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ABSTRACT

EFFECTS OF CURVATURE ON THE STRESSES
OF A CURVED LAMINATED BEAM

SUBJECTED TO BENDING

Thien Nguyen, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Wen S. Chan

In aircraft structural applications, curved laminated beam structures are often used as
part of the internal structure. If the curved composite structure is subjected to bending that
tends to flatten or compress the composite structure, interlaminar stresses can be generated in
the thickness direction of the composites. These interlaminar stresses are the major factor of
delamination failure. Besides these stresses, the in-plane stresses can be also affected by the
pre-existence of the beam curvature.

This research has studied the variation of both tangential and radial stresses with
respect to the changing in curvature, stacking sequence, and fiber orientation in a curved
laminated beam subjected to a bending moment. Three 3-D finite element models of the curved
laminated beam have been developed in PATRAN / NASTRAN. These models have been

validated for isotropic material, AI-2014-T6, and orthotropic material, T300/977-2

iv



graphite/epoxy, with all 0° plies lay-up. The finite element models of the curved laminated beam
provide solutions showing an excellent agreement with the exact solutions for both tangential
and radial stresses.

An analytical method to calculate the tangential stress was also developed for a curved
laminated beam subjected to a bending moment. The tangential stress results from this method
were compared well with the results from the finite element method. The analytical closed-form
expressions of axial, coupling and bending stiffness, as well as their characteristics were also

investigated.
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CHAPTER 1
INTRODUCTION

1.1 Composite Material Overview

1.1.1 History

The composites industry has been in place for over fifty years. It began in earnest in
the late 1940s and developed rapidly through the 1950s. Most of the composites processing
methods used today were developed by the year 1955. Some aircraft of composite materials
began to appear in the late 1930s and 1940s; normally these were plastic-impregnated wood
materials. New materials were continually being developed-true carbon fibers in the mid-1960s,
aramid fibers in the 1970s, and many advanced resins in subsequent years.

Fiberglass is the most common composite material, and consists of glass fibers
embedded in a resin matrix. Fiberglass was first used widely in the 1950s for boats and
automobiles, and today most cars have fiber glass bumpers covering a steel frame. Fiberglass
was first used in the Boeing 707 passenger jet in the 1950s, where it comprised about two
percent of the structure. By the 1960s, other composite materials became available, in particular
boron fiber and graphite, embedded in epoxy resins. The first major military production use of
boron fiber was for the horizontal stabilizers on the Navy's F-14 Tomcat interceptor. By 1981,
the British Aerospace-McDonnell Douglas AV-8B Harrier flew with over 25 percent of its
structure made of composite materials. Recently, in December 2009, the Boeing 787-8
Dreamliner flew with 50 percent of the primary structure-including the fuselage and wing- made
of composite materials.

1.1.2 Definition and Applications
What are composite materials? And why have composite materials been using widely?

Composite material consists of two or more materials macroscopically mixed together to form a



useful new material. This new material contains on constituent to reinforce the other
constituent. The composite reinforcement is often in the form of continuous fibers which are
high specific stiffness and strength. To take advantages of these unique properties of the fiber
reinforced composites, a structure often contains multiple layers laminated together with each
layer oriented in the direction of the pre-determined structural function. Due to lack of the
thickness reinforcement, laminate is prone to delamination resulting in loss of stiffness, strength
and fatigue life.

Composite materials are now the most preferred materials in aircraft structures. Many
aircraft are currently undergoing the design that takes advantage of composite materials for
primary structure applications. Composites are different from metals in several ways. These
include their largely elastic response, their ability for tailoring of strength and stiffness, their
damage tolerance characteristics, and their sensitivity to environmental factors. However,
unlike metals, composite materials often give little or no warning before weakening the
structural members in aircraft.

1.1.3 Curved Laminated Beam

Most of structural components in aircraft structures in general and in composite
structures in particular could contain curved beam regions or could be in the form of curved
panels. In structural applications, beam is one of the primary structures that used to support the
bending and transverse loads. Beams can be straight or curved. Examples include Z-stiffener,
angle clip, angle bracket and panel with supporting stringers in aircraft system, as shown in
Figure 1.1. Improper design of these curved beam/panel structures may lead to structural

failures.



Z-Stiffener Angle Clip

1

Angle Bracket

Radius region

Panel with supporting stringers

Figure 1.1. Examples of aircraft structural components.

1.1.4 Past works in Composite Curved Beam

Numerous of studies, researches had been done in the linear/or nonlinear for straight beams.
However, much less works have been done for the laminated beams, particularly the curved
beams.

Sayegh and Dong [1] in 1970 investigated the stresses and displacements of a three-
layer curved beam subjected to loading conditions of pure flexure and applied axial force using
both technical theory and orthotropic elasticity. It was shown that for a beam, whose radius of
curvature is large compared to the total thickness, technical theory gives adequate results
provided the properties of the layer are approximately the same. For large differences, the
prediction by the technical theory may be in considerable error.

Cheung and Sorensen [2] provided additional insight into the effect on the radial

stresses due to the axial loads that are present in the curved beams. Equations of tangential,



radial, and shear stress were developed for curved beams under an axial load. The theory of
elasticity with polar coordinates for plane stress applied to an orthotropic material was used.
The theoretical radial stresses predicted by Wilson's equation were verified by a rigorous theory
of elasticity solution as both solutions gave almost identical results. They concluded that the
effect of axial load on the radial stress in curved beams is small.

Graff and Springer [3] developed a finite element code to calculate the stresses and
strains in thick, curved composite laminates subjected to an arbitrary, but consistent,
combination of forces and displacements. The analysis was formulated using anisotropic,
bilinear quadrilateral and tri-linear hexahedral continuum elements. A computer code was then
written for either three-dimensional or two-dimensional (plane stress or plane strain) analysis of
curved laminates. The accuracy of the computer code was evaluated by generating numerical
results for three problems for which analytical solutions exist, and by comparing the numerical
and analytical results. In every case the agreement between the numerical and analytical
results was excellent.

Barbero et al. [4] investigated the bending behavior of glass fiber reinforced composite
beam. They showed that the bending stiffness is low compared to that of steel sections of the
same shape. They concluded that shear deformation effects are important for composite
beams. This is due to relatively low elastic modulus of glass fibers when compared to steel and
the low shear modulus of matrix resin.

Madabhusi-Raman and Davalos [5] later derived a form for the shear correction factor
for laminated rectangular beams with symmetric or asymmetric cross-ply or angle-ply lay-ups. In
this work, the shear correction factor was computed by equating the shear strain energy
obtained from the constitutive relations of first order shear deformable laminated plate theory to
that obtained using the “actual” shear stress distribution calculated a posteriori, i.e. computed

using the equilibrium equations of elasticity.



Kasal and Heiduschle [6] studied the application of fiber composite materials in
reinforcement of laminated wood arches subjected to radial tension. An experimental program
was designed that included testing of mechanical properties of composite tubes, studying
properties of the wood-composite tube interface, testing of the wood-steel rod interface, and
testing of models of laminated wood arches. The application of composite materials in radial
reinforcement of arches is feasible and possibly has advantages over the glued-in steel rods
because of greater flexibility of sizes and properties of reinforcing elements, low mass, and
potential ease of installation.

Wang and Shenoi [7] studied the through-thickness tension in curved sandwich beam
using an elasticity-theory-based approach. This approach ensures an accurate description of
the through-thickness stresses in curved sandwich beam. The critical load for instability of a
curved beam on an elastic foundation which is correspondent to the skin of sandwich beam, is
considered and compared with the result for a flat beam on an elastic foundation. Wang and
Shenoi also studied the flexural strength of sandwich beam to identify debonding and local
instability characteristics. The effects of various parameters, such as geometrical configuration,
stiffnress of the skin and core, on through-thickness tension stress and local instability
respectively are included in this study.

Qatu [8] in 2004 addressed the vibration of laminated curved beams and rings
subjected to combined loading, bending and shear loads. The fundamental equations and
energy functional for laminated curved beams and closed rings were developed and presented

in both exact and approximate solutions. These equations are very useful for design engineers.



1.2 Objectives and Approach to the Thesis

The composite curved beam regions are vulnerable to out-of-plane failures. Loads
which tend to open or close the curved beam regions result in tensile or compressive radial

stress, respectively, as shown in Figure 1.2.

o "(

-

‘n---‘| M
M
Radius-area Opening Radius-area Closing

Figure 1.2. Opening and Closing modes of composite curved beam.

The typical failure mode for this region is delamination in the radius area. Delamination
is one of the major causes of failure in laminated composite structures, in which the layers of

the material separate from each other. Delamination can be caused by interlaminar shear
stresses (7,,) between the layers, or tensile radial stresses (o, ) across the layers. Tensile
radial stress (out-of-plane stress) is the principal cause of delamination in the composite curved
beam structures (see Figure 1.3). Once the delamination takes place, the composite structure

could lose their strength and stiffness significantly, and may lead to a catastrophic structural

collapse.



Figure 1.3. Interlaminar stresses in radius region.

Interlaminar stress is a key parameter to be taken into consideration for any composite
structural design, especially for structures that contain radius areas. Composite structures are
often optimized for minimum weight and maximum strength. Thus, design of composite
structures to meet the structural specifications is a challenge problem. Understanding the
behavior of the interlaminar stresses in the composite curved beam structures is significant to
structural design in many fields. The variation of interlaminar stresses can lead to the changing
in geometry design of structural components. Thus, interlaminar stresses must be considered
in the design, validation, and certification phases of airframe development.

The primary objective of this study is to investigate the laminate stresses in a curved
laminated beam subjected to a pure bending moment. The study was focused on both radial
stress (out-of-plane stress) and tangential stress (in-plane stress) effects due to the curvatures,
stacking sequences and fiber orientations. An approximated closed-form relationship of
laminate constitutive equation is developed to understanding the characteristics of a curved
laminate. A 3-D finite element model of PATRAN / NASTRAN was developed to investigate
both radial and tangential stress distribution.

This study intended to provide the better understanding about the variation of radial
and tangential stresses due to laminate curvature, stacking sequence, and fiber orientation in

the curved beam.



1.3 Outline of the Thesis

Chapter 2 presents procedure to develop the geometry, the 3-D finite element model,
the material used and its boundary conditions. The validation of analyzed model and the
convergence for stresses are also included.

Chapter 3 presents a brief review of lamination theory. An analytical method to
calculate the tangential ply stress in a curved laminated beam is presented.

Effects of the tangential and radial ply stresses with the variation of curvature are
included in Chapter 4. Effects of the ply stresses due to stacking sequence such as
symmetrical versus unsymmetrical and balanced versus unbalanced are also investigated in
this Chapter. A comparison of the results between the analytical method and FEM method is
included in this Chapter as well.

Chapter 5 concludes the work and provides a future work.



CHAPTER 2

FINITE ELEMENT MODEL

This Chapter describes in detail the geometry, material used in the model, how the

model constructed, and the boundary conditions used. PATRAN / NASTRAN was used to

develop the required 3-D finite element model.

2.1 Geometry and Material Used

2.1.1. Geometry of Curved Laminated Beam
Three semicircular curved beam models with different curvatures were constructed.
The dimensions of these three models are listed in Table 2.1. Figure 2.1 shows the geometry of

a typical curved beam 3-D model.

Figure 2.1. Iso view of 3-D curved beam.



Table 2.1. Geometric parameters for three different curved beam models.

Configuration Inner Radius, Outer Radius, Mid-Plane Width
Ri (inches) Ro (inches) Curvature, R w (inches)
(inches)
Model | 0.2 0.2888 0.2444 1
Model Il 0.6 0.6888 0.6444 1
Model llI 1.8 1.8888 1.8444 1

2.1.2 Material of Composite Laminate
The material properties required to define the NASTRAN MAT9 card are shown in

Table 2.2 below. Four MAT9 cards are used for the curved beam, one for 0°-ply elements, one

(_§ 7~ )

Figure 2.2. Pure bending loading.

for 90°-ply elements, one for the -45%ply elements, and one for the +45°-ply elements.

Table 2.2. Required material properties for NASTRAN MAT 9 Card

Required Material Properties

E,

E>

Es

V12

Va3

Material 1, Material 2, and
Material 3 Directions

Correspond to the
Element Material

V31

G12

Figure 2.1 & 2.7.

Gas

GS'I

Directions Defined in
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The material used for a laminate composite is T300/977-2 graphite/epoxy. The lay-up of the
laminate is chosen as symmetric and balanced laminate to eliminate the coupling effects of
bending and shear in the flat laminate. The stacking sequence is [-45/+45/90,/0,]s. The
unidirectional orthotropic material properties for graphite/epoxy at 70°F/ambient temperature are
tabulated in Table 2.3.

Table 2.3. Material properties for Graphite/Epoxy at 70° F Ambient

Lamina Properties for Graphite/Epoxy at 70°F/Ambient
Ei =21.75 Msi
E, = 1.595 Msi
E; = 1.595 Msi
Material 1, Material 2, and
Vi, =0.25 Material 3 Directions
Vi, =025 Correspond to the
= 0.45 Element Material
Vog =Y : Directions Defined in
Gi2 = 0.8702 Msi Figure 2.1 & 2.7.
G23 = 0.5366 Msi
G13 =0.8702 Msi
toy =0.0074 in

The constants E4, E; and E; are the nominal Young moduli of composite ply. The subscripts 1,
2, and 3 are fiber direction, transverse to the fiber direction, and out-of-plane direction,

respectively. The constants G, G»3 and G43 are the shear moduli with respect to 1-2, 2-3, and
1-3 planes, respectively. The constantsv,,,v,; and v,; are Poisson’s ratios. Material property

values for the NASTRAN MAT9 card per Table 2.2 requirement are derived from the

graphite/epoxy lamina property values tabulated in Table 2.4.

11



Table 2.4. Material properties for Graphite/Epoxy at 70° F Ambient in NASTRAN MAT 9

Material Properties for NASTRAN MAT9 for
Graphite/Epoxy at 70°F/Ambient

E, =21.75 Msi
E, = 1.595 Msi
E; = 1.595 Msi
025 Material 1, Material 2, and
Vig =Y. Material 3 Directions

V4 =0.0183 Correspond to the
V. =045 Element Material

23 : Directions Defined in
G12 = 0.8702 Msi Figure 2.1 & 2.7.

Gg3 = 0.5366 Msi
G31 =0.8702 Msi

t,, =0.0074 in
E .
Where, Uy = Uy X —> = O.ZSX@ =0.0183
E, 2175

2.2 Development of Finite Element Model

2.2.1 Modeling Creation

PATRAN has been used to develop the 3-D solid finite element model. PATRAN uses
the Global Model Tolerance when it creates geometry. The default value is 0.005. When
creating geometry, if two points are within a distance of the Global Model Tolerance, then
PATRAN will only create the first point and not the second. This rule also applies to curves,
surfaces, and solids. Due to the thickness of each ply in the curved beam model is 0.0074 inch
(greater than the default value 0.005), the Global Model Tolerance is set at 0.0005 to improve
the model usability. The procedure for generating 3-D Solid FEM for this study is shown below.
1. The 1% curved surface with inner radius Ri was created.
2. Then 11 more curved surfaces were created by using the “Normal to Surface” method. The

distance between each surface is 0.0074 inches.

3. 12 solids were created from these 12 surfaces with the thickness of 0.0074 for each solid.

12



Mormal to Surface
Direction

The 15T Curved Surface The 12 Curved Surfaces Detail “iew

Figure 2.3. The creation of 12 surfaces.

2.2.2 Meshing Generation
At first, the mesh seeds are defined for each edge differently. By doing this, the edges
of solid model will have a uniform element edge length specified by a total number of elements.

The mesh seed will be represented by small circles in Figure 2.4 below.

24 mesh seeds
along these edges

30 mesh seeds along these curves . T

B0 mesh seeds along these edges

Figure 2.4. The defined mesh seeds of 3-D solid model.
The finite elements for this 3-D Solid Model were then created by using Isomesh method with

Hex 8 topology (Hex element shape with 8 corner nodes).

13



Hax8
Figure 2.5. Hex 8 element.
This Isomesh created equally-spaced nodes along each edge in the model. A real value will be
assigned to the element edge length for a given mesh. This value is known as global element
edge length. This global element edge length was calculated automatically as 0.0264. This
value can be adjusted in case of encounter difficulties.
The action of equivalence was applied for the entire model with equivalencing tolerance of
0.0005 to delete any duplicated nodes or extra nodes in the model. This 3-D Solid Model
contains 43200 Hex 8 elements with the aspect ratio of 9.7 for all elements generated. The

meshing is shown in Figure 2.6 below.

Figure 2.6. Isomesh of 3-D solid model.
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2.2.3 Creation of Local Coordinate Systems

The composite curve beam is modeled by NASTRAN 3-D CHEXA Solid elements. The
curved beam model contains 12 plies lay-up. Each ply is explicitly modeled by two rows of
elements. The model was divided into 30 groups, as shown in Figure 2.7. By doing this, the
curved beam is represented by several straight beam elements. Each group was assigned to
different local coordinate systems, corresponding to the angle of fiber orientation of each layer
of laminated composite. The material X-direction, Y-direction and Z-direction for the elements
in the curved beam model were established to be the fiber direction (material direction 1), the
transverse to the fiber direction (material direction 2) and the out-of plane direction (material
direction 3), respectively. Four local coordinate systems were assigned to each element group.
At first, a local coordinate was created for 0° ply. Then, this local coordinate was rotated at -45%
+45° and 90% This procedure created four different local coordinates which associate to four
different angle of fiber orientation: 0°, -45°, +45° and 90°. The creation of local coordinates for

each element group is shown in Figure 2.8.

1-Fiber direction
2-Transverse direction
Group #1_—7" 3-Ount of plane direction

T 1 Group of elements

Group #30

Figure 2.7. 30 Groups of elements along the transverse direction.
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Coordinate for 907 ply

X
Y
Rotates +457 counter
clockwise abowut Z-axis Fi
@ Y
z
X Coordinate for 0° ply

Coordinate for +457 ply

Rotates 907 counter
clockwise abont Z-axis

7

Rotates 457 clockwise
about Z-axis

Z

X

Coordinate for -457 ply

Figure 2.8. The creation of local coordinate for each ply.

2.2.4 Boundary and Loading Conditions

Two boundary conditions were enforced with respect to the global coordinate system

1. Because of the symmetry in geometry of the curved beam model, all nodes at one end were

constrained. There were no translation and rotation for these nodes on x, y, and z-direction

(Ux = Uy = Uz =0; Rx = Ry = Rz =0).

2. All nodes at another free end (dependent nodes) were constrained to a dummy node
(independent node) on the same surface by using the Multi-Point Constraint method (MPC).
The pure bending moment of Mz = -100 Ibs-in (respect to global coordinate in Figure 2.9)
was applied at the independent node. This moment tends to open the curved beam regions

resulting in tensile radial stress (out-of —plane stress).

The boundary conditions are shown in Figure 2.9 below.
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The Red indicates that all the nodes
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The Green indicates the MPC.
2

Global Coordinate Systern

Figure 2.9. Two boundary conditions respect to global coordinate system.

2.3 Model Validation

The purpose of this section is to validate the curve beam FEM using the closed-form
solution. The geometry, meshing, elements, boundary conditions, and loading conditions for
this curve beam remained the same as defined in the sections above.

2.3.1 Isotropic Material

2.3.1.1 FEM Result

An isotropic material, Al-2014-T6, was used instead of T300/977-2 graphite/epoxy.
Because of the uniformity in all directions, one cylindrical coordinate system was used for the

entire model. The material properties for Al-2014-T6 are shown in Table 2.5.
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Table 2.5. Material properties for Al-2014-T6 in NASTRAN MAT 1

Material Properties for NASTRAN MAT1
for Al-2014-T6

E 10.6 Msi
14 0.35
G 3.9 Msi

For the most accuracy in the results from FEM, a group of through thickness elements in the

middle of the model was selected to eliminate the “edge effective”.

Elem #24

Radial Direction

Circurmferential
Direction

)

Z Zm

\.

Bottom Layer

lso %iew of Center Graup Front “iew of Curved Beam Model

Figure 2.10. Center group and its radial and circumferential directions.

The radial stress and tangential (along circumferential direction) stress at the Centroid of each
element in center group, as shown in Figure 2.10, were recorded from the output results in
PATRAN. Table 2.6 summarizes these stresses respect to radial position (the distance from

the center of curved beam, as shown in Figure 2.14, to the centroid of each element).
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Table 2.6. The recorded stress values from FEM for isotropic material.

Layer# | Elem# | Radial Positionr | Radial Stress o, Tangential
(inch) (psi) Stress gg (psi)

1 1 0.60185 3.12E+02 8.08E+04
2 0.60555 7.68E+02 7.33E+04

> 3 0.60925 1.18E+03 6.59E+04
4 0.61295 1.53E+03 5.86E+04

3 5 0.61665 1.84E+03 5.14E+04
6 0.62035 2.10E+03 4.43E+04

4 7 0.62405 2.31E+03 3.73E+04
8 0.62775 2.48E+03 3.04E+04

5 9 0.63145 2.60E+03 2.35E+04
10 0.63515 2.69E+03 1.67E+04

6 11 0.63885 2.73E+03 1.00E+04
12 0.64255 2.73E+03 3.39E+03

7 13 0.64625 2.69E+03 -3.15E+03
14 0.64995 2.62E+03 -9.63E+03

8 15 0.65365 2.51E+03 -1.60E+04
16 0.65735 2.37E+03 -2.24E+04

9 17 0.66105 2.20E+03 -2.86E+04
18 0.66475 1.99E+03 -3.48E+04

10 19 0.66845 1.75E+03 -4.09E+04
20 0.67215 1.48E+03 -4.70E+04

11 21 0.67585 1.19E+03 -5.30E+04
22 0.67955 8.64E+02 -5.89E+04

12 23 0.68325 5.21E+02 -6.48E+04
24 0.68695 1.44E+02 -7.06E+04

2.3.1.2 Exact Solution

Consider a curved beam subjected to equal end couples moment M such that bending
takes place in the plane of curvature, as shown in Figure 2.11. This beam is characterized by a
constant rectangular cross section and a circular axis. The axis of symmetry of the cross
section lies in a single plane throughout the length of the member [9]. The dimensions of this
curved beam are shown in Table 2.7 below.

Table 2.7. Dimensions of curved beam model

Dimensions of Curved Beam Model
Inner radius, a =Ri 0.6in
Outer radius, b = Ro 0.6888 in
Width, w 1in
Height, h 0.0888 in
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) h
Elehuw\t Ro R,  Mid-Plane f—— t f

S

Pure Bending Morment Cross section

Figure 2.11. Curved beam subjected to bending moment and its cross section.

The radial and tangential stresses were calculated by following equations:

2 2
o, = [1- 25 (0] [1-2: (2]
tb°N b a r a
o, = 4M . l—a—2 (l+|n£j— 1+£ -(Ingj (Section 5.13, [9])
“ th?N b? a r? a o

2 \2
Where, N = 1—a—2 —4—2| z(bj
b b a

M =100 Ibs—in,andR, <r<R,;(a=R, ;b=R,)

These equations are applicable throughout the curved beam. The radial stresses o, as

determined from the equation above are found positive (tensile). The tangential stresses o,

are found positive (tensile) for the elements below the mid-plane, and negative (compressive)

for the elements above the mid-plane, as shown in Figure 2.11. Table 2.8 summarizes the
calculated radial stresses o, and tangential stresses o ,with respect to 24 different radial

positions.
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Table 2.8. The calculated stress values from exact solution.

Layer# | Elem# Radial Position Radial Stress Tangential
r (inch) o, (psi) Stress gy (psi)

1 1 0.60185 2.40E+02 7.61E+04
2 0.60555 6.81E+02 6.89E+04

2 3 0.60925 1.07E+03 6.18E+04
4 0.61295 1.42E+03 5.47E+04

3 5 0.61665 1.72E+03 4.78E+04
6 0.62035 1.97E+03 4.09E+04

4 7 0.62405 2.18E+03 3.42E+04
8 0.62775 2.35E+03 2.74E+04

5 9 0.63145 2.48E+03 2.08E+04
10 0.63515 2.57E+03 1.43E+04

6 11 0.63885 2.62E+03 7.82E+03
12 0.64255 2.63E+03 1.42E+03

7 13 0.64625 2.60E+03 -4.90E+03
14 0.64995 2.54E+03 -1.11E+04

8 15 0.65365 2.45E+03 -1.73E+04
16 0.65735 2.32E+03 -2.34E+04

9 17 0.66105 2.16E+03 -2.95E+04
18 0.66475 1.97E+03 -3.54E+04

10 19 0.66845 1.74E+03 -4.14E+04
20 0.67215 1.49E+03 -4.72E+04

11 21 0.67585 1.21E+03 -5.30E+04
22 0.67955 8.95E+02 -5.87E+04

12 23 0.68325 5.57E+02 -6.44E+04
24 0.68695 1.92E+02 -7.00E+04

The radial stresses and tangential stresses in Table 2.6 and Table 2.8 were plotted in two
different graphs with respect to the variation of radial positions for comparison purposes. The
graphs in Figure 2.12, and Figure 2.13, as shown on the next page, show a good agreement
between FEM results for isotropic material and Exact solutions. Since these results compared

well, the isotropic curved beam model is validated.
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Exact vs. FEM
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Figure 2.12. Radial stress comparison between isotropic FEM and exact solution.
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Figure 2.13. Tangential stress comparison between isotropic FEM and exact solution.
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2.3.2 Orthotropic Material

An orthotropic material, T300/977-2 graphite/epoxy, was used. The required material
properties for NASTRAN MAT9 Card are shown in Table 2.4. All 0° plies lay-up was applied for
this curved beam model. The material properties of T300/977-2 graphite/epoxy for OO-pIy
elements were assigned to a different element group associated with a different local coordinate

system. There were thirty element groups associated with thirty local coordinate systems.

Center of
. Curved Beam

Figure 2.14. Local coordinate system for each element group.

The material X-direction (perpendicular to the Y-Z plane), Y-direction, and Z-direction were
established to be the fiber direction, the transverse to fiber direction and the out-of plane
direction, respectively. The behavior of the curved beam with the orthotropic material contains
all 0° plies lay-up similar to the curved beam with the isotropic material. The recorded radial
and tangential stress values, as shown in Table 2.9, were compared to the results from the

isotropic material and exact solution in Section 2.3.1.
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Table 2.9. The recorded stress values from FEM for orthotropic material

Layer# | Elem# | Radial Positionr | Radial Stress o, Tangential
(inch) (psi) Stress gy (psi)

1 1 0.60185 2.97E+02 7.70E+04
2 0.60555 7.31E+02 6.98E+04

5 3 0.60925 1.13E+03 6.27E+04
4 0.61295 1.47E+03 5.57E+04

3 5 0.61665 1.76E+03 4.87E+04
6 0.62035 2.01E+03 4.19E+04

4 7 0.62405 2.22E+03 3.51E+04
8 0.62775 2.38E+03 2.84E+04

5 9 0.63145 2.50E+03 2.18E+04
10 0.63515 2.58E+03 1.52E+04

6 11 0.63885 2.62E+03 8.77E+03
12 0.64255 2.63E+03 2.38E+03

7 13 0.64625 2.59E+03 -3.93E+03
14 0.64995 2.53E+03 -1.02E+04

8 15 0.65365 2.43E+03 -1.63E+04
16 0.65735 2.29E+03 -2.24E+04

9 17 0.66105 2.13E+03 -2.85E+04
18 0.66475 1.93E+03 -3.44E+04

10 19 0.66845 1.70E+03 -4.04E+04
20 0.67215 1.44E+03 -4.62E+04

11 21 0.67585 1.16E+03 -5.20E+04
22 0.67955 8.42E+02 -5.77E+04

12 23 0.68325 5.07E+02 -6.33E+04
24 0.68695 1.43E+02 -6.89E+04

The stress data from Table 2.6, Table 2.8, and Table 2.9 are combined together to generate two
separate plots for comparison: one for the radial stress, and one for the tangential stress, as
shown in the Figure 2.15 and Figure 2.16 on the next page. The values of radial and tangential
stresses for orthotropic material with all 0° lay-up are comparable to the isotropic material
solution and exact solution. This is the good evidence to confirm about the validation of the

composite curved beam model.
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Figure 2.15. Radial stress comparison for isotropic, orthotropic and exact solution.
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Figure 2.16. Tangential stress comparison for isotropic, orthotropic and exact solution.
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2.4 Convergence

The convergence study was conducted for an isotropic semicircular curved beam,
Model | (mid-plane curvature Ry = 0.2444 inches). The geometry dimensions of this Model | are
shown in Table 2.1. The isotropic material, Al-2014-T6, was used. Due to the uniformity in all
direction of isotropic material, one cylindrical coordinate system was used for the entire model.
The meshing, boundary conditions, and loading conditions remained the same as defined in
Section 2.2. This curved beam model contains 12 plies. Each ply is explicitly modeled by one
row of element. The mesh of this analyzed curved beam model was refined six times. The
number of elements was recorded as: 5400, 7200, 9000, 10800, 12600, and 14400 elements.
The tangential (in-plane) stress and radial (out-of-plane) stress of twelve different elements from
selected center group (through thickness) in this curved beam model were examined. The

values of these stresses were recorded and plotted for convergence examination.

Elem #12

™, “¢——— Top Layer

e ot

Figure 2.17. Selected center group.

Figure 2.18 and Figure 2.19 on the next page show that stresses approach to a constant with
the increasing number of elements in the model. These figures highlight that the tangential and

radial stresses for isotropic curved beam converged.
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Figure 2.18. The convergence of tangential stress.
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Figure 2.19. The convergence of radial stress.
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CHAPTER 3

ANALYTICAL METHOD FOR CURVED LAMINATED BEAM

This Chapter will cover the development of equations used to calculate the tangential
ply stress o,in the curved laminated beam under bending based upon the Classical

Lamination Theory (CLT). A brief description of the Lamination Theory is depicted below. The
detail of derivation can be found in Ref. [10]. The constitutive equation for a narrow laminated

beam is also included.

3.1 Review of Lamination Theory

The overall behavior of a multidirectional laminate is a function of the properties and
stacking sequence of the individual layers. Classical Lamination Theory (CLT) is the most
commonly used to analyze the behavior of laminated plate. It is also used to evaluate strains
and stresses of plies in the laminate. CLT is based on the following assumption to analyze the
behavior of laminate:

1. Each layer (lamina) of the laminate is quasi-homogeneous and orthotropic.
2. The laminate is thin with its lateral dimensions much larger than its thickness. Hence,
the laminate and its layers are in a state of plane stress.
3. All displacements are small compared with the thickness of the laminate.
A laminate contains multiple layers. Each layer has its preferred fiber orientation. Hence, it is
convenient to use one coordinate system to represent the fiber direction of a layer and another
coordinate system common to all the layers for the laminates. These coordinate systems are

described in Figure 3.1.
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Figure 3.1. Coordinate systems of lamina and laminate.

3.1.1. Elastic Stress-Strain Relationship of Lamina

A 0° lamina is treated as an orthotropic thin layer material which requires four
independent material constants sufficiently to specify their elastic structural response. These
constants refer to E1 and E, being the Young’s moduli of lamina along and transverse to the
fiber direction, respectively, v4,, the Poisson’s ratio and G;,, the shear modulus of lamina under
a loading along the fiber direction. Since the composite layer is very thin, the plane stress
condition is considered. The generalized Hook’s law gives the stress-strain relationship of 0°

lamina and the matrix [Q] in terms of engineering constants is given as:

Q, = E, __E _ By vy
1 = 2 = 1 = =
1-vvy 1-vvy 1-vpvy 1-vypvy
Qi =G, Qie=Qp =0 (3-1)

For a lamina at angle 6 with respect to the reference axes x and y, the stress/strain relation in

the x-and y-coordinates is given as:

where |.6x—yJ matrix (Q-bar matrix) is obtained by transforming [Q1.;] matrix of lamina from 1-2

material coordinates to the laminate x-y coordinates. Mathematically, it can be expressed as:
29



Ryy = [To (- O))- Q12 ] [T (0)] 39
[To(+0)] and [T(+06)] are the transformation matrices that relate the stress and strain

components in x-y coordinates to the 1-2 coordinates, respectively. They are defined as where

m=cos0, n= sind and 6 is the fiber orientation of the lamina [11].

m2 n? 2mn m?2 n2 mn
[T, (0)]=| n> m? —2mn |and[T.(0)=| n? m? -mn | (3-4)
—mn mn (m?—n? 2mn  —2mn m2—n2)

Substituting equations 3.4 and 3.1 into 3.3, the components of the Q-bar matrix can be explicitly

expressed as:

Qq1 =m*Qq1+n*Qpp +2m*n?(Qy, + 2Qg6)

Quz =m?n?(Qu1 + Qpp —4Qgg) + (m4 + n4b12

Qg2 =n*Q11+m*Qypp +2m*n?(Qy, +2Qgg) (3-5)
Q16 =m°n(Qq1 ~ Q12 —2Qps) ~Mn3(Q22 — Q12 — 2Qgp)

Q6 =mn°(Q11 — Q12 —2Qe6) ~M*N(Q22 ~ Q12 — 2Qg5)
Qgs =M?n?(Qqy + Q2 —2Q12 —2Qge) + (M* +1n?) Qg

Strains at any point in the k™ ply of a laminate can be calculated using the following relationship:
y

0

8X gX X
0

g, | =] |+z, K, (3-6)
0

7xy K 7xy kxy

where sxo, eyo and \(xy0 are the mid-plane strains, and «, k, and K,, are the mid-plane curvatures.
zy is the z- coordinate of the interested point within the K" layer measured from the mid-plane to

the lamina and g, €, and vy, are the strains in the K™ ply.
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3.1.2. Constitutive Equation of Laminate (Lamination Theory)

The structural response of a laminate is represented by the strains and curvatures
about its mid-plane. The total in-plane forces [N] and moments [M] per unit width of the

laminated plate are obtained by integrating forces of each ply through the laminate thickness as

shown in Figure 3.2. Mathematically, they are expressed as:

X noz | 9x
, :Zj o, | -2dz (3-7)

k

X N Z Oy
y :Zj o, dz and

k=1,
k-1
T
Xy

zZ z z
=L

Lz
Xy z'xy

k Xy k
where z,.1and z, are the distances from the reference plane (often chosen at the mid-plane of

the laminate, as shown in Figure 3.3) to the kth-layer’s lower and upper surfaces, respectively.

Figure 3.2. Element of single layer with force and moment resultants.
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Figure 3.3. Laminate plate geometry and layer numbering system.

Substituting Equations 3.2, 3.6 into 3.7, the general load-deformation relation of laminate can be

written in terms of the mid-plane strain and curvature as shown below:

MEIA
The [AL [B] and [D] matrices are given as

[Al= Z[Q” (2 -2,,)

[B] = Z[Qxy] (2 -2¢) (59)

[D]=2 Z[QX Ji@ -z )

where z, and z; are the z-coordinates of the bottom and upper surfaces of the K" layer,

respectively. The matrix [(Sx_y ]k is the stiffness matrix of k™ layer.
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The [A] matrix is called in-plane extensional stiffness matrix because it directly relates the in-
plane strains (83 , 83 , yfy ) to the in-plane forces per unit width (N,, N, N, ). The [B] matrix is

called extensional-bending coupling stiffness matrix. This matrix relates the in-plane strains to

the bending moments and curvatures to in-plane forces. The [D] matrix is the bending stiffness

matrix because it relates the curvatures (K,, K, K, ) to the bending moments per unit width
(anMy!Mxy)'

3.2 Curved Laminated Beam

Beams are the primary structural members that carry bending loads. Beams are

slender and are considered as one-dimensional members. Consider a curved beam as shown.

Figure 3.4. The configurations of curved beam and its cross section.

Let pp' be the mid-axis of the beam. The differential element at the k™ layer from the mid-axis

is mn . Then, the elongation after deformation can be written as:
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(R+2)d6-¢, (3-10)
This elongation can be also described in terms of the mid-plane strain &, and their curvature x .
R-dé(s, +2-x) (3-11)

Combining 3-10 and 3-11, we have:

g, (6y+2-K) (3-12)

:R+z

For simplicity, the stress o, at the K™ layer can be approximated by:

Tox = Quox Eox (3-13)

The resultant force and moment per unit width, N ,and M , are obtained as:

0, ceh, Doeh — R
N, = é - 0,z = kz_;jhlegﬁ,k ﬁ(‘go +2-k)dz
= A&, +Byk, (3-14)
N oh
M, = | 0puz-dz=Bys, +Dyk, (3-15)
k=1 Kt
where,
n_ z R-dz
A =
06 k::LQQH,k 'kal R +7
o, 7 R-zdz
B =
00 kleee,k _LH R+ 7
D =S o J-zk R-z%dz
09 - 0k ) . R4z
Explicitly,
5\ = R+z
A, =R In—* 3-16
" ;Qm Riz, (3-16)
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5= R+z
B,, = RZQ%],{(ZK ~-2,,)-R- In—k} (3-17)

5 — 1 R+z
Dys = RZQ%,{E(ZE -22,)-R(z ~2,,)+R? ln(#ﬂ (3-18)

R+z,,

Combining Equations 3-14 and 3-15, we have:

1
[N%}:{A% Bee}{go} or |:80:|:|:A99 Bee} .{Nea} (3-19)
M Bw Das || Ko Ky Bw D M,

Since Mgg is the only load applied to the laminated curved beam, Equation 3-19 can be re-

written as:

where A = A,,D,, — B},
A, . By, and D,, are referring to the extensional, coupling and bending stiffness along the &

direction, respectively. They are equivalent to A,,, B,, and D,, for the plate laminate as the
mid-plane curvature R approaches tooo. This is proved and shown in Appendix B. It is also

noted that B,,is not equal zero even if the laminate is symmetric with respect to its mid-plane.

With the values of ¢,and kx,, the in-plane stress o, at any given position can be obtained from

Equations 3-12 and 3-13.
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CHAPTER 4

STRESS EFFECT OF CURVATURE AND STACKING SEQUENCE

This Chapter discusses the tangential and radial stresses due to the variation of the

laminate curvature. The characteristics of the axial, bending and their coupling stiffness of the

curved beam are also investigated.

4.1 The Curvature Effect on Laminate Stresses

Three curved beam models with the difference in geometry dimensions were examined.
The meshing, number of elements, boundary conditions, and loading conditions remained the
same as defined in Chapter 2. Four local coordinate systems were assigned to each element
group. Each of these four local coordinate systems was associated to a different angle of fiber
orientation: 0°, -45°, +45° and 90°, as shown in Figure 2.4. The T300/977-2 graphite/epoxy
laminate with stacking sequence of [+45/-45/90,/0,]s, quasi-orthotropic material, was used for
these three models. The required material properties for NASTRAN MAT9 Card are shown in
Table 2.4.
4.1.1 Stress Distribution

Model | with the mid-plane curvature of Ry = 0.2444 inches was examined and analyzed
in PATRAN/NASTRAN. The geometrical dimensions of this Model | are shown in Table 2.1.
Four plies (0° ply#6, -45° ply#2, +45° ply#1 & and 90° ply#4) from the lower half and four plies
from the upper half (0° ply#7, -45° ply#11, +45° ply#12, and 90° ply#9) of analyzed model were
selected to show different stresses distributions. The ply in the model and its sequence are

shown below.
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Table 4.1. Ply sequence for 12-ply composite curved beam.

Ply # Orientation
1 +45°
2 -45°
3 90°
4 90°
5 0°
6 0°
Mid-Plane
7 0°
8 0°
9 90°
10 90°
11 -45"
12 +45°
z
|]I]
Color Codes
+450 ply
_450 ply 90°
a0 ply : :

Cater Lay-up

UpperHaIf‘\_

) "«
< - ~ Mid-plane
Lower Half
Ply 1
[nner Lay-up

Each Ply i = 0.0074% iz modeled by two rows of Hex elements
hy

Front Wiew of Composite Curved Beam

Figure 4.1. The lay-up sequence of composite curved beam.

The stress distributions of eight selected plies are shown in the figures over the next pages.
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4.1.1.1 Stress Distribution for 0° ply

Figures 4.2 and 4.3 show the tangential and radial stress contours of ply #6 and #7. As
shown, the higher stress is located at the vicinity of both free edges of the curved and straight
sides. Both tangential and radial stresses are somewhat uniform at the place away from the

free edges.

Tangential stress oy of ply #6 Tangential stress og of ply #7

3.77+008,
3 42~DO3I 257+008

2
= ]

3.06+008 1.98+008
271+008 1.60+003
235+008 1.21+008,
2 DU'D\]Sl 8 "E-DD"
1 &4-003‘ -i-Dv007l
1.28+003 B37+001
9 SEoDUE‘I 3 SE'GDEI
B.82+002 =718+002;
228+002 -1.10+008
-1.26+002) =1 49+008
-4 §0+002;
-8.35+002 7 -2.26+003 88
-1.19+003 : -2 654008
=1 54+008 “304+008
default_Fringe detaull_Fongs
Max 3.77+008 @Nd 50567 Max2 76+003 @Nd 32427
Min -1 54+003 @Nd 34036 Min -3 04+003 @Nd 37818

Figure 4.2. The distribution of tangential stress og in 0° ply.

Radial stress o, of ply #6 Radial stress o, of ply #7
8.23+003, 8124003,
7 BEvUOZiI 7 600003'
7 0‘3+003I 688+003
6.51+003 6.26+003
6.94+003, 5 64+003,
6.37+003 5.02+003
4.79+003 4.40+003
4.22+003, 3.78+003;

P 2 654003 2164003

3 D:"DOGI 2 540003=

2504003, 1.92+4003
1.934003] 1304008
1.36+003] 6814002
78240028 6114001 5%
2.09+002" 5 594002
-3.64+002 -1.18+003
defaull_Fringe default_Fringe
Max 8 23+008 @Nd 81739 Ma & 124003 @Nd 33509
Min -3 644002 @Nd 34088 Min -1 18+008 @Nd 87820

Figure 4.3. The distribution of radial stress o in 0° ply.
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4.1.1.2 Stress Distribution for -45° ply and +45° ply

The 0 and o, stress contours are plotted in Figures 4.4 and 4.5 for -45° ply and Figures
4.6 and 4.7 for +45° ply. Comparing og of plies #1 and #2, the maximum magnitude occurs
along its fiber direction. The radial stress seems to be not significantly affected by the positive

or negative fiber direction.

Tangential stress og of ply #2 Tangential stress og of ply #11

1 OQ+OO5I -1 62+004I
1 02*005. 2 38-004.

AE6+004 -5.18+004
8.85+004 -3 88+004
22+003 §.20+004,
762+004
6.84+004 -6.16+004
1094005 6.16+004 6.90+004

5.48+004 -7.66+004)

841 -omi

4 80+004=

4.12+004, -9.16+004;
5444004 -9.91+004
2.76+004 -1.07+005
2.05+004 14+005;
1.40+004 -1.22+005
7224003 -1.28+005
default_Fringe default_Fringe :
ax 1.09+006 @Nd 9486 Max-1.62+004 @Nd 60450
Min 7.22+003 @Nd 7627 Min -1.29+006 @Nd 66700

Figure 4.4. The distribution of tangential stress g in -45° ply.

Radial stress o, of ply #2 Radial stress o, of ply #11
B 39+004 O‘OOSI
] 6‘!‘00-:I 1 8e+003.
4 5600 1 22400588
4 794003 5.72+002

=7.17+001

3 waczl
2 w'ac\:-'l

-7.16+002]

219+008 -1 35+003I
1 45+002 -2.00+003
T84 ‘0(!'] 2 Si‘ﬂoﬁl
835001 -3 29+003I
5.1 7+ 002 -8 gsmoal
=1 32+004 -4 53~003I
5 22*003.
-5.87+003
=342+003 -6.61+008"
4124008 -1.16+003
detault_Fringe detault_Fringe ©
Mt 6 30003 @Nd 0465 Max 2.50+003 @Nd 56134
Min -4 12+003 &Nd T554 Min -7.15+003 @Nd 58622

Figure 4.5. The distribution of radial stress o, in -45° ply.
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Tangential stress g of ply #1 Tangential stress og of ply #12

1 084005I
1.01 +005I

9.43+004

8.74+004

8.04+004
I +9.60+004
7.36+004

6.66+004

5.97+004

§28+004

4.59+004

3.90+004

3204004

251+004
82*004ﬁ‘

1134004
4384003
default_Fringe
Max 1.08+006 @Nd 3782
Min 4 38+003 @Nd 2690

-1.28+004,

-1 33*004‘
2 39+004I
-2.84+004
-3.60+004
-4.06+004
-461+004
-5.16+004,
-5.72+004,

28+004
-6.27+004
-6.83+004
-7.38+004

=7.94+004

-8.49+004

-9.06+004

-9.60+004
default_Fringe :
Max -1.28+004 @Nd 64387
Min-9.60+004 @Nd 64295

Figure 4.6. The distribution of tangential stress oy in +45° ply.

Radial stress o, of ply #1 Radial stress o, of ply #12

6.35+003, 251 *003.
5 62+003 1 as¢oo3l

4904003 1214003

4184003 5684002

3464008 =7.79+001
I -7.18+003 I
2 74+oosl A -1.24»002.

2014008 A 1374003

1.29+003 =2.02+003;

5704002 266+003

14003

-152+002 3314003

=8 T4+002 -3 96+003,

-1.60+003 -4 B0+003,
-2.52+003 ~E 5 25«)03.
4 Dd*Dﬂsiﬁ- —5_39+003E‘|

-3.76+003 654+003

~4.48+003 7.18+003

default_Fringe : default_Fringe

Max 6 354008 @Nd 3379 Max 2.51+003 @Nd 62374

Min-4.45+003 @Nd 3812

Figure 4.7. The distribution of radial stress o in +45° ply.
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4.1.1.3 Stress Distribution for 90° ply

Since the moment is applied in the 8 direction, 90° ply is the major load carrying ply of
the laminate in this case. Figures 4.8 and 4.9 show the tangential and the radial stress contours
of ply # 4 and ply #9, respectively. og is the highest stress component among all the plies in the
laminate. If there is no curvature in the laminate, gg in ply #4 and #9 should be equal in
magnitude but opposite sign because of symmetrical laminate. However, this is not the case for

the curved laminate. As shown, ggin ply #4 is larger than ogin ply #9.

Tangential stress og of ply #4 .23*004. Tangential stress og of ply #9
TT+004]
6314004
5.85+004
5 40+004,

Ay 4241004

4.45+004

&
4.02+004,
356+ OOdI
3 \OfDOdI

50+003

\ 2.64+004

2.18+004

1.73+004)

8.09+003

350+003 -4 44+003
default_Fringe setan_Frings
Max 7.23+004 @Nd 19221 Map | T+ 008
Min 3 60+003 @Nd 20818 Wi =4 44003 @Na 39700

Figure 4.8. The distribution of tangential stress gg in 90° ply.

Radial stress o, of ply #4 Radial stress o, of ply #9

8.28+003,

i °I 7 99*003.
78]*003. 732’003l
7.33+003' 6 65+003

6.85+003 5084003

6.38+003 5314003

Fali 464+003

6.43+003 3.98+003

4.95+003)

4 48+003=

: 3.31+008

S 154003
2 64+003
4.00+003
353+003 1.30+008

3.05+003; 6.36+002

2.57+003] -3.38+001

1 Q'hOOGi

2.10+003 -7.02+002
1.62+003 -1.37+003
1.16+008 -2.04+003
defauli_Fringe default_Fringe
Max 8 28+003 @Nd 22688 Max 7.99+003 @Nd 37350
Min 1.16+003 @Nd 20863 Min -2.04+003 @Nd 39711

Figure 4.9. The distribution of radial stress o, in 90° ply.
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4.1.2 Stress Comparison

Curved beam Model I, Model Il and Model Il with three different mid-plane curvatures
were examined and analyzed using PATRAN/NASTRAN. The geometrical dimensions of these
three models are shown in Table 2.1. Four different plies (0° ply#6, -45° ply#2, +45° ply#1 &
and 90° ply#4) from the lower half of these models were selected for stress comparison.
Twenty different elements which associated with twenty different angle positions from each ply,

as shown in Figure 4.10, were selected to eliminate the “edge effective”.

P 1 Twenty selected elements

Figure 4.10. Elements on each ply at different angle position.
The values of radial stress o, and tangential stress o, for these twenty elements were

recorded from the PATRAN/NASTRAN output. These stress values were then plotted into
different graphs. Each of these graphs shows the stress variation of each individual ply at a
different angle of fiber orientation from three different analyzed curved beam models. The
behavior and the variation of interlaminar stresses from each different layer due to the changing

in curvature of each model highlighted clearly from these graphs.
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4.1.2.1 The Stress Variation for +45° ply#1

Table 4.2. The stress values for +45° ply#1.

(deg) Model | (R; = 0.2444) | Model Il (R, = 0.6444) | Model Il (R; = 1.8444)
Angle
Position o, (psi) Og (psi) o, (psi) O (psi) o, (psi) Og (psi)

30 5.11E+02 | 5.48E+04 | 4.70E+02 | 4.74E+04 | 1.43E+02 | 4.50E+04
27 5.13E+02 | 5.49E+04 | 4.61E+02 | 4.72E+04 | 1.44E+02 | 4.50E+04
24 5.14E+02 | 5.50E+04 | 4.64E+02 | 4.70E+04 | 1.46E+02 | 4.51E+04
21 5.15E+02 | 5.50E+04 | 4.60E+02 | 4.69E+04 | 1.41E+02 | 4.52E+04
18 5.16E+02 | 5.51E+04 | 4.60E+02 | 4.67E+04 | 1.49E+02 | 4.54E+04
15 5.16E+02 | 5.51E+04 | 4.59E+02 | 4.66E+04 | 1.46E+02 | 4.55E+04
12 5.16E+02 | 5.51E+04 | 4.59E+02 | 4.66E+04 | 1.37E+02 | 4.55E+04

9 5.16E+02 | 5.52E+04 | 4.58E+02 | 4.65E+04 | 1.50E+02 | 4.56E+04

6 5.17E+02 | 5.52E+04 | 4.59E+02 | 4.65E+04 | 1.40E+02 | 4.56E+04

3 5.17E+02 | 5.52E+04 | 4.58E+02 | 4.65E+04 | 1.54E+02 | 4.57E+04
-3 5.17E+02 | 5.52E+04 | 4.58E+02 | 4.65E+04 | 1.32E+02 | 4.57E+04
-6 5.18E+02 | 5.53E+04 | 4.59E+02 | 4.65E+04 | 1.51E+02 | 4.57E+04
-9 5.18E+02 | 5.53E+04 | 4.58E+02 | 4.66E+04 | 1.46E+02 | 4.57E+04
-12 5.19E+02 | 5.54E+04 | 4.60E+02 | 4.66E+04 | 1.41E+02 | 4.57E+04
-15 5.20E+02 | 5.54E+04 | 4.59E+02 | 4.67E+04 | 1.45E+02 | 4.56E+04
-18 5.21E+02 | 5.55E+04 | 4.62E+02 | 4.68E+04 | 1.52E+02 | 4.56E+04
-21 5.22E+02 | 5.57E+04 | 4.60E+02 | 4.70E+04 | 1.34E+02 | 4.55E+04
-24 5.25E+02 | 5.59E+04 | 4.66E+02 | 4.71E+04 | 1.57E+02 | 4.56E+04
-27 5.28E+02 | 5.62E+04 | 4.61E+02 | 4.73E+04 | 1.34E+02 | 4.55E+04
-30 5.31E+02 | 5.65E+04 | 4.75E+02 | 4.76E+04 | 1.59E+02 | 4.57E+04

The tangential stress o ,and radial stress o, are found to be positive for +45° lay-up #1, as
shown in Figure 4.11 and Figure 4.12 on the next page. As expected, the stresses o ,and

o along the curve angle position are fairly constant. However, these stresses decrease with
the increasing of curvatures. Figure 4.12 clearly highlights the effect of curvature on radial

stress o,. Model | (Ry = 0.2444) with the lowest in radius of curvature produces the highest in

interlaminar stresses. On the other hand, Model Il (R; = 1.8444) with the highest in radius of

curvature produces the lowest in interlaminar stresses.
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The Variation of Tangential Stress for +45deg Lay-up
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Figure 4.11. Tangential stress for +45" lay-up.
The Variation of Radial Stress for +45deg Lay-up
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Figure 4.12. Radial stress for +45° lay-up.
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4.1.2.2 The Stress Variation for -45° ply#2

Table 4.3. The stress values for -45° ply#2.

(deg) Model | (R; = 0.2444) | Model Il (R, = 0.6444) | Model Il (R; = 1.8444)
Angle
Position o, (psi) Op (psi) o, (psi) Op (psi) o, (psi) Op (psi)

30 2.89E+03 | 4.02E+04 | 1.01E+03 | 4.24E+04 | 3.17E+02 | 4.34E+04
27 2.93E+03 | 4.04E+04 | 1.01E+03 | 4.27E+04 | 3.21E+02 | 4.36E+04
24 2.96E+03 | 4.06E+04 | 1.01E+03 | 4.29E+04 | 3.14E+02 | 4.38E+04
21 2.97E+03 | 4.06E+04 | 1.01E+03 | 4.31E+04 | 3.17E+02 | 4.40E+04
18 2.98E+03 | 4.07E+04 | 1.01E+03 | 4.33E+04 | 3.15E+02 | 4.41E+04
15 2.98E+03 | 4.08E+04 | 1.01E+03 | 4.34E+04 | 3.18E+02 | 4.42E+04
12 2.98E+03 | 4.08E+04 | 1.01E+03 | 4.35E+04 | 3.05E+02 | 4.44E+04

9 2.99E+03 | 4.08E+04 | 1.02E+03 | 4.36E+04 | 3.23E+02 | 4.44E+04

6 2.99E+03 | 4.09E+04 | 1.02E+03 | 4.37E+04 | 3.07E+02 | 4.45E+04

3 2.99E+03 | 4.09E+04 | 1.02E+03 | 4.37E+04 | 3.16E+02 | 4.45E+04
-3 3.00E+03 | 4.09E+04 | 1.02E+03 | 4.37E+04 | 3.08E+02 | 4.45E+04
-6 3.00E+03 | 4.09E+04 | 1.02E+03 | 4.37E+04 | 3.16E+02 | 4.45E+04
-9 3.01E+03 | 4.09E+04 | 1.02E+03 | 4.36E+04 | 3.18E+02 | 4.44E+04
-12 3.01E+03 | 4.09E+04 | 1.02E+03 | 4.35E+04 | 3.07E+02 | 4.43E+04
-15 3.02E+03 | 4.10E+04 | 1.01E+03 | 4.34E+04 | 3.14E+02 | 4.42E+04
-18 3.03E+03 | 4.10E+04 | 1.02E+03 | 4.33E+04 | 3.23E+02 | 4.41E+04
-21 3.05E+03 | 4.10E+04 | 1.01E+03 | 4.31E+04 | 3.08E+02 | 4.39E+04
-24 3.07E+03 | 4.11E+04 | 1.02E+03 | 4.30E+04 | 3.25E+02 | 4.36E+04
-27 3.09E+03 | 4.12E+04 | 1.01E+03 | 4.28E+04 | 3.10E+02 | 4.34E+04
-30 3.11E+03 | 4.14E+04 | 1.02E+03 | 4.25E+04 | 3.32E+02 | 4.32E+04

The tangential stress o ,and radial stress o, are found to be positive for -45° lay-up #2, as
shown in Figure 4.13 and Figure 4.14 on the next page. For this -45° lay-up, the tangential
stress g, increases with the increasing of curvature. The radial stress o, decreases with the

increasing of curvature. Model | (R, = 0.2444) with the lowest in radius of curvature produces
the highest in radial stress and lowest in tangential stress. On the other hand, Model Il (R;3
=1.8444) with the highest in curvature produces the lowest in radial stress and highest

tangential stress.
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The Variation of Tangential Stress for -45deg Lay-up
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Figure 4.13. Tangential stress for -45" lay-up.
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Figure 4.14. Radial stress for -45° lay-up.
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4.1.2.3 The Stress Variation for 90° ply#4

Table 4.4. The stress values for 90° ply#4.

(deg) Model | (R = 0.2444) | Model Il (R, = 0.6444) | Model Il (R; = 1.8444)
Angle
Position o, (psi) O (psi) o, (psi) O (psi) o, (psi) Op (psi)
30 7.38E+03 | 5.11E+04 | 2.91E+03 | 6.29E+04 | 1.05E+03 | 7.81E+04
27 7.49E+03 | 5.09E+04 | 2.91E+03 | 6.29E+04 | 1.05E+03 | 7.98E+04
24 7.54E+03 | 5.08E+04 | 2.91E+03 | 6.29E+04 | 1.07E+03 | 8.11E+04
21 7.56E+03 | 5.08E+04 | 2.92E+03 | 6.28E+04 | 1.06E+03 | 8.24E+04
18 7.57E+03 | 5.08E+04 | 2.92E+03 | 6.28E+04 | 1.08E+03 | 8.34E+04
15 7.58E+03 | 5.08E+04 | 2.92E+03 | 6.28E+04 | 1.07E+03 | 8.43E+04
12 7.58E+03 | 5.07E+04 | 2.92E+03 | 6.28E+04 | 1.06E+03 | 8.48E+04

9 7.58E+03 | 5.07E+04 | 2.92E+03 | 6.28E+04 | 1.09E+03 | 8.53E+04
6 7.59E+03 | 5.07E+04 | 2.93E+03 | 6.28E+04 | 1.07E+03 | 8.55E+04
3 7.59E+03 | 5.07E+04 | 2.93E+03 | 6.28E+04 | 1.09E+03 | 8.58E+04

-3 7.60E+03 | 5.07E+04 | 2.93E+03 | 6.28E+04 | 1.06E+03 | 8.57E+04
-6 7.60E+03 | 5.06E+04 | 2.93E+03 | 6.28E+04 | 1.09E+03 | 8.56E+04
-9 7.61E+03 | 5.05E+04 | 2.93E+03 | 6.28E+04 | 1.06E+03 | 8.53E+04
-12 7.62E+03 | 5.04E+04 | 2.93E+03 | 6.28E+04 | 1.08E+03 | 8.49E+04
-15 7.64E+03 | 5.03E+04 | 2.92E+03 | 6.28E+04 | 1.07E+03 | 8.43E+04
-18 7.67E+03 | 5.01E+04 | 2.92E+03 | 6.29E+04 | 1.07E+03 | 8.35E+04
-21 7.70E+03 | 4.97E+04 | 2.92E+03 | 6.29E+04 | 1.07E+03 | 8.25E+04
-24 7.74E+03 | 4.93E+04 | 2.92E+03 | 6.29E+04 | 1.06E+03 | 8.13E+04
-27 7.78E+03 | 4.87E+04 | 2.92E+03 | 6.29E+04 | 1.06E+03 | 7.99E+04
-30 7.79E+03 | 4.81E+04 | 2.93E+03 | 6.29E+04 | 1.05E+03 | 7.84E+04

The tangential stress o ,and radial stress o, are found to be positive for 90° lay-up #4, as
shown in Figure 4.15 and Figure 4.16 on the next page. For this 90° lay-up, the tangential
stress 0, increases with the increasing of curvature. The radial stress o, decreases with the

increasing of curvature. Model | (R; = 0.2444) with the lowest in radius of curvature produces
the highest in radial stress and lowest in tangential stress. On the other hand, Model Il (R; =
1.8444) with the highest in radius of curvature produces the lowest in radial stress and highest

tangential stress.
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Tangential Stress

The Variation of Tangential Stress for 90deg Lay-up
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Figure 4.15. Tangential stress for 90° lay-up.
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Figure 4.16. Radial stress for 90° lay-up.
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4.1.2.4 The Stress Variation for 0° ply#6

Table 4.5. The stress values for 0° ply#6.

(deg) Model | (R; = 0.2444) | Model Il (R, = 0.6444) | Model Il (R3 = 1.8444)
Angle
Position o, (psi) Og (psi) o, (psi) Op (psi) o, (psi) O (psi)

30 7.59E+03 | 2.63E+03 | 3.04E+03 | 1.67E+03 | 1.07E+03 | 1.82E+03
27 7.67E+03 | 2.71E+03 | 3.04E+03 | 1.67E+03 | 1.07E+03 | 1.88E+03
24 7.70E+03 | 2.76E+03 | 3.04E+03 | 1.67E+03 | 1.07E+03 | 1.96E+03
21 7.72E+03 | 2.79E+03 | 3.05E+03 | 1.67E+03 | 1.08E+03 | 2.02E+03
18 7.72E+03 | 2.80E+03 | 3.05E+03 | 1.67E+03 | 1.07E+03 | 2.07E+03
15 7.72E+03 | 2.81E+03 | 3.05E+03 | 1.67E+03 | 1.08E+03 | 2.12E+03
12 7.72E+03 | 2.82E+03 | 3.05E+03 | 1.67E+03 | 1.08E+03 | 2.15E+03

9 7.72E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.08E+03 | 2.18E+03

6 7.73E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.08E+03 | 2.19E+03

3 7.73E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.07E+03 | 2.20E+03
-3 7.73E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.08E+03 | 2.20E+03
-6 7.74E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.07E+03 | 2.19E+03
-9 7.74E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.08E+03 | 2.18E+03
-12 7.76E+03 | 2.82E+03 | 3.06E+03 | 1.66E+03 | 1.08E+03 | 2.15E+03
-15 7.77E+03 | 2.81E+03 | 3.06E+03 | 1.66E+03 | 1.08E+03 | 2.12E+03
-18 7.80E+03 | 2.81E+03 | 3.05E+03 | 1.66E+03 | 1.07E+03 | 2.08E+03
-21 7.83E+03 | 2.78E+03 | 3.05E+03 | 1.66E+03 | 1.08E+03 | 2.03E+03
-24 7.88E+03 | 2.74E+03 | 3.05E+03 | 1.67E+03 | 1.07E+03 | 1.96E+03
-27 7.93E+03 | 2.66E+03 | 3.05E+03 | 1.67E+03 | 1.07E+03 | 1.88E+03
-30 7.96E+03 | 2.52E+03 | 3.06E+03 | 1.67E+03 | 1.06E+03 | 1.79E+03

The tangential stress o, and radial stress o, are found to be positive for 0° lay-up #6, as
shown in Figure 4.17 and Figure 4.18 on the next page. For this 0° lay-up, the tangential stress

o, are found highest for Model | (Ry = 0.2444), and lowest for Model Il (R, = 0.6444). The

radial stress o, decreases with the increasing of curvature. Model | (Ry = 0.2444) with the

lowest in radius of curvature produces the highest in radial stress. Model Ill (R; = 1.8444) with

the highest in radius of curvature produces the lowest in radial stress.
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Tangential Stress

The Variation of Tangential Stress for 0deg Lay-up
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Figure 4.17. Tangential stress for 0° lay-up.

Radial Stress

The Variation of Radial Stress for 0Odeg Lay-up
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Figure 4.18. Radial stress for 0° lay-up.

49




4.1.3 Stacking Sequence [+45°/-45°/90°%,/0°%]s

The tangential stresses along the 6 direction of -45° (ply#2), +45° (ply #1) and 90° (ply
#4) are calculated using the closed-form solution in Chapter 3. These calculated stress values

are used to validate the obtained tangential stress values in Section 4.1.2. The comparison

between FEM and the closed-form solution is shown in Table 4.6.

Table 4.6. The comparison for tangential stress.

Applied bending moment Mgg = 100 Ibs-in
Tangential stress, Ogg (pSi)
R4 = 0.2444 inches R, = 0.6444 inches R3; = 1.8444 inches
FEM Present FEM Present FEM Present
-45° Ply | 4.09E+04 | 4.20E+04 | 4.37E+04 | 4.03E+04 | 4.45E+04 | 3.97E+04
+45° Ply | 5.52E+04 | 5.36E+04 | 4.65E+04 | 4.97E+04 | 4.57E+04 | 4.83E+04
90° Ply | 5.07E+04 | 5.21E+04 | 6.28E+04 | 5.64E+04 | 8.58E+04 | 7.13E+04
% Different % Different % Different
-45° Ply 2.62 8.44 12.09
+45° Ply 2.99 6.44 5.38
90° Ply 2.69 11.35 20.34

The difference in tangential stress between the FEM result and the closed-form solution is

predictable. This difference takes place due to the fact that the FEM includes 3D material

properties while the closed-form solution includes only 1D material property.
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4.2 The Fiber Orientation Effect on Laminate Stresses

The effect of fiber orientation is also investigated. Model | (R = 0.2444) was examined.
The meshing, the number of elements, boundary conditions and material coordinate systems for
this model were remained the same as defined in Sections 2.1 and 2.2.
4.2.1 Symmetric and Balanced Laminates

A T300/977-2 graphite/epoxy laminate with stacking sequence of [+ @ /+ @ / 90°%,]s was
used for the selected models, where @ =15° 30°, 45° 60° and 75°. A different local
coordinate was created for each different angle of fiber orientation: 0°, +15°, -15° +30°, -30°,
+45°, -45°, +60°, -60°, +75°, and -75°. There are five different stacking sequences were applied

for this model. They are: [+15°/+15%/ 90%]s, [£30°/+30°%/ 90%]s, [+ 45°/+ 45°/ 90°%],

[+60°/4+60°/90%], and [+ 75°/+ 75°/ 90%]s.

S.S#1 S.S#2 S.S#3 S.S#4 S.S#5
+15° +30° +45° +60° +75°
-15° -30° -45° -60" -75°
+15° +30° +45° +60° +75°
-15° -30° -45° -60" -75°
90° 90° 90" 90’ 90’
90° 90° 90° 90° 90°
90° 90° 90’ 90’ 90’
90° 90° 90" 90’ 90’
-15° -30° -45° -60° -75°
+15° +30° +45° +60° +75°
-15° -30° -45° -60" -75°
+15° +30° +45° +60° +75°

Figure 4.19. Description of laminate coding for five different stacking sequences.
The interlaminar stresses for the elements in 90° layer are expected to be different for each
stacking sequence. To study the effect of changing in stacking sequence, three different

elements in the 90° layer #6 from the lower half of the curved beam model were examined.
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These three elements were selected from three different angle positions (27°, 33° and 39°), as
shown in Figure 4.20. The element at 45° angle position was not selected for this case study

since the result at this position may be strongly affected by the end condition enforced by FEM.

3 Selected Elements

27
33

398
-450 450
Figure 4.20. The selected elements in 90° layer #6 at different angle positions.

The variation of o, and o, stresses for the selected elements in 90° layer #6 at various angle

positions (27°, 33%, and 39°) are shown below for five different stacking sequences.

Color Codes 5.5 #1: Stacking Seguence 1
0.3 #2 Stacking Sequence 2

o.o #30 Stacking Sequence 3

H .o # Stacking Sequence 4

o.3 #5: Stacking Sequence 5

Element at 27deg angle position. Element at 27deg angle position.
1.40E+04 1.20E+04
oS.S#1 oS.S#
1.20E+04 - mS.S#2 mS.S#2
OS.S#3 1.00E+04 - OS.S#3

1.00E+04 OSs.S#4 OSS#4

8.00E+03 | oSS#5 8.00E+03 | mSS#5
a 3 -
s 6.00E+03 - “
4 4
= 2 6.00E+03 4
0 4.00E+03 - [}
8 ]
§  2.00E+03 | g
=4 4.00E+03 |
[
= 0.00E+00

27
-2.00E+03 4 2.00E+03 4
-4.00E+03 -
0.00E+00
-6.00E+03 27
Angle Position, deg Angle Position, deg

Figure 4.21. Stress for element at 27° angle position.
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Element at 33deg angle position. Element at 33deg angle position.
1.40E+04 1.20E+04
oOS.S#1 oOS.S#1
1.20E+04 - mSS#2 mS.S#2
O0SS#3 1.00E+04 - O0S.S#3
1.00E+04 - O0S.S#4 O0S.S#4
8.00E+03 1 BSS# 8.00E+03 9SS%
7 7
g 6.00E+03 4 &
(9] [}
= = 6.00E+03 |
O 4.00E+03 - %) 6.00E+03
s ks
= 5
@ 2.00E+03 - &
= 4.00E+03 -
[
" 0.00E+00 |
33
-2.00E+03 - 2.00E+03 -
-4.00E+03 -
0.00E+00 -
-6.00E+03 33
Angle Position, deg Angle Position, deg
Figure 4.22. Stress for element at 33° angle position.
Element at 39deg angle position. Element at 39deg angle position.
1.00E+04 1.20E+04
oSS#1 oS.S#1
8.00E+03 4 B S.S#2
1.00E+04 - OS.S#3
0S.S#4
6.00E+03 -
OS.S#5
8.00E+03 -
- -
2 4.00E+03 4 a
a3 g
3 3
= = 6.00E+03 -
@ 2.00E+03 | 2
e S
£ K
e @
2 0.00E+00 - 4.00E+03 -
A
-2.00E+03 -
2.00E+03 -
-4.00E+03 -
0.00E+00 -
-6.00E+03 39
Angle Position, deg Angle Position, deg

Figure 4.23. Stress for element at 39° angle position.
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Figures 4.21, 4.22 and 4.23 highlight clearly the effect of fiber orientations on the interlaminar
stresses (0 ,and o). The radial stress o, is found positive for all stacking sequences at all
selected angle positions. The stacking sequences #1 & #2 produced positive tangential stress
o,and the stacking sequences #3, #4, & #5 produced negative tangential stress o, at all
selected angle positions. This is because of the shift of the neutral axis of the curved laminate
as the fiber orientation changes. The stacking sequence #1, [£15°/+15°/ 90°]s, produced
the highest interlaminar stresses (o, and o) for elements in 90° layer #6.

4.2.2 Symmetric / Unsymmetrical and Balanced / Unbalanced Laminates

The effects of three other stacking sequences on the tangential stress were also

investigated. The symmetric and balanced laminate [i 45°% /90°% /¥ 4502]T, unsymmetrical
and balanced laminate [i 45°, [+ 45°, /9004]T, and unsymmetrical and unbalanced laminate

[+ 45% /9004]T were applied in the same Model | (R; = 0.2444). The layer #1 of +45° fiber

orientation was selected to show the different in tangential stress. The stacking sequences are

shown below.

S.S#1 S.S#2 S.S#3
+45° +45° +45°
-45° -45° +45°
+457 +45° +45’
-45° -45° +45’
90" +45° +45°
90" -45° +45°

90" +45° +45°
90" -45° +45°
-45° 90" 90’
+45° 90" 90’
-45° 90° 90°
+45° 90" 90’

Figure 4.24. Description of laminate coding for three different stacking sequences.
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Twenty different elements which associated with twenty different angle positions, as shown in
Figure 4.10, were selected for this study. The tangential stresses from three different stacking

sequences were plotted in the same graph for comparison purposes.

Tangential Stress, +45 deg Ply, Layer #1

9.00E+04
.. J8Q0E*Q4 | .,
Ll §
— — [ ]
8 6.00E+04 -
@
g 5.00E+04
[72]
= 4.00E+04 -
S
5 3.00E+04 -
|_
2.00E+04 o Layup_01
= Layup_02
1.00E+04 - s Layup, 03
: : 0.00E+00 : : ‘
-40 -30 -20 -10 0 10 20 30 40

Angle position, deg

Figure 4.25. The variation of tangential stress.

The tangential stress o, was found positive for all stacking sequences. The symmetric and
balanced laminate [i 45°% /90°% /¥ 4502]T produced the highest tangential stress for +45°

layer #1. The unsymmetrical and balanced laminate [i 45°, [+ 45°, /9004]T produced the

lowest tangential stress for +45° layer #1.
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4.3 The Effect of Stacking Sequence

Five different laminates were examined to show the effect of the lay-up stacking
sequences on the extensional stiffness matrix [A], extensional-bending coupling stiffness matrix
[B], and bending stiffness matrix [D]. These five laminates and their lay-up stacking sequences

are shown in Table 4.7 below.

Table 4.7. Laminate stacking sequences.

LAMINATE 1 [0%0°/+45°%-45°/90°/90°]s Symmetric and Balanced
LAMINATE 2 [+45°/0°/0%/-45°/90°/90°]5 Symmetric and Balanced
LAMINATE 3 [+45%-45°10°/0°/90°/90°s Symmetric and Balanced
LAMINATE 4 [+45%-45°/90°/90%0°/0°s Symmetric and Balanced
LAMINATE 5 [+45%/-45°,/0%/90°,] Unsymmetrical and Balanced

The calculated values of matrices A,,, B,,, and D,, using Equations 3-16, 3-17, and 3-18

with different laminate stacking sequences and/or different mid-plane radius R are shown in the

following table.

Table 4.8. Matrices comparison for laminate 3.

R;=0.2444 | R,=0.6444 | R;=1.8444 RS«

Age (10° Ib/in) 9.055 9.002 8.995 8.994
Beo (102 Ib) -14.88 -5.54 -1.93 0.00

Des (102 Ib-in) 3.64 3.57 3.56 3.56

As indicated in Table 4.8, A, and D, fairly remain constant as R increases. However, the
magnitude of B, strongly decreases as R increases. The values of matrices A,,, B,, and

D,, are then re-evaluated with four different laminates (1, 2, 3, and 4) and one mid-plane
radius, R = 0.2444 inches. These values are shown in Table 4.9. Unlike the plate laminate, the

changing of stacking sequence in the curved laminate does affect the axial stiffness, A,,.
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also indicates that increasing R gives significant reduction of B,,.

It should be also noted that B,, # 0 for curved laminates as listed in Table 4.9. This Table 4.9

Table 4.9. Matrices comparison for mid-plane radius Ry = 0.2444 inches.

LAMINATE 1 | LAMINATE2 | LAMINATE 3 | LAMINATE 4
Age (10° Ib/in) 9.031 9.044 9.055 9.099

Beo (10° Ib) -9.03 -12.34 -14.88 -25.74
Dgg (10 Ib-in) 2.21 3.02 3.64 6.29

The effect of symmetric and balanced laminate and unsymmetrical and balanced laminate was
also investigated. Laminate 3 and laminate 5 were examined with four mid-plane radius
Ry = 0.2444 inches, R, = 0.6444 inches, R; = 1.8444 inches, and R &> «. The values of

matrices A, , B,, and D, are shown below.

Table 4.10. Matrices comparison for laminate 3 & 5.

R, = 0.2444 R, = 0.6444
LAMINATE | | AMINATE 5 | LAMINATE 3 | LAMINATE 5
Ago (10° Ib/in) 9.055 8.588 9.002 8.810
Bes (10% Ib) -14.88 99.22 -5.54 118.40
Des (10 Ib-in) 3.64 7.69 3.57 7.92
R; = 1.8444 R
LAMINATE | | AMINATE 5 | LAMINATE 3 | LAMINATE 5
Ago (10° Ib/in) 8.995 8.925 8.994 8.994
Bes (10% Ib) -1.93 126.33 0.00 130.69
Des (10 Ib-in) 3.56 8.05 3.56 8.12

As the radius of curvature R goes to infinity, a curved laminate becomes a plate laminate. In
this case, extensional-bending coupling stiffness matrix [B] is only affected by the stacking
sequence in laminate. This indication is shown in Table 4.10. For laminate 3 (symmetric and
balanced), Bgg is equal to zero when the radius of curvature R goes to infinity. For laminate 5
(unsymmetrical and balanced), Bgg is not equal to zero when the radius of curvature R goes to

infinity.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The research has studied the variation of both tangential and radial stresses respect to
the changing in curvatures, stacking sequences and fiber orientations in a curved laminated
beam subjected to a bending moment. Three 3-D finite element models of the curved laminated
beam have been developed in PATRAN / NASTRAN. These models have been validated for
isotropic material, Al-2014-T6, and orthotropic material, T300/977-2 graphite/epoxy, with all 0°
plies lay-up. The finite element models of the curved laminated beam provide solutions
showing an excellent agreement with the exact solutions for both tangential and radial stresses.

An analytical method to calculate the tangential stress was also developed for a curved
laminated beam subjected to a bending moment. The tangential stress results from this method
were compared well with the results from finite element method. The analytical closed-form
expressions of axial, coupling and bending stiffness, as well as their characteristics were also
investigated.

From this research, the following conclusions can be made.

For the same stacking sequence, [+45°/-45%90°,/0%]s with three different given radius
of curvatures:

e In +45° (layer #1, the bottom layer) and -45° (layer #2, the 2™ to the bottom),
the tangential and radial stresses increase with the decreasing in radius of
curvatures.

e In90° (layer #4, from the bottom layer), the tangential stress decreases with the
decreasing in radius of curvature. The radial stress increases with the

decreasing in curvature.
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e In 0° (layer #6, from the bottom), the tangential stress is highest for radius of
curvature R, and lowest for radius of curvature R,. The radial stress increases

with the decreasing in curvature.

For a given radius of curvature with five different symmetric and balanced stacking
sequences, the stress for elements on 90° layer #6 from the bottom layer:

e The radial stress is positive for all stacking sequences.

e The tangential stresses from stacking sequence #1, [+15°/+15°/90%]s, and
stacking sequence #2, [+ 30°/+30°/90%]s, are positive.

o The tangential stresses from stacking sequence #3, [+ 45°/+ 45°/90°],
stacking sequence #4, [+ 60°/+ 60°/ 90%]s, and stacking sequence #5,
[+75%/+ 75°/ 90%]s, are negative.

« The tangential and radial stresses from stacking sequence #1, [£15°/+15°/

9002]3, are highest.

For a given radius of curvature with three different stacking sequences:
[+45% 190°% /7 45°% |, [+ 45°% /+45° /90% |, and [+ 45% /90% |, , the stress for
elements on +45° layer #1, bottom layer:

e The tangential stresses o, are positive for all stacking sequences.

e The symmetric and balanced laminate, [i 45°%,190°% /¥ 4502]T , produced the
highest tangential stress.
e The unsymmetrical and balanced laminate, [i 45°%, [+ 45°, /9004]T ,

produced the lowest tangential stress.
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For a symmetric and balanced laminate:
e A, andD,, fairly remain constant as R increases.
e The magnitude of A, is affected by the changing of stacking sequence in the
curved laminate.
e B, is not equal to zero for curved laminated beam but its magnitude strongly

decreases as R increases.

e The increasing of radius curvature gives significant reduction of B, .

In future studies, the developed analytical method could be extended to laminated
cylindrical shell. The hygrothermal effects on the tangential and radial stresses can be
included. Effect of stress components due to the boundary conditions and loading of the curved

beam can be investigated.
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APPENDIX A

GENERAL PROCEDURE TO CREATE A 3D FEM
FOR AN ISOTROPIC AND A CURVED LAMINATED BEAM IN PATRAN
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Figure A1. The creation of 12 surfaces.
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Figure A2. The creation of 12 solids and mesh seeds.
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Action: Create ™
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Figure A3. The creation for the mesh and MPC.
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Figure A4. The creation of local coordinates for each element group in laminate.
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Figure A5. The creation of displacement and applied moment.
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Figure A6. The creation of cylindrical coordinate system for isotropic.
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Figure A7. The creation of Isotropic material and 3D solid elements.
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Figure A8. The creation of 3D orthotropic material and 3D solid group elements.
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Figure A9. The creation of analysis Load case.
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Figure A10. The procedure to set up the analysis.
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APPENDIX B

MATHEMATICAL PROCEDURE TO VERIFY THE ACCURACY OF
MATRIX [A], [B], AND [D] WHEN THE CURVATURE GOES TO INFINITY
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THE EXTENSIONAL STIFENESS MATRIX [A]:

_ n,__ R+z,
From Equation 3-16, A,, = RZQeak In
o R4z
n_ R+z R+
limA, =limR) Q — K Q IlmRIn—
Rosen 90 Resco é H@,k R+ 1 ; 00,k R+Zk 1

where Q,,, is material constant.

. R . - i
limR-In—— ¢ = lim R-In(1+MJ = limR-In(1+x)
+7,,

R—o R + Zk—l R—w R—wo

Ly =44
R+z,,

where X = and |X| <1.

Taylor series: In(1+ X): X—lx2 WL%X3 —%X4 +...

R-In(l+x)=R- x—txr Ly et JoR-x
2 3 4

Z, —17 Z, —17
R-In(l+x)~ R- 2"kt = "k Tkt
R+z., 14 5

R

Substitute (B-3) into (B-2) yields:

. R+z .7, —-1

limR-In < =lim*—t=7 -7,
R— R+ Zk—l R— Zk—l

R

Hence, we have:
limA, = ZQ% (2, -2,,) (Plate Lamination Theory).
R—o
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THE EXTENSIONAL-BENDING COUPLING STIFENESS MATRIX [B]:

L — R+z
From Equation 3-17, B,, = RZQEM (z, —z,,)-R-In X

kL R+z,

n— R+z
limB,, =lim>Q,,.|R-(z. —z,,)-R*-In k
R a0 Rewé 6’9,k|: ( k k l) R"r‘ Zk_l
5~ R+z

limB,, = limR-(z, —z,,)-limR?-In——* (B-5)
Roso0 a0 kZ;QQH,k(R_)m ( k k l) Roso0 R+ Zk_l
. ) R+z, . ) Z, — 7,4
limR--In =limR -In(1+ X), where X = — and |X| <1.
R R+z,, R R+z,,

limR? - In(L+ x) = lim R? (x—%xz WL%X3 —%x“ +] ~ Iim(R2 -x—%(R-x)ZJ (B-6)

R—w R—w R—w

. . Z, —17 . Z, —17 .
limR?-x=limR?.-Z* =% = [imR-| = | = limR(z, -7,_,)—— (B-7)
R—w® R—w® R+ Zk—l R—w 1+ £ R—w® (1+ y)
R
z
where y = El and |y| <1
Taylor series: =1-y+y -y 4. for |y| <1 (B-8)
Substitute (B8) into (B7) yields:
z z 2 Z :
limR? - x=limR-(z, =z, ;) |1-5 L 4| 22| | 22+
R R (2 -2.) [ R ( R R
Li_TORZ x~limR (2 ~24)- limz,, (2~ 24)
= lim R'(Zk - Zk—l)_ Ly '(Zk - Zk—l) (B-9)

R—o

72



R—w

2 2
|im(R'TX)=%ym[R.m] =1Iim (z, -2, ) 1

R+z,, 2 R s Z,,
R
1 Z Z 2 Z 8
Taylor series: =|1= kL +( k—lj _( k—lj 4
R
(R-x) 1, 1
Then. !*Ln?o( 2 ! :EL'LQ(ZK ~2,,) :E(Zk -7) (B-10)

Equation B-6 becomes:

. R+1z . . 1.

LILTOIO R*-In - Zkk_l = ’LIL?OR'(Zk ~24)- LL”OIO 2y (2 - Zk—l)__LLnO]O(Zk ~2,)

. R+1z 1 .

LII)TJORZ 'Inrzklil: 2,5 (2 - Zk—l)_z(zk ~24) + LmR'(Zk ~2,,)

. R+z 1 .

LmRz-lank::E(zf_l—zfﬁ LmR-(zk -2,4) (B-11)

Substitute B-11 into B-5 yields:

= 1
. : 2 2\_ i
LL”?O B = ;Q%,k(ém R- (Zk - Zk—l)_E(Zk—l — L )_ L'EO]O R '(Zk - Zkl)j
1&G=
Lim By = EZQ% v (Zf - Zf_l) (Plate Lamination Theory).
—0 =) !
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THE BENDING STIFFNESS MATRIX [DI:

From Equation 3-18:

I — 1 R+z
Dge = RZQBG,k {E(ZE - Zlf—l)_ R(Zk - Zk—l)+ R2 In(—kﬂ

R+z,

) n_ IR R+z
lim Dy = > Quoy LL”;{;(ZE ~22,)-R¥(z, - 2,,)+R’ ln( - zkk_l H (8-12)
R 7 3 3
R In| % |_R? IN(L+x) = R"‘(x—lx2 1y —j ~REx-R e Ry
R+z,, 2" 73 2 3
R 3 3
R® In| % zR3-x—R—x2+R—x3 (B-13)
R+z,, 2 3
where x = XKL . (See Equation B-6)
+2,,
2
R®.x=R®. L — 2k _ R2 2y =2k | Rz(zk _Zk—l). l_£+(£j
R+2,, Lo B R R
R
z z
R®-x~R%*(z, -2,,) [1— qu‘l (%] ] (See equation B-8)
R®.x=R? '(Zk - Zk—l)_ R'(Zk - Zk—l)' Zy 4 +(Zk - Zk—l)' 21371 (B-14)

<1 (Taylor series)

—Zy '(Zk - zk—l) (B-15)
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3
R® , 1 s 1 Z, —Z,_ 1 3
~— xX*=Z. (R x==.|R- Z*_"K1| ~=.(z, —7 B-16
3 3( ) 3[ R+Zk1j 3(k 1) (B-16)

(Using the same approach in Equation B-15)

Substitute B-14, B-15, and B-16 into B-12 yields:

lim B(zf - z,f_l)— limR*(z, —z,_,)+limR?-(z, - z,,)

R 2 R—w R—w

R—w® R—w R—w® R—w 2

n

. — . . . R

lim Dee = 2 ,Qge,k —limR '(Zk _Zk—l)' Zy,t+ li (Zk _Zk—l)' Zlf—l_ “m_'(zk - Zk—l)2
k=1

+limz_ (z, -z, ) + Iiml.(zk -z.,)

R—o R—x

2 3

(Zk - Zk—l)' Zey+ 24 '(Zk - Zk—l) +%'(Zk - Zk—l)

. R
+ lim E(ZE ~22,-22, -2, +2-27 2} +22, -2, , — zkz_l)
R—w

1
(Zk - Zk—l)' Zey+ 24 '(Zk - Zk—l)2 +§'(Zk - Zk—l)3:|

. 1&G=
le D, = EZQ% ‘ (Zf - Zf_l) (Plate Lamination Theory).
—®© =) ’
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