grating-layer GMR structure. Here, Λ and d is the period and 

thickness of the grating respectively. [F1, F2, F3, F4] is the filling factor of the grating layer. nsi 
(silicon) is the high-index of grating layer; the low-index of grating layer is assumed to be 1.0 
(air). The substrate is usually made of materials like silicon dioxide (SiO2). The solid black arrow 
indicates the normally-incident plane wave with TE polarization.  
 
 
 
 2.3.1.1 Reflection Filter     

 The first structure treated is a silicon-on-insulator (SOI) single-grating-layer guided-

mode resonant (GMR) reflection filter with ~27 nm spectral width. The four-part period grating 

sits on the silicon dioxide substrate with a refractive index of ns = 1.48. Filling factors are [F1, F2, 

F3, F4] = [0.1, 0.13, 0.15, 0.62]; Grating layer thickness and period are d = 0.37 µm and Λ = 

0.822 µm, respectively; High-index of grating layer is nsi = 3.48 and the refractive index of air is 

Substrate 

 

   nsi  

 
    

Λ 

d   
F1        F2       F3        F4 
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1.0. Figure 2.3 shows the spectral reflectance and phase, time delay and dispersion of a single-

layer guided-mode resonant refection filter under a normally incident TE-polarized plane wave. 

In general, a single-layer resonant leaky mode filter exhibits a spectral phase which changes 

monotonically by π in the vicinity of the resonance wavelength, as can be seen in Figure 2.3 (b), 

and a very limited low dispersion band in wavelength in Figure 2.3 (c); appreciable dispersion 

only occurs at the band edges, shown in Figure 2.3 (d). In Figure 2.3 (a), it is obvious that this 

single-layer structure has one resonance at the wavelength of 1.569 µm, where it has the 

largest group delay of 0.226 ps and close to zero dispersion, as shown in Figures 2.3 (c) and 

(d). Note that the negative time delay means that the peak of reflected wave packet appears at 

the rear grating plane before the incident wave packet peak reaches the front grating plane. 

The maximum delay depends on the linewidth of the reflectance peak for the single 

resonance structure. This can be interpreted this way: the narrower linewidth of reflectance 

peak has a larger Q-factor, meaning the electric field will be retarded for a longer time due to 

resonance. This provides us one feasible way to maximize the time delay by designing resonant 

nanostructures with proper linewidth of resonance peak. In the following section, one example is 

given to show that high Q-factor and time delay can be obtained by coupling two identical 

single-layer leaky-mode resonant reflection filters.  
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Figures 2.3 (a) Spectral reflectance and (b) phase, (c) time delay and (d) dispersion of the 
single-grating-layer GMR reflection filter. Structure parameters are [F1, F2, F3, F4] = [0.1, 0.13, 
0.15, 0.62]; d = 0.37 µm; Λ = 0.822 µm; nsi = 3.48; ns = 1.48.  
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(c) (d) 
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Figure 2.4 (a) The normalized pulse spectrum and GMR reflection filter spectrum; (b) Incident 
pulse and reflected pulse in time domain.  

 
 

To verify the time delay, a normalized Gaussian pulse is incident upon the single-layer 

leaky-mode resonant reflection filter. The reflected pulse and transmitted pulse can be detected 

and analyzed. Figure 2.4 demonstrates that an optical Gaussian pulse with the central 

(a) 

(b) 
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wavelength of 1.569 µm and temporal full width half maximum (FWHM) width of 0.45 ps, which 

corresponds to a FWHM width of 8.23 nm in wavelength. The incident pulse experiences a time 

delay of 0.18 ps. In addition, the maximum intensity of the reflected pulse is reduced to ~86.3% 

and broadened by ~8.9% in time domain. This is because not all the spectral components of the 

pulse are within the resonance peak and completely reflected; those outside the resonance 

peak are partially reflected and suffer the appreciable dispersion, leading to the broadened 

reflected pulse.  

  2.3.1.2 Transmission Filter 

The second structure is a single-grating-layer silicon-on-insulator (SOI) GMR 

transmission filter with 0.26 nm spectral width and minimal sidelobes. This filter is designed 

using the particle swarm optimization (PSO) technique.  This device has structural parameters 

Λ = 979 nm, d = 465 nm, [F1, F2, F3, F4] = [0.071, 0.275, 0.399, 0.255], nsi = 3.48 and ns = 1.48. 

Figure 2.5 shows the spectral transmittance and phase response, time delay, and dispersion of 

this filter under normal incidence with TE polarization. As seen in Figure 2.5 (a), this filter has a 

transmission resonance at the wavelength of 1524.51 nm. It can provide time delays as high as 

~9.6 ps at the transmission resonance, however, the dispersion width is narrow and zero 

dispersion is obtainable only near 1524.51 nm. Figures 2.6 (a) and (b) display the response of 

this filter to excitation with a pulse in the spectral (wavelength) and time domains, respectively. 

The pulse has a full-width half-maximum (FWHM) of 30 ps in time and the central wavelength at 

1524.51 nm, and its spectrum fits well spectrally inside the transmission bandwidth of the filter.  

The output pulse preserves its shape with a delay of ~8.25 ps with respect to the input pulse.  

Since this is a leaky-mode resonant transmission filter with a substantial time delay, 

higher time delay and flat dispersion can be achieved by cascading a large number of such 

identical transmission filters. In the following sections, examples are shown to verify this 

approach to attain a desirable time delay.  
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Figures 2.5 (a) Spectral transmittance and (b) phase, (c) time delay and (d) dispersion of the 
single-grating-layer GMR transmission filter. Structure parameters are: [F1, F2, F3, F4] = [0.071, 
0.275, 0.399, 0.255]; d = 0.465 µm; Λ = 0.979 µm; nsi = 3.48; ns = 1.48.  
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Figure 2.6 (a) The normalized pulse spectrum and GMR transmission filter spectrum 
(normalized for clear comparison); (b) Incident pulse and transmitted pulse in time domain.  
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2.3.2 Coupled Single-grating-layer GMR Structures  

2.3.2.1 Coupled GMR Reflection Filters     

By coupling two identical single-grating-layer GMR reflection filters, novel spectral 

signatures are realizable. Figure 2.7 shows an example structure. The same GMR reflection 

filter from section 2.3.1.1 is used to form the coupled GMR reflection filter (note that there is no 

phase shift or lateral displacement between the two filters). The interference phenomena in a 

double-sided corrugated waveguide was studied and used to design a narrowband optical filter, 

where the spatial phase shift between the two corrugated waveguides plays an important role in 

narrowing the resonance bandwidth [39-40]. Also, by cascading two identical resonant grating 

reflection filters with sufficiently large gap and π out of phase, increasingly wide and flattened 

spectral responses were obtained [41]. MEMS tunable resonant leaky mode filters based on the 

modulation of symmetry profile were also reported; a variable reflector was proposed by 

vertically tuning the distance between two waveguide gratings [42].  

In a coupled GMR reflection filter, a transmission peak (100%) may appear within the 

range of reflection resonance of the single GMR reflection filter due to the evanescent coupling 

between the two guides. As the distance between the two reflection filters is tuned, the 

transmission peak shifts in wavelength. It is possible to design a coupled GMR reflection filter 

with high Q-factor and time delay. In other words, we can configure the sensitivity of the coupled 

GMR reflection filters by adjusting the distance between the filters. Figure 2.8 and Figure 2.9 

show the transmittance and delay for two different gap distances between the two single-

grating-layer GMR reflection filters. It is clear that the width of the transmission peak is much 

smaller compared with the single GMR reflection filter.  

In addition, the width of transmission peak is very sensitive to the gap distance between 

the two single-grating-layer GMR reflection filters. By changing the gap distance from h = 2.169 

µm to h = 2.168 µm, the width of transmission peak is increased from 0.8 pm to 1.3 pm, and the 

peak delay is reduced from 3.23 ns to 2.01 ns. Figure 2.10 shows the transmittance and delay 
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for various gap distances.  As the distance increase from h = 2.16 µm to h = 2.18 µm, the peak 

delay first increases and then decrease at the point close to h = 2.17 µm, which is close to the 

center of reflection resonance of single GMR reflection filter. This can also be explained by the 

temporal coupled-wave theory as discussed in detail in [43-44].  

 

Figure 2.7 Scheme of coupled GMR reflection filters. The gap between the two GMR reflection 
filters is made of air and h denotes the distance between the two filters. The rest parameters are 
the same as that in Figure 2.3: [F1, F2, F3, F4] = [0.1, 0.13, 0.15, 0.62]; d = 0.37 µm; Λ = 0.822 
µm; nsi = 3.48; ns = 1.48.   
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Figure 2.8 Transmittance (a) and delay (b) of a coupled GMR reflection filter with the gap 
distances of h = 2.169 µm.  
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Figure 2.9 Transmittance (a) and delay (b) of a coupled GMR reflection filter with the gap 
distances of h = 2.168 µm.  

(a) 

(b) 



 

21 

 

1568.2 1568.3 1568.4 1568.5 1568.6 1568.7 1568.8 1568.9 1569
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

T
ra

n
s
m

it
ta

n
c
e

h = 2.16

h = 2.165

h = 2.17

h = 2.175

h = 2.18

1568.5 1568.6 1568.7 1568.8 1568.9
0

500

1000

1500

2000

2500

3000

Wavelength (nm)

D
e

la
y
 (

p
s
) h = 2.16

h = 2.165

h = 2.17

h= 2.175

h = 2.18

 

Figure 2.10 Transmittance (a) and delay (b) versus wavelength for various gap distances: h = 
2.16 µm, h = 2.165 µm, h = 2.17 µm, h = 2.175 µm, h = 2.18 µm.  

 

 

2.3.2.2 Cascaded GMR Transmission Filters     

Cascading all-pass filter to obtain the desired time delay and dispersion management 

has been implemented by many researchers, as discussed in Chapter 1. Here, a number of 

GMR transmission filters are cascaded to realize the desirable time delay and flat dispersion 

versus wavelength. Figure 2.11 shows the scheme of two cascaded GMR transmission filters 

(a) 

(b) 
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with structure parameters [F1, F2, F3, F4] = [0.071, 0.275, 0.399, 0.255]; d = 0.465 µm; Ʌ = 0.979 

µm; nsi = 3.48.  The two cascaded single-grating-layer GMR transmission filters can also be 

considered as a resonant cavity, and desired time delay is achieved by cascading a number of 

such cavities [45]. In Figure 2.12, the transmittance, delay and dispersion in wavelength for a 

cascaded two identical single-grating-layer GMR transmission filters are shown. Compared with 

the single GMR transmission filter, the FWHM width of the transmission peak is the same (0.5 

nm) and the time delay is on the same order. However, the maximum dispersion is reduced 

from 50 ps/nm to ~13 ps/nm. In the next chapter, it is shown that smaller or even flat dispersion 

can be achieved by cascading a large number of such cavities formed by two single-grating-

layer GMR transmission filters.     

 

Figure 2.11 Schematic of two cascaded GMR transmission filters. The gap between the two 
GMR transmission filters is air and h denotes the distance between the two filters. All the rest 
parameters are: [F1, F2, F3, F4] = [0.071, 0.275, 0.399, 0.255]; d = 0.465 µm; Λ = 0.979 µm; nsi = 

3.48.  
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Figure 2.12 Transmittance (a), delay (b) and dispersion (c) from a cascade of two identical 
single-grating-layer GMR transmission filters with a gap distance of h = 2 µm.  
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CHAPTER 3 

 
DEVICE APPLICATIONS OF DISPERSION PROPERTIES OF 

LEAKY-MODE RESONANCE STRUCTURES  
 

3.1 Effect of Loss in Coupled GMR Reflection Filters with High Q-factor 

Another limiting factor of optical transmission system is the power loss in waveguides. 

The power of a light beam travelling through an optical waveguide decreases exponentially due 

to losses, which arise mainly from absorption and scattering. The attenuation coefficient is 

defined in units of decibels per kilometer (dB/km) [1] and is denoted here by Г, which is related 

to the extinction coefficient k of the waveguide material (the imaginary part of complex refractive 

index) by the following formula  

k = Гλ/(4π),                       (3.1) 

where λ is the wavelength of propagation wave in the waveguide; and Г is defined by the 

following equation 

Г = 10 log10 (P0/PL)/L,         (3.2) 

where the PL/P0 is the ratio of transmitted to incident power for a waveguide of length L km. For 

a light beam propagating through a cascade of several lossy systems, the overall loss in dB is 

the sum of the dB losses [1].  

The attenuation coefficient also depends on wavelength. There are strong absorption 

bands resulting from various transitions of electrons and molecules in the waveguide. Besides, 

the randomly localized variations of the molecular may introduce random inhomogeneities in the 

refractive index, which form scattering centers. The scattered intensity based on this effect is 

proportional to 1/λ
4
, so short wavelengths are scattered more than long wavelengths [1]. 

However, this thesis mainly considers wavelengths in the transparency window in silicon 
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waveguides, where scattering is very small. Ignoring scattering losses, the attenuation 

coefficient is related to propagation loss in 1/µm by the equation  

Propagation_ Г [1/µm] = Г [dB/km] / (20×log10(e)×10
9
).       (3.3) 

In order to improve the performance of optical waveguides as data-transmission 

channels, special designs of silicon waveguide including etchless silicon [46], amorphous silicon 

[47], rib-silicon on insulator [48] and strip-silicon on insulator [49] have been implemented to 

reduce the propagation loss. Table 3.1 gives a brief summary of typical propagation losses in 

these designed silicon waveguides. It is acceptable for the optical power travel through a silicon 

waveguide if the attenuation coefficient is in the range of 0.1-1.6 dB/cm. The coupled GMR 

reflection filters should be able to survive under such attenuation to be used in practical device 

applications.  

 

Table 3.1 Reported Losses in Silicon Waveguides 
Propagation Loss   Wavelength Waveguide 

0.3 dB/cm (3.45×10
-6

 µm
-1

) 1.55 µm Si [46] 

0.5 dB/cm (5.76×10
-6

 µm
-1

) 
1.6 dB/cm (1.84×10

-5
 µm

-1
) 

1.55 µm 
1.30 µm 

a-Si [47] 

0.1 dB/cm (1.15×10
-6

 µm
-1

) 1.30 µm rib-Si, SOI [48] 

0.92 dB/cm (1.06×10
-5

 µm
-1

) 1.52 µm strip-Si, SOI [49] 

                                 Note: SOI denotes silicon on insulator.   

 

Figure 3.1 gives the transmittance, phase, time delay and dispersion of a coupled GMR 

reflection filter with an attenuation coefficient Г = 5 ×10
-6

 µm
-1

 (0.434 dB/cm). The coupled GMR 

reflection filter has the same structural parameters as shown in Figure 2.7 except that the 

substrate is replaced by air. The lossy silicon coupled GMR filter has ~44% peak transmittance 

and a peak delay of ~3 ns at the resonant wavelength. In Figure 3.2, the transmittance peak 

reaches ~89% and the peak delay is ~ 6 ns with an attenuation coefficient Г = 0.5 ×10
-6

 µm
-1

 

(0.0434 dB/cm). By comparing the results of Figure 3.1 and 3.2, it is clear that the attenuation 
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loss strongly degrades the transmittance and delay. Fortunately, the coupled GMR reflection 

filters show the potential to be used as a high-Q optical resonator with a high time delay under 

practical attenuation coefficients.   
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Figure 3.1 Spectral transmittance (a), delay (b), phase (c) and dispersion (d) of a coupled GMR 
reflection filter with attenuation coefficient Г = 5 ×10

-6
 µm

-1
 and gap distance h = 2.169 µm. The 

rest structure parameters are [F1, F2, F3, F4] = [0.1, 0.13, 0.15, 0.62]; d = 0.37 µm; Λ = 0.822 
µm; nsi = 3.48; ns = 1.0 (air).  
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Figure 3.2 Spectral transmittance (a), delay (b), phase (c) and dispersion (d) of a coupled GMR 
reflection filter with attenuation coefficient Г = 0.5 ×10

-6
 µm

-1
 and gap distance h = 2.169 µm. 

The rest structure parameters are [F1, F2, F3, F4] = [0.1, 0.13, 0.15, 0.62]; d = 0.37 µm; Λ = 
0.822 µm; nsi = 3.48; ns = 1.0 (air).  
 

 

3.2 Cascaded GMR Transmission Filters for DWDM  

It is already reported that the cascade of a number of GMR transmission filters can 

function as a conceptual optical delay lines [45]. And it is known that arrayed waveguide 

gratings (AWGs) are widely used for dense wavelength division multiplexing (DWDM) 

applications [50]. AWGs are key devices in the rapidly expanding all-optical DWDM networks, 

as they integrate multiple optical functions on a single substrate leading to a single package. 

Cascade of a number of GMR transmission filters can also be employed in DWDM systems with 

(a) 

(b) 

(c) (d) 
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subnanometric resolution. Figure 3.3 illustrates the cascade of a number of GMR transmission 

filters with equal gap distance. Along the X direction the structure has a grating periodicity of Λ = 

0.979 µm and filling factors of [F1, F2, F3, F4] = [0.071, 0.275, 0.399, 0.255. Due to the 

interaction of leaky-mode resonances from each single waveguide layer, multiple transmission 

peaks may appear in the spectral response of the cascade system of GMR transmission filters.  

 

Figure 3.3 Cascade of a number of GMR transmission filters with equal gap distance of h. The 
single GMR transmission filter has the same structure parameters as those in Figure 2.5 except 
that the substrate is replaced by air. [F1, F2, F3, F4] = [0.071, 0.275, 0.399, 0.255]; d = 0.465 µm; 
Λ = 0.979 µm; nsi = 3.48; ns = 1.0 (air). The solid black arrow indicates the incident plane wave.   

 

 

Figure 3.4 is an example of cascade of 4 GMR transmission filters. There are three 

transmission peaks with a spectral FWHM of ~0.2 nm and an equal spacing of ~4 nm in the 

1.518 µm -1.53 µm wavelength range, as shown in Figure 3.4 (a). The three transmission 

channels/peaks have slightly different widths, leading to slightly different peak delays at 

resonance wavelengths. In a cascade of 7 GMR transmission filters, six channels with the 

average spacing of 2 nm in 1.518 µm -1.53 µm range are shown in Figure 3.5. The spectral 

FWHM of each channel is approximately 0.11 nm. 12 channels with a channel spacing of ~ 1 

nm (~ 125 GHz in frequency) and the average channel bandwidth of 0.05 nm are observed in 
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the 1.518 µm -1.53 µm band at the spectral response of a cascade of 13 GMR transmission 

filters, as shown in Figure 3.6.  

The wavelength range is primarily determined by the gap distance between the two 

neighboring GMR transmission filters. The average linewidth of these transmission peaks (or 

average bandwidth of channels) gets smaller and thus higher time delay and dispersion in 

Figure 3.5, compared with the computed results in Figure 3.4. Generally, N channels can be 

obtained by cascading (N+1) GMR transmission filters, which create N cavities. And the 

corresponding channel bandwidth and the spacing between two neighboring channels both get 

smaller with the increasing number of cascaded GMR transmission filters. In addition, the 

spacing and channel bandwidth can be tuned by adjusting the structure parameters such as the 

thickness and period of grating layer, filling factors and refractive index.   
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Figure 3.4 Spectral response (a), time delay (b) and dispersion (c) of a cascade of 4 GMR 
transmission filters with gap distance h = 2 µm.   
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Figure 3.5 Spectral response (a), time delay (b) and dispersion (c) of a cascade of 7 GMR 
transmission filters with gap distance h = 2 µm.   
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Figure 3.6 Spectral response (a), time delay (b) and dispersion (c) of a cascade of 13 GMR 
transmission filters with gap distance h = 2 µm.   
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3.3 Slow Light and Optical Delay Lines 

Two free-standing membranes (single-grating-layer GMR transmission filter) with an air 

gap (cavity) between them is used to realize a ~0.75 nm (FWHM) flat-top transmission band as 

shown in Figure 3.7.  Again, this structure is designed by PSO and its structural parameters are: 

Λ = 1103.9 nm, d = 432.2 nm, [F1, F2, F3, F4] = [0.0626, 0.3013, 0.4576, 0.1785], and dC = 

2000 nm (the cavity width). Figure 3.7 illustrates the transmittance, phase, delay, and dispersion 

of this single cavity device. This element shows a flat-top transmission bandwidth, which 

actually is a result of merging two adjacent narrow transmission resonances.  In addition, the 

delay response exhibits an average of ~7 ps in the transmission band. Figure 3.8 shows the 

pulse response of this filter in wavelength and time domains, respectively. The input pulse has a 

FWHM of 20 ps in time and spectrally fits well inside the transmission bandwidth of the filter. 

The input pulse is delayed by ~6.1 ps by being transmitted through this filter in good agreement 

with the delay in Figure 3.7.  

By cascading the single-cavity filter as that in Figures 3.7, we can build a structure 

resembling a multi-cavity photonic crystal waveguide [51].  To illustrate, we cascade five GMR 

subunits with spacing dB= 5.0 µm (the distance between two neighboring cavities). Figure 3.9 

shows the computed results. Although the high-transmission bandwidth is smaller than it is for 

the single-cavity structure, cascading the cells results in a flat delay response of ~30 ps over a 

~0.5 nm wavelength band. Moreover, the flat low-dispersion response illustrates that such 

structures are promising for imposing constant (and almost dispersion-free) delays on optical 

pulses.  Theoretically, this ~30 ps group delay for the ~34 µm long structure designed here 

corresponds to a group velocity of ~0.0038c0.  Figure 3.10 displays the response of this filter to 

pulse excitation. The input pulse has a temporal FWHM of 30 ps, and the output pulse 

preserves its shape with a delay of ~30 ps with respect to the input pulse. For comparison, 

Notomi et al. reported 75 ps delay with 60 cavities each being 2100 nm in diameter; the total 

structure length was 175 mm [51].  
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Figure 3.7 Spectral transmittance (T0) and phase, time delay and dispersion of single-cavity 
filter. Λ=1103.9 nm, d = 432.2 nm, [F1, F2, F3, F4] = [0.0626, 0.3013, 0.4576, 0.1785], and dC = 
2000 nm.  

 
 

 

Figure 3.8 Pulse response of the single-cavity filter. (a) Spectrum of the input pulse in relation to 
the filter spectrum. (b) Time domain response. FWHM of the input pulse is 20 ps. 
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Figure 3.9 Spectral transmittance (T0) and phase, delay and dispersion of the five-cavity GMR 
transmission filter. Λ=1103.9 nm, d = 432.2 nm, [F1, F2, F3, F4] = [0.0626, 0.3013, 0.4576, 
0.1785], dC = 2000 nm, dB = 5000 nm.  

 
 

 

Figure 3.10 Pulse response of this filter (a) in wavelength, and (b) in time domain. The output 
pulse experiences a ~30 ps time delay with respect to the input pulse.   

 

Figure 3.11 shows a conceptual implementation of a GMR slow-light device. If the 

device height dD is large, the device functions as a bulk element. Each sub-ridge layer is a GMR 
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light will resonate transversely and be reradiated forward to the next GMR layer. This idea can 

also be implemented with a series of GMR filters on numerous substrates cascaded as a stack. 

The concept in Figure 3.11 is convenient in that a large number of cascaded resonant units can 

be fabricated in a few steps by e-beam lithography (EBL) and deep reactive ion etching (DRIE), 

resulting in a compact system of resonant delay units. Certainly, the dimensions of the device 

and the input beam size should be specified with practical limitations in mind. On the other 

hand, if thickness dD is small, such as on the order of 100-300 nm, this can be a waveguide 

device. In that case, the functionality of the device employs waveguiding is a dual sense. First, 

there is the waveguide that guides light from one resonant layer to the next. For that to work, 

the structure requires a higher average refractive index than that of the surrounding media as 

usual. A membrane in air will satisfy this requirement with additional considerations if the device 

sits on a substrate. Second, each GMR cell forms a resonant waveguide. In principle, we can 

cascade a large number of these GMR cells to achieve a specified time delay. Indeed, multiple-

cell cascading is the basis for the new coupled-resonator optical waveguide (CROW) 

technology being developed [51].  

 

Figure 3.11 Schematic view of a conceptual implementation of an example GMR slow-light 
device. Multiple resonant units can be cascaded to realize a specified delay.  Only three 
subunits, each based on two transversely-resonant GMR elements, are shown. Here, dD is the 
device thickness, dC is the cavity length, and dB is the buffer length. Other parameters are 
defined in Figure 2.11 [45].  
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CHAPTER 4 

CONCLUSIONS  

4.1 Contributions 

In the past, considerable research work has been performed on the spectral amplitude 

properties of leaky-mode resonance structures. In contrast, the spectral phase properties which 

are directly related to the dispersive properties have received less attention. In this thesis, a 

numerical computation method for the analysis of optical pulses propagating through leaky-

mode/guided-mode resonance structures is formalized and implemented based on the 

combination of Fourier spectral decomposition technique and rigorous coupled-wave analysis 

(RCWA) method. Then, the dispersion properties of various leaky-mode resonance example 

structures including single-grating-layer GMR reflection and transmission filters, cascaded GMR 

filters, and coupled GMR filters are analyzed numerically in details. Specifically, the phase, time 

delay and dispersion characteristics of each device are studied, as well as their interaction with 

optical pulses. Finally, device applications such as high-Q filter, DWDM filter, and optical delay 

lines based on the dispersion properties of leaky-mode resonance structures are proposed. 

High-Q transmission filter can be designed from a coupled narrow linewidth GMR reflection 

filters. The loss analysis shows that this high-Q property can withstand typical attenuation 

losses in silicon waveguides. By cascading a number of GMR transmission filters, dense 

wavelength division multiplexing filters with subnanometric resolution are proposed. DWDM 

filter with N channels can be made from a cascade of N+1 GMR transmission



 

 38

filters. The channel bandwidth strongly depends on the gap distance between two neighboring 

GMR transmission filters. A conceptual implementation of GMR optical delay line device is also 

proposed.  

 

4.2 Future Work 

All the contributions in the thesis are limited in three aspects. Firstly, leaky-mode 

structures are TE-polarized and the incident pulse is TE-polarized incident Gaussian pulse. 

Future work can be performed in TM-polarized cases. Secondly, all the leaky-mode structures 

are one-dimensional structures or mixture of one-dimensional structures. Future work can be 

done for two-dimensional cases. Thirdly, all the presented results need to be verified by 

physical experiments. Future work on the experiment setup to verify the time delay and 

dispersion properties of such devices is necessary. In addition, to implement a practical device, 

the imperfection and perturbation during fabrication of such devices also need to be considered, 

which is out of the scope of the thesis. In addition, these proposed devices can be optimized by 

using various optimization and design methods.  



 

 

 

39

REFERENCES 

[1] B. E. A.  Saleh, M. C. Teich, FUNDAMENTALS OF PHOTONICS, 2nd edition, A John Wiley 

& sons, Inc., Publication, Chapter 9, 2009 

[2] G. P. Agrawal, Fiber-Optic Communication Systems, Wiley, New York, 1992  

[3] A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber 

based on the LP01 mode,” J. Lightwave Technol. 12, 1739-1745, 1994  

[4] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical 

waveguides,” Opt. Lett., Vol. 12, No. 10, 847-849, 1987  

[5] D. Mendlovic, z. Zalevsky, and P. Andreas, “A novel device for achieving negative or positive 

dispersion and its applications,” Optik (Stuttgart) 110, 45-50, 1999 

[6] C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with 

applications for dispersion compensation,” IEEE Photonics Technol. Lett. 10, 994-996, 1998 

[7] G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control,” 

J. Lightwave Technol. 17, 1248-1254, 1999 

[8] C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, 

“Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE 

Photonics Technol. Lett. 11, 1623-1625, 1999 

[9] I. Kaminow and T. Li, Optical Fiber Telecommunications IV, 4th edition, Academic, San 

Diego, CA, Part B, 642-724, 2002   

[10] P. Vincent and M. Neviere, “Corrugated dielectric waveguides: A numerical study of the 

second-order stop bands,” Appl. Phys. 20, 345-351, 1979 

[11] L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Comm. 

55, 377-380, 1985  



 

 

 

40

[12] E. Popov, L. Mashev, and D. Maystre, “Theoretical study of anomalies of coated dielectric 

gratings,” Opt. Acta 33, 607–619, 1986 

[13] G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of 

light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886-

887, 1985 

[14] I. A. Avrutsky and V. A. Sychugov, “Reflection of a beam of finite size from a corrugated 

waveguide,” J. Mod. Opt. 36, 1527-1539, 1989 

[15] R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 

1022-1024, 1992 

[16] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance 

filters,” Appl. Opt. 32, 2606-2613, 1993 

[17] S. M. Norton, T. Erdogan and G. M. Morris, “Coupled-mode theory of resonant-grating 

filters,” J. Opt. Soc. Am. A 14, 629-639, 1997  

[18] T. Tamir and S. Zhang, “Resonant scattering by multilayered dielectric gratings,” J. Opt. 

Soc. Am. A 14, 1607-1616, 1997  

[19] Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device 

applications,” Opt. Express 12, 5661-5674, 2004 

[20] Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion 

diverse optical spectra,” Opt. Express, 12, 1885-1891, 2004 

[21] S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line 

shapes and low sidebands”, Opt. Lett. 19, 919-921, 1994 

[22] M. Shokooh-Saremi and R. Magnusson, “Wideband leaky-mode resonance reflectors: 

Influence of grating profile and sublayers,” Opt. Express 16, 18249-18263, 2008 

[23] Y. Ding and R. Magnusson, “Band gaps and leaky-wave effects in resonant photonic-

crystal waveguides,” Opt. Express 15, 680-694, 2007  

[24] F. Schreier, M. Schmitz and O. Bryngdahl, “Pulse delay at diffractive structures under 

resonance conditions,” OPTICS LETTERS, Vol. 23, No. 17, 1337-1339, 1998  



 

 

 

41

[25] F. Schreier and O. Bryngdahl, “Confined wave packets in the domain of Rayleigh-Wood 

anomalies,” J. Opt. Soc. Am. A, vol. 17, No. 1, 68-73, 2000  

[26] S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance 

filters,” J. Opt. Soc. Am. A 14, 1617-1626, 1997  

[27] M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi and X. Gao, “Three-

dimensional analysis of subwavelength diffractive optical elements with the finite-difference 

time-domain method,” APPLIED OPTICS, Vol. 39, No. 17, 2878-2879, 2000 

[28] W. Suh and S. Fan, "All-pass transmission or flattop reflection filters using a single photonic 

crystal slab," Appl. Phys. Lett. 84, 4905-4907, 2004  

[29] W. Nakagawa, R. Tyan, P. Sun, F. Xu and Y. Fainman, “Ultrashort pulse propagation in 

near-field periodic diffractive structures by use of rigorous coupled-wave analysis,” J. Opt. Soc. 

Am. A, Vol. 18, No. 5, 1072-1081, 2001  

[30] T. Vallius, P. Vahimaa and J. Turunen, “Pulse Deformations at guided-mode resonance 

filters,” OPTICS EXPRESS, Vol. 10, No. 16, 840-843, 2002  

[31] H. Ichikawa, “Electromagnetic analysis of diffraction gratings by the finite-difference time-

domain method,” J. Opt. Soc. Am. A, Vol. 15, No. 1, 152-157, 1998 

[32] H. Ichikawa, “Analysis of femtosecond-order optical pulses diffracted by periodic structure,” 

J. Opt. Soc. Am. A, Vol. 16, No. 2, 299-304, 1999  

[33] T. Erdogan,”Fiber grating spectra,” J. Lightwave Technol., Vol. 15, No. 8, 1277-1293, 1997  

[34] C. Wang, L. Liu, A. Yan, D. Liu, D. Li, and W. Qu, “Pulse shaping properties of volume 

holographic gratings in anisotropic media,” J. Opt. Soc. Am. A, Vol. 23, No. 12, 3191-3196, 

2006  

[35] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface relief gratings,” 

J. Opt. Soc. Am. 72, 1385-1392, 1982 

[36] T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by 

gratings,” Proc. IEEE 73, 894-937, 1985 



 

 

 

42

[37] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of IEEE 

Conference on Neural Networks (IEEE, 1995), 1942-1948 

[38] M. Shokooh-Saremi and R. Magnusson, “Particle swarm optimization and its application to 

the design of diffraction grating filters,” Opt. Lett. 32, 894-896, 2007 

[39] I. A. Avrutsky, A. S. Svakhin and V. A. Sychugov, “Interference phenomena in waveguides 

with two corrugated boundaries,” J. of Modern Optics 36, 1303-1320, 1989  

[40] B. A. Usievich, V. A. Sychugov and D. K. Nurligareev, “Narrowband optical filter based on a 

Fabry-Perot interferometer with two waveguide-grating mirrors,” Quantum Electron. 37, 475-

478, 2007  

[41] D. K. Jacob, S. C. Dunn and M. G. Moharam, “Flat-top narrow-band spectral response 

obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41, 1241-1245, 2002  

[42] R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photonics 

Technol. Lett. 18, 1479-1481, 2006 

[43] H. Y. Song, S. Kim and R. Magnusson, “Tunable guided-mode resonances in coupled 

gratings,” OPTICS EXPRESS, Vol. 17, No. 26, 23544-23555, 2009 

[44] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of 

Light, Princeton, 1995  

[45] R. Magnusson, M. Shokooh-Saremi, and X. Wang, “Dispersion engineering with leaky-

mode resonant photonic lattices,” OPTICS EXPRESS, Vol. 18, No. 1, 108-116, 2010 

[46] J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss 

etchless silicon photonic waveguides,”  OPTICS EXPRESS, Vol. 17, No. 6, 2009 

[47] A. Harke, M. Krause, and J. Mueller, “Low-loss single-mode amorphous silicon 

waveguides”, ELECTRONICS LETTERS, Vol. 41 No. 25, 2005 

[48] U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm Waveguide 

Losses in Single-Mode SOI Rib Waveguides,” IEEE Photon. Technol. Lett. 8, 1996 



 

 

 

43

[49] M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue and M. Sorel, “Fabrication of low-

loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” 

Electron. Lett. 44, 2008 

[50] H Takahashi, S Suzuki, K Kato, and I Nishi, “Arrayed-waveguide grating for wavelength 

division multi/demultiplexer with nanometer resolution,” Electronics Lett. 26, 87-88, 1990   

[51] M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled 

nanocavities,” Nature Photon. 2, 741-747, 2008 



 

 

 

44

BIOGRAPHICAL INFORMATION 

 

Xin Wang received his Bachelor of Science degree in Electronics Science and 

Technology from Harbin Institute of Technology, China in 2007. Since 2008, he has been a 

graduate research assistant in the department of Electrical Engineering at The University of 

Texas at Arlington, studying diffractive and waveguide optics, guided-mode/leaky-mode 

resonance phenomena in periodic structures, and applications in dispersion engineering. He 

has also developed a Labview feedback control to stabilize the interference pattern for a UV 

holographic lithography system at the University of Connecticut in 2007. His research interests 

include, but not limited to, diffractive optics, waveguide optics, silicon photonics, integrated 

photonics, slow light techniques, bio-sensing etc. After the graduation with a Master of Science 

degree in Electrical Engineering from the University of Texas at Arlington, he plans to pursue a 

PhD degree in optics and photonics area. He is a member of the Optical Society of America and 

a member of the Golden Key International Honor Society — UTA chapter. 

 


