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ABSTRACT 

 
COMPLEXITY REDUCTION FOR VP6 TO H.264 

TRANSCODER USING 

MOTION VECTOR 

REUSE 

 

Jay R Padia, MS 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  K. R. Rao 

 VP6 is a video coding standard developed by On2 Technologies, Inc. It is the preferred 

codec for Macromedia Flash 8 video. VP6 gained importance with Macromedia Flash emerging 

as a widely adopted video streaming technology over the internet. H.264 is currently one of the 

most widely accepted video coding standards in the industry. It enables high quality video at low 

bitrates. Adobe adopted H.264 for its Flash video in August 2007. Adobe looks at adoption of 

H.264 as a major step towards enabling high quality video on the web. Hence there is 

increasing importance of techniques which can convert video from VP6 to H.264 and thereby 

enable high quality video transmission over the internet using Flash.  

VP6 and H.264 are modern standards bearing a lot of similarities and dissimilarities. 

While H.264 is a complex coding standard with sophisticated coding tools to reduce the bitrate 

as much as possible without compromising on the quality, VP6 is much simpler and less 

strenuous on the processor. The VP6 standard is not able to meet the quality levels of H.264 at 

given bitrates; but the perceived image quality is still very good. VP6 also makes use of up to 
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quarter-pixel accuracy motion vectors like H.264 albeit with fewer block sizes for motion 

estimation. Making re-use of these motion vectors available from the decoded VP6 file can 

reduce the underlying encoding complexity in the transcoder to a very large extent. Also the 

corresponding compromise on quality is very less. The proposed technique as shown in this 

research can bring down the complexity significantly without much compromise in the 

transcoded video quality. 
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CHAPTER 1 

INTRODUCTION 

1.1 Significance of video compression and standardization 

We live in the age of Information and Communications technology (ICT). Storage and 

transmission of data at present is more important than it ever was. The emerging importance of 

ICT has been complemented by the digital revolution [1] [2] [3]. The advent of digital storage 

and transmission in the last few decades is a major event. Analog information needs light and 

sound waves for transmission and media such as films for storage; whereas digital information 

of any kind can be represented in 1s and 0s (bits). All different kinds of information such as 

audio, video, images, radar signals, instructions to satellites and space stations, etc. can be 

stored and transmitted in the same form. With this information (or data) generated in large 

amount and ability to process it faster and with fewer errors, data compression assumes a lot of 

importance. Data compression enables representation of entities such as text files, videos, etc. 

with reduced number of bits. 

Data compression involves taking advantage of the redundancy in data to represent the 

information in compact form [4]. There are lossless as well as lossy compression techniques. If 

the data has been losslessly compressed, the original data can be recovered exactly with no 

loss. It is applied in areas where data loss can be detrimental. Text compression is an important 

area of lossless compression [4]. Lossy compression involves some loss of information; so the 

data cannot be recovered exactly. In exchange for such tolerable distortion much higher 

compression can be achieved. Speech compression can be an application [4] where loss of 

information such as high frequency sounds above human hearing capacity can be lost without 

loss of fidelity. Video compression also involves lossy compression [4]. 
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Video has both spatial and temporal redundancy. Getting rid of this redundancy and other lossy 

techniques facilitate very high compression. The volume of video data is usually very high. For 

example, in order to digitally represent 1 second of video without compression (using CCIR 601 

format), more than 20 MBytes or 160 Mbits is required [4]. This amount of data indicates the 

importance of compression for video signals.  

Multimedia applications are targeted for a wide range of applications such as video 

conferencing, video on demand, mobile video broadcast and even medical applications. Given 

such wide range of applications standardization of video compression techniques is essential. 

Standardization ensures interoperability of implementation from different vendors thereby 

enabling end-users to access video from different services both software and hardware [1]. 

There are numerous video compression standards both open-source and proprietary depending 

on the application and end-usage. Experts from academia and industry have formed the Moving 

Pictures Experts Group (MPEG) and Video Coding Experts Group (VCEG) with the aim to bring 

standardization in coding moving pictures or video. The MPEG and VCEG joined together to 

form the Joint Video Team (JVT) in 2001 which developed the ITU-T Rec. H.264 | ISO/IEC 

14496-10, commonly referred to as H.264/MPEG-4-AVC, H.264/AVC, or MPEG-4 Part 10 AVC 

[5]. VP6 is a proprietary standard from On2 Technologies, Inc. In 2005, it was adopted by 

Adobe for its Flash Video and included in its Adobe Flash Player [25]. 

1.2 Why is video transcoding important? 

 Different video compression standards assume significance due to the difference in the 

access to network connectivity, bandwidth, computational capacity, display rate, etc. available 

to the end-user. To be able to deliver and reproduce video and other multimedia data flexibly 

according to the end-user's requirements and capability, content should be dynamically adapted 

to the user's environment. This can include altering characteristics such as bit-rate, frame-rate, 

spatial resolution, coding syntax and even content. The process of transcoding plays an 

important role fulfilling this requirement. A video transcoder is defined as an operation of 
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converting video from one video format to another [30]. Transcoding also has other applications 

such as in statistical multiplexing of video to maintain bandwidth, to include new attributes such 

as company logos, watermarks, etc., adding error resilience capabilities and others [30]. 

1.3 Requirement and usefulness of VP6 to H.264 transcoder 

TrueMotion VP6 from On2 Technologies was adopted by Adobe for its Flash suite of 

products [26]. This has led to emerging importance of VP6 standard and its wide outreach. 

Flash video is a very important aspect of accessibility of video playback on the internet. 

Flash video is rapidly changing the landscape of video on the Web. It is emerging as the 

preferred solution for providing video services online over Windows Media Player, Apple 

Quicktime and Real Networks Real Player [7]. The advantages of Flash Player over its rivals 

are its small size and its completeness as a website development package. Its ability to support 

multiple platforms has made it popular [7]. 

In August 2007, Adobe also adopted the H.264 video coding standard in the Adobe® 

Flash® Player 9 software [8]. H.264 has a set of innovations which can together provide a vast 

improvement in performance over previous generations of video codecs. With H.264 extended 

to the Flash ecosystem, customers can leverage their existing video and audio to deliver 

content to the Web and other devices – up to HD quality. Adobe targeted development at lower 

costs and wider penetration by adoption of H.264 which is already a widely accepted media 

standard [8].  

According to John Loiacono, senior Vice President of Creative Solutions at Adobe, 

“Already a broadly adopted industry standard, the inclusion of the H.264 codec in Adobe Flash 

Player, Adobe AIR, the Creative Suite® product line, and the upcoming Adobe Media Player will 

accelerate customer workflows, enabling the creation and repurpose of high-quality Web video 

content without extra development costs [8].” 

The adoption of H.264 which has superior video quality over most other existing 

codecs, the Flash Player now will be supporting arguably the most popular video standard out 
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there. This promises the enabling of availability of HD video on the web to whoever who wants 

it. Flash Player content reaches over 98 percent of Internet-enabled desktops. More than 80 

percent of online videos worldwide are viewed using Adobe Flash technology, making it the 

number one format for video on the Web [8]. Adoption of a previous update to Flash Player 9 

set all-time records by achieving nearly 90 percent reach on Internet-enabled desktops in less 

than nine months. 

Tools like Adobe Premier Pro and Adobe After Effects support H.264 encoding at 

present. As Flash Player supports playback of any H.264 encoded video developers can 

leverage both the existing video assets encoded as well as the entire spectrum of tools and 

infrastructure that support H.264 [8]. Thus Adobe has this huge ecosystem now built around the 

H.264 codec. 

According to Adobe, the adoption of H.264 for Flash is a great thing for web video. 

Combination of a great format like H.264 and a runtime like Flash is the best thing to happen to 

web for it to embrace HD-quality video [8]. 

On2 Truemotion VP6 was the main codec for Flash Video. The adoption of H.264 by 

flash and the rapid rise in its acceptance as the ideal format for high quality web video paves 

the way for the proposed research.  Here a transcoding technique to transcode existing VP6 

content to H.264 is proposed.  

1.4 Outline of the work  

 The research work presented here proposes a reduced complexity transcoding 

technique to transcode a VP6 video sequence to H.264 video sequence. Before transcoding 

between two codecs, it is important to understand the coding tools and syntax of both the 

codecs. The second chapter contains an overview of the H.264 codec. H.264 is an advanced 

codec with many sophisticated coding tools introduced for the first time. The third chapter 

describes the VP6 standard. VP6 is proprietary standard. The chapter gives an overview of the 

coding technique used in VP6 to achieve good quality at lower bitrates with minimal complexity. 
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It is important to compare two codecs before proposing a transcoding technique. Chapter four 

highlights the similarities and dissimilarities between the two codecs and provides a 

performance and output quality comparison. Chapter five gives an overview of the basic 

transcoding architectures, their advantages and disadvantages. The steps and technique 

implemented to reduce the transcoding complexity as compared to basic cascaded architecture 

is described in chapter six. This chapter also describes the results and conclusions along with 

suggestion on possible future work. 

  

   



 

 6 

 

CHAPTER 2 

H.264 VIDEO CODING STANDARD 

2.1 Introduction 

H.264/MPEG4-Part 10 advanced video coding (AVC) introduced in 2003 became one 

of the latest and most efficient video coding standards [9]. The H.264 standard was developed 

by the Joint Video Team (JVT), consisting of VCEG (Video Coding Experts Group) of ITU-T 

(International Telecommunication Union – Telecommunication standardization sector), and 

MPEG (Moving Picture Experts Group) of ISO/IEC [9]. 

H.264 can support various interactive (video telephony) and non-interactive 

applications (broadcast, streaming, storage, video on demand) as it facilitates a network friendly 

video representation [11]. It leverages on the previous coding standards such as MPEG-1, 

MPEG-2, MPEG-4 part 2, H.261, H.262 and H.263 [10] [12] and adds many other coding tools 

and techniques which give it superior quality and compression efficiency.  

Like any other previous motion-based codecs, it uses the following basic principles of 

video compression [5]: 

•  Transform for reduction of spatial correlation 

•  Quantization for control of bitrate 

•  Motion compensated prediction for reduction of temporal correlation 

•  Entropy coding for reduction in statistical correlation. 

The improved coding efficiency of H.264 can be attributed to the additional coding tools 

and the new features. Listed below are some of the new and improved techniques used in 

H.264 for the first time [11]: 

•  Adaptive intra-picture prediction 
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•  Small block size transform with integer precision 

•  Multiple reference pictures and generalized B-frames 

•  Variable block sizes 

•  Quarter pel precision for motion compensation 

•  Content adaptive in-loop deblocking filter and 

•  Improved entropy coding by introduction of CABAC (context adaptive binary arithmetic 

coding) and CAVLC (context adaptive variable length coding) 

The increase in the coding efficiency and increase in the compression ratio results to a 

greater complexity of the encoder and the decoder algorithms of H.264, as compared to 

previous coding standards. In order to develop error resilience for transmission of information 

over the network, H.264 supports the following techniques [11]: 

•  Flexible macroblock ordering 

•  Switched slice 

•  Arbitrary slice order 

•  Redundant slice 

•  Data partitioning 

•  Parameter setting 

2.2 Profiles and levels of H.264 

The H.264/AVC standard is composed of a wide range of coding tools. Also, the 

standard addresses a large range of bit rates, resolutions, qualities, applications and services. 

Not all the tools and all the bitrates are required for any given application at a given point of 

time. All the various tools of H.264 are grouped in profiles.  

2.2.1. Profiles in H.264 

Profiles are defined as a subset of coding tools. They help to maximize the 

interoperability while limiting the complexity [5] [13]. Also, the various levels define the various 

parameters like size of decoded pictures, bit rate, etc. 
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The profiles defined for H.264 can be listed as follows [14]: 

1.  Baseline profile 

2.  Extended profile 

3.  Main profile 

4. High Profiles defined in the FRExts amendment 

Figure 2.1 illustrates the coding tools for the various profiles of H.264. 

 

 

Figure 2.1 Different profiles in H.264 with distribution of various  
coding tools among the profiles [10] 

 

2.2.1.1. Baseline Profile 

The list of tools included in the baseline profile are I (intra coded) and P (predictive 

coded) slice coding, enhanced error resilience tools of flexible macroblock ordering, arbitary 

slices and redundant slices. It also supports CAVLC (context-based adaptive variable length 

coding). The baseline profile is intended to be used in low delay applications, applications 
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demanding low processing power, and in high packet loss environments. This profile has the 

least coding efficiency among all the three profiles. 

2.2.1.2. Main Profile 

The coding tools included in the main profile are I, P, and B (bidirectionally prediction 

coded) slices, interlace coding, CAVLC and CABAC (context-based adaptive binary arithmetic 

coding). The tools not supported by main profile are error resilience tools, data partitioning and 

SI (switched intra coded) and SP (switched predictive coded) slices. This profile is aimed to 

achieve highest possible coding efficiency. 

2.2.1.3. Extended Profile 

This profile has all the tools included in the baseline profile. As illustrated in the Fig. 

2.1, this profile also includes B, SP and SI slices, data partitioning, interlace frame and field 

coding, picture adaptive frame/field coding and MB adaptive frame/field coding. This profile 

provides better coding efficiency than baseline profile. The additional tools result in increased 

complexity. 

2.2.1.4. High Profiles defined in the FRExts amendment 

In September 2004 the first amendment of H.264/MPEG-4 AVC video coding standard 

was released [14]. A new set of coding tools were introduced as a part of this amendment. 

These are termed as “Fidelity Range Extensions” (FRExts). The aim of releasing FRExts is to 

be able to achieve significant improvement in coding efficiency for higher fidelity material. The 

application areas for the FRExts tools are professional film production, video production and 

high-definition TV/DVD. 

The FRExts amendment defines four new profiles (refer Figure 2.2) [15] [17]: 

•  High (HP) 

•  High 10 (Hi10P) 

•  High 4:2:2 (Hi422P) 

•  High 4:4:4 (Hi444P) 
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Figure 2.2 Tools introduced in FRExts and their classification under 
the new high profiles [14] 

 

All four of these profiles build further upon the design of the prior Main profile. The table 

2.1 provides a comparison of the high profiles introduced in FRExts with a list of different coding 

tools and which of them are applied to which profile. All of the high profiles include the following 

three enhancements of coding efficiency performance [15]: 

•  Adaptive macroblock-level switching between 8x8 and 4x4 transform block sizes 

 The main aim behind introducing 8x8 transform in FRExts was because high fidelity 

video demands preservation of fine details and textures. To achieve this, larger basis 

functions are required. However smaller transform like 4x4 reduces ringing artifacts and 

reduces computational complexity. The encoder adaptively choses between 4x4 and 

8x8 transform.  

 The transform selection process is limited by the following conditions 

• If an inter-coded MB has sub-partition smaller than 8x8 (i.e. 4x8, 8x4, 4x4), then 

4x4 transform has to be used. 

• If an intra-coded MB is predicted using 8x8 luma spatial prediction, only 8x8 

transform is used. 

•  Encoder-specified perceptual-based quantization scaling matrices 
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 The encoder can specify a matrix for scaling factor according to the specific frequency 

associated with the transform coefficient for use in inverse quantization scaling by the 

decoder. This allows optimization of the subjective quality according to the sensitivity of 

the human visual system, less sensitive to the coded error in high frequency transform 

coefficients [10]. 

•  Encoder-specified separate control of the quantization parameter for each chroma 

component 

Table 2.1 Comparison of the high profiles and corresponding coding tools 
introduced in the FRExts [14] 

 

Coding tools High High 10 High 4:2:2 High 4:4:4 

Main Profile 
tools 

x x x x 

4:2:0 Chroma 
format 

x x x x 

8 bit sample bit 
depth 

x x x x 

8x8 vs. 4x4 
transform 
adaptivity 

x x x x 

Quantization 
scaling matrices 

x x x x 

Separate Cb and 
Cr Quantization 
parameter (QP) 

control 

x x x x 

Monochrome 
video format 

x x x x 

9 and 10 bit 
sample depth 

 x x x 

4:2:2 Chroma 
format 

  x x 

11 and 12 
sample bit depth 

   x 

4:4:4 Chroma 
format 

   x 

Residual color 
transform 

   x 

Predictive 
lossless coding 

   x 

 

 

 



 

 12 

2.2.2. Levels in H.264 

In H.264 /AVC, 16 levels are specified. Each level defines upper bounds for the bit 

stream or lower bounds for the decoder capabilities. A profile and level can be combined to 

define the conformance points. These points signify the point of interoperability for applications 

with similar functional requirements [16]. The levels defined in H.264 are listed in Table 2.1. The 

level „1b‟ was added in the FRExts amendment. 

Table 2.2 Levels defined in H.264 [7] 
 

Level number Typical picture 
size 

Typical frame 
rate 

Maximum 
compression bit 
rate (for VLC) in 

Non-FRExt 
profiles 

Maximum 
number of 

reference frames 
for typical picture 

size 

1 QCIF 15 64 kbps 4 

1b QCIF 15 128 kbps 4 

1.1 CIF or QCIF 7.5 (CIF) / 30 
(QCIF) 

192 kbps 2 (CIF) / 9 
(QCIF) 

1.2 CIF 15 384 kbps 6 

1.3 CIF 30 768 kbps 6 

2 CIF 30 2 Mbps 6 

2.1 HHR (480i or 
576i) 

30 / 25 4 Mbps 6 

2.2 SD 15 4 Mbps 5 

3 SD 30 / 25 10 Mbps 5 

3.1 1280x720p 30 14 Mbps 5 

3.2 1280x720p 60 20 Mbps 4 

4 HD formats 
(720p or 1080i) 

60p / 30i 20 Mbps 4 

4.1 HD formats 
(720p or 1080i) 

60p / 30i 50 Mbps 4 

4.2 1920x1080p 60p 50 Mbps 4 

5 2k x 1k 72 135 Mbps 5 

5.1 2k x 1k or  
4k x 2k 

120 / 30 240 Mbps 5 

 

2.3 H.264 Encoder 

Fig. 2.3 illustrates the schematic of the H.264 encoder. H.264 encoder works on 

macroblocks and motion-compensation like most other previous generation codecs. Video is 

formed by a series of picture frames. Each picture frame is an image which is split down into 

blocks. The block sizes can vary in H.264. The encoder may perform intra-coding or inter-
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coding for the macroblocks of a given picture. Intra coded frames are encoded and decoded 

independently. They do not need any reference frames. Hence they provide access points to 

the coded sequence where decoding can start. H.264 uses nine spatial prediction modes in 

intra-coding to reduce spatial redundancy in the source signal of the picture. These prediction 

modes are explained in section 2.3.1. Inter-coding uses inter-prediction of a given block from 

some previously decoded pictures. The aim to use inter-coding is to reduce the temporal 

redundancy by making use of motion vectors. Motion vectors give the direction of motion of a 

particular block from the current frame to the next frame. The prediction residuals are obtained 

which than undergo transformation to remove spatial correlation in the block. The transformed 

coefficients, thus obtained, undergo quantization. The motion vectors, obtained from inter-

prediction or intra-prediction modes are combined with the quantized transform coefficient 

information. They are then encoded using entropy code such as context-based adaptive 

variable length coding (CAVLC) or context-based adaptive binary arithmetic coding (CABAC) 

[10].  

There is a local decoder within the H.264 encoder. This local decoder performs the 

operations of inverse quantization and inverse transform to obtain the residual signal in the 

spatial domain. The prediction signal is added to the residual signal to reconstruct the input 

frame. This input frame is fed in the deblocking filter to remove blocking artifacts at the block 

boundaries. The output of the deblocking filter is then fed to inter/intra prediction blocks to 

generate prediction signals. 

The various coding tools used in the H.264 encoder are explained in the sections 2.3.1 

thru 2.3.6.  
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Figure 2.3 H.264 Encoder block diagram  
 

2.3.1. Intra-prediction 

Intra-prediction uses the macroblocks from the same image for prediction. Two types of 

prediction schemes are used for the luminance component. These two schemes can be referred 

as INTRA_4x4 and INTRA_16x16 [16]. In INTRA_4x4, a macroblock of size 16x16 samples is 

divided into 16 4x4 subblocks. Intra prediction scheme is applied individually to these 4x4 

subblocks. There are nine different prediction modes supported as shown in Fig. 2.4 [18] [19]. 
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Figure 2.4 4x4 Luma prediction (intra-prediction) modes in H.264 [19] 
 

In mode 0, the samples of the macroblock are predicted from the neighboring samples 

on the top. In mode 1, the samples of the macroblock are predicted from the neighboring 

samples from the left. In mode 2, the mean of all the neighboring samples is used for prediction. 

Mode 3 is in diagonally down-left direction. Mode 4 is in diagonal down-right direction. Mode 5 is 

in vertical-right direction. Mode 6 is in horizontal-down direction. Mode 7 is in vertical-left 

direction. Mode 8 is in horizontalup direction. The predicted samples are calculated from a 

weighted average of the prediction samples A to M. 

For prediction of 16x16 intra prediction of luminance components, four modes are 

used. The three modes of mode 0 (vertical), mode 1 (horizontal) and mode 2 (DC) are similar to 

the prediction modes for 4x4 block. In the fourth mode, the linear plane function is fitted in the 

neighboring samples.  

 

Figure 2.5 16x16 Luma prediction modes (intra-prediction) in H.264 [19] 
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The chroma macroblock is predicted from neighboring chroma samples. The four 

prediction modes used for the chroma blocks are similar to 16x16 luma prediction modes. The 

number in which the prediction modes are ordered is different for chroma macroblock: mode 0 

is DC, mode 1 is horizontal, mode 2 is vertical and mode 3 is plane. The block sizes for the 

chroma prediction depend on the sampling format. For 4:2:0 format, 8x8 size of chroma block is 

selected. For 4:2:2 format, 8x16 size of chroma block is selected. For 4:4:4 format, 16x16 size 

of chroma block is selected [10]. 

2.3.2. Inter-prediction 

Inter-prediction is used to capitalize on the temporal redundancy in a video sequence. 

The temporal correlation is reduced by inter prediction through the use of motion estimation and 

compensation algorithms [10]. An image is divided into macroblocks; each 16x16 macroblock is 

further partitioned into 16x16, 16x8, 8x16, 8x8 sized blocks. A 8x8 sub-macroblock can be 

further partitioned in 8x4, 4x8, 4x4 sized blocks. Fig. 2.4 illustrates the partitioning of a 

macroblock and a sub-macroblock [6]. The input video characteristics govern the block size. A 

smaller block size ensures less residual data; however smaller block sizes also mean more 

motion vectors and hence more number of bits required to encode theses motion vectors [18] 

[20]. 

The reference pictures used for inter prediction are previously decoded frames and are 

stored in the picture buffer. H.264 supports the use of multiple frames as reference frames. This 

is implemented by the use of an additional picture reference parameter which is transmitted 

along with the motion vector. The parameters t and d in the figure 2.8 are the image reference 

parameters. 
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(a) 

 

(b) 
 

Figure 2.6 Macroblock portioning in H.264 for interprediction 
(a) (L-R) 16x16, 8x16, 16x8, 8x8 blocks 
(b) (L-R) 8x8, 4x8, 8x4, 4x4 blocks [20] 

 

 

Figure 2.7 Integer and sub-pixel motion vectors; H.264 supports  
up to quarter pixel resolution motion vectors [20] 
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Figure 2.8 Motion compensated prediction with multiple reference frames [16] 
 

2.3.3. Transform coding 

There is high spatial redundancy among the prediction error signals. H.264 implements 

a block-based transform to reduce this spatial redundancy [10]. The former standards of MPEG-

1 and MPEG-2 employed a two dimensional discrete cosine transform (DCT) for the purpose of 

transform coding of the size 8x8 [16]. H.264 uses integer transforms instead of the DCT. The 

size of these transforms is 4x4 [16]. The advantages of using a smaller block size in H.264 are 

stated as follows: 

•  The reduction in the transform size enables the encoder to better adapt the prediction 

error coding to the boundaries of the moving objects and to match the transform block 

size with the smallest block size of motion compensation. 

•  The smaller block size of the transform leads to a significant reduction in the ringing 

artifacts. 

•  The 4x4 transform has benefit for removing the need for multiplications. 

H.264 employs a hierarchical transform structure, in which the DC coefficients of 

neighboring 4x4 transforms for luma signals are grouped into 4x4 blocks and transformed again 

by the Hadamard transform (figure 2.9 (a)). As shown in figure 2.9 (b) the first transform (matrix 
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H1 in figure 2.10 (c)) is applied to all samples of all prediction error blocks of the luminance 

component (Y) and for all blocks of chrominance components (Cb and Cr). For blocks with 

mostly flat pixel values, there is significant correlation among transform DC coefficients of 

neighboring blocks. Hence, the standard specifies the 4x4 Hadamard transform (matrix H2 in 

Fig. 2.10 (c)) for luma DC coefficients (figure 2.9 (c)) for 16x16 intra-mode only, and 2x2 

Hadamard transform as shown in figure 2.10 (a) and (b) (matrix H3 in Fig. 2.10 (c)) for chroma 

DC coefficients. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.9 (a) DC coefficients of 16 4x4 luma blocks [6]  
(b) Matrix H1 (2.10 c) is applied to 4x4 block of DC coefficients (a) [6]  

(c) Matrix H2 (2.10 c) (4x4 Hadamard transform) applied to result of figure 2.9 (b) [6]  
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(a) 

 
(b) 

 
(c) 

 Figure 2.10 (a) DC coefficients from two 8x8 chroma blocks [6]  
(b) Matrix H3 (f) (2x2 Hadamard transform) applied to chroma DC coefficients (d) [6]  

(c) Matrices H1, H2 and H3 of the three transforms used in H.264 [16] 
 

2.3.4. Deblocking filter 

The deblocking filter is used to remove the blocking artifacts due to the block based 

encoding pattern. The transform applied after intra-prediction or inter-prediction is on blocks; the 

transform coefficients than undergo quantization. These block based operation are responsible 

for blocking artifacts which are removed by using the in-loop deblocking filter. It reduces the 

artifacts at the block boundaries and prevents the propagation of accumlated noise. The 

presence of the filter however adds to the complexity of the system [22]. Fig. 2.11 illustrates a 

macroblock with sixteen 4x4 subblocks along with their boundaries. 
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Figure 2.11 Boundaries in a macroblock to be filtered (luma boundaries shown 
with solid lines and chroma boundaries shown with dotted lines) [10] 

 

As shown in the Fig. 2.11 the luma deblocking filter process is performed on the 16 

sample edges – shown by solid lines. The chroma deblocking filter process is performed on 8 

sample edges – shown in dotted lines. 

H.264 employs deblocking process adaptively at the following three levels: 

•  At slice level – global filtering strength is adjusted to the individual characteristics of the 

video sequence 

•  At block-edge level – deblocking filter decision is based on inter or intra prediction of the 

block, motion differences and presence of coded residuals in the two participating 

blocks. 

•  At sample level – it is important to distinguish between the blocking artifact and the true 

edges of the image. True edges should not be deblocked. Hence decision for 

deblocking at a sample level becomes important. 
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2.3.5. Entropy Coding 

H.264 uses variable length coding to match a symbol to a code based on the context 

characteristics. All the syntax elements except for the residual data are encoded by the Exp- 

Golomb codes [10]. The residual data is encoded using CAVLC. The main and the high profiles 

of H.264 use CABAC. 

•  Context-based adaptive variable length coding (CAVLC): 

 After undergoing transform and quantization the probability that the level of coefficients 

is zero or +1 is very high [10]. CAVLC handles these values differently. It codes the 

number of zeroes and +1. For other values, their values are coded. 

•  Context-based adaptive binary arithmetic coding (CABAC): 

 This technique utilizes the arithmetic encoding to achieve good compression. The 

schematic for CABAC is shown in Fig.. 2.12. 

 

Figure 2.12 Schematic block diagram of CABAC [10] 
 

CABAC consists of three steps: 

• Step 1: Binarization: A non-binary value is uniquely mapped to a binary sequence 

• Step 2: Context modeling: A context model is a probability model for one or more 

elements of binarized symbol. The probability model is selected such that 

corresponding choice may depend on previously encoded syntax elements. 

• Step 3: Binary arithmetic coding: An arithmetic encoder encodes each element 

according to the selected probability model. 
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2.3.6. B-slices and adaptive weighted prediction 

Bi-directional prediction where you use both past and future frames for reference can 

be very useful in improving the temporal prediction. Bi-directional prediction in H.264 uses 

multiple reference frames. Figure 2.13 (a) show bidirectional prediction from multiple reference 

frames. The standards, before H.264, with B pictures use the bidirectional mode, with limitation 

that it allows the combination of a previous and subsequent prediction signals. In the previous 

standards, one prediction signal is derived from subsequent inter-picture, another from a 

previous picture, the other from a linear averaged signal of two motion compensated prediction 

signals.  

H.264 supports forward/backward prediction pair and also supports forward/forward 

and backward/backward prediction pair [10]. Figure 2.13 (b) and 2.13 (c) describe the scenario 

where bidirectional prediction and multiple reference frames respectively are applied and a 

macroblock is thereby predicted as a linear combination of multiple reference signals using 

weights as described in equation 2.1. Considering two forward references for prediction is 

beneficial for motion compensated prediction of a region just before scene change. Considering 

two backward reference frames is beneficial for frames just after scene change. H.264 also 

allows bi-directionally predictive-coded slice may also be used as references for inter-coding of 

other pictures. Except H.264, all the existing standards consider equal weights for reference 

pictures. Equal weights of reference signals are averaged and the prediction signal is obtained. 

H.264 also uses weighted prediction [10]. It can be used for a macroblock of P slice or B slice. 

Different weights can be assigned to two different reference signals and the prediction signal is 

calculated as follows: 

p = w1 * r1 + w2 * r2        (2.1) 

In (2.1), p is the prediction signal, r1 and r2 are the reference signals and w1 and w2 

are the prediction weights. 
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(a) 
 

 

(b) 

 

 

(c) 

Figure 2.13 (a) Bidirectional prediction  
(b) Bidirectional mode with linear combination of past and future macroblock prediction signal  
(c) Multiple reference frame mode with linear combination of two past macroblock prediction 

signals 
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2.4 H.264 Decoder 

The H.264 decoder works similar in operation to the local decoder of H.264 encoder. 

An encoded bit stream is the input to the decoder. Entropy decoding (CABAC or CAVLC) takes 

place on the bit stream to obtain the transform coefficients. These coefficients are then inverse 

scanned and inverse quantized. This gives residual block data in the transform domain. Inverse 

transform is performed to obtain the data in the pixel domain. The resulting output is 4x4 blocks 

of residual signal. Depending on interpredicted or intra-predicted, an appropriate prediction 

signal is added to the residual signal. For an inter-coded block, a prediction block is constructed 

depending on the motion vectors, reference frames and previously decoded pictures. This 

prediction block is added to the residual block to reconstruct the video frames. These 

reconstructed frames then undergo deblocking before they are stored for future use for 

prediction or being displayed. 

 

Figure 2.14 H.264 Decoder block diagram [13] 
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CHAPTER 3 

 
VP6 VIDEO CODING STANDARD 

3.1 Introduction 

 TrueMotion VP6 [25] is a new compression technology from On2 Technologies 

Inc. Adobe licensed it for its Flash suite of products [26]. It features as the main codec for Flash 

8 and onwards. It has interesting features as it gives a very good quality at very high 

compression. TrueMotion VP6 is among the best video codecs on the market today. According 

to On2 Technologies Inc., it offers better image quality and faster decoding performance than 

Windows Media 9 [23], Real 9 [24], H.264 [5], and QuickTime MPEG-4 [25]. In internal testing at 

On2 Technologies Inc, TrueMotion VP6 could beat many H.264 implementations, Windows 

Media 9 and Real Networks 10 in PSNR comparisons using standard MPEG-2 test source clips 

[10]. The VP6 clips were more detailed and contained fewer artifacts than Windows Media 9 

and maintained more texture and detail than Real or H.264 [25]. 

VP6.2, the latest version of TrueMotion VP6, features a significant increase in 

performance from the previous versions of VP6 [25]. 

3.2 Comparison with previous flash codec 

Adobe adopted VP6 into Flash in 2005. VP6 can provide significantly better 

performance over the previous generation Flash codec MX which used the Sorrenson Spark 

codec [32] based on H.263 [33]. On2 Technologies Inc. licenses the VP6 codec. The authors in 

[25] provide a performance comparison between Flash MX and Flash video with VP6. The 

results as described in this section show an improvement in multiple aspects. 

This section describes the comparative study from authors at On2 by citing data and 

figures from [25]. The images shown in figures 3.2 thru 3.12 are excerpts for a 12:30 minute 
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video of coral reef exploration. The original source was shot on DVCAM and was stored in 

photo-jpeg compression. Being shot from a DVCAM, the 720x486 DV source needed to have 

some over-scan cropped out. De-interlacing was performed on it and the source was resized to 

320x240 [25]. 

The tool used for VP6 encoding was Flix Professional from On2 Technologies Inc. The 

comparison provides examples of both single pass and two pass encoding which is supported 

in Flix. The samples for this study were encoded a fairly low bitrate of about 150 kbps [25]. In 

the figures, the image on the left is from VP6 and the one on the right is from Flash MX video.  

 

(a) (b) 
 

Figure 3.1 Saturation of colors (a) VP6 – true to original 
(b) Flash MX - oversaturation of colors [25] 

 
Figure 3.1 is not from the coral reef video. This one is used to describe the color 

saturation and temperature difference between the two codecs. As it can be seen Flash MX 

oversaturates color which results into the image looking a lot warmer. The saturated colors also 

give the image am impression of being sharper. According to the authors, the VP6 image on the 

left is much more true to the original. 
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(a) (b) 
 

Figure 3.2 (a) VP6 – Better quality picture (b) Flash MX - Blockiness of the  
subject and background [25] 

 
 

 

(a) (b) 
 

Figure 3.3 (a) VP6 – Better picture quality (b) Flash MX - Loss of  
fine details in the background [25] 
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(a) (b) 
 

Figure 3.4 Blocking artifacts (a) VP6 – Better quality picture (b) Flash MX – Blocky  
artifacts can be visible in the subject and background [25] 

 
The figures 3.2 thru 3.12 are from the coral reef exploration video. It can be observed in 

Figure 3.2 and figure 3.3 that the images from both codecs can maintain the details; but on 

careful examination it can be observed that a lot of the detail in the MX images is the blockiness 

from the 8x8 blocks rather than the details in the background. It can be observed in these 

images and the ones cited further in this section that a lot of detail in textured background 

regions is lost due the blockiness of the codec in MX. The blocking artifacts become significant 

and clear in the subject in the foreground in figure 3.2 and figure 3.4. 

 

(a) (b) 
 

Figure 3.5 (a) VP6 (b) Flash MX - Artificial details can be observed [25] 



 

 30 

The figure 3.5 is of Volitan Lionfish. There is a marked difference in how beautiful fish 

looks in both the images. In MX on the right observing the fins, many artificial details can be 

found from the blocking artifacts. Also some information seems to be jumbled up in the lower 

fins. Also the colors are significantly saturated. Apart from that, the careful observation of the 

coral background exhibits how the image on the left is lot truer than the MX image. 

 

(a) (b) 
 

Figure 3.6 Low contrast backgrounds (a) VP6 – clear and sharp picture  
(b) Flash MX – quality deteriorates[25] 

 

 

(a) (b) 
 

Figure 3.7 Low contrast background (a) VP6 – Image details maintained (b) Flash MX – The 
reef in the background even loses its identity due to blockiness [25] 

 
One more drawback that can be observed with MX is the inability to adapt to images 

with low and high contrast presence. Figures 3.6 and 3.7 are examples of that; the low contrast 



 

 31 

ocean background affects the subject (the shark and the turtle). In the figure 3.7 the plight of the 

reef in the background is even worse. It almost loses its identity to the blocks. 

Figures 3.8 thru 3.12 are examples with 2 pass encoding. Two-pass encoding allows 

the encoder to make better decisions about where to “spend” bits during compression, thereby 

improving the overall quality of the encoding. 

 

(a) (b) 
 

Figure 3.8 Two pass encoding (a) VP6 – Better quality image (b) Flash MX [25] 
 

The performance comparison is significant with 2-pass encoding. The image on the left 

in figure 3.8 in so well drawn it almost gives an impression of high quality content even at 150 

kbps. 

 

(a) (b) 
 

Figure 3.9 Low contrast background image (2 pass encoding) (a) VP6 (b) Flash MX [25] 
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(a) (b) 
 

Figure 3.10 Low contrast background (2 pass encoding) (a) VP6 – Better quality  
(b) Flash MX – Blocky image [25] 

 
Figures 3.9 and 3.10 are other examples of how poorly the old MX performs when 

there is a low contrast background and a high contrast foreground. The VP6 images appear so 

clean compared to the blocky background images on the right for both the examples. 

 

(a) (b) 
 

Figure 3.11 (a) VP6 (b) Flash MX - Fish in background almost appear like artifacts  
of low contrast ocean background [25] 

 
Figure 3.11 is another example where low contrast background artifacts and pseudo-

sharpness in the MX image on the right leads to almost the loss of details of the small fishes. 

They appear more like motion artifacts in this figure. 
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(a) (b) 
 

Figure 3.12 Absolute loss of visual information (2 pass encoding)  
(a) VP6 – Quality maintained (b) Flash MX image [25] 

 
Finally figure 3.12 sums up the study by showing how difficult MX finds in low contrast 

scenarios compared to the performance of VP6. On the whole, it can be observed that MX 

performs poorly compared to VP6 for low contrast images, oversaturates colors and 

unnecessarily sharpens the images and also has blocky artifacts. 

3.3 VP6 Algorithm Fundamentals 

 VP6 is a motion compensation and discrete cosine transform based codec like most of 

the open source codecs in the market [27]. Figure 3.13 shows approximate block diagrams of a 

VP6 encoder. Various coding tools and techniques in the block diagram are explained in 

sections 3.4 thru 3. 11. A high level overview of the codec fundamentals is as below [27]. 

•  YUV 4:2:0 image format 

•  Macro-block (MB) based coding (MB is 16x16 luma plus two 8x8 chroma) 

•  ¼ pixel accuracy motion compensated prediction 

•  8x8 DCT transform 

•  64-level linear quantizer 

•  Prediction loop filter 

•  Frame variable quantization level 

•  Scaling on output after decode 
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•  Two entropy coding strategies: Huffman & Binary Arithmetic (BoolCoder) 

•  Extensive context-based entropy coding strategy 
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Figure 3.13 VP6 – (a) Encoder block diagram 

(b) Decoder block diagram 
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3.4 Coding profiles in VP6 

Certain techniques used within the VP6 codec require significant computational 

resources that may not be available on low-end or even higher end processors for the very 

large image formats. So in order to distribute resources and tools in the codecs to justify the 

platform and the end user requirements two different profiles are defined in VP6 – VP6 Simple 

profile and Advanced profile [27].  

Each frame header contains a flag, VpProfile, which indicates the profile that was used 

to code it. In both profiles the BoolCoder is used for encoding block and macro-block coding 

mode decisions and motion vectors in the first data partition.  

When encoding in Simple Profile the DCT tokens are encoded in a second data 

partition, indicated in the bitstream by setting the MultiStream flag in the frame header. 

Furthermore, to reduce computational complexity both the prediction loop-filter and bi-cubic 

prediction filter are disabled. 

When using Advanced Profile the second partition is optional depending on the 

MultiStream flag in the frame header. Where it is absent, all encoded data appears as single 

partition encoded using the BoolCoder. The second partition may be encoded using either the 

Huffman or BoolCoder entropy schemes. In addition, the use of the prediction loop-filter is 

optionally enabled, depending on a flag in the frame header, and the prediction filter type may 

be dynamically switched between bi-linear and bi-cubic variants. 

In either profile where the second partition is present the UseHuffman flag in the frame 

header signifies whether the data is encoded using the Huffman or BoolCoder entropy schemes 

[27]. 

3.5 Types of Frames 

VP6 defines only two frame types, intra-coded and inter-coded [27]. 

Intra, or I-frames, like any other codec do not use reference frames for reconstruction.  

As I-frames are the point where no previous decoding is required they are a method of fast 
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random access. The I-frames are not encoded with highly computationally involved intra-

prediction as in H.264. The intra-coding technique used in VP6 is explained in section 3.6. 

Inter prediction or P-frames, are encoded differentially with respect to a previously 

encoded reference frame in the sequence. Figure 3.14 describes previous frame prediction. 

This reference frame may either be the reconstruction of the immediately previous frame in the 

sequence or a stored previous frame known as the Golden Frame [27], described in section 

3.5.1. 

Frame I-1 Frame P-1 Frame P Frame I

. . . . . .

 

Figure 3.14 Previous frame prediction 
 

3.5.1. Golden frames 

The alternative prediction, or Golden Frame, is a frame buffer that by default holds the 

last decoded I-frame but it may be updated at any time. Figures 3.15 (a) and (b) show both the 

scenarios for golden frames. A flag in the frame header indicates to the decoder whether or not 

to update the Golden Frame buffer. To update the Golden frame the current frame is first 

decoded and then copied in its entirety into the Golden frame buffer. 
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Frame I-1 Frame P-1 Frame P Frame I

. . . . . .. . .

Golden frame 
buffer

Frame P-k 
 

(a) 

Frame I-1 Frame P-1 Frame P Frame I

. . . . . .. . .

Golden frame 
buffer

Frame P-k 
 

(b) 
 

Figure 3.15 Golden frame prediction (a) Golden frame buffer has the default i.e. last decoded I-
frame (b) Golden frame buffer is updated 
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VP6 does not use backward or bi-directional prediction. So there are no B-frames as 

found in MPEG or H.264 [27]. 

3.6 MB Modes 

VP6 has 10 Macroblock (MB) signalling modes - 1 intra-mode and 9 inter-modes [27]. 

3.6.1. MB Modes in I-frames (Intra-mode) 

When the frame is an I frame, only intra-mode is used. So no signaling mode is 

required. Unlike H.264 no spatial prediction is used in CODE_INTRA (intra-mode in VP6). Each 

of its 6 blocks (4 Luma and 2 Chroma) is forward DCT encoded after the fixed value 128 is 

subtracted from each sample value; subtraction of128 helps in improving DCT accuracy. 

3.6.2. MB Modes in P-frames (Inter-modes and Intra-mode) 

For P frames motion compensation is used. So Macroblocks are predicted using 

prediction frames. A prediction frame can be the previous frame or a golden frame. The motion 

vectors are specified in ¼ pixel units (i.e. ¼ sample precision for luma and 1/8 sample precision 

for chroma). 

The intra-mode used in P frames is exactly like the I-frames. 

There are 9 other inter-modes defined. These modes depend on whether the Motion 

Vector (MV) is newly calculated or used from one of the neighboring MBs. The neighbor MBs 

used for prediction are classified as Near and Nearest blocks [27]. 

 3.6.2.1 Nearest and Near blocks     

In certain circumstances it is much more efficient to specify that a MB has the same MV 

as one of its nearest neighbors, rather than coding a new MV. For this reason VP6 defines the 

concept of the Nearest Motion Vector and Near Motion Vector. These are defined as first 2 non 

(0,0) MVs as encountered – the first being Nearest and second Near. The neighboring blocks 

and their order are described in the Fig 3.16. For the neighboring blocks to be labeled as 

Nearest or Near, they should be encoded using the same reference frame as the current MB. If 

no such block exists than Nearest and Near MVs are undefined. 



 

 39 

X16

7 3 2 4 10

1295811

Col -2 -1 0 1 2

-2

-1

0

1

2

Row

X – Present MB

1 to 12 – Neighbouring MBs in that order

 

Fig 3.16 Order of the adjacent blocks to find Near and Nearest neighbors 
 

The different coding modes are described in Table 3.1. Most of the coding modes are 

self-explanatory. 

Table 3.1 MB coding modes in VP6 [27] 
 

Coding mode Prediction frame Motion vector (MV) 

CODE_INTER_NO_MV Previous frame reconstruction Fixed: (0,0) 

CODE_INTRA None None 

CODE_INTER_PLUS_MV Previous frame reconstruction Newly calculated MV 

CODE_INTER_NEAREST_MV Previous frame reconstruction Same MV as Nearest block 

CODE_INTER_NEAR_MV Previous frame reconstruction Same MV as Near block 

CODE_USING_GOLDEN Golden frame Fixed: (0,0) 

CODE_GOLDEN_MV Golden frame Newly calculated MV 

CODE_INTER_FOURMV Previous frame reconstruction Each of the four luma-blocks 
has associated MV 

CODE_GOLD_NEAREST_MV Golden frame Same MV as Nearest block 

CODE_GOLD_NEAR_MV Golden frame Same MV as Near block 

 

For previous frame reconstruction, it is also possible to have a different motion vector 

for all the blocks in the MB. In this coding mode CODE_INTER_FOURMV each of the four Y-

blocks will be coded independently, each having an associated coding mode from a reduced set 

that excludes intra or any of the Golden Frame modes. The motion vector for the two chroma 

blocks is computed by averaging the four Y vectors (rounding away from zero) [27].  
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3.7 Motion Vectors 

VP6 has 9 MB modes which involve motion prediction. The motion vectors are either 

explicitly calculated or the MV of a neighbor is used. 3 modes involve calculation of explicitly 

new motion vectors [27]. 

•  CODE_INTER_PLUS_MV: A new motion vector is coded with reference to the previous 

frame reconstruction. 

•  CODE_GOLDEN_MV: A new motion vector is coded with reference to the Golden 

frame reconstruction 

•  CODE_INTER_FOURMV: A different mode may to be specified for each of the luma 

blocks from a subset of those available at the MacroBlock level (see Table 3.1). Each 

block coded with mode CODE_INTER_PLUS_MV will have its own explicitly coded 

motion vector. 

If the Nearest MacroBlock exists and is either immediately to the left of (neighbor 1) or 

immediately above (neighbor 2) the current MacroBlock (as described in figure 3.13), than the 

new motion vectors are coded differentially with respect to the motion vector of the nearest 

MacroBlock. If such a block does not exist, the new MVs are coded absolutely. 

The implicit motion vectors can have a case of no MV i.e. (0,0) or the motion vector 

from the nearest MB or the motion vector from the near MB. These modes are as below: 

•  CODE_INTER_NO_MV: Use the motion vector (0,0) applied to the previous frame 

reconstruction. 

•  CODE_INTER_NEAREST_MV: Use the motion vector from a previously coded nearest 

MacroBlock applied to the previous frame reconstruction. 

•  CODE_INTER_NEAR_MV: Use the motion vector from a previously coded near 

MacroBlock applied to the previous frame reconstruction 

•  CODE_USING_GOLDEN: Use the motion vector (0,0) applied to the Golden frame 

reconstruction. 
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•  CODE_GOLD_NEAREST_MV: Use the motion vector from a previously coded nearest 

MacroBlock applied to the Golden frame reconstruction. 

•  CODE_GOLD_NEAR_MV: Use the motion vector from a previously coded near 

MacroBlock applied to the Golden frame reconstruction. 

Nearest and Near MacroBlocks are explained in section 3.6.2.1.  

3.7.1 Encoding 

The motion vector values will have an x-component and y-component. Each of them 

can be categorized as either a short vector or a long vector. So a motion vector can have the x-

component encoded as a short vector and the y-component a long vector or any such 

combination. The length is the length of the individual component (x component of y 

component); it is not the total magnitude. 

•  A short vector is defined as a vector with a length that is less than 8 in ¼ pixel units. 

•  A long vector is defined as a vector with a length that is greater than or equal to 8 and 

less than or equal to 127 in ¼ pixel units. 

3.7.2 Prediction loop filtering 

In order to create a prediction block for the non-zero motion vectors VP6 has a 

prediction loop filter. As it does not have traditional loop filtering, this filtering also helps in 

reducing the blocking artifacts. The Prediction Loop filter due to its dual usage is explained in 

section 3.8. 

3.7.3 Filtering For fractional pixel motion compensation 

VP6 supports the use of fractional pixel motion compensation up to 1/4 sample 

precision for Luma and 1/8 sample precision for chroma. Interpolation is used to determine 

sample values at non whole-pixel locations. 

Two type of interpolation filtering is supported: 

•  Bilinear filtering: Using 2 tap filters (see Section 3.7.3.1). 

•  Bicubic filtering: Using 4 tap filters (see Section 3.7.3.2). 
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In “Simple Profile” Bicubic filtering is not allowed, so Bilinear filtering is used in all cases 

where fraction pixel predictors are required.  

3.7.3.1 Bilinear filtering 

The 1-D filter taps described in table 3.2 are used for bilinear filtering to ¼ sample 

precision in luma. 

Table 3.2. Bilinear (1-D) filter taps for ¼ sample precision Luma filtering [27] 
 

BilinearLumaFilters[4][2] = 

{ 

{ 128, 0 }, // Full sample aligned 

{ 96, 32 }, // 1/4 

{ 64, 64 }, // 1/2 

{ 32, 96 }, // 3/4 

} 

 

The 1-D filter taps described in table 3.3 are used for bilinear filtering to 1/8 sample 

precision in chroma. 

Table 3.3. Bilinear (1-D) filter taps for 1/8 sample precision chroma filtering [27] 
 

BilinearChromaFilters[8][2] = 

{ 

{ 128, 0 }, // Full sample aligned 

{ 112, 16 }, // 1/8 

{ 96, 32 }, // 1/4 

{ 80, 48 }, // 3/8 

{ 64, 64 }, // 1/2 

{ 48, 80 }, // 5/8 

{ 32, 96 }, // 3/4 

{ 16, 112 } // 7/8 

} 

 

In cases where the motion vector has a fractional component in both x and y direction 

an intermediate result is calculated by applying the filter in the x direction (horizontally). This 

intermediate result used as input to a second pass which filters in the y direction (vertically) to 

produce the final 2-d filtered output. 
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3.7.3.2 Bicubic filtering 

Bicubic filter taps are calculated for 16 values of alpha from -0.25 to -1.00. For each 

value of alpha, there are 8 sets of coefficients corresponding to 1/8 pel offsets from 0 to 7/8. 

These values are only used in VP6.2 bitstreams. The filter tap values are described in table 3.4. 

The 17th entry in the table is used for VP6.1 bitstreams [27].  

Table 3.4. Bicubic (4-tap) filter tabs for 1/8 pixel interpolation [27] 
 

BicubicFilterSet[17][8][4] = 

{ { 0, 128, 0, 0 }, // Full sample aligned, A ~= -0.25 

{ -3, 122, 9, 0 }, // 1/8 

{ -4, 109, 24, -1 }, // 1/4 

{ -5, 91, 45, -3 }, // 3/8 

{ -4, 68, 68, -4 }, // 1/2 

{ -3, 45, 91, -5 }, // 5/8 

{ -1, 24, 109, -4 }, // 3/4 

{ 0, 9, 122, -3 }, // 7/8 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.30 

{ -4, 124, 9, -1 }, 

{ -5, 110, 25, -2 }, 

{ -6, 91, 46, -3 }, 

{ -5, 69, 69, -5 }, 

{ -3, 46, 91, -6 }, 

{ -2, 25, 110, -5 }, 

{ -1, 9, 124, -4 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.35 

{ -4, 123, 10, -1 }, 

{ -6, 110, 26, -2 }, 

{ -7, 92, 47, -4 }, 

{ -6, 70, 70, -6 }, 

{ -4, 47, 92, -7 }, 

{ -2, 26, 110, -6 }, 

{ -1, 10, 123, -4 }, 

}, 
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Table 3.4 - Continued 
 

{ { 0, 128, 0, 0 }, // A ~= -0.40 

{ -5, 124, 10, -1 }, 

{ -7, 110, 27, -2 }, 

{ -7, 91, 48, -4 }, 

{ -6, 70, 70, -6 }, 

{ -4, 48, 92, -8 }, 

{ -2, 27, 110, -7 }, 

{ -1, 10, 124, -5 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.45 

{ -6, 124, 11, -1 }, 

{ -8, 111, 28, -3 }, 

{ -8, 92, 49, -5 }, 

{ -7, 71, 71, -7 }, 

{ -5, 49, 92, -8 }, 

{ -3, 28, 111, -8 }, 

{ -1, 11, 124, -6 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.50 

{ -6, 123, 12, -1 }, 

{ -9, 111, 29, -3 }, 

{ -9, 93, 50, -6 }, 

{ -8, 72, 72, -8 }, 

{ -6, 50, 93, -9 }, 

{ -3, 29, 111, -9 }, 

{ -1, 12, 123, -6 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.55 

{ -7, 124, 12, -1 }, 

{-10, 111, 30, -3 }, 

{-10, 93, 51, -6 }, 

{ -9, 73, 73, -9 }, 

{ -6, 51, 93, -10 }, 

{ -3, 30, 111, -10 }, 

{ -1, 12, 124, -7 }, 

}, 
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Table 3.4 - Continued 
 

{ { 0, 128, 0, 0 }, // A ~= -0.60 

{ -7, 123, 13, -1 }, 

{-11, 112, 31, -4 }, 

{-11, 94, 52, -7 }, 

{-10, 74, 74, -10 }, 

{ -7, 52, 94, -11 }, 

{ -4, 31, 112, -11 }, 

{ -1, 13, 123, -7 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.65 

{ -8, 124, 13, -1 }, 

{-12, 112, 32, -4 }, 

{-12, 94, 53, -7 }, 

{-10, 74, 74, -10 }, 

{ -7, 53, 94, -12 }, 

{ -4, 32, 112, -12 }, 

{ -1, 13, 124, -8 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.70 

{ -9, 124, 14, -1 }, 

{-13, 112, 33, -4 }, 

{-13, 95, 54, -8 }, 

{-11, 75, 75, -11 }, 

{ -8, 54, 95, -13 }, 

{ -4, 33, 112, -13 }, 

{ -1, 14, 124, -9 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.75 

{ -9, 123, 15, -1 }, 

{-14, 113, 34, -5 }, 

{-14, 95, 55, -8 }, 

{-12, 76, 76, -12 }, 

{ -8, 55, 95, -14 }, 

{ -5, 34, 112, -13 }, 

{ -1, 15, 123, -9 }, 

}, 
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Table 3.4 - Continued 
 

{ { 0, 128, 0, 0 }, // A ~= -0.80 

{-10, 124, 15, -1 }, 

{-14, 113, 34, -5 }, 

{-15, 96, 56, -9 }, 

{-13, 77, 77, -13 }, 

{ -9, 56, 96, -15 }, 

{ -5, 34, 113, -14 }, 

{ -1, 15, 124, -10 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.85 

{-10, 123, 16, -1 }, 

{-15, 113, 35, -5 }, 

{-16, 98, 56, -10 }, 

{-14, 78, 78, -14 }, 

{-10, 56, 98, -16 }, 

{ -5, 35, 113, -15 }, 

{ -1, 16, 123, -10 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.90 

{-11, 124, 17, -2 }, 

{-16, 113, 36, -5 }, 

{-17, 98, 57, -10 }, 

{-14, 78, 78, -14 }, 

{-10, 57, 98, -17 }, 

{ -5, 36, 113, -16 }, 

{ -2, 17, 124, -11 }, 

}, 

{ { 0, 128, 0, 0 }, // A ~= -0.95 

{-12, 125, 17, -2 }, 

{-17, 114, 37, -6 }, 

{-18, 99, 58, -11 }, 

{-15, 79, 79, -15 }, 

{-11, 58, 99, -18 }, 

{ -6, 37, 114, -17 }, 

{ -2, 17, 125, -12 }, 

}, 
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Table 3.4 - Continued 
 

{ { 0, 128, 0, 0 }, // A ~= -1.00 

{-12, 124, 18, -2 }, 

{-18, 114, 38, -6 }, 

{-19, 99, 59, -11 }, 

{-16, 80, 80, -16 }, 

{-11, 59, 99, -19 }, 

{ -6, 38, 114, -18 }, 

{ -2, 18, 124, -12 }, 

}, 

{ 

{ 0, 128, 0, 0 }, // Coefficients for VP6.1 bitstreams 

{ -4, 118, 16, -2 }, 

{ -7, 106, 34, -5 }, 

{ -8, 90, 53, -7 }, 

{ -8, 72, 72, -8 }, 

{ -7, 53, 90, -8 }, 

{ -5, 34, 106, -7 }, 

{ -2, 16, 118, -4 } 

} 

} 

 

3.7.4 Support for unrestricted motion vectors 

VP6 supports the concept of unrestricted motion vectors (UMV). This means that it is 

legal for a motion vector to point to a prediction block that extends beyond the borders of the 

image. To support this feature and also the playback scaling features of the codec the 

reconstruction buffers are extended by 48 sample points in all directions as described in figure 

3.17. 

The buffers are extended by duplicating the edge values 48 times. This is done first in x 

(horizontally) and then in the y (vertically). 
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Figure 3.17 Support for motion vector beyond the image boundaries [27] 
 

 

3.8 Prediction Loop Filtering 

VP6 does not have a traditional reconstruction buffer loop filter; but it supports filtering 

of pixels adjacent to 8x8 block boundaries in the prediction frame (previous frame or golden 

frame reconstruction as appropriate), as part of the process for creating a prediction block for 

non-zero motion vectors. As with traditional loop filters this helps to reduce blocking artifacts, 

but the filtering is not carried out in place within the reconstruction buffer. Rather, the output is 

copied into a separate temporary buffer. This is done before any filtering required for fractional 

pixel motion compensation (see Section 3.7.3) [27]. 

The prediction Loop filter is disabled in Simple Profile. In other profiles it is enabled if 

the UseLoopFilter flag in the frame header is set to 1. 

If the prediction block defined by a motion vector straddles an 8x8 block boundary in 

the prediction frame then a de-blocking and/or de-ringing filter is applied to the pixels adjacent 

to the boundary to reduce any discontinuities (see Figure 3.17). 

Two filter options are as follows: 

• A deringing filter: has de-blocking and de-ringing characteristics 
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• A deblocking filter: has only de-blocking characteristic. The deblocking loop filter 

comprises a 4-tap filter (1, -3, 3, -1) and a quantizer dependant bounding function 

applied across the horizontal and vertical block boundaries. The prediction loop filter 

coefficients are described in table 3.5 [27] 

Table 3.5 Prediction loop filter limit values [27] 
 

PredictionLoopFilterLimitValues [64] = 

{ 

30, 25, 20, 20, 15, 15, 14, 14, 

13, 13, 12, 12, 11, 11, 10, 10, 

9, 9, 8, 8, 7, 7, 7, 7, 

6, 6, 6, 6, 5, 5, 5, 5, 

4, 4, 4, 4, 3, 3, 3, 3, 

2, 2, 2, 2, 2, 2, 2, 2, 

2, 2, 2, 2, 2, 2, 2, 2, 

1, 1, 1, 1, 1, 1, 1, 1 

} 

 

 

Figure 3.18 Prediction loop filtering of 8x8 block boundaries [27] 
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3.9 DCT, scan orders and coefficient token set 

In order to reduce the complexity at the decoder, VP6 uses a slightly modified non-

standard fixed point integer inverse discrete cosine transform (DCT); the DCT has 14 bits of 

precision is used to convert the coefficients back to pixels or pixel difference values. This 

transform is based upon the paper by M. Vetterli, A. Ligtenberg “A Discrete Fourier-Cosine 

Transform Chip” IEEE Journal on Selected Areas of Communications, Vol. SAC-4, pp 49-61, 

Jan. 1986, pp 49-61 [28]. The authors in this paper propose a DCT technique with focus on 

variable complexity algorithms (VCAs) that can adjust the forward DCT complexity as a function 

of target quantization to be used. This can provide faster performance when quantization is 

coarser. Computations needed to generate zero or small-magnitude coefficients can be safely 

omitted if the locations of those coefficients are known. This also enables straightforward 

classification of blocks of transformed and quantized data based on the location of zero 

coefficients for inverse DCT cases. The grouping of zero coefficients enables us to have an 

IDCT algorithm with reduced complexity. 

Here the forward DCT needs to be able to predict the sparseness of the quantized DCT 

output accurately and with minimal complexity overhead. This has to be done before transform 

and quantization are applied. So the algorithm takes into consideration the quantization levels 

and the input block characteristics [28]. 

In an attempt to be able to group the non-zero coefficients together at the beginning of 

the group, customized scanning order of DCT coefficients is possible (section 3.9.1.2). 

3.9.1 Scan orders 

Scan reordering is the process of providing customized scanning order. If we number 

the 64 coefficients of the 8x8 transformed block in raster order such that coefficients 0 and 63 

are the DC and highest order AC coefficients, respectively, then the scan re-ordering is 

specified by a 64 element array which gives the new ordering. The coefficients appear in the 
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modified order in the bitstream. The decoder rearranges them back to raster order before 

inverse quantization and IDCT [27]. 

3.9.1.1 Default scan order 

The default scan order is the standard zig-zag order shown in Figure 3.19. 

 

Figure 3.19 Default zig-zag scan order [27] 
 

3.9.1.2 Custom scan order 

Per frame custom scan orders are supported in VP6. The encoder signals the use of 

customized scanning orders.  

For intra-coded frames the scan order is first set to the appropriate default. This default 

is then updated using delta information encoded in the bitstream. For inter-coded frames deltas 

are applied to the custom scan order used in the previous frame rather than to the one of the 

default scan orders. 

In all scan orders the first DCT coefficient is always the DC coefficient.  

To specify a custom scan order, each AC coefficient (in zig zag order) is assigned to 

one of the bands as mentioned in table 3.7. The table describes the 16 bands into which the 63 

AC positions in modified scan order are split. Within each band the coefficients are then sorted 

into ascending order based upon the original zig-zag scan order. The decoder maintains a table 
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3.6 for decoding the coefficient band update information for each of the AC coefficients in 

standard zigzag order [27]. 

Table 3.6 Coefficient band update probabilities [27] 
 

CoeffBandUpdateFlagProbs[64] = 

{ 

NA, 132, 132, 159, 153, 151, 161, 170, 

164, 162, 136, 110, 103, 114, 129, 118, 

124, 125, 132, 136, 114, 110, 142, 135, 

134, 123, 143, 126, 153, 183, 166, 161, 

171, 180, 179, 164, 203, 218, 225, 217, 

215, 206, 203, 217, 229, 241, 248, 243, 

253, 255, 253, 255, 255, 255, 255, 255, 

255, 255, 255, 255, 255, 255, 255, 255 

} 

 

3.9.2 DCT encoding and coefficient token set 

The DCT involved encoding at 3 levels - predictive encoding of the DC coefficients, 

encoding the AC coefficients and encoding the zero-runs of DC and AC coefficients [27]. 

3.9.2.1 DC prediction 

The DC coefficient for a block is reconstructed at the decoder by adding together a 

prediction value and a prediction error. The prediction error is encoded in the bitstream and 

decoded. The prediction value is computed from the DC values of neighboring blocks in the 

current frame that have already been decoded. 

For a particular block the DC values of up to two particular immediate neighbors 

contribute to the prediction. As shown figure 3.20 the two blocks concerned are the blocks 

immediately to the left of and immediately above the current block [27]. 
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Figure 3.20 DC prediction using neighbors 
 

The DC value of a neighboring block only contributes to the prediction of the DC value 

for a particular block if all of the following conditions are satisfied: 

• The neighboring block exists; there is no left neighbor for blocks at the left edge and no 

above neighbor for blocks at the top edge of the frame, 

• The neighboring block was predicted from the same reference frame as the block being 

predicted (last frame reconstruction or golden frame), 

• Inter-coded blocks can only be predicted by neighboring inter-coded blocks and Intra-

coded blocks can only be predicted by neighboring intra-coded blocks [27]. 

The table 3.7 describes how the predicted values are calculated based on the whether 

the neighboring blocks are present or one or none of the neighboring blocks are present. 

Table 3.7 DC prediction based on presence of neighboring blocks [27] 
 

Left (L) available Above (A) available Predictor 

NO NO Last decoded DC value for a block with 
the same prediction frame 

NO YES A 

YES NO L 

YES YES (L + A + sign(L + A)) / 2 

 



 

 54 

3.9.2.2 Coefficient token set 

Following set of 12 tokens described in table 3.8 is used to represent the quantized 

DCT coefficients. 

Table 3.8 DCT token set and extra bits [27] 

Index Token Min Max Extra bits 
(including 

sign) 

Arithmetic encoding of 
the extra bits 

0 ZERO_TOKEN 0 0 *  

1 ONE_TOKEN 1 1 1 B(128) 

2 TWO_TOKEN 2 2 1 B(128) 

3 THREE_TOKEN 3 3 1 B(128) 

4 FOUR_TOKEN 4 4 1 B(128) 

5 DCT_VAL_CATEGORY1 5 6 2 B(159), B(128) 

6 DCT_VAL_CATEGORY2 7 10 3 B(165), B(145), B(128) 

7 DCT_VAL_CATEGORY3 11 18 4 B(173), B(148), B(140), 
B(128) 

8 DCT_VAL_CATEGORY4 19 34 5 B(176), B(155), B(140), 
B(135), B(128) 

9 DCT_VAL_CATEGORY5 35 66 6 B(180), B(157), B(141), 
B(134), B(130), B(128) 

10 DCT_VAL_CATEGORY6 67 2114 12 B(254), B(254), B(243), 
B(230), B(196), B(157), 
B(153), B(140), B(133), 
B(129), B(128) 

11 DCT_EOB_TOKEN N/A N/A **  

 

Min-value in the table 3.8 represents the smallest value that can be encoded using that 

token. The extra-bits reflect the range of values for that token. The MSB of the magnitude is 

sent first whereas the last extra-bit is always the sign bit. In the arithmetic encoding the extra 

bits are each encoded with differing probabilities. In Huffman encodings these bits are just 

pumped on to the bitstream. 

Probability values and contextual information are used to encode the DCT coefficients 

into these tokens. These probability values are stored in tables that are kept by the decoder and 

may be updated on a frame by frame basis. 

At the decoder a Binary Coding Tree for DC and AC Tokens as shown in fig 3.21 is 

specified for decoding DCT coefficient tokens. The bitstream provides the set of probabilities for 

taking the 0 branch at each node in the tree. Thus the bitstream is encoded with probabilities to 
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take the zero branch at each node of the binary tree which is used by the decoder to decode the 

DCT tokens. The same set of probabilities can be converted to a set of Huffman probabilities 

using an algorithm available to the decoder [27]. 

 

Figure 3.21 Binary coding tree for AC and DC contexts [27] 
 

3.9.2.3 DC decoding 

For DC, the decoder maintains two sets (of length 11 with a value for each of the 11 

tokens) of probabilities each for the Y plane and the UV planes. These probabilities get 

upadated on frame by frame basis; the bitstream provides the information to update these 

probabilities at the decoder [27].  
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Arithmetic and Huffman decoding of the DC Coefficients 

An arithmetically encoded DC value is decoded using the updated probabilities. 

Decoding the DC values makes use of the contextual information regarding whether the blocks 

immediately to the left of and above the current block have 0 or non 0 dc values (table 3.9). 

If Huffman coding of the DC tokens has been used, an algorithm available at the 

decoder is used to produce the Huffman decoding tree directly from the BoolCoder tree. These 

probabilities are than used to decode the Huffman encoded DC values. 

Table 3.9 DC Node contexts [27] 
 

Index Situation 

0 Left block‟s predicted DC was 0 and above block‟s predicted DC was 0z 

1 Either left block‟s predicted DC value is non-zero or above block‟s predicted value is 
non-zero but not both 

2 Both left block‟s predicted and above block‟s predicted DCs 

 
 

3.9.2.4 AC decoding 

To decode ac coefficients the decoder maintains a 4 dimensional set of probabilities. 

The set of 11 probabilities for the tokens is maintained for each of Y or UV plane and 6 bands of 

coefficients as mentioned in the table 3.10. The probability set is different for each of the context 

situation described in table 3.11. The bitstream provides the information to update these 

probabilities at the decoder [27]. 

Table 3.10 AC coefficient bands [27] 

Index Situation 

0 Coefficient 1 

1 Coefficients 2-4 

2 Coefficients 5-10 

3 Coefficients 11-21 

4 Coefficients 22-36 

5 Coefficients 37-63 
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Table 3.11 AC preceding decoded coefficient context [27] 

Index Situation 

0 Preceding decoded coefficient (in current scan order) for the current block was 0 

1 Preceding decoded coefficient (in current scan order) for the current block was 1 

2 Preceding decoded coefficient (in current scan order) for the current block was 
greater than 1 

 

Arithmetic and Huffman Decoding of the AC Coefficients 

An arithmetically encoded AC value is decoded using the updated probabilities at the 

decoder from the bitstream. All 4 sets of contextual information - the Y or UV plane, the band to 

which the coefficient belongs to, whether the preceding coefficient in the block was 0, 1 or > 1 

and the corresponding token are required for decoding the AC value.  

Decoding Huffman encoded AC coefficients requires the use of 24 separate Huffman 

trees stored in a 3 dimensional array. There is a different tree depending on which plane (Y or 

UV) the coefficient belongs to, whether the preceding coefficient in the block was 0, 1 or > 1 and 

to which band as described in table 3.12 the coefficient falls in [27]. 

Table 3.12 AC coefficient bands for Huffman [27] 

Index Situation 

0 Coefficient 1  

1 Coefficients 2-4 

2 Coefficients 5-10 

3 Coefficients 11-63 

 

3.9.2.5 Decoding zero runs 

To decode zero runs the decoder must maintain a 2 dimensional set of probabilities. 

The first dimension of the ZeroRun probabilities is indexed by the band that the zero coefficient 

starts as described in table 3.13. The second dimension of the probability table is indexed 

depending on run-length value as described in table 3.14 [27]. 

Table 3.13 Zero runs coefficient bands [27] 

Index Situation 

0 Coefficients 1-5 

1 Coefficients 6-63 

 



 

 58 

Table 3.14 Zero runs node index [27] 

Index Run length 

0 Probability of Run length > 4 

1 Probability of Run length > 2 

2 Probability of Run length > 1 

3 Probability of Run length > 3 

4 Probability of Run length > 8 

5 Probability of Run length > 6 

6 Probability of Run length > 5 

7 Probability of Run length > 7 

8 Probability of bit (Run length – 9) & 1 

9 Probability of bit ((Run length – 9) >> 1) & 1 

10 Probability of bit ((Run length – 9) >> 2) & 1 

11 Probability of bit ((Run length – 9) >> 3) & 1 

12 Probability of bit ((Run length – 9) >> 4) & 1 

13 Probability of bit ((Run length – 9) >> 5) & 1 

 

3.10 Quantization 

Each motion predicted 8x8 block of a video frame is transformed by the encoder to a 

set of 64 coefficients via the discrete cosine transform. These 64 coefficients are then quantized 

by means of 2 separate uniform scalar quantizers: 1 for the DC coefficient, and 1 for all 63 of 

the AC coefficients. 

Reversing the uniform scalar quantizer involves performing integer multiplication on 

each of its 64 coefficients. The quantization value (multiplicand) for DC is determined by 

indexing the table DcQuantizationTable (table 3.15). Likewise the Ac quantization value is 

determined by indexing the table AcQuantization Table (table 3.15) [27]. 
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Table 3.15 DC and AC Quantization values [27] 
 

DcQuantizationTable[ 64 ] = 

{ 

188, 188, 188, 188, 180, 172, 172, 172, 

172, 172, 168, 164, 164, 160, 160, 160, 

160, 140, 140, 140, 140, 132, 132, 132, 

132, 128, 128, 128, 108, 108, 104, 104, 

100, 100, 96, 96, 92, 92, 76, 76, 

76, 76, 72, 72, 68, 64, 64, 64, 

64, 64, 60, 44, 44, 44, 40, 40, 

36, 32, 28, 20, 12, 12, 8, 8 

} 

ACQuantizationTable[64] = 

{ 

376, 368, 360, 352, 344, 328, 312, 296, 

280, 264, 248, 232, 216, 212, 208, 204, 

200, 196, 192, 188, 184, 180, 176, 172, 

168, 160, 156, 148, 144, 140, 136, 132, 

128, 124, 120, 116, 112, 108, 104, 100, 

96, 92, 88, 84, 80, 76, 72, 68, 

64, 60, 56, 52, 48, 44, 40, 36, 

32, 28, 24, 20, 16, 12, 8, 4 

}  

 

3.11 Entropy Coding 

There are two different entropy coding strategies for encoding of the DCT coefficient 

tokens in VP6 – Huffman coder and BoolCoder [27]. 

The Huffman coder is a very computationally efficient method that is well suited to 

speed optimization and has reasonable compression performance. It is typically used in very 

high data-rate scenarios on low to mid-range processors because it can handle the large 

volume of tokens more efficiently than the BoolCoder. 

The BoolCoder is a simplified binary arithmetic coder allowing tokens to be encoded 

with fractions of a bit. It is much more efficient in terms of compression performance than the 

Huffman coder, but this comes with a significantly increased computational complexity. 
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Both the Huffman coder and BoolCoder use binary decision trees to represent multi-bit 

syntax elements. In each case the tree is traversed as a sequence of branch decisions is read 

from the bitstream until a leaf node is reached. Each leaf node has an associated syntax 

element. 

The difference between the two schemes lies in the way the branching decisions are 

encoded at the tree nodes. The Huffman coder uses an entire bit to encode the branching 

decision at a given node. The BoolCoder makes use of a probability value called as the node 

probability. The node probability is the probability to branch left (zero) at a given node. So the 

BoolCoder can achieve sub-bit decision costs [27].  

Whereas the Huffman coder is completely specified by the binary decision tree, the 

BoolCoder additionally requires the definition of a set of Node Probabilities. Node probabilities 

are specified as an array of values, specified in order as the tree is traversed in depth-first 

order. Node probabilities are represented on a linear 8-bit scale: 0 represents probability 0, 255 

represents probability 1. However, the value 0 is explicitly forbidden, so the valid range is as 

follows: 

1 <= Node Probability <= 255      (3.1) [27] 

3.11.1 Use of context information 

A lot of statistical correlation exists not only between adjacent symbols and but the 

various coding parameters and tools used for encoding neighboring blocks. For example if the 

nearest block is encoding with CODE_INTRA there is about 85% chance that the present block 

may be encoded using CODE_INTRA and as low as 3% chance that the current block may be 

encoded using CODE_INTER_PLUS_MV. So the coding mode of the near / nearest blocks can 

be used as context information for encoding the current block coding mode. Such use of 

contexts which exploit the correlation between the coding parameters of adjacent blocks and 

pixels is a very useful way of reducing the amount of statistical information in the bitstream. By 

using information already available at the decoder weighting may be applied to a set of baseline 
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probabilities to adapt them better to the current coding environment. This results in more 

efficient entropy coding. 

So a conditional probability distribution, derived from a baseline distribution with 

respect to a defined context is used for efficient entropy coding [27].  

3.11.2 Huffman coder 

In order to decode a syntax element encoded with Huffman encoder the Huffman 

decoder traverses a specified binary tree, at each node branching to either the left or right child-

node as dictated by the next bit read from the bitstream (0 indicates left, 1 indicates right). 

Traversal stops when a leaf node is encountered; each leaf node corresponds to a particular 

syntax element. 

The Huffman tree is the standard huffman tree. This tree is constructed using the set of 

leaf node probabilities. However instead of encoding the leaf node probabilities, VP6 encodes at 

set of node probabilities to be compatible to the way the BoolCoder trees are encoded.  

So the decoder needs to translate the node probabilities available from the bitstream to 

a set of leaf node probabilities so that they can be used to create the Huffman tree. The 

decoding process that follows is the process of traversing this tree with appropriate branch 

decisions. The leaf-node probability is calculated as the product of the individual node 

probabilities as the tree is traversed from its root to the leaf node, with appropriate normalization 

[27]. 

3.11.3 BoolCoder 

The BoolCoder is based on the same principles as a binary arithmetic coder. It codes 

successive 0 or 1 decisions by continuously sub-dividing an initial unit interval in the ratio of the 

relative probabilities that a 0 and 1 will occur. Encoding multi-bit entities can be considered as 

traversing a binary decision tr ee where at each node there is an associated probability of taking 

the left, or zero, branch. This probability is referred to as the Node Probability. The probability of 

taking a right, or 1, branch is therefore one minus the node probability [27]. 
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CHAPTER 4 

 
COMPARISON BETWEEN VP6 AND H.264 STANDARDS 

4.1 Introduction 

Before Adobe adopted H.264 video coding standard [5] for flash, VP6 was the only 

format that existed on flash video. With the kind of penetration [7] that flash has, VP6 formed a 

huge part of the video-on-the-web ecosystem. Considering such outreach of flash video, 

curiosity on its comparison with the new flash standard - H.264 existed. A number of references 

[34] thru [37] on the comparison of the two codecs from the user perspective, especially on the 

content creation aspect are available on the web. The adoption of H.264 which is a very widely 

popular video coding standard should not affect the already existing VP6 standard. Both the 

codecs have their own advantages and there is a very high probability of coexistence on the 

flash platform and the streaming video market [35].  

It is very important to be able to understand the differences between the two encoding 

standards before the process of transcoding between the two standards is described. This 

chapter describes the comparison of performance between the two codecs for comparable 

profiles. The two profiles looked at are VP6 Simple profile and H.264 Baseline profile. The 

existence of both the standards on the flash ecosystem affects the online video streaming and 

broadcast market the most. So a comparison from the content creator and end-user perspective 

is also described based on the references mentioned earlier [34] [35] [36].  

4.2 Comparison of features and coding tools 

H.264 is a set of encoding tools to provide high quality video at low bitrates. A lot of 

encoding tools employed in order to achieve that include significant computation to reduce the 

bitrate. So H.264 is significantly computationally involved compared to other codecs. The main 
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advantage that VP6 standard on the other hand offers is that it can keep the encoding process 

as simple as possible, thereby achieving processor friendliness. VP6 stresses the processor 

significantly less compared to H.264. As a result there is a lot of difference between different 

encoding tools employed in the two codecs. Before the adoption of VP6, flash video used the 

Sorrension Spark codec which was based on the H.263 video standard [25]. The table 4.1 

provides a high level overview of the difference between the various features of all three flash 

video standards – H.263, VP6 and H.264. 

Table 4.1 Comparison of different flash video standards [34] [38] 
 

Feature H.263 Baseline VP6 H.264 Baseline 

Picture type I, P I, P I, P 

Transform Size 8x8 8x8 4x4 

Transform DCT Integer DCT Integer DCT 

Intra Prediction None Only DC mode Yes 

Motion Compensation 
Block Size 

16x16, 8x8 16x16, 8x8 16x16, 16x8, 8x16, 
8x8, 8x4, 4x8, 4x4 

Total MB Modes 4 10 7 inter + (9 + 4) intra 

Motion Vector 
resolution 

½ pixel ¼ pixel ¼ pixel 

Deblocking filter None Yes Yes 

Reference Frames 1 Max 2 Multiple 

 
 

VP6 does not make use of bidirectional prediction (section 3.5). So there are no B-

frames in VP6; H.264 baseline profile does not have bidirectional prediction. Hence there is no 

difference in display order and coding order for VP6. Since no reordering is required, delay from 

reordering can be avoided.  

For the P-frames VP6 does not make use of multiple frames for motion estimation / 

motion compensation as compared to H.264. Due to the presence of multiple prediction frames 

in H.264 the prediction frame buffers need to be larger. Also presence of more than one 

prediction frame allows weighted prediction. VP6 does not support weighted prediction [34]. 

VP6 needs only two frame buffers for prediction - one for previous frame prediction and another 

for golden frames. There is no golden frame in H.264. The absence of bidirectional prediction 
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and weighted prediction in VP6 reduces the complexity up to 1/2 compared to the same in 

H.264 [34]. 

H.264 has up to 9 intra-prediction modes (section 2.3.1). The intra-prediction modes in 

H.264 make use of adjacent pixel redundancy. Intra-prediction contributes to significant 

increase in complexity of H.264. Intra prediction in VP6 does not have multiple modes and as a 

result it is much simpler compared to H.264; it only has a low cost DC prediction as noted 

earlier in section 3.6.1. However VP6 cannot achieve the significant redundancy reduction that 

H.264 achieves for intra-prediction. The intra-prediction modes in H.264 hike the complexity by 

roughly 2-16 times [34]. 

Inter-prediction in H.264 can be carried out for multiple MB and sub-MB sizes including 

4x4, 4x8, 8x4, 8x8, 8x16, 16x8 and 16x16 (section 2.3.2). This helps H.264 achieve much finer 

prediction thereby reducing the bitrate. VP6 supports 16x16 and 8x8 MB sizes for motion 

estimation. A major amount of complexity in an encoder comes from motion estimation and 

compensation. So lowering the complexity in the motion estimation process in VP6 reduces the 

CPU utilization to a very large extent.  

Both the codecs support up to 1/4 pixel accuracy for motion vectors. In order to 

generate sub-pixel values for sub-pixel motion search, interpolation filters are required. 

Whereas H.264 used 6-tap filtering for this VP6 makes use of only 2 or 4-tap filtering process. 

This gives it close to half complexity reduction [34]. 

H.264 has an in-loop deblocking filter (section 2.3.4). There is no specific filter for 

deblocking in VP6. However as mentioned in sections 3.7.2 and 3.8 the prediction loop filtering 

process helps to reduce the blocking artifacts in VP6. Whereas up to 5 tap loop filter is applied 

to every 4x4 block boundary of a transformed block in H.264 adaptively, the thresholded 2-4 tap 

prediction loop filter in VP6 is applied only on 8x8 motion blocks boundary [34]. So a significant 

complexity reduction can be achieved. According to On2 Technologies, the loop filtering 

process in H.264 is 2-4 times as complex as VP6 [34]. 
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The DCT used in H.264 is an integer DCT. This DCT is described in section 2.3.3. VP6 

uses a different integer DCT which is adaptive and aims to club as many 0 coefficients together 

as possible. To achieve this VP6 makes use of scan ordering. These processes are described 

in section 3.9. Whereas for most of the profiles, H.264 has only 4x4 integer DCT, VP6 has 8x8 

integer DCT. 

In VP6 BoolCoder context probabilities are adjusted at frame level compared to context 

probabilities being adjusted after each decoded symbol for CABAC used in H.264. The 

complexity for H.264 is roughly 1.25 to 1.5 times more than that in VP6 BoolCoder [34]. 

A lot of the tools in H.264 are applied only for certain profiles (figure 2.1). So the 

complexity varies a lot for all these H.264 profiles. However the main aim of adopting H.264 for 

Flash by Adobe is to support high quality video at higher resolutions. A significant difference in 

complexity can be seen for both the codecs in the encoding and decoding processes for the 

High Definition (HD) profiles [36]. 

4.3 Performance comparison 

The authors in [36] present a comparison of performance for both the codecs. The 

comparison is done mainly from the aspect of High Definition (HD) content encoding and 

playback on systems of different configurations. The testing was performed with following 

viewpoints  

•  Codec performance/degradation at key data rates 

•  Output image quality for key framing and motion elements 

•  Encoding processing time, including power consumption during the process 

•  Playback smoothness on a variety of computer configurations 

A data rate of 1.5 Mbps i.e. 1536 kbps was chosen for encoding. The audio track 

chosen was stereo 64 kbps at 22.05 kHz. This left 1472 kbps of data rate for video of 1280 x 

720 resolution. The frame rate used was the native frame rate of the clips. Varied key frame-

rates are used. VP6 encoding is done with 60 frames and 300 frames between key frames [36]. 
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To be a good test of visual quality of the codecs at the output the clips were chosen 

such that they had the following two properties. 

•  Each clip contained a significant amount of motion - primarily pan and zoom. To be able 

to compare the sharpness and motion comparisons the camera paused during a portion 

of the clip [36].  

•  The clips contain both natural and unnatural elements. For instance, several clips show 

a bagpiper playing on an autumn hillside, where brilliant leaves cover the trees and the 

ground and the bagpipe forms unnaturally straight lines and angles. Another set of clips 

contain lumberjacks working to  remove a tree that threatens a house, with bark and 

branches as the natural elements and a saw and flying chips as the unnatural elements 

[36]. 

The VP6-S codec with Simple profile was chosen. The VP6-S is specifically designed 

for high resolution playback for low-end processors. Both VP6-S and H.264 are encoded at 

1500 kbps for high resolution content as mentioned earlier. To be wholesome in covering all 

processor and configuration capabilities 4 different machines were chosen. These were 

machines without accelerated graphics cards so as to ensure a good test of playback 

smoothness with respect to processor capabilities. The following windows and Macintosh 

machines were used for comparison [36]. 

•  MacPro 8-core 

•  Dell Dimension 5150 with a 3.4 GHz Pentium 4 

•  Macbook (Blackbook) Core2Duo Dual Core 

•  Dell Inspiron with a 1.7 GHz Pentium 4 

The results and conclusions of the tests are described in the sections 3.3.1 thru 3.3.4. 
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4.3.1 Encoding Time 

The encoding tools used were specific to Flash encoding for all the codecs. Due to the 

high complexity and higher compression H.264 encoder was expected to take longer compared 

to encoding of VP6. However H.264 encoding could happen lot faster in comparison. The 

encoding times mentioned are the time to transcode a blu-ray M2T file to a Flash H.264 or a 

Flash VP6 file. 

The encoding times for MacPro 8-core in minutes for the 720p content - 46 clips / 46 

seconds average length, 1280x720@1500 kbps were as follows [36] 

VP6-E: 29:39 minutes 

VP6-S: 27:12 minutes 

H.264: 21:07 minutes 

4.3.2 Perceived Image quality 

Perceived image quality for the 720p images was satisfactory for all the codecs. The 

codecs did not exhibit significant amount of perceived quality difference due to the data rate 

being sufficiently high. However with the presence of some unnatural elements H.264 can 

clearly edge out the VP6 codecs. The comparison of output image quality is given in the figures 

4.1 thru 4.6 [36] [39]. 
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Fig 4.1 An early frame from H.264 [36][39] 

 

Fig 4.2 VP6 encoded with CBR [36][39] 
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Fig 4.3 VP6 encoded with VBR [36][39] 

Figures 4.1 thru 4.3 are of an early frame in the clip. Both the natural elements such as 

leaves and unnatural elements such as the bagpipes are introduced in this frame. It can be 

observed in figure 4.1 of the H.264 clip that the quality is much higher. Although the perceived 

image quality difference is not very high, a limited amount of blockiness can be seen in the VP6 

clips, especially in the background of the leaves. Looking closely at the bagpipe boundaries, it 

can be observed that the jagged angles on the bagpipe are noticeable for H.264 in comparison 

with the VP6 images [36]. 

This is an early frame in the clip, but as the video progresses the frames become more 

problematic as more natural and unnatural elements are introduced. Figures 4.4 thru 4.6 show 

the final frame from all the three codecs. 
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Figure 4.4 H.264 shows better quality even as VP6 starts breaking significantly [36][39] 

 

Figure 4.5 VP6 CBR encoded frame show significant blockiness [36][39] 
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Figure 4.6 VP6 VBR frame is better that CBR frame but fails to match H.264 [36][39] 

Figures 4.4 thru 4.6 are from the final frame in the clip. The error builds up as the video 

progresses. The quality difference in both the codecs is significant and very much noticeable. 

While VP6 fails to keep up even in the out of focus leaves background by getting blocky, the 

difference increases for the face especially in the low contrast regions. The VBR encoded file 

however has better quality although it completely fails to match up to H.264 image quality. Even 

more noteworthy is the difference in the unnatural object – bagpipe. The jaggy lines on pipes do 

not even seem to exist in VP6 images [36].  

The image quality of VP6 can clearly not match the H.264. It is very easy to distinguish 

without using any metrics. However VP6 does exhibit advantages on other aspects. 

4.3.3 Playback smoothness 

A significantly notable difference can be observed in terms of the playback smoothness 

among the codecs. Both the VP6 codecs could very well outdo H.264 especially on the low 

configuration machines. Both VP6-S and VP6-E did very well on CPU utilization, although VP6-

S could produce better quality images. However it was observed that in the lower configuration 
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machines both VP6-E and H.264 had increasing difficulties in playback. VP6-S fared out as the 

best playback option on the lowest of the configurations for HD playback [36]. 

The table 4.2 compares the playback performance by CPU utilization for different 

codecs on different machines. 

 
Table 4.2 CPU usage comparison (in percentage) for different codecs (MacPro 8 cores) [36] 

 

CPU Usage Average Low High 

VP6-E 448 320x180 14.3 13.4 16.9 

VP6-E 872 640x360 27.8 24.8 31.2 

H.264 1500 1280x720 94.0 73.0 111.1 

VP6-E 1500 1280x720 68.8 60.1 72.7 

VP6-S 1500 1280x720 62.1 59.8 70.2 

 

All transcoded files played back smoothly on the Mac Pro, as did all standard-definition 

files on the MacBook and the Dell Dimension. HD file playback on the MacBook required 

reducing the frame to half size, due to the MacBook‟s small screen size, to properly view the 

content. The Dell Dimension 5150 played the VP6-E high definition files and most of the H.264 

files, but the lower-end Dell bogged down for any high-definition file other than VP6-S [36]. 

4.3.4 Energy efficiency in playback 

As mentioned above, playing back H.264 files at 1280x720 is a very processor-

intensive task. The tests were performed on a multi-core system to be sure to have enough 

overhead to smoothly play back the H.264 files; even the 3 GHz processor required parts of 2 

cores to play back the H.264 720p files smoothly. Removing the 7.2% CPU utilization load from 

each test, to eliminate the idle state CPU usages for the players – a customized FLVPlayer for 

all Flash files and QuickTime for the H.264 files – the average CPU usage is still almost 33% 

higher for H.264 at equivalent data rates and resolutions than it is for VP6. The VP6-S files 

could hold a tighter CPU usage range, with low to high CPU utilization within roughly 8% versus 

H.264‟s 17% range and VP6-E‟s 14% range. Even on the Dell Dimension 5150 tests, the only 

machine other than the Mac Pro that could handle most of the H.264 files, it is found that the 

VP6-S files maintained this tighter range [36]. 
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H.264 image quality is very good compared to any other codec. With good encoding 

tools and a powerful processor available for playback, H.264 has to be the best codec for 

quality in flash video. Although the choice for the codec becomes very much specific as both 

codecs hold their own in different areas, H.264 image quality, especially in the presence of both 

natural and unnatural elements is difficult to beat [36]. However considering that the playback 

smoothness plays a very important part in a watchable video, VP6 is here to stay along with 

H.264 in the Flash ecosystem [36]. 

4.4 Quality comparison 

As seen in section 3.3 H.264 is a complex codec which takes significant amount of 

computations for the encoding and decoding process compared to VP6. In this section a 

comparison of the quality of H.264 and VP6 an encoded video sequence is done. The 

comparison is performed for VP6 Simple profile and H.264 Baseline profile. 

The results presented here use 3 sequences (2 QCIF and 1 CIF video sequence). The 

source of the Foreman (QCIF) sequence is the Joint Model (JM) software package [63] and the 

source of the Akiyo (QCIF) and Stefan (CIF) sequences is [64]. The sequences are encoded at 

different bitrates and the metrics used for comparison are mean squared error (MSE), peak 

signal to noise ratio (PSNR) and structural similarity index metric (SSIM) [SSIM source]. Tables 

4.3 thru 4.5 give the Y, U and V component MSE, PSNR and SSIM values for the Foreman, 

Akiyo and Stefan sequences respectively. Figures 4.7 thru 4.18 show the decoded images for 

each codec against the original frame with the corresponding PSNR and SSIM values for that 

frame and graphs for comparison of quality for VP6 and H.264 in terms of average MSE, PSNR 

and SSIM values vs. bitrate.  

The JM software is used for the implementation of H.264 [63]. JM software is free 

software which provides flexibility of free development and testing to the user. It is configurable 

software so the encoder properties can be controlled by the user. The bitrate was varied by 

changing the quantization parameter (QP) for the I-frames and P-frames; no B-frames were 
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used as they are not allowed in the H.264 baseline profile. The frame rate used was in 

accordance that prescribed for the levels used (level 1.0 for QCIF video sequences and level 

1.2 for the CIF video sequences). The number of reference frames used was restricted to 2 

reference frames. 

The VP6 software used was VP6 software development kit (SDK) available from the 

license owner On2 technologies. It is not a free software license. However the license was 

provided with no cost for study and research purposes by On2 technologies to the Department 

of Electrical Engineering, University of Texas at Arlington (UTA); with the condition that it is not 

used for commercial purposes. The VP6 bitrate can be controlled by the quality parameters 

BestAllowedQ and Quality.  

Table 4.3 Quality metrics for Foreman clip for VP6 and H.264 codecs (PSNR in dB) 

Clip – Foreman (3 frames only) [63] 

Codec – VP6 

Bitrate 
(kbps) 

Y  
MSE 

U 
MSE 

V 
MSE 

Y 
PSNR 

U 
PSNR 

V 
PSNR 

Y 
SSIM 

U 
SSIM 

V 
SSIM 

10.723 52.734 8.267 7.833 31.015 38.988 39.201 0.877 0.941 0.955 

14.199 33.898 7.067 5.808 32.923 39.667 40.515 0.908 0.945 0.964 

17.251 26.658 6.380 4.948 33.992 40.110 41.209 0.922 0.946 0.966 

20.894 19.695 5.527 4.166 35.284 40.720 41.953 0.935 0.952 0.969 

30.518 12.131 3.928 2.789 37.470 42.221 43.722 0.954 0.961 0.976 

45.249 6.980 2.643 1.747 39.832 43.960 45.773 0.969 0.972 0.983 

64.629 4.250 1.845 1.286 41.852 45.473 47.039 0.978 0.979 0.987 

Codec – H.264 baseline 

Bitrate 
(kbps) 

Y  
MSE 

U 
MSE 

V 
MSE 

Y 
PSNR 

U 
PSNR 

V 
PSNR 

Y 
SSIM 

U 
SSIM 

V 
SSIM 

12.930 17.044 5.599 3.620 31.418 39.276 40.622 0.891 0.944 0.960 

17.261 17.008 5.569 3.611 35.210 40.199 41.409 0.940 0.950 0.964 

45.098 5.180 2.918 1.894 41.151 43.525 45.417 0.977 0.969 0.982 

109.966 2.783 1.565 1.121 47.049 47.865 48.869 0.988 0.983 0.989 

199.678 1.082 0.716 0.457 57.599 55.522 55.816 0.995 0.992 0.995 

 

As it can be observed for the range of PSNR and SSIM values in table 4.3 the quality of 

H.264 increases significantly compared to VP6 at higher bitrates. At lower bitrates the difference 

in values is not so significant. Figures 4.7 gives a comparison of the I-frame image from the VP6 

and H.264 files for the Foreman clip.  
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VP6 (Bitrate - 230.352 kbps)

Y comp PSNR - 53.849

Y comp SSIM - 0.9983

Foreman - Original Sequence

(1st frame - I frame)

H.264 (Bitrate - 199.678 kbps)

Y comp PSNR - 67.486

Y comp SSIM - 0.9999

 
(a)                                   (b)                                (c) 

Figure 4.7 Foreman clip (1st frame) (a) VP6 (b) original (c) H.264 (PSNR in dB) 

 

Table 4.4 Quality metrics for Akiyo (QCIF) clip for VP6 and H.264 (PSNR in dB) 

Clip – Akiyo (30 frames at 15 fps) [54] 

Codec – VP6 

Bitrate 
(kbps) 

Y  
MSE 

U 
MSE 

V 
MSE 

Y 
PSNR 

U 
PSNR 

V 
PSNR 

Y 
SSIM 

U 
SSIM 

V 
SSIM 

18.768 34.667 15.393 9.021 32.757 36.262 38.579 0.900 0.949 0.942 

26.544 22.465 9.463 6.342 34.647 38.388 40.111 0.926 0.960 0.952 

33.968 16.851 6.631 4.903 35.909 39.927 41.235 0.942 0.967 0.960 

36.280 14.132 6.182 4.336 36.698 40.243 41.769 0.949 0.968 0.965 

61.856 7.821 2.917 2.419 39.263 43.489 44.306 0.967 0.981 0.977 

92.072 5.026 2.000 1.572 41.194 45.145 46.186 0.975 0.986 0.984 

198.984 2.840 1.247 1.080 43.603 47.176 47.802 0.982 0.990 0.989 

378.880 1.896 0.725 0.653 45.358 49.527 49.986 0.986 0.993 0.993 

682.536 1.466 0.461 0.423 46.476 51.493 51.873 0.988 0.995 0.995 

Codec – H.264 baseline 

Bitrate 
(kbps) 

Y  
MSE 

U 
MSE 

V 
MSE 

Y 
PSNR 

U 
PSNR 

V 
PSNR 

Y 
SSIM 

U 
SSIM 

V 
SSIM 

719.820 0.035 0.054 0.055 64.479 61.715 61.488 1.000 0.999 0.999 

479.790 0.238 0.256 0.244 55.461 54.657 54.690 0.998 0.997 0.997 

267.100 0.554 0.541 0.498 50.950 50.947 51.251 0.996 0.995 0.995 

58.620 3.140 2.218 1.798 43.193 44.685 45.594 0.985 0.984 0.983 

15.700 12.876 5.837 4.923 37.040 40.469 41.211 0.961 0.970 0.960 

10.820 19.242 6.056 5.004 35.459 40.315 41.139 0.953 0.970 0.960 

10.100 26.396 6.330 5.089 34.404 40.138 41.068 0.946 0.970 0.960 

 

Table 4.4 gives the values for different metrics for the Akiyo clip. The initial 30 frames 

of the clip were encoded at 15 frames per second. It can be observed the quality of the H.264 

encoded frames sequence is better than VP6 encoded sequence. Figures 4.8 and 4.9 compare 

the I-frame (1
st
 frame) and the 30

th
 frame which was the last frame in the sequence. It can be 

observed that the error is high for 30
th
 frame. 
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VP6 (Bitrate - 10.648 kbps)

Y comp PSNR - 35.577

Y comp SSIM - 0.9370

Akiyo - Original sequence

(1st frame - I frame)

H.264 (Bitrate - 10.82 kbps)

Y comp PSNR - 37.434

Y comp SSIM - 0.9621

 
(a)                                  (b)                                (c) 

Figure 4.8 Akiyo clip (1st frame) (a) VP6 (b) original (c) H.264 (PSNR in dB) 
 

VP6 (Bitrate - 10.648 kbps)

Y comp PSNR - 33.565

Y comp SSIM - 0.9155

Akiyo - Original sequence

(30th frame)

H.264 (Bitrate - 10.82 kbps)

Y comp PSNR - 33.799

Y comp SSIM - 0.9437

 
(a)                                  (b)                                (c) 

Figure 4.9 Akiyo clip (30th frame) (a) VP6 (b) original (c) H.264 (PSNR in dB) 
 

The graphs in figures 4.10 thru 4.12 compare the average values of MSE, PSNR and 

SSIM for the Y-component over 30 frames of the sequence. 



 

 77 

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

Bitrate (kbps)

A
v
e
ra

g
e
 Y

 c
o
m

p
o
n
e
n
t 

M
S

E

Akiyo sequence - 30 frames @ 15 fps

Average Y component MSE vs bitrate

 

 

VP6

H.264

 
Figure 4.10 Average Y component MSE vs. bitrate for the Akiyo sequence 
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Figure 4.11 Average Y component PSNR (dB) vs. bitrate for Akiyo sequence 
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Figure 4.12 Average Y component SSIM vs. bitrate for Akiyo sequence 

Table 4.5 gives the values of different metrics for the Stefan sequence. It is CIF 

sequence. The initial 15 frames of the sequence were encoded at 15 fps with only one I-frame 

at the first frame. As it can be observed there is not a significant difference in the quality for both 

the codecs for this sequence.  

Table 4.5 Quality metrics for Stefan sequence (PSNR in dB) 

Clip – Stefan (15 frames at 15 fps) [64] 

Codec – VP6 

Bitrate 
(kbps) 

Y  
MSE 

U 
MSE 

V 
MSE 

Y 
PSNR 

U 
PSNR 

V 
PSNR 

Y 
SSIM 

U 
SSIM 

V 
SSIM 

164.696 157.906 26.667 29.772 26.403 33.933 33.460 0.838 0.841 0.838 

285.248 86.330 20.517 21.904 28.925 35.081 34.819 0.898 0.867 0.873 

362.048 64.973 16.819 17.843 30.164 35.959 35.723 0.918 0.889 0.892 

543.488 39.440 12.450 12.820 32.276 37.238 37.117 0.942 0.914 0.920 

834.792 21.889 8.481 8.617 34.846 38.926 38.863 0.962 0.940 0.945 

1445.568 9.263 4.568 4.543 38.518 41.593 41.621 0.977 0.965 0.969 

5685.424 0.521 0.495 0.484 50.965 51.185 51.279 0.997 0.995 0.995 
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Table 4.5 – Continued 

Codec – H.264 baseline 

Bitrate 
(kbps) 

Y  
MSE 

U 
MSE 

V 
MSE 

Y 
PSNR 

U 
PSNR 

V 
PSNR 

Y 
SSIM 

U 
SSIM 

V 
SSIM 

160.520 214.934 19.323 20.370 25.516 35.416 35.206 0.839 0.889 0.893 

221.060 74.135 16.532 17.608 29.695 36.049 35.786 0.927 0.899 0.902 

290.130 51.605 16.903 17.522 31.008 35.855 35.696 0.943 0.891 0.896 

601.940 23.064 11.443 11.323 34.637 37.572 37.623 0.968 0.920 0.929 

611.710 20.647 10.454 10.416 34.990 37.944 37.957 0.971 0.927 0.935 

1242.820 10.167 6.504 6.439 38.911 40.199 40.261 0.982 0.954 0.958 

2179.000 3.247 2.728 2.667 43.146 43.835 43.945 0.990 0.979 0.981 

5514.090 0.871 0.764 0.761 50.937 50.620 50.698 0.997 0.993 0.994 

 

Figure 4.13 and 4.14 provide a comparison for the 2nd frame which is the first frame 

after the I-frame and 15th frame for the sequence. The graphs in figures 4.15 thru 4.17 compare 

the values average metrics for the Y-component against bitrate in kbps. 

VP6 (Bitrate - 660.9 kbps)

Y comp PSNR - 34.996

Y comp SSIM - 0.9651

H.264 (Bitrate - 611.7 kbps)

Y comp PSNR - 34.225

Y comp SSIM - 0.9674

Stefan (Original CIF clip)

Encoding: 15 frames @ 15 fps

 

Figure 4.13 2nd frame from the Stefan (CIF) clip (PSNR in dB) 
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H.264 (Bitrate - 611.7 kbps)

Y comp PSNR - 35.028

Y comp SSIM - 0.9719

VP6 (Bitrate - 660.9 kbps)

Y comp PSNR - 34.23

Y comp SSIM - 0.9588

Stefan (Original CIF clip)

Encoding: 15 frames @ 15 fps

frame 15

 

Figure 4.14 15th frame from the Stefan (CIF) clip (PSNR in dB) 
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Figure 4.15 Average Y component MSE vs bitrate for the Stefan (CIF) clip 
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Figure 4.16 Average Y component PSNR (dB) vs bitrate for Stefan (CIF) clip 
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Figure 4.17 Average Y component SSIM vs bitrate for the Stefan clip 

 

4.5 Summary 

The chapter gives and overview of the difference between the encoding tools and 

compares the complexity for both the codecs. Further performance comparison is given with an 

overview subject quality assessment. The last section in the chapter provides a comparison of 

object quality assessment using metrics such as MSE, PSNR and SSIM against the bitrate. It 

can be observed that while H.264 can provide better quality at the same bitrate its complexity is 

higher and it is more strenuous on the processor.  
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CHAPTER 5 

 
TRANSCODING 

5.1 Introduction 

As described in section 1.2 video transcoding is an operation of converting video from 

one format to another [31]. This format conversion includes a range of operations such as 

bitrate reduction, conversion of one compression format to another, altering video container 

format or changing the header descriptions and others. Apart from this basic format conversion, 

a transcoder can be used for other functions such as adjustment of coding parameters of 

compressed video, spatial and temporal resolution conversions, insertion of new information 

such as digital watermarks or company logos and even enhanced error resilience [30]. 

 

Figure 5.1 Communication between various multimedia devices [39] 
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Figure 5.1 shows different multimedia devices; these devices operate at different 

bitrates, picture resolutions and video coding algorithms. Due to the scope of communications in 

current times there is extensive exchange of multimedia data between various such systems of 

different configurations over networks of varied capacities. It is very important to be able to play 

the same video content for all the systems to ensure access to a widespread audience. 

Transcoding can enable multimedia devices of diverse capabilities and formats to exchange 

video content on heterogeneous network platforms [30]. Figure 5.2 is a high level look on 

transcoder functionality. High bitrate video from high quality sources such as DVD and HDTV 

broadcasting can be made available on hand held devices such as smartphones, PDAs, etc. In 

video conferencing transcoding can enable the adjustment of bitrate to support the bandwidth 

requirements and also any format conversions if required. This attempt to ensure availability to 

all media content over diverse networks and systems with varied capabilities forms an important 

aspect of universal multimedia access [30] [31]. 

 

Figure 5.2 Video transcoding operations [29] 
 

Several video coding standards exist currently [5] [23] [27] [33]. Each of them suits a 

diverse range of applications, but is optimized for certain kind of applications. This results in the 

use of various standards over diverse applications.  Table 5.1 lists the different codecs used for 

different multimedia applications. Some of the standards are proprietary and the IP owners 

prefer using their standards. Some of the common standards can be listed as - H.261, H.262 

H.263, H.263+ [33] designed by ITU (International Telecommunication Union); they are aimed 

at low-bit-rate video applications such as videophone and videoconferencing. MPEG standards 



 

 85 

are defined by ISO (International Organization for Standardization). MPEG-2 is aimed for high 

bit rate high quality applications such as digital TV broadcasting and DVD, and MPEG-4 is 

aimed at multimedia applications including streaming video applications on mobile devices [29]. 

The new and highly popular H.264 standard is used for high resolution video content and a 

range of broadcast applications. This standard addresses a very wide variety of applications [5] 

[40]. Apart from that, Microsoft developed the Windows Media Video standard WMV9 which is 

adopted by SMPTE as VC-1 standard and is popular [23]. VC-1 along with H.264 and MPEG-2 

is also used for high definition content in Blu-ray Disc standard [41]. Adobe licenses the VP6 

and VP7 codecs from On2 Technologies, Inc. for its flash tools [25]. Thus a wide range of 

standards exist. Figure 5.3 provides an overview of how these standards have grown over the 

years and the increase in complexity along with that. Transcoding one video format to another is 

increasingly significant in the current scenario of diversifying and increasing multimedia 

applications. The current research on VP6 and H.264 standard is aimed at the interoperability of 

the two popular standards supported by Adobe in its Adobe Flash Player.  

Table 5.1 Different multimedia applications and corresponding video standards [42][41] 

Application Bitrate Video standard 

Digital TV broadcasting 2 to 6 Mbps (10 to 20 Mbps 
for HD broadcast) 

MPEG-2  

DVD Video 6 to 8 Mbps MPEG-2 

Internet video streaming 20 to 200 kbps Flash – Sorrension spark 
(based on H.263), VP6 and 
H.264; Silverlight uses VC-1; 
and also MPEG-4 Part 2 

Video conferencing and 
video-telephony 

20 to 320 kbps H.261, H.263, H.263+ 

Video over 3G wireless 20 to 100 kbps H.263, MPEG-4. Part 2 

High definition – Blu-ray and 
HD-DVD 

36 to 54 Mbps H.264, VC-1 and MPEG-2 

 

Apart from this, transcoding is useful in a range of other applications. In statistical 

multiplexing [44], the bit rate increases as various multi-bit-rate video streams are multiplexed. 

A transcoder can be used to adapt the bit-rates of the video streams when the aggregated bit-

rate exceeds the channel bandwidth [30]. A transcoder can also be used to insert new 
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information including company logos, watermarks, as well as error-resilience features into a 

compressed video stream. Transcoding techniques are also useful for supporting VCR trick 

modes, i.e., fast forward, reverse play, etc., for on-demand video applications [30]. For adaptive 

video content delivery, object based transcoding techniques can be used [45][30]. 

 

(a) 

 

(b) 
 

Figure 5.3 Video coding standards (a) Timeline [43] (b) Increase in complexity [42] 
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Transcoding can be broadly categorized into homogenous and heterogeneous 

transcoding techniques based on applications. Figure 5.4 shows the classification of different 

transcoding techniques.  

 

Figure 5.4 Video transcoding operations and classification [29] 
 

Homogenous transcoding performs conversion between video bitstreams of the same 

standard. Bitrate conversion is one such application. A simple technique to achieve bitrate 

reduction can be to increase the quantization step at the encoder part of the transcoder [29] [46] 

[47] (section 5.2.2.3). As the quantization resolution decreases, the number of non-zero 

coefficients decreases, thereby resulting in bitrate reduction. The complexity of such an 

application is less, although the reconstructed image quality can be affected; it is considered as 

a good trade-off. Another method or fixed resolution bit rate reduction can be selective 

transmission (section 5.2.2.2). Since most of the energy is concentrated in the lower frequency 

bands of an image, discarding (truncating) some of the higher frequency coefficients [39] [29] 

can be used. This can preserve picture quality, but can introduce blocking artifacts in the 

reconstructed target video. Various other methods for bitrate transcoding at architectural levels 

are discussed in sections 5.2 and further.  
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Other application of homogenous transcoding is spatial or temporal transcoding. As 

shown in figure 5.5 [29], spatial transcoding can be implemented in various ways which can 

both achieve spatial as well as bit rate adjustments. There can be multiple uses of performing 

spatial transcoding such as to subsample or even to extract sections of the image to user's 

interest as shown in figure 5.6 [29]. This requires the use of meta information. In subsampling, 

filtering and pixel averaging to reduce spatial resolution [29] problems arise when passing 

motion vectors directly from the decoder to the encoder. Thus, motion vectors need to be 

refined [32] [37] (section 5.2.5.4). In [48] the authors proposed a filter that can be used in both 

horizontal and vertical directions for luminance and chrominance; the image is then down-

sampled by dropping every alternate pixel in both horizontal and vertical directions (section 

5.2.5.1). In pixel-averaging (section 5.2.5.2) [48], MxM pixels are represented by averaging their 

values to a single pixel. It is a very simple method, but the the reconstructed pictures may 

become blurred. In [49] spatial resolution reduction is achieved by performing decimation in 

DCT domain by discarding the higher order DCT coefficients (section 5.2.5.3).  

 

Figure 5.5 Various ways of spatial transcoding (Bits = target bitrate in KBps) [29] 
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Figure 5.6 Transcoding with normal downsampling and  
user-interest-based downsampling [29] 

 

Frame-rate conversion is needed when the end-system supports only a lower frame-

rate. Reduction in frame rate may save bits that can be used in the remaining frames to 

maintain acceptable overall picture quality for each frame. However this requires motion vector 

recalculation; with the dropped frames, incoming MVs may not be valid as they point to frames 

that do not exist. In [50] a method to estimate the new MVs by using bilinear interpolation is 

described. Given the MVs between every adjacent dropped frames are known, bilinear 

interpolation (section 5.2.6.1) is used to calculate the new MVs between the current and 

previous non-skipped frame. Another method proposed in [51] known as the Forward Dominant 

Vector Selection (FDVS) (section 5.2.6.2) selects dominant MV from the four neighboring 

macroblocks. A dominant MV is defined as the MV carried by a macroblock that has the largest 

overlapping segment with the block pointed by the incoming MV. The Telescopic Vector 

Composition (TVC) technique (section 5.2.6.3) described in [48] sums up all the MVs of the 

corresponding macroblocks of the dropped frames and adds the resulting combined MV to its 

corresponding MV in the current frame. This technique also carries out new macroblock 

decision and MV refinement. Another algorithm known as Activity-Dominant Vector Selection 

(ADVS) (section 6.2.6.4) is described in [52]. It utilizes the activity of the macroblock to decide 

the choice of the MV. The activity information of a macroblock is represented by counting the 
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number of nonzero quantized DCT coefficients of covered 8x8 residual blocks, other statistics, 

such as the sum of the absolute values of DCT coefficients, etc. 

A heterogeneous video transcoder provides conversions between two different video 

coding standards. This involves basic syntax conversion as the first step. Further it can also 

provide all the other functionalities of a homogenous transcoder. 

5.2 Video transcoding architectures 

5.2.1 Cascaded decoder and encoder model 

The most straightforward transcoding architecture is to cascade the decoder and 

encoder directly as shown in Fig. 5.7 (a) [29]. In this architecture, the incoming source video 

stream (VS) after encoding is fully decoded, and then the decoded video is re-encoded into the 

target video stream (VT) with desirable bit-rate or format; the process of transcoding does not 

introduce any degradation in the visual quality. The more detailed manifestation of the cascaded 

transcoder is shown in figure 5.8 (b) [29]. 
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(a) 

 

(b) 
 

Figure 5.7 Cascaded decoder and encoder model (a) block level diagram  
(b) detailed diagram [29] 

 

This type of implementation involves complete decoding and re-encoding of the 

incoming compressed video stream. It has to perform full decoding followed by the resizing / re-

ordering of the decoded sequence before re-encoding it. Due to complete re-encoding 

operation, complex frame reordering and full-scale motion re-estimation are required. Motion 

estimation has the highest complexity in the encoder. So such an implementation involves the 

maximum complexity and also high processing time and power consumption leading to 

significant delays [53] [39]. Also the pictures / frames exhibit increased error due to re-encoding 

being performed on decoded pictures which have lower quality than original frames. The error is 

due to propagation. Lossy encoding process inserts errors; when such a bitstream is decoded, 

the decoded pictures have errors which propagate on further encoding which inserts more 
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errors. This error is not the same as the drift error in open loop transcoders described in section 

5.2.2.3. Due to all these reasons such a transcoding model needs a lot of optimization. Different 

methods are described further to optimize transcoder performance and reduce complexity [53]. 

5.2.2 Open loop transcoding architecture 

The simplest method to reduce the complexity of the cascaded decoder encoder 

transcoding model is to use open-loop transcoding architecture. Such architecture aims to use 

minimum transcoding complexity by only modifying the encoded DCT coefficients. Figure 5.8 

shows an open loop transcoder. Since only the DCT coefficients are modified in order to adjust 

the bitrate, other video parameters remain unaffected; the DCT coefficients are decoded while 

the rest of the parameters are transmitted in VLC domain. After the DCT coefficients are 

decoded, operations may be performed on them to reduce the bitrate. Bitrate reduction can be 

achieved by either throwing away the high frequency components or coarser re-quantization of 

the decoded coefficients. These schemes are discussed in section 5.2.2.2 and 5.2.2.3 

respectively. This architecture is called so because it does not have any feedback loop which 

can compensate the drift errors (section 5.2.2.1 describes drift errors and reduction of the drift 

errors using a feedback loop). The picture drift occurs from the mismatch between the locally 

reconstructed pictures at the encoder and the transcoded pictures in the system. 
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Figure 5.8 Open loop transcoder architecture [39] 
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5.2.2.1 Picture drift errors 

A cumulative effect occurs due to the mismatch between the reconstructed images of 

originally encoded video frames and the transcoded video frames. Such errors propagate along 

the video sequence. The errors resulting from mismatch between the video frames at the 

original encoder and the eventual decoder are known as drift errors and the effect is known as 

the picture drift effect in a transcoder [29] [53]. The following sets of equations [29] develop drift 

errors mathematically. All the symbols in the equations below have reference in the figure 5.7 

(b). 

PS(n)  = eS(n) + MCS(PS(n-1))      (5.1) 

eT(n)  = PS(n) – MCT(PT(n-1))      (5.2) 

ET(n)  = DCT(eT(n)) 

 = DCT(PS(n) – MCT(PT(n-1)))   [from equation 5.2] 

 = DCT(eS(n) + MCS(PS(n-1)) - MCT(PT(n-1))) [from equation 5.1] 

 = DCT(eS(n)) + DCT(MCS(PS(n-1)) - MCT(PT(n-1))) 

 = ES(n) + DCT(MC)      (5.3) 

where 

MC = MCS(PS(n-1)) - MCT(PT(n-1)) 

Equation 5.3 shows that if MC is non-zero i.e. the video frames at the original encoder 

and the eventual decoder are different, the transcoder output has errors compared to the 

original input. These errors build up as the video frames progress. As observed the errors arise 

during motion compensation (MC). As there is no motion compensation in intra frames, drift 

errors do not occur in intra-frames. However as each predicted frame (P-frame) makes use of 

another P-frame which already has drift errors, the errors build up. So drift error keeps 

increasing with each frame until a new I-frame is reached. B-frames are not used for prediction. 

So they do not contribute to further increase the drift errors [29] [53]. 
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The feedback loop in figure 5.7 (b) makes sure the building up of drift errors can be 

avoided. The feedback loop can ensure that for further prediction the MC block at the encoder 

uses the same frame as the MC block of the decoder thereby preventing the building up of drift 

errors due to erroneous prediction frames. 

5.2.2.2 Truncation of high-frequency coefficients  

Figure 5.9 shows an open-loop transcoder which reduces the bitrate by discarding the 

high frequency coefficients. The variable length decoder (VLD) decodes the DCT coefficients 

and based on the target bit-rate defines a scaled bit usage profile to meet the target rate. The 

rate controller simply has to discard the coefficients that exceed the scaled profile. For this most 

often the VLD only needs to decode the codeword lengths. This method does not need to 

perform inverse quantization and re-quantization as the method described in section 5.2.2.3. It 

is the simplest implementation of a bit-rate transcoder. 

VLD

VLC

Rate 
Controller -
Discard high 
frequency 

components 

Header Info.
&

Motion Info.

VS

VT

 

Figure 5.9 Bitrate reduction by truncation of high frequency coefficients [29] 
 

5.2.2.3 Re-quantization to reduce bitrate 

Figure 5.10 shows an open-loop transcoder which employs the method of coarser re-

quantization of DCT coefficients in order to achieve reduction in bitrate. Compared to the 

architecture in section 5.2.2.2 it has a complete VLD block, an inverse quantizer and a 

quantizer; all these contribute towards increase in the complexity slightly.  The DCT coefficients 

are decoded first, inverse quantized, re-quantized with a coarser quantization value and 

variable length coded (VLC) again. This architecture also exhibits drift errors as there is no 
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feedback loop. The equations below give an analysis of the drift error in open-loop architecture. 

All the symbols used in the equations are in reference with figure 5.10 

E’T(n)  = ES(n) 

ET(n) = E’T(n) + DCT(MC)    [from equation 5.3] 

de(n) = DCT(MC) = ET(n) – E’T(n)     (5.4) 

It can be seen from equation 5.4 that here de(n) is the drift error which is introduced by 

the process of re-quantization. Similarly in the scheme in section 5.2.2.2 such an error is 

introduced by the discarding on non-zero high frequency coefficients. 

 

Figure 5.10 Transcoding with re-quantization scheme [29] 
 

5.2.3 Spatial domain transcoding architecture 

Figure 5.7(b) shows a spatial-domain transcoding architecture (SDTA). It is the most 

basic architectures to perform bit-rate reduction; but as described in section 5.2.1, it has a very 

high complexity. Figure 5.11 shows a slightly modified SDTA which makes reuse of the motion 

information from the video decoder. This results in significant reduction in complexity as motion 

estimation alone contributes to 60-70% of encoder time complexity [29]. As it can be observed, 

there are optional functional blocks between the decoder and the encoder in figure 5.11. Motion 

vector composition and refinement (MVCR) and spatial/temporal resolution reduction (STR) can 

be performed at these blocks. Different methods to achieve these are explained in section 

5.2.5.4 and section 5.2.5 respectively. If the only aim of the SDTA is bit-rate reduction the 

transcoder can be further simplified as shown in figure 5.12 [29]. 
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Figure 5.11 Spatial domain transcoding architecture (SDTA) with MV reuse and STR [29]. 
 

 

Figure 5.12 Simplified SDTA without STR [29] 
 

5.2.4 Frequency domain transcoding architecture 

Some operations in the decoder part of figure 5.11 can be reduced for a simplified 

SDTA shown in figure 5.12. Further simplification can be achieved if the DCT/IDCT operations 

can be removed in the encoder by performing motion compensation in frequency domain. 

Figure 5.13 describes simplified frequency domain transcoding architecture (FDTA) which can 



 

 97 

achieve this. Here motion compensation (MC) is achieved in frequency domain. Frequency 

domain motion compensation techniques are described in [54]. FDTA gives significant reduction 

in complexity over the cascaded scheme but it can have drift as sub-pixel motion compensation 

cannot be done at frequency level [29]. 

 

Figure 5.13 Frequency domain transcoding architecture (FDTA) [29] 
 

5.2.5 Spatial resolution reduction 

Spatial resolution reduction (SRR) can be achieved using either SDTA or FDTA 

described in sections 5.2.3 and 5.2.4 respectively. Spatial resolution reduction comes along with 

bitrate reduction. With the spatial resolution reduction motion vectors need to be recalculated; 

section 5.2.5.4 describes techniques for motion vector composition and refinement. Also with 

spatial resolution reduction, the MB mode decisions need to be made again; section 5.2.5.5 

discusses MB mode decisions in such scenarios. Sections 5.2.5.1 thru 5.2.5.3 describe different 

techniques for SRR. 
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5.2.5.1 Filtering and subsampling 

Subsampling is a method to reduce spatial resolution in the spatial domain. 

Subsampling needs a decimation filter before dropping the alternate pixels. In [55] the authors 

have proposed a 7-step decimation filter with coefficients as (-1, 0, 9, 16, 9, 0, -1)/32 which. The 

same filter is applied in both horizontal and vertical directions for luminance and chrominance 

after which downsampling is performed by dropping alternate pixels as shown in figure 5.14. 
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Figure 5.14 Decimation of a 16 x 16 MB 
 

5.2.5.2 Pixel averaging 

The simplest method to reduce spatial resolution is pixel averaging as show in figure 

5.15. Here every MxM pixels are represented by 1 pixel in order to achieve M:1 spatial 

resolution reduction. Most often the calculated value for this replacement pixel is the average of 

the MxM original pixels. However this can clearly introduce blur in the picture [55].  
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Figure 5.15 Pixel averaging 
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5.2.5.3 Discarding high frequency DCT coefficients 

A more efficient method to achieve spatial resolution reduction is discarding the higher 

order DCT coefficients. This method performs the scaling operation in DCT domain so it can be 

used in the FDTA where DCT domain MC is performed. Also it is much simpler as it simply 

involves discarding all the higher order frequency coefficients other that the lower frequency 8x8 

coefficients out of the 16x16 coefficients [55] as shown figure 5.16. According to a comparative 

study carried out by the authors in [55] DCT domain decimation technique performs the best of 

the three SRR techniques described. 
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Figure 5.16 DCT domain decimation for SRR 
 

5.2.5.4 Motion vector composition and refinement 

For SRR the motion vectors from the source cannot be passed directly to the encoder. 

When the resolution is reduced by 2:1 as shown in figure 5.17, multiple MVs need to be merged 

to a single MV. This process is motion vector composition.  

 

Figure 5.17 Four motion vectors being downsampled to one [29] 
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Numerous simple and involved methods have been proposed. Some of them are as 

follows. 

• Random selection: A fast method of MV composition is to select any random MV from 

the incoming MVs to replace all of them. However this is a very inefficient method. This 

method is studied in [56]. 

• Mean: An average value of all the incoming motion vectors can be used; this method 

however can be used only if all the motion vectors are in the same direction [57]. Most 

often there is no significant difference between the MV values of neighboring MBs. But 

this method ineffective if one of the original MVs is much larger compared to the rest of 

the MVs. 

• DCMax: In [58] a technique used for MV composition makes use of the incoming MV 

with the maximum DC coefficients of the residual block in the source video. This 

method according to [29] is more complicated but gives better results compared to 

taking mean or random selection. 

The motion vector composition schemes are sub-optimal and introduce degradation in 

quality at the output. So MV refinement techniques are proposed in [55] [56]. The recalculated 

MVs will not differ very much from actual motion vectors; so refinement of this MV in a small 

search window gives better results. Figure 5.18 describes a MV refinement scheme proposed in 

[51]. 
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(a) 

 

(b) 

Figure 5.18 Motion vector refinement using search window (a) best case – small search  
(b) worst case – long search [51] 

 

5.2.5.5 MB coding mode decision 

With the reduced spatial resolution the MB coding modes need to be revaluated. For 

2:1 downscaling four incoming MBs are coded to a single MB. There can be two scenarios – all 

four of them have the same MB coding mode or all four of them have a different coding mode 
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as shown in figure 5.19. In [56] the following scheme is proposed when all four incoming MBs 

have the same coding mode. 

• If incoming are coded are INTRA MBs re-encode the reduced MB as INTRA. 

• If the incoming MBs are SKIPPED again code the reduced MB as SKIPPED. 

• If the incoming MBs are coded as INTER, check to see if all the coefficients in the 

reduced MB are zero; than it should be coded as SKIPPED. If not it should be encoded 

as either INTRA or INTER. 

For the second scenario as shown in figure 5.19, authors in [59] have described the 

following scheme. 

• At the transmitter: If one of the four is an INTRA coded MB, than pass the new MB as 

intra. If one of them is INTER and none of them INTRA, pass the new MB as INTER 

MB. If all MBs are SKIPPED pass the new MB as SKIPPED. 

• At the encoder: Re-evaluate the MBs as applicable. 

 

Figure 5.19 Four macroblock types downsampled to one [29] 
 

5.2.6 Temporal resolution reduction 

With frames dropped in order to achieve temporal resolution reduction (TRR) the 

incoming MVs are not valid as they point to the frames that do not exist in the trascoded 

bitstream. New MVs need to be derived. Sections 5.2.5.1 thru 5.2.5.4 describe different 

technique to derive new MVs from the MVs of the dropped frames. 
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5.2.6.1 Bilinear Interpolation  

In [60] a bilinear interpolation method to estimate the new MVs is proposed. The new 

MV is calculated using interpolation of MVs between every adjacent frame between the current 

frame and previous non-skipped frame. The new location position based on this interpolated MV 

servers as the search center to calculate the actual value of the new MV; thereby reducing the 

complexity in the new MV search. The search area is calculated from the number of skipped 

frames and accumulated magnitudes of their MVs. 

5.2.6.2 Forward Dominant Vector Selection (FDVS) 

The method proposed by the authors in [51] selects the dominant MV from the four 

neighboring macroblocks as shown in figure 5.20. A dominant MV is defined as the MV carried 

by the macroblock that has the largest overlapping segment with the block pointed by the 

incoming MV. The best-matched area pointed by the MV of the current macroblock occurring 

after a dropped frame overlaps with at most four macroblocks in the previous dropped frame. 

The MV of the macroblock with the largest overlapping portion is selected and added to the 

current MV. This process is repeated each time a frame is dropped until a new set of MVs is 

composed for the last non skipped frame. 

 

Figure 5.20 FDVS motion vector composition scheme for TRR [29] 
 

5.2.6.3 Telescopic Vector Composition (TVC)  

The TVC technique is described in [55]. It accumulates all the MVs of the 

corresponding macroblocks of the dropped frames and adds each resultant composed MV to 

the corresponding MV in the current frame. This technique also carries out new macroblock 

decision and MV refinement. 
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5.2.6.4 Activity-Dominant Vector Selection (ADVS)  

The authors in [58] describe this technique which makes use of the activity of the 

macroblock to choose the new MV. The activity information of a macroblock is represented by 

counting the number of nonzero quantized DCT coefficients of covered 8 x 8 residual blocks; 

other statistics, such as the sum of the absolute values of DCT coefficients, etc. These 

quantities are proportional to the spatial-activity measurement. The higher the activity of the 

macroblock, the more significant will be the motion of the macroblock. Since the quantized DCT 

coefficients of prediction errors are available in the incoming bitstream of transcoder, the 

computation for counting the nonzero coefficients is very little. 
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CHAPTER 6 

 
IMPLEMENTATION, RESULTS AND CONCLUSIONS 

6.1 Cascaded decoder and encoder 

The simplest implementation of a transcoder as described in chapter 5 is to cascade 

the decoder and encoder to get the new bitstream. As it involves complete decoding and re-

encoding the complexity of such an implementation is very high. However the only error it has is 

from lossy encoding of already degraded video output for the decoder. This implementation is 

devoid of drift errors (section 5.2.2.1). Being the simplest implementation of a transcoder, this 

architecture is used for the basis of complexity and output quality comparison. In the current 

research the first step is the implementation of cascaded transcoding as described in figure 6.1. 
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Figure 6.1 Cascade decoder and encoder 
 

Three video sequences – 2 QCIF video sequences (Akiyo [55] and Foreman [56]) and 

1 CIF sequence (Stefan [55]), same as used in section 4.4 - are used for the output quality 

metrics. Tables 6.1 thru 6.3 give the quality metrics – mean squared error (MSE), peak signal to 

noise ratio (PSNR) and structural similarity index metric (SSIM) [54] for the Y, U and V 

components averaged over the video sequences. Figures 6.2, 6.6, 6.7, 6.11 and 6.12 show 

selected frames from the video sequences. The graphs in figures 6.3 thru 6.5, figures 6.8 thru 

6.10 and figures 6.13 thru 6.15 give a comparison of the Y component MSE, PSNR and SSIM 

for the cascaded transcoder with that of VP6 and H.264 codecs for all the three clips. 
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Table 6.1 Foreman sequence – quality metrics for cascaded implementation (PSNR in dB) 
 

Original 
(VP6) 
bitrate 
(kbps) 

Transcoded 
(H.264) 
bitrate 
(kbps) 

Metrics 
type 

Original 
(VP6) 

metrics 

H.264 
direct 

encoding 
metrics 

Transcoded 
output 

metric wrt 
VP6 

Transcoded 
output 

metrics wrt 
original 

9.324 9.220 

Y MSE 25.640 26.396 20.621 38.579 

U MSE 9.998 6.330 6.221 12.964 

V MSE 6.816 5.089 2.671 9.022 

Y PSNR 34.099 34.404 35.339 32.479 

U PSNR 38.152 40.138 40.279 37.007 

V PSNR 39.798 41.068 43.868 38.579 

Y SSIM 0.921 0.946 0.942 0.918 

U SSIM 0.958 0.970 0.985 0.953 

V SSIM 0.951 0.960 0.984 0.941 

10.648 9.800 

Y MSE 24.292 19.242 15.014 31.718 

U MSE 9.646 6.056 5.736 12.212 

V MSE 6.504 5.004 2.495 8.185 

Y PSNR 34.329 35.459 36.433 33.182 

U PSNR 38.302 40.315 40.574 37.264 

V PSNR 40.003 41.139 44.162 39.001 

Y SSIM 0.923 0.953 0.947 0.925 

U SSIM 0.959 0.970 0.986 0.955 

V SSIM 0.952 0.960 0.983 0.945 

14.536 13.910 

Y MSE 14.354 12.876 11.800 21.505 

U MSE 5.866 5.837 4.947 10.617 

V MSE 3.274 4.923 2.933 7.008 

Y PSNR 36.576 37.040 37.413 34.832 

U PSNR 40.456 40.469 41.188 37.877 

V PSNR 42.983 41.211 43.462 39.675 

Y SSIM 0.964 0.961 0.955 0.940 

U SSIM 0.984 0.970 0.984 0.959 

V SSIM 0.981 0.960 0.980 0.950 

53.309 70.030 

Y MSE 4.367 3.140 3.449  

U MSE 1.937 2.218 1.830  

V MSE 1.536 1.798 1.499  

Y PSNR 41.758 43.193 42.778  

U PSNR 45.275 44.685 45.522  

V PSNR 46.281 45.594 46.389  

Y SSIM 0.977 0.985 0.983  

U SSIM 0.986 0.984 0.991  

V SSIM 0.985 0.983 0.988  
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Foreman - cascaded transoder

PSNR - 32.9 dB

SSIM - 0.9195

(b)

Foreman - original

Frame 1 - I frame

(a)

Foreman - VP6

PSNR - 34.14 dB

SSIM - 0.9260

(c)

Foreman - H.264 Baseline

PSNR - 35.82 dB

SSIM - 0.9474

(d)

 
Figure 6.2 Foreman sequence (bitrate ~ 10 kbps) – frame 1 (a) original sequence (b) cascaded 

decoder and encoder (c) VP6 (d) H.264 baseline 
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Figure 6.3 Foreman sequence - Y componet MSE - cascaded implementation 
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Figure 6.4 Foreman sequence – Y component PSNR (dB) – cascaded implementation 
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Figure 6.5 Foreman sequence – Y component SSIM – cascaded implementation 

 
Table 6.2 Akiyo sequence – quality metrics for cascaded implementation (PSNR in dB) 

Original 
(VP6) 
bitrate 
(kbps) 

Original 
H.264 
bitrate 
(kbps) 

Transcoded 
(H.264) 
bitrate 
(kbps) 

Metrics 
type 

Original 
(VP6) 

metrics 

H.264 
direct 

encoding 
metrics 

Transcoded 
output 

metric wrt 
VP6 

Transcoded 
output 

metrics wrt 
original 

85.781 94.17 93.047 

Y MSE 33.898 17.044 25.425 50.863 

U MSE 7.067 5.599 1.675 8.555 

V MSE 5.808 3.620 2.018 7.053 

Y PSNR 32.923 31.418 34.345 31.245 

U PSNR 39.667 39.276 45.949 38.825 

V PSNR 40.515 40.622 45.113 39.664 

Y SSIM 0.908 0.891 0.936 0.890 

U SSIM 0.945 0.944 0.989 0.940 

V SSIM 0.964 0.960 0.989 0.958 

138.008 138.086 120.625 

Y MSE 26.658 17.044 15.715 34.319 

U MSE 6.380 5.599 1.723 7.761 

V MSE 4.948 3.620 2.042 6.792 

Y PSNR 33.992 35.210 36.171 32.820 

U PSNR 40.110 40.199 45.772 39.238 

V PSNR 41.209 41.409 45.035 39.814 

Y SSIM 0.922 0.940 0.954 0.915 

U SSIM 0.946 0.950 0.988 0.941 

V SSIM 0.966 0.964 0.987 0.958 
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Table 6.2 - Continued 

Original 
(VP6) 
bitrate 
(kbps) 

Original 
H.264 
bitrate 
(kbps) 

Transcode
d (H.264) 

bitrate 
(kbps) 

Metrics 
type 

Original 
(VP6) 

metrics 

H.264 
direct 

encoding 
metrics 

Transcoded 
output 

metric wrt 
VP6 

Transcoded 
output 

metrics wrt 
original 

167.148 160.195 144.687 

Y MSE 19.695 56.204 51.001 66.206 

U MSE 5.527 4.885 1.571 6.846 

V MSE 4.166 3.500 1.800 5.919 

Y PSNR 35.284 32.841 33.229 31.065 

U PSNR 40.720 41.460 46.624 39.827 

V PSNR 41.953 42.974 46.062 40.475 

Y SSIM 0.935 0.904 0.912 0.881 

U SSIM 0.952 0.956 0.988 0.944 

V SSIM 0.969 0.973 0.989 0.962 

361.992 360.787 350.273 

Y MSE 6.980 5.180 5.321 9.707 

U MSE 2.643 2.918 1.689 4.151 

V MSE 1.747 1.894 1.357 2.713 

Y PSNR 39.832 41.151 40.995 38.261 

U PSNR 43.960 43.525 45.932 41.953 

V PSNR 45.773 45.417 46.878 43.803 

Y SSIM 0.969 0.977 0.975 0.964 

U SSIM 0.972 0.969 0.983 0.959 

V SSIM 0.983 0.982 0.988 0.976 
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Akiyo - original

Frame 2 - 1st frame after I-frame

(a)

Akiyo - cascade transcoder

PSNR - 37.13 dB

SSIM - 0.9314

(b)
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PSNR - 38.33 dB

SSIM - 0.9353

(c)

Akiyo - H.264

PSNR - 40.49 dB

SSIM - 0.9621

(d)

 

Figure 6.6 Akiyo sequence (bitrate ~ 9.3 kbps) – frame 2 (a) original sequence (b) cascaded 
decoder and encoder (c) VP6 (d) H.264 baseline 
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Figure 6.7 Akiyo sequence (bitrate ~ 9.3 kbps) – frame 2 (a) original sequence (b) cascaded 

decoder and encoder (c) VP6 (d) H.264 baseline 
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Figure 6.8 Akiyo sequence – Y component MSE – cascaded implementation 
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Figure 6.9 Akiyo sequence – Y component PSNR – cascaded implementation 
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Figure 6.10 Akiyo sequence – Y component SSIM – cascaded implementation 

 
 

Table 6.3 Stefean sequence – quality metrics for cascaded implementation (PSNR in dB) 

 

Original 
(VP6) 
bitrate 
(kbps) 

Original 
H.264 
bitrate 
(kbps) 

Transcod
ed 

(H.264) 
bitrate 
(kbps) 

Metrics 
type 

Original 
(VP6) 

metrics 

H.264 
direct 

encoding 
metrics 

Transcode
d output 

metric wrt 
VP6 

Transcod
ed output 
metrics 

wrt 
original 

5441.656 5514.090 5541.100 

Y MSE 0.521 0.871 0.863 1.320 

U MSE 0.495 0.764 0.743 1.117 

V MSE 0.484 0.761 0.738 1.102 

Y PSNR 50.965 50.937 50.987 48.008 

U PSNR 51.185 50.620 50.754 48.347 

V PSNR 51.279 50.698 50.885 48.473 

Y SSIM 0.997 0.997 0.997 0.995 

U SSIM 0.995 0.993 0.994 0.990 

V SSIM 0.995 0.994 0.994 0.991 

1209.406 1242.820 1247.010 

Y MSE 9.300 10.167 10.467 16.138 

U MSE 4.568 6.504 5.022 9.683 

V MSE 4.543 6.439 5.062 9.760 

Y PSNR 38.504 38.911 38.707 36.426 

U PSNR 41.593 40.199 41.422 38.353 

V PSNR 41.621 40.261 41.374 38.313 

Y SSIM 0.977 0.982 0.979 0.975 

U SSIM 0.965 0.954 0.965 0.931 

V SSIM 0.969 0.958 0.966 0.936 
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Table 6.3 – Continued 

 
Original 
(VP6) 
bitrate 
(kbps) 

Original 
H.264 
bitrate 
(kbps) 

Transcode
d (H.264) 

bitrate 
(kbps) 

Metrics 
type 

Original 
(VP6) 

metrics 

H.264 
direct 

encoding 
metrics 

Transcoded 
output 

metric wrt 
VP6 

Transcoded 
output 

metrics wrt 
original 

660.862 611.710 609.090 

Y MSE 21.940 20.647 20.620 32.461 

U MSE 8.498 10.454 6.098 14.751 

V MSE 8.634 10.416 6.244 15.385 

Y PSNR 34.842 34.990 34.992 33.029 

U PSNR 38.918 37.944 40.295 36.458 

V PSNR 38.854 37.957 40.185 36.274 

Y SSIM 0.962 0.971 0.967 0.959 

U SSIM 0.939 0.927 0.959 0.899 

V SSIM 0.945 0.935 0.960 0.905 

254.650 221.060 201.120 

Y MSE 65.050 74.135 67.532 102.959 

U MSE 16.778 16.532 6.746 22.354 

V MSE 17.708 17.608 7.228 24.240 

Y PSNR 30.162 29.695 30.117 28.221 

U PSNR 35.968 36.049 39.900 34.696 

V PSNR 35.752 35.786 39.588 34.341 

Y SSIM 0.918 0.927 0.921 0.900 

U SSIM 0.889 0.899 0.963 0.866 

V SSIM 0.893 0.902 0.961 0.866 

180.822 160.520 150.800 

Y MSE 82.706 214.934 205.673 260.859 

U MSE 18.978 19.323 9.433 24.661 

V MSE 19.872 20.370 10.735 27.151 

Y PSNR 29.113 25.516 25.778 24.572 

U PSNR 35.384 35.416 38.557 34.289 

V PSNR 35.193 35.206 37.986 33.877 

Y SSIM 0.908 0.839 0.827 0.802 

U SSIM 0.881 0.889 0.951 0.861 

V SSIM 0.888 0.893 0.946 0.860 
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Stefan - original

Frame 1 - I-frame

(a)

Stefan - cascaded transcoder
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SSIM - 0.9848

(b)
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PSNR - 51.02 dB

SSIM - 0.9972

(c)

Stefan - H.264

PSNR - 39.7 dB

SSIM - 0.9852

(d)

 
Figure 6.11 Stefan sequence – frame 1 – I frame (a) original sequence (b) cascaded decoder 

and encoder (c) VP6 (d) H.264 baseline 
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Stefan - original

Frame 15

(a)

Stefan - cascaded transcoder

PSNR - 48.60 dB

SSIM - 0.9954

(b)

Stefan - VP6

PSNR - 50.94 dB

SSIM - 0.9972

(c)

Stefan - H.264

PSNR - 51.82 dB

SSIM - 0.9977

(d)

 
Figure 6.12 Stefan sequence – frame 15 – an intermediate frame (a) original sequence (b) 

cascaded decoder and encoder (c) VP6 (d) H.264 baseline 
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Figure 6.13 Stefan sequence – Y component MSE – cascaded implementation 
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Figure 6.14 Stefan sequence – Y component PSNR (dB) – cascaded implementation 
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Figure 6.15 Stefan sequence – Y component SSIM – cascaded implementation 

 

6.2 Proposed technique – reuse of motion information from VP6 

In the encoding process, up to 70% of the time complexity comes from motion 

estimation (ME) [30]. H.264 is a complex codec and the motion estimation process in H.264 is 

highly involved. If the motion estimation time (MET) in the encoding process of a predicted 

frame can be reduced, the complexity of the transcoder is highly reduced. This is the basis of 

the proposed technique. 

When the input VP6 file is decoded, motion information is available as VP6 also uses 

motion estimation for temporal redundancy reduction. The motion estimation techniques in VP6 

are less involved compared to H.264. Table 6.4 gives a comparison of motion estimation 

process in both the codecs.  
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Table 6.4 Motion estimation and compensation (VP6 vs. H.264) 

 VP6 H.264 

Motion vector resolution ¼ pixels ¼ pixels 

Number of reference frames 1 previous & 1 golden Up to 16 reference frames 

Block sizes 4x4, 4x8, 8x4, 8x8, 8x16, 
16x8 and 16x16 

8x8 and 16x16 

Maximum motion vector 
search range 

16 pixels 32 pixels 

Use of golden frame? Yes No 

Bidirectional prediction? No Yes (not in baseline profile) 

 

As it can be seen both the codecs support up to quarter-pixel accuracy for motion 

vector prediction. If the motion vectors of VP6 can be used in encoding to H.264, the time in 

calculating a new H.264 motion vector for the corresponding MB can be saved. However in 

VP6, motion estimation block size can only be 16 x 16 or 8 x 8 based on selected mode (see 

section 3.6) as compared to a range of MB and sub-MB sizes available for H.264 (section 2.4). 

So in the current technique the motion vectors of VP6 are used and the block size in encoding 

H.264 with these motion vectors is restricted to 16 x 16 and 8 x 8 depending on the input VP6 

MB mode. Unlike H.264, VP6 does not support multiple frame prediction but it has a special 

golden frame buffer used in motion prediction. So H.264 encoding in the proposed transcoding 

technique is restricted to only previous frame prediction. According the [37], the frequency of 

golden frame prediction usage is only 11%. So whenever the input vector is a golden frame 

vector a new motion vector is recalculated using the previous frame for prediction. Figure 6.16 

gives and overview of proposed technique. Tables 6.5 thru 6.7 give a comparison of the output 

quality and the motion estimation times when a sequence is transcoded using cascaded 

architecture and the proposed technique. 
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Figure 6.16 Proposed technique of reusing MB modes and MV from VP6 
 
 

Table 6.5 PSNR (dB) and MET for Foreman clip using cascaded architecture 
and the proposed technique 

 

 Cascaded Proposed technique 

VP6 
bitrate 
(kbps) 

Bitrate 
(kbps) 

PSNR 
w.r.t 
VP6 
decoded 
file 

PSNR 
w.r.t 
original 
file 

MET 
(motion 
estimation 
time) (ms) 

Bitrate 
(kbps) 

PSNR 
w.r.t 
VP6 
decoded 
file 

PSNR 
w.r.t 
original 
file 

MET 
(motion 
estimation 
time) (ms) 

1096 951.48 30.922 27.1753 90717 946.52 30.848 27.1677 9321 

31.23 27.173 97303 31.188 27.156 9347 

1352 1357 33.292  44612 1332 33.196 28.719 8837 

33.78  88961 33.737 28.579 8912 

1872 1843.52 35.733 31.2787 43852 1816.64 35.66 31.3079 8746 

36.345 31.308 87619 36.23 31.2919 9535 

2488 2560.7 39.198 34.013 45556 2511.48 39.104 33.9561 9460 

39.931 33.998 92706 39.853 33.9887 9181 
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Figure 6.17 Foreman clip – PSNR (dB) vs bitrate (kbps) – Cascaded architecture  

and proposed technique 
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Figure 6.18 (a) Foreman sequence – Y component SSIM for predicted frame 1  

(b) Foreman sequence – Y component SSIM for predicted frame 2 
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Figure 6.19 Foreman clip – Motion estimation time (MET) vs bitrate (kbps) –  
Cascaded architecture and proposed technique 

 
 
 

Table 6.6 PSNR (dB) and MET for Akiyo clip using cascaded architecture 
and the proposed technique 

 

 cascaded Proposed technique 

VP6 
bitrate 
(kbps) 

Bitrate 
(kbps) 

PSNR 
w.r.t 
VP6 
decoded 
file 

PSNR 
w.r.t 
original 
file 

MET 
(motion 
estimation 
time) (ms) 

Bitrate 
(kbps) 

PSNR 
w.r.t 
VP6 
decoded 
file 

PSNR 
w.r.t 
original 
file 

MET 
(motion 
estimation 
time) (ms) 

348.800 357.720 41.178 38.440 11552 358.52 41.018 38.38 2745 

41.445 38.250 22597 41.369 38.17 2274 

235.200 245.600 39.349  10590 243.16 39.303 36.078 2146 

39.354  21070 39.257 35.679 2073 

162.400 158.480 37.164 34.076 11122 156.64 37.184 34.0218 2248 

37.087 33.704 22420 36.892 33.5798 2104 

132.800 138.640 36.534 33.719 10737 134.6 36.486 32.8545 2288 

36.264 33.233 21301 36.386 32.331 2150 
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Figure 6.20 Akiyo clip – PSNR (dB) vs bitrate (kbps) – Cascaded architecture  
and proposed technique 
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Figure 6.21 Akiyo clip – Motion estimation time (MET) vs bitrate (kbps) –  
Cascaded architecture and proposed technique 

 
 

Table 6.7 PSNR (dB) and MET for Stefan clip using cascaded architecture 
and the proposed technique 

 cascaded Proposed technique 

VP6 
bitrate 
(kbps) 

Bitrate 
(kbps) 

PSNR 
w.r.t 
VP6 
decoded 
file 

PSNR 
w.r.t 
original 
file 

MET 
(motion 
estimation 
time) (ms) 

Bitrate 
(kbps) 

PSNR 
w.r.t 
VP6 
decoded 
file 

PSNR 
w.r.t 
original 
file 

MET 
(motion 
estimation 
time) (ms) 

1096 951.48 30.922 27.1753 90717 946.52 30.848 27.1677 9321 

31.23 27.173 97303 31.188 27.156 9347 

1352 1357 33.292  44612 1332 33.196 28.719 8837 

33.78  88961 33.737 28.579 8912 

1872 1843.52 35.733 31.2787 43852 1816.64 35.66 31.3079 8746 

36.345 31.308 87619 36.23 31.2919 9535 

2488 2560.7 39.198 34.013 45556 2511.48 39.104 33.9561 9460 

39.931 33.998 92706 39.853 33.9887 9181 

 



 

 127 

800 1000 1200 1400 1600 1800 2000 2200 2400 2600
27

28

29

30

31

32

33

34

35

Bitrate (kbps)

P
S

N
R

 (
d
B

) 
fo

r 
p
re

d
ic

te
d
 f

ra
m

e
s

Stefan clip - Comparison of output quality

between cascaded architecture and proposed technique

PSNR (dB) vs bitrate (kbps)

 

 

Cascaded - Frame 1

Cascaded - Frame 2

Proposed - Frame 1

Proposed - Frame 2

 
Figure 6.22 Stefan clip – PSNR (dB) vs bitrate (kbps) – Cascaded architecture  

and proposed technique 
 
 
 
 
 
 
 
 



 

 128 

120 140 160 180 200 220 240 260
0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Bitrate (kbps)

Y
 c

o
m

p
o
n
e
n
t 

S
S

IM

Stefan sequence - 1st predicted frame

Y component SSIM vs. Bitrate (kbps)

 

 

Cascaded

Proposed

 
(a) 

 

120 140 160 180 200 220 240 260
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

Bitrate (kbps)

Y
 c

o
m

p
o
n
e
n
t 

S
S

IM

Stefan sequence - 2nd predicted frame

Y component SSIM vs. Bitrate (kbps)

 

 

Cascaded

Proposed

 
(b) 

Figure 6.23 (a) Stefan sequence – Y component SSIM vs. Bitrate (kbps) – 1
st
 predicted frame 

(b) Stefan sequence – Y component SSIM vs. Bitrate (kbps) – 2
nd

 predicted frame 
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Figure 6.24 Stefan clip – Motion estimation time (MET) vs bitrate (kbps) –  
Cascaded architecture and proposed technique 

 

6.3 Conclusions and future work 

It can be observed that the motion vector information from the incoming VP6 bitstream 

can be used in re-encoding the VP6 bitstream to H.264 bitstream. The resulting loss of quality 

as a result, in comparison with the cascaded decoder and encoder model is very less. The 

quality reduction is mainly due to simplified motion estimation process of VP6 in comparison to 

H.264. However corresponding reduction in the motion estimation time (MET) is high. Hence 

the complexity in the re-encoding process is reduced significantly using the proposed technique. 

The current technique only proposes the re-use of motion vectors available from the 

VP6 bitstream. It does not involve any motion vector (MV) refinement. MV refinement process is 

useful in getting more accurate motion vector values from the approximate motion vector values 

by making a simplified search in small windows around the approximate values. The authors in 

[48] and [51] describe different motion vector refinement techniques. The transcoded video 
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quality can be further improved by using MV refinement. Finding an appropriate MV refinement 

technique to supplement the proposed MV reuse can form the basis for future research. 

Different MV refinement techniques are described in [50] thru [52]. Section 5.2.5.4 also 

described some of these MV refinement techniques.  
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