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ABSTRACT 

 
EFFECTS OF CURVATURE ON THE STRESSES 

OF A CURVED LAMINATED BEAM  

SUBJECTED TO BENDING 

 

 

Thien Nguyen, M.S. 

 

 

The University of Texas at Arlington, 2010 

 

 

Supervising Professor:  Wen S. Chan 

 

In aircraft structural applications, curved laminated beam structures are often used as 

part of the internal structure.  If the curved composite structure is subjected to bending that 

tends to flatten or compress the composite structure, interlaminar stresses can be generated in 

the thickness direction of the composites.  These interlaminar stresses are the major factor of 

delamination failure. Besides these stresses, the in-plane stresses can be also affected by the 

pre-existence of the beam curvature.   

This research has studied the variation of both tangential and radial stresses with 

respect to the changing in curvature, stacking sequence, and fiber orientation in a curved 

laminated beam subjected to a bending moment.  Three 3-D finite element models of the curved 

laminated beam have been developed in PATRAN / NASTRAN.  These models have been 

validated for isotropic material, Al-2014-T6, and orthotropic material, T300/977-2 
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graphite/epoxy, with all 00 plies lay-up.  The finite element models of the curved laminated beam 

provide solutions showing an excellent agreement with the exact solutions for both tangential 

and radial stresses.   

An analytical method to calculate the tangential stress was also developed for a curved 

laminated beam subjected to a bending moment.  The tangential stress results from this method 

were compared well with the results from the finite element method.  The analytical closed-form 

expressions of axial, coupling and bending stiffness, as well as their characteristics were also 

investigated. 
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CHAPTER 1 

INTRODUCTION 

1.1 Composite Material Overview 

1.1.1 History 

The composites industry has been in place for over fifty years.  It began in earnest in 

the late 1940s and developed rapidly through the 1950s.  Most of the composites processing 

methods used today were developed by the year 1955.   Some aircraft of composite materials 

began to appear in the late 1930s and 1940s; normally these were plastic-impregnated wood 

materials.  New materials were continually being developed-true carbon fibers in the mid-1960s, 

aramid fibers in the 1970s, and many advanced resins in subsequent years.   

Fiberglass is the most common composite material, and consists of glass fibers 

embedded in a resin matrix. Fiberglass was first used widely in the 1950s for boats and 

automobiles, and today most cars have fiber glass bumpers covering a steel frame. Fiberglass 

was first used in the Boeing 707 passenger jet in the 1950s, where it comprised about two 

percent of the structure. By the 1960s, other composite materials became available, in particular 

boron fiber and graphite, embedded in epoxy resins. The first major military production use of 

boron fiber was for the horizontal stabilizers on the Navy's F-14 Tomcat interceptor. By 1981, 

the British Aerospace-McDonnell Douglas AV-8B Harrier flew with over 25 percent of its 

structure made of composite materials.  Recently, in December 2009, the Boeing 787-8 

Dreamliner flew with 50 percent of the primary structure-including the fuselage and wing- made 

of composite materials.  

1.1.2 Definition and Applications 

What are composite materials? And why have composite materials been using widely?  

Composite material consists of two or more materials macroscopically mixed together to form a  
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useful new material.  This new material contains on constituent to reinforce the other 

constituent.  The composite reinforcement is often in the form of continuous fibers which are 

high specific stiffness and strength.  To take advantages of these unique properties of the fiber 

reinforced composites, a structure often contains multiple layers laminated together with each 

layer oriented in the direction of the pre-determined structural function.  Due to lack of the 

thickness reinforcement, laminate is prone to delamination resulting in loss of stiffness, strength 

and fatigue life.    

Composite materials are now the most preferred materials in aircraft structures.  Many 

aircraft are currently undergoing the design that takes advantage of composite materials for 

primary structure applications.  Composites are different from metals in several ways.  These 

include their largely elastic response, their ability for tailoring of strength and stiffness, their 

damage tolerance characteristics, and their sensitivity to environmental factors.  However, 

unlike metals, composite materials often give little or no warning before weakening the 

structural members in aircraft.   

1.1.3 Curved Laminated Beam 

Most of structural components in aircraft structures in general and in composite 

structures in particular could contain curved beam regions or could be in the form of curved 

panels.  In structural applications, beam is one of the primary structures that used to support the 

bending and transverse loads.  Beams can be straight or curved.  Examples include Z-stiffener, 

angle clip, angle bracket and panel with supporting stringers in aircraft system, as shown in 

Figure 1.1.  Improper design of these curved beam/panel structures may lead to structural 

failures.  
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Figure 1.1. Examples of aircraft structural components. 

 

1.1.4 Past works in Composite Curved Beam 

Numerous of studies, researches had been done in the linear/or nonlinear for straight beams.  

However, much less works have been done for the laminated beams, particularly the curved 

beams. 

 Sayegh and Dong [1] in 1970 investigated the stresses and displacements of a three-

layer curved beam subjected to loading conditions of pure flexure and applied axial force using 

both technical theory and orthotropic elasticity.  It was shown that for a beam, whose radius of 

curvature is large compared to the total thickness, technical theory gives adequate results 

provided the properties of the layer are approximately the same.  For large differences, the 

prediction by the technical theory may be in considerable error. 

 Cheung and Sorensen [2] provided additional insight into the effect on the radial 

stresses due to the axial loads that are present in the curved beams.  Equations of tangential, 
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radial, and shear stress were developed for curved beams under an axial load. The theory of 

elasticity with polar coordinates for plane stress applied to an orthotropic material was used.  

The theoretical radial stresses predicted by Wilson's equation were verified by a rigorous theory 

of elasticity solution as both solutions gave almost identical results.  They concluded that the 

effect of axial load on the radial stress in curved beams is small. 

 Graff and Springer [3] developed a finite element code to calculate the stresses and 

strains in thick, curved composite laminates subjected to an arbitrary, but consistent, 

combination of forces and displacements. The analysis was formulated using anisotropic, 

bilinear quadrilateral and tri-linear hexahedral continuum elements. A computer code was then 

written for either three-dimensional or two-dimensional (plane stress or plane strain) analysis of 

curved laminates. The accuracy of the computer code was evaluated by generating numerical 

results for three problems for which analytical solutions exist, and by comparing the numerical 

and analytical results. In every case the agreement between the numerical and analytical 

results was excellent. 

 Barbero et al. [4] investigated the bending behavior of glass fiber reinforced composite 

beam.  They showed that the bending stiffness is low compared to that of steel sections of the 

same shape. They concluded that shear deformation effects are important for composite 

beams. This is due to relatively low elastic modulus of glass fibers when compared to steel and 

the low shear modulus of matrix resin. 

 Madabhusi-Raman and Davalos [5] later derived a form for the shear correction factor 

for laminated rectangular beams with symmetric or asymmetric cross-ply or angle-ply lay-ups. In 

this work, the shear correction factor was computed by equating the shear strain energy 

obtained from the constitutive relations of first order shear deformable laminated plate theory to 

that obtained using the “actual” shear stress distribution calculated a posteriori, i.e. computed 

using the equilibrium equations of elasticity. 
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 Kasal and Heiduschle [6] studied the application of fiber composite materials in 

reinforcement of laminated wood arches subjected to radial tension.  An experimental program 

was designed that included testing of mechanical properties of composite tubes, studying 

properties of the wood-composite tube interface, testing of the wood-steel rod interface, and 

testing of models of laminated wood arches. The application of composite materials in radial 

reinforcement of arches is feasible and possibly has advantages over the glued-in steel rods 

because of greater flexibility of sizes and properties of reinforcing elements, low mass, and 

potential ease of installation. 

 Wang and Shenoi [7] studied the through-thickness tension in curved sandwich beam 

using an elasticity-theory-based approach.  This approach ensures an accurate description of 

the through-thickness stresses in curved sandwich beam. The critical load for instability of a 

curved beam on an elastic foundation which is correspondent to the skin of sandwich beam, is 

considered and compared with the result for a flat beam on an elastic foundation.  Wang and 

Shenoi also studied the flexural strength of sandwich beam to identify debonding and local 

instability characteristics.  The effects of various parameters, such as geometrical configuration, 

stiffness of the skin and core, on through-thickness tension stress and local instability 

respectively are included in this study. 

Qatu [8] in 2004 addressed the vibration of laminated curved beams and rings 

subjected to combined loading, bending and shear loads.  The fundamental equations and 

energy functional for laminated curved beams and closed rings were developed and presented 

in both exact and approximate solutions.  These equations are very useful for design engineers. 
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1.2 Objectives and Approach to the Thesis 

The composite curved beam regions are vulnerable to out-of-plane failures.  Loads 

which tend to open or close the curved beam regions result in tensile or compressive radial 

stress, respectively, as shown in Figure 1.2. 

 

Figure 1.2. Opening and Closing modes of composite curved beam. 

 

The typical failure mode for this region is delamination in the radius area.  Delamination 

is one of the major causes of failure in laminated composite structures, in which the layers of 

the material separate from each other.  Delamination can be caused by interlaminar shear 

stresses ( θτ r ) between the layers, or tensile radial stresses ( rσ ) across the layers.  Tensile 

radial stress (out-of-plane stress) is the principal cause of delamination in the composite curved 

beam structures (see Figure 1.3).  Once the delamination takes place, the composite structure 

could lose their strength and stiffness significantly, and may lead to a catastrophic structural 

collapse.   
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Figure 1.3. Interlaminar stresses in radius region. 

Interlaminar stress is a key parameter to be taken into consideration for any composite 

structural design, especially for structures that contain radius areas.  Composite structures are 

often optimized for minimum weight and maximum strength.  Thus, design of composite 

structures to meet the structural specifications is a challenge problem.  Understanding the 

behavior of the interlaminar stresses in the composite curved beam structures is significant to 

structural design in many fields.  The variation of interlaminar stresses can lead to the changing 

in geometry design of structural components.  Thus, interlaminar stresses must be considered 

in the design, validation, and certification phases of airframe development. 

The primary objective of this study is to investigate the laminate stresses in a curved 

laminated beam subjected to a pure bending moment.  The study was focused on both radial 

stress (out-of-plane stress) and tangential stress (in-plane stress) effects due to the curvatures, 

stacking sequences and fiber orientations.  An approximated closed-form relationship of 

laminate constitutive equation is developed to understanding the characteristics of a curved 

laminate.  A 3-D finite element model of PATRAN / NASTRAN was developed to investigate 

both radial and tangential stress distribution. 

This study intended to provide the better understanding about the variation of  radial 

and tangential stresses due to laminate curvature, stacking sequence, and fiber orientation in 

the curved beam.  
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1.3 Outline of the Thesis 

Chapter 2 presents procedure to develop the geometry, the 3-D finite element model, 

the material used and its boundary conditions.  The validation of analyzed model and the 

convergence for stresses are also included. 

Chapter 3 presents a brief review of lamination theory.  An analytical method to 

calculate the tangential ply stress in a curved laminated beam is presented.   

Effects of the tangential and radial ply stresses with the variation of curvature are 

included in Chapter 4.  Effects of the ply stresses due to stacking sequence such as 

symmetrical versus unsymmetrical and balanced versus unbalanced are also investigated in 

this Chapter.  A comparison of the results between the analytical method and FEM method is 

included in this Chapter as well. 

Chapter 5 concludes the work and provides a future work. 
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CHAPTER 2 

FINITE ELEMENT MODEL 

 

This Chapter describes in detail the geometry, material used in the model, how the 

model constructed, and the boundary conditions used.  PATRAN / NASTRAN was used to 

develop the required 3-D finite element model. 

 

2.1 Geometry and Material Used 

2.1.1. Geometry of Curved Laminated Beam 

 Three semicircular curved beam models with different curvatures were constructed.  

The dimensions of these three models are listed in Table 2.1.  Figure 2.1 shows the geometry of 

a typical curved beam 3-D model. 

 

Figure 2.1. Iso view of 3-D curved beam. 
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Table 2.1. Geometric parameters for three different curved beam models. 

Configuration Inner Radius, 
Ri (inches) 

Outer Radius, 
Ro (inches) 

Mid-Plane 
Curvature, R 

(inches) 

Width 
w (inches) 

Model I 0.2 0.2888 0.2444 1 
Model II 0.6 0.6888 0.6444 1 
Model III 1.8 1.8888 1.8444 1 

 

 

 

 

 

 

 

 

Figure 2.2. Pure bending loading. 

2.1.2 Material of Composite Laminate 

The material properties required to define the NASTRAN MAT9 card are shown in 

Table 2.2 below.  Four MAT9 cards are used for the curved beam, one for 00-ply elements, one 

for 900-ply elements, one for the -450-ply elements, and one for the +450-ply elements.  

Table 2.2. Required material properties for NASTRAN MAT 9 Card 

Required Material Properties 
E1 
E2 
E3 
v12 
v23 
v31 
G12 
G23 
G31 

 
 
 
Material 1, Material 2, and 
Material 3 Directions 
Correspond to the 
Element Material 
Directions Defined in 
Figure 2.1 & 2.7. 
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The material used for a laminate composite is T300/977-2 graphite/epoxy.  The lay-up of the 

laminate is chosen as symmetric and balanced laminate to eliminate the coupling effects of 

bending and shear in the flat laminate.  The stacking sequence is [-45/+45/902/02]S.  The 

unidirectional orthotropic material properties for graphite/epoxy at 700F/ambient temperature are 

tabulated in Table 2.3. 

Table 2.3. Material properties for Graphite/Epoxy at 700 F Ambient 

 

 

 

 

 

 

 

 

 

The constants E1, E2 and E3 are the nominal Young moduli of composite ply.  The subscripts 1, 

2, and 3 are fiber direction, transverse to the fiber direction, and out-of-plane direction, 

respectively.  The constants G12, G23 and G13 are the shear moduli with respect to 1-2, 2-3, and 

1-3 planes, respectively. The constants 12ν , 13ν  and 23ν  are Poisson’s ratios. Material property 

values for the NASTRAN MAT9 card per Table 2.2 requirement are derived from the 

graphite/epoxy lamina property values tabulated in Table 2.4. 

 

 

 

 

 

Lamina Properties for Graphite/Epoxy at 700F/Ambient 
E1 = 21.75 Msi 
E2 = 1.595 Msi 
E3 = 1.595 Msi 

12ν  = 0.25 

13ν  = 0.25 

23ν  = 0.45 
G12 = 0.8702 Msi 
G23 = 0.5366 Msi 
G13 = 0.8702 Msi 
tply  = 0.0074 in 

Material 1, Material 2, and 
Material 3 Directions 
Correspond to the 
Element Material 
Directions Defined in 
Figure 2.1 & 2.7. 
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Table 2.4. Material properties for Graphite/Epoxy at 700 F Ambient in NASTRAN MAT 9 

Material Properties for NASTRAN MAT9 for 
Graphite/Epoxy at 700F/Ambient  

E1 = 21.75 Msi 

E2 = 1.595 Msi 

E3 = 1.595 Msi 

12ν  = 0.25 

31ν  = 0.0183 

23ν  = 0.45 
G12 = 0.8702 Msi 

G23 = 0.5366 Msi 

G31 = 0.8702 Msi 

tply  = 0.0074 in 

Material 1, Material 2, and 
Material 3 Directions 
Correspond to the 
Element Material 
Directions Defined in 
Figure 2.1 & 2.7. 

 

Where, 0183.0
75.21

595.125.0
1

3
1331 =×=×=

E
E

υυ  

 

2.2 Development of Finite Element Model  

2.2.1 Modeling Creation 

PATRAN has been used to develop the 3-D solid finite element model.  PATRAN uses 

the Global Model Tolerance when it creates geometry.  The default value is 0.005.  When 

creating geometry, if two points are within a distance of the Global Model Tolerance, then 

PATRAN will only create the first point and not the second.  This rule also applies to curves, 

surfaces, and solids.  Due to the thickness of each ply in the curved beam model is 0.0074 inch 

(greater than the default value 0.005), the Global Model Tolerance is set at 0.0005 to improve 

the model usability.  The procedure for generating 3-D Solid FEM for this study is shown below. 

1. The 1ST curved surface with inner radius Ri was created. 

2. Then 11 more curved surfaces were created by using the “Normal to Surface” method.  The 

distance between each surface is 0.0074 inches. 

3. 12 solids were created from these 12 surfaces with the thickness of 0.0074 for each solid. 
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Figure 2.3. The creation of 12 surfaces. 

 

2.2.2 Meshing Generation 

At first, the mesh seeds are defined for each edge differently.  By doing this, the edges 

of solid model will have a uniform element edge length specified by a total number of elements.  

The mesh seed will be represented by small circles in Figure 2.4 below. 

 

Figure 2.4. The defined mesh seeds of 3-D solid model. 

The finite elements for this 3-D Solid Model were then created by using Isomesh method with 

Hex 8 topology (Hex element shape with 8 corner nodes). 
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Figure 2.5. Hex 8 element. 

This Isomesh created equally-spaced nodes along each edge in the model.  A real value will be 

assigned to the element edge length for a given mesh.  This value is known as global element 

edge length.  This global element edge length was calculated automatically as 0.0264.  This 

value can be adjusted in case of encounter difficulties.   

The action of equivalence was applied for the entire model with equivalencing tolerance of 

0.0005 to delete any duplicated nodes or extra nodes in the model.  This 3-D Solid Model 

contains 43200 Hex 8 elements with the aspect ratio of 9.7 for all elements generated.  The 

meshing is shown in Figure 2.6 below. 

 

 

Figure 2.6. Isomesh of 3-D solid model. 
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2.2.3 Creation of Local Coordinate Systems 

The composite curve beam is modeled by NASTRAN 3-D CHEXA Solid elements.  The 

curved beam model contains 12 plies lay-up.  Each ply is explicitly modeled by two rows of 

elements.  The model was divided into 30 groups, as shown in Figure 2.7.  By doing this, the 

curved beam is represented by several straight beam elements.  Each group was assigned to 

different local coordinate systems, corresponding to the angle of fiber orientation of each layer 

of laminated composite.  The material X-direction, Y-direction and Z-direction for the elements 

in the curved beam model were established to be the fiber direction (material direction 1), the 

transverse to the fiber direction (material direction 2) and the out-of plane direction (material 

direction 3), respectively.  Four local coordinate systems were assigned to each element group.  

At first, a local coordinate was created for 00 ply.  Then, this local coordinate was rotated at -450, 

+450 and 900.  This procedure created four different local coordinates which associate to four 

different angle of fiber orientation: 00, -450, +450 and 900.  The creation of local coordinates for 

each element group is shown in Figure 2.8. 

 

Figure 2.7. 30 Groups of elements along the transverse direction. 
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Figure 2.8. The creation of local coordinate for each ply. 

2.2.4 Boundary and Loading Conditions 

Two boundary conditions were enforced with respect to the global coordinate system 

1. Because of the symmetry in geometry of the curved beam model, all nodes at one end were 

constrained.  There were no translation and rotation for these nodes on x, y, and z-direction 

(Ux = Uy = Uz =0; Rx = Ry = Rz =0).   

2. All nodes at another free end (dependent nodes) were constrained to a dummy node 

(independent node) on the same surface by using the Multi-Point Constraint method (MPC).  

The pure bending moment of Mz = -100 lbs-in (respect to global coordinate in Figure 2.9) 

was applied at the independent node.  This moment tends to open the curved beam regions 

resulting in tensile radial stress (out-of –plane stress). 

The boundary conditions are shown in Figure 2.9 below. 
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Figure 2.9.  Two boundary conditions respect to global coordinate system. 

 

2.3 Model Validation 

The purpose of this section is to validate the curve beam FEM using the closed-form 

solution.  The geometry, meshing, elements, boundary conditions, and loading conditions for 

this curve beam remained the same as defined in the sections above.   

2.3.1 Isotropic Material 

2.3.1.1 FEM Result 

An isotropic material, Al-2014-T6, was used instead of T300/977-2 graphite/epoxy.  

Because of the uniformity in all directions, one cylindrical coordinate system was used for the 

entire model.  The material properties for Al-2014-T6 are shown in Table 2.5. 
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Table 2.5. Material properties for Al-2014-T6 in NASTRAN MAT 1 

Material Properties for NASTRAN MAT1  

for Al-2014-T6
E      10.6    Msi 
ν       0.35 
G       3.9     Msi 

 

For the most accuracy in the results from FEM, a group of through thickness elements in the 

middle of the model was selected to eliminate the “edge effective”. 

 

Figure 2.10. Center group and its radial and circumferential directions. 

 

The radial stress and tangential (along circumferential direction) stress at the Centroid of each 

element in center group, as shown in Figure 2.10, were recorded from the output results in 

PATRAN.  Table 2.6 summarizes these stresses respect to radial position (the distance from 

the center of curved beam, as shown in Figure 2.14, to the centroid of each element). 



 

 19

Table 2.6. The recorded stress values from FEM for isotropic material. 

Layer # Elem # Radial Position r 
(inch) 

Radial Stress σr 
(psi) 

Tangential 
Stress σθ (psi) 

1 0.60185 3.12E+02 8.08E+04 1 2 0.60555 7.68E+02 7.33E+04 
3 0.60925 1.18E+03 6.59E+04 2 4 0.61295 1.53E+03 5.86E+04 
5 0.61665 1.84E+03 5.14E+04 3 6 0.62035 2.10E+03 4.43E+04 
7 0.62405 2.31E+03 3.73E+04 4 8 0.62775 2.48E+03 3.04E+04 
9 0.63145 2.60E+03 2.35E+04 5 10 0.63515 2.69E+03 1.67E+04 
11 0.63885 2.73E+03 1.00E+04 6 12 0.64255 2.73E+03 3.39E+03 
13 0.64625 2.69E+03 -3.15E+03 7 14 0.64995 2.62E+03 -9.63E+03 
15 0.65365 2.51E+03 -1.60E+04 8 16 0.65735 2.37E+03 -2.24E+04 
17 0.66105 2.20E+03 -2.86E+04 9 18 0.66475 1.99E+03 -3.48E+04 
19 0.66845 1.75E+03 -4.09E+04 10 20 0.67215 1.48E+03 -4.70E+04 
21 0.67585 1.19E+03 -5.30E+04 11 22 0.67955 8.64E+02 -5.89E+04 
23 0.68325 5.21E+02 -6.48E+04 12 24 0.68695 1.44E+02 -7.06E+04 

 

2.3.1.2 Exact Solution 

Consider a curved beam subjected to equal end couples moment M such that bending 

takes place in the plane of curvature, as shown in Figure 2.11.  This beam is characterized by a 

constant rectangular cross section and a circular axis.  The axis of symmetry of the cross 

section lies in a single plane throughout the length of the member [9].  The dimensions of this 

curved beam are shown in Table 2.7 below. 

Table 2.7. Dimensions of curved beam model 

Dimensions of Curved Beam Model 
Inner radius,  a = Ri 0.6 in 
Outer radius, b = Ro 0.6888 in 
Width, w 1 in 
Height, h 0.0888 in 
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Figure 2.11. Curved beam subjected to bending moment and its cross section. 

 

The radial and tangential stresses were calculated by following equations: 
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These equations are applicable throughout the curved beam.  The radial stresses rσ  as 

determined from the equation above are found positive (tensile).  The tangential stresses θσ  

are found positive (tensile) for the elements below the mid-plane, and negative (compressive) 

for the elements above the mid-plane, as shown in Figure 2.11.  Table 2.8 summarizes the 

calculated radial stresses rσ and tangential stresses θσ with respect to 24 different radial 

positions. 
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Table 2.8. The calculated stress values from exact solution. 

Layer # Elem # Radial Position  
r (inch) 

Radial Stress  
σr (psi) 

Tangential 
Stress σθ (psi) 

1 0.60185 2.40E+02 7.61E+04 1 2 0.60555 6.81E+02 6.89E+04 
3 0.60925 1.07E+03 6.18E+04 2 4 0.61295 1.42E+03 5.47E+04 
5 0.61665 1.72E+03 4.78E+04 3 6 0.62035 1.97E+03 4.09E+04 
7 0.62405 2.18E+03 3.42E+04 4 8 0.62775 2.35E+03 2.74E+04 
9 0.63145 2.48E+03 2.08E+04 5 10 0.63515 2.57E+03 1.43E+04 
11 0.63885 2.62E+03 7.82E+03 6 12 0.64255 2.63E+03 1.42E+03 
13 0.64625 2.60E+03 -4.90E+03 7 14 0.64995 2.54E+03 -1.11E+04 
15 0.65365 2.45E+03 -1.73E+04 8 16 0.65735 2.32E+03 -2.34E+04 
17 0.66105 2.16E+03 -2.95E+04 9 18 0.66475 1.97E+03 -3.54E+04 
19 0.66845 1.74E+03 -4.14E+04 10 20 0.67215 1.49E+03 -4.72E+04 
21 0.67585 1.21E+03 -5.30E+04 11 22 0.67955 8.95E+02 -5.87E+04 
23 0.68325 5.57E+02 -6.44E+04 12 24 0.68695 1.92E+02 -7.00E+04 

 

The radial stresses and tangential stresses in Table 2.6 and Table 2.8 were plotted in two 

different graphs with respect to the variation of radial positions for comparison purposes.  The 

graphs in Figure 2.12, and Figure 2.13, as shown on the next page, show a good agreement 

between FEM results for isotropic material and Exact solutions.  Since these results compared 

well, the isotropic curved beam model is validated. 
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Figure 2.12. Radial stress comparison between isotropic FEM and exact solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. Tangential stress comparison between isotropic FEM and exact solution. 

Exact vs. FEM

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

Radial position

R
ad

ia
l S

tr
es

s

Exact Solution
FEM_Result

Exact vs. FEM

-8.00E+04

-6.00E+04

-4.00E+04

-2.00E+04

0.00E+00

2.00E+04

4.00E+04

6.00E+04

8.00E+04

1.00E+05

0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

Radial position

Ta
ng

en
tia

l S
tr

es
s

Exact Solution
FEM_Result



 

 23

2.3.2 Orthotropic Material 

An orthotropic material, T300/977-2 graphite/epoxy, was used.  The required material 

properties for NASTRAN MAT9 Card are shown in Table 2.4.  All 00 plies lay-up was applied for 

this curved beam model.  The material properties of T300/977-2 graphite/epoxy for 00-ply 

elements were assigned to a different element group associated with a different local coordinate 

system.  There were thirty element groups associated with thirty local coordinate systems. 

 

Figure 2.14. Local coordinate system for each element group. 

 

The material X-direction (perpendicular to the Y-Z plane), Y-direction, and Z-direction were 

established to be the fiber direction, the transverse to fiber direction and the out-of plane 

direction, respectively.  The behavior of the curved beam with the orthotropic material contains 

all 00 plies lay-up similar to the curved beam with the isotropic material.   The recorded radial 

and tangential stress values, as shown in Table 2.9, were compared to the results from the 

isotropic material and exact solution in Section 2.3.1.   
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Table 2.9. The recorded stress values from FEM for orthotropic material 

Layer # Elem # Radial Position r 
(inch) 

Radial Stress σr 
(psi) 

Tangential 
Stress σθ (psi) 

1 0.60185 2.97E+02 7.70E+04 1 2 0.60555 7.31E+02 6.98E+04 
3 0.60925 1.13E+03 6.27E+04 2 4 0.61295 1.47E+03 5.57E+04 
5 0.61665 1.76E+03 4.87E+04 3 6 0.62035 2.01E+03 4.19E+04 
7 0.62405 2.22E+03 3.51E+04 4 8 0.62775 2.38E+03 2.84E+04 
9 0.63145 2.50E+03 2.18E+04 5 10 0.63515 2.58E+03 1.52E+04 
11 0.63885 2.62E+03 8.77E+03 6 12 0.64255 2.63E+03 2.38E+03 
13 0.64625 2.59E+03 -3.93E+03 7 14 0.64995 2.53E+03 -1.02E+04 
15 0.65365 2.43E+03 -1.63E+04 8 16 0.65735 2.29E+03 -2.24E+04 
17 0.66105 2.13E+03 -2.85E+04 9 18 0.66475 1.93E+03 -3.44E+04 
19 0.66845 1.70E+03 -4.04E+04 10 20 0.67215 1.44E+03 -4.62E+04 
21 0.67585 1.16E+03 -5.20E+04 11 22 0.67955 8.42E+02 -5.77E+04 
23 0.68325 5.07E+02 -6.33E+04 12 24 0.68695 1.43E+02 -6.89E+04 

 

The stress data from Table 2.6, Table 2.8, and Table 2.9 are combined together to generate two 

separate plots for comparison: one for the radial stress, and one for the tangential stress, as 

shown in the Figure 2.15 and Figure 2.16 on the next page.  The values of radial and tangential 

stresses for orthotropic material with all 00 lay-up are comparable to the isotropic material 

solution and exact solution.  This is the good evidence to confirm about the validation of the 

composite curved beam model. 
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Figure 2.15. Radial stress comparison for isotropic, orthotropic and exact solution. 
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Figure 2.16. Tangential stress comparison for isotropic, orthotropic and exact solution. 
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2.4 Convergence 

The convergence study was conducted for an isotropic semicircular curved beam, 

Model I (mid-plane curvature R1 = 0.2444 inches).  The geometry dimensions of this Model I are 

shown in Table 2.1.  The isotropic material, Al-2014-T6, was used.  Due to the uniformity in all 

direction of isotropic material, one cylindrical coordinate system was used for the entire model.  

The meshing, boundary conditions, and loading conditions remained the same as defined in 

Section 2.2.  This curved beam model contains 12 plies.  Each ply is explicitly modeled by one 

row of element.  The mesh of this analyzed curved beam model was refined six times.  The 

number of elements was recorded as: 5400, 7200, 9000, 10800, 12600, and 14400 elements.  

The tangential (in-plane) stress and radial (out-of-plane) stress of twelve different elements from 

selected center group (through thickness) in this curved beam model were examined.  The 

values of these stresses were recorded and plotted for convergence examination.    

 

 

 

 

 

 

 

 

 

Figure 2.17. Selected center group. 

 

Figure 2.18 and Figure 2.19 on the next page show that stresses approach to a constant with 

the increasing number of elements in the model.  These figures highlight that the tangential and 

radial stresses for isotropic curved beam converged.  
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Figure 2.18. The convergence of tangential stress. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19. The convergence of radial stress. 
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CHAPTER 3 
 

ANALYTICAL METHOD FOR CURVED LAMINATED BEAM 

  

This Chapter will cover the development of equations used to calculate the tangential 

ply stress θσ in the curved laminated beam under bending based upon the Classical 

Lamination Theory (CLT).  A brief description of the Lamination Theory is depicted below.  The 

detail of derivation can be found in Ref. [10].  The constitutive equation for a narrow laminated 

beam is also included.     

 

3.1 Review of Lamination Theory 

 The overall behavior of a multidirectional laminate is a function of the properties and 

stacking sequence of the individual layers.  Classical Lamination Theory (CLT) is the most 

commonly used to analyze the behavior of laminated plate.  It is also used to evaluate strains 

and stresses of plies in the laminate.  CLT is based on the following assumption to analyze the 

behavior of laminate: 

1. Each layer (lamina) of the laminate is quasi-homogeneous and orthotropic. 

2. The laminate is thin with its lateral dimensions much larger than its thickness.  Hence, 

the laminate and its layers are in a state of plane stress. 

3. All displacements are small compared with the thickness of the laminate. 

A laminate contains multiple layers.  Each layer has its preferred fiber orientation.  Hence, it is 

convenient to use one coordinate system to represent the fiber direction of a layer and another 

coordinate system common to all the layers for the laminates.  These coordinate systems are 

described in Figure 3.1. 
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Figure 3.1. Coordinate systems of lamina and laminate. 

3.1.1. Elastic Stress-Strain Relationship of Lamina 

A 00 lamina is treated as an orthotropic thin layer material which requires four 

independent material constants sufficiently to specify their elastic structural response. These 

constants refer to E1 and E2 being the Young’s moduli of lamina along and transverse to the 

fiber direction, respectively, ν12, the Poisson’s ratio and G12, the shear modulus of lamina under 

a loading along the fiber direction. Since the composite layer is very thin, the plane stress 

condition is considered. The generalized Hook’s law gives the stress-strain relationship of 00 

lamina and the matrix [Q] in terms of engineering constants is given as: 

  

           

 02616 == QQ             (3-1) 

For a lamina at angle θ with respect to the reference axes x and y, the stress/strain relation in 

the x-and y-coordinates is given as:  
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where [ ]yxQ −  matrix (Q-bar matrix) is obtained by transforming [Q1-2] matrix of lamina from 1-2 

material coordinates to the laminate x-y coordinates. Mathematically, it can be expressed as: 
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[ ] ( )[ ] [ ] ( )[ ]θθ εσ TQTQ yx ⋅⋅−= −− 21     (3-3)

   
[Tσ(+θ)] and [Tε(+θ)] are the transformation matrices that relate the stress and strain 

components in x-y coordinates to the 1-2 coordinates, respectively. They are defined as where 

m=cosθ, n= sinθ and θ is the fiber orientation of the lamina [11]. 
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Substituting equations 3.4 and 3.1 into 3.3, the components of the Q-bar matrix can be explicitly 

expressed as: 
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Strains at any point in the kth ply of a laminate can be calculated using the following relationship: 
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where εx

0
, εy

0
 and γxy

0
 are the mid-plane strains, and κx, κy and κxy are the mid-plane curvatures. 

zk is the z- coordinate of the interested point within the kth layer measured from the mid-plane to 

the lamina and εx, εy and γxy are the strains in the kth ply.  
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3.1.2. Constitutive Equation of Laminate (Lamination Theory)  

The structural response of a laminate is represented by the strains and curvatures 

about its mid-plane. The total in-plane forces [ ]N  and moments [ ]M  per unit width of the 

laminated plate are obtained by integrating forces of each ply through the laminate thickness as 

shown in Figure 3.2.  Mathematically, they are expressed as:  
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where zk-1and zk are the distances from the reference plane (often chosen at the mid-plane of 

the laminate, as shown in Figure 3.3) to the kth-layer’s lower and upper surfaces, respectively.   

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.2. Element of single layer with force and moment resultants. 
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Figure 3.3. Laminate plate geometry and layer numbering system. 

 

Substituting Equations 3.2, 3.6 into 3.7, the general load-deformation relation of laminate can be 

written in terms of the mid-plane strain and curvature as shown below: 
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The [A], [B] and [D] matrices are given as  
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where zk-1 and zk are the z-coordinates of the bottom and upper surfaces of the kth layer, 

respectively.  The matrix [ ]
kyxQ − is the stiffness matrix of kth layer.  
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The [A] matrix is called in-plane extensional stiffness matrix because it directly relates the in-

plane strains ( 000 ,, xyyx γεε ) to the in-plane forces per unit width ( xyyx NNN ,, ).  The [B] matrix is 

called extensional-bending coupling stiffness matrix. This matrix relates the in-plane strains to 

the bending moments and curvatures to in-plane forces.  The [D] matrix is the bending stiffness 

matrix because it relates the curvatures ( xyyx KKK ,, ) to the bending moments per unit width 

( xyyx MMM ,, ). 

3.2 Curved Laminated Beam 

Beams are the primary structural members that carry bending loads.  Beams are 

slender and are considered as one-dimensional members.  Consider a curved beam as shown. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The configurations of curved beam and its cross section. 

 

Let 'ρρ  be the mid-axis of the beam.  The differential element at the kth layer from the mid-axis 
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 ( ) θεθ ⋅+ dzR         (3-10) 

This elongation can be also described in terms of the mid-plane strain 0ε and their curvature κ . 

 ( )κεθ ⋅+⋅ zdR 0      (3-11) 

Combining 3-10 and 3-11, we have: 

 ( )κεεθ ⋅+
+

= z
zR

R
0        (3-12) 

For simplicity, the stress θσ at the kth layer can be approximated by: 

 kkk Q ,,

__

, θθθθ εσ =        (3-13) 

The resultant force and moment per unit width, θN and θM are obtained as: 
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Combining Equations 3-14 and 3-15, we have: 
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Since θθM is the only load applied to the laminated curved beam, Equation 3-19 can be re-

written as:  

 
Δ

−= θθ
θθε

B
; and 

Δ
= θθ

θθ
A

M  

where 2
θθθθθθ BDA −=Δ  

θθA , θθB  and θθD are referring to the extensional, coupling and bending stiffness along the θ  

direction, respectively.  They are equivalent to 22A , 22B  and 22D  for the plate laminate as the 

mid-plane curvature R approaches to∞ .  This is proved and shown in Appendix B.  It is also 

noted that θθB is not equal zero even if the laminate is symmetric with respect to its mid-plane. 

With the values of 0ε and θκ , the in-plane stress θσ at any given position can be obtained from 

Equations 3-12 and 3-13. 
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CHAPTER 4 

STRESS EFFECT OF CURVATURE AND STACKING SEQUENCE 

   

 This Chapter discusses the tangential and radial stresses due to the variation of the 

laminate curvature.  The characteristics of the axial, bending and their coupling stiffness of the 

curved beam are also investigated. 

 

4.1 The Curvature Effect on Laminate Stresses 

 Three curved beam models with the difference in geometry dimensions were examined.  

The meshing, number of elements, boundary conditions, and loading conditions remained the 

same as defined in Chapter 2.  Four local coordinate systems were assigned to each element 

group.  Each of these four local coordinate systems was associated to a different angle of fiber 

orientation: 00, -450, +450, and 900, as shown in Figure 2.4.  The T300/977-2 graphite/epoxy 

laminate with stacking sequence of [+45/-45/902/02]S, quasi-orthotropic material, was used for 

these three models.  The required material properties for NASTRAN MAT9 Card are shown in 

Table 2.4. 

4.1.1 Stress Distribution     

Model I with the mid-plane curvature of R1 = 0.2444 inches was examined and analyzed 

in PATRAN/NASTRAN.  The geometrical dimensions of this Model I are shown in Table 2.1.  

Four plies (00 ply#6, -450 ply#2, +450 ply#1 &  and 900 ply#4) from the lower half and four plies 

from the upper half (00 ply#7, -450 ply#11, +450 ply#12, and 900 ply#9) of analyzed model were 

selected to show different stresses distributions.  The ply in the model and its sequence are 

shown below.   
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Table 4.1. Ply sequence for 12-ply composite curved beam. 

Ply #  Orientation 

1 +450 
2 -450 
3    900 
4    900 
5   00 
6   00 

Mid-Plane 
7   00 
8   00 
9   900 
10   900 
11 -450 
12 +450 

 

 

Figure 4.1. The lay-up sequence of composite curved beam. 

The stress distributions of eight selected plies are shown in the figures over the next pages.    
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 4.1.1.1 Stress Distribution for 00 ply 

 Figures 4.2 and 4.3 show the tangential and radial stress contours of ply #6 and #7.  As 

shown, the higher stress is located at the vicinity of both free edges of the curved and straight 

sides.  Both tangential and radial stresses are somewhat uniform at the place away from the 

free edges. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The distribution of tangential stress σθ in 00 ply. 

 

 

 

 

 

 

 

 

 

Figure 4.3. The distribution of radial stress σr in 00 ply. 

Radial stress σr of ply #6 Radial stress σr of ply #7 Radial stress σr of ply #6 Radial stress σr of ply #7 

Tangential stress σθ of ply #6 Tangential stress σθ of ply #7Tangential stress σθ of ply #6 Tangential stress σθ of ply #7Tangential stress σθ of ply #6 Tangential stress σθ of ply #7 

Radial stress σr of ply #6 Radial stress σr of ply #7 
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4.1.1.2 Stress Distribution for -450 ply and +450 ply 

 The σθ and σr stress contours are plotted in Figures 4.4 and 4.5 for -450 ply and Figures 

4.6 and 4.7 for +450 ply.  Comparing σθ of plies #1 and #2, the maximum magnitude occurs 

along its fiber direction.  The radial stress seems to be not significantly affected by the positive 

or negative fiber direction. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. The distribution of tangential stress σθ in -450 ply. 

 

 

 

 

 

 

 

 

 

Figure 4.5. The distribution of radial stress σr in -450 ply. 

Tangential stress σθ of ply #11 Tangential stress σθ of ply #2 Tangential stress σθ of ply #11 Tangential stress σθ of ply #2 

Radial stress σr of ply #2 Radial stress σr of ply #11 Radial stress σr of ply #2 Radial stress σr of ply #11 Radial stress σr of ply #11 

Tangential stress σθ of ply #2 Tangential stress σθ of ply #11 

Radial stress σr of ply #2 
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Figure 4.6. The distribution of tangential stress σθ in +450 ply. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. The distribution of radial stress σr in +450 ply. 

Tangential stress σθ of ply #1 Tangential stress σθ of ply #12Tangential stress σθ of ply #1 Tangential stress σθ of ply #12

Radial stress σr of ply #1 Radial stress σr of ply #12 Radial stress σr of ply #1 Radial stress σr of ply #12 

Tangential stress σθ of ply #12 Tangential stress σθ of ply #1 

Radial stress σr of ply #1 Radial stress σr of ply #12 
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4.1.1.3 Stress Distribution for 900 ply 

 Since the moment is applied in the θ direction, 900 ply is the major load carrying ply of 

the laminate in this case.  Figures 4.8 and 4.9 show the tangential and the radial stress contours 

of ply # 4 and ply #9, respectively.  σθ is the highest stress component among all the plies in the 

laminate.  If there is no curvature in the laminate, σθ in ply #4 and #9 should be equal in 

magnitude but opposite sign because of symmetrical laminate.  However, this is not the case for 

the curved laminate.  As shown, σθ in ply #4 is larger than σθ in ply #9. 

 

 

 

 

 

 

 

 

Figure 4.8. The distribution of tangential stress σθ in 900 ply. 

 

 

 

 

 

 

 

 

 

Figure 4.9. The distribution of radial stress σr in 900 ply. 

Tangential stress σθ of ply #9 Tangential stress σθ of ply #4 Tangential stress σθ of ply #9 Tangential stress σθ of ply #4 

Radial stress σr of ply #4 Radial stress σr of ply #9 Radial stress σr of ply #4 Radial stress σr of ply #9 

Tangential stress σθ of ply #4 Tangential stress σθ of ply #9 

Radial stress σr of ply #4 Radial stress σr of ply #9 
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4.1.2 Stress Comparison 

Curved beam Model I, Model II and Model III with three different mid-plane curvatures 

were examined and analyzed using PATRAN/NASTRAN.  The geometrical dimensions of these 

three models are shown in Table 2.1.  Four different plies (00 ply#6, -450 ply#2, +450 ply#1 &  

and 900 ply#4) from the lower half of these models were selected for stress comparison.  

Twenty different elements which associated with twenty different angle positions from each ply, 

as shown in Figure 4.10, were selected to eliminate the “edge effective”.   

 

Figure 4.10. Elements on each ply at different angle position. 

The values of radial stress rσ  and tangential stress θσ  for these twenty elements were 

recorded from the PATRAN/NASTRAN output.  These stress values were then plotted into 

different graphs.  Each of these graphs shows the stress variation of each individual ply at a 

different angle of fiber orientation from three different analyzed curved beam models.  The 

behavior and the variation of interlaminar stresses from each different layer due to the changing 

in curvature of each model highlighted clearly from these graphs.   

Twenty selected elements 
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4.1.2.1 The Stress Variation for +450 ply#1 

Table 4.2. The stress values for +450 ply#1. 

(deg) Model I (R1 = 0.2444) Model II (R2 = 0.6444) Model III (R3 = 1.8444) 
Angle 

Position  
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 

30 5.11E+02 5.48E+04 4.70E+02 4.74E+04 1.43E+02 4.50E+04
27 5.13E+02 5.49E+04 4.61E+02 4.72E+04 1.44E+02 4.50E+04
24 5.14E+02 5.50E+04 4.64E+02 4.70E+04 1.46E+02 4.51E+04
21 5.15E+02 5.50E+04 4.60E+02 4.69E+04 1.41E+02 4.52E+04
18 5.16E+02 5.51E+04 4.60E+02 4.67E+04 1.49E+02 4.54E+04
15 5.16E+02 5.51E+04 4.59E+02 4.66E+04 1.46E+02 4.55E+04
12 5.16E+02 5.51E+04 4.59E+02 4.66E+04 1.37E+02 4.55E+04
9 5.16E+02 5.52E+04 4.58E+02 4.65E+04 1.50E+02 4.56E+04
6 5.17E+02 5.52E+04 4.59E+02 4.65E+04 1.40E+02 4.56E+04
3 5.17E+02 5.52E+04 4.58E+02 4.65E+04 1.54E+02 4.57E+04
-3 5.17E+02 5.52E+04 4.58E+02 4.65E+04 1.32E+02 4.57E+04
-6 5.18E+02 5.53E+04 4.59E+02 4.65E+04 1.51E+02 4.57E+04
-9 5.18E+02 5.53E+04 4.58E+02 4.66E+04 1.46E+02 4.57E+04

-12 5.19E+02 5.54E+04 4.60E+02 4.66E+04 1.41E+02 4.57E+04
-15 5.20E+02 5.54E+04 4.59E+02 4.67E+04 1.45E+02 4.56E+04
-18 5.21E+02 5.55E+04 4.62E+02 4.68E+04 1.52E+02 4.56E+04
-21 5.22E+02 5.57E+04 4.60E+02 4.70E+04 1.34E+02 4.55E+04
-24 5.25E+02 5.59E+04 4.66E+02 4.71E+04 1.57E+02 4.56E+04
-27 5.28E+02 5.62E+04 4.61E+02 4.73E+04 1.34E+02 4.55E+04
-30 5.31E+02 5.65E+04 4.75E+02 4.76E+04 1.59E+02 4.57E+04

 

The tangential stress θσ and radial stress rσ  are found to be positive for +450 lay-up #1, as 

shown in Figure 4.11 and Figure 4.12 on the next page.  As expected, the stresses θσ and 

rσ along the curve angle position are fairly constant.  However, these stresses decrease with 

the increasing of curvatures.  Figure 4.12 clearly highlights the effect of curvature on radial 

stress rσ .  Model I (R1 = 0.2444) with the lowest in radius of curvature produces the highest in 

interlaminar stresses.  On the other hand, Model III (R3 = 1.8444) with the highest in radius of 

curvature produces the lowest in interlaminar stresses.   
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The Variation of Tangential Stress for +45deg Lay-up
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Figure 4.11. Tangential stress for +450 lay-up. 

The Variation of Radial Stress for +45deg Lay-up
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Figure 4.12. Radial stress for +450 lay-up. 
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4.1.2.2 The Stress Variation for -450 ply#2 

Table 4.3. The stress values for -450 ply#2. 

(deg) Model I (R1 = 0.2444) Model II (R2 = 0.6444) Model III (R3 = 1.8444) 
Angle 

Position  
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 

30 2.89E+03 4.02E+04 1.01E+03 4.24E+04 3.17E+02 4.34E+04
27 2.93E+03 4.04E+04 1.01E+03 4.27E+04 3.21E+02 4.36E+04
24 2.96E+03 4.06E+04 1.01E+03 4.29E+04 3.14E+02 4.38E+04
21 2.97E+03 4.06E+04 1.01E+03 4.31E+04 3.17E+02 4.40E+04
18 2.98E+03 4.07E+04 1.01E+03 4.33E+04 3.15E+02 4.41E+04
15 2.98E+03 4.08E+04 1.01E+03 4.34E+04 3.18E+02 4.42E+04
12 2.98E+03 4.08E+04 1.01E+03 4.35E+04 3.05E+02 4.44E+04
9 2.99E+03 4.08E+04 1.02E+03 4.36E+04 3.23E+02 4.44E+04
6 2.99E+03 4.09E+04 1.02E+03 4.37E+04 3.07E+02 4.45E+04
3 2.99E+03 4.09E+04 1.02E+03 4.37E+04 3.16E+02 4.45E+04
-3 3.00E+03 4.09E+04 1.02E+03 4.37E+04 3.08E+02 4.45E+04
-6 3.00E+03 4.09E+04 1.02E+03 4.37E+04 3.16E+02 4.45E+04
-9 3.01E+03 4.09E+04 1.02E+03 4.36E+04 3.18E+02 4.44E+04

-12 3.01E+03 4.09E+04 1.02E+03 4.35E+04 3.07E+02 4.43E+04
-15 3.02E+03 4.10E+04 1.01E+03 4.34E+04 3.14E+02 4.42E+04
-18 3.03E+03 4.10E+04 1.02E+03 4.33E+04 3.23E+02 4.41E+04
-21 3.05E+03 4.10E+04 1.01E+03 4.31E+04 3.08E+02 4.39E+04
-24 3.07E+03 4.11E+04 1.02E+03 4.30E+04 3.25E+02 4.36E+04
-27 3.09E+03 4.12E+04 1.01E+03 4.28E+04 3.10E+02 4.34E+04
-30 3.11E+03 4.14E+04 1.02E+03 4.25E+04 3.32E+02 4.32E+04

 

The tangential stress θσ and radial stress rσ  are found to be positive for -450 lay-up #2, as 

shown in Figure 4.13 and Figure 4.14 on the next page.  For this -450 lay-up, the tangential 

stress θσ  increases with the increasing of curvature. The radial stress rσ decreases with the 

increasing of curvature.  Model I (R1 = 0.2444) with the lowest in radius of curvature produces 

the highest in radial stress and lowest in tangential stress.  On the other hand, Model III (R3 

=1.8444) with the highest in curvature produces the lowest in radial stress and highest 

tangential stress.   
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The Variation of Tangential Stress for -45deg Lay-up
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Figure 4.13. Tangential stress for -450 lay-up. 

The Variation of Radial Stress for -45deg Lay-up

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

-40 -30 -20 -10 0 10 20 30 40

Angle Position

R
ad

ia
l S

tr
es

s

Curvature_R1

Curvature_R2

Curvature_R3

 

Figure 4.14. Radial stress for -450 lay-up. 
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4.1.2.3 The Stress Variation for 900 ply#4 

Table 4.4. The stress values for 900 ply#4. 

(deg) Model I (R1 = 0.2444) Model II (R2 = 0.6444) Model III (R3 = 1.8444) 
Angle 

Position  
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 

30 7.38E+03 5.11E+04 2.91E+03 6.29E+04 1.05E+03 7.81E+04
27 7.49E+03 5.09E+04 2.91E+03 6.29E+04 1.05E+03 7.98E+04
24 7.54E+03 5.08E+04 2.91E+03 6.29E+04 1.07E+03 8.11E+04
21 7.56E+03 5.08E+04 2.92E+03 6.28E+04 1.06E+03 8.24E+04
18 7.57E+03 5.08E+04 2.92E+03 6.28E+04 1.08E+03 8.34E+04
15 7.58E+03 5.08E+04 2.92E+03 6.28E+04 1.07E+03 8.43E+04
12 7.58E+03 5.07E+04 2.92E+03 6.28E+04 1.06E+03 8.48E+04
9 7.58E+03 5.07E+04 2.92E+03 6.28E+04 1.09E+03 8.53E+04
6 7.59E+03 5.07E+04 2.93E+03 6.28E+04 1.07E+03 8.55E+04
3 7.59E+03 5.07E+04 2.93E+03 6.28E+04 1.09E+03 8.58E+04
-3 7.60E+03 5.07E+04 2.93E+03 6.28E+04 1.06E+03 8.57E+04
-6 7.60E+03 5.06E+04 2.93E+03 6.28E+04 1.09E+03 8.56E+04
-9 7.61E+03 5.05E+04 2.93E+03 6.28E+04 1.06E+03 8.53E+04

-12 7.62E+03 5.04E+04 2.93E+03 6.28E+04 1.08E+03 8.49E+04
-15 7.64E+03 5.03E+04 2.92E+03 6.28E+04 1.07E+03 8.43E+04
-18 7.67E+03 5.01E+04 2.92E+03 6.29E+04 1.07E+03 8.35E+04
-21 7.70E+03 4.97E+04 2.92E+03 6.29E+04 1.07E+03 8.25E+04
-24 7.74E+03 4.93E+04 2.92E+03 6.29E+04 1.06E+03 8.13E+04
-27 7.78E+03 4.87E+04 2.92E+03 6.29E+04 1.06E+03 7.99E+04
-30 7.79E+03 4.81E+04 2.93E+03 6.29E+04 1.05E+03 7.84E+04

 

The tangential stress θσ and radial stress rσ  are found to be positive for 900 lay-up #4, as 

shown in Figure 4.15 and Figure 4.16 on the next page.  For this 900 lay-up, the tangential 

stress θσ  increases with the increasing of curvature. The radial stress rσ decreases with the 

increasing of curvature.  Model I (R1 = 0.2444) with the lowest in radius of curvature produces 

the highest in radial stress and lowest in tangential stress.  On the other hand, Model III (R3 = 

1.8444) with the highest in radius of curvature produces the lowest in radial stress and highest 

tangential stress.   
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The Variation of Tangential Stress for 90deg Lay-up
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Figure 4.15. Tangential stress for 900 lay-up. 

The Variation of Radial Stress for 90deg Lay-up
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Figure 4.16. Radial stress for 900 lay-up. 
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4.1.2.4 The Stress Variation for 00 ply#6 

Table 4.5. The stress values for 00 ply#6. 

(deg) Model I (R1 = 0.2444) Model II (R2 = 0.6444) Model III (R3 = 1.8444) 
Angle 

Position  
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 
 

σr (psi) 
 

σθ (psi) 

30 7.59E+03 2.63E+03 3.04E+03 1.67E+03 1.07E+03 1.82E+03
27 7.67E+03 2.71E+03 3.04E+03 1.67E+03 1.07E+03 1.88E+03
24 7.70E+03 2.76E+03 3.04E+03 1.67E+03 1.07E+03 1.96E+03
21 7.72E+03 2.79E+03 3.05E+03 1.67E+03 1.08E+03 2.02E+03
18 7.72E+03 2.80E+03 3.05E+03 1.67E+03 1.07E+03 2.07E+03
15 7.72E+03 2.81E+03 3.05E+03 1.67E+03 1.08E+03 2.12E+03
12 7.72E+03 2.82E+03 3.05E+03 1.67E+03 1.08E+03 2.15E+03
9 7.72E+03 2.82E+03 3.06E+03 1.66E+03 1.08E+03 2.18E+03
6 7.73E+03 2.82E+03 3.06E+03 1.66E+03 1.08E+03 2.19E+03
3 7.73E+03 2.82E+03 3.06E+03 1.66E+03 1.07E+03 2.20E+03
-3 7.73E+03 2.82E+03 3.06E+03 1.66E+03 1.08E+03 2.20E+03
-6 7.74E+03 2.82E+03 3.06E+03 1.66E+03 1.07E+03 2.19E+03
-9 7.74E+03 2.82E+03 3.06E+03 1.66E+03 1.08E+03 2.18E+03

-12 7.76E+03 2.82E+03 3.06E+03 1.66E+03 1.08E+03 2.15E+03
-15 7.77E+03 2.81E+03 3.06E+03 1.66E+03 1.08E+03 2.12E+03
-18 7.80E+03 2.81E+03 3.05E+03 1.66E+03 1.07E+03 2.08E+03
-21 7.83E+03 2.78E+03 3.05E+03 1.66E+03 1.08E+03 2.03E+03
-24 7.88E+03 2.74E+03 3.05E+03 1.67E+03 1.07E+03 1.96E+03
-27 7.93E+03 2.66E+03 3.05E+03 1.67E+03 1.07E+03 1.88E+03
-30 7.96E+03 2.52E+03 3.06E+03 1.67E+03 1.06E+03 1.79E+03

 

The tangential stress θσ  and radial stress rσ  are found to be positive for 00 lay-up #6, as 

shown in Figure 4.17 and Figure 4.18 on the next page.  For this 00 lay-up, the tangential stress 

θσ are found highest for Model I (R1 = 0.2444), and lowest for Model II (R2 = 0.6444).  The 

radial stress rσ decreases with the increasing of curvature.  Model I (R1 = 0.2444) with the 

lowest in radius of curvature produces the highest in radial stress.  Model III (R3 = 1.8444) with 

the highest in radius of curvature produces the lowest in radial stress. 
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The Variation of Tangential Stress for 0deg Lay-up
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Figure 4.17. Tangential stress for 00 lay-up. 

The Variation of Radial Stress for 0deg Lay-up
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Figure 4.18. Radial stress for 00 lay-up. 
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4.1.3 Stacking Sequence [+450/-450/900
2/00

2]S 

The tangential stresses along the θ direction of -450 (ply#2), +450 (ply #1) and 900 (ply 

#4) are calculated using the closed-form solution in Chapter 3.  These calculated stress values 

are used to validate the obtained tangential stress values in Section 4.1.2.  The comparison 

between FEM and the closed-form solution is shown in Table 4.6. 

Table 4.6. The comparison for tangential stress. 

Applied bending moment Mθθ = 100 lbs-in 
Tangential stress, σθθ (psi) 

R1 = 0.2444 inches R2 = 0.6444 inches R3 = 1.8444 inches 
 

FEM Present FEM Present FEM Present 
-450 Ply 4.09E+04 4.20E+04 4.37E+04 4.03E+04 4.45E+04 3.97E+04 
+450 Ply 5.52E+04 5.36E+04 4.65E+04 4.97E+04 4.57E+04 4.83E+04 
  900 Ply 5.07E+04 5.21E+04 6.28E+04 5.64E+04 8.58E+04 7.13E+04 

 % Different % Different % Different 
-450 Ply 2.62 8.44 12.09 
+450 Ply 2.99 6.44 5.38 
  900 Ply 2.69 11.35 20.34 

 

The difference in tangential stress between the FEM result and the closed-form solution is 

predictable.  This difference takes place due to the fact that the FEM includes 3D material 

properties while the closed-form solution includes only 1D material property. 
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4.2 The Fiber Orientation Effect on Laminate Stresses 

The effect of fiber orientation is also investigated.  Model I (R1 = 0.2444) was examined.  

The meshing, the number of elements, boundary conditions and material coordinate systems for 

this model were remained the same as defined in Sections 2.1 and 2.2.   

4.2.1 Symmetric and Balanced Laminates 

A T300/977-2 graphite/epoxy laminate with stacking sequence of [ θ± / θ± / 900
2]S was 

used for the selected models, where =θ 150, 300, 450, 600, and 750.  A different local 

coordinate was created for each different angle of fiber orientation: 00, +150, -150, +300, -300, 

+450, -450, +600, -600, +750, and -750.  There are five different stacking sequences were applied 

for this model.  They are: [ 015± / 015± / 900
2]S, [ 030± / 030± / 900

2]S, [ 045± / 045± / 900
2]S, 

[ 060± / 060± / 900
2]S, and [ 075± / 075± / 900

2]S.    

 

S.S #1  S.S #2 S.S #3 S.S #4 S.S #5 
+150  +300 +450 +600 +750 
-150  -300 -450 -600 -750 
+150  +300 +450 +600 +750 
-150  -300 -450 -600 -750 
900  900 900 900 900 
900  900 900 900 900 
900  900 900 900 900 
900  900 900 900 900 
-150  -300 -450 -600 -750 
+150  +300 +450 +600 +750 
-150  -300 -450 -600 -750 
+150  +300 +450 +600 +750 

 

Figure 4.19. Description of laminate coding for five different stacking sequences. 

The interlaminar stresses for the elements in 900 layer are expected to be different for each 

stacking sequence.  To study the effect of changing in stacking sequence, three different 

elements in the 900 layer #6 from the lower half of the curved beam model were examined.  
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These three elements were selected from three different angle positions (270, 330 and 390), as 

shown in Figure 4.20.  The element at 450 angle position was not selected for this case study 

since the result at this position may be strongly affected by the end condition enforced by FEM. 

 

Figure 4.20. The selected elements in 900 layer #6 at different angle positions. 

The variation of θσ  and rσ stresses for the selected elements in 900 layer #6 at various angle 

positions (270, 330, and 390) are shown below for five different stacking sequences.   
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Figure 4.21. Stress for element at 270 angle position. 
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Figure 4.22. Stress for element at 330 angle position. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23. Stress for element at 390 angle position. 

Element at 33deg angle position.

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

33

Angle Position, deg

R
ad

ia
l S

tr
es

s,
 p

si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 33deg angle position.

-6.00E+03

-4.00E+03

-2.00E+03

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

33

Angle Position, deg

Ta
ng

en
tia

l S
tr

es
s,

 p
si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 33deg angle position.

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

33

Angle Position, deg

R
ad

ia
l S

tr
es

s,
 p

si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 33deg angle position.

-6.00E+03

-4.00E+03

-2.00E+03

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

33

Angle Position, deg

Ta
ng

en
tia

l S
tr

es
s,

 p
si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 39deg angle position.

-6.00E+03

-4.00E+03

-2.00E+03

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

39

Angle Position, deg

Ta
ng

en
tia

l S
tr

es
s,

 p
si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 39deg angle position.

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

39

Angle Position, deg

R
ad

ia
l S

tr
es

s,
 p

si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 39deg angle position.

-6.00E+03

-4.00E+03

-2.00E+03

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

39

Angle Position, deg

Ta
ng

en
tia

l S
tr

es
s,

 p
si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5

Element at 39deg angle position.

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

39

Angle Position, deg

R
ad

ia
l S

tr
es

s,
 p

si

S.S #1

S.S #2

S.S #3

S.S #4

S.S #5



 

 54

Figures 4.21, 4.22 and 4.23 highlight clearly the effect of fiber orientations on the interlaminar 

stresses ( θσ and rσ ).  The radial stress rσ  is found positive for all stacking sequences at all 

selected angle positions.  The stacking sequences #1 & #2 produced positive tangential stress 

θσ and the stacking sequences #3, #4, & #5 produced negative tangential stress θσ at all 

selected angle positions.  This is because of the shift of the neutral axis of the curved laminate 

as the fiber orientation changes.  The stacking sequence #1, [ 015± / 015± / 900
2]S, produced 

the highest interlaminar stresses ( θσ  and rσ ) for elements in 900 layer #6.   

4.2.2 Symmetric / Unsymmetrical and Balanced / Unbalanced Laminates 

 The effects of three other stacking sequences on the tangential stress were also 

investigated.  The symmetric and balanced laminate [ ]T2
0

4
0

2
0 45/90/45 m± , unsymmetrical 

and balanced laminate [ ]T4
0

2
0

2
0 90/45/45 ±± , and unsymmetrical and unbalanced laminate 

[ ]T4
0

8
0 90/45+  were applied in the same Model I (R1 = 0.2444).  The layer #1 of +450 fiber 

orientation was selected to show the different in tangential stress.  The stacking sequences are 

shown below. 

S.S #1  S.S #2 S.S #3 
+450  +450 +450 
-450  -450 +450 
+450  +450 +450 
-450  -450 +450 
900  +450 +450 
900  -450 +450 
900  +450 +450 
900  -450 +450 
-450  900 900 
+450  900 900 
-450  900 900 
+450  900 900 

 

Figure 4.24. Description of laminate coding for three different stacking sequences. 
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Twenty different elements which associated with twenty different angle positions, as shown in 

Figure 4.10, were selected for this study.  The tangential stresses from three different stacking 

sequences were plotted in the same graph for comparison purposes.   
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Figure 4.25. The variation of tangential stress. 

 

The tangential stress θσ was found positive for all stacking sequences.  The symmetric and 

balanced laminate [ ]T2
0

4
0

2
0 45/90/45 m±  produced the highest tangential stress for +450 

layer #1.  The unsymmetrical and balanced laminate [ ]T4
0

2
0

2
0 90/45/45 ±±  produced the 

lowest tangential stress for +450 layer #1. 
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4.3 The Effect of Stacking Sequence 

Five different laminates were examined to show the effect of the lay-up stacking 

sequences on the extensional stiffness matrix [A], extensional-bending coupling stiffness matrix 

[B], and bending stiffness matrix [D].  These five laminates and their lay-up stacking sequences 

are shown in Table 4.7 below.  

Table 4.7. Laminate stacking sequences. 

LAMINATE 1 [00/00/+450/-450/900/900]S Symmetric and Balanced 
LAMINATE 2 [+450/00/00/-450/900/900]S Symmetric and Balanced 
LAMINATE 3 [+450/-450/00/00/900/900]S Symmetric and Balanced 
LAMINATE 4 [+450/-450/900/900/00/00]S Symmetric and Balanced 
LAMINATE 5 [+450

2/-450
2/00

4/900
4]T Unsymmetrical and Balanced 

 

The calculated values of matrices θθA , θθB , and θθD using Equations 3-16, 3-17, and 3-18 

with different laminate stacking sequences and/or different mid-plane radius R are shown in the 

following table.  

Table 4.8. Matrices comparison for laminate 3. 

  R1 = 0.2444 R2 = 0.6444 R3 = 1.8444 R  ∞ 
Aθθ (105

 lb/in) 9.055 9.002 8.995 8.994 
Bθθ (102 lb) -14.88 -5.54 -1.93 0.00 

Dθθ (102 lb-in) 3.64 3.57 3.56 3.56 
 

As indicated in Table 4.8, θθA and θθD fairly remain constant as R increases.  However, the 

magnitude of θθB strongly decreases as R increases.  The values of matrices θθA , θθB  and 

θθD are then re-evaluated with four different laminates (1, 2, 3, and 4) and one mid-plane 

radius, R = 0.2444 inches.  These values are shown in Table 4.9.  Unlike the plate laminate, the 

changing of stacking sequence in the curved laminate does affect the axial stiffness, θθA .   
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It should be also noted that 0≠θθB for curved laminates as listed in Table 4.9.  This Table 4.9 

also indicates that increasing R gives significant reduction of θθB . 

Table 4.9. Matrices comparison for mid-plane radius R1 = 0.2444 inches. 

  LAMINATE 1 LAMINATE 2 LAMINATE 3 LAMINATE 4 
Aθθ (105

 lb/in) 9.031 9.044 9.055 9.099 
Bθθ (102 lb) -9.03 -12.34 -14.88 -25.74 

Dθθ (102 lb-in) 2.21 3.02 3.64 6.29 
 

The effect of symmetric and balanced laminate and unsymmetrical and balanced laminate was 

also investigated.  Laminate 3 and laminate 5 were examined with four mid-plane radius  

R1 = 0.2444 inches, R2 = 0.6444 inches, R3 = 1.8444 inches, and R  ∞.  The values of 

matrices θθA , θθB  and θθD are shown below. 

Table 4.10. Matrices comparison for laminate 3 & 5. 

R1 = 0.2444 R2 = 0.6444 
  LAMINATE 

3
LAMINATE 5 LAMINATE 3 LAMINATE 5 

Aθθ (105
 lb/in) 9.055 8.588 9.002 8.810 

Bθθ (102 lb) -14.88 99.22 -5.54 118.40 
Dθθ (102 lb-in) 3.64 7.69 3.57 7.92 

R3 = 1.8444 R  ∞ 
  LAMINATE 

3
LAMINATE 5 LAMINATE 3 LAMINATE 5 

Aθθ (105
 lb/in) 8.995 8.925 8.994 8.994 

Bθθ (102 lb) -1.93 126.33 0.00 130.69 
Dθθ (102 lb-in) 3.56 8.05 3.56 8.12 

 

As the radius of curvature R goes to infinity, a curved laminate becomes a plate laminate.  In 

this case, extensional-bending coupling stiffness matrix [B] is only affected by the stacking 

sequence in laminate.  This indication is shown in Table 4.10.  For laminate 3 (symmetric and 

balanced),  Bθθ is equal to zero when the radius of curvature R goes to infinity.  For laminate 5 

(unsymmetrical and balanced),  Bθθ is not equal to zero when the radius of curvature R goes to 

infinity. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

The research has studied the variation of both tangential and radial stresses respect to 

the changing in curvatures, stacking sequences and fiber orientations in a curved laminated 

beam subjected to a bending moment.  Three 3-D finite element models of the curved laminated 

beam have been developed in PATRAN / NASTRAN.  These models have been validated for 

isotropic material, Al-2014-T6, and orthotropic material, T300/977-2 graphite/epoxy, with all 00 

plies lay-up.  The finite element models of the curved laminated beam provide solutions 

showing an excellent agreement with the exact solutions for both tangential and radial stresses.   

An analytical method to calculate the tangential stress was also developed for a curved 

laminated beam subjected to a bending moment.  The tangential stress results from this method 

were compared well with the results from finite element method.  The analytical closed-form 

expressions of axial, coupling and bending stiffness, as well as their characteristics were also 

investigated. 

From this research, the following conclusions can be made. 

For the same stacking sequence, [+450/-450/900
2/00

2]S with three different given radius 

of curvatures: 

• In +450 (layer #1, the bottom layer) and -450 (layer #2, the 2nd to the bottom), 

the tangential and radial stresses increase with the decreasing in radius of 

curvatures. 

• In 900 (layer #4, from the bottom layer), the tangential stress decreases with the 

decreasing in radius of curvature.  The radial stress increases with the 

decreasing in curvature. 



 

 59

• In 00 (layer #6, from the bottom), the tangential stress is highest for radius of 

curvature R1 and lowest for radius of curvature R2.  The radial stress increases 

with the decreasing in curvature. 

 

For a given radius of curvature with five different symmetric and balanced stacking 

sequences, the stress for elements on 900 layer #6 from the bottom layer: 

• The radial stress is positive for all stacking sequences. 

• The tangential stresses  from stacking sequence #1, [ 015± / 015± / 900
2]S, and 

stacking sequence #2, [ 030± / 030± / 900
2]S, are positive. 

• The tangential stresses from stacking sequence #3, [ 045± / 045± / 900
2]S, 

stacking sequence #4, [ 060± / 060± / 900
2]S, and stacking sequence #5, 

[ 075± / 075± / 900
2]S, are negative. 

• The tangential and radial stresses from stacking sequence #1, [ 015± / 015± / 

900
2]S, are highest. 

 

For a given radius of curvature with three different stacking sequences: 

[ ]T2
0

4
0

2
0 45/90/45 m± , [ ]T4

0
2

0
2

0 90/45/45 ±± , and [ ]T4
0

8
0 90/45+ , the stress for 

elements on +450 layer #1, bottom layer:  

• The tangential stresses θσ are positive for all stacking sequences.   

• The symmetric and balanced laminate, [ ]T2
0

4
0

2
0 45/90/45 m± , produced the 

highest tangential stress.   

• The unsymmetrical and balanced laminate, [ ]T4
0

2
0

2
0 90/45/45 ±±  , 

produced the lowest tangential stress. 
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For a symmetric and balanced laminate:  

• θθA and θθD fairly remain constant as R increases. 

• The magnitude of θθA is affected by the changing of stacking sequence in the 

curved laminate. 

• θθB is not equal to zero for curved laminated beam but its magnitude strongly 

decreases as R increases. 

• The increasing of radius curvature gives significant reduction of θθB . 

 

 In future studies, the developed analytical method could be extended to laminated 

cylindrical shell.  The hygrothermal effects on the tangential and radial stresses can be 

included.  Effect of stress components due to the boundary conditions and loading of the curved  

beam can be investigated. 
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APPENDIX A 
 
 

GENERAL PROCEDURE TO CREATE A 3D FEM 
FOR AN ISOTROPIC AND A CURVED LAMINATED BEAM  IN PATRAN 
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Figure A1. The creation of 12 surfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A2. The creation of 12 solids and mesh seeds. 
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Figure A3. The creation for the mesh and MPC. 
 
 

Create Mesh Create Multipoint ConstraintCreate Mesh Create Multipoint Constraint
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Figure A4. The creation of local coordinates for each element group in laminate. 
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Figure A5. The creation of displacement and applied moment.
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Figure A6. The creation of cylindrical coordinate system for isotropic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A7. The creation of Isotropic material and 3D solid elements. 
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Figure A8. The creation of 3D orthotropic material and 3D solid group elements. 
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Figure A9. The creation of analysis Load case. 
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Figure A10. The procedure to set up the analysis. 
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APPENDIX B 

 
 

MATHEMATICAL PROCEDURE TO VERIFY THE ACCURACY OF 
MATRIX [A], [B], AND [D] WHEN THE CURVATURE GOES TO INFINITY 
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THE EXTENSIONAL STIFFNESS MATRIX [A]: 
 

From Equation 3-16, ∑
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θθ  is material constant. 
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Substitute (B-3) into (B-2) yields: 
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Hence, we have: 
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THE EXTENSIONAL-BENDING COUPLING STIFFNESS MATRIX [B]: 
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Substitute (B8) into (B7) yields: 
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Equation B-6 becomes: 
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Substitute B-11 into B-5 yields: 
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THE BENDING STIFFNESS MATRIX [D]: 
 
From Equation 3-18:  
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(Using the same approach in Equation B-15) 
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