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ABSTRACT 

RICHTMYER-MESHKOV INSTABILITY  

IN REACTIVE MIXTURES 

 

Madhuri Ungarala, MS 

The University of Texas at Arlington, 2010 

Supervising Professor:  Dr. Luca Massa 

 

This research analyzes the effect of reactivity on the Richtmyer-Meshkov instability with particular 

emphasis on the velocity and wave number scaling and on the effect of free detonation instability modes 

on the interface corrugation rate. This analysis is performed by solving numerically for the first order 

perturbation generated by the shock-induced acceleration of an initially corrugated interface.  

The objective of this research is to analyze the effect of mixture reactivity on the process 

supported by a shock sweeping across a corrugated interface from high density to low density fluid. This 

scenario is antithetical to the classical Richtmyer analysis where transmitted and reflected shock waves 

are generated by shock transit from low to high density mixture. A linear stability analysis of the 

Richtmyer-Meshkov instability supporting the detonation initiation is presented. The analysis focuses on 

scaling of the interface growth rate with the perturbation wave number under combustion conditions, and 

on the coupling between detonation front and interface instabilities. This research documents the method, 

numerical convergence of the solution, and results obtained assuming finite rate kinetics. The results 

show a profound effect of the reactivity on both the short time growth and the long time linear regime. 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Richtmyer-Meshkov Instability 

When two fluids of different density which is separated by an interface, is driven by a shock, the 

misalignment of pressure and density gradients gives rise to an instability of the interface, which 

eventually produces a turbulent mixing of fluids. 

Richtmyer-Meshkov Instability (RMI), [1] refers to the instability which occurs at an impulsively 

accelerated interface i.e. a shock wave between two gases of different density. It differs from the 

Rayleigh-Taylor instability for which the acceleration at the interface is sustained, and from the Kelvin-

Helmholtz instability which is due to the shear stress between the two fluids at the interface.  

As the interface between the two fluids distorts, nonlinear processes eventually occur and a 

region of turbulence is created resulting in the mixing of the two fluids. The arrival of any additional shock 

wave at the interface further increases the intensity of the turbulent motions. In the case of light fluid 

penetrating the heavy fluid a nonlinear regime is found followed with bubbles. In the case of heavy fluid 

penetrating through the light fluid the formation of spikes can be observed. Turbulent mixing between the 

two impulsively accelerated fluids can be considered important in supersonic and hypersonic applications. 

The RMI can also be used to accelerate the mixing of fuel and oxidizer in the supersonic and 

hypersonic engines [2]. However, the concept of interface being continuously interacted with the shock 

acceleration was considered first by, Markstein, [3] although the theoretical and numerical analysis of 

rigorous treatment of the shock-excited instability was shown by, Richtmyer [1], Martin Brouillette [3].
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Figure 1.1: Richtmyer–Meshkov instability 

The interaction of shock wave with the perturbed density interface leads to various kinds of fluid 

motions. RMI is referred to the shock system that is defined by a shockwave propagated along with the 

incident shock resulting in the supersonic instability while the reflected shock wave tends to amplify the 

shock system. 

1.2 Applications of Richtmyer-Meshkov Instability 

RMI is important in a large number of science and engineering applications. In inertial 

confinement fusion, RMI is important to produce ignition by impeding sufficiently powerful shockwaves 

which causes the mixture to compress and heat the surrounding fuel by a large set of chemical reactions 

to produce a nuclear fusion [4].
 
RMI has also been used to explain the lack of stratification of the products 

of supernova 1987A and is now a required ingredient in stellar evolution models [5]. 

The interaction of a high pressure shock wave with a subsonic flame can ignite the mixture and 

accelerate to supersonic speeds, hence resulting in detonating the mixture. This transition from 
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deflagration to detonation is named as deflagration-to-detonation transition [6]. RMI can also be used to 

promote mixing between fuel and oxidizer in supersonic and hypersonic air-breathing engines [7]
 

1.3 Introduction to the Problem 

This research analyzes the role of mixture reactivity on the dynamics of the Richtmyer-Meshkov 

instability (reactive RMI).The phenomenon is of physical importance in the context of detonation initiation 

and baroclinic mixing. Previous attempts to model the RMI in reactive fluids lack a thorough examination 

of the mixture thermo-chemical properties on the surface deformation rate, of the induction-disturbance 

scaling, and of the interaction between the detonation global instability and the interface convective 

instability. A peculiar difference between reactive and nonreactive problems is the wave number scaling.  

Khoklov, analyzed the RMI resulting from flame shock interaction [6]. They note the absence of fine scale 

interface disturbances in burning computations, and conjecture that the flame consumes the small scales.  

The Richtmyer shock problem has no geometrical length scale, so that, in the non-reactive case, the 

normalized growth rate of an interface disturbance scales linearly with the disturbance wave number. The 

premixed combustion problem that supports detonation initiation has, in its most simple form, the 

induction length as the length scale. The relationship between induction and disturbance wave number 

introduces a scaling parameter [7]. It is widely acknowledged that non-reacting shocks are stable to linear 

perturbations, while detonations are unstable for realistic values of the heat release. In the non-reactive 

Richtmyer-Meshkov problem, the interface deforms with a linear rate, while the shocks relax toward the 

unperturbed state with an exponential decay. In the reactive case, for a time-unstable detonation, the 

resonant interaction between surface deformation and detonation instability may support super-linear 

growth rates of interface disturbances.  

Instability patterns associated with the RMI play a fundamental role in the mixing rate through the 

strain driven gradient steepening at the interfaces. The contribution of the initial patterns to the 

instantaneous mixing rate was measured to be up to 80% of the peak mixing rate, in non-reactive 
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measurements [8]. On the other hand, for reactive mixtures, we expect the scaling effect to alter shock 

induced mixing, and favor the process at selected wave numbers.  

In this research we present a linear stability analysis of the RMI supporting detonation initiation. This 

analysis focuses on scaling of the interface growth rate with the perturbation wave number under 

combustion conditions, and on the coupling between the detonation front and interface instabilities. This 

thesis documents the method, numerical convergence of the solution, and preliminary results obtained 

assuming infinitely fast kinetics.  
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CHAPTER 2 

CHEBYSHEV TAU METHOD-VALIDATION WITH EXAMPLES 

2.1 Introduction to Chebyshev  Polynomials 

Chebyshev polynomials are of great importance in many areas of mathematics, particularly in 

approximation theory. They are a sequence of orthogonal polynomials which are defined recursively. 

There are several discretization techniques for finding the Eigen values and Eigen functions which use 

the finite difference technique and inverse Rayleigh iteration. Chebyshev tau-QZ method is an efficient 

way to find the Eigen values for a non linear partial differential equation which is a major section of the 

present problem. An efficient way to use the Chebyshev tau-QZ algorithm method for finding the Eigen 

values and Eigen functions of difficult practical problems has been discussed thoroughly in Dongarra’s 

paper [9].  

In this section, validation of the Chebyshev tau method is presented by analyzing three different 

problems starting from simple linear equation with single dependent variable to nonlinear partial 

differential equations having a vector of dependent variables. 

2.2 Linear Partial Differential Equation 

2.2.1 Numerical Solution 

Consider the linear partial differential equation shown below  

                                                                                                                                     (1) 

where  and  =1. 

The initial conditions are  
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and the boundary conditions are:    

The equation (1) is expanded using Chebyshev expansion by writing  as a finite series of 

Chebyshev polynomials. 

                                                                                                                                       (2)                 

where,  is the order of the maximum Chebyshev polynomial resolved in the truncation error and  is 

the Chebyshev polynomial of kth order. Furthermore  is the array of Chebyshev components which is 

solved for, 

=   , with . 

The expansion takes the form 

         = .                                              (3)                                                           

Equation (1) and the boundary conditions yield a system of equations for ( unknowns . 

The boundary conditions in the Chebyshev components are 

                                                                     

                                                        

On differentiating equation (3) we obtain a differentiation matrix  which contains the components 

of Chebyshev polynomials. 
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                                        .                              (4.c) 

The expansion takes the form, 

 

In details, 

 

Note that the following are the properties of orthogonal functions in Chebyshev space. The 

Chebyshev polynomials of the first kind are orthogonal with respect to the measure  

 

where the Kronecker’s delta is defined as , 

         . 

Equation (5.b) is reduced by the principle of orthogonality, to the algebraic form  

 

The above equation after some algebra reduces to the ordinary differential equation  

                                                                      



8 
 

Given that  =1,   

 

Equation (6) is the final form. The product of D matrix with the matrix of unknowns, i.e.  is 

coded in Matlab to obtain .The initial condition is   where    

and  

The ordinary differential equation hence obtained is solved by using the MATLAB intrinsic ode45 

solver. This function implements a Runge-Kutta method with variable time step for efficient computation. 

The syntax for the solver-ode45 is [ , where in this problem odefun is 

the right-hand side of equation (6), tspan is the range of integration which is taken from 0 to 0.1 in this 

problem,  is the vector of initial conditions obtained from using the algorithm discrete cosine transform 

by varying the angle in   is the value of the independent variable at which the solution is 

calculated and  is the array of solution to the problem. Each row of the matrix  represents the solution 

at the corresponding column in the vector . 

2.2.2 Exact Solution 

The exact solution for the second order partial differential equation is of the form  

 

With the initial condition   , the exact solution is of the form 

                                                       (7) 

where  is the time step. 

Figure 2.1 shows a comparison between the solution obtained numerically using Chebyshev 

polynomials, which is marked as , and the exact solution is marked as .  
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Figure 2.1: The sine curve showing the comparison between the numerical solution denoted as  and 

exact solution denoted as  at . 

2.2.3 Error  

The error between the numerical solution and the exact solution is calculated by using the 

relation: 

 (Error)= Numerical Chebyshev solution- Exact solution. 

The graph in Figure 2.2 shows the error to be negligible, i.e., of the order . 

 

 

t=0.5 
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Figure 2.2: A graph showing the Chebyshev solution and the error (  

2.2.4 Calculation of Error Root Mean Square 

The root mean square ( ) of the error is calculated for a series of collocation points  by using 

the relation 

                                                                     = .                                                                     

(8) 

The  is calculated for four different polynomials namely and  

t=0.5 



11 
 

 

Figure 2.3: A graph showing the convergence of the solution at different N values. 

2.3 Linear Vector Equation 

Consider the system of equations of the form  

 

where  is a vector which contains the variables,  and  In the present case 

 =  , 

To simplify the problem, we take  and . 
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 is a matrix which contains dependent variables as shown below: 

      = . 

without loss of generality consider . 

The initial condition is  

 

The boundary conditions are given as  

1. i.e., the Chebyshev components obey  

2. i.e.,  , 

3. i.e.,  . 

2.3.1 Numerical Solution 

The partial differential equation (9) can be expanded with the solution vector,  to form a system 

of partial differential equations as shown below. 

 

 

 

Expanding equation (10) using Chebyshev expansion by writing  as a finite series of Chebyshev 

polynomials as shown in equation (2), we get 
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On differentiating we introduce the  matrix as discussed in the previous problem and the 

equation becomes 

 

 Applying the orthogonality principle, the above equation can be written as follows:       

 

By applying these properties in the above equation, and after suitable algebra it reduces to 

 

Similarly equations (10.b) and (10.c) are solved using the orthogonal properties and the following 

equations are obtained. 

 

 

Equations (12-14) are a set of ordinary differential equations that is tedious to solve analytically. 

These equations were solved successfully using the symbolic manipulator in MATLAB which can be 

understood by these relations below. 
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Let us consider matrix  to be 

 

which is of the order . 

Equation (12) can be written as  

       

where O is a matrix of size  with all zeros,  is the identity matrix of size  with 

all one’s, D is a matrix of size  with elements  as discussed in section (2.1) and is the 

solution vector. 

Similarly equations (13) and (14) can be written as 

 

 

Now, we write equations (15-17) in matrix form 

 

where,   

The boundary conditions are added and the range on integration is taken from 0 to 0.5. The 

tolerance is set to . The initial conditions here are three as the number of dependent variables are 

three. The solver used is ODE45. The procedure is similar to that of the previous problem. 
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2.3.2 Exact Solution 

The exact solution for the above problem is of the form 

 

where,  with N number of polynomials and  is the time step. The initial conditions are

 . 

Figure 2.4 shows a comparison between the numerical and the exact solutions. The numerical 

results obtained are found to be in good agreement with the exact solution. 

 

Figure 2.4: The sine curve showing the comparison between the numerical solution, denoted by  and                  

exact solution, denoted by a solid line when . 

 



16 
 

2.3.3 Error  

The error between the numerical solution and the exact solution is calculated by using the relation: 

 (Error)= Numerical Chebyshev solution- Exact solution. 

The graph obtained shows the error to be negligible and of the order . 

 

Figure 2.5: A graph showing the Chebyshev solution and the error (  when . 

2.3.4 Calculation of Error Root Mean Square 

The root mean square ( ) of the error is calculated for a set of collocation points by using the relation, 

                                                                     = .                                                                      
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The  is calculated for and  is calculated by using the above relation and is given by,  

                                            = [1.1331, 0.0014, 2.2816e-005, 3.5452e-005] 

 
Figure 2.6 shows the validation of the error  against the number of Chebyshev polynomials . 

 

Figure 2.6: A graph showing the convergence of the solution at different N values. 

2.4 Nonlinear 1-D Burger’s Equation 

Nonlinear partial differential equations occur in many fields of science and engineering with 

various applications in physics, chemistry and mathematics. The one-dimensional Burgers equation is 

important in understanding simplified model for turbulence, boundary layer behavior and mainly the 

formation of shocks. 
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In the following section the solution to the one-dimensional second-order nonlinear partial 

differential using Chebyshev-Tau method is discussed. The results obtained show a good agreement with 

the exact solution. 

The 1D Burgers equation is of the form  

 

where,  is the velocity term, is the viscosity, and  is an arbitrary constant.   

2.4.1 Numerical Solution 

Equation (19) is expanded using Chebyshev expansion by writing  as a finite series of 

Chebyshev polynomials. 

                                                                                                                                       

where  is the order of the maximum Chebyshev polynomial resolved in the truncation error,  is the 

Chebyshev polynomial of kth order and  is the array of Chebyshev components. The expansion takes 

the form: 

 

The first derivative  and second derivative  of  can be shown by the following 

expansions which are discussed in the work of Dongarra [9].
 

 

                                                                

Applying the orthogonality principle, the above equation (20) can be written as  
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The difficulty in solving of non linear equations is related to the appearance of integrals containing 

a triple of Chebyshev polynomials. It is handled in the following way:  

                                                                     ,   

when  =  or  =  or =  

Otherwise, 

 

After some algebra the final form of equation is as shown below 

 

2.4.2 Exact Solution 

Consider the Burgers Equation: 

,  

with the wave solutions 

 

where,  The solution domain is with as 

arbitrary constants [10].
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Figure 2.7 shows a comparison between the solution obtained numerically using Chebyshev 

polynomials which is marked as  and the exact solution which is marked with a solid line. The numerical 

results obtained are found to be in good agreement with the exact solution.  

 

Figure 2.7: A graph showing the numerical solution denoted by a solid line and the exact solution denoted 

by . 

2.4.3 Error 

Figure 2.8 shows the error which is the difference between the numerical solution and the exact 

solution at each location for the number of Chebyshev polynomials,  and . 
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Figure 2.8: A plot showing the Error for  and  
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CHAPTER 3 

THE REACTIVE RMI PROBLEM 

3.1 Introduction 

The objective of this section is to identify the dynamics of a perturbation of a planar interface between 

two fluids of different density when subject to instantaneous shock acceleration. We shall do so by 

assuming that the perturbation is much smaller than the base flow, and thus by linearizing the dynamic 

equations. The focus of the research is on the effect of the reactivity of the mixture on perturbation 

growth.  

3.2 Initialization of the Problem 

Consider a planar shock incident on an interface that separates two fluids of different 

density Figure 3.1. The two dimensional plane has Cartesian coordinates x and y, to which correspond 

unitary vectors  and . At time t = t0 the shock impinges the interface, a reflected rarefaction (i.e., the 

expansion fan), and a transmitted corrugated shocks depart from the point of impact [8] as shown in 

Figure 3.2. There are three interfaces in the system, the expansion fan labeled as , the transmitted 

shock labeled as  and the contact interface labeled as . The interfaces move with time/space 

dependent velocities, r , t  and I  with the directions as indicated in Figure 3.2. The 

reflected expansion-transmitted shock system divides the space in 4 regions labeled in Figure 3.2 as 

region (0) to the left of the transmitted shock, region (1), region (2) and region (3) to the right of the 

transmitted shock.  
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Figure 3.1: Incident shock wave 
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Figure 3.2: Expansion fan and transmitted shock formed with the incident shock wave. 
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Figure 3.3: Local conditions at any interface (shocks, or contact discontinuity). 

We seek to evaluate the time dependent solution to the problem, i.e., the pressure p, velocity 

vector , the density ρ, and reaction progress variable λ. The solution vector is written as     

.                                                              (22)                                                        

The solution vector is expanded in the sum of a base solution (zeroth-order solution) and a 

perturbation (first-order solution):  

                                                   
 

Note that if there were no combustion, the zeroth-order solution would not be a function of the 

spatial coordinates or the time.  

VELOCITY (W) 
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3.3 Governing Equations 

The governing equations are the Euler equations for a reactive flow. The region of the space of 

the incident shock i.e., regions (3) and (i) as shown in Figure 3.2 are connected using the Rankine-

Hugoniot conditions. Also, regions (0) and (1) shown in Figure 3.2 are connected with the Rankine-

Hugoniot relations. The Rankine-Hugoniot equations are written in terms of local conditions at the 

interface. First, for each point ( ) on the interface, we define a local reference system  moving at the 

interface speed and aligned with it, as shown in Figure 3.3. 

                                             

                                            

Next, for each interface we define a jump operator  that yields the difference between the 

quantity at the right of the interface ( ) and the quantities at the left of it ( ). Additionally, we introduce the 

assumption of thermally and calorically perfect gases with isentropic index , and introduce the total 

enthalpy 

 

We shall also consider the incident shock, labeled as ( ), when solving for the flow. These 

equations are as shown below. Note that  since there is no reaction in the zeroth-order solution. 

The Rankine-Hugoniot relations are written as: 
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3.4 Conditions to Initiate the Shock 

The thermodynamic quantities across the incident shockwave are related by the Rankine-

Hugoniot relations. For the regions between (i) and (3) in the figure 3.1 the Hugoniot relations allow us to 

calculate the initial conditions by solving a shock-contact Riemann solver. Based on the geometry and 

scales, we get , , ,  . 

At the incident shock 

 

                                                         

 

where,  
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is the velocity of the shock, is the velocity of the wave in the region i , towards the left of the incident 

shock, and  velocity of the wave in the region 3 towards the right of incident the shock. Also,  , , 

,  are the pressures and densities in regions i and 3 respectively. 

By solving the above equations we can find the initial conditions to initiate the shock i.e., ,   

, and Mach number are given as follows: 

 

 

                                                           

 

3.5 Scales and Parameters 

The pressure, density and the temperature are the variables in region (0) of figure 3.2. The velocity 

scale is obtained by taking the square root of the ratio between the reference pressure and density,  

. 

The length scale is the inverse of the wave number . The time scale is based on the reference 

length and velocity.   , where, . 

The transition of a shock from non reactive to a reactive mixture is considered in the present work. 

The Figure 3.2 shows two regions, region (1) and region (2). The reactive mixture is in region (1) and the 
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non-reactive mixture is in region (2). Assuming that there is steady detonation in region (1) the non-

dimensional parameters are needed to find the solution. The first three non-dimensional parameters 

considered to obtain the solution of non-dimensional problem are activation energy , heat release , 

isentropic index . The isentropic index is set to be 1.2 in this entire research. If the half reaction 

distance is taken as the length scale, the perturbation is given by the product of the half reaction distance 

 and the wave number . 

The selection of wave number as length scale is due to the fact that the Richtmyer-Meshkov 

instability is dominant over the detonation intrinsic instability, and the transversal wave length is the only 

scale on non-reactive problem. The fourth parameter is the density ratio across the stationary interface 

and the region (1) shown in the Figure 3.2. The density ratio in this problem is represented as  and is 

equal to . 

These four non-dimensional parameters lead to the determination of all other non-dimensional 

variables that describe the system. These parameters are varied to study their effect on the instability. 

The isentropic index and the density ratio are kept constant. The value of heat release and activation 

energy will be changed at the same rate to simulate the effect of changing the un-reacted stream 

temperature. 
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CHAPTER 4 

SOLVING THE SHOCK SYSTEM 

4.1 Transmitted Shock Wave 

Equations (26) are also valid at the interface separating the regions (0) and (1). Solving these 

equations we can find the unknowns ,  and the Mach number  which describe the flow variables 

of the transmitted shock wave. The following are the flow properties obtained by solving the jump 

conditions at the interface of the transmitted shock wave. 
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4.2 Expansion Fan Region 

The fundamental difference between the Riemann problem under investigation and that 

supporting the classical RMI is the absence of a reflected shock. The transition of the shock from the 

heavy to light mixture induces an expansion fan, the solution of which is described in this section. The 

base flow is one-dimensional and reactive. Regions (2) and (3) as shown in the Figure 3.2 represent the 

post shock invariant flame conditions. 

From the concept of method of characteristics, it is evident that the  , left running characteristic 

at the interface is equal to the  characteristic at region (3) in the Figure 3.2. The Riemann invariant  

at the interface and at region (3) are as shown below. 

Hence the  at the interface is defined as  

 

where, 

 

At the interface,  and  

 at the region (3) is defined as, 

 

By equating  and  we solve for  which is the pressure at region (1) in the Figure 3.2. 
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4.3 The Reactive Euler Equations 

The reactive Euler equations control the time evolution of the solution in region (1) as 

shown Figure 3.2. We start with the conservative variable formulation,  

 

where, 

                                                                                              (27.a)                                                   

                                                                                                                          (27.b) 

                                                                                                                          (27.c) 

                                                                                                                              (27.d) 
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and  is the rate of destruction of mass of reactant per unit mass of mixture. It is 

useful to transform the Euler equations in primitive variables, P. (See equation (22)). To do so we 

evaluate a set of Jacobian matrices,    and , write the Euler equations as  

 

We denote, 

  and  

Equation (28) is now written as shown below 

 

We calculate the Jacobian matrices and obtain the ,  and  matrices. 
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. 

We also define the first variation of the matrix A that will be used in the perturbation expansion of 

the Euler equations:  

. 

4.4 Coordinate Transformation 

A coordinate transformation is necessary to map the time-dependent solution domain in a 

stationary one. We concentrate on region (1). We transform the domain between the two moving shocks 

into a stationary domain between two flat shocks. The mapping is illustrated in Figure 4.1. 
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Figure 4.1: Schematic of mapping. 

Consider region (1) and assume that the coordinate of the two interfaces that delimit it are given 

as  and  for the left and right interfaces, respectively. We define a new coordinate system 

 related to by  by 
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For the sake of a short hand notation, we define three auxiliary variables, 

 

As customary in coordinate transformations, the next step is to determine derivatives with respect to (t, x 

and y) in terms of derivatives with respect to  . 

For any variable  , we find  

 

 

 

4.5 Linearized Zeroth-Order Equation 

Substitution of the mapping relations, equation (32), into the Euler equation, equation (29), yields 

a set of non-linear equations. Using equation equation (22) for the primitive variables, and collecting term 

of equal perturbation order yields two linear equations, one for the zeroth-order, , and one for the first 

order perturbation, . In the non-reactive case, the zeroth-order equation reduces to  = constant over 

both regions (1) and (2) in Figure 3.2. For the reactive case, the equation is non-linear and is given by  
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4.6 First-Order Perturbation Equation 

Before discussing the first-order equation, we adopt a nomenclature similar to Richtmyer’s  [1] 

equations (6-8), and set,  

                                                    

where,  is the velocity of the shock.   is given as 

 

 

The time derivatives of the corrugation terms with respect to the time  will be identified as the 

deformation rates, i.e.,  is the interface deformation rate. Thus, we obtain the following expansions,  

 

 

In the linearized analysis we assume (for both reactive and non-reactive fluids) the y ≡ η direction 

to be homogeneous. Thus the zeroth-order solution does not depend on η. Derivatives of the first-order 

perturbation with respect to η are determined by multiplying the value of the function by the term ik, where 

i is the imaginary unit and k is the wave number of the perturbation, i.e.,   
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The first-order perturbation equation becomes after some manipulation, 
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CHAPTER 5 

BASE FLOW - THE ZEROTH-ORDER SOLUTION 

5.1 Initial Conditions 

The initial conditions are given at . The zeroth-order solution is taken piecewise 

constant in region (1). The shock and the contact discontinuity yield the values for the flow variables. The 

time derivatives at the initial time is evaluated by taking the limit for  (i.e., just as the shock 

impinges the interface) of equation (33). 

By using L’ Hospital’s rule the initial derivative  is found by solving 

 

where,  are evaluated at initial time. Equation (37) along with the boundary conditions on  

is obtained from differentiating the shock conditions, are solved using the same discretization as for the 

time dependent problem. Note: 

 

leads to , as a consequence of the boundary conditions, which implies that 
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5.2 The Zeroth-Order Solution in Transmitted Shock Region 

By solving the zeroth-order equation (33) we obtain the time varying components of pressure, 

velocity, density and rate of reaction at each collocation points. These components are obtained by 

expanding the solution in Chebyshev polynomials. Figure 5.1 shows the pressure calculated at each 

collocation point in the transmitted shock region when . It is observed that, the pressure 

tends to increase with the formation of detonation wave, eventually decreases and becomes constant. 

 

Figure 5.1: Pressure  obtained at different locations  in the transmitted shock region when . 
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Figure 5.2 shows the velocity components at each collocation point when . The 

plot shows the decrease in the velocity of the transmitted shock wave in the region where the detonation 

wave is formed. The velocity increases gradually and becomes constant. 

 

Figure 5.2: Velocity obtained at different locations  in the transmitted shock region when  
 
 

Figure 5.3 shows the density obtained at different points when  The figure 

explains that there is a sharp increase in density when the detonation wave is formed and it further 

becomes constant.   
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Figure 5.3: Density  obtained at different locations  in the transmitted shock region when  

5.3 The Zeroth-Order Solution in the Expansion Fan Region 

In the Riemann problem, due to the refracted wave formed, the domain is divided into 5 regions 

as shown in the figure 5.4. The refracted wave  the expansion fan is considered as the small region of 

space between the leading edge and the trailing edge of the refracted wave.
2
The perturbations in regions 

(0) and (3) are assumed to be zero. The solution expanding towards right due to the reflected expansion 

fan is evaluated by solving the zeroth-order equation (33), adding the boundary conditions and 

differentiating them with respect to time. The solution is discretized in Chebyshev polynomials and solved 

to obtain the time dependent solution. The boundary conditions for the expansion fan region are studied 

in the following section. 



43 
 

 

Figure 5.4: Figure showing the leading edge and the trailing edge of the expansion fan region. 

The  characteristics move towards right from interface at the expansion fan region and is given by 

 

where,  is defined as the velocity at the interface and  is the speed of sound.The location of the 

leading edge in the expansion fan is given as 

  

where,  is the location of the interface, is the velocity of the expansion fan at region (3) in the figure 

5.4 which is given as, 
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 and  are defined as the velocity and speed of sound at region (3),  is the difference in time period 

which is given by . Also,  is the time period at different steps and  is when . 

Any specific point on the  curve has a slope and is defined as 

 

The location of the trailing edge of the refracted wave is given by the expression 

 

is defined as the slope of the curve at the first time period. The location of the wave anywhere in 

space in the expansion fan region is given by the expression 

 

where,  and  

The  characteristic which moves towards left at region (3) is given as 

 

From the method of characteristics if the values of  and  are known at a given point, the local 

values of velocity  ,speed of sound , pressure , and density  are obtained with the following 

equations. Below are the equations for local values obtained when the location of shock is behind the 

trailing edge of the refracted wave. 
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The above jump conditions are differentiated with respect to time and expanded in Chebyshev 

polynomials. The solutions for pressure, velocity and density obtained by solving the partial differential 

equation are as shown below. 

Figure 5.5 shows the variation in pressure  at different locations when  in 

the expansion fan region. It is evident from the result that the pressure tends to decrease to the point 

where the trailing edge is formed and tends to increase with the formation of detonation wave. 

 

Figure 5.5: Plot showing the components of pressure   at different locations  obtained in expansion fan 

region when  
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Figure 5.6 shows the components of velocity  at different locations  in the expansion fan 

region when  There is a sharp decrease in velocity at the leading edge of the expansion 

fan. From the trailing edge of the expansion fan region, the velocity increases with the formation of 

detonation wave. 

 

Figure 5.6: Plot showing the components of velocity at different locations  obtained in expansion fan 

region when . 
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Figure 5.7 shows the components of density  at different locations  in the expansion fan region. 

The density in the expansion fan region tends to decrease from the leading edge of the expansion fan. At 

the trailing edge, the density tends to increase with the formation of a detonation wave.   

 

Figure 5.7: Plot showing the components of density  at different locations  obtained in expansion fan 

region when . 

A graph is plotted which shows the location of each wave i.e. the transmitted shock wave, the 

interface the trailing and leading edge of the refracted shock wave at different time step as shown in the 

Figure 5.8. 
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Figure 5.8: Plot showing the transmitted shock, contact interface, trailing and leading edge of the 
expansion fan region at different locations with respect to time. 
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CHAPTER 6 

THE FIRST-ORDER PERTURBATION 

6.1 Initial Values for First-Order Perturbation 

The initial values of the interface perturbations, ,  are determined by the initial 

instantaneous acceleration imparted by the shock to the interface. These perturbations are normalized by 

the value at the contact discontinuity, , therefore, 

 

The initial conditions in the above equation are similar to those reported by Richtmyer [1]. The 

conclusion that the initial compression of the interface is not affected by the reactivity is because the initial 

perturbation is assumed to be much smaller than the characteristic reaction length say, the half reaction 

distance. The non reactive RMI analysis is valid for  where  is the interface disturbance wave 

number.  

The remaining conditions for the first order perturbation are determined by taking the limit of 

equation (36) for , which corresponds with sending . The limit together with the boundary 

conditions yield a set of ordinary differential equations in , which are solved using the same 

discretization as for the time dependent problem.  Note that the previous result in equation (38) leads to 

, and a non-zero initial perturbation. Physically the non-zero initial perturbation is explained 

by considering the passage of the incident shock through the initial perturbation. Fluid particles with 

different  intersect the interface at different times, leading to equation for  When , i.e., 

for reactive conditions, this yields an initial perturbation with constant but non-zero first derivative. 
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6.2 First-Order Perturbation 

The time derivative of the perturbation at  is found by applying the L’ Hospital’s rule to the 

limit of equation (36) for . The resulting ordinary differential is similar in structure to equation (37), 

and requires boundary conditions for the time derivative of the first order perturbation, which are obtained 

by time differentiating the perturbation of the shock jump conditions. 

6.3 Discretization 

Equations (32) and (36) are discretized in the x direction using the Chebyshev tau method [9].
 

The time integration is carried out using a variable step stiff ODE solver, with maximum absolute 

tolerance set to . A second-order A-stable time integrator has been used to advance the solution in 

time. 

The solution domain is considered in two regions, marked as (1) and (2) in figure 8(b). In each 

region 135 Chebyshev polynomials are used to obtain the solution. 
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CHAPTER 7 

RESULTS AND DISCUSSION 

From the results obtained in validation problems, we can say that the Chebyshev-tau method is 

accurate for the model problems. In this problem, for a given heat release  and the activation 

energy , the zeroth-order solution is discretized and solved as discussed in the section (6.3) to 

obtain the components of pressure, velocity, and density as shown in Figures 5.1-5.3 for the transmitted 

shock region.  

Figure 5.1 shows that the pressure tends to increase and eventually decrease at the point where 

the detonation wave is formed and as the time progresses it becomes constant. Figure 5.2 depicts that 

the velocity in the transmitted shock region tends to decrease to a point where the detonation wave is 

formed, increases and becomes constant. Figure 5.3 shows the density in the transmitted shock region 

increases as the shock travels from high density region to low density region, decreases and eventually 

becomes constant. The components of pressure, velocity and density are obtained for the expansion fan 

region and are shown in Figures 5.5-5.7. Figure 5.5 shows that the pressure tends to decrease to the 

point where the trailing edge is formed and gradually increases with the formation of detonation wave. 

Figure 5.6 shows that there is a sharp decrease in velocity at the leading edge and from the trailing edge, 

the velocity increases with the formation of the detonation wave. Similarly, Figure 5.7 shows that the 

components of density tend to decrease from the leading edge of the expansion fan and increases from 

the trailing edge with the formation of the detonation wave. 

The zeroth-order solution is used as the base flow for the first-order perturbation. Two graphs are 

plotted showing the corrugation of the contact interface and the transmitted shock wave as shown in the 

Figures 7.1-7.6. These are plotted at different time steps and taking different values for the wave number 

say, ( ). 
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There is large influence of the wave number on the perturbation growth of the contact interface 

and also the transmitted shock wave. Figure 7.7 shows that there is a super linear growth in the 

amplitude of the contact interface and the transmitted shock wave corrugation, when the wave number is 

increased gradually from .Figure 7.8 shows that the increase in wave number contributes to an 

increase in the deformation rate of the transmitted shock wave. The end time for the simulations is set to 

25.    

There is a small variation in the magnitude of the initial perturbation with the increase in heat 

release ) as shown in the figures 7.9-7.10. The amplitude of contact corrugation of the interface and 

transmitted shock decreases with the increase in non dimensional activation energy . Hence the value 

of  is taken as  and the computations are made for different heat release say  The 

end time of the computations for Q=10, 15 and 25 are different for each value of Q, and is stopped for 

t<25. This is because the solution tends to become unstable. We thus summarize the results of the 

deformation growth rate analysis by noticing that the larger the initial perturbation wave number the larger 

is the instability. Also, the increase in heat release accounts to a significant growth in the deformation rate 

of the transmitted shock, which makes the flow become unstable.  
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Figure 7.1: Plot showing the corrugation defined for contact interface at different time steps for . 

 

Figure 7.2: Plot showing the corrugation defined for transmitted shock wave at different time steps for 

. 
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Figure 7.3: Plot showing the corrugation defined for contact interface at different time steps for  

 

Figure 7.4: Plot showing the corrugation defined for transmitted shock wave at different time steps for 
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Figure 7.5: Plot showing the corrugation defined for contact interface at different time steps for  

 

Figure 7.6: Plot showing the corrugation defined for transmitted shock wave at different time steps for 

. 
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Figure 7.7: Plot showing the contact corrugation for three values of wave length  at different time steps.         

 is indicated with dash dot line,  is indicated by a solid line,  is indicated by a dotted line. 

 

 

Figure 7.8: Plot showing the transmitted shock corrugation for three values of wave length  at different 

time steps.  is indicated with dash dot line,  is indicated by a solid line, is indicated by a 
dotted line. 
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Figure 7.9: Plot showing the contact corrugation for three values of heat release  at different time steps. 
is indicated by a solid line,  is indicated by a dotted line, and  is indicated with a 

dash dot line. 

Figure 7.10: Plot showing the variation in the corrugation of the contact interface for different values of 
heat release. 
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Figure 7.11: Plot showing the transmitted shock corrugation for three values of heat release  at different 

time steps.  is indicated by a dash line,  is indicated by a dash dot line, and  is 

indicated with a solid line. 

Figure 7.12: Plot showing the variation in the corrugation of the transmitted shock for different values of 
heat release. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK RECOMMENDED 

8.1 Conclusion 

In this research we have analyzed the effect of reactivity in conjunction with the Richtmyer-

Meshkov instability. The main conclusions we can draw from the results are:  

1. The flow is destabilized by the interaction of shockwave with the perturbed interface, while the 

shocks remain stable. 

2. The heavy-light fluid configuration with the passage of shock supports surface inversion, and 

hence the corrugation  becomes negative as shown in the figure 7.7. 

3. The increase in the wave number leads to a destabilization of the interface which is justified by 

the  similarity of the Euler equations. 

4. Super-linear growth of interface is observed with the increase in the wavelength. This increase of 

wavelength tends to destabilize the flow and detonate the mixture. 

5. A small growth in amplitude of the corrugations is observed in the transmitted shock and contact 

interface by increasing the heat release which allows the flow to become unstable. 
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8.2 Future Work Recommended 

The present problem is solved assuming simple kinetics in the linear flow regime. Future work can 

include the analysis of detailed chemistry effects and the non-linear evolution of the surface. Detailed 

kinetics will provide a more realistic physical description of the problem, while non-linear analysis will 

shed light on the large time behavior of the reactive RMI. 
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