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ABSTRACT

PEON: PRIVACY-ENHANCED OPPORTUNISTIC NETWORKS WITH

APPLICATIONS IN ASSISTIVE ENVIRONMENTS

GAURI VAKDE, M.S.

The University of Texas at Arlington, 2010

Supervising Professor: Matthew Wright

Opportunistic Networking holds a great deal of potential for making communi-

cations easier and more flexible in pervasive assistive environments. However, security

and privacy must be addressed to make these communications acceptable with respect

to protecting patient privacy. We propose Privacy-Enhanced Opportunistic Network-

ing (PEON), a system for using opportunistic networking in privacy-preserving way.

PEON uses concepts from anonymous communications, re-routing messages through

groups of peer nodes to hide the relation between the sources and destinations. We

describe a set of protocols that explore a practical range of trade-offs between pri-

vacy and communication costs by modifying how closely the protocol adheres to the

optimal predicted path. We also present the results of extensive trace-based simu-

lation experiments that allow us to both compare between our proposed protocols

and observe the costs of increasing the number of groups and intermediate nodes in

a path.
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CHAPTER 1

INTRODUCTION

Assistive environments using sensors, handheld devices, and other pervasive

technology require communications between devices that is flexible and robust. The

primary model for this kind of communications is opportunistic networking (ON), a

framework in which messages are passed between devices whenever the opportunity

arises [1, 2]. For example, suppose that a nurse carries a PDA equipped with an

802.11 wireless receiver. The nurse passes by a set of sensors, equipped with 802.11

wireless transmitters that send their sensor readings to the PDA. The PDA then

comes within the vicinity of a laptop, and both devices are Bluetooth enabled, so the

PDA uploads the sensor readings to the laptop. Finally, the laptop is plugged into a

wired network and uploads the sensor readings to a server for storage and processing.

The communication provided by message-passing in this fashion saves the expense

of putting in a complete networking infrastructure. This is particularly important to

facilitate creating assitive environments in developing countries, sparsely populated

rural areas, and for quick deployment in established facilities.

Assitive environments, however, have critical privacy requirements. In partic-

ular, data security and privacy must be maintained to protect patients from having

their health information exposed. This makes the use of the kind of message passing

used in ON an unacceptable privacy risk – most ON systems do not limit messages

from being sent to only known and trusted parties [3]. In fact, if untrusted parties are

never used to forward messages, messages may wait for long periods without being

sent and may fail to be delivered. Encryption should be used to hide the contents of

1
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messages. However, the fact that a source is contacting a particular destination may

itself be sensitive. For example, if a patient sends a message to a specific doctor, then

the doctor’s speciality (e.g. cancer or heart disease) can reveal a likely set of diseases

that the patient may have.

1.1 Contribution

In this thesis, we explore a method to hide the relationships between the source

and destination in opportunistic networks for assitive environments. In particular,

we propose Privacy-Enhanced Opportunistic Networking (PEON), a framework that

applies the principles of anonymous communications to the specific challenges of op-

portunistic networking. The basic idea of PEON is to identify a series of intermediate

receivers, called pawns, and send the message through this series of pawns towards

the destination. The message will be encrypted in layers, following the basic idea of

Chaum’s mixes [4] and used in the popular Tor system [5], such that each pawn can

see only the next pawn in the series. The series of pawns is effectively an overlay

route and the system can use a variety of routing techniques to get the message from

pawn to pawn, including those of [1, 2].

In ONs, however, communication is already uncertain and slow. If we were to

route messages through a series of pre-specified nodes, too many messages may never

be delivered or take unacceptably long to arrive. To provide a better tradeoff between

providing privacy and keeping both failed deliveries and networking overhead low,

PEON puts nodes into groups, with group members sharing public key pairs. This

allows the source to select a series of intermediate pawn groups to forward the message.

When a message is sent to a particular pawn group, it can be passed through the

system until it reaches any member of the group. This reduces overhead by allowing

the message to be routed to the nearest member of the pawn group, rather than to a
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specific node. In this thesis, we shall discuss these tradeoffs and enhancements. We

also present the results of extensive trace-based simulations which we have conducted

to compare the performance of our protocols. We use the results to study the effect

of increasing total number of groups in the system as well as increasing the number

of intermediate pawn groups in the path.

1.2 Thesis Organisation

In the next chapter, we will provide some background on opportunistic networks

with a focus on routing in delay tolerant netwroks and discuss related work. In

Chapter 3, we describe a simple network model for ON. We also describe describe

possible attacker types and the extent to which we seek to defend against them. These

basic models guide the design of PEON.

In Chapter 4, we will describe the PEON system and ways to integrate the

PEON groups with established ways to perform routing in opportunistic networks.

We also discuss trade-off between privacy and performance with respect to average

group size and the number of intermediate pawn groups in a path.

In Chapter 5 we describe our communication scenario and the overall simulation

experiment. We present the results of our simulations in Chapter 6. Finally, our

conclusions and future work are described in Chapter 7.



CHAPTER 2

BACKGROUND

Opportunistic networks (ONs or OppNets) are an evolution from the models of

mobile ad-hoc networks (MANETs) and delay-tolerant (or disruption-tolerant) net-

works (DTNs). All three of these models share the idea that users, enabled with wire-

less devices, can communicate by using intermediate nodes — i.e. other users’ devices

— as routers. This allows the users to communicate in areas with little or no infras-

tructure. MANETs and their counterpart, vehicular ad-hoc networks (VANETs), are

best suited to applications such as military operations and busy highways, in which

users are densely packed and the network remains mostly well-connected.

DTNs, however, allow for the possibility that the users may move out of signal

range for some time, leading to partitions of the network. By making robust data

forwarding and queueing algorithms, DTNs can deliver messages even when users are

spread apart and have only intermittent contact. ONs extend this model further. In

ONs, connectivity is established and message delivery occurs at each contact between

wireless devices. According to Pelusi et al., “Any possible node can opportunistically

be used as next hop, provided it is likely to bring the message closer to the final

destination” [6]. One application for ONs is pocket-switched networks, studied exten-

sively in the HAGGLE project [7], in which users carry devices on their person and

the devices exchange messages with Bluetooth [8]. The DakNet project [9] showed

how rural villages in India could be connected using shared kiosks and mobile access

points (MAPs) attached to busses, motercycles, and bicycles that go between the

village and Internet-connected towns.

4
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The literature, unfortunately, is unclear about the relationship between ONs

and DTNs. Although we envision PEON as being useful for both ONs and DTNs,

much of the related work from both routing and privacy is in DTNs. Thus, we focus

in this section first on routing in DTNs and then on ways of providing privacy in

other systems.

2.1 Routing in Delay Tolerant Networks

To get a broader and more general perspective of routing in ONs we shall now

discuss routing in Delay Tolerant Networks (DTN). DTNs are a class of networks

which are characterized to be tolerant of high latency and intermittent connectivity.

DTNs are composed of nodes connected by links. The availability and capacity of

links are time-varying. There can be multiple links between a pair of nodes. A contact

in the context of DTNs is an opportunity to send data over a link. DTNs may be

constrained by limited resources like contact opportunities, contact duration, data

carrying capacities of contacts, storage at nodes, processing abilities of nodes, and

the energy capacity of each node.

The main goal of DTN routing, unlike fully connected data networks, is to

maximize the chance of delivery. However, there are not intuitive metrics that we

can use directly for building routes with this goal in mind. However, minimizing

delivery latency can reduce the chance that a message gets dropped. This approach

was validated in simulation by Jain et al [1].

Routing algorithms in DTNs can be classified as either flooding-based or forwarding-

based. Flooding-based algorithms replicate each message and send it to many nodes.

The redundancy implies reliability in terms of eventual delivery of the message as it

can be reasoned that at least one copy will reach the destination. These approaches

also seem to reduce latency. However, these algorithms can be very expensive in
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terms of consumption of resources. They are also not scalable. Epidemic routing [10]

is a flooding-based routing approach. In this approach, each node stores its messages

in its buffer and when the two nodes come in contact with each other they exchange

summary vectors that list the IDs of the messages in their buffer. Then the nodes

exchange messages to synchronize their buffers. Several variants have been suggested

to make epidemic routing less expensive.

On the other hand, forwarding-based algorithms use knowledge of the network

topology to determine the optimal path along which the message must be forwarded.

Jain et al. describe algorithms that use knowledge oracles, abstract entities repre-

senting specific knowledge about the network [1]. Four different oracles are defined —

the contact summary oracle, the contacts oracle, the queuing oracle, and the traffic

demand oracle. The contact summary oracle gives time-invariant, aggregate statis-

tics about the contact schedule. For example, it can provide the average waiting

time until the next contact of an edge. The contacts oracle can give any information

regarding contacts between two nodes at any point in time. The queuing oracle gives

instantaneous buffer occupancies at any node at any time; it is most difficult oracle

to realize. The traffic demand oracle gives the present or future traffic demand.

As the latency depends on the time a message arrives at a node, this time is

taken into account to compute the cost of links emanating from that node. The paper

presents four algorithms based on a time-varying version of Dijkstra’s algorithms,

these are: Minimum Expected Delay (MED), Earliest Delivery (ED), Earliest Delivery

with Local Queues (EDLQ), and Earliest Delivery with All Queues (EDAQ). These

algorithms use progressively more information from the oracles.

MED consults the contact summary oracle to get the average waiting time until

the next contact is available. It therefore takes the edge cost to be sum of average

waiting time, propagation delay, and transmission delay. Thus the edge-cost becomes
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time-invariant which implies that same route will be obtained for messages with same

source-destination pair and after the route has been computed, it will not re-compute

the route to use a better contact. ED consults the contact oracle to determine the

availability of contacts such that the computed route will get the message to the

destination at the earliest time. Thus instead of taking an average waiting time it

takes into account the minimum waiting time which is time-varying. However, it does

not incorporate any queuing information.

EDLQ estimates the latency by taking into account the queuing at all edges out

going from the current node. Therefore, route is recomputed at every hop (per-hop

routing) in contrast to MED, ED and EDAQ which are all source-routing algorithms.

But computing the route at every hop may lead to formation of loop. EDAQ uses the

queuing oracle to determine the instantaneous queue sizes across the entire topology

at any point in time. Once the route is computed at the source, link capacity must

be reserved for that message for all links in the route. This is required to ensure

that messages avoid missing contacts as well as to enable the queuing oracle to make

accurate predictions. However, realizing link capacity reservation in DTNs is quite

challenging.

Apart from Dijkstra-based algorithms the paper also describes First Contact

(FC) and Linear Program (LP). FC assigns a message to the first available contact

or randomly to one of the currently available contacts and therefore has a poor per-

formance. On the other hand, the LP formulation of the DTN routing problem uses

all four oracles to obtain the complete knowledge of the network to determine the

optimal route. Jain et al. conclude that algorithms using more knowledge (EDLQ,

EDAQ, LP) provide a significant benefit only when resources are limited which is less

common. Therefore it may not be worth implementing the queuing oracle which is

challenging to realize.
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These approaches require that each node must have access to accurate schedule

data for which the routing must be manually configured with the contact schedules.

To make routing more practical, one can make a routing algorithm self-configuring

and more suitable for imprecise or unpredictable schedules [2]. Jones, et al. propose

the Minimum Estimated Expected Delay (MEED) protocol where the link-cost is

based on the observed contact history over a sliding history window. Once the costs

have been computed at each individual node, MEED assumes that each node has

the complete network topology. A link-state routing algorithm was chosen for this

because it is similar to epidemic routing in DTNs and is suitable for propagating

updates in a single contact, resulting in an Epidemic Link State Protocol.

Simulation results indicate that performance of MEED approaches that of pro-

tocols having complete knowledge of network topology. Also MEED achieves 96% of

epidemic routing’s delivery ratio using only a single message, instead of a copy for

every node.

In this paper, we have suggested using information from such routing protocols

to improve the performance of the PEON System. Specifically, our scheme requires

that the routing protocols can be queried by a node to find its distance to other nodes.

The distance could be based on any relevant metric like bandwidth or latency. Our

scheme relies on the information provided by these protocols and thus works only as

well as the information they use. However, our scheme can leverage new advances in

such protocols and thus become more efficient with improvements in them.

2.2 Related Work

The first anonymous communication solution for DTN proposed in [3] uses

identity-based cryptography (IBC). It suggests making identities of the users more

specific by combining them with geographical identifiers. Further, it recommends
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hierarchical identity-based cryptography (HIBC) for greater scalability. The paper

attempts to protect user identities from DTN routers (including kiosks) but it is

assumed that DTN gateways are trusted and are aware of user identities. Protocols

designed therefore use pseudonyms instead of user identities while routing messages in

DTNs. For example, to send a message a user must compute a pseudonym through

which a router can ensure that the user is valid but can’t obtain the associated

identity. Commonly in DTNs one-way authentication is required for which the authors

have suggested a quick, non-interactive scheme. Additionally, an anonymous mutual

authentication scheme which takes three flows is also given.

The advantage of this scheme is that it incurs no additional overhead for routing.

However, the scheme is very tightly tied to the DakNet model, and it assumes a

strongly trusted central authority. A more general approach is required for systems

in which a trusted central authority cannot be assumed. This is especially true in

assitive environments, where having a trusted authority presents a substantial privacy

risk for patients.



CHAPTER 3

NETWORK AND ATTACKER MODELS

Before describing our proposals for protecting privacy, including personal medi-

cal information, while using opportunistic networks, we first outline the basic models

we are using to guide our design. We describe a simple network model for oppor-

tunistic networks that is detailed enough to compare different algorithms. We also

describe possible attacker types and the extent to which we seek to defend against

them.

3.1 A Model for Opportunistic Networks

As described in Section 2, there are a variety of applications for opportunistic

networking, from remote village Internet connectivity to pervasive computing envi-

ronments. One example that has been used in a variety of experiments is a city bus

system, with both stationary access points and moving busses with occasionally cross-

ing routes [1]. Since there are network traces available for this model, we will also

use it as the basis for our work. We expect that our results will apply well in general,

but recognize that some applications may feature unique networking characteristics

that will require more specific models.

In our model, we have a large number of nodes, of which some are stationary and

others physically move in the local area. When two nodes are in proximity, within the

range of their respective wireless transmitters and receivers, the nodes may exchange

a number of messages depending on their transmission rates and the amount of time

they are in proximity. While the exact transmission rate may depend on the nodes’

10
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distance from each other and may vary from connection to connection, we model the

transmission rate as a reasonable fixed value across the system and across time. In

initial experiments, we may model the system even more simply by allowing each

sender to send all of the messages it chooses based on other considerations like queue

size and desired route. This will cause us to underestimate latency and message

overhead, but will still allow us to make reasonable comparisons between algorithms.

Because we are only concerned with whether two nodes are in contact, we extract

connectivity information from traces and ignore the actual movement patterns of

the nodes. To extend our experiments, we may generate additional connectivity

information based on distributions extracted from the traces.

As we describe in Section 4, we put nodes together in pawn groups. We select

nodes for each group at random from all nodes in the system. We group the nodes

unequally by placing each node into a group (the total number of groups is pre-chosen)

chosen at random (with replacement), leading to varying group populations. This is

more realistic than having fixed group size, as groups are best selected as nodes that

trust each other, at least in a limited way. Note that group members will not be

assumed to trust each other to protect each other’s privacy or otherwise provide any

specific help to group members. However, group members will share keys and it is

easier to establish shared keys among trusted group members. For example, with

sensors or busses administered by the same administrator, the administrator can be

in charge of generating the group key. Among people with strong trust relationships,

a single trusted friend could be the key generation authority, or the authority could

rotate in round-robin fashion through the group. If a semi-trusted PEON authority

assigns nodes to groups, then the group should either elect a key-generation authority

or rotate the authority among the nodes in a round-robin fashion.
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3.1.1 Measuring Privacy

There have been a variety of ways to measure the privacy of anonymous com-

munications system. We propose to use information theoretic metrics, as proposed

by [11, 12]. Generally speaking, this will be the number of bits of entropy from the

perspective of the attacker. Low entropy means that little information is hidden from

the attacker, while high entropy means that the attacker can discern very little about

the network.

3.2 Attacker Model

While the privacy of users is important, we cannot protect it absolutely against

attackers of unlimited capability, at least not with reasonable cost. Thus, we must

carefully consider the capabilities of the attacker we seek to protect against. We will

now describe several such attacker models that we believe to be reasonable.

3.2.1 Local Eavesdropper

One of the more likely attacker types is an attacker in the vicinity of the user

with the ability to eavesdrop on the user’s wireless signals. This attacker could, for

example, simply be a curious neighbor. Such an attacker requires little in the way

of equipment — a simple wireless receiver is sufficient to observe messages in the

system. Fortunately, the attacker is easily defeated. Simply encrypting messages and

the destination with a key that the attacker doesn’t have will prevent most leaks.

3.2.2 Curious Responders

Another likely attacker is the responder who receives the messages from the

initiator. This may seem counter-intuitive, as the responder and initiator exchange

messages. However, the responder knows the content of the messages and may be
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more curious than any other party about who sent them. This attacker, like the local

eavesdropper, is easily defeated. As long as the messages that reach the responder

contain no information about the initiator, little can be revealed.

It is possible that, with detailed knowledge of the network layout and expected

message delivery latencies, the responder could learn something from the delay be-

tween messages. For example, if a response message is expected immediately after

receiving a message from the responder, the round-trip latency can be measured.

Similar attacks have been explored for the Tor network [13]. However, without a

realistic deployment, it is hard to perceive exactly what kind of information could

be leaked. Further, the attack depends greatly on the application being used and

does not work against messages whose sending start times are not highly predictable.

Thus, we leave exploration of this line of attack to future work.

3.2.3 A Set of Corrupt Peers

Another attacker type that should be anticipated is a set of corrupt peers that

work together to break the privacy of users. At the very least, a single corrupt peer

should be defended against, representing an otherwise honest but curious member of

the network. However, a more aggressive attacker could insert a set of corrupt peers

into the network. For example, the administrator of a set of sensors or busses could

use these nodes to monitor some of the activity in the network. Again, it is best

if the whole set of nodes belongs to just one pawn group, and we will examine this

as one possible attacker model. However, we cannot rely on this assumption for all

scenarios, especially when group membership is established in another manner than

by administrative control, such as randomly. Thus we will also consider an attacker

with a set of peers spread randomly throughout the pawn groups.
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An attacker with a set of peers can perform a variety of attacks. First, with

a presence in multiple groups, he will have access to multiple private keys, enabling

decryption of more messages than any single node. Second, the corrupt peers can

record observations of which users send messages, the times that they are sent, and

the recipients of messages during that time. If a user sends many messages to the same

destination or set of destinations over the time, its statistical patterns will stand out

and the attacker will be able to link sources and their destinations. Similar attacks

have been described in anonymous communications for the Internet [14, 15, 16, 17].

We intend to apply similar analytical and simulation methodologies to evaluate our

proposed approaches.

3.2.4 Partial Eavesdropper

Another important attack model is the global eavesdropper, an attacker with

the ability to see, for all messages in the network, the sender, receiver, and sending

time. We argue that a fully global eavesdropper is not appropriate for our study.

Opportunistic networks are designed for environments in which regular connectivity

is not available. Other wireless networks, such as sensor networks and connected ad-

hoc networks, may be subject to global eavesdroppers due to the nodes being densely

populated in a more compact area [18, 19]. In opportunistic networks, however,

nodes are expected to be without connectivity due to large distances relative to their

wireless transmission range. In such a network, the eavesdropper would need a very

large ratio of wireless receivers to nodes in the network to cover the entire network’s

operations.

Nevertheless, a partial eavesdropper would be able to place wireless receivers in

a few hotspots in the network where many nodes meet and exchange messages. From

observing these hotspots, the attacker could learn much about what is happening
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in the network. Similar attacks against Tor were explored in [20], which explores

the threat of a compromised Internet exchange (IX) that can monitor a substantial

fraction of the network’s traffic. In such networks, the IX will observe many of

the same communicating pairs over time. In opportunistic networks, however, the

eavesdropper may see different communications and have different capabilities for

attack. We plan to explore the power of these attacks to deanonymize users.

3.2.5 Combined Attacks

Finally, we recognize that an attacker need not be limited to a single vector

of attack. For example, a local eavesdropper and a curious responder would be able

to combine their collected information to better expose the initiator. Such attacker

types must also be considered in the system design.



CHAPTER 4

SYSTEM DESIGN

The PEON system applies the principles of anonymous communications to op-

portunistic networking, with the goal of enhancing privacy for applications like patient

care. In place of mixes or onion routers, we propose pawn groups, a group of nodes of

which any could serve as an intermediate pawn in the overlay path. We now describe

the elements of this system: the basic cryptographic framework and the integration

of routing with pawn group and pawn selection.

4.1 PEON Onions

We call the layered cryptography used to provide anonymity PEON onions.

Consider an initiator I sending a message MIR to a responder R, using pawn groups

A and B. Suppose that for a given pawn group X, the pawn group shares a public

key KUX and a private key KRX . Any member of the group can decrypt a message

M encrypted with the public key as EKUX
[M ]. Let us assume that the public keys

of all pawn groups are known to all nodes in the system, including I. Also, note that

nodes are members of only one pawn group each.

To send its message, I will construct a PEON onion by progressively encrypting

the message with the public keys of each of the pawn groups it wants on its path.

Within each layer, it will put the ID of next pawn group to which the message should

be sent. We now briefly show the sequence of messages.

16
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Figure 4.1. PEON Architecture. The dotted line shows the path for a message from
the initiator to the responder.

First I sends MA to pawn group A. Let us use the notation X ∼→ Y to

indicate that node X sends a message to a member of group Y . The selection of that

member and the process of routing the message are described in Section 4.2:

I ∼→ A : MA = EKUA
[MB, B]

Suppose that node A0, a member of A, gets MA and becomes the first pawn on the

path. A0 decrypts MA to get MB and the ID of group B. It then sends MB to a

member of group B.

A0 ∼→ B : MB = EKUB
[MIR, R]

Then suppose that B0, member of B, gets MB and becomes the second pawn on the

path. B0 similarly decrypts MB to get MIR and the ID of responder R. It then sends

MIR to R. From these messages, we see that MA can be written as:

MA = EKUA
[EKUB

[MIR, R], B]

Through this process, the identity of the sender, I, has been hidden from any

intermediaries except the first node to receive the encrypted message from I. Any
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node with the ability to see MIR (which may or may not be encrypted depending

on the message or application) or the identity of the responder R will not know the

identity of I.

4.2 Routing and Node Selection

To take advantage of the fact that PEON uses pawn groups instead of selecting

individual nodes, we need to devise a scheme to route messages to a group of nodes.

To clarify, this is different from multicasting, in which the message is sent to all

nodes in the group. Rather, the message should go to any member of the group. In

this section, we will describe a series of possible ways to route the message through

the path of pawn groups and discuss the expected impacts of each choice on the

performance and privacy of the system.

4.2.1 Random Selection

The simplest way to build the PEON system would be to not consider the

way in which the underlying routing algorithm works, and to use it as a black box

without modification. This provides a substantial advantage in keeping the system

modular, allowing for different underlying routing algorithms to be used without any

changes to PEON itself. To do this, PEON initiators would have to be agnostic to

performance considerations when selecting pawns. Because of this choice, we would be

assured that no privacy would leak to do biased selection of pawns due to performance

considerations. Other research has examined ways in which privacy can be lost when

performance is used to select onion routers in the Tor network [21, 13, 22]. However,

we can also expect that ignoring the underlying routing algorithm will provide the

worst performance, although significantly better than directly selecting individual

pawns.
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We now outline a simple algorithm that would operate without knowledge of

the underlying routing algorithm. In this Random Selection scheme, the initiator

first chooses each pawn group uniformly at random. Then it chooses the initial pawn

uniformly at random from the first pawn group. As the message is forwarded to a

member of each group, that member chooses the next pawn uniformly at random

from the next pawn group. For example, if the initiator is using a path of two pawns,

it will select the first pawn group G1 and then select a second pawn group G2 without

replacement. In other words, we are careful not to select G2 = G1 so to ensure that

the same key could not be used to open both layers of encryption and see the message.

Having selected the groups, the initiator chooses a pawn, say G1

i , from among the

nodes in G1 and sends the message to it using the standard routing algorithms. When

G1

i gets the message, it decrypts it and sees that the next pawn group is G2. It then

selects the next pawn, say G2

j , at random from G2 and sends it the message. G2

j

decrypts the message and sends it directly to the responder R.

Note that we allow each pawn to choose the next pawn in the path from among

the next pawn group. This may seem undesirable if, for example, the first pawn

is corrupt and has a corrupt partner in the second pawn group that it can choose.

However, if there are such corrupt partners, they can also share their groups’ private

keys with each other, making it unnecessary for the first pawn to select the second

pawn to see the responder’s identity. The security of the system is thus based more

on the selection of groups than individual nodes. Note that the pawns have no impact

on the selection or order of pawn groups, as the initiator encrypts the message with

the public keys of the pawn groups that it chooses.
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4.2.2 Closest Pawn Routing

Although Random Selection has the benefits of being modular and not leaking

any privacy, it also does not help to limit overheads. Since opportunistic networks

can be quite slow, we would seek to provide better performance as long as not too

much privacy is leaked. We now describe Closest Pawn Routing (CPR), a scheme

that uses information directly from the routing protocol to improve performance.

For this scheme, we assume two things about the underlying routing algorithm: (1)

that the routing algorithm maintains some notion of distance between nodes based

on metrics such as latency or bandwidth; and (2) that we can query the routing

algorithm to find out the distance between the query node and all other nodes in the

system. Several existing routing algorithms for opportunistic networks meet these

requirements, including ED and MED [1].

Given these two requirements, we can select pawns from each group more in-

telligently. We first assume that the initiator selects the pawn groups randomly, as

with Random Selection. Then, each sender selects as the pawn the closest member of

the next pawn group in the path. By doing this, we are making a greedy choice that

ignores future pawn groups, but we expect to improve both message overhead and

average path latency over Random Selection (which also ignores future pawn groups

during pawn selection). In particular, we expect that if the distance from the current

sender to the closest member of the next pawn group is half that to the average pawn

group member, then the overall cost of sending the message will be cut in half. Note

that the cost reflects the routing algorithm’s cost metric and may not correspond

exactly with the cost metric we seek to minimize. However, the cost metrics for both

normal routing and PEON should be roughly the same for most systems.

The privacy lost due to Closest Pawn Routing should not be large. The main

attack is to take advantage of the locality the choice of pawns provides. While random
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selection should not have any locality, CPR will allow an attacker to observe that the

user’s messages are closer to the user than to other nodes in the system. For example,

let us assume that the last pawn is always physically located within radius r of the

initiator (even accounting for node movement). If the user’s messages can all be iden-

tified as coming from the same initiator, then the attacker could take the intersection

of all nodes with radius r of the last pawn for each observed message. Eventually,

such intersection attacks can substantially limit the set of possible initiators [23].

This attack is overly simplistic, but it suggests the direction that an attacker

could take to gain an advantage in CPR that random selection would not allow. One

defense against this would be to use random selection for the final pawn; the locality-

based attack would fail unless the attacker controlled the final two pawns for multiple

messages. Another approach is simply to ensure that the ratio of groups to nodes is

high enough so that most selected pawns will not be close to the initiator.

4.2.3 Directed Routing

In CPR, we seek to improve performance by having each sender intelligently

select the closest member of the next group as the next pawn. The improvement in

performance is achieved by lowering the overall cost of sending the message. However,

no effort is made to direct the message towards the responder which may result in

selection of a path that eventually doesn’t lead to the responder or that has pawns

which are closer to the sender but farther away from the responder.

Therefore, to further improve routing performance, we describe Directed Rout-

ing (DR), a scheme that directs the PEON routing along the optimum path obtained

from the underlying routing algorithm for routing a message from an initiator to a

responder. We expect that directing the PEON path along the optimum path will

not only decrease the overall cost of sending a message but it will also result in more
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messages being actually delivered to their final destination. To implement this scheme

we require the underlying routing algorithm to support CPR and capable of being

queried, at the source node, for the optimum path for routing a message. Again ED

and MED [1], meet these requirements.

In DR, the initiator first queries the routing algorithm to obtain the optimum

path for routing a message to the responder. Note that different routing algorithms

have different ways of determining the optimum paths and thus the paths may differ

for any two algorithms. From the path, the initiator gets the intermediate nodes which

eventually lead to the responder. The initiator prepares the list of intermediate pawn

groups for PEON from the groups to which these intermediate groups belong to. The

group of the first intermediate node becomes the first intermediate pawn group for

PEON, the group of the second node becomes the second group for PEON and so on

and so forth till the initiator gets the required number of intermediate pawn groups.

Note that a group will appear only once in the list of intermediate pawn groups.

Also, the order of appearance of groups in the list will be in accordance with the order

of the corresponding nodes in the optimum path. If the number of nodes in the path

is less and the initiator can’t find the required number of intermediate pawn groups

through these nodes then the extra groups are chosen randomly as with Random

Selection and they are inserted in the list after the groups which are chosen through

the optimum path. Again, if the routing algorithm does not find a path between

the initiator and the responder then also we choose all the intermediate pawn groups

randomly. In DR as with CPR, each sender selects as the pawn the closest member

of the next pawn group in the path.

The improved performance for this scheme also means compromise with privacy.

Clearly, it will aid in the locality-based attack that is applicable to CPR. Moreover,

it will aid a curious responder in finding the initiator as anonymous communication
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with PEON will up to an extend resemble the normal communication. In [24] we

discuss some variations to this approach so that the PEON path is partially directed

by the routing algorithm and there can be some improvement with respect to privacy.

4.3 Design Considerations

We shall now discuss some of the design considerations for PEON. PEON cre-

ates two ways to trade off between privacy and performance; we shall briefly discuss

these tradeoffs. We shall also discuss the benefits and costs of enhancing PEON

through the use of cover traffic.

The first way to trade off between privacy and performance is the size of the

group. Large groups make it easy to find a member nearby, increasing the chance

of quickly passing the message to the destination. However, with few groups, there

are fewer possibilities for diverse paths needed for anonymity over the lifetime of the

connection. Also, there is the possibility of a single node stealing private keys from

a few other nodes and thus being able to open all the layers of communication for a

set of messages. With more groups, the danger of this attack is reduced.

The second way to trade off between privacy and performance is with the num-

ber of pawn groups a sender selects for its path. Clearly, shorter the path, lower the

overhead and delay. Very short path lengths, however, lead to lower privacy for the

sender. For example, with a path length of only one pawn group, a pawn in that

group will be in position to see the intended recipient as well as, possibly, the source

node. With enough messages, the source will eventually be linked with the messages.

Further, the messages will all be received by pawn nodes close to the position of the

source node, helping to reveal the sender’s location. If the source selects two pawn

groups in its path, this will improve privacy by enforcing greater distances from the
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source and clearly separating the message from the source node. In general, the more

intermediate pawns on the path, the harder it is to link the source and recipient.

To enhance PEON further, cover traffic can be introduced to hinder a powerful

attacker like the partial eavesdropper. When a node comes in contact with another

node, it should send all available real messages first to ensure high delivery rates. If

the contact is still available, it could then send dummy messages. This would require

the overhead of the sending node generating and transmitting dummy messages, and

the receiving node receiving and filter dummy messages. When communications costs

are a prime consideration, these overheads may be too high. In some cases, however,

they may be acceptable. This simple scheme provides variable costs and benefits,

depending on connection times and traffic rates, among other parameters. Thus, the

tradeoffs require further analysis.



CHAPTER 5

SIMULATION DESIGN

To evaluate the performance of PEON protocols we used DTNSim2 [25] [26], a

discrete-event simulator for DTN that uses FIFO, reliable links with fixed bandwidth

and delay. It is based on the DTN simulator developed for the DTN routing paper

by Jain et al [1].

Our aim is to implement PEON protocol over forwarding-based routing algo-

rithms for DTN to evaluate their performance regarding the delivery ratio, average

delivery delay, and overhead in terms of actual bytes transmitted per each byte of

the data. Moreover, we want to study the manner in which performance is influenced

by the average size of the groups in the system, and the number of pawn groups an

initiator selects for its path. For our purpose, it is sufficient to implement the pro-

tocols over ED and MED which are both forwarding-based DTN routing algorithm

that require some form of schedule information as described in Section 2.

We shall now describe our communication scenario and the overall simulation.

5.1 Scenario: City Buses

Scenarios based on a network of buses equipped with wireless devices providing

DTN have been previously discussed by Jain et al. [1] and Jones et al. [26]. In [26],

Jones et al. note that the trends for all aspects that they had studied were similar

for the city bus scenario and the wireless LAN scenario. However, for performance

under ideal conditions it was noted that though the trends were same, the city bus

scenario had a better performance.

25
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We therefore use the DieselNet traces [27] that were compiled for buses run-

ning routes serviced by UMass Transit. UMass Transit had a total of 40 buses with

DieselNet equipment. Out of these, some had to be operated daily. The buses that

would operate on a day depended on which ones were available as opposed to those

that had to be rested due to failure or service requirements. As a result, different

buses operated on different routes on different days and hence the schedules for any

two days are not identical. Every bus connected with other buses or APs when it

would come in contact with them. The traces thus contain connection events between

buses as well as between a bus and an AP. Connection events for a day are stored in

a file matching that date. To make the simulations more tractable we eliminate all

but ten most visible APs. Thus, we create a scenario with less infrastructure than in

[1] and [26].

5.2 Traffic

In [26] it is mentioned that for a bus scenario, the schedules of five weekdays

had been combined because these schedules were identical and statisctics for messages

generated during the second day were recorded. Since the daily schedules obtained

from DieselNet trace are not identical, we can not apply this scheme to our scenario.

We instead concentrate on obtaining statistics for traffic sent over a single day that has

high probability of being delivered on that same day. We do this for five consecutive

days and calculate the final statistics as a suitable average.

For generating traffic for a day, we listed all ordered pairs of nodes in that

schedule. The first node in the pair is the initiator and the second is the respon-

der. Pairs having both the initiator and responder as APs were discarded as such a

communication would happen via the Internet rather than the DTN. For each of the

remaining ordered pairs, we select a random start time from the first quarter of the
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day. At this time, the initiator will send a message to the responder for the first time.

That initiator will continue sending a message to the same responder at an interval

of 1 hour during the first half of that day. The size of each message is 10,000 bytes.

This pattern ensures that each node initiates at least 6 messages to every other node

which can be a valid responder in DTN. And since this traffic is generated in the first

half of the day, it has high probability of being delivered on the same day.

5.3 Metrics

We evaluate our protocols in terms of delivery ratio, average delivery delay, and

the overhead. Delivery ratio is the percentage of total messages delivered to their

final destinations by the end of the simulation out of the total messages injected into

the system. Delay for a delivered messages is the time between when that message is

generated at the initiator and when it is received at it’s final destination. By the end

of the simulation we get the average delivery delay which is the average of the delay

for all the delivered messages. The overhead of the protocol is defined as the ratio of

total bytes transmitted during the simulation to the total bytes of actual data that

have been delivered to their final destinations by the end of the simulation. Total

number of bytes transmitted includes protocol bytes and data bytes and measures the

total amount of bandwidth consumed by the protocol. The overhead indicates the

cost incurred in terms of bytes transmitted while delivering each byte of the actual

data that has been delivered to its final destination.

5.4 Experiment

Currently we only study the performance of the PEON protocols under ideal

conditions of operation. This implies that we consider the DTN nodes to have un-
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limited buffer capacity for holding in-transit data. Also the links have unlimited

bandwidth and negligible latency. The conditions are not practically feasible but we

assume their existance as it will enable us to get an unbiased evaluation of our proto-

cols and validate our assumptions about their behavior. In the future, we will study

PEON protocols under more realistic conditions.

For every combination of PEON protocol and routing algorithm, we set the

context by varying the number of pawns in the path as well as the total number of

groups in the system. For each context, we run the simulation a total of five times,

once for each of the five consecutive days mentioned in our scenario. We calculate the

final values for the delivery ratio, average delivery delay and the protocol overhead

as an appropriate average of these five sets of results. The delivery ratio is calculated

as the percentage of total messages delivered during the five days out of the total

messages injected into the system in that time. Average delivery delay is calculated

as the weighted mean of average delays for the five days, weighing them by the number

of messages delivered on the corresponding day. The protocol overhead is calculated

as the ratio of total bytes transmitted in five days to the total data bytes delivered

to their final destinations in that time.



CHAPTER 6

SIMULATION RESULTS

In this section, we present the results of our simulations. All results are for

unequal grouping of nodes and they are presented for PEON protocols in combination

with different routing algorithms. DR/ED, CPR/ED and Random/ED are DR, CPR

and Random Selection used with ED, respectively. Similarly, DR/MED, CPR/MED

and Random/MED are DR, CPR and Random Selection used with MED, respectively.

Figure 6.1. Delivery ratio for varying number of pawns in the path when the number
of groups in the system is five.

29
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Figure 6.2. Average delivery delay for varying number of pawns in the path when the
number of groups in the system is five.

6.1 Performance of PEON Protocols

We first compare the performance of PEON protocols, for presenting examples

we consider the case where number of groups in system is five and number of pawns

in path is two.

From Figures 6.1 and 6.4, we can see that over the same routing algorithm, the

delivery ratio for random selection is much lesser than that of CPR. This is because

firstly choosing a random pawn may result in a path which may not lead to the

responder or incur very high delay so that the message can’t be delivered on the same

day. We also observe that the delivery ratio for DR is the highest because in DR the

process of determination of the path is directed in such a way so as to most closely

resemble the path computed by the underlying routing algorithm. However, the
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Figure 6.3. Overhead for varying number of pawns in the path when the number of
groups in the system is five.

delivery ratio for DR is only slightly higher than that of CPR. The values of delivery

ratios observed for Random/ED, CPR/ED, and DR/ED are 48.692%, 73.776%, and

75.148%, respectively. Notice that the delivery ratio for Random Selection much

lesser than that of CPR, whereas, the delivery ratio for CPR is only slightly lesser

than that of DR.

The results for average delay are shown in Figures 6.2 and 6.5. As expected,

for the same routing algorithm, the delay for random selection is the highest. Note,

that the expected value of delay in random selection is the population mean of cost,

in terms of delay, for the nodes in the next pawn group. CPR has lesser delay than

random selection because if the minimum delay from current sender to next pawn

is half of the population mean then the overall delay will also be reduced by half.
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Figure 6.4. Delivery ratio for varying number of groups in the system when the
number of pawns in the path is two.

Further, delay for DR is slightly less than that of CPR beacuse we not only try to

choose the pawns closer to the sender but we try to find them in the groups which

are most likely to have nodes that are also closer to the responder. The values of

average delay observed for Random/ED, CPR/ED, and DR/ED are 7.671 hours,

6.137 hours, and 6.048 hours, respectively. Again notice that the average delay for

Random Selection is considerably higher than that of CPR, whereas, the average

delay for CPR is only slightly higher than that of DR.

Silmilar trend is observed in the case of overhead. Figures 6.3 and 6.6 indicate

that bytes transmitted per byte of data delivered is least for DR, slightly higher for

CPR, and highest for random selection. The values of overhead for DR/ED, CPR/ED,

and Random/ED are 9.136 bytes/byte, 10.349 bytes/byte, and 13.658 bytes/byte,
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Figure 6.5. Average delivery delay for varying number of groups in the system when
the number of pawns in the path is two.

resepectively. In general, from our observations of delivery ratios and average delay

we can say that the performance of CPR is much better than that of Random Selection

and the performance of DR is slightly better than that of CPR.

6.2 Choice of Routing Algorithm

We now attempt to understand the effect of choice of underlying routing algo-

rithm on the performance of PEON protocols. For our examples we consider the case

where number of groups in system is five and number of pawns in path is two.

From Figures 6.1 and 6.4 we can infer that the delivery ratios for any PEON

protocol when used with ED is much higher than when used with MED. For example,



34

Figure 6.6. Overhead for varying number of groups in the system when the number
of pawns in the path is two.

DR/ED has delivery ratio 75.148% which is much higher than 46.544% which is the

delivery ratio observed for DR/MED.

From Figures 6.2 and 6.5 we can observe that the average delay for delivered

messages is lower for a PEON protocol when the underlying protocol is ED rather

than MED. For example, DR/ED has a lesser delay of 6.048 hours compared to the

delay for DR/MED which is 7.554 hours.

However, from Figures 6.3 and 6.6 we see that when DR and CPR are used

in combination with ED then they have a higher overhead than when they are used

with MED. On comparing DR/ED and DR/MED, we see that the former has a higher

overhead of 9.136 bytes/byte and the latter has a lower overhead of 6.998 bytes/byte.

This trend is not observed in the case of random slection.
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In general for any PEON protocol, the performance is better when the underly-

ing routing algorithm has more accurate knowledge of the schedule although a slightly

higher overhead may be incurred.

6.3 Effect of Number of Pawns in Path

To study the effect of varying number of pawns in the path we consider the case

where total number of groups in the system is five.

Note that when the number of pawns in path is 0, PEON does not come into

effect and we instead observe the behaviour of the underlying routing algorithm. We

can see this case in Figures 6.1, 6.2, and 6.3 and infer that for ED the value of

delivery ratio is 77.944%, delay is 5.195 hours, and overhead is 3.547 bytes/byte.

Similarly, we can also infer that for MED the value of delivery ratio is 66.273%, delay

is 6.203 hours, and overhead is 2.297 bytes/byte.

Figure 6.1 indicates that in each of the six cases of DR/ED, CPR/ED, Ran-

dom/ED, DR/MED, CPR/MED, and Random/MED; there is a slight decrease in

delivery ratio as the number of pawns in path increases. For example, for DR/ED

the delivery ratio gradually decreases from 77.944% to 73.444% as the number of

pawns increase from zero to three. Similarly, for DR/MED the delivery ratio steadily

decreases from 66.273% to 30.788% as the number of pawns increase from zero to

three. As an exception, for CPR/ED, Random/ED, and CPR/MED we see that the

delivery ratio is lesser when the number of pawns is two than when it is one. However,

the difference between the corresponding delivery ratios in these cases is negligible

(< 1.7%) and hence the two values can be considered almost equal. In general, we

can say that delivery ratio decreases with an increase in number of pawns.

From Figure 6.2, we can see that there is a gradual increase in average delivery

delay with an increase in number of pawns. For example, when the number of pawns
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increases from zero to three, the delay increases slowly from 5.195 hours to 6.284 hours

for DR/ED and it increases clearly from 6.203 hours to 8.647 hours for DR/MED .

Note that for most combinations of PEON protocols and routing algorithms, there is

a very small difference in delay values when number of pawns is one and when it is

two.

In Figure 6.3, we can see that clearly more bytes will be transmitted per byte

of data delivered as the number of pawns included in a path increases. Again if we

consider the case of DR/ED and DR/MED, for the former the overhead increases

from 3.547 bytes/byte to 12.336 bytes/byte, and for the latter the overhead increases

from 2.297 bytes/byte to 12.737 bytes/byte.

Therefore, we infer that the performance will suffer if number of pawns is in-

creased.

6.4 Effect of Group Size

Table 6.1. Average and standard deviation of delivery ratio for varying number of
groups in the system when the number of pawns in the path is two

PEON Protocol / Delivery Ratio
Routing Algorithm Average (%) Std. Dev. (%)
DR/ED 74.796 0.933
CPR/ED 72.193 1.682
Random/ED 48.373 0.742
DR/MED 44.897 3.192
CPR/MED 39.761 4.040
Random/MED 22.221 1.283

For our data set, we use number of groups in the system between three and ten.

From Figure 6.4, we can infer that the delivery ratio does not change with varying
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Table 6.2. Average and standard deviation of delay for varying number of groups in
the system when the number of pawns in the path is two

PEON Protocol / Delay
Routing Algorithm Average (hours) Std. Dev.(hours)
DR/ED 6.078 0.187
CPR/ED 6.313 0.221
Random/ED 7.708 0.075
DR/MED 7.774 0.216
CPR/MED 8.193 0.185
Random/MED 8.904 0.062

Table 6.3. Average and standard deviation of overhead for varying number of groups
in the system when the number of pawns in the path is two

PEON Protocol / Bytes Transmitted per Byte of Data Delivered
Routing Algorithm Average (bytes/byte) Std. Dev. (bytes/byte)
DR/ED 8.992 0.684
CPR/ED 10.509 0.463
Random/ED 13.821 0.138
DR/MED 7.358 0.436
CPR/MED 8.710 0.499
Random/MED 13.845 0.550

number of groups in the system. The values of delivery ratio remain more or less

constant for all values of number of groups and this is true for all six cases of DR/ED,

CPR/ED, Random/ED, DR/MED, CPR/MED, and Random/MED. Similarly, from

Figures 6.5 and 6.6 we observe that average delivery delay and overhead, respectively,

are also not affected by the number of groups in the system. The table in

Tables 6.1, 6.2, and 6.3 show the average and standard deviation of the

values for delivery ratio, delay, and overhead, respectively, over the range of number

of groups. Small standard deviations imply that the actual values for delivery ratio,

delay, and overhead will be close to the average which further implies a consistent

performance. For example, from the tables we can say that while using DR/ED for
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any number of groups, the value of delivery ratio, delay, and overhead will be around

74.796%, 6.078 hours, and 8.992 bytes/byte respectivey. We can validate this by

observing Figures 6.4, 6.5, and 6.6; we see that the actual values of delivery ratio,

delay, and overhead are in the range 72.688% to 75.812%, 5.820 hours to 6.395 hours,

and 8.138 bytes/byte to 10.224 bytes/byte, respectively.

Thus we can conclude that for our dataset, the group size has minimal effect

on the performance.



CHAPTER 7

CONCLUSIONS

In this paper, we proposed PEON, an architecture for privacy in message rout-

ing in opportunistic networks. The PEON design extends prior work in Internet

anonymity with pawn groups, through which routing can happen more efficiently

than with standard anonymity approaches based on random node selection. We de-

scribed three ways of routing messages in the PEON framework and the trade-offs

available in each method. Finally, we describe the design and results of simulations

based on traces of busses in the DieselNet framework. We showed that our DR prot-

col provides the best delivery ratio and delay, but our CPR protocol may provide

the best trade-off of communication costs with privacy. Further, we found that the

number of groups has little influence on the costs of our approach, while the number

of intermediate nodes makes a big difference in all protocols.

7.1 Future Work

For future work, we intend to investigate the privacy of our approaches. We

believe that most attacks, given a realistic attacker model, will be based on long-term

observations of the user’s patterns. Approaches like those of Troncoso and Danezis [28]

may be useful for this work. In [24], we have described the key distribution framework

and PEON protocls based on partially directed routing approach, we shall further

explore these ideas, implement them and analyze the associated trade-offs. With

these studies, we believe that we can design a complete PEON system that provides

reasonable privacy and performance in a variety of scenarios.

39



APPENDIX A

DTN SIMULATOR

40



41

In this appendix, we present the DTN Simulator

A.1 SIMULATOR COMMAND LINE OPTIONS

-verbose number filename

• number indicates logging level; values between 1 and 11 (including them) [see

util.Verbose for details]

• filename name of the file with parameters and schedule for the simulation

Other options include -stdin, -run line, -rl, -rnl. However, we have not used these for

our experiments.

NOTE: Messages will be logged in log.txt; this is different from the original

DTNSim2 which prints these messages on console.

A.2 EXAMPLES PROVIDED WITH THE SIMULATOR

The examples discussed here are included in the ’examples’ folder of the dtnsim2.

A.2.1 simple

This scenario is explained in the ’README’ included with this example.

Nodes

A, B, C, D

Input files

simple ED ED
simple MED MED
simple MEED MEED
simple Ideal Ideal node ( ED + infinite buffer space)
use Ideal Forces ED/MED/MEED/Ideal Node to use the Ideal contact
simple Times Contact schedule
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Output files

simple stats

The results can be verified by comparing them with the statistics for those tests

in the file proper stats.

A.2.2 dartmouth simple

This is a small scenario for basic tests, using one access point and four mobile

devices. A pair of mobile devices is considered to be connected when the two devices

are associated with the same access point at the same time. The contact schedule is

kept separate from the data traffic in the network which is included in a separate file.

Nodes

Access point: AcadBldg21AP1

Mobile devices: c1103, c409, c2949, c1169

Input files

test ED ED
test MED MED
test MEED MEED
Common Common configuration / traffic
dartmouth simple Contact schedule

Output files

stats

A.2.3 myexample

We have created this example to test our understanding of the configurations

and input files required for running dtnsim2. This scenario consists of a base station

and three buses. The base and buses come in contact with each other. Randomly
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generated discrete messages sent from one node to another are embedded in the

schedule. The perl script generate.pl is used to generate this scenario.

Nodes

Base station: base

Buses: bus1, bus2, bus3

Input files

simple ED ED
simple MED MED
simple MEED MEED
simple Times Contact schedule

Output files

simple stats

A.3 SIMULATOR INPUT: CONFIGURATIONS AND FILES

A.3.1 Input File

This file is named in accordance with the routing algorithm being tested and

has the configuration for the node, contact, and algorithms. Following are some of

the important commands:

@time All the events which follow this line in the file are queued to be fired at this

@time.

/ Appears within a command at the end of line, it indicates that the next line in the

file must be appended to the current command.

interpreter run file = filename
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Set filename to any other file that must be included at that point for being

interpreted. The file included could have contact schedule, traffic configuration, or

common configuration between different inputs.

default contact bandwidth = bandwidth latency = latency

• bandwidth : Set its value to normal bandwidth for real contact. Set its value

to INF for infinite bandwidth in case of ideal contact.

• latency : Set its value to >0 for real contact. Set its value to 0 for ideal contact.

network element node = node

• node : Set to implementations.GlobalKnowledgeNode for ED and MED, set to

implementations.MEEDNode for MEED, and set to implementations.EpidemicNode

for Epidemic routing.

default node buffer size = buffer size msg size = msg size

algo = algo read schedule = read schedule

• buffer size : Buffer space for holding in-transit data. Set to -1 for infinite

capapcity.

• msg size : Set only if discrete messages are included in the contact schedule.

• algo : Set only for MED and ED. For MED set its value to MED. For ED set

its value to ED.

• read schedule : Set only for MED and ED to the file having contact schedule.

stats prints file=filename field=field caption 1 =field value 1

...

...

...

field=field caption n =field value n

This will write the field values into a file named filename .



45

@end Indicates end of simulation. Use it to give a command to be performed at the

end of simulation

For example,

@end stats print ...

will write to a file when the end of the simulation is reached.

A.3.2 Contact Schedule

The contact schedule is a set of records each of which either indicates when

a contact between two nodes becomes available or unavailable. Following record

indicates that at time time , the contact between node1 and node2 is available:

@time node1 <-> node2 up

Following record indicates that at time time, the contact between node1 and

node2 becomes unavailable:

@time node1 <-> node2 down

A.3.3 Discrete Messages Included in Contact Schedule

Discrete messages each indicating the sending of a message from node1 to

node2 at time time may be included in the contact schedule. Default node msg size

must be set to specify the size of these messages.

@time $node1 send=node2

A.3.4 Traffic

Traffic pertains to a series of messages being sent from one node to another. It

may be included in a separate file other than the contact schedule. In our example

we shall include it in a separate file which is generated using the perl script diesel-
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nettraffic.pl. This script randomly picks up the start time (in the range 0 to half of

the end time of contact schedule) for each pair of source and destination which is

a combination of every node included in the contact schedule chosen as source with

every other node chosen as destination. Following parameters have to be set.

default traffic start = start stop = stop interval = interval

msgs per fire = msgs per fire msg size = msg size

• start : Default time to inject traffic for the first time in the system.

• stop : Default time to stop injecting traffic into the system.

• interval : Default interval of time at which an event is fired to inject a subse-

quent round of messages.

• msgs per fire : Default number of messages to be sent from any source to any

valid destination when the event to send messages is fired.

• msg size : Default size for each message injected into the system.

traffic start = start src = src dest = dest

• start : Specific time to send messages from the src node to the dest node

for the first time.

• src : Particular originator of the messages.

• dest : Particular final recepient of the the messages.

A.3.5 Common Configuration

The configurations common to all tests can be included in a separate file. This

is helpful in avoiding repetition as well as having to change the values of the common

parameters in only one file rather than all input files corresponding to each test.

Note: Specific value of a property in X will overwrite general value of that

property in default X. For example, the value of ’traffic start’ will overwrite the value

set in ’default traffic start’.
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In this appendix, we discuss the derivation of contact schedule required for

DTNSim2 from the DieselNet traces.

B.1 DIESELNET TRACES

We shall derive our contact schedule from DieselNet traces [29]. To obtain this

trace Umass Transit’s buses were equipped with DieselNet equipment. Every bus

connects with other buses or access points (APs) when it comes in a range of contact

with it. This trace contains details of contacts between:

• One bus and another bus

• A bus and an AP

All contacts occurring in a day are stored in a file which has that date (yyyy-

mm-dd) as its name. A file for each date is stored in two directories - bus-bus and

bus-ap. The bus-bus directory contains details of contact between two buses. The

bus-ap directory contains details of contact between a bus and AP.

For each record in a file we have the following interpretation relevant to our

experiment.

Column Meaning
1 bus ID
2 bus ID (files in bus-bus) / MAC address of AP (files in bus-ap)
3 time of contact (in absolute minutes and seconds after midnight)
5 total duration of meeting (in seconds)

Entries where the first and/or second columns are null must not be considered.
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B.2 OBTAINING CONTACT SCHEDULE FROM DIESELNET TRACES

The format of available dieselnet trace is very different from the desired contact

schedule. The perl script dieselnetwithoutsend.pl takes as inputs the file for the same

day from bus-bus and bus-ap directories, and generates the contact schedule having

all valid contacts for that day. The contact schedule generated thus was large and

must be reduced for using it with dtnsim2. Maximizing delivery ratio requires:

• Increasing bandwidth

• Decreasing latency

• Sending messages in the beginning of the schedule (say the first-half of the total

period of the schedule)

The number of total nodes in the system needs to be reduced to avoid Out-

OfMemory exception for maximum flexibility in increasing bandwidth and decreasing

latency. Therefore, the schedule obtained from dieselnet traces has to be reduced by

eliminating all but few access points. Note, that the number of access points is much

larger than the number of buses. Therefore, many access points can be removed. Also

the frequency of occurrence of access points in the schedule differ over a large range

(800 to 2) so it is best to keep only the most frequent nodes.

The perl script dieselnetapcount.pl takes as input the complete contact schedule

obtained from DieselNet traces and generates a list of 10 most frequent access points

followed by all the buses in the schedule that are connected to either another bus

or one of the 10 access points. In other words, less frequent APs and buses which

connect to only these less frequent APs are not included in this list. This script also

generates traffic between the nodes in this list.

Finally, the perl script dieselnetfilterschedule.pl takes as input this list of most

frequent APs and buses as well as the complete contact schedule. It generates a

reduced contact schedule by only retaining contacts wherein either of the nodes are
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only from this list. Again each contact is either between a bus and another bus or

between a bus and an AP. Corresponding to each date, yyyy-mm-dd, we obtain a

reduced contact schedule in a file with that date as its name, we obtain a file named

nodes yyyy-mm-dd containing the list of APs and buses included in that schedule, and

we also obtain a file named traffic yyyy-mm-dd containing traffic for that schedule.

Note: Combining schedules of two days did not have much effect in increasing

delivery ratio. The maximum delivery ratio may not be obtained for ideal contact

(infinite bandwidth and zero latency).
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C.1 PEON PACKAGE

In DTNSim2, a separate package has been created called peon which contains

classes written to implement PEON. Following are the classes included in this package.

• PeonProperties: Properties which indicate whether PEON framework is enabled

and define the grouping type, the number of groups in the system, the number

of pawns that must be included in the path, the PEON protocol to be used,

and the list of all nodes in the system.

• PeonOnion: This is a subclass of protocolStack.ProtocolStackMessage, it wraps

up a DTN message and has other data required for defining a PEON onion such

as the list of intermediate pawn groups, the initiator, responder, and the next

pawn.

• GlobalKnowledgePawn: It is a sub-class of implementations.GlobalKnowledgeNode,

it thus derives from a node which has the ability to use the ED and MED routing

algorithms. Moreover, it has the knowledge of PEON protocols.

• PawnGroup: This class denotes a pawn group in the system, it contains a list

of names of all pawns in that group.

• PawnGroupList: It encapsulates an ArrayList of PawnGroup. The list is pop-

ulated in the begining of the execution before the simulation starts, only non-

empty groups are included.

• PawnList: It encapsulates a HashMap of all the nodes in the system as the

keys and the names of associated PawnGroups as their values. This map is also

populated at the begining before the actual simulation begins.



53

C.2 CHANGES TO EXISTING CODE

These classes in the existing code for DTNSim2 have small changes required for

PEON:

simulator.Main

• Added code for grouping nodes in the system when PEON is used

implementations.GlobalKnowledgeNode

• Added method getCost

• Added method getRoute

protocolStack.ProtocolStackNode

• Modified method acceptMessage - to allow data message to be routed back to

previous immediate sender

• Added method forwardMessage

simulator.Node

• Modified method messageReceived - for a data message if this node is the des-

tination and if PEON is enabled then it will call peonOnionReceived first to

process that message

• Added (abstract) method forwardMessage

simulator.BasicNode

• Added method forwardMessage

simple.SimpleNode

• Added method forwardMessage

protocolStack.globalKnowledge.GKnowledgeTopologyHandler

• Added method getCost

protocolStack.EventHandler

• Added method getCost
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C.3 CONFIGURATION FOR USING PEON

We now discuss the configuration required to use PEON. After configuring the

system, run the simulator as usual for either ED or MED.

C.3.1 test MED OR test ED

network element node = node

Set the value of node as GlobalKnowledgePawn.

default node read schedule = read schedule

Set the value of read schedule to the name of the file containing the conact

schedule. In the DieselNet example, this will be the date of the schedule, for example,

this could be 2007-10-26.

C.3.2 common

interpreter run file = filename

For the first occurance of this command, set the value of filename to the file

containing the traffic for that schedule. For our example, it will be traffic 2007-10-26.

For the second occurance of this command, set the value of filename to the file

containing the contact schedule itself. For our example, it will be set to 2007-10-26.

C.3.3 peon.properties

Set the value of enablePeon to true and the value of nodeFile to the name of

the file containing the list of nodes corresponding to the contact schedule being used,

for our example it will be nodes 2007-10-26. Set the values of the other parameters

appropriately to indicate the grouping type, the number of groups in the system, the

number of pawns that must be included in the path, and the PEON protocol to be

used.
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