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ABSTRACT 

 
 THERMAL MANAGEMENT OF OUTSIDE PLANT TELECOMMUNICATION 

 CABINETS: DESIGN AND CFD MODELING METHODOLOGY 

 

Feroz Ahamed Iqbal Mariam, M.S. 

 

The University of Texas at Arlington, 2010 

 

Supervising Professor:  Dereje Agonafer 

 Over the years there has been a steady increase in the number of transistors being 

packed into the same footprint of a die, which has led to an increase in the power densities of 

electronics. The thermal management of electronic equipment therefore is becoming an integral 

part of packaging design. 

 Access networks provide the last mile of connectivity for the telecommunication network 

users. In the access network, the outside plant telecommunication cabinets houses electronic 

components and switching devices. These cabinets are standalone outdoor enclosures, and 

many a times they are located in hostile environments. Therefore, it is necessary that these 

cabinets provide environmental protection and thermal management for the electronics housed 

in it. 

 The first part of the thesis deals with the design and thermal analysis of air-cooled high 

powered telecommunication cabinets. Commercial CFD code has been used to design and 

compare various cabinet configurations. This has enabled in reducing the unnecessary 
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construction of cabinet prototypes and elaborate experimental tests, resulting in cost savings 

and reduction in lead time. 

 The electronics in these cabinets are powered by DC current and have backup batteries 

to support them in the event of a power failure. The life of a battery is dependent on the nature 

of the load applied, recharging conditions and most importantly ambient temperatures. Based 

on the location and time of day, the ambient temperature can be anywhere between -40°C to 

50°C. But for long standing battery life, the tempe rature inside the battery compartment should 

be maintained at 25°C. Active cooling using air-con ditioners are often used to achieve this, but 

air-conditioners are difficult to backup and are high in maintenance. A more convenient way to 

cool the battery compartments are to use Thermo-electric Coolers (TEC), as they are compact 

and quiet in operation.  The second part of the thesis explains a modeling methodology to 

develop a TEC air-to-air heat exchanger that is used in the thermal management of the battery 

compartments. The numerical results thus obtained are validated with experimental results, and 

the validated model is further used to try out various test scenarios for the telecommunication 

cabinet. 
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CHAPTER 1 

INTRODUCTION 

1.1 Telecommunication Cabinets 

Telecommunication cabinets are used to house electronic components like phone 

switches, optical fiber cables, transmitters and receivers. They are usually located close to the 

customer, remote from the central telecommunication office, and located in outdoor 

environments. This poses new challenges for packaging the electronics housed by these 

cabinets. 

These enclosures need to protect these equipments from elements of nature like 

humidity, solar heating, dust, salt fog, electromagnetic interference and vandalism. They should 

also provide sufficient cooling or heating to the equipment depending on the ambient 

temperatures and the heat loads generated by the electronics. 

  The thermal management of telecommunication cabinets also called Outside Plant 

(OSP) cabinets comes under the category of system level packaging. With the increase in 

performance of the CMOS chip and the corresponding reduction in size, it has led to an 

increase in the heat density of the chips. This has given rise to the need for a more robust 

thermal management system at the device, board and system level packages that house these 

electronics.  

Figure 1.1 is the graph by ASHRAE TC 9.9 which shows the increase in power density 

of IT equipments [1]. Electronic components typically have a temperature of 65°C - 85°C for 

commercial applications and from 110°C - 125°C for military applications. In addition to high 

temperatures, excessive temperature cycling can result in the reduction of life of the electronics. 

Therefore it is necessary to maintain relatively steady temperatures [2]. 
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Figure 1.1 Heat load trends in electronics enclosures 

1.2 Why Telecommunication Cabinets are Required? 

 Outdoor telecommunication cabinets are found in the ‘last mile’ of the 

telecommunication access network. They provide support for both wireless and wire-line 

applications. They are used as Optical Network Terminals or Units (ONT or ONU).  

 Optical access networks enable carriers to offer any kind of service over a single 

network [3]: 

- Multiple voice channels using voice over IP. 

- Multiple qualities of service data offering. 

- Video offered either in an overlay configuration or within the data stream. 
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Figure 1.2 Metropolitan FTTX access network 

 Access bandwidth demand is constantly increasing due to the arrival of new 

applications such as HDTV, P2P applications, video on demand, interactive games, e-learning 

and the use multiple PCs at home. As a result, residential users may require connections of 

more than 1 Gb/s. 

 Common access architecture is the Fiber to the x (FTTX) where X stands for premise, 

home, business etc. There are two alternative solutions within FTTX to introduce optical fiber in 

the access loop: Point-to-point (PTP) and Point-to-multipoint (PTMT). PTP is used mostly used 

for business services, as it provides higher bandwidth, and PTMT is used mostly for residential 

applications. Figure 1.2 shows a typical metropolitan FTTX access network [4]. 

1.3 Computational Fluid Dynamics Analysis of Telecommunication Cabinets 

 Computational Fluid Dynamics tools help system designers to drastically reduce the 

time-to-market for products. Over the past decade there has been a drastic increase in the use 

of CFD tools in the design and development of electronics at the device level, systems level and 

the data center level. Interest in thermal simulations is driven by the need to understand the 
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performance and reliability impacts of the operating conditions and the environments. These 

simulations also play a central role in the selection and sizing of thermal management solutions. 

 The accuracy of the numerical model depends on a number of factors. First is the type 

of algorithm used. The algorithm can be a finite element or finite volume one, it could use 

structured or unstructured mesh and the method of discretization. Second is the mesh size and 

time steps employed. A grid refinement effort should be made to ensure that the results are 

independent of the grid size and time step. Thirdly is the treatment of multimode effects, 

conduction and convection play an important role in system level packages. In some cases 

involving cooling by natural convection, radiation also plays an important role and is comparable 

to convection [5]. In such cases, the inclusion of radiation in the modeling also becomes 

important. 

 

Figure 1.3 Hierarchy of package length scales and their typical heat generation rate 
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 Numerical modeling of telecommunication cabinets involves a hierarchy of length 

scales, ranging from 10-4 m to 1 m. Figure 1.3 shows a ‘chip-to-cabinet’ variation in length 

scales involved [6]. The use of devices like heat sinks and fans result in complex local flow 

patterns that are difficult to resolve with grid sizes selected for the entire system. The use of 

localized meshing or conformal meshing is required to mitigate this problem. 

1.4 Telecommunication Cabinets Industry Standards  

 The telecommunication industry has enforced standards to ensure that cabinet 

manufactures meet certain performance and safety requirements for their products. Further, 

these standards specify how and for what these equipments are to be tested. Some of the 

important standards for cabinets in North America are NEMA ratings, Telcordia GR-CORE 

standards and the Underwriters Laboratory (UL) standards. 

1.4.1 National Electrical Manufacturers Association (NEMA) Standards 

 The specific enclosure types, their applications and their environmental conditions are 

designed to protect against are specified by the NEMA standards [7]. For non-hazardous 

locations there are 16 classifications of enclosures out of these 10 of them are commonly 

followed by telecommunication standards for outside plant cabinets. They are listed below: 

 Type 3 - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt and windblown dust); to provide a degree of protection with respect to harmful effects on the 

equipment due to the ingress of water (rain, sleet, snow); and that will be undamaged by the 

external formation of ice on the enclosure. 

 Type 3R - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt); to provide a degree of protection with respect to harmful effects on the equipment due to 
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the ingress of water (rain, sleet, snow); and that will be undamaged by the external formation of 

ice on the enclosure. 

 Type 3S - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt and windblown dust); to provide a degree of protection with respect to harmful effects on the 

equipment due to the ingress of water (rain, sleet, snow); and for which the external 

mechanism(s) remain operable when ice laden. 

 Type 3X -  Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt and windblown dust); to provide a degree of protection with respect to harmful effects on the 

equipment due to the ingress of water (rain, sleet, snow); that provides an additional level of 

protection against corrosion and that will be undamaged by the external formation of ice on the 

enclosure. 

 Type 3RX - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt); to provide a degree of protection with respect to harmful effects on the equipment due to 

the ingress of water (rain, sleet, snow); that will be undamaged by the external formation of ice 

on the enclosure that provides an additional level of protection against corrosion; and that will 

be undamaged by the external formation of ice on the enclosure. 

 Type 3SX - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt and windblown dust); to provide a degree of protection with respect to harmful effects on the 
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equipment due to the ingress of water (rain, sleet, snow); that provides an additional level of 

protection against corrosion; and for which the external mechanism(s) remain operable when 

ice laden. 

 Type 4 - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt and windblown dust); to provide a degree of protection with respect to harmful effects on the 

equipment due to the ingress of water (rain, sleet, snow, splashing water, and hose directed 

water); and that will be undamaged by the external formation of ice on the enclosure. 

 Type 4X - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects 

(windblown dust); to provide a degree of protection with respect to harmful effects on the 

equipment due to the ingress of water (rain, sleet, snow, splashing water, and hose directed 

water); that provides an additional level of protection against corrosion; and that will be 

undamaged by the external formation of ice on the enclosure. 

 Type 5 - Enclosures constructed for indoor use to provide a degree of protection 

to personnel against access to hazardous parts; to provide a degree of protection of the 

equipment inside the enclosure against ingress of solid foreign objects (falling dirt and settling 

airborne dust, lint, fibers, and filings); and to provide a degree of protection with respect to 

harmful effects on the equipment due to the ingress of water (dripping and light splashing). 
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Table 1.1 Comparison of Applications of Enclosures for Outdoor Non-hazardous Locations 

Provides a Degree of 
Protection Against the 
Following Conditions 

Type of Enclosure 

3 3X 3R* 3RX* 3S 3SX 4 4X 6 6P 
Access to hazardous parts X X X X X X X X X X 

Ingress of water (Rain, 
snow, and sleet **) 

X X X X X X X X X X 

Sleet *** ... ... ... ... X X ... ... ... ... 

Ingress of solid foreign 
objects (Windblown dust, 
lint, fibers, and flyings) 

X X ... ... X X X X X X 

Ingress of water (Hosedown) ... ... ... ... ... ... X X X X 

Corrosive agents ... X ... X ... X ... X ... X 

Ingress of water (Occasional 
temporary submersion) 

... ... ... ... ... ... ... ... X X 

Ingress of water (Occasional 
prolonged submersion) 

... ... ... ... ... ... ... ... ... X 

* These enclosures may be ventilated. 
** External operating mechanisms are not required to be operable when the enclosure is ice 
covered. 
*** External operating mechanisms are operable when the enclosure is ice covered. 
  

 Type 6 - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt); to provide a degree of protection with respect to harmful effects on the equipment due to 

the ingress of water (hose directed water and the entry of water during occasional temporary 

submersion at a limited depth); and that will be undamaged by the external formation of ice on 

the enclosure. 

 Type 6P - Enclosures constructed for either indoor or outdoor use to provide a 

degree of protection to personnel against access to hazardous parts; to provide a degree of 

protection of the equipment inside the enclosure against ingress of solid foreign objects (falling 

dirt); to provide a degree of protection with respect to harmful effects on the equipment due to 

the ingress of water (hose directed water and the entry of water during prolonged submersion at 
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a limited depth); that provides an additional level of protection against corrosion and that will be 

undamaged by the external formation of ice on the enclosure. 

 Table 1.1 shows the specific application of different type of enclosures for outdoor non-

hazardous locations. 

1.4.2 Telcordia GR Standards 

 The Telcordia Generic requirements(GR) is used by telecommunication cabinet 

manufactures to design or test their equipment. There are generally three standards that are 

commonly followed for outdoor telecommunication cabinets. They are Telcordia GR-63, GR-487 

and GR-1089 [8]. 

 Telcordia GR-63 - This Generic Requirements document (GR) presents minimum 

spatial and environmental criteria for all new telecommunications equipment used in Central 

Offices (COs) and other environmentally controlled telephone equipment spaces. 

These NEBS (Network Equipment-Building System) criteria were developed jointly 

by Telcordia and industry representatives. They are applicable to switching and 

transport systems, associated cable distribution systems, distributing and 

interconnecting frames, power equipment, operations support systems, and cable 

entrance facilities 

 Telecommunications equipment, by nature of its physical installation in a 

building, may be exposed to environmental stresses. The NEBS generic criteria 

are intended to help avoid equipment damage and malfunction caused by such things as 

temperature and humidity, vibrations, airborne contaminants, minimize fire ignitions and fire 

spread, as well as provide for improved space planning and simplified equipment installation. 

 Telcordia GR-487 - This requirement provides criteria for analyzing Electronic 

Equipment Cabinets used in a variety of outside plant environments and 

applications, including wireless. It includes proposed functional design 

criteria, generic mechanical and environmental requirements, desired features, 
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and performance tests. It covers cabinet requirements on thermal test procedure, acoustic noise 

issues, environmental vibration criteria and Restriction of Hazardous Substance(RoHS) criteria. 

 Telcordia GR-1089 - Telecommunications service providers have used GR-1089 

to ensure their telecommunications equipment contained the Electromagnetic 

Compatibility (EMC) and electrical safety criteria necessary to perform safely 

and reliably. The NEBS (Network Equipment-Building System) criteria in this 

reference covers equipment in central offices; equipment in the outside 

plant at locations such as controlled environmental vaults, electronic equipment 

enclosures, and huts; equipment in uncontrolled structures such as cabinets; and 

network equipment at the customer premises. 

 Telecommunications equipment, by nature of its application in the 

telecommunications network, may be exposed to one or more sources of 

electromagnetic energy. The system-level generic criteria for EMC in this standard are intended 

to help avoid equipment damage and 

malfunction because of lightning, 60-Hz commercial power fault conditions, 

Electrostatic Discharge (ESD), Electrical Fast Transient (EFT), Electromagnetic 

Interference (EMI), operation in the presence of a dc potential difference, and 

operation in a steady-state induced voltage environment. 

1.4.3 Underwriters Laboratory (UL) Standards 

 The most commonly used Underwriters Laboratory standard in the outdoor 

telecommunication cabinet industry is the UL-50 standard. This standard covers the non-

environmental construction and performance requirements for enclosures to provide a degree of 

protection to personnel against incidental contact with the enclosed equipment [9].  
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CHAPTER 2 

LITERATURE REVIEW 
 

 There has been considerable research in the field of thermal management of outside 

plant telecommunication cabinets. There are numerous papers which details different cooling 

technologies for the cabinets. Also considerable research has gone into the development of 

numerical and analytical modeling methodologies  for these cabinets. Some of these previous 

research work have been summarized in this chapter and are as follows: 

 1. Cooling technologies 

 2. Modeling methodologies 

2.1 Cooling Technologies 
 

2.1.1 Natural Convection 
 

Maringou et al. in [10] discusses the design of an outdoor enclosure that cools the 

electronics passively. Two passive cooling methods are discussed, natural convection and 

phase change materials (PCM). The former is chosen due to space restrictions as a PCM 

based cooling system could not be accommodated. The cabinet is designed to house fairly low 

power electronics and a study is done to compare the temperature inside the cabinets, with and 

without solar loading. It was found that without solar heating the temperature just crossed the 

design mark by 2-3°C. So the cooling system had to account for the temperature rise due to the 

electronics as well as the solar heating. A double-finned air-to-air heat sink was developed. This 

heat sink took the shape of long plate fins on either side of the solid wall of the cabinet. The 

outer side of the cabinet was shrouded to shield it from the solar heating. The design was 

developed numerically using CFD code ICEPAK and experimentally tested using simulated 

solar loads in a temperature controlled chamber to corroborate the CFD results. 
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In the experimental setup, Garcia et al [11] uses a square box to simulate a 

telecommunication cabinet, which used trapezoidal channels to enhance natural convection of 

heat from the cabinet. The wall consisted of thin aluminum sheets between which a triangular 

corrugated sheet was placed. The enclosure was tested with horizontal and vertical channels 

and also without channels to set the benchmark case. Transient heat analysis was performed. 

The numerical analysis was done using Flotherm, and the results were validated with the 

experimental results. Through these tests it was observed that addition of channels substantially 

affected the temperature inside the cabinet. The addition of vertical or horizontal channels 

enhances heat transfer at low heat loads i.e. at low Rayleigh numbers. But as the heat loads 

increases (higher Rayleigh numbers) the effectiveness of the channels decreases. 

In order to predict the total heat transfer rate, an analytical based model was developed 

by Teerstra et. al.[12]. The system consists of an isothermal plate in an isothermal cuboid 

enclosure. A model that is valid over a wide range of enclosure/plate geometries and flow 

conditions were developed. The authors combined three asymptotic solutions: pure conduction 

through the enclosed region, laminar boundary layer flow and transition flow convection into a 

composite expression. 

The model requires no correlation coefficients and is not limited to a certain range of 

values of the independent parameters. The analytical model was validated with numerical data 

from two CFD codes, ICEPAK and Flotherm , and the agreement between the analytical and 

numerical results was within 10%. 
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2.1.2 Phase Change Materials (PCM) 
 

Porebski et al [13] discusses the development of a thermal battery which houses PCM 

materials. This thermal battery can be used effectively in relatively small enclosures. In this 

paper he explains the energy balance equation to calculate the mass of PCM that is required for 

the system. They test three different PCM materials to come out with the best one. Through the 

experimental setup it was determined that the use of PCM based thermal battery is effective 

during peak loads. Also improved temperature stabilization was observed with PCM thermal 

battery wherever there was a swing in the ambient temperature. 

In [14] Maringiu explains the development of cooling technology that is a combination of 

PCM heat exchangers with active air movers and channeled walls which act as solar load 

mitigations. The PCM material is encapsulated in tubes which are arranged in aligned or 

staggered bundles. During daytime the warm air is blown over the PCM containing tubes by the 

fan and during night time, the cool night air flows over the tubes to change the material back to 

the liquid phase. 

The PCM heat exchanger was numerically modeled using the CFD software, FIDAP. 

Glauber’s salt was used as the phase changing material. It was found that the channeled wall 

took care of the solar loading and the thermal management of the cabinet was attained with the 

PCM heat exchanger. Four different channel configurations were tested: parallel plate, 

triangular, circular and square. It was found that the circular configurations gave the best 

results.   

Consentino [15] explains the use of PCM as a passive means to cool the battery 

compartments of outdoor telecommunication cabinets. The PCM was in the form of a solid vinyl 

jacket which was strapped around the batteries. The PCM material chosen was commercially 

called TEAP 29. The testing was done for four weeks in the temperate climate of Chicago. It 

was observed that the peak excursions were greatly reduced as compared to a control cabinet 

which had no PCM jackets for its batteries. In the second phase of the test the PCM jacket 
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design was changed to PVC jacket so that it could be aligned vertically to take advantage of 

gravity to assist natural convection. The new jacket configuration was tested in an 

environmental chamber to day/night cycle. The standard deviation of the control battery was 

3.5⁰C and the battery with the PCM jacket was 1.6⁰C. 

2.1.3 Heat Exchangers 
 

In [16], Choi et al the performance of a hybrid refrigeration cooling system for 

telecommunication equipment was analyzed and measured for various operating conditions. 

The test setup consisted of a unit rack of the telecommunication equipment. It consisted of PCB 

board, fans and a fin plate heat exchanger. The hybrid cooling system had two modes of 

operation, for high outdoor temperature the system operates in the vapor compression mode 

and for low outdoor temperatures operates in the secondary cooling mode, with no operation of 

the compressor. Because of this dual mode of operation, the COP of the hybrid refrigeration 

system was significantly enhanced for low outdoor temperature due to no operation of the 

compressor. 

Marongiu [17] discusses a compact heat exchanger made of heat pipes that is used to 

cool the battery compartment of an outdoor telecommunication cabinet. The heat exchanger 

has a high efficiency because its transfer surfaces are made of heat pipes. The heat exchanger 

consists of two parts, the bottom part is located in the battery compartment and the top part is 

located in the electronics compartment which is cooled by an air-conditioning system. The heat 

pipes transfer heat from the bottom compartment into the top electronic compartment, where 

cold air from the air conditioner forms the cold loop of the heat exchanger. Performance 

analysis was done analytically using standard empirical data. Results of a parametric study 

showed that the heat exchanger can remove up to 250 W of heat for an air conditioner supply 

temperature of 20⁰C.   
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2.1.4 Double Walled Cabinets 
 

In [18] Muralidharan et al discusses the impact of a double wall in the thermal 

management of an outside plant telecommunication cabinet. Different types of double wall 

configuration has been considered and numerically tested. The CFD code used is Flotherm. 

Three configurations with double wall on the sides of the cabinet, double wall on the sides and 

top and double wall with forced circulation using fans have been discussed. All these cases 

have been compared with a baseline case with no double walls. It was found that the double 

wall with forced convection returned the best results. It was also observed by the author that by 

varying the air gap from 1” to 3.5”, no significant temperature reduction inside the cabinet was 

achieved. 

Muralidharan et al [19] further investigates the different fan locations to minimize the 

energy consumption of the fans in a double wall configuration. Two fan locations were studied, 

first one had the top side of the double wall and the second one had fans at the bottom of the 

side walls. The gap of the walls also varied from 2” to 3”. It was observed that having fans at the 

top provided the best results in terms of best temperatures as well as energy minimization. 

2.2 Modeling Methodologies 
 

2.2.1 Compact Modeling 
 

One of the first compact models were developed by Linton and Agonafer [20], where 

they developed a coarse finned heat sink which can be used in system level modeling. The 

mesh size of the heat sink was reduced to 3x4x3 cells. Comparing it with experimental data the 

approximation error was within 18%. 

Further improved compact models were later developed by Narasimhan and Bar-

Cohen[21] by using a porous medium model. Comparing with a detailed model the agreement 

of the porous medium model was within 11% for pressure drop and 17.2% for base temperature 

predictions.  
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A dynamic compact model for an insulated gate bipolar transistor (IGBT) was created 

by Luo[22] by using experimental measurements. The experimental transient thermal 

impedance was fitted into a series that consisted of a finite number of exponential terms. The 

thermal circuit for the IGBT was created based on these terms. A detailed numerical model was 

created in Ansys and the compact model had predicted transient thermal impedance with a 

closeness of 11% with the detailed model. 

Aalok et al in [23] has used the commercial CFD code Flotherm to numerically model a 

compact counter flow heat exchanger. The heat exchanger consists of 75 vertical fins between 

which the heat transfer between the hot and cold loop takes place. Since modeling such a 

geometry in detail would lead to a fairly large increase in the overall mesh count, the author 

uses the numerical capabilities of the software to model a compact heat exchanger. 

‘Volume source’ which is an in-built macro in Flotherm is used to build the heat 

exchanger. The amount of heat absorbed or rejected is specified in this macro. Cooling 

capabilities of the heat exchanger is found by modeling the detailed heat exchanger in a 

simulated wind tunnel. The results of the detailed heat exchanger, compact heat exchanger and 

the test data are compared and show a closeness of less than 10%. Also, by using the compact 

model the author has achieved a mesh reduction of 45%. 

2.2.2 Transient Modeling 
 

McKay [24] developed an analytical transient model of a telecommunication cabinet. 

The model consisted of a single lumped thermal mass for the cabinet with a thermal resistance 

between the ambient air and the front and back side of the cabinet. The effect of solar loading 

on the cabinet was also considered. The results of the analytical model were compared with 

experimental test results.  
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CHAPTER 3 

COMPUTATIONAL FLUID DYNAMICS (CFD) MODELING 
 

 CFD is concerned with the numerical simulation of fluid flow, heat transfer and chemical 

reactions. A numerical prediction works out the consequence of a mathematical model, which 

represents our physical domain of interest that needs to be analyzed. In this study, it involves 

the system level electronics like the telecommunication cabinets, the equipment housed by the 

cabinet, the surrounding conditions like the ambient temperature, solar heat load and wind flow. 

3.1 The Governing Differential Equations 
 

 The numerical solution for heat transfer and fluid flow based problems is obtained from 

solving a series of three differential equations, called the Governing Differential equations. They 

are the conservation of mass, conservation of momentum and conservation of energy [25].  

For a generalized case the conservation of mass is given by: 

         (3.1)
   

 The conservation of momentum for a generalized case is given by: 

    (3.2) 

 The conservation of Energy for a steady low velocity flow is given by: 

       (3.3) 

3.2 Computational Domain or Domain of Integration 
 

 The region of space in which the governing differential equations are to be solved is 

called the computational domain (domain of integration or solution domain). The solutions to the 

governing equations are obtained by setting the boundary condition for the solution domain. 
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These boundary conditions for the study of outdoor cabinets include, but are not limited to, the 

ambient temperature, free stream velocity and solar radiation. The conditions of the domain wall 

faces also needs to be considered in the problem i.e. whether they are open, no-slip or 

symmetric. Also, as part of the problem formulation the properties of the fluid like its 

conductivity, density, viscosity, specific heat, expansivity and diffusivity needs to be specified 

[26].  

 Figure 3.1 Graphical representation of a 3D grid 

 The governing equations and their associated boundary conditions do not have a 

general analytical solution. There are particular solutions for simple problems like a laminar flow 

in a rectangular channel. But for complex and more real world problems, the equations can only 

be solved numerically. The CFD code used for this study, Flotherm, is based on the Finite 

Volume Method (FVM). The first step in an FVM is to discretize the solution domain into a 

number of control volumes or grid cells, where the variables to be calculated is located at the 

centroid of the finite volume.  The graphical representation of grids or elements is shown in 

Figure 3.1. 

 FVM works by integrating the differential form of the governing equations over each 

control volume. The Finite Volume Method has the advantage that it satisfies the conservation 
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of quantities like mass, momentum and energy. This is observed in any control volume and also 

over the entire computational domain. 

 The discretization results in a set of algebraic equations, each of which relates the 

value of a variable in a cell to its value in the nearest neighbor cell. Taking the example of  T, 

the temperature variable, it is computed by the algebraic equation: 

 

   (3.4) 
    

 Where T1, T2, T3, T4, T5, T6 are the temperature values in the six neighboring cells 

and T0 is the value in the old time step. The Cs denotes the coefficient that connects the in-cell 

value to each of its neighboring cell values and S denotes the source term. If there are n cells in 

the solution domain there are a total of 5n algebraic equations to solve. This is because there 

are algebraic equations to solve for each field variables T, u, v, w, p.  

The above expression is in reality a non-linear equation as the coefficients are also a 

function of T, u, v, w, p. But its appearance of linearity can be exploited to compute the value 

iteratively. For each outer iteration, the coefficients are calculated once and then taken as 

constant and the resulting algebraic equations are solved by means of inner iterations.  

Normally more grid is used in regions of the domain where the gradients of the variable 

are expected to be the highest. Finer the grid better the algebraic equations approximates to the 

governing differential equations. It should be noted that having a grid independent solution 

alone does not guarantee a solution that simulates close to the real world problem. Other 

factors like the accuracy of the boundary conditions, the adequacy of the turbulence model 

affect the outcome of the solution and its closeness to reality.  
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3.3 Turbulence Modeling 
 

 The most prevalent method for cooling electronics is air-cooling. The air-flow regime in 

electronics usually ranges from laminar flow to the low Reynolds number turbulent flow. The two 

common ways by which Flotherm models this low Reynolds number turbulence flow region is by 

the LVEL turbulence model and the K-Epsilon turbulence model. 

3.3.1 LVEL Turbulence Model 
 

 The LVEL turbulence model, also called the automatic algebraic method, is an 

algebraic model which removes the need for any user-defined velocity or length scale. This 

model requires the distance to the nearest wall (L) the local velocity (VEL) and the laminar 

viscosity. It has the advantage of being computationally inexpensive and can be easily applied 

to three dimensional problems. 

 The maximum local length scale and the distance to the nearest wall can be computed 

from the following equations: 

         (3.5) 
 

          (3.6) 
 

Where:  with  at the wall. 
 
 These length and velocity scales are computed for each cell and are used in 

conjunction with classical boundary layer wall functions to determine the turbulent viscosities for 

each cell [27]. Where Φ is the dependent variable. 

 The LVEL turbulence model provides a good prediction of the turbulence viscosities for 

cells near the walls, but provides unrealistically high turbulent viscosities in the free stream [28]. 

Therefore, this method of turbulence modeling is suited for electronics equipment like 

telecommunication cabinets, which has a high density of electronics that are close to each other 

and to the walls of the enclosure. 
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3.3.2 K-Epsilon Turbulence Model 

 The K-Epsilon model is a two equation model that is extensively used for turbulent fluid 

dynamics. This model computes viscosity on a grid cell to grid cell basis rather than computing 

viscosity as it is affected by the walls. It consists of two transport equations, one equation to 

describe the kinetic energy of turbulence and the second equation to represent the rate of 

turbulent dissipation [29]. 

 The transport equations are: 
 

    (3.7) 
 

 

  (3.8) 
 

 The model is suited for dealing with problems with thin shear layers and recirculating 

flows. It is preferable to use this turbulence model for enclosures and rooms with large free-

streams like datacenters and telecommunication shelters. 
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CHAPTER 4 

TELECOMMUNICATION CABINET COMPONENTS  

 This chapter details the different telecommunication cabinet components that have 

been used for thermal and air-flow management in this study.  The components are filters, fans 

and thermo-electric coolers. The selection criteria for these components in the design process 

has been explained. Also, the aspects of modeling these components using the commercial 

code Flotherm has also been touched upon. 

4.1 Filters 
  

 Apart from the obvious reasons of removing dust and particulate contaminants, filters 

are used in telecommunication shelters to remove humidity, straighten air flow and also 

attenuate electromagnetic interferences (EMI). Filter selection is an important step in the 

cabinet design as the wrong filter can compromise the electrical and thermal performance of the 

electronics housed by it. 

 Particulate components removed by air filters can range from leaves and dust to more 

corrosive substances like solvents and salt fog. Solvents can cause corrosive damage to the 

electronics other particulate contaminants can accumulate in between electronics and cause 

electrical shorts and shrouding. This could lead to improper thermal management of the 

equipment causing its failure. 

 Hydrophobic filters are used to remove humidity from the air that enters the cabinet. 

They are provided with a membrane which absorbs water particles in the inlet stream of air.  

 Electromagnetic interference can cause malfunction or breakdown of some of the 

components housed by the cabinets. Metallic enclosures or cabinets by themselves provide 

adequate EMI protection but the presence of openings in the cabinet can allow electromagnetic 

or radio frequency interference to pass through. EMI filters are provided at these openings to 
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attenuate EMI. They often consist of a honeycomb mesh made out of aluminum and is often 

grounded. These honeycomb patterns are designed to reflect and absorb EMI noise.  

 Filters are also used to straighten air flow inside a system as less turbulent airflow is 

better from a fan efficiency point of view. Less turbulence means less friction and therefore less 

work done by the fan. 

Table 4.1 Standards for Air-Filters 

ASHRAE STD 52-76 

synthetic dust 

weight arrestance 

Measures the weight of test dust retained by 

the filter as a percentage of the total weight 

of dust used. 

ASHRAE dust spot 

efficiency 

Compares the discoloration effect of filtered 

air containing normal dirt particles with that 

of non-filtered air. 

MIL-STD-282 DOP 

Measures the percentage of Di-Octyl 

Phthalate smoke retained by the filter. The 

particle tested is 0.3 microns. 

 

 The two main operating characteristics of a filter are its filter efficiency and pressure 

drop. Filter efficiency is the percentage measure of the air borne particulates that a filter is able 

to remove from the flow at a given velocity. Standards to measure filter efficiency are given in 

Table 4.1[30]. 

 Filter pressure drop is a measure of the force required to move air through the filter at a 

given velocity. The system resistance is the sum of all the pressure drops in the system and this 

includes the pressure drop across the filter. The air filter pressure drop is a function of the 

velocity of the air and the filter medium. Each filter medium will have a unique pressure versus 

air velocity characteristics, this is given by the filter performance curves, shown in Figure 4.1. 
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Figure 4.1 A typical air-flow filter resistance curve 

 

 For numerical modeling in Flotherm the filters are modeled using resistances. 

Resistances can be either planar or volume resistances. By modeling resistances, the effect of 

pressure drop and change in velocity  similar to that of a filter can be incorporated in the model. 

This is attained by entering the loss coefficient and free-area ratio for the filter. The pressure 

drop is computed by: 

         (4.1) 
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4.2 Fans 

 
 Fans are low pressure air pumps. They convert the torque supplied to the propeller to 

increase the static pressure across the fan rotor and also increase the kinetic energy of the air 

particles.  

 There are two types of fans that are commonly used in electronics cooling applications: 

axial flow fans and centrifugal blowers. Axial flow fans delivers air in the direction parallel to the 

fan blade axis and can be designed to deliver high flow rates. Blowers delivers air in the 

direction perpendicular to the blower axis and is usually designed to work against high pressure, 

but deliver relatively low flow rates. 

 

Figure 4.2 Typical fan performance curve 

  The aerodynamic characteristics of a fan are displayed in a fan performance 

curve. These curves show the relationship between volume flow rate and the pressure 

generated at various flow rates. The maximum flow rate is achieved at the free delivery 

condition and it represents the condition of maximum kinetic energy. The shut off point 

represents the condition of maximum potential energy, at this point the flow rate comes down to 

zero. Fan curves are very crucial for the selection of fans for cooling of a particular system. The 
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governing principle in fan selection is that any given fan can deliver only one flow at one 

pressure in a particular system. The intersection of the fan performance curve and the system 

impedance curve gives the operating point of that fan for that particular system. The figure 4.2 

shows the operating point for both a high and low resistance system. From the point of view of a 

system designer it is better to select a fan that gives an operating point towards the high flow, 

low pressure end of the performance curve. This enables the fans to maintain higher propeller 

efficiency and avoid propeller stall [31]. 

 For the selection of a fan it is necessary to have an estimate of the airflow that is 

required. This is obtained by using the basic heat transfer equation given by: 

          (4.2) 
 

          (4.3) 
 

 A better prediction of the required airflow can be obtained by calculating the operating 

point using the airflow network analysis or using computational fluid dynamics software [32]. 

4.2.1 Fan Laws  
 
 Fan laws can be used to predict the fan performance at a second condition. 

 The fan law equations are: 

          (4.4) 
 

         (4.5) 
 

         (4.6) 
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 The commercial CFD code Flotherm, used in this study, allows the modeling of fans 

using the fan smart part. A 2D rectangular fan or a 3D axial flow fan can be modeled with this 

smart part. The code allows the user to input a fixed value for the flow rate as well as a fan 

curve for more precise modeling of systems.  

4.3 Thermoelectric Coolers 
 
 Thermoelectric coolers (TEC) are solid state heat pumps used in applications where 

temperature stabilization, temperature cycling, or cooling below ambient are required. There are 

many products using thermoelectric coolers, including CCD cameras (charge coupled device), 

laser diodes, microprocessors, blood analyzers and portable picnic coolers. This article 

discusses the theory behind the thermoelectric cooler, along with the thermal and electrical 

parameters involved. 

 Thermoelectrics are based on the Peltier Effect, discovered in 1834, by which DC 

current applied across two dissimilar materials causes a temperature differential. Solid-state 

cooling such as thermoelectric or thermal diode is extremely important to future electronics 

thermal management because besides vapor compression and cryogenic, solid-state cooling is 

the only well-researched alternative technology that can achieve sub ambient cooling [33]. 

 The typical thermoelectric module is manufactured using two thin ceramic wafers with a 

series of P and N doped bismuth-telluride semiconductor material sandwiched between them. 

The ceramic material on both sides of the thermoelectric adds rigidity and provides electrical 

insulation. The N type material has an excess of electrons, while the P type material has a 

deficit of electrons. One P and one N semiconductor make up a thermoelectric couple. The 

thermoelectric couples are electrically in series and thermally in parallel. A thermoelectric 

module can contain one to several hundred couples [34]. Figure 4.3 shows the internal structure 

of a TEC with the P and N junctions. 
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Figure 4.3 Internal structure of a thermoelectric cooler [35] 

 As the electrons move from the P type material to the N type material through an 

electrical connector, the electrons jump to a higher energy state absorbing thermal energy (cold 

side). Continuing through the lattice of material, the electrons flow from the N type material to 

the P type material through an electrical connector, dropping to a lower energy state and 

releasing energy as heat to the heat sink (hot side). 

 Thermoelectric can be used to heat and to cool, depending on the direction of the 

current. In an application requiring both heating and cooling, the design should focus on the 

cooling mode. Using a thermoelectric in the heating mode is very efficient because all the 

internal heating (Joulian heat) and the load from the cold side is pumped to the hot side. This 

reduces the power needed to achieve the desired heating [36]. 
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4.3.1 Thermal Parameters 

 The heat pumping capacity of a TEC is given by, 

       (4.7) 

The amount of electric power which is dissipated as heat by a TEC in order to pump 

heat from the cold side to the hot side is given by, 

        (4.8) 
 

 In order to choose the right thermo electric module for an application. There are three 

parameters that need to be considered. They are the hot surface temperature (Th), the cold 

surface temperature (Tc), and the heat load to be absorbed at the cold surface (Qc). 

 The hot side of the TEC is the heat rejection side when a DC power is applied. This part 

is usually attached to a heatsink. Very often the heat sink is an important component in the 

assembly. A heat sink that is too small means that the desired cold side temperature may not 

be obtained.  

 The hot side temperature can be used by using the equations, 
 

        (4.9) 
 

         (4.10) 
  

 The cold side of the thermoelectric is the side that gets cold when DC power is applied. 

This side may need to be colder than the desired temperature of the cooled object. This is 

especially true when the cold side is not in direct contact with the object, such as when cooling 

an enclosure. 
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Figure 4.4  Performance curve for TEC showing voltage vs ∆T 

 The temperature difference across the thermoelectric is given by, 

          (4.11) 

 Thermoelectric performance curves are plotted with ∆T against voltage (V) and heat 

pumped ( ). Typical TEC performance curves are shown in Figure 4.4 and Figure 4.5. 
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Figure 4.5 Performance curve for TEC showing heat pumped vs ∆T 

4.3.2 Numerical Modeling of TEC 

 In Flotherm the TEC smart part is modeled as two cuboids which sandwich a layer of 

insulator in between as shown in Figure 4.6 [26]. Each of the cuboids corresponds to the hot 

side and cold side of the TEC. The insulation layer is to ensure that the heat pumped does not 

flow back to the cold side.  

 

Figure 4.6 Schematic for numerical modeling of TEC 

 There are two kinds of input data for the smart part : the characteristic data which 

includes the maximum values of heat pumped (Qmax), delta T (∆Tmax), current (Imax) and 

voltage (Vmax), the second type of input date is the operational current. 

 



 

32 
 

 

CHAPTER 5 

 THERMAL DESIGN OF TELECOMMUNICATION CABINETS  

5.1 Background 

 Commscope integrated cabinets provide environmentally secure enclosures for all 

types of electronic equipment. The cabinets optimize equipment density, heat transfer and 

dissipation, power reserve, environmental protection and ease of installation [37]. This study 

uses CFD analysis capabilities to provide design suggestions during the product development 

phase. 

 

 

Figure 5.1 External view of a telecommunication cabinet 
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RBA84-3036 is a large-sized enclosure of CommScope’s ‘Integrated Cabinets 

Solutions’ (ICS) product line. It is used to support wireline application in the telecommunication 

access network.  The enclosure, which is approximately 66 inches wide, 84 inches high and 48 

inches deep is divided into two compartments- a radio compartment on the left side and a 

battery compartment on the right side. The fully enclosed model is shown in Figure 5.1. The 

radio compartment houses some high power electronic components which are named, Radio 

Equipment 1 (RE1) and Radio Equipment (RE2) and also other passive components like the 

Power Distribution Unit (PDU) and radio filters.  

 

Figure 5.2 Internal components of the cabinet 

 

Figure 5.2 shows internal components of the cabinet. The heat output of these 

components necessitates a robust forced convection cooling system. The door assembly in the 

radio compartment houses two fan tray assemblies, each comprising six DC axial flow fans. 

Each fan is capable of delivering a maximum air flow of 350 CFM and a static pressure of 0.96 
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in. of water.  They deliver all the air flow required for cooling this cabinet. The filters are 

installed in the door assembly to keep out all the undesired particles and moisture from 

entering the enclosure.  The battery compartment houses twelve strings of batteries with each 

string comprising of two 24V 180 Ahr batteries. The chamber above the batteries holds a DC 

power shelf, AC panel and a customer electronic unit that is capable of dissipating upto 400W 

of heat. The required air to cool these components is diverted from the stream of air that is 

delivered by the door fans by using either a system of baffle and opening or a set of two 

recirculation fans in the partition wall. The partition wall has a rear opening on the top side 

adjacent to the power shelf and the customer unit. The air after cooling the electronic 

components in the battery compartment is exhausted through the rear opening of the partition 

wall. 

The high powered radio electronic equipments in the radio compartment have their own 

set of internal fans, which pull adequate amount of air to cool their internal components. This 

helps to prevent the bypassing of air delivered by the door fans which would otherwise choose 

the path of least resistance. There are five units of RE1 with two fans each at an operating point 

of 46 CFM, and four units of RE2 with five fans each at an operating point of 29 CFM. 

 All the air generated by the door mounted fans exit the enclosure through the rear air 

plenum. The plenum is provided with a system of actuated louvers, which prevents the entry of 

unwanted elements into the cabinet and also avoids the build-up of back pressure in the 

cabinet.  

 Solar loading has been applied based on the Telcordia GR-487 CORE standards, which 

states that 70 W/ft2 should be incident on any three walls of the cabinet. Heater strips are used 

to simulate the effect of solar loading as done in an experimental setup. The heater strips are 

located on the top, right and the rear sides of the cabinet. In order to reduce the effect of heat 

buildup due to solar loading, insulation is provided on the inside of all walls, except on the front 

side of the cabinet. 
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5.2 Numerical Modeling 

 Detailed modeling of telecommunication cabinet of this size and complexity would result 

in millions of elements and a prohibitively long CPU time to solve the CFD model. Simplifying 

the complicated geometry without losing its characteristic behavior is necessary to minimize the 

solution time. In order to reliably reduce mesh counts and solution time, system level compact 

models of components need to be developed. Figure 5.3 shows the schematics of the modeling 

methodology [38].   

 

 

Figure 5.3 Schematic showing the compact modeling methodology  
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 The cabinet is modeled as a large enclosure with a partition to separate the electronic 

and battery compartments. The solution domain is modeled with twice the height of the cabinet 

and an additional one-half the width and depth of the cabinet on all the four sides. All the five 

sides of the domain are modeled with open walls except the bottom surface which is given a no 

slip condition. The ambient temperature is set to 50ºC to simulate the worst case scenario. For 

the air-flow automatic algebraic or the LVEL turbulence model is used. The effect of radiation is 

turned off as the primary mode of heat transfer is assumed to be convection and conduction. 

 All the electronics equipment has been modeled as compact models with cubical 

enclosures having openings on the front and rear end. The system impedance of these 

components is modeled with advanced resistance macros in Flotherm, which incorporates the 

pressure drop characteristics of the equipment. The system impedance curve is obtained from 

experimental wind tunnel testing, and is further illustrated in Appendix A. While monitoring the 

thermal data, it is to be noted that only the temperatures surrounding the compact models are 

accurate. The temperature inside the compact models is not considered for the analysis [39]. 

 The fans are modeled by using the fan smart part and are given the fan performance 

curve so that the correct operating point is attained in the analysis. The filter consists of two 

layers the first is a particulate filter and the second one is a hydrophobic filter. They are 

modeled with volumetric resistances as explained in chapter 4. 

5.3 Numerical Analysis 
 

 CFD modeling has been used to perform a range of thermal/airflow analysis as shown 

in Figure 5.4 the first part of the analysis is a feasibility study which compares two different 

cooling systems for the battery compartment. The second part is a series of parametric studies 

where different sizes, numbers and flow rates of axial door fans, rear plenum, recirculation 

opening and circulation fan has been studied. 
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Figure 5.4 Schematic showing the thermal analysis 

5.3.1 Comparison of Two Cooling Systems for the Battery Compartment 
 
 The battery compartment of the cabinet is to be cooled with air delivered by the door 

fans in the radio compartment of the cabinet. An initial study was done to find the feasibility of 

using a baffle/opening system (shown in Figure 5.5) to divert a part of the ambient air supplied 

by the axial door fans. CFD analyses for two cases were compared, the first case uses the 

baffle/opening system and the second case uses recirculation fans on the partition wall. 

 The data indicates that the baffle did not deflect enough air into the battery 

compartment. The main reason for this was much of the air from the fans was directed onto the 

radio electronics and the remaining air-flow bypassed both the electronics and the inclined 

baffle. Measurements which were taken with the aid of the volume region on the recirculation 

opening showed that the air-flow was quite contrary to expected behavior. The air was actually 

going into the battery compartment through the rear opening of the partition wall and 
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recirculating back through the front opening. This led to extremely high inlet and exit 

temperatures in the power shelf and the customer electronic unit. 

 

 

Figure 5.5 Cabinet with the baffle/opening system 

  

 The recirculation fans were located closer to the power dissipating units of the battery 

compartment. These fans were mounted on the partition wall. This construction proved to be 

adequate to limit the air inlet temperature to the battery compartment to 60⁰C and to meet 

thermal budget target of 15⁰C for the power shelf and customer unit. Hence, recirculation fans 

were chosen as a suitable cooling system for the battery compartment electronics. The results 

for this feasibility study are shown in Table 1. Parametric study was performed for the flow rates 

of the partition wall fans and is discussed later. 
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Figure 5.6 Expected air-flow using the baffle/opening system 

 

 

Figure 5.7 Actual air-flow using the baffle/opening system 

 

 Figure 5.6 and Figure 5.7 shows the expected air-flow path and the actual air-flow path 

from the radio compartment. It was observed all the electronics in the radio compartment 

showed temperature below 60ºC and it was only the electronic components in the battery 
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compartment that showed higher temperatures. Hence only the temperatures for the latter are 

reported here. 

Table 5.1 Comparison of Cooling System for the Battery Compartment 
 

Cooling 
system 

Power Shelf 
inlet (⁰C) 

Power Shelf 
outlet (⁰C) 

Cust. unit 
inlet (⁰C) 

Cust. unit 
outlet (⁰C) 

Baffle/opening 71.7 88.8 142.7 105.5 

Recirc. Fan 55.2 76.8 55.4 65.8 

 

 Figure 5.8 and Figure 5.9 show the vector plots for the baffle/opening system and 

recirculation fan system respectively. 

 

 

Figure 5.8 Vector plot showing the air-flow using the baffle/opening system 
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Figure 5.9 Vector plot showing the air-flow using the recirculation fan system 

5.3.2 Axial Door Fan Arrangements 
 
 A study was performed to find the effectiveness of cabinet cooling with different number 

and positions of door fans. The room to move the fans horizontally was restricted by the 

condition that the fans have to be positioned directly in front of the cabinet electronics. Hence 

the positions were varied in the vertical direction only. Also, a symmetrical arrangement of the 

fans on the upper and lower half of the cabinet door was considered, taking into account the 

manufacturing cost savings for such a configuration.  Four different door fan configurations were 

considered with two 8 fan configurations, one 10 fan configuration and one 12 fan configuration. 

 For the first 8 fan configuration, the vertical and horizontal spacing was kept at 3.88 

inches and 3.16 inches respectively. This configuration is denoted by 8 fans (1) in Table 2. For 

the second 8 fan configuration the vertical and horizontal spacing was 7.88 inches and 3.16 

inches respectively. This configuration is denoted by 8 fans (2) in Table 5.2. All the fan 

configurations are shown in Figure 5.10 and Figure 5.11. 
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 For all the four configurations the inlet and exit temperatures of the electronics in the 

radio compartment showed fairly similar values, with the 10 fan configuration providing the best 

results. 

 

  

Figure 5.10  8 fans configuration- 8 fans(1) and 8 fans(2). 
 

  

Figure 5.11 10 fan and 12 fan configuration. 
 

 However, it needs to be seen how the 10 fan configuration would provide the 

redundancy in the case of a possible fan failure, given the orientation of fans in that design. 

Considering the redundancy factor, the 12 fan configuration was chosen for the cabinet design. 

Also in the event of greater heat accumulation due to a higher population of electronics in the 

cabinet, the 12 fan configuration is more likely to provide adequate thermal management.  
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Table 5.2 Results for Axial Door Fan Arrangement 

 

No: of fans 
Power 

Shelf inlet 
(⁰C) 

Power 
Shelf 

outlet (⁰C) 

Cust. unit 
inlet (⁰C) 

Cust. unit 
outlet (⁰C) 

8 fans (1) 55.4 76.1 54.1 64.5 

8 fans (2) 55.1 77.3 53.8 62.4 

10 fans 54.9 75.8 53.4 64.5 

12 fans 55.2 76.8 55.4 65.8 

 

5.3.3 Parametric Study of Rear Opening and Plenum height 

 The hot exhaust air of the cabinet exits through the rear opening on the radio 

compartment and passes through the plenum area which has a patterned set of actuated 

louvers. A parametric study to find the effect of varying the height of the rear opening and 

plenum on the inlet and exit temperatures of the cabinet electronics was performed. While 

varying the height, a gap of 3 inches between the top edges of the rear opening and plenum 

was always maintained i.e. if the height of the rear opening was 55 inches the plenum height 

would be 58 inches. The width of the opening was always maintained at 23.5 inches. 

 The height of the rear opening was varied from 37 inches to 58 inches. As the exit and 

inlet temperatures of the radio side electronics showed no appreciable changes for different 

heights, the temperature values for the power shelf and the customer unit were the main criteria 

for selecting the right dimensions. 

 As can be seen from Table 5.3, with increase in opening height both the inlet and exit 

temperatures of the electronics in the battery compartment showed a decrease. This is 

attributed to the better scavenging of the exhaust air from the battery compartment. The plenum 

height could not be increased all the way to the top as space had to be provided above the 

plenum on the rear side of the cabinet for a small box that housed the RF cables and the 
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connectors which communicates the RF signals to and from the antenna. Therefore the 

optimum height of 55 inches was chosen for the rear cabinet opening. 

Table 5.3 Results for the Parametric Study of Rear Opening and Plenum Height 
 

Height 
(inches) 

Power 
Shelf inlet 

(⁰C) 

Power 
Shelf outlet 

(⁰C) 

Cust. unit 
inlet (⁰C) 

Cust. unit 
outlet (⁰C) 

58 54.4 76.5 54.1 63.7 

55 55.2 76.8 55.4 65.8 

52 55.8 77.5 57.2 67.6 

49 56.2 78.1 57.7 68.2 

46 56.2 80.7 58.1 68.7 

43 56.5 81.1 58.2 68.9 

40 56.2 80.8 57.4 68.1 

37 57.2 81.3 59.2 69.9 

 

5.3.4 Parametric Study of the Recirculation Opening 
 
 The recirculation opening is located on the rear top side of the partition wall. It serves to 

exhaust the hot air generated from the power shelf and customer electronic unit in the battery 

compartment. The hot air exhausted from the battery compartment had to take a tortuous path, 

as it has to turn 90⁰ to exit through the recirculation opening, moving out through a narrow 

channel between the filter radio and the partition wall before it exhausts through the rear 

plenum. Therefore, optimizing the size of the recirculation opening is important in order to avoid 

the buildup of heat in the battery compartment. 
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Table 5.4 Results for the Parametric Study of Recirculation Opening 

 

Height 
(inches) 

Power 
Shelf inlet 

(⁰C) 

Power 
Shelf 
outlet 
(⁰C) 

Cust. unit 
inlet (⁰C) 

Cust. unit 
outlet (⁰C) 

25 55.2 76.8 55.4 65.8 

22 55.1 76.2 55.8 65.5 

19 55.1 76.3 55.9 64.4 

16 55.4 77.5 56.4 63.9 

13 56.8 80.3 57.1 63.4 

10 58.7 82.7 57.1 63.2 

 

 For the parametric study, the initial size of the recirculation opening was kept at the 

maximum possible size. Given the physical constraint, this size was kept at 25 inches. In 

subsequent steps, the size was decreased by 3 inches to a minimum of 10 inches. In all the 

cases the width of the opening was kept at 4.5 inches. The parameters that were considered 

were the exit temperatures of the power shelf and customer unit. The rest of the monitored 

temperatures seemed to be unaffected by the change in the recirculation opening size. Results 

are shown in Table 5.4. The most suited result was for the 19 inch opening when both inlet and 

exit temperatures were considered. 

5.3.5 Parametric Study of the Recirculation Fan 
 
 The air to cool the battery compartment is supplied by the recirculation fans placed on 

the partition walls. These fans are located near the power dissipating units of the battery 

compartment. The air from these fans is supplied parallel to the face of these units. There is 

much less flow bypass due to the restricted space in the top of the battery compartment. The 

static pressure build up due to the restricted space ensures that air is delivered into the power 
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units. This parametric study aims to find the required amount of flow rate so as to maintain the 

electronics within the stipulated thermal budget. 

Table 5.5 Results for the Parametric Study of Recirculation Fan 
 

Flow rate 
(CFM) 

Power Shelf 
inlet (⁰C) 

Power Shelf 
outlet (⁰C) 

Cust. unit 
inlet (⁰C) 

Cust. unit 
outlet (⁰C) 

50 66.5 105.4 105.1 122.7 

100 56.7 81.4 59.2 81.5 

130 55.8 77.7 56.5 68.2 

140 55.5 76.8 56.4 66.1 

 

 The results shown in Table 5.5 indicate that a flow rate close to 140 CFM is required. 

Hence choosing a fan which would provide an operating point of this value is needed to 

maintain the electronics in the prescribed temperature regime.  

5.4 Conclusion 
 

 Modern standalone environmental cabinets house high density of electronic 

components which dissipate a large amount of heat. Careful design of the cabinet is called for 

to ensure that the electronics function within the prescribed operating range, and does not 

cause early product failure. CFD analysis aids to make quicker design decisions without 

expensive prototype testing. Compact models are used in place of detailed geometry for system 

level modeling. This simplifies the model thereby saving on computational cost and time. 

 In this paper, a feasibility study was performed to evaluate two types of cooling systems 

for the battery compartment of the cabinet. The baffle/opening system proved to be inadequate 

in cooling the battery compartment electronics; whereas the recirculation fans ensured that the 

temperatures were kept within desired limits. Also various parametric studies were performed to 

determine the optimal number and position of the axial door fans, height of rear opening and 

plenum, height of recirculation opening and required flow rate of recirculation fans.  
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CHAPTER 6 

 MODELING METHODOLOGY FOR THERMOELECTRIC COOLER AIR-AIR ASSEMBLY  

6.1 Background 

 A typical telecommunication cabinet provides a secure enclosure for various types of 

electronic components and back-up batteries. The cabinet should provide an environment in 

which these components could function reliably. In addition to providing the right amount of air 

within the prescribed temperature, thermal management of the cabinet should ensure that the 

battery compartment should be maintained at close to its optimum working temperature (25ºC). 

Many a times, this requires cooling the battery compartment below ambient temperatures. Two 

of the most common ways to do this is to use either vapor compression refrigeration or use TEC 

refrigeration. TECs provide the advantage of being highly reliable and quite in operation, two 

qualities that are important for stand-alone telecommunication cabinets. The TEC devices are 

employed in conjunction with heat sinks and fan. It is an indirect method of cooling and 

therefore takes a long time to bring down the battery temperature[40]. This study discusses the 

thermal management of the battery compartment of an outdoor telecommunication cabinet 

using air-air TEC heat exchangers. A novel method to model these air-air TEC exchangers 

using a commercial CFD code is also discussed. 

 Telecommunication cabinets with their multiple equipment configurations require 

numerous tests and analysis to ensure an acceptable thermal performance. Prototype based 

experimental testing is usually time-consuming and can span several weeks. Using 

computational fluid dynamics, and with the advent of relatively low-cost and high powered 

computing capabilities, testing a large enclosure with multiple configurations can be accelerated 

through simulation. Though CFD might not give a pin-point accurate result, it does aid in giving 



 

48 
 

a qualitative assessment, thereby expediting the design process. The CFD code FLOTHERM 

by Mentor Graphics [42] is used for the thermal/airflow analysis in this study. 

6.2 Model Description 
 

6.2.1 Baseline Model 
 
 The telecommunication cabinet in this study has dimensions measuring approximately 

30 inches wide, 48 inches high and 35 inches deep (shown in Figure 6.1). It is manufactured by 

Commscope Solutions Inc. [37] 

 The equipment inside the cabinet is a function of application to be served.  The cabinet 

discussed in this study consists of the electronic equipment, rectifier shelf, Heat Exchanger (HX) 

and inner/outer loop fan trays and Thermo Electric Cooler (TEC) modules.  The electronic 

equipment and the rectifier shelf consist of numerous circuit cards, whose active components 

dissipate heat. The customer shelf and rectifier dissipate the majority of heat in the cabinet. 

 

Figure 6.1 External view of the telecommunication cabinet 
 

 The cabinet has two fan assemblies: 

1. Bay fan tray (Inner loop, 3 fans) 

2.  HX fan tray (Outer loop, 2 fans) 
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 The bay fan tray creates the inner loop air flow, i.e. pulls in internal air from the bottom 

of the electronic equipment and exhausts the hot air to the intake of the HX.  So the air enters 

the inner loop of the HX from the top and after it has undergone cooling, is again rejected to 

shelf inlet from the HX exhaust.  On the outer loop side, the HX fans pull ambient air from the 

bottom side of the HX and the flow is from bottom to top.  While air is flowing through both the 

respective loops, heat transfer takes place following the counter-flow HX principle cooling the 

inner loop air.  The warmer outer loop air is exhausted to the atmosphere.  This cycle continues 

and the cooling medium (air in this case) never mixes. For both electronic equipment and 

rectifier shelf air inlet is through bottom and exhausted through the top. The electronic must be 

operated in tight thermal specifications in order to provide sufficient reliability and performance. 

 

 

Figure 6.2 Internal components of cabinet (side view) 

 The bottom compartment of the cabinet houses the batteries. The cabinet is sealed 

from the external environment and is cooled by means of two TEC air-air exchanger units (see 

Figure 6.2). The details of the TEC exchanger units are explained in the next section. The 

battery compartment also houses electronic equipment, which is located in between the two 

sets of batteries. The power rating for this equipment is 50 W. Heater strips are used to simulate 
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the solar load. Heater strips are placed on three sides of the cabinet top, rear and right side. 

The solar load is applied only on three sides of the cabinet. The reason for this is, for any 

orientation of the cabinet, sun light will be incident only on the three sides at any given instant. 

Solar loading involves all the three forms of heat transfer and is given by sum of radiation, 

convection and conduction heat loads. The radiated heat load remains always positive and the 

direction of the convective and conductive heat loads depends on the cabinet temperature[42]. 

There has been considerable discussion going on in industries to account for solar load during 

testing. In this study the Telcordia[10] standards GR 487 CORE have been used to account for 

solar loading. According to this standard 70 W/ft2 is applied to the three sides of the cabinet. In 

order to minimize the effect of the solar load, 1 inch insulation is provided on the inside walls of 

the cabinet. 

 6.2.1.1 Numerical Modeling 

 Thermoelectric coolers are modeled using the TEC smart part in Flotherm. It is 

constructed as a simple geometry with an insulating layer sandwiched between two cuboids. 

The cuboids represent the hot and cold side of the TEC. This is explained in detail in Chapter 4. 

The TEC air-air heat exchanger assembly used in this study consists of five main components 2 

sets of fans, 2 heat sinks and the TEC cooling unit. This assembly is housed on the front wall of 

the battery cabinet with one set of heat sink and fan inside the cabinet, forming the inner loop 

and the other set of heat sink and fan on the outside; forming the outer loop .This arrangement 

is called the through-wall mount and is shown in Figure 6.3. Both the fans impinge air directly 

onto the heat sinks. The TEC cooling unit houses 8 TEC modules and they are electrically 

connected in a parallel-series network as shown in Figure 6.4.  
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Figure 6.3 TEC air-air exchanger shown as a through-wall assembly in the cabinet (side view) 
 

 The TEC assembly is operated under a voltage of 54 V DC and the current drawn by 

the assembly at this voltage is approximately 8 A. With the nature of the parallel-series network 

each TEC module is subjected to a voltage drop of 13.5 V and draws in a current of 4 A. Here 

the assumption is that each TEC module has the same resistance (Rm) and there is no voltage 

drop across the wiring in the TEC cooling unit. 

 

Table 6.1 Heat Loads of Electronic Components 

Heat Load for electronic components (W) 

Rectifier Shelf 300 

Electronics 250 

Battery Electronics 50 
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Figure 6.4 Electrical circuit diagram for the TEC modules inside the cooling unit 
 
 Often the characteristic data for the TEC modules is not provided by the manufacturer 

and it becomes difficult to model the TEC module as a smart part explicitly. A method to 

overcome this difficulty is to use one of the TEC smart part given in the Flotherm library. The 

Flotherm library has a list of commercially available TEC modules.  Here the key is to select a 

TEC module which has a maximum voltage rating close to the maximum voltage rating of the 

module used in the actual assembly. This parameter is often available from datasheets provided 

by the manufacturer. The TEC module used for numerical modeling in this study is Melcor UT 8-

12-30-F2 [35]. It should be noted that the maximum current rating for the numerical module 

should be higher than the operating current of the actual TEC module. It is widely observed that 

TECs have a better heat pumping efficiency when the operating current is 40-70% of the 

maximum rated current.  The TEC smart part used for numerical analysis in this model has a 

maximum voltage rating of 14.4 V and a maximum current rating of 7.9 A. 

 The heat sinks that are used in the TEC air-to-air heat exchanger are modeled in detail 

with exact replication of the fin count, spacing and dimensions. Also the heat exchanger in the 

electronics compartment are modeled in detail. The batteries are modeled as cuboids which 

serve as to block the air-flow and produce no heat output. The electronics are modeled with 

enclosures with two faces open to facilitate the air-flow inside them. The pressure drop across 

them is modeled with resistances and the heat output is modeled with a heat source for their 

entire volume. 
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Figure 6.5 Internal view of the TEC air-air exchanger 
 

 Through this method of reverse engineering, the attempt is to replicate the 

characteristic behavior of the actual TEC module as close as possible. Figure 6.5 shows the two 

TEC assemblies with the assembly on the left showing the TEC cooling unit with the 8 individual 

TEC modules. It should be noted that the cooling unit is not represented by a detailed model 

instead it is modeled in such a way as to embody the functionality of the device. 

6.2.2 Cabinet Model with Cowling and Baffles 
 
 In order to have a comparative study a model with a cowling for the fans of the TEC 

assembly and set of baffles in the battery cabinet was developed. This was hypothesized to 

give better results by cutting down on recirculation of air back into the fans in the TEC 

assembly. The cowling on the inner loop of the TEC forces the fans to draw hot air from 

between the two sets of batteries and prevents the cold air flowing out from the top of the heat 

sinks from being sucked back in. A similar cowling arrangement is provided on the outer loop of 

the TEC assembly. A set of two baffles are provided on the inside of the battery compartment, 
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between the side walls and the batteries, to supplement the cowling in reducing recirculation. 

This arrangement is shown in Figure 6.6 and Figure 6.7. 

 
 

Figure 6.6 TEC assembly with the cowlings (side view) 
 

 
 

Figure 6.7 TEC assembly with the cowlings (isometric view) 
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6.3 Results 
 

 The focus of this study is on the cooling of the battery cabinet. In the experimental 

analysis, the temperature readings in the cabinet were taken using thermocouples. The most 

critical temperature is the battery temperature, and the readings were taken for the guideposts 

of the batteries. This location was expected to give the closest value to the actual battery 

temperature. In the numerical analysis the functionality of the thermocouples were mimicked 

using monitor points. They were located close to the top and 10 mm in front of the batteries. 

The approximate location of the monitor points are shown in Figure 6.8. The upper monitor 

points are numbered 1-1, 1-2, 1-3 and 1-4, while the lower monitor points are numbered 2-1, 2-

2, 2-3 and 2-4. 

 

 
 

Figure 6.8 Front view showing monitor point locations 
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 Replicating the actual test environment in the test chamber, the ambient temperature 

for the numerical model was set to 38 ⁰C and modeled with still air. The test results with the 

baseline case and the model with TEC assembly cowling and baffles were obtained and 

compared with similar experimental test results. The experimental data was provided by the 

cabinet manufacturer. 

 For ease of tabulation the base model, with no ducting in the form of cowlings and 

baffles, is reported as Case 1 and the model with the ducting accessories is referred to as  

Case 2.  

Table 6.2 Comparison of Numerical and Experimental Results for Case 1 
 

 
Case 1 

 
Numerical  (⁰C) Experimental  (⁰C) 

Battery 1-1 40.2 40.2 

Battery 1-2 39.8 40.2 

Battery 1-3 38.0 39.1 

Battery 1-4 39.0 39.4 

Battery 2-1 37.9 39.8 

Battery 2-2 37.4 39 

Battery 2-3 37.0 38.8 

Battery 2-4 37.9 39.2 
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Figure 6.9 Comparison of numerical and experimental results for case 1 

 
 
 

Table 6.3 Comparison of Numerical and Experimental Results for Case 2 
 

 
Case 2 

 
Numerical (⁰C) Experimental (⁰C) 

Battery 1-1 37.4 36.1 

Battery 1-2 37.0 35.7 

Battery 1-3 35.1 35.2 

Battery 1-4 36.0 35.6 

Battery 2-1 34.3 35.2 

Battery 2-2 33.3 35 

Battery 2-3 34.2 35.6 

Battery 2-4 35.5 36.5 

 
 
 



 

58 
 

 
Figure 6.10 Comparison of numerical and experimental results for case 2 

 
 Table 6.2 and Table 6.3 shows the comparison of numerical and experimental data for 

the two cases mentioned earlier. In both the cases the numerical data shows a good degree of 

closeness with the experimental data. The values show a difference of less than 5 percent. Part 

of this difference could be attributed to the air leakages in the experimental model.  An 

observation that is to be made here is that on comparing the experimental results between 

Case 1 and Case 2, there is a difference of approximately 3.5⁰C between the temperature 

values. A similar trend is also shown by the numerical results. The closeness in values and 

similar trends for both the cases, between numerical and experimental results, shows that there 

is a fair degree of consistency with the numerical data.  

 Figure 6.11 and Figure 6.12 shows the vector plots for case 1 and case 2. It is clearly 

seen in Figure 6.12 that the cowlings around the TEC assembly do a good job in cutting down 

on recirculation. This reduction in recirculation leads to an approximately 3⁰C drop in 

temperatures in the battery compartment. 
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Figure 6.11 Vector plots for case 1(side view) 
 
 

 
 

Figure 6.12 Vector plots for case 2(side view) 
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Figure 6.13 Thermal plots for case 1(side view) 
 
 

 
 

Figure 6.14 Thermal plots for case 2(side view) 
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 In order to understand the impact of failure of one or both of the TEC assemblies, three 

different scenarios were considered. The first scenario has the TEC assembly on the left side of 

the battery compartment as the failed unit and the battery temperatures are reported as Case 3. 

The second scenario has the right TEC assembly failed and the third one has both the TEC 

assemblies failed, these scenarios are reported as Case 4 and Case 5 respectively.  The 

various monitor point readings are shown in Table 6.4. 

 
Table 6.4 Comparison of Numerical Results for Various Cases of TEC Assembly Failures 

 

 
Case 3 (⁰C) Case 4 (⁰C) Case 5 (⁰C) 

Battery 1-1 46.5 51.3 73.1 

Battery 1-2 47.0 50.6 73.0 

Battery 1-3 48.1 47.2 72.2 

Battery 1-4 48.3 47.6 71.2 

Battery 2-1 44.3 47.8 71.0 

Battery 2-2 43.6 46.6 71.0 

Battery 2-3 47.0 44.5 70.0 

Battery 2-4 48.3 45.5 69.8 

 
 
 With the failure of one of the TEC assemblies there is approximately a rise of 10⁰C in 

battery temperatures with case 4 temperatures being slightly higher than case 3. One of the 

reasons for this difference could be due to the fact that in case 3, the functional TEC assembly 

is closer to the solar heater strips. With the failure of both the TEC the temperature rises by 

approximately 25⁰C.  
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Figure 6.15 Comparison of Numerical results for various cases of TEC assembly failures 

 
 

 The impact of ambient air-flow on battery temperatures is studied through numerical 

analysis. The solution domain around the cabinet is modeled as an enclosure, with fixed air-flow 

provided in the x-direction i.e. normal to the front face of the cabinet as shown in Figure 6.16. 

This is done to mimic the effect of a wind tunnel. The enclosure is made sufficiently big enough 

so as to minimize the boundary effects on the air-flow around the cabinet. Battery temperatures 

for still ambient air and two free-stream velocities of 3 mph and 5 mph are recorded as Case 6, 

Case 7 and Case 8 respectively.  

 The results for this analysis are shown in Table 6.5. There is a decrease in battery 

compartment temperature with the increase in ambient air-flow velocity. This can be attributed 

to an improved overall heat transfer coefficient for the outer heat sink of the TEC air-air 

exchanger. There is a sudden drop in temperature of 3⁰C when the air-flow changes from still 

air to air-flow at 3mph. Indicating that even a gentle wind blowing on the front face of the cabinet 

can improve the performance of the TEC air-air exchanger. Figure 6.17 and Figure 6.18 shows 

the vector plots for ambient air-flow of 3 mph and 5 mph respectively. 
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Figure 6.16 External view of the cabinet with direction of air-flow shown (isometric view) 
 
 
 

Table 6.5 Comparison of Numerical Results for Still Air and Air-Flow at 3 mph and 5 mph 
 

 
Case 6 (⁰C) Case 7 (⁰C) Case 8 (⁰C) 

Battery 1-1 37.4 34.4 33.3 

Battery 1-2 37.0 34.3 33.2 

Battery 1-3 35.1 32.3 31.4 

Battery 1-4 36.0 32.9 32.1 

Battery 2-1 34.3 31.8 31.0 

Battery 2-2 33.3 30.8 30.1 

Battery 2-3 34.2 31.4 30.5 

Battery 2-4 35.5 32.5 31.6 

 



 

64 
 

 
 
 
 
 

 
 

Figure 6.17 Vector plots for air-flow at 3 mph (side view) 
 
 

 
 

Figure 6.18 Vector plots for air-flow at 5mph (side view) 
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6.4 Conclusion 
 

 This study explains in detail, a novel method to numerically model a TEC air-air 

exchanger for system level cooling applications. This method uses readily available TEC 

macros, of a commercial CFD software, to model the assemblies in such a way as to mimic the 

functionality of these devices rather than the physical details of the thermoelectric devices. 

 Methods of enhancing the cooling effectiveness of the TEC assemblies by way of 

proper ducting to cut down on recirculation has also been discussed. Numerical analysis of the 

model with these enhancements has been compared with the numerical results of the model 

without them (base model). The results of both the scenarios compare well with the 

experimental results. Therefore, a reliable method to numerically model and test the TEC 

assemblies, without the need of proprietary information   from the manufacturers, has been 

developed. 

 Further, the impact of failure of one or both of the TEC air-air exchangers on the battery 

temperatures and also the impact of external wind on the same has been discussed in this 

study. 
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APPENDIX A 

METHOD TO COMPUTE THE PRESSURE DROP COEFFICIENTS  
FOR FILTERS IN FLOTHERM 
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 The air-flow characteristics of a filter can be modeled using the volumetric resistance 

feature of Flotherm. This way the exact pressure drop vs. Flow rate behavior of the filter can be 

simulated in the model, thus giving us more accurate system resistance. This would in turn aid 

us in selecting the right fans to be used in cooling the system. 

 By using the advanced feature of volumetric resistance this capability could be 

incorporated. 

 The pressure drop for the volumetric resistance is given by 

 ∆P = [A.µ/2.l].v + [B.µ.ρ/2.l].v2       (A1.1) 

 Accurate values of both A and B coefficients needs to be computed and is given as an 

input in the advanced volumetric resistance dialog box. These coefficients are calculated from 

the system resistance curve obtained from experimental testing in a wind tunnel. The procedure 

is illustrated in an example given below: 

 Step 1 - The experimental results of Pressure and velocity for the filter are entered into 

 the spread sheet. 

 Step 2 - The data points are plotted and a curve is fitted. 

 Step 3 - The fitted curve should be a second order polynomial and the intercept should 

 be fixed to 0. This enables the equation to be compared with pressure. 

 Step 4 - Equating the coefficients of the above equation (A1.1)  with the trend line 

 equation obtained from the graph (shown in figure A1.1). 

Equation of Trend line: y = 602.68x2 + 314.68x 

 
 

∆P - Pressure drop 

v - velocity 

µ- Dynamic viscosity 

ρ-density 

l - characteristic length = 1 m   
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Table A.1 Static pressure drop and volumetric flow rate for the sample filter 

Static 
Press. 
(in of 
H2O) 

Flow 
Rate 

(CFM) 

Flow 
rate(m3/s) Velocity(m/s) Pressure (Pa) 

0.05 81 0.03645 0.1458 12.445 

0.09 85 0.03825 0.153 22.401 

0.2 95 0.04275 0.171 49.78 

0.35 115 0.05175 0.207 87.115 

0.5 145 0.06525 0.261 124.45 

0.72 185 0.08325 0.333 179.208 

0.95 225 0.10125 0.405 236.455 

1.2 260 0.117 0.468 298.68 

1.5 300 0.135 0.54 373.35 

1.8 350 0.1575 0.63 448.02 

2.1 390 0.1755 0.702 522.69 

2.4 440 0.198 0.792 597.36 
 
 
 
 

 
Figure A.1 Pressure vs. velocity profile for the sample filter 
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