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ABSTRACT 

 

CONDITIONAL CONFIDENCE INTERVALS OF  

PROCESS CAPABILITY INDICES  

FOLLOWING REJECTION OF 

 PRELIMINARY TESTS 

 

JIANCHUN ZHANG, Ph.D. 

The University of Texas at Arlington, 2010 

 

Supervising Professor: Chien-Pai Han 

 

          Finding an ordinary confidence interval of an unknown parameter is well 

known, but finding a conditional confidence interval following rejection of a 

preliminary test is not so noted, especially for finding a conditional confidence 

interval of the process capability indices Cp or Cpk following rejection of some 

preliminary tests. This dissertation will provide some basic theories and 

computational methods for finding such conditional confidence intervals of the 

two process capability indices. The most basic method used in this dissertation is 

the general method for finding a confidence interval of an unknown parameter. 

Numerical methods are also used for finding the values of these conditional 

confidence limits. The conditional confidence intervals of the process capability 

index Cp and Cpk are obtained. Computational programming code and other 

useful information and methods are provided. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1    Overview 

 

          The process capability analysis has been proved to be a very useful tool in 

product quality control. There are many process capability indices (PCIs) which 

are used currently in industry, to name a few, Cp, Cpk, Cpm and Cpmk, etc., but the 

most commonly used two indices are Cp and Cpk. Some books have been 

published related to the PCIs (refer to: Kotz & Lovelace (1998), Kotz & Johnson 

(1993), etc.), they discussed the basic inferences about the PCIs, including point 

estimators, confidence intervals and testing hypotheses. In some practical 

situations, the investigators may have prior information about the unknown 

parameters, but he/she is uncertain about the information. A preliminary test can 

be used to resolve the uncertainty. We consider the conditional confidence 

intervals of the PCIs after rejecting the null hypotheses of the preliminary tests. 

For the case that some null hypotheses have been rejected, the original 

unconditional confidence interval is no longer valid. So, to find a conditional 

confidence interval is a strict two-stage inference procedure: first, test the 

hypotheses of preliminary tests, if the tests result in rejecting some of null 

hypotheses, then go to the second stage to obtain a conditional confidence 

interval following rejection of the null hypotheses. In this paper, we will mainly 

discuss this type of problems, the conditional confidence intervals of the process 

capability indices. 
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1.2    The process capability indices Cp and Cpk 

 

          The process capability indices are measures of the quality of a 

manufacturing process, they have been popular in industry for more than 40 

years. In 1920s, Bell Laboratories, a leader in the use of statistics to control and 

improve quality, began the first serious investigations into the application of 

statistic theory to lot sampling and the use of significance theory in process 

control. Shewhart, along with Dr. J.M. Juran and Dr. W. Edwards Deming, 

developed most of the early theories and concepts of statistical quality control.  

 

          The concept of process capability index was first introduced by the 

Japanese. At the beginning of 1970s, there were only five process capability 

indices, known as the original Japanese process capability indices, and these 

include the two most common process capability indices Cp and Cpk. The process 

capability index Cp was the most original process capability index, which was 

introduced by Juran et al. (1974). This process capability index only counts for 

the process variation, and ignore the process mean. So, the process capability 

index Cp measures the potential capability, which is defined only by the actual 

process spread, it does not reflect the impact of shifting the process mean on the 

process capability to produce qualified products. To overcome the weakness of 

Cp, the process capability index Cpk was created in Japan in late 1970s, and it 

takes both the process variation and the process mean into consideration. 

 

1.3    Literature Review 

 

         Before I started this dissertation, a literature review of related topics, which 

include some books and lots of papers, had been completed. The basic 

information about the process capability indices, which include the history and 

some basic analysis of the process capability indices, can be found in the two 
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books written by Kotz & Lovelace (1998) and Kotz & Johnson (1993). Since the 

capability indices Cp and Cpk involves two process parameters: the process 

variance σ2 and the process mean µ, therefore, we will discuss several papers 

about the conditional confidence intervals of these parameters following rejection 

of preliminary tests. The first and also the most important paper is written by  

Meeks & D’Agostino (1983),  they discussed the conditional confidence interval 

of the normal mean µ following rejection of a one-sided test. In order to apply the 

general method for finding a confidence interval of an unknown parameter, the 

book written by Bain & Engelhardt (1992) was carefully examined. Since the 

preliminary tests in this dissertation also involve some two-sided tests, so the 

paper written by Arabatzis, Gregoire and Reynolds (1989) was also reviewed, in 

this paper, they discussed some aspects of the conditional confidence interval of 

the normal mean following rejection of a two-sided test.  

 

         Some other papers related to the conditional confidence intervals were also 

published, these include the papers written by Chiou & Han (1994), in this paper, 

they discussed the conditional confidence Interval of the exponential scale 

parameter following rejection of a preliminary test.  Chiou & Han (1995) 

discussed the conditional confidence interval of the exponential location 

parameter following rejection of a pre-test. In Chiou & Han (1999), they give the 

conditional interval estimation of the ratio of variance components following 

rejection of a pre-test. 
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CHAPTER 2 

 

CONDITIONAL CONFIDENCE INTERVALS OF Cp 

 

2.1   The Process  Capability Index Cp 

 

    Consider a measurement X of a product, the manufacture usually requires 

that the product must meet some specifications for the measurement X. If we set 

a lower specification limit (LSL) and an upper specification limit (USL) for X, then 

the values of X outside these limits will be termed ‘nonconforming’ (NC) (Kotz & 

Johnson, 1993). An indirect measure of the potential ability (capability) to meet 

the requirement (LSL ≤ X ≤ USL) is the process capability index Cp, which is 

defined as 

 

Cp = 
6

LSLUSL 
 

 

   Suppose X follows a normal distribution with mean μ and variance σ2, if the 

expected value of X is equal to the mid-point of the specified interval, i.e., µ = 

2

1
(LSL + USL), let d = 

2

1
(USL - LSL), then the expected proportion of NC 

product is 2Φ(-d/σ), in terms of Cp , it is 2Φ(-3Cp). 

 

     From above we see that the bigger the value of Cp, the smaller proportion 

of NC product. The relationship between Cp and the proportion of NC product is 

so straight forward, therefore, the process capability index Cp is widely used in 

product quality control. 
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2.2   Basic Inferences about Cp  

 

2.2.1   Point Estimator 

 

          Suppose we have a random sample X1, X2, … , Xn taken from N(μ, σ2), 

then the most commonly used estimator of μ is the sample mean X , and the 

most commonly used estimator of  σ is the sample standard deviation S, i.e., 

 

̂ = X = 


n

j

jX
n 1

1
     

             

and 

 

̂  = S =
2

1

1

2)(
1

1














n

j

j XX
n

 

 

         Since Cp = 
6

LSLUSL 
 = 

3

d
 , the only parameter need to be estimated 

here is σ, therefore 

 

pĈ  = 
̂3

d
 = 

S

d

3
 

 

is a point estimator of Cp. 

 

          Since it is well known that E[
S

1
] ≠ 



1
, so we must have, E[ pĈ ] ≠ Cp. 

Therefore, this is a biased estimator. The bias will be given in section 2.3. 
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2.2.2   Confidence Interval  

 

         The (unconditional) confidence interval of Cp can be derived directly from 

the (unconditional) confidence interval of σ. Since the random sample X1, X2, … , 

Xn is taken from N(μ, σ2), therefore, (n-1)
2

2



S
 is distributed as 2

1n . This leads to 

the result that a 100(1-α)% confidence interval for σ2 is 

 













 



2

2/,1

2

2

2/1,1

2 )1(
,

)1(

  nn

snsn
        

 

where s2 is the observed value of S2.   

 

         Since 1ˆ 

pC  = 
d

̂3
, therefore, a 100(1-α)% confidence interval of 1

pC   is 
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and consequently, a 100(1-α)% confidence interval of pC   is 
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2.3   Sampling Distribution of  
pĈ  

 

        Since our goal is to investigate the conditional confidence interval of Cp, and 

a point estimator of Cp is
pĈ , so we first need to find the probability density 

function (pdf ) and the cumulative distribution function (CDF) of 
pĈ . 

 

         Here, we’ll use the transformation method to derive the pdf of 
pĈ .  Since 

the random sample X1, X2, … , Xn is taken from N(μ, σ2),  we have that  (n-1)
2

2



S
 

is distributed as 2

1n . Since 
pĈ  = 

S

d

3
 = 

S

d 

3
,  therefore, 

pĈ  is distributed as 

Cp
2

1

1





n

n


.  Using transformation method, we can derive the pdf of 

pĈ . 

 

         Let X ~ 2

1n  and Y = f(X) = Cp
X

n 1
.  Since X > 0, the transformation X = 

g(Y) = (n-1) 

2












Y

C p
is one-to one, the Jacobian of the transformation is  

 

J = 
 
dy

Ygd )(
  

 

                          = 






















2
2)1(

Y

C

Y

C
n

pp
 

 

         Since  2
1

2

1

2

1

)
2

1
(2

1
)(

xn

nX ex
n

xf










 , x > 0,  

 

therefore, we have 

 

         JYgfyf XY  )]([)(  
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                   ))((2)1(]))(1[(
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1
(2

1
2

2

))(1(

1
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1

2

2

1

2
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C

y

C
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C
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        Simplify the above equation, we get the (unconditional) pdf of 
pĈ : 

 

22

2

)1(

2

3

12

1

ˆ

)
2

1
(2

)1(
)(




















yc
n

n

n

n

p

n

c

p

p
ey

n

cn
yf ,  y > 0 

 

where n is the sample size. 

 

          Once we have the pdf of
pĈ , we can use it to calculate the mean and the 

variance of 
pĈ by first carrying out its rth moment about the origin. To simplify the 

calculations, here we take the advantage of the Chi-Square distribution of  X  to 

calculate the rth moments of pĈ  about the origin: 

 

   ])
3

[()ˆ( rr

p
S

d
ECE   

 

             = r

p

r

Cn 2)1(  ])
)1(

[( 2

2

2 r
Sn

E



 

 

             = r

p

r

Cn 2)1(  dxex
n

x

xn

n

r
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2
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2
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1
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1
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1
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1
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        Therefore, we obtain the rth moments of 
pĈ  about the origin: 

 

r

p

r

r

p C

n

rn
n

CE 










))1(
2

1
(

))1(
2

1
(

)
2

1
(]ˆ[ 2  

 

        So, the mean of 
pĈ : 

 

p

f

pp C
b

C

n

n
n

CE 









1

))1(
2

1
(

))2(
2

1
(

)
2

1
(]ˆ[ 2

1

  

 

and the variance:                             

    

22 )
3

1
()ˆ( pfp Cb
n

n
CVar 




  

 

where bf is an unbiased factor given by 

 

)
2

2
(

2

1

)
2

1
(










nn

n

b f  

 

        Thus, the bias of pĈ is  

 

                                              ppp CCECb  ]ˆ[)ˆ(  

 

= p

f

C
b

)1
1
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         Some of the above formulas can also be found in Kotz & Lovelace (1998), 

page 38-39. 

 

2.4   Conditional Confidence Interval of Cp 

 

        The most common test hypothesis in process capability analysis is to test Ho: 

the process is not capable   vs.  H1: the process is capable.  As we already knew, 

large Cp value results in small proportion of NC product. Therefore, for the Cp 

index, this leads to the hypothesis Ho: op cC   vs.  H1: op cC  . 

 

        For each value of co, there corresponds another value σo, such that co = 

d/3σo. To test Ho: Cp ≤ co is equivalent to test Ho: σ ≥ σo. 

 

         If the null hypothesis is not rejected, which means the process is not 

capable, then we stop. A not capable process means a large proportion of non-

conforming products will happen, in this case, the most important and necessary 

thing we need to do is to find out the weakness of the process and try to improve 

it. Therefore, no further statistical analyses need to be done before we improve 

the process. If the null hypothesis has been rejected, which means the current Cp 

value is within our acceptable region, in this case, a confidence interval is 

needed to give more information about the possible region of Cp. This confidence 

interval is different from the previous unconditional confidence interval (UCI), it is 

the conditional confidence interval (CCI) following rejection of the null hypothesis 

Ho: op cC  . 

 

         We’ll reject Ho at level α if the test statistic V = (n-1)
2

2

o

s


 ≤ 2

;1 n ,   i.e. 

 

12

;1

1ˆ c
n

cC
n

op 
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2.4.1   General Method for Constructing CCI 

 

          In section 2.3, we have derived the unconditional pdf of 
pĈ : 

 

22

2

)1(

2

3

12

1

ˆ

)
2

1
(2

)1(
)(




















yC
n

n

n

n

p

n
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p

p
ey

n

cn
yf ,  y > 0 

 

         The conditional pdf of 
pĈ  following rejecting the null hypothesis Ho: op cC   

is the truncated distribution of the above pdf, where the test statistic (for 

significance level α ) 
2

2

)1(
o

o

s
n


   must not exceed the critical value 2

;1 n , i.e., 

o

n

n
s 

 

1

2

;1





,  and this is equivalent to pĈ ≥ 

2

;1

1

3 




no

nd
= co

2

;1

1

 



n

n
= c1.  

 

        The conditional pdf of 
pĈ  following rejecting the null hypothesis Ho: op cC  . 

is given by 
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,      c ≥ c1 = co
)1(

1
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n
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         The CDF of the conditional distribution of pĈ following rejecting the null 

hypothesis Ho: op cC  .is given by 
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1
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1

22
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[Result 2.4.1] Let G(c; cp) denote the conditional CDF of the 
pĈ distribution 

following rejecting the null hypothesis Ho: op cC  , and suppose h1(cp) and h2(cp) 

are functions that satisfy  

 

G(h1(cp); cp) = α1 

 

and 

 

G(h2(cp); cp) = 1 - α2 

 

for each pc  (  is the parameter space of cp), where 0 < α1 < 1, 0 < α2 < 1 

with α1 + α2 < 1. Let c be an observed value of pĈ , then we have the following 

 

1. If h1(cp) and h2(cp) are increasing functions of cp, then the solutions of 

G(c; L

pc ) = 1 - α2    and    G(c; U

pc  ) = α1 

           construct a 100(1- α1 - α2)% conditional confidence interval of cp. 

 

2. If h1(cp) and h2(cp) are decreasing functions of cp, then the solutions of 

G(c; L

pc ) = α1    and     G(c; U

pc  ) = 1 - α2 

           construct a 100(1- α1 - α2)% conditional confidence interval of cp. 

  

         The above result follows directly from the general method theorems given 

in Bain & Engelhardt (1992). The general method states that, if a statistic for a 

parameter exists with a distribution that depends on this parameter but not on 

any other nuisance parameters, then we can use the general method to find a 
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confidence interval of this parameter. We prefer this statistic to be a sufficient 

statistic or some reasonable estimators such as an MLE, but this is not required. 

 

         In our case, the conditional CDF of  Pĉ  depends only on Cp but not on any 

other nuisance parameters, so we can use the general method to find a CCI of 

Cp. Since we can not solve for h1(cp) and h2(cp) explicitly in this case, it’s hard for 

us to prove in theory whether the two functions h1(cp) and h2(cp) are increasing or 

decreasing, therefore we state the above result with the two possible cases. 

 

         Result 2.4.1 shows theoretically that we can find a conditional confidence 

interval of Cp using the conditional CDF of  Pĉ . But in practice, this procedure is 

somewhat complicated, since the conditional CDF of  Pĉ  is not a commonly 

used distribution function, there is no existing computer programs which can be 

used directly to calculate the probabilities of this distribution. So next, we’ll use 

another method to find a conditional confidence interval of Cp.  

 

2.4.2   Constructing CCI of pC through first Constructing CCI of σ2 

 

        There are two main advantages for doing this way. First, since the estimator 

of σ2 is S2, and 22 /)1( Sn   follows a 2

1n  distribution, so we can use the 

cumulative distribution function H(z ; υ) of the chi-square distribution with υ 

degrees of freedom to give the conditional CDF of S2 distribution, as well as the 

two implicit functions which contain the upper (or lower) limits of σ2 and the 

observed statistic value t for S2. This might help a lot later on when we calculate 

the two conditional confidence limits for given examples using mathematical 

software such as IMSL numerical library. Second, once we obtain the CCI of σ2, 

we also obtain the CCI of 1/ σ2, as well as the CCI of r)
1

(


 for any r ≥1. This 
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result may have some more applications for other statistical analysis related to 

the conditional confidence interval of r)
1

(


. 

 

          For the random sample X1, X2, … , Xn drawn from N(μ, σ2),  a level α test 

for testing Ho: 
22

o    vs. H1: 
22

o   has the critical region  

 

K = { S2 : (n-1) S2/ 2

;1

2

  no }  

 

         The null hypothesis is rejected only if S2 K , and a conditional confidence 

interval of σ2 is computed only if the null hypothesis has been rejected. The 

conditional pdf of  S2 can be expressed in the following way 
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where f(s2) is the unconditional pdf which is determined by 2S ~ 2
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the power of the test given by 
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where 
2

2




 o  and H(·) is the CDF of chi-square distribution with (n-1) degrees of 

freedom. Under Ho, max{D} =  . When 0 , the value  , so the power 

D approaches 1. 

 

        The (unconditional) distribution of 2S is similar to the 2

1n  distribution except 

it has an unknown parameter σ2. To express the unconditional CDF of S2 in 

terms of H(·), we have 

 

                                        F(t) = )( 2 tSP   

 

= ]
1)1(

[
22
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t
n
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,     0t   

 

         Therefore, the conditional CDF of 2S following rejecting the null hypothesis 

Ho: 
22

o   is given by 
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[Result 2.4.2] Let 0 < α1 < 1, 0 < α2 < 1 with α1 + α2 < 1, and t be an observed 

value of 2S , let H(·) denote the CDF of chi-square distribution with (n-1) degrees 

of freedom. If the observed value t results in rejecting the null hypothesis Ho: 

22

o  , then the solutions of 
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and 
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 = 1 - α2                                                                           (2.4.2) 

 

construct a 100(1- α1 - α2)% conditional confidence interval of 2 . 

 

         We use the general method theorem to show this result. Let F(t; 2 ) 

denote the conditional CDF of the 2S distribution, and suppose h1(
2 ) and h2(

2 ) 

are functions that satisfy F(h1(
2 ); 2 ) = α1 and F(h2(

2 ); 2 ) = 1 - α2 for each 

2 , where 0 < α1 < 1, 0 < α2 < 1 and α1 + α2 < 1, let t be an observed value of 

2S . It’s easy to check in this case that both h1(
2 ) and h2(

2 ) are increasing 

functions of  2  (this is similar to the situation for constructing CCI of the normal 

mean μ provided by Meeks and D’Agostino in 1983). In fact, for small fixed 

values α1 or α2, if 2 increase, then both h1(
2 ) and h2(

2 ) increase, and the 

rates of changing for h1(
2 ) and h2(

2 ) are always smaller than that of 2 . This 

result is supported both analytically and numerically. Following the theorems 

given by Bain & Engelhardt (1992), we can obtain a conditional confidence 

interval of 2 by solving the two equations F(t; 2

U ) = α1 and F(t; 2

L ) = 1 - α2. 

This gives the above result. 

 

         Once we obtain a conditional confidence interval of 2 as ),( 22

UL  , a 

conditional confidence interval of 1/σ is followed as )/1,/1( LU  . Thus, a 

conditional confidence interval of Cp is given by 
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)
3

,
3

(
LU

dd


 

 

2.5   Examples 

                       

2.5.1   Example 1, Simulated Data 

 

          Suppose a certain product manufactured from a factory has the following 

specifications for the measurement: The specified lower limit is 84.25, the 

specified upper limit is 85.25. Suppose the process mean is known as 84.75, and 

the machines used in the factory can manufacture the product that is normally 

distributed with mean 84.75 and standard deviation 0.08. 

 

          According to the above situation, we can use a simple SAS program to 

simulate the manufacturing procedure and obtain a certain number of simulated 

observations 

 

     data simu; 

     do  k=1 to 48; 

           y= 84.75 + 0.08*normal(184321); 

           output; 

     end; 

     proc print; title 'simulated data'; 

     run; 

 

        The result of the above SAS program gives us the following data set with 

total 48 observations 

 

           84.7333 84.5799 84.7818 84.8443 84.6155 84.7086 

           84.6563 84.8193 84.5705 84.8573 84.8465 84.7184 



 

18 

 

           84.7627 84.6206 84.5076 84.6921 84.6780 84.7024 

           84.6625 84.7599 84.8669 84.8663 84.7446 84.7608 

 

           84.7252 84.7575 84.8299 84.8315 84.7452 84.6923 

           84.5008 84.7812 84.8034 84.7837 84.8399 84.7555 

           84.6795 84.7289 84.7087 84.7007 84.5365 84.7320 

           84.7210 84.7034 84.7995 84.8414 84.6743 84.7081 

 

          For the above data set, after we did some basic analysis, we get the 

sample mean X   84.73 and the sample standard deviation S  0.0915. Since 

in this case d = (USL - LSL)/2 = 1.0*0.5 = 0.5, so the point estimate of Cp is   

 

pĈ  = 
s

d

3
= 

0915.0*3

5.0
 = 1.82 

 

         A 95% unconditional confidence interval of σ2 is 
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                                    = (0.0058, 0.0131) 

 

         Therefore, a 95% unconditional confidence interval of Cp
 is 
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                                    = 














pp CC ˆ

47
,ˆ

47

2

975.0,47

2

025.0,47 
 

 

                                    = (1.45, 2.19) 

 

          For reasonable values of Cp, Montgomery (1985) recommended minimum 

values for Cp as 1.33 for an existing process, and 1.50 for a new process. For 

those processes related to essential safety, for example, in manufacturing of 

bolts which are used in bridge construction, a minimum value of 1.50 is 

recommended for an existing process and 1.67 is recommended for a new 

process. 

 

          In our case, suppose we require a minimum value of the Cp as 1.33. Then 

we need to construct a testing hypothesis as Ho: 33.1pC   vs.  H1: 33.1pC . 

 

         For the testing hypothesis Ho: 33.1pC  vs.  H1: 33.1pC  , it is equivalent 

to the hypothesis Ho: σ ≥ σo  vs. H1: σ < σo , where σo = ocd 3/ = 0.5/(3*1.33) = 

0.1253. We’ll reject Ho at level α = 0.05 if the test statistic V = (n-1)
2

2

o

s


 ≤ 2

05.0,47 = 

32.27.   

 

        Now the test statistic: 

 

                                         V = (n-1)
2

2

o

s


  

 

                                            = 47*(0.0915/0.1253)2 

 

                                            = 25.06   
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therefore, we reject the null hypothesis Ho: 33.1pC  (or Ho: σ ≥ 0.1253) at the 

level α = 0.05. 

 

         According to result 2.4.2, a 97.5% conditional upper confidence limit of σ2 

following rejection of the null hypothesis Ho: 33.1pC  (or Ho: σ ≥ 0.1253) at level 

α = 0.05 can be obtained by solving the equation 

 

                                         

)(

)
1

(

2

;12

2

2













n

U

o

U

H

t
n

H

 = α1 = 0.025 

 

where t = 0.09152 is the observed value of S2, and σo = 0.1253 is the value of σ 

under the null hypothesis. The above equation can be solved by using IMSL 

numerical library (refer to the attached FORTRAN code in Appendix A). The 

solution of the above equation is 

  

2

U = 0.02357 

 

        Similarly, a 97.5% conditional lower confidence limit of σ2 following rejection 

of the null hypothesis Ho: 33.1pC  (or Ho: σ ≥ 0.1253) at level α = 0.05 can be 

obtained by solving the equation 
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n

L

o

L

H

t
n

H

  = 1- α2 = 0.975 

 

        The solution of the above equation is 

 

2

L = 0.005808 
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        Thus, a 95% conditional confidence interval of σ2 following rejection of the 

null hypothesis Ho: 33.1pC  is given by:  

 

),( 22

UL  = (0.005808, 0.02357) 

 

and consequently a 95% conditional confidence interval of Cp
 following rejection 

of the null hypothesis Ho: 33.1pC  can be determined as 

 

                                        ),( L

p

L

p CC = )
3

,
3

(
LU

dd


 

 

= (1.09, 2.19) 

 

         Compare the above conditional confidence interval of Cp to the 

unconditional confidence interval of Cp we found previously, we can see that the 

length of the conditional confidence interval of Cp is relatively longer, and it 

covers the whole length of the unconditional confidence interval of Cp. The most 

interesting thing is, the conditional confidence interval of Cp covers back some 

region of the Cp values which has been rejected by the hypothesis test previously. 

The reason for this kind of result is not quite sure, this can be due to the type Ⅰ 

errors. 

 

         Further analysis (see section 2.6 and section 2.7) shows that this is a 

common situation for the conditional confidence interval of Cp following rejection 

of a one-sided test. That is, the conditional confidence interval of Cp covers the 

unconditional conditional confidence interval of Cp, and in most of the cases, the 

conditional confidence interval of Cp covers back some values of Cp which have 

been rejected by the null hypothesis of the test. This situation is quite similar to 

the one discussed by Meeks & D’Agostino (1983). In their case, they discussed 
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the conditional confidence interval of the normal mean following rejection of a 

one-sided test.  

 

2.5.2 Example 2,  Real Data 

 

         The following data set consists of weight measurements (in ounces) for 60 

major league baseballs (see in Bain & Engelhardt (1992), page 169, problem 24).  

 

             5.09 5.08 5.21 5.17 5.07 5.24 5.12 5.16 5.18 5.19 

             5.26 5.10 5.28 5.29 5.27 5.09 5.24 5.26 5.17 5.13 

             5.27 5.26 5.17 5.19 5.28 5.28 5.18 5.27 5.25 5.26 

 

             5.26 5.18 5.13 5.08 5.25 5.17 5.09 5.16 5.24 5.23 

             5.28 5.24 5.23 5.23 5.27 5.22 5.26 5.27 5.24 5.27 

             5.25 5.28 5.24 5.26 5.24 5.24 5.27 5.26 5.22 5.09 

 

        Suppose the process mean of this product is known as 5.25, the specified 

upper limit and lower limit are 5.45 and 4.85 respectively (It’s reasonable that, for 

this product, we allow more deviation from the lower side of the process mean. 

Therefore, d = (USL - LSL)/2 = 0.60*0.5 = 0.30. After doing some basic analysis 

to the above data set, we obtain the mean and the standard deviation as X = 

5.2110 and S = 0.0649, so the point estimate of Cp is   

 

                             pĈ  = 
s

d

3
= 

0649.0*3

30.0
 = 1.54 

 

         A 95% unconditional confidence interval of σ2 can be determined by 
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                                    = (0.0030, 0.0063) 

 

          A 95% unconditional confidence interval of Cp
 is 

 

                                       




















p

n

p

n
C

n

C

n

ˆ

)1(

,ˆ

)1( 2

1

2

2/1,1

2

1

2

2/,1  
 

 

                                    = 














pp CC ˆ

59
,ˆ

59

2

975.0,59
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025.0,59 
 

 

                                    = (1.26, 1.82) 

 

         Suppose the minimum required value of the process capability index Cp for 

this process is 1.00, then a test hypothesis for testing the value of Cp can be 

constructed as Ho: 00.1pC  vs.  H1: 00.1pC . 

 

         For the test hypothesis Ho: 00.1pC  vs.  H1: 00.1pC  , It is equivalent to 

the hypothesis Ho: σ ≥ σo  vs. H1: σ < σo , where σo = d/3Co = 0.30/(3*1.00) = 

0.1000. We’ll reject Ho at level α = 0.05 if the test statistic V = (n-1)
2

2

o

s


 ≤ 2

05.0,59 = 

42.3393.  Now the test statistic: 

 

                        V = (n-1)
2

2

o

s


 = 59*(0.0649/0.1000)2 

 

                                             = 24.85   
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         Therefore, we reject the null hypothesis Ho: 00.1pC  (or Ho: σ ≥ 0.1000) at 

level α = 0.05. 

 

         Next, we will construct a 95% conditional confidence interval of Cp
 following 

the rejection of the null hypothesis Ho: 00.1pC .  

 

         According to result 2.4.2, a 97.5% conditional upper confidence limit of σ2 

following rejection of the null hypothesis Ho: 00.1pC  (or Ho: σ ≥ 0.1000) at level 

α = 0.05 can be obtained by solving the equation 
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 = α1 = 0.025 

 

where t = 0.06492 is the observed value of S2,  σo = 0.1000, n = 60, and  



2

,1 n 42.34. The above equation can also be solved by using IMSL numerical 

library . The solution of the equation is 

  

2

U = 0.006427 

 

        For the solution of a 97.5% conditional lower confidence limit of σ2 following 

rejection of the null hypothesis Ho: 00.1pC  (or Ho: σ ≥ 0.1000) at level α = 0.05, 

according to result 2.4.2, we can find the solution by solving the equation 
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  = 1 - α2 = 0.975 
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        But this time the IMSL numerical library is unable to reach a solution due to 

floating errors. Further analysis (see in section 2.6) shows this lower limit do exist, 

and the ratio of the unconditional lower limit over conditional lower limit equal to 

1.0. Therefore, according to the results in section 2.6, we obtain the conditional 

lower confidence limit of σ2 as 

 

2

L = 0.0030 

 

         Finally, a 95% conditional confidence interval of σ2 following rejection of the 

null hypothesis Ho: 00.1pC  is given by:  

 

),( 22

UL  = (0.0030, 0.006427) 

 

and consequently a 95% conditional confidence interval of Cp
 following rejection 

of the null hypothesis Ho: 00.1pC  is given by 

 

                                        ),( U

p

L

p CC = )
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,
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dd


 

 

= (1.25, 1.82) 

 

2.6   Comparisons of the Lengths for UCI and CCI  

  

        In order to compare the lengths of the conditional confidence intervals of Cp 

to the lengths of the unconditional confidence intervals of Cp, we will derive 

formulas for the ratios of the conditional confidence limits of Cp over the 

unconditional confidence limits of Cp. 
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2.6.1 Ratio of the Lower Limits  

  

        The 100(1- α1)% unconditional upper limit of σ2, denoted by 2

U , is formed 

by solving the equation 

 

                         12
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                                                                 (2.6.1) 

 

         The 100(1- α1)% conditional upper limit of σ2, denoted by 2

U , following 

rejection of the null hypothesis Ho: op cC   vs.  H1: op cC   is obtained by solving 

the equation 
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         From (2.6.1), we have: 
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t U                                                   (2.6.3)           

 

plug (2.6.3) into (2.6.2), we get 

 

                       

)(

)
1

1
(

2

2

2

2

2

2

2

2

1

1


































U

o

U

U

U

U

H

n

n
H

 

 

         Let 222 /  UUL   and substituting 
2

2

1

)1(




tn
U


    in the denominator, we 

have 
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where V/2

  ,  and V = (n-1)
2

2

o

s


 = (n-1)

2

o

t


 

 

         Let L

pC  and 
L

pC  be the unconditional and conditional 100(1- α1)% lower 

confidence limits of Cp respectively, then 

 

2222 )/(/ L

p

L

pUUL CC


   

 

          From equation (2.6.4), we see that the ratio of the conditional 100(1- α1)% 

lower confidence limit of Cp over the unconditional 100(1- α1)% lower confidence 

limit of Cp only depends on the value of the specified significance level α1, the 

sample size n and the ratio of the critical value over the observed chi-square test 

statistic of the preliminary test for testing Ho: 0CC p   (or Ho: σ ≥ o ). 

 

        For the given example 2.5.1 in section 2.5, we have α1= 0.025, n=48; 

so, 96.292

025.0,47  , V/2

  = 32.27/25.06 = 1.2877; therefore, use IMSL 

numerical library to solve the equation (2.6.4), we obtain the ratio of the 

conditional 97.5% lower confidence limit of Cp over the unconditional 97.5% 

lower confidence limit of Cp in this case as 

 

7468.0/ 
 L

p

L

pL CC  

 

       This result shows that in the given example, the conditional 97.5% lower 

confidence limit of Cp is relatively smaller than the unconditional 97.5% lower 

confidence limit of Cp. The above result matches the result we obtained in 

section 2.5. 
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        For the example 2.5.2, we have α1= 0.025, n=60; so, 66.392

025.0,59  , 

V/2

  = 42.34/25.85 = 1.6379,  therefore, use IMSL numerical library to solve 

the equation (2.6.4), we get the ratio of the conditional 97.5% lower confidence 

limit of Cp over the unconditional 97.5% lower confidence limit of Cp in this case 

as 

 

9812.0/ 
 L

p

L

pL CC  

 

        This result also matches the result we obtained in example 2.5.2. In the 

example, we got the unconditional 97.5% lower confidence limit of Cp as 1.25 and 

the conditional 97.5% lower confidence limit of Cp  as 1.26, which lead to the ratio 

of the conditional upper confidence limit over the unconditional upper confidence 

limit to 0.9921. (a tiny difference occurs between the two results just because of 

the rounding errors). 

 

        Table 2.1 gives the relationship between L and   for different sample size 

n and significance level 1  combinations. Figures 2.1 and Figure 2.2 are the SAS 

plots showing the relationship.  

 

        It’s quite clear from the table and the two graphs that the ratio of 

L

p

L

pL CC /


  is always less than or equal to 1, which means the conditional 

lower confidence limit of Cp is always smaller than or equal to the unconditional 

lower confidence limit of Cp. When the sample size n and the ratio V/2

   get 

bigger and bigger, L  approaches 1. L  becomes bigger too when the 

significance level α1 gets bigger. 

 

 



 

 

 

2
9
 

      

Table 2.1 Relationship between L and   for different  n and 1 combinations 

 

 

                 

     L  

 

 

1.1 

 

 

1.2 

 

 

1.3 

 

 

1.4 

 

 

1.5 

 

 

1.6 

 

 

1.7 

 

 

1.8 

 

 

1.9 

 

 

2.0 

 

 

3.0 

 

 

4.0 

 

 

1 = 

 

0.005 

n=10            0.6748 

n=20        0.3410 0.5392 0.6515 0.9516 0.9914 

n=40    0.5804 0.7497 0.8375 0.8903 0.9244 0.9473 0.9633 1.0000 1.0000 

n=80  0.5326 0.8307 0.9150 0.9544 0.9750 0.9864 0.9927 0.9962 0.9980 1.0000 1.0000 

n=160 0.5772 0.9001 0.9636 0.9862 0.9951 0.9984 0.9995 0.9998 1.0000 1.0000 1.0000 1.0000 

n=320 0.8829 0.9759 0.9948 0.9991 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

 

1 = 

 

0.025 

n=10           0.7742 0.9274 

n=20     0.2852 0.5718 0.7031 0.7833 0.8371 0.8753 0.9981 0.9989 

n=40   0.6560 0.8125 0.8871 0.9289 0.9543 0.9703 0.9807 0.9875 0.9999 1.0000 

n=80  0.8013 0.9167 0.9605 0.9808 0.9907 0.9957 0.9980 0.9992 0.9996 1.0000 1.0000 

n=160 0.7896 0.9467 0.9828 0.9946 0.9985 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

n=320 0.9319 0.9881 0.9981 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Figure 2.1  SAS plots for the relationship between L

p

L

pL CC /


  and V/2

   at α1= 0.005. 
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Figure 2.2  SAS plots for the relationship between L

p

L

pL CC /


  and V/2

   at α1= 0.025. 
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2.6.2   Ratio of the Upper Limits 

  

        The 100(1- α2)% unconditional lower confidence limit of σ2, denoted by 2

L , 

is formed by solving  
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         The 100(1- α2)% conditional lower confidence limit of σ2, denoted by 2

L , 

following rejection of the null hypothesis Ho: op cC  is given by solving the 

eqation 
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         Similarly, after some algebraic manipulation, we have 
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where 

 

        V/2

     and     2222 )/(/ U

p

U

pLLU CC


   

 

        The above result shows that the ratio of unconditional 100(1-α2)% upper 

confidence limit of Cp over the conditional 100(1-α2)% upper confidence limit of 

Cp depends only on the value of the significance level α2, the sample size n and 
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the ratio of the critical value over the observed chi-square test statistic of the 

preliminary test. 

 

          For the example 2.5.1 in section 2.5, α2 = 0.025, n = 48; 

therefore, 82.672

975.0,47  , V/2

  = 1.2877. Using IMSL, we obtain the ratio of 

the conditional 97.5% upper confidence limit of Cp over the unconditional 97.5% 

upper confidence limit of Cp for this case as 

 

9995.0/ 
 U

p

U

pU CC  

 

         This result shows that in the given example, the conditional 97.5% upper 

confidence limit of Cp is almost unchanged compare to the unconditional 97.5% 

upper confidence limit of Cp. This result also consists with the result we obtained 

in example 2.5.1. 

 

          For the example 2.5.2, α2 = 0.025, n = 60; therefore, 2

975.0,59 = 82.12, 

V/2

  = 1.6379. Hence, using IMSL, we obtain the ratio of the conditional 

97.5% upper confidence limit of Cp over the unconditional 97.5% upper 

confidence limit of Cp as  

 

0000.1/ 
 U

p

U

pU CC  

 

        Table 2.2 shows the relationship between U  and   for different sample 

size n and significance level 2  combinations. Figures 2.3 and Figure 2.4 are the 

SAS plots showing the relationship. 

 

        From the table and plots, we see that the ratio of U

p

U

pU CC /


  is still 

always less than or equal to 1, and in most of the cases, this ratio is equal (or 

almost equal) to 1. This result tells us that the conditional upper confidence limit 
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of Cp is almost unchanged compare to the unconditional upper confidence limit of 

Cp in most of the cases. This situation is quite different from the ratio of the lower 

confidence limits. For the lower confidence limit case, the ratio varies a lot from 

case to case.  

 

        To summarize the previous results, we may conclude that, following 

rejection of a one-sided test, those ratios of U are all equal to or nearly equal to 

1, therefore, the conditional upper confidence limits are almost unchanged 

compare to the unconditional upper confidence limits.  But the ratios of L  are 

always less than or equal to 1, so the conditional lower confidence limits are 

always less than or equal to the unconditional lower confidence limits. This lead 

to a common conclusion that, following this type of rejection, the length of the 

conditional confidence interval of Cp is always not less than that of unconditional 

confidence interval, and in most cases, the conditional confidence intervals of Cp 

covers the whole length of the unconditional confidence interval of Cp. This result 

also verified the results we obtained in examples 2.5.1 and 2.5.2. When the 

sample size n, the ratio   and the values of 1  and 2  become bigger and 

bigger, the conditional confidence interval of Cp will become closer and closer to 

the unconditional confidence interval of Cp. It should be noted that the conditional 

coverage probability of the unconditional confidence interval is smaller than that 

of the conditional confidence interval, this is discussed in the next section. 
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Table 2.2 Relationship between U and   for different  n and 2 combinations 

 

 

                   

U  

 

 

   1.1 

 

 

   1.2 

 

 

   1.3 

 

 

   1.4 

 

 

   1.5 

 

 

   1.6 

 

 

   1.7 

 

 

   1.8 

 

 

   1.9 

 

 

   2.0 

 

 

   3.0 

 

 

   4.0 

 

 

2 = 

 

0.005 

n=10 0.9644 0.9886 0.9958 0.9984 0.9994 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

n=20 0.9822 0.9957 0.9988 0.9997 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=40 0.9922 0.9988 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=80 0.9972 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=160 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=320 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

 

2 = 

 

0.025 

n=10 0.9291 0.9735 0.9884 0.9947 0.9975 0.9989 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 

n=20 0.9651 0.9897 0.9966 0.9989 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=40 0.9843 0.9968 0.9993 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=80 0.9939 0.9993 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=160 0.9982 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

n=320 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Figure 2.3  SAS plots for the relationship between U

p

U

pU CC /


  and V/2

   at α2= 0.005. 
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Figure 2.4  SAS plots for the relationship between U

p

U

pU CC /


  and V/2

   at α2= 0.025. 
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2.7   Conditional Coverage Probability of the UCI Analysis 

 

        In case the unconditional confidence intervals of Cp are used to approximate 

the conditional confidence intervals of Cp (this happens when we ignore the 

result of a preliminary test), it is necessary to give the actually coverage 

probability that is provided at the nominal (unconditional) (1 - p)*100 percent level. 

 

        From section 2.6, we know that the conditional lower confidence limit of Cp 

is relatively smaller than the unconditional lower confidence limit of Cp, and the 

conditional upper confidence limit of Cp almost keeps unchanged compare to the 

unconditional upper confidence limit of Cp. Therefore, the conditional confidence 

interval of Cp is always longer than the unconditional confidence interval of Cp, 

and the conditional confidence interval of Cp almost covers the whole length of 

the unconditional confidence interval of Cp. Thus, if we use the unconditional 

confidence intervals of Cp to approximate the conditional confidence interval of 

Cp, the actually coverage probability will always be less than or equal to the 

nominal level. 

 

         Since Cp = 
3

d
, and actually we derived the conditional confidence intervals 

of Cp through the conditional confidence intervals of  σ2, therefore, when we use 

an unconditional confidence interval of Cp to approximate the conditional 

confidence interval of Cp, the actual coverage probability of the confidence 

interval of Cp is equal to the actual coverage probability of the corresponding 

confidence interval of σ2 provided at the same nominal (unconditional) level. This 

gives the following result. 

 

[Result 2.7.1] For an equal tail (1 - p)*100 percent level unconditional confidence 

interval of Cp, the conditional coverage probability is given by  
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        Proof: We only need to prove the above formula for the actual coverage 

probability of the equal tail unconditional confidence interval of σ2. Since the 

equal tail (1 - p)*100 percent level unconditional confidence interval of σ2 is  
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        Plug the above upper and lower limits into equations (2.4.1) and (2.4.2), we 

have 
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where V/2

  is defined as same as in section 2.6, and  
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        Therefore, the actual conditional coverage probability is  

 

                              1 - α1 - α2  =  
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                           (2.7.1)  

 

        Table 2.3 gives the actual conditional coverage probability of a nominal 90 

percent confidence interval for different sample size n and ratio combinations. 

The result shows that when both the sample size n and ratio are small, the 

actual conditional coverage probability of a nominal 90 percent confidence 

interval is very small. When either the sample size n or the ratio or both of n and 

  gets bigger and bigger, the actual conditional coverage probability of a 

nominal 90 percent confidence interval gets bigger and bigger, and eventually 

this actual coverage probability approaches 90 percent—the nominal percentage 

level. 
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Table 2.3 Actual coverage probability of 90 percent nominal confidence interval 

 

 

         

 

n 

 

 

1.1 

 

 

1.2 

 

 

1.3 

 

 

1.4 

 

 

1.5 

 

 

1.6 

 

 

1.7 

 

 

1.8 

 

 

1.9 

 

 

2.0 

 

 

3.0 

 

 

4.0 

 

10 

 

0.2377 

 

0.3970 

 

0.5084 

 

0.5889 

 

0.6487 

 

0.6942 

 

0.7293 

 

0.7570 

 

0.7791 

 

0.7970 

 

0.8728 

 

0.8912 

 

20 

 

0.3518 

 

0.5446 

 

0.6587 

 

0.7303 

 

0.7774 

 

0.8095 

 

0.8324 

 

0.8483 

 

0.8603 

 

0.8693 

 

0.8975 

 

0.8999 

 

40 

 

0.4747 

 

0.6745 

 

0.7711 

 

0.8225 

 

0.8519 

 

0.8696 

 

0.8806 

 

0.8877 

 

0.8922 

 

0.8952 

 

0.9 

 

0.9 

 

80 

 

0.5971 

 

0.7759 

 

0.8437 

 

0.8734 

 

0.8874 

 

0.8943 

 

0.8975 

 

0.8990 

 

0.8996 

 

0.8999 

 

0.9 

 

0.9 

 

160 

 

0.7071 

 

0.8440 

 

0.8825 

 

0.8949 

 

0.8988 

 

0.8998 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

320 

 

0.7940 

 

0.8819 

 

0.8975 

 

0.8998 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 
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CHAPTER 3 

 

CONDITIONAL CONFIDENCE INTERVALS OF Cpk 

 

3.1.   The Process Capability Index Cpk 

 

         At the beginning of Chapter 2, we discussed that if µ, the expected value 

of X (measurement of the product), or simply the process mean, is equal to the 

midpoint of the specified interval, then the expected proportion of NC product is 

equal to 2Φ(-3Cp). But if the expected value of X is not equal to the midpoint of 

the specified interval, i.e., µ  ≠ 
2

1
(LSL + USL), then the expected proportion of 

NC product will be bigger than 2Φ(-3Cp). The above situation often happens in 

practice. For example, if we want to produce a pair of axle and bearing (bushing), 

then the actual measurement of diameter for the axle should be always less 

than the measurement of diameter for the bearing (bushing), otherwise, the axle 

can’t be fitted in the bearing (bushing). Therefore, when we manufacture the 

axle, after we specified the target value of the diameter, normally we allow more 

deviation for the lower limit of the diameter. But for the bearing (bushing), it is 

just the opposite, that is, we allow more deviation for the upper limit of the 

diameter. In this case, it is not suitable for us to still use the process capability 

index Cp for either the process of manufacturing the axle or the process of 

manufacturing the bearing (bushing). Thus, we introduce another process 

capability index Cpk to overcome this drawback, 

 

          If we consider the effects of the value of the process mean μ, then the 

process   capability index  Cpk  is defined as 
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                                  Cpk = 




3

),min( LSLUSL 
 

 

         Since min(a ,b) = 
2

1
 for any a ≥ 0 and b ≥ 0, therefore (׀a - b׀-׀a + b׀ )
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or simply 

 

                                             Cpk = 




3

md 
 

 

 = 






 


d

m
1  Cp 

 

where )(
2

1
USLLSLm   is the midpoint of the specified interval. 

 

          Note, we assume that LSL ≤ μ ≤ USL in our discussion. If μ is outside of 

the specified interval, then by the initial definition of Cpk, the value of  Cpk would 

be negative, and the process would clearly be inadequate for controlling the 

quality of the product. 
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          Since we always have 11 






 


d

m
, therefore,  Cpk ≤ Cp, with equality if 

and only if µ = )(
2

1
USLLSL  . Similar to the index Cp, the smaller value of the Cpk 

corresponds to worse quality of the product. 

 

          The process capability index Cpk involves both the process mean and the 

process variance. When the two parameters are all unknown, and a random 

sample X1, X2, … , Xn is taken from N(μ, σ2) distribution, then an estimator of μ is 

the sample mean X , and an estimator of  σ is the sample standard deviation S . 

Therefore, a point estimator of Cpk is given by 
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USLLSLd

C pk




 

 

                                           = 
S

USLLSLXd

3

)(
2

1


 

 

                                           = 
S

mXd

3



 

          

          Since X  and S are mutually independently distributed, it is still possible 

for us to calculate the mean and the variance of pkĈ  by first carrying out its rth 

moment about the origin, like we did in Chapter 2 for the index Cp (resulting 

formulas for Cpk refer to:  Kotz & Lovelace (1998), page 55). But this procedure 

is much more complicated and it involves another type of distribution which is so 

called “folded” distribution. 

 

          If we consider both the mean µ and the variance σ2 as unknown 

parameters, then the construction of (unconditional) confidence intervals of Cpk 
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is difficult due to the fact that the distribution of 
pkĈ  involves the joint distribution 

of two non-central t-distributed random variables. No single technique is 

considered best in practice at this time (Kotz & Lovelace (1998), page 57). 

Although the explicit expression of such a confidence interval is almost 

impossible, but theoretically, this confidence interval is still possible to be 

determined for particular problems. The idea is to extend the general method to 

the two parameters case. That is, first try to find the joint confidence region of 

the two parameters µ and σ, and then use this joint confidence region to obtain 

a confidence interval of Cpk, this method is discussed in section 3.4.  

 

          In the case that we have some uncertain prior information about the 

values of µ and σ, we will use preliminary tests for testing these two parameters. 

We will adopt two sequential tests for testing µ and σ separately, instead of 

testing µ and σ jointly. The conditional confidence interval of Cpk will be 

considered following rejection of any of the sequential tests.  

 

         In this chapter, we will discuss the conditional confidence intervals of Cpk 

for the following three different cases:  

(1) The mean µ is known, the variance σ2 is unknown 

(2) The mean µ is unknown, the variance σ2 is known 

(3) Both the mean µ and the variance σ2 are unknown 

 

3.2   CCIs of Cpk When µ Is Known and σ2 Is Unknown 

       

         If the process mean µ is known, then for the process capability index Cpk, 

there is only one unknown parameter σ. This situation is similar to the one for 

finding the conditional confidence interval of the process capability index Cp.  In 

this case, the preliminary test should be constructed as Ho: opk CC 
 
 vs.  H1: 
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opk CC   , or, simply use the parameter σ: Ho: o 
 
 vs.  H1: o   , where 

the value of σo can be determined by the formula 

 

                                                Co = 
o

md





3


 

 

[Result 3.2.1] If a process has a known mean µ and an unknown variance σ2, 

then a 100(1- α1 - α2)%  conditional confidence interval of Cpk following rejection 

of the null hypothesis Ho: opk CC 
 
(or Ho: o   ) can be determined using the 

following interval  

 

(
U

md





3


   ,   

L

md





3


) 

 

where ),( 22

UL  is a 100(1- α1 - α2)%  conditional confidence interval of σ2 

following rejection of the preliminary test for testing Ho: o    vs.  H1: o  . 

The value 2

U is a 100(1- α1)%  conditional upper confidence limit of σ2 which is 

determined by equation (2.4.1), and the value of 2

L  is a 100(1- α2)%  

conditional lower confidence limit of σ2 which is determined by equation (2.4.2). 

 

          The proof of the above result follows the result 2.4.2 and some simple 

calculations. 

 

[Example 3.2.1] Conditional confidence interval of Cpk analysis for the data set in 

example 2.5.2 when µ is known and σ2 is unknown 

 

          In example 2.5.2, suppose the process mean µ is known as  5.25, and the 

specified upper limit and lower limit are 5.45 and 4.85 respectively, so, d = (USL 

- LSL)/2 = 0.30, m = (LSL + USL)/2 = 5.15. From the sample, we obtain the 
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sample mean and the sample standard deviation as X = 5.2110 and S = 0.0649, 

thus, the point estimate of Cpk is   

 

                                              
pkĈ  = 

S

md

3

 
 

 

        = 
0649.0*3

15.525.530.0 
  

 

                                                     = 1.03 

 

          Since in this example, the process mean is not equal to the midpoint of 

the specified interval, it’s obvious that the value of the point estimate of Cpk is 

smaller than the value of the point estimate of Cp ( 54.13/ˆ  sdCp ). 

 

          Suppose the minimum required value of the process capability index Cpk 

for this process is 0.80, then we need to construct a test hypothesis as Ho: 

80.0pkC   vs. H1: 80.0pkC . 

 

          For the test hypothesis Ho: 80.0pkC
 
 vs.  H1: 80.0pkC , It is equivalent 

to the hypothesis Ho: σ ≥ σo  vs. H1: σ < σo , where σo = (d -│µ - m│)/3Co = (0.30 -

│5.25 – 5.15│)/(3*0.80) = 0.0833. We’ll reject Ho at level α = 0.05 if the test 

statistic V = (n-1)
2

2

o

s


 ≤ 

2

05.0,59
 
= 42.3393.  Now the test statistic: 

 

                                         V = (n-1)
2

2

o

s


  

 

                                            = 59*(0.0649/0.0833)2 

 

                                             = 35.81 
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          Therefore, we reject the null hypothesis Ho: 80.0pkC  (or Ho: σ ≥ 0.0833) 

at level α = 0.05. 

 

          According to result 2.4.2, a 97.5% conditional upper confidence limit of σ2 

following rejection of the null hypothesis Ho: 0833.0  at level α = 0.05 can be 

obtained by solving the equation 
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 =  α1  =  0.025 

 

where t = 0.06492 is the observed value of S2,  σo = 0.0833, n = 60, and  



2

,1 n 42.34. Use IMSL numerical library to solve the above equation, we 

obtain the solution  

  

2

U = 0.01735 

 

          For the solution of a 97.5% conditional lower confidence limit of σ2 

following rejection of the null hypothesis Ho: 80.0pkC  (or Ho: σ ≥ 0.0833) at 

level α = 0.05, according to result 2.4.2, we can obtain the value of 2

L  by 

solving the equation 

 

                                        

)(

)
1

(

2

;12

2
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n

L

o

L

H

t
n

H

  = 1 - α2  = 0.975 

 

          For the above equation, the IMSL numerical library is unable to reach a 

solution due to floating errors. So we use the result in Chapter 2, that is, section 

2.6 equation (2.6.7), to find the ratio of the unconditional lower confidence limit 
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of σ2 over the conditional lower confidence limit of σ2 first (in this case, α2 = 

0.025, n = 60, 12.822

975.0,59  , and V/2

  = 1.1824). The result shows that 

this ratio 222 /  LLU   = 0.99812 = 0.9962. Since the unconditional lower 

confidence limit of σ2 is easy to obtain, and it is equal to 0.0030 from previous 

example, therefore, the conditional lower confidence limit of σ2 is equal to 

 

2

L = 0.0030 

 

          Finally, a 95% conditional confidence interval of σ2 following rejection of 

the null hypothesis Ho: 80.0pkC  is given by:  

 

),( 22

UL  = (0.0030, 0.01735) 

 

and consequently, a 95% conditional confidence interval of Cpk
 following 

rejection of the null hypothesis Ho: 80.0pkC  is given by 

 

                                          ),( U

p

L

p CC = )
3

,
3

(
LU

mdmd







 
 

 

      = (0.51, 1.23) 

 

3.3   CCIs of Cpk When µ Is Unknown and σ2 Is Known 

       

          In some situations, if we have enough information about the variance of a 

process, i.e. the variance σ2 of the process can be regarded as known. Then for 

the process capability index Cpk , there is only one unknown parameter, the 

process mean µ. If the measurement of a process follows a normal distribution, 

then a point estimator of µ is the sample mean X . Therefore, a point estimator 

of the process capability index Cpk becomes   
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          In this case, finding a conditional confidence interval of the process 

capability index Cpk is really a matter of finding a conditional confidence interval 

of the process mean µ. 

 

          For the process mean µ, if a random sample X1, X2,  …… Xn drawn from 

the process follows a normal distribution N(μ, σ2), then a 100(1-α)% 

unconditional confidence interval of µ is given by the interval 

 

)/,/( 2/12/1 nzXnzX      

 

          After we obtain an unconditional confidence interval of µ, then an 

unconditional confidence interval of Cpk can be easily determined by using the 

formula Cpk = 




3

md 
 ,  since the only unknown parameter in this formula is µ. 

 

          The test hypothesis for the parameter Cpk for this case (µ is unknown, σ2 is 

known) can be constructed as Ho: opk CC   vs.  H1: opk CC   , or equivalent to 

the hypothesis Ho: µ = µo  vs. H1: µ   µo, where oo Cdm  3  if mo  , and 

oo Cdm  3  if mo  . For the same value of Co, whether we choose the 

value µo by using the condition mo   or mo   depends on prior information. 

For example, if we allow more deviation from the lower side of the mean, then 
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we need to use the condition mo  . That is, we choose  oo Cdm  3 . 

Otherwise, we use the condition mo   and choose oo Cdm  3  . 

 

          A common rule of how to use the above preliminary test is that, if the null 

hypothesis is not rejected, then we use µ0 as an estimate of µ to give an 

estimate of Cpk, there is no need to construct a conditional confidence interval of 

Cpk in this case. But if the null hypothesis is rejected, we should use x  as an 

estimate of µ to give the estimate of Cpk , and then we need to find a conditional 

confidence interval of Cpk following rejection of the null hypothesis Ho: opk CC   , 

or equivalently Ho: µ = µo. 

 

          As we already know, when the process variance σ2 is known, the process 

capability index Cpk contains only one unknown parameter, the process mean µ. 

Therefore, in order to find a conditional confidence interval of Cpk, we only need 

to find a conditional confidence interval of the mean µ. 

 

          Arabatzis, Gregoire and Reynolds (1989) investigated the conditional 

confidence interval of the normal mean following rejection of a two-sided test 

when σ is known, although I don’t quite agree with the main result they have for 

the conditional confidence interval of µ, but some partial results are still useful. 

Next, we’ll follow the general method to find a conditional confidence interval of 

µ following rejection of the null hypothesis Ho: µ = µo . 

 

          If a random sample X1, X2, … , Xn is taken from a normal distribution N(μ, 

σ2),  where µ is unknown and σ2 is known. Then a level α test for testing Ho: µ = 

µo  vs. H1: µ   µo  has the critical region  

 

 )/(: 2/1 nzXXK o    
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where 2/1 z  is the 2/1   quantile of the standard normal distribution. The null 

hypothesis is rejected if X K , and a conditional confidence interval of µ is 

computed only after we rejected the null hypothesis.  

 

         The conditional pdf of X can be expressed as 

 

)(xf c  
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nzxifDxf o

,0

)/(,/)( 2/1  

 

 

where )(xf is the unconditional pdf of X , and D is the power of the test which is 

given by 

 

              D = ))/(( 2/1   nzxP o   

 

                  =      /)(/)(1 2/12/1 oo nznz    

 

                  =        2/12/11 zz  

 

where  /)( on  , and    is the CDF of the standard normal 

distribution. Under Ho, D =  .  When  , D approaches 1. 

 

         The conditional CDF of X  can be expressed as 
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          The above formula implies that if the null hypothesis is rejected by a small 

observation of X , i.e., if nzx o /2/1   , then the conditional CDF of X  

can be expressed as 

 

       
 

   



 




 2/12/11

/)(
)(

zz

xn
xFc  

 

                = 
 

   



 /)(/)(1

/)(

2/12/1 oo nznz

xn







 

 (3.3.1) 

 

          If the null hypothesis is rejected by a large observation of X , i.e., if 

nzx o /2/1   , then the conditional CDF of X  can be expressed as 
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                                                                                                                    (3.3.2) 

 

          It’s quite obvious from equations (3.3.1) and (3.3.2) that the conditional 

CDF of X  depends only on the parameter µ, but not on any other nuisance 

parameters, so we can use the general method mentioned before in Chapter 2 

to find a conditional confidence interval of µ. And in this case, it still can be 

verified numerically that the two functions )(1 h and )(2 h constructed by the 

following equations 
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and 

 

 22 1));((  hFc  

 

are increasing functions. Therefore, apply the general method for finding a 

confidence interval of an unknown parameter, we get the following result.  

 

[Result 3.3.1] Suppose the random sample X1, X2,  …… Xn is taken from a 

normal distribution N(μ, σ2), where µ is unknown and σ2 is known. Let 0 < α1 < 1, 

0 < α2 < 1 with α1 + α2 < 1, and x be an observed value of X .  Let )(  denote 

the CDF of the standard normal distribution. If the observed value x  results in 

rejecting the null hypothesis Ho: µ = µo at level   by the condition 

nzx o /2/1    , then the solutions of 
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                                                                 (3.3.3) 

and 

 

 
   



 /)(/)(1

/)(

2/12/1 o

c

lo

c

l

c

l

nznz

xn







= 1 - α2      

                                                             (3.3.4) 

 

construct a 100(1- α1 - α2)% conditional confidence interval ( c

l , c

u ) of µ. 

Otherwise, if the observed value x  results in rejecting the null hypothesis Ho: µ 

= µo at level   by the condition nzx o /2/1    , then the solutions of 
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and 
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                                                             (3.3.6) 

 

construct a 100(1- α1 - α2)% conditional confidence interval ( c

l , c

u ) of µ. 

 

          The above equations look like complicated, but if we use IMSL numerical 

library, we still can solve these equations for the conditional lower and upper 

confidence limits of
 
µ. 

 

          Once we obtain the conditional confidence interval of µ as ( c

l , c

u ), to 

obtain a conditional confidence interval of Cpk just follows some simple 

calculations. We’ll use an example to illustrate the above procedure for finding a 

conditional confidence interval of Cpk following rejection of the null hypothesis Ho: 

µ = µo. 

 

[Example 3.3.1] Conditional confidence interval of Cpk analysis when µ is 

unknown and σ2  is known 

 

          Consider the same data set as in example 2.5.2. Suppose that the 

specified target value of the process is 5.25, the specified upper limit and lower 

limit are 5.45 and 4.85 respectively.  Therefore, d = (USL - LSL)/2 = 0.60*0.5 = 

0.30, and m = (USL + LSL)/2 = (5.45 + 4.85)*0.5 = 5.15. Suppose the standard 

deviation of this process is known as σ = 0.06 (the process mean µ is unknown). 

After doing some basic analysis to the data set, we obtain the sample mean X = 

5.2110 and the sample standard deviation S = 0.0649. 
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          Since in this case X = 5.2110 > m = 5.15, so, a point estimate of Cpk for 

this process is   

 

                                       
pkĈ  = 

3

mxd 

 

 

                                               = 
3

)( mxd 
 

 

= 
06.0*3

)15.5211.5(30.0 
 

 

                                                = 1.33 

 

          A 95% unconditional confidence interval ),( ul   of µ can be determined 

by 

 

                            )/,/( 2/12/1 nzxnzx      

 

= )60/06.0*96.1211.5,60/06.0*96.1211.5(   

 

                         = (5.1958, 5.2262) 

 

          Since Cpk = 




3

md 
, use the above information of the unconditional 

confidence interval of µ, we can determine a 95% unconditional confidence 

interval ),( U

pk

L

pk CC  of Cpk
 . Since in this case the value of m is located on the left 

side of the above interval ),( ul  , therefore, a 97.5% upper confidence limit of 

Cpk happens at 1958.5 l , and a 97.5% lower confidence limit of Cpk 

happens at 2262.5 u , therefore 
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             ),( U

pk

L

pk CC  = 
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06.0*3

15.51958.530.0
,

06.0*3

15.52262.530.0
 

 

                              = (1.24, 1.41) 

 

          Note, if m happened to be inside of the interval ),( ul  , then the upper 

confidence limit of Cpk equals to the value of Cp (= d/3σ), and the lower 

confidence limit of Cpk can be determined by one of the two values l  and 

u which has the longer distance from the midpoint point m of the specified 

interval. 

 

          So far, all the above results based on the situation that there is no 

preliminary test for the process mean has been performed. If for any reason a 

preliminary test for testing Ho: µ = µo  vs. H1: µ   µo  has been done (the value of 

µ0 depends on the prior information of the process mean µ, or of the process 

capability index Cpk, which can be obtained from previous experiences), then the 

above result of the unconditional confidence interval of Cpk is no longer valid. So 

we need the following procedure to find a conditional confidence interval of Cpk. 

 

          In this example, the target value of process is specified as µ = 5.25, if the 

standard deviation of the process is known as σ = 0.06, then we expect the 

value of Cpk for this process as Cpk =  




3

md 
= (0.30 - (5.25 - 5.15))/3*0.06 = 

1.11. So normally, if we have any prior information which shows that the process 

mean will be around the value of 5.25, then we will construct a test hypothesis 

Ho: 11.1pkC
 
 vs.  H1: 11.1pkC , or equivalently to Ho: 25.5  vs. H1: 25.5 . 

If the null hypothesis is not rejected, then we accept the test value µ = 5.25 as 
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known.  That is, we accept for this process, the process mean µ is equal to 5.25, 

and consequently the process capability index Cpk is equal to 1.11, no 

conditional confidence interval is needed. If the null hypothesis is rejected, then 

we need to use pkĈ  = 
3

mXd 
 to give a point estimate of Cpk, and then 

construct a conditional confidence interval of Cpk following rejection of the test. 

 

          For the testing hypothesis Ho: 11.1pkC
 
 vs.  H1: 11.1pkC  (or 

equivalently Ho: 25.5   vs.  H1: 25.5 ) in this example,  we’ll reject Ho at 

level α = 0.05 if the value of the test statistic X  falls into the following reject 

region 

 

 )/(: 2/1 nzxxK o    

 

          Now the test statistic x  = 5.2110, and the value 

 

nzo /2/1    = 60/06.0*96.125.5   

                                              

                                                           = 5.2348   

 

          Therefore, we have nZx o /2/1   , and we reject the null hypothesis 

Ho: 25.5  at level α = 0.05. 

 

          Next, we will construct a 95% conditional confidence interval of the 

process mean µ following rejection of the null hypothesis Ho: 25.5 .  

 

          Since in this example the rejection of the null hypothesis is caused by a 

small value of X , i.e., the rejection is due to nZx o /2/1   . According to 

result 3.3.1, a 97.5% conditional upper confidence limit of µ following rejection of 
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the null hypothesis Ho: 25.5  at level α = 0.05 can be determined by solving 

the equation 
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 = α1 =0.025 

 

where x = 5.2110 is the observed value of X ,  µo = 5.25, σ = 0.06, n = 60, and  

 2/1 z 1.96. Use IMSL numerical library to solve the above equation for c

u ,  we 

get the solution   

  

c

u = 5.227 

 

          To obtain a 97.5% conditional lower confidence limit of µ following 

rejection of the null hypothesis Ho: 25.5 at level α = 0.05, according to result 

3.3.1, we can find c

l by solving the equation 
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 = 1 - α2 = 0.975 

 

          Again, use the IMSL numerical library, we obtain the solution of the above 

equation as  

 

c

l = 4.954 

 

          Therefore, a 95% conditional confidence interval of µ following rejection of 

the null hypothesis Ho: 25.5  is given by:  

 

),( c

u

c

l  = (4.954, 5.227) 
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          After we obtain a conditional confidence interval of the process mean µ, 

now we can determine a conditional confidence interval of the process capability 

index Cpk following rejection of the null hypothesis Ho: 11.1pkC  (or equivalently 

Ho: 25.5 ). Since in this case, the value of m (= 5.15) is inside of the 

conditional confidence interval ),( c

u

c

l  , therefore, a 97.5% conditional upper 

confidence limit of Cpk happens at the value of 15.5m , and a 97.5% 

conditional lower confidence limit of Cpk happens at the value of 954.4 c

l . 

Thus, a 95% conditional confidence interval of Cpk following rejection of the null 

hypothesis Ho: 11.1pkC  can be determined as  
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06.0*3

15.515.530.0
,

06.0*3

15.5954.430.0
 

 

                                 = (0.58, 1.67) 

 

          The relationship between the conditional confidence interval of Cpk and 

the unconditional confidence interval of Cpk for the case that µ is unknown and σ 

is known can also be analyzed by using a similar method discussed in section 

2.6. Except in this case, we need first to find the relationship between the 

conditional confidence limits of µ and the unconditional confidence limits of µ. 

Since this procedure is so complicated, we will not discuss in detail at this time. 

  

          In some special cases, we still need to test a one-sided hypothesis for the 

process capability Cpk, this include the following two different situations, Ho: Cpk ≤ 

Co  vs. H1: Cpk > Co  or  Ho: Cpk ≥ Co  vs. H1: Cpk < Co. To find a conditional 

confidence interval of Cpk following rejection of the above null hypotheses 



 

61 

 

follows a similar procedure discussed in this section. First, we need to find a 

conditional confidence interval of the process mean µ following rejection of the  

tests, and then we use the relationship Cpk =  




3

md 
 to obtain a conditional 

confidence interval of Cpk. Appendix B gives some brief results for finding 

conditional confidence intervals of the process mean µ following rejection of 

one-sided tests. 

 

3.4   CCls of Cpk When both µ and σ2 Are Unknown 

 

          Previously, we discussed the conditional confidence intervals of the 

process capability index Cpk for the two difference cases: either µ is known and 

σ2 is unknown or µ is unknown and σ2 is known. But in most situations, both the 

true values of the two parameters µ and σ2 are unknown. So next, we’ll discuss 

the conditional confidence intervals of Cpk when both µ and σ2 are unknown. 

 

          The testing hypotheses we need to consider for this situation depends on 

how much prior information we have. If we have prior information for both 

parameters µ and σ2, then we need to construct testing hypotheses for the two 

parameters µ and σ2. But in some cases, we only have information for one of the 

two parameters. If this is the case, then we only need to construct one testing 

hypothesis. Next, we will discuss these two different cases. 

 

3.4.1   Testing for both Parameters 

 

          As we mentioned at the beginning of Chapter 3, if both the mean µ and 

the variance σ2 of a process are unknown parameters, and we have uncertain 

prior information for both µ and σ2, then we will test the parameters µ and σ2 

separately using two sequential tests. The conditional confidence interval of Cpk 

will be considered following rejection of any of the two tests. The procedure is 
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given as the following. First, test the hypothesis Ho: σ = σo vs. H1: σ ≠ σo , if the 

null hypothesis is not rejected, we regard σ as given (σ = σo), and then test Ho: µ 

= µo vs. H1: µ ≠ µo for the parameter µ, this test is a normal test since σ is given. 

If the null hypothesis Ho: µ = µo  is also not rejected, then we use µo and σo as 

two estimates of µ and σ to give the estimate of Cpk, no conditional confidence 

interval of Cpk is needed. But if the null hypothesis Ho: µ = µo is rejected, we use 

x  and σo as two estimates to give the estimate of Cpk. And then we will find a 

conditional confidence interval of µ following rejection of the null hypothesis Ho: 

µ = µo of the two sequential tests. Finally, we use the above conditional 

confidence interval of µ together with the value of σo (since σ = σo is regarded as 

known in this case) to obtain a conditional confidence interval of Cpk. The 

procedure for finding this conditional confidence interval of Cpk is almost the 

same as the one we discussed in the last section (section 3.3). 

 

          If the null hypothesis of the first test for testing Ho: σ = σo vs. H1: σ ≠ σo 

has been rejected, in this case, we need to use the sample standard deviation s 

as an estimate of σ, and then regard σ as unknown to construct the second 

hypothesis Ho: µ = µo vs. H1: µ ≠ µo for testing the process mean µ. This time the 

test is a t-test since σ is unknown. If the null hypothesis of the second test is not 

rejected, we need to use µo and s  as two estimates of µ and σ to give the point 

estimate of Cpk, and then try to find a conditional confidence interval of σ 

following rejection of the null hypothesis Ho: σ = σo (method refers to Appendix C, 

conditional confidence intervals of σ following rejection of a two-sided test). The 

conditional confidence interval of Cpk following rejection of the null hypothesis Ho: 

σ = σo of the two sequential tests can be obtained as following.  We regard µ as 

known (µ = µo) and σ as unknown and use the conditional confidence interval of 

σ together with the known value of µ (µ = µo) to construct a conditional 

confidence interval of Cpk (this procedure is similar to the one we discussed in 
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section 3.2, except the conditional confidence interval of σ in this case follows 

rejection of a two-sided test). 

 

[Example 3.4.1] In example 2.5.2, suppose the process mean µ and variance σ2 

are all unknown. The specified upper limit and lower limit are 5.45 and 4.85 

respectively, so, d = (USL - LSL)/2 = 0.30, m = (LSL + USL)/2 = 5.15. From the 

sample, we get the sample mean and sample standard deviation as X = 5.2110 

and S = 0.0649. 

 

          Suppose from prior information, we know that the process standard 

deviation might be around 0.05, and the process mean µ might be around 5.20. 

So we use two sequential tests to test Ho: σ = 0.05 vs. H1: σ ≠ 0.05 and Ho: µ = 

5.20 vs. H1: µ ≠ 5.20 for the process standard deviation and mean separately. 

 

          For the hypothesis Ho: 05.0  vs.  H1: 05.0 , we will reject the null 

hypothesis at level α = 0.05 if the test statistic  V = (n-1)
2

2

o

s


 ≤ 

2

2/;1 n , or V = (n-

1)
2

2

o

s


 ≥ 

2

2/1;1  n . Now in this example, the observed test statistic 

 

                                           V = (n-1)
2

2

o

s


 

 

   = 22 05.0/0649.0*)160(   

 

                                              = 99.40 

 

and 
2

2/1;1  n  
= 

2

975.0;59
 
= 82.12, so we reject the null hypothesis Ho: 05.0  at 

level α = 0.05. 
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          After we tested for the process variance, now we need to test for the 

process mean µ. Since the null hypothesis in the first test has been rejected, so 

the process variance is now unknown.  

 

          For testing hypothesis Ho: 20.5  vs.  H1: 20.5 , since the true value 

of σ is unknown, we use a two-sided t-test. We’ll reject the null hypothesis Ho: 

20.5   at level α = 0.05 if the test statistic ( X , S) falls in the following 

rejection region 

 

 )/(:),( 2/1 nstxsxK o    

 

         Now from the sample: x  = 5.2110, s = 0.0649, so  

 

ox 
 
= 20.5211.5  = 0.011 

 

and                                   )/(2/1 nst   = 60/0649.0*00.2  

                                              

                                                              = 1.01  

 

          Thus, we have )/(2/1 nstx o   , and we do not reject the null 

hypothesis Ho: 20.5  at level α = 0.05. Therefore, we regard 20.5  as 

known for this process. 

 

          For the conditional confidence interval of Cpk following rejection of the null 

hypothesis Ho: σ = σo of the two sequential tests, we use the conditional 

confidence interval of σ together with the known value of µ (µ = 5.20) to 

construct it. So next, we need to find a conditional confidence interval of σ 

following rejection of the null hypothesis Ho: σ = 0.05. 
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          Since the rejection is due to a small observed value of s, i.e., 

2

2/;12

2)1(






n

o

sn
 (this should be always the case in analysis of this type of 

conditional confidence intervals of Cpk, because if the rejection is due to a large 

observed value of s, then the process is obviously not capable, there is no 

needs to construct a conditional confidence interval before we improved the 

current process). According to result C.1 in appendix C, a 97.5% conditional 

upper confidence limit of σ2 following rejection of the null hypothesis Ho: σ = 0.05 

at level α = 0.05 can be obtained by solving the equation 
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 = α1 = 0.025 

 

where t = 0.06492 is the observed value of S2,  σo = 0.05, n = 60, 

2

2/,1 n 39.66 

and  

2

2/1,1  n 82.12. Use IMSL numerical library to solve the above equation, 

we get the solution as  

 

2

U = 0.006267 

 

          To obtain a 97.5% conditional lower confidence limit of σ2 following 

rejection of the null hypothesis Ho: σ = 0.05 at level α = 0.05, according to result 

C.1, we can find the conditional lower limit by solving the equation 
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  = 1- α2 = 0.975 

 

          The solution of the conditional lower confidence limit of σ2 is 
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2

L = 0.003896 

 

          Therefore, a 95% conditional confidence interval of σ following rejection of 

the null hypothesis Ho: σ = 0.05 at level α = 0.05 is given by:  

 

),( c

u

c

l  = (0.0624, 0.0792) 

 

          Consequently, a 95% conditional confidence interval of Cpk following 

rejection of the null hypothesis Ho: σ = σo of the two sequential tests can be 

determined as 
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0624.0*3

15.520.530.0
,

0792.0*3

15.520.530.0
 

 

                                 = (1.05, 1.34) 

 

          If the null hypothesis of the second test for testing Ho: µ = µo vs. H1: µ ≠ µo 

is also rejected, In this case, both µ and σ need to be considered as unknown 

now, and the conditional confidence interval of Cpk should be considered 

following rejection of the  two preliminary tests. This situation is more 

complicated than all the cases we discussed before. In order to find a 

conditional confidence interval of Cpk, we should first consider to find a joint 

confidence region of µ and σ. Next, we’ll give some basic analyses for how to 

find a conditional confidence interval of Cpk in this situation. 
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          Following the general method, in order to find a conditional joint 

confidence region of µ and σ, first we need to find the conditional joint CDF of 

X and S, so we start with finding the unconditional joint pdf of X and S.  

 

          If a random sample X1, X2, … , Xn is taken from a normal distribution N(μ, 

σ2),  then X ~ N(μ, σ2/n), 2S ~ 2

1

2

1



n

n



, and also X and S are independent. 

Follows Arabatzis, Gregoire and Reynolds (1989), the unconditional joint pdf of 

X and S can be expressed as 
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for  sx 0, , where )( is the Gamma function. 

 

          The conditional joint pdf of X and S following rejection of the two tests for 

testing Ho: σ = σo  vs.  H1: σ ≠ σo   and  Ho: µ = µo  vs. H1: µ ≠ µo can be 

expressed as 

 

),( sxf c  






 

otherwise

KsxifDsxf

,0

),(,/),(

 

 

where K is the critical region of the two tests determined by the intersection of 

)/(2/1 nstx o     and  2

2/;12

2)1(






n

o

sn
  or

 

2

2/1;12

2)1(






n

o

sn
, which is 

also the total shaded open regions of  I, II, III and IV shown in figure 3.1; D is the 
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total unconditional probability of ),( sx  falling into the above critical region, which 

is determined by the following double integral. 

 


K

dsxdsxfD ),(

 

 

         The conditional joint CDF of X and S following rejection of the two tests for 

testing Ho: σ = σo  vs. H1: σ ≠ σo   and  Ho: µ = µo  vs. H1: µ ≠ µo can be 

expressed as 

 

Ksxfor
D

dsxdsxf
sxFc 


),(,

),(
),(

                                (3.4.1)
 

 

 

 

Figure 3.1   The joint domain of ),( sx  for the conditional joint CDF of X and S 

following rejection of two tests. The lines AB and AC are determined  

by )/(2/1 nstx o   . The lines DE and FG are determined  

by 2

2/1;12

2
2

2/;12

2 )1()1(
 





 





n
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o

sn
and

sn

 

         

          It should be noticed that the calculations of the double integral 

 dsxdsxf ),(  in equation (3.4.1) are quite different when the pair of 
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observations ),( sx  falls into different regions of I, II, III or IV shown in figure 

3.4.1. From equation (3.4.1), it’s quite obvious that the conditional joint CDF of 

X and S only depends on the two unknown parameters µ and σ. Although the 

expression of the conditional joint CDF of X and S is somewhat complicated, 

but with powerful computer programs, it’s still possible to calculate the 

cumulated probability for any observed value of ),( sx , if the two parameters µ 

and σ2 are given. 

 

          Now we have all the information we need for finding a conditional joint 

confidence region of µ and σ, namely, the conditional joint CDF of X and S 

which only depends on the two unknown parameters but not on any other 

unknown nuisance parameters. For any observed value of ),( sx , if a 

conditional joint confidence region of µ and σ exists, it could be found by using 

the above information. Next, we’ll try to extend the general method of finding a 

confidence interval for an unknown parameter to the two parameters case. 

 

          Suppose K  is one relatively small region of X and S such 

that  1]),[( SXP , if we regard ),( sx as random statistics and let (µ, σ) 

change jointly, then the statement ),( sx  is equivalent to the 

statement 21 1),(   sxFc for some α1 and α2 such that   21 . 

Therefore, if the inequality 21 1),(   sxFc  has a solution for the region of (µ, 

σ), then this solution should construct a 100(1-α)% joint confidence region of µ 

and σ. In other words, if we plug any pair of (µ, σ) values into the above 

inequality and make the inequality a true statement for a pair of observed 

statistics x and s. then this pair of (µ, σ) value should be in a 100(1- α1 - α2)% 

conditional joint confidence region of µ and σ which is related to this observed 

pair of statistics x and s. In this way, we can extend the general method to the 

two parameters case, and obtain the following result. 
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[Result 3.4.1] Suppose a random sample X1, X2,  …… Xn is taken from a normal 

distribution N(μ, σ2), where µ and σ2 are both unknown. Let 0 < α1 < 1, 0 < α2 < 1 

such that 0 < 1 - α1 - α2 < 1. Let x  and s be the observed values of X  and S, 

and let ),( sxFc  denote the conditional joint CDF of X  and S (see equation 

(3.4.1)). If the observed values of x  and s result in rejecting the two null 

hypotheses Ho: µ = µo  and  Ho: σ = σo at level  , then the solution of 

   

                                      21 1),(   sxFc  

                                                                 (3.4.2) 

 

for all pairs of (µ, σ) construct a 100(1- α1 - α2)% conditional joint confidence 

region of µ and σ. 

 

          The resulting joint confidence region of the solution of equation (3.4.2) is 

not easy to figure out, but we may think in the following way to get a rough 

picture.  In equation (3.4.2), if we fix one of the two unknown parameters, say σ, 

at one value σ1, then the problem becomes to finding a conditional confidence 

interval of one single unknown parameter.  By the general method we discussed 

in Chapter 2, the solution should be a finite interval if the value of σ1 is within the 

joint confidence region. If we change σ to another fixed value σ2, then the 

solution of µ is another finite interval if σ2 is still in the joint confidence region. 

Same situation happens when we fix µ at one value and try to find the solution of 

σ . So, we may conclude that the solution of equation (3.4.2) is just one 

connected region of µ and σ, and this region should contain the pair of observed 

value of ),( sx . 

  

       In order to verify this, we may take an example using the same data set as 

in example 2.5.2. Suppose the process mean and variance are all unknown, and 

we are interested in the values of σ = σo = 0.1 and µ = µo = 5.25, so we take two 
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sequential tests for testing Ho: σ = 0.1 vs. H1: σ ≠ 0.1   and Ho: µ = 5.25 vs. H1: µ 

≠ 5.25. Since the observed statistics are s = 0.0649 and x = 5.211, the two null 

hypothesis are all rejected at level α = 0.05 by the above two observed statistics. 

And in this case, the pair of observed statistics ),( sx  falls into the reject region I 

as shown in figure 3.4.1. 

 

         The total critical region is determined by the lines 082.0
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   and snstx o 26.025.5)/(2/1   , )/(2/1 nstx o  
 

s26.025.5  . Since in this case, the observed pair of statistics ),( sx  falls in 

region I, therefore, the double integral in the numerator of equation (3.4.1) can 

be written as 
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and the power D can be expressed as 
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          Thus, the conditional joint CDF of X and S following rejection of the two 

sequential tests can be expressed as 

 

D

dsxdsxf
sxFc




),(
),(   

 



 

72 

 

 

= 

    

 
 



 














118.0

26.025.5

118.0 26.025.5

082.0

0 26.025.5

082.0

0

26.025,5

0

),(),(),(),(

),(

s

ss

s

s x

dsxdsxfdsxdsxfdsxdsxfdsxdsxf

dxdyyxf

 

 

         If we plug the unconditional joint pdf ),( sxf of X and S into the above CDF 

and simplify, we obtain the conditional CDF of X and S as 
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 is used only for simplification of the expression.  

 

          For the observed pair of statistics ),( sx = (5.211, 0.0649), the inequality 

for a 95% conditional joint confidence region of µ and σ (equation 3.4.2) can be 

written as 
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≤0.975 

 

          Now if we fix the value of σ at 0.065, then the above inequality only 

contains one unknown parameter µ, this situation is similar to the one for finding 

the conditional confidence interval of a single parameter. Using powerful 

computer program, we can obtain the solution of µ as an interval. If we change 

the value of σ to another number 0.06, we can obtain another solution of interval 

if σ = 0.06 is still within the joint confidence region of µ and σ. 

     

          After we obtained the conditional joint confidence region of µ and σ, the 

conditional confidence interval of Cpk following rejection of the two tests for 

testing Ho: σ = σo  vs. H1: σ ≠ σo   and  Ho: µ = µo  vs. H1: µ ≠ µo can also be 

determined, but the computation is still very complicated, we need to use 

powerful computer programs to calculate it. 

 

3.4.2   Testing for One of the Two Parameters 

 

          In some situations, we may have uncertain prior information on one of the 

two unknown parameters. If this is the case, then we can only construct one 

preliminary test. First, consider the case that we have some prior information 

about the process mean µ, and we test the hypothesis Ho: µ = µo vs. H1: µ ≠ µo. 

If the null hypothesis is not rejected, then we regard µ = µo as known, no 

conditional confidence interval of Cpk is needed (the conditional confidence 

interval of Cpk in this case follows not rejecting a preliminary test, which is not in 
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our topic). If the null hypothesis Ho: µ = µo is rejected, then we need to use 

x and s  as two estimates of µ and σ to give a point estimate of Cpk. The 

conditional confidence interval of Cpk following rejection of the null hypothesis Ho: 

µ = µo can be obtained by using a similar procedure discussed in section 3.4.1.  

 

          The conditional joint pdf of X and S following rejection of the null 

hypothesis Ho: µ = µo can be expressed as 

 

),( sxf c  
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where ),( sxf is the unconditional joint pdf of X and S; K is the critical region of 

the test which is determined by )/(2/1 nstx o   , i.e., the regions I and II 

shown in figure 3.2; D is the total unconditional probability of ),( sx  falling into 

the above critical region, which is determined by the following double integral. 
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          In this situation, D is also the power of the test for testing Ho: µ = µo vs. H1: 

µ ≠ µo , which can be calculated by using the non-central t-distribution, that is 
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where  H  is the CDF of the non-central t-distribution with (n-1) degrees of 

freedom and with non-centrality parameter 
n/

0







 . It’s quite obvious that D 

involves the two unknown parameters µ and σ. 

 

 
 

Figure 3.2   The joint domain of ),( sx  for the conditional joint CDF of X  

and S following rejection of one test for the mean Ho: µ = µo 

vs. H1: µ ≠ µo. The lines AB and AC are determined by 

)/(2/1 nstx o   .

 
 

          The conditional joint CDF of X and S following rejection of the null 

hypothesis Ho: µ = µo  can be expressed as 
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                                  (3.4.2)
 

 

          The calculation of the double integral  dsxdsxf ),(  in equation (3.4.2) is 

still quite different when the pair of observation ),( sx  falls into different regions 

of I and II shown in figure 3.4.2. This conditional joint CDF of X and S depends 

only on the two unknown parameters µ and σ but not on any other nuisance 

parameters, so we can follow the same procedure discussed in section 3.4.1 to 

find a conditional joint confidence region of µ and σ following rejection of the null 
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hypothesis Ho: µ = µo. After we obtained the joint confidence region of µ and σ, 

we can use it  to obtain a conditional confidence interval of Cpk. 

 

          In case we only have uncertain prior information about the process 

variance σ2, then we need to test the hypothesis Ho: σ = σo vs. H1: σ ≠ σo. If the 

null hypothesis is not rejected, then we regard σ = σo as known. The confidence 

interval of Cpk in this case will not be discussed at this time, since there is no test 

hypothesis has been rejected. Thus, no conditional confidence interval of Cpk is 

needed. If the null hypothesis Ho: σ = σo is rejected, then we need to use x and 

s  as two estimates of µ and σ to give a point estimate of Cpk. The conditional 

confidence interval of Cpk following rejection of the null hypothesis Ho: σ = σo can 

be constructed similarly to the previous case, except the rejection region is 

different.  

 

          The conditional joint pdf of X and S following rejection of the null 

hypothesis Ho: σ = σo can be expressed as 
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where ),( sxf is the unconditional joint pdf of X and S.  K is the critical region of 

the test which is determined by 2
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is, the regions I and II shown in figure 3.3. D is the total unconditional probability 

of ),( sx falling into the above critical region, which is also determined by the 

double integral. 
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          The conditional joint CDF of X and S following rejection of the null 

hypothesis Ho: σ = σo  can be expressed as 

 

Ksxfor
D

dsxdsxf
sxFc 
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                                  (3.4.3)
 

 

 
 

Figure 3.3   The joint domain of ),( sx  for the conditional joint CDF of X and 

S following rejection of one test for σ Ho: σ = σo vs. H1: σ ≠ σo. 

The lines AB and CD are determined by 2

2/;12

2)1(
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and 2
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2)1(
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          The same situation as in the previous two cases, the calculations of the 

double integral  dsxdsxf ),(  in equation (3.4.3) are different when the pair of 

observations ),( sx  falls into different regions of I and II shown in figure 3.4.3. 

As we can check, this conditional joint CDF of X and S only depends on the two 

unknown parameters µ and σ. Therefore, we can use result 3.4.1 to find a 

conditional joint confidence region of µ and σ following rejection of the null 

hypothesis Ho: σ = σo. Once the conditional joint confidence region of µ and σ is 
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determined, a conditional confidence interval of Cpk following rejection of the null 

hypothesis Ho: σ = σo can also be determined. 
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APPENDIX A 

 

IMSL PROGRAM CODE 
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A.1   Main Program Code for the Conditional Upper Confidence Limit of σ2. 

 

ROGRAM CCI_UpperLimit 

! 

!     Purpose: 

!             To calculate the conditional upper confidence limits of the variance  

!      following rejecting the null hypothesis that the variance is greater than 

!      or equal to a certain number 

! 

!              This program uses the IMSL library subroutine ZREAL (Find the 

!      real zeros of a real function using Müller's method) together with the 

!      IMSL function CHIDF(CHSQ, DF) 

! 

!      Record of revisions: 

!      Date                      Programmer                 Description of change 

!      ====                     ==========              ================ 

!      02/25/2009     Jianchun Zhang          Original code 

! 

! 

USE MSIMSL      ! Invoke the IMSL library 

! 

IMPLICIT NONE ! All the variables used in the program should be defined 

! 

!     Declare variables 

! 

      INTEGER          ITMAX, NROOT 

      REAL                EPS, ERRABS, ERRREL, ETA 

      PARAMETER  (NROOT=1) 

! 
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      INTEGER    INFO(NROOT) 

      REAL           F, X(NROOT), XGUESS(NROOT) 

! 

!     Declare the input function for finding the upper limit 

! 

      EXTERNAL   F  

!    

!     Set values of initial guess: XGUESS = 0.01 

! 

      DATA XGUESS/0.01/ 

! 

!     Stop criteria 

! 

      EPS    = 1.0E-5 

      ERRABS = 1.0E-5 

      ERRREL = 1.0E-5 

      ETA    = 1.0E-2 

!            

      ITMAX  = 100 

! 

!     Calculate the upper limit and output the result 

! 

      CALL ZREAL (F, ERRABS, ERRREL, EPS, ETA, NROOT, ITMAX, 

XGUESS , X, INFO) 

      CALL WRRRN ('The upper limit is', 1, NROOT, X, 1, 0) 

! 

      END PROGRAM CCI_UpperLimit   ! Main program end here 

! 

!     Input the external function F (This function F comes from the equation  
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!     of the upper limit. Here X represents the upper limit) 

! 

      REAL  FUNCTION F (X) 

      REAL                        X 

! 

      F = CHIDF(47.0*0.0828**2/X,47.0)/CHIDF(32.27*0.1253**2/X,47.0)-0.025 

      RETURN 

      END  

  

 

A.2   Some Other Functions  

 

F = ANORDF(sqrt(60.0)*(5.211-X)/0.06)/(1-ANORDF(1.96-sqrt(60.0)*(X- 

5.25)/0.06)+ANORDF(-1.96-sqrt(60.0)*(X-5.25)/0.06))-0.025 

 

F = TDF(sqrt(60.0)*(5.211-X)/0.0649,59.0)/(1-TNDF(2.0,59,sqrt(60.0)*(X-

5.25)/0.0649)+TNDF(-2.0,59,sqrt(60.0)*(X-5.25)/0.0649))-0.025 
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APPENDIX B 

 

CONDITIONAL CONFIDENCE INTERVALS OF THE MEAN µ FOLLOWING 

REJECTION OF A ONE-SIDED TEST 
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          If a process has a known variance σ2 and unknown mean µ, then the 

conditional confidence interval of the process capability Cpk only depends on the 

corresponding conditional confidence interval of the process mean µ. 

 

          In Chapter 3, we investigated how to find a conditional confidence interval 

of the process mean µ following rejection of a two-sided preliminary test. 

Although most of the tests for testing the process mean in process capability 

analysis are two-sided tests, but in some special cases, we still need a one-

sided test for testing the process mean µ. In this appendix, we’ll briefly state out 

the results of the conditional confidence interval of the process mean µ following 

rejection of a one-sided test.  

 

          Meeks & D’Agostino (1983) investigated the conditional confidence 

interval of the normal mean µ following rejection of a one-sided test for testing 

Ho: µ ≤ µo  vs. H1: µ > µo. Instead of solving for the conditional confidence limits 

directly, they tried to find out the relationship between the conditional confidence 

limits and the unconditional confidence limits, and they provided two formulas for 

the differences of the conditional confidence limits (upper and lower) and the 

corresponding unconditional confidence limits. Now, we’ll state the result in a 

different way by solving for the conditional confidence limits directly. 

 

[Result B.1] Suppose the random sample X1, X2,  …… Xn is taken from a normal 

distribution N(μ, σ2), where µ is unknown and σ2 is known. Let 0 < α1 < 1, 0 < α2 

< 1 with α1 + α2  < 1, and x be an observed value of X , let )(  denote the CDF 

of standard normal distribution. If the observed value x  results in rejecting the 

null hypothesis Ho: µ ≤ µo  at level , then the solutions of 
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and 
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                                                             (B.2) 

 

construct a 100(1- α1 - α2)% conditional confidence interval ( c

l , c

u ) of µ. 

 

          Use the example they provided in their paper, If µo = 10, σ = 5, n = 25, 

05.0 , and 245.14x . Since we have the test statistic 

 

)645.1(245.4
5

)10245.14(25)(
1 





 




z

xn
z o  

 

so we reject the null hypothesis at level 05.0 . According to result B.1, a 95% 

conditional upper confidence limit of µ can be obtained by solving the equation 

(B.1), and a 95% conditional lower confidence limit of µ can be obtained by 

solving the equation (B.2). Again, using the IMSL numerical library, we can find 

these two confidence limits directly. After we run the IMSL FORTRAN program, 

we get the solution for the equation (B.1) as c

u  =15.89, and the solution for the 

equation (B.2) as c

l = 12.50. Therefore, a 90% conditional confidence interval of 

µ is determined by  

 

( c

l , c

u ) = (12.50, 15.89) 

 

          If the test hypothesis for the mean µ happened to be another type of one-

sided test, i.e., Ho: µ ≥ µo  vs. H1: µ < µo, following the procedure provided in 

Chapter 3 (section 3.3), we can derive the following result 
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[Result B.2] Suppose the random sample X1, X2,  …… Xn is taken from a normal 

distribution N(μ, σ2), where µ is unknown and σ2 is known. Let 0 < α1 < 1, 0 < α2 

< 1 with α1 + α2 < 1, and x be an observed value of X , let )(  denote the CDF 

of standard normal distribution. If the observed value x  results in rejecting the 

null hypothesis Ho: µ ≥ µo  at level , then the solutions of 
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and 
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                                                             (B.4) 

 

construct a 100(1- α1 - α2)% conditional confidence interval ( c

l , c

u ) of µ. 

 

         The above two formulas (B.3) and (B.4) can also be obtained from 

equations (3.3.3) and (3.3.4) by letting  2/1 z  in the second term in the 

denominator. In the situation of the two-sided test, if we let the right side critical 

value goes to  , then the test becomes the above one-sided test. 

    

         In the last example, if the observed value of x  changes to 755.5x , and 

all the other values keep unchanged, then for the hypothesis Ho: µ ≥ µo  vs. H1: µ 

< µo, the test statistic becomes 
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          So we still reject the null hypothesis at level 05.0 . According to result 

B.2, a 95% conditional upper confidence limit of µ can be obtained by solving 

equation (B.3), and a 95% conditional lower confidence limit of µ can be 

obtained by solving equation (B.4). Using the IMSL numerical library, we can 

find these two conditional confidence limits as the following. The solution for the 

equation (B.3) is c

u  = 7.504, and the solution for the equation (B.4) is c

l = 

4.110. Therefore, a 90% conditional confidence interval of µ following rejection 

of the null hypothesis Ho: µ ≥ µo is determined by  

 

( c

l , c

u ) = (4.110, 7.504) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

88 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

CONDITIONAL CONFIDENCE INTERVALS OF σ2 FOLLOWING REJECTION 

OF A TWO-SIDED TEST 
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          Suppose a random sample X1, X2, … , Xn is taken from N(μ, σ2),  X and S 

are the sample mean and sample standard deviation, let x and s are the 

observed values of X and S. A level α test for testing Ho: o   vs. Ho: o   

has the critical region  

 

K = { S2 : (n-1) S2/ 2
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          The null hypothesis is rejected if S2 K , and a conditional confidence 

interval of σ2 is computed only if the null hypothesis has been rejected. The 

conditional pdf of  S2 can be expressed in the following way 
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where 
2

2




 o  and H(·) is the CDF of chi-square distribution with (n-1) degrees 

of freedom. Under Ho, D =  . When 0  or  ,  the power D approaches 

1. 

 

         The unconditional CDF of  S2 is given by 
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         The conditional CDF of 2S following rejecting the null hypothesis Ho: o   

is given by 
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          The above formula tells us that if the observed value s2 of the statistic S2 

is small, i.e., if 2
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s , then the conditional CDF of S2 can be 

expressed as 
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          On the other hand, if the value of s2 is large, i.e., if 2
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the conditional CDF of S2 is 
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          The above two expressions of the conditional CDF of S2 only contains 

only one unknown parameter σ, so we can apply the general method mentioned 

in Chapter 2 to find a conditional confidence interval of σ2. And in this case, we 

still can verify numerically that the two functions )( 2

1 sh and )( 2

2 sh  which are 

constructed by the following two equations 
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are increasing functions. So apply the general method, we can obtain a 

conditional confidence interval of σ2 following rejection of the null hypothesis 

Ho: o  . We summarize the above derivations in the following result. 

 

[Result C.1] Suppose a random sample X1, X2, …… Xn is taken from a normal 

distribution N(μ, σ2). Let 0 < α1 < 1, 0 < α2 < 1 with α1 + α2 < 1, and s2 be an 

observed value of 2S . Let H(·) denote the CDF of chi-square distribution with (n-

1) degrees of freedom. If the observed value s2 results in rejecting the null 

hypothesis Ho: o   at level   by the condition 2
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construct a 100(1- α1 - α2)% conditional confidence interval ( 2

L , 2

U ) of σ2. 

 

          If the observed value s2 results in rejecting the null hypothesis Ho: o   
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construct a 100(1- α1 - α2)% conditional confidence interval ( 2

L , 2

U ) of σ2. 
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