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ABSTRACT

ERROR-RESILIENT IMAGE AND VIDEO CODING

OVER LOSSY NETWORKS

Publication No.

YILONG LIU, Ph.D.

The University of Texas at Arlington, 2005

Supervising Professor: Soontorn Oraintara

The rapid growth of the Internet and increasing bandwidth in the past decade has

heightened the interest in robust transmission of image and video signals over error-prone

links. Recent literatures highlight the multiple description (MD) coding as a promising

approach to solve this problem. MD coding is a source coding technique that provides a

graceful quality degradation in the presence of packet losses during transmission. Topics

of interest to construct MD coders with high coding efficiency and robustness are studied

in this thesis.

To minimize the overall distortion of reconstructed image, we propose an edge-

adaptive estimation algorithm that is able to capture the arbitrarily-oriented edges

around the corrupted coefficients. It reconstructs the lost samples more accurately com-

pared to the previously proposed methods in the literatures. A feature-oriented MD

coding scheme is proposed by adopting this estimation algorithm to smartly identify the

coefficients that are sensitive to packet loss. The redundancy is then inserted to each

channel by jointly optimizing the subsets of sensitive coefficients and the related quan-
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tizers. The corrupted samples are reconstructed with the proposed estimation algorithm

at the receiver.

By introducing the extra prediction loops to the correlating transform based MD

video coder, the mismatching error, i.e. the drift, incurred by the one-channel reconstruc-

tion is decreased. However, the problem of effective redundancy allocation is introduced

by the drift coding. An efficient algorithm is developed to solve this problem. The pro-

posed approach optimally adjusts the source coding rates for the correlating transform

coefficients and drifts in a coordinated fashion.

The proposed algorithms are implemented based on the image/video MD cod-

ing systems using DCT or wavelet transforms. The advantages of the introduced ap-

proaches to achieve high coding efficiency and error-resilience for transmission are demon-

strated.
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CHAPTER 1

INTRODUCTION

There has been an increasing demand of multimedia communications in the past

decade. This was inspired by several factors, including the proliferation of fast and

affordable end-user communication devices, expansion of wired and wireless network

infrastructure, and development of high performance compression algorithms and stan-

dards [75]. Typical multimedia applications combine sound, image, video and data (e.g.

text), and large transmission bandwidth is required. To decrease the required transmis-

sion bandwidth, they have to be compressed prior to transmission. However, compressed

multimedia bit streams are very sensitive to communication channel impairments such as

bit errors and packet losses. Hence, additional mechanisms and strategies are necessary

to reduce the effect of channel impairments and enable successful communication.

Transmission of image or video signals is the most challenging problem in multime-

dia communication because of the real-time constraint and large bandwidth. Figure 1.1

illustrates a typical system for image or video transmission over packet-based networks.

Input image or video signal is first encoded by the source coder. The bit stream gener-

ated by the source coder is then manipulated into transmission data units called packets,

and channel coding, such as forward error correction (FEC) codes, may be applied to

each packet. Usually, source coder, packetizer and channel encoder are jointly combined

into a single processing block. Packets are then sent through a wired network or wireless

channel, to the receiver side. Transmission of packets over the network is controlled by

transport layer network protocols, for instance transmission control protocol (TCP), user

datagram protocol (UDP), realtime transport protocol (RTP) and real-time control pro-
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tocol (RTCP) in case of Internet. These protocols provide end-to-end control of packet

transmission between sender and receiver, transparent to the underlying physical network

transmission technologies used [82].

Input image/video

signal

Transport layer

network control

Source coder

Channel coder

(Packetizer)

Transport layer

network control

Source decoder

Channel decoder

(Depacketizer)

Network/channel

Reconstructed

image/video

signal

Figure 1.1. Diagram of packet-based image/video communication system.

Unfortunately, some of the packets may be dropped at intermediate nodes as they

flow through the network towards the receiver, because of the bit errors, buffer overflow,

excessive delay, transmission link/node failure, etc. Although channel decoder may be

able to recover some missing packets or correct erroneously received bits, there are still

errors that can not be corrected in this way left for the source decoder to handle due

to the constraints of the ability of channel correction coding. For video signal, the error

of the current frame may propagate to the following frames due to the prediction based

coding strategy. The error may accumulate and result in an unacceptable quality. In

this situation, a request will be sent to the sender to retransmit the corrupted piece of

information.
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1.1 Error Control for Robust Image/Video Transmission

Error control can be implemented at different levels in an image/video commu-

nication system as described in Fig.1.1. Prior works in this area can be broadly di-

vided into three classes based on where in the system is the error control actually

done [99]: transport-level control, encoder-based control and decoder-based control.

Practical methods of error control often combine two or more of the approaches from

different classes [100].

1.1.1 Error Control at Transport Level

Transport-level control executes error control at the transport level network pro-

tocols and exploits their functionalities. It is not required to modify the encoder and

decoder, which makes these methods of this class relatively simple and easy to imple-

ment. However, capabilities of these methods are constrained by the current network

infrastructure.

One of the well-known methods of traditional error control algorithms at this level

is automatic repeat request (ARQ), where the receiver asks the sender to retransmit the

data that were not received due to loss or excessive delay. This type of error control is

used in TCP to enable lossless data delivery with unbounded delay. However, delay is a

major issue in multimedia communications for both real-time and streaming applications.

This makes ARQ not suitable for image/video transmission. Several solutions to this

problem have been proposed [99]. For instance, one could limit the use of ARQ to the

most important data, such as header information which typically accounts for a relatively

small fraction of the bit stream, and not use it for other types of data. Another approach

is the delay-constrained retransmission in which for each corrupted packet, the decoder

estimates the arrival time of its retransmitted duplicate and requests retransmission
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of only those packets that are possible to arrive on time to be processed by real-time

decoding.

Variant priorities can be also applied to different parts of the data to be transmitted,

if the network can support transmission of packets with different priorities. When con-

gestion occurs, low-priority packets are first discarded by the server, while high-priority

packets are discarded only if the congestion persists. This can be effectively used in im-

age/video communication by sending more important data in high-priority packets, and

less important data in low-priority packets [70].

Forward error correction (FEC) can be also employed at the transport level. A

(n, k) block code, e.g. Reed-Solomon code, can be used for each source data packet [64].

A group of (n − k) FEC packets are created to protect the source data packets. Every

packet contains one symbol from each of the (n, k) codewords, so the loss of one packet

causes erasure of one symbol from each of the codewords, which can be corrected if (n−k)

is sufficiently large. For instance, a (n, k) Reed-Solomon code can correct up to (n− k)

erasures since it has the minimal distance of (n − k + 1) [48]. It is suggested that the

protection should be manipulated according to the importance of the data. However,

this is not known at the transport level in general. Hence, approaches at the encoder

level should be considered for the use of FEC.

1.1.2 Encoder-Based Error Control

At the transmitter, it is convenient for encoder to anticipate what effect will be

incurred by the error in a particular bit, or the loss of a group of bits, at the decoder.

Hence an appropriate level of protection can be assigned to different groups of source

data accordingly. Unlike transport-level control, implementations of encoder-based error

control methods require modifications of the encoder and sometimes decoder, but they

can provide more flexibility compared to the transport-level methods.
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Error propagation, caused by using the high-performance variable length code

(VLC), is a major problem for the encoder-based error control approaches. This is be-

cause, in VLC, the lengths of individual codewords are different, and the decoder usually

does not know the length of the variable length codeword until it is fully decoded. A

missing or erroneous bit may cause the decoder to substitute one codeword for another,

causing it to start decoding the following codeword from the wrong position in the bit

stream. Hence, one bit error may cause incorrect decoding of a large block of bits.

A simple way of depressing error propagation is by insertion of re-synchronization

markers [75]. These markers are blocks of bits which differ sufficiently and can be iden-

tified from the valid VLC codewords. Upon detecting a re-synchronization marker, the

decoder can resume correct decoding of valid VLC codewords. For example, MPEG

standards provide unique start markers for several types of coding units, such as GOP,

frame, slice [1, 2]. The effects of error propagation can be further reduced by the use of

reversible variable length code (RVLC) [105, 104]. These codes have the property that

their codewords can be decoded in both forward and reverse directions [32]. When a bit

error is detected, decoder can search for the next re-synchronization marker, and from

there start decoding in reverse up to the location of the error.

For video coding systems, error propagation may occur in both spatial and tem-

poral domains, due to predictive coding. If one block is erroneously decoded, the blocks

predicted from it will also be erroneously decoded [75]. The effects on errors on com-

pressed video streams depend on the type of the corrupted video parameter and the

sensitivity of this parameter to errors. Hence improvements in error robustness of video

streams could be achieved by separating the video data to two parts [86]. The motion

data of each video packet, which is vulnerable to errors, is placed in the first partition,

while the less sensitive texture data is placed in the second partition. The two partitions

are separated by a re-synchronization code. This approach enables the decoder to restore
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the error-free motion data of a video packet when errors corrupt only the bits of the less

sensitive texture data of the second partition. On the other hand, errors occurring in

the second less sensitive partition can usually be successfully concealed, resulting in little

visible distortion. As texture data makes up the majority of each packet, data partition-

ing allows errors to occur in a large part of the packet with relatively benign effects on

video quality. Further improvement at the encoder side can be achieved by duplicating

motion data, refreshing intra-coded macroblock/frame periodically or adaptively [75].

Scalable coding can also be used as a robustness tool when coupled with unequal

error protection (UEP) [42, 66]. To provide graceful degradation of image/video quality

with deteriorating channel conditions, more protection is emphasized on the layers with

important information using some form of channel coding. Experiments of scalable coding

show that individual layers differ in their contribution to the overall reconstructed signal

quality. However, networks usually treat all data packets equally. Hence the UEP can

be thought of as an adaptation mechanism that corrects this mismatch and maps layered

bit streams to variant channels which treats the individual layer appropriately.

1.1.3 Error Concealment at the Decoder Side

Although the error control at transport level can correct some corrupted data,

some part of the data may still not be available at the decoder in time for its scheduled

playout, due to the constraint of real-time applications and the limit of FEC correction.

Hence, error control mechanisms are also necessary at the decoder to handle the missing

data. Fundamentally all decoder-based error control methods take advantage of the

structure of image/video data, and capture the existing spatial and temporal correlation.

Some form of interpolation is usually used to estimate the missing samples from the

available neighbors. This process is also known as error concealment, which usually

cannot guarantee exact reconstruction of missing data.
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It is well known that images of natural scenes have predominantly low-frequency

components, i.e., the values of spatial and temporally adjacent pixels vary smoothly,

except in regions with sharp edges. In addition, the human eyes can tolerate more dis-

tortion to the high-frequency components than to the low-frequency components. These

facts can be used to conceal the artifacts caused by transmission errors.

For video signal, one simple way to exploit the temporal correlation in video signals

is by replacing a damaged macroblock with the spatially corresponding macroblock in the

previous frame. This method is also known as motion-compensated temporal prediction.

However, it can produce adverse visual artifacts in the presence of fast motion. Significant

improvement can be obtained by replacing the damaged macroblock with the motion

compensated block (i.e., the block specified by the motion vector of the damaged block).

This method is very effective when combined with layered coding that includes all the

motion information in the base layer [24]. Because of its simplicity, this method has been

widely used. A problem with this approach is that it requires knowledge of the motion

information, which may not be available in all circumstances. This can be solved by

combining the error-concealment with a layered coder [39].

Another state-of-the-art error concealment approach, named as maximally smooth

recovery, makes use of the smoothness property of most image and video signals through

a constrained energy minimization approach [101]. The minimization is accomplished

block by block. Specifically, to estimate the missing discrete cosine transform (DCT)

coefficients in a block [65], the method minimizes a measure of spatial and temporal

variation between adjacent pixels in this block and its spatially and temporally neigh-

boring blocks, so that the resulting estimated signal is as smooth as possible. Wang et

al. first used this approach to recover damaged blocks in still images coded adopting

block-transform-based coders by making use of the spatial smoothness only [101]. Zhu et
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al. later extended this method to video coders using motion compensation and transform

coding by adding the temporal smoothness measure [117].

An alternative of maximally smooth recovery is to use the projection onto convex

sets (POCS) method. Sun and Kwok proposed to use this method to restore a damaged

image block in a block transform coder [85]. The convex sets are derived by requiring the

recovered block to have a limited bandwidth either isotropically (for a block in a smooth

region) or along a particular direction (for a block containing a straight edge). Zeng and

Liu extended similar idea with a geometry-structure-based error concealment to improve

the interpolation directions [113].

Error-concealment techniques have also been developed for other objectives, includ-

ing the reconstruction of lost coefficients in transform domain [33], recovery by making use

of blockwise similarity within images [103], estimation of the corrupted coding mode and

motion vectors [84], and fuzzy-logic based recovery of high-frequency components [44].

1.2 Motivation

In recent years, there has been a renewed interest in Multiple Description (MD)

coding [26], primary reason for this is that MD coding is a form of joint source-channel

coding that is well suited to transmission over channels such as lossy packet networks.

MD coding itself is not new. The first references on the topic include [63, 107] and

date back to early 1980s. In MD coding, source encoder produces several descriptions of

the source signal which are encoded independently and transmitted over several channels

to the receiver. When decoded independently each description can provide a reasonable

approximation to the original signal. However, when several descriptions are decoded

jointly, the quality of the approximation is increased. This is due to the correlation that

exists among descriptions which enables the decoder to estimate the missing descriptions

from the received ones.



9

Designing an efficient MD coding system is an interesting topic in latest research.

A number of approaches have been proposed for creating multiple descriptions [66, 13,

90, 37, 56, 28, 87]. As one of the popular joint source-channel coding methods, MD

coding can be well designed and optimized through the interaction of encoding, decoding

and UEP channel coding. This motivates our research interests to improve the current

state-of-art MD coding techniques and design smarter coding schemes to process the

variant data sources.

1.3 Contributions of the Thesis

This thesis makes the following contributions.

• First, we propose a framework to recover corrupted coefficients in wavelet-based

MD coding systems. An edge-adaptive estimation algorithm is presented to exploit

the local texture statistical characteristics for estimating the lost coefficients. Ex-

tensive experiment results show that impressive improvements on both objective

and subjective measures can be achieved.

• Second, we introduce a novel MD coder, named as feature-oriented MDC. With the

aid of edge-adaptive estimation algorithm [54], the proposed codec smartly analyzes

the local statistics of the wavelet coefficients. The bit budget is then adaptively

allocated to those coefficients that are sensitive to packet loss. By using the joint

optimization of tree-pruning and quantizer selection in the rate-distortion sense,

our MD scheme achieves high robustness and coding efficiency compared to the

state-of-the-art MD coders.

• Third, we investigate the application of MD correlating transform based video

coding. A joint optimization algorithm is proposed for the drift-free MD video

coding scheme. The optimization is in the rate-distortion sense using Lagrangian

relaxation method for optimum allocation of redundancy amongst the correlating
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transform and the drift coding. The simulation results show that our algorithm

achieves substantial gains over the conventional coder.

• Finally, two embedded image coding systems based on multiresolution directional

filter banks (DFB) [60] are proposed. The first codec employs a multiscale filter

bank (FB), which is a combination of the recently introduced non-uniform quin-

cunx DFB (nuqDFB) at higher scales and the traditional wavelet filter bank at

lower scales, to provide a sparse image representation. The coding algorithm then

efficiently clusters the the significant coefficients using progressive morphological

dilation [95]. The remaining scattered significant coefficients are coded with the

aid of the Tarp filter [81]. The embedded coding approach is extended for the hy-

brid overcomplete pyramidal DFB (PDFB) in the second codec. Similar progressive

morphological dilation based coding algorithms are implemented. Furthermore, the

correlation exists among the neighboring directional subbands is adopted to reduce

the high redundancy of the overcomplete transform. Both coders achieve better

results than the current state-of-the-art wavelet based coders, such as JPEG2000,

thanks to the efficient edge approximation provided by the directional decomposi-

tion.

1.4 Organization of The Thesis

The remainder of this thesis is organized as follows. Chapter 2 begins with the

theoretical bounds of MD coding and an overview of conventional MDC approaches.

Then several state-of-the-art MD coding schemes are discussed in details. In Chap-

ter 3, the drawback of the data partitioning based MD coding algorithm is discussed.

Two approaches are proposed to solve the problem. The edge-adaptive error conceal-

ment presented in this chapter is employed in Chapter 4, where we introduce a novel

feature-oriented wavelet-based MD coding scheme for error-prone networks. The exten-
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sive experiments are carried out to verify the high resilience and efficiency of our codec.

In Chapter 5, the problem of drift-free MD video coding is discussed, a joint optimization

algorithm is proposed to achieve the optimal redundancy allocation between the central

and side prediction loops. A novel multiresolution DFB based image coding algorithm

is described in Appendix A, which uses the morphological dilation and Tarp filter to

progressively encode the sparse significant coefficients of the DFB. Similar idea is ex-

tended to the coding algorithm using the pyramidal DFB. Context models are designed

to exploit the inter-band and intra-band correlations of the overcomplete transform. The

promising improvement of coding result is presented. Chapter 6 summarizes this thesis.



CHAPTER 2

REVIEW OF MULTIPLE DESCRIPTION CODING

2.1 Introduction

Recently, multiple description coding (MDC) has emerged as a promising approach

to enhance the resilient coding and transmission for image and video signals. Typically,

a multiple description (MD) coder is a source coding technique that provides a graceful

quality degradation in the presence of packet losses during transmission. In contrast to a

conventional media coder, which generates a single stream, a MD coder encodes a media

source into two or more bitstreams as described in Fig. 2.1. These bitstreams, also called

descriptions, are generated in such a way that each description can be independently

decoded to produce a signal of basic quality. While receiving all the descriptions, the

decoder can reconstruct a signal of improved quality. In order to achieve this goal, each

description should contain a sufficient amount of information about the original source.

That is, a certain amount of correlation has to be introduced among the descriptions.

This correlation controls the media quality reconstructed from each description.

A primary reason for the increasing popularity of MDC is that it can provide

adequate quality without requiring retransmission of any lost packets (unless the loss rate

is very high). This has two important implications. First, it makes MDC particularly

appealing for real-time interactive applications such as video phone and conference, for

which retransmission is often not acceptable because it incurs overlong delay. Second,

it simplifies the network design: no feedback or retransmission is necessary and all the

packets can be treated equally. This is in contrast to layered coding (LC), which generates

a base layer and one or more enhancement layers. One major drawback for LC is that

12
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Figure 2.1. General structure for multiple description coding system.

the base layer must be delivered almost error free to guarantee a basic level of quality.

This requires differential treatment of base-layer and enhancement-layer packets by the

network and retransmission of lost base-layer packets, which may not always be feasible.

In addition to error resilience, MDC also makes it easier for traffic dispersion and load

balancing in the network, which can effectively relieve congestion and increase overall

network utilization. The fact that substreams from MDC can be treated equally and

independently makes the task of allocating packets onto transport paths much easier

than for a conventional single description (SD) coder or a layered coder.

However, the benefits of MDC come at a price that the MD coder uses more bits

to meet the same quality criterion as a conventional SD coder in the absence of any

transmission errors. This excess rate or redundancy is inserted intentionally to make the

bitstream more resilient to transmission errors. The primary objective in designing an

MD coder is to minimize the redundancy (or the total rate) while meeting an end-to-end

distortion requirement that takes into account transmission loss.

In the rest part of this chapter, Section 2.2 discusses the theoretical bounds of

MD coding. In Section 2.3, the conventional MDC algorithms are reviewed. Several
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state-of-the-art MDC schemes are described in Sections 2.4 - 2.7 in detail. Section 2.8

summarizes the chapter.

2.2 Theoretical Bounds

The early history of MDC, [63, 14, 4, 115, 111], was focusing on obtaining informa-

tion theoretical results for the achievable bounds. As depicted in Fig. 2.1, an encoder is

given a sequence of source symbols {Xk}Nk=1 to communicate to three receivers over two

noiseless (or error-corrected) channels. The transmission rate over channel i is denoted

by Ri, i = 1, 2, i.e. at most 2NRi symbols are used over channel i. Let {X̂i,k}Nk=1 be the

reconstruction sequence produced by decoder i, thus we have three distortions

Di =
1

N

N∑

k=1

E[δi(Xk, X̂i,k)], i = 0, 1, 2, (2.1)

where the δi(·, ·)’s are real-valued distortion measures, and Di, are distortions associated

with central and side decoders, respectively.

The theoretical problem is to determine the set of achievable values in the usual

Shannon sense for the quintuple (R1, R2, D0, D1, D2). Specifically, (r1, r2, d0, d1, d2) is

achievable for sufficiently large N such that

Ri ≤ ri, i = 1, 2;

Di ≤ di, i = 0, 1, 2.

Since decoder i receives Ri bits and cannot have distortion less than D(Ri), where

D(·) is the rate-distortion function of the source. Hence the following bounds are obtained

on the achievable region:

R1 ≥ R(D1), (2.2)

R2 ≥ R(D2), (2.3)

R1 +R2 ≥ R(D0). (2.4)
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where, R(·) = D−1(·).

Achieving equality simultaneously for the three bounds is impossible since optimal

individual descriptions at rates R1 and R2 are similar to each other and hence redundant

when combined. The distortion achieved by combined multiple descriptions cannot be

optimal for the sum of rates of the descriptions. Although there have been some bounds

obtained for various sources and distortion measures, the complete achievable region is

known only for i.i.d. Gaussian source. El Gamal and Cover determined an achievable

rate region for general memoryless sources [23]. Ozarow showed that this region is tight

for the case of memoryless Gaussian source with variance σ2. The achievable set of rates

and mean-squared error distortions is the union of points satisfying [63]

D1 ≥ σ2 · 2−2R1 , (2.5)

D2 ≥ σ2 · 2−2R2 , (2.6)

D0 ≥
σ2 · 2−2(R1+R2)

1− (
√

Π−
√

(∆))2
, (2.7)

where

Π = (1−D1/σ
2)(1−D2/σ

2), (2.8)

and

∆ = (D1D2/σ
4)− 2−2(R1+R2). (2.9)

Ahlswede [4] studied the case of no excess rate (when there is equality in (2.4), and

Zhang and Berger [115] considered the no excess marginal rate case (when there is equality

in (2.2) and (2.3). They also showed by counterexample that in the excess rate case the

achievable region of El Gamal and Cover is not tight [114]. More recently, Linder et al. [49]

found a rate region for memoryless sources and locally quadratic distortion measure which

is tight in the limit of small distortions (high bit rate). Finally, Zamir [111, 112] extended
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the Shannon bounds [8] to the MD case and showed that for a Gaussian source the outer

bounds are asymptotically tight. The inverse of (2.5) - (2.7) are the following [49, 63]:

R1 ≥
1

2
log(

σ2

D1

), (2.10)

R2 ≥
1

2
log(

σ2

D2

), (2.11)

R1 +R2 ≥
1

2
log(

σ2

D1

) +
1

2
log(

σ2

D2

) + δ, (2.12)

where δ is defined by

δ =





1
2
log( 1

1−ρ2 ), D0 ≤ Dmax
0

0, D0 ≥ Dmax
0

(2.13)

where

Dmax
0 =

D1D2

D1 +D2 − (D1D2/σ2)
(2.14)

and

ρ = −
√

Πǫ20 + γ −
√

Πǫ20
(1− ǫ0)

√
ǫ1ǫ2

, (2.15)

γ = (1− ǫ0)[(ǫ1 − ǫ0)(ǫ2 − ǫ0) + ǫ0ǫ1ǫ2 − ǫ20], (2.16)

Π = (1− ǫ1)(1− ǫ2), (2.17)

ǫi = Di/σ
2, i = 0, 1, 2. (2.18)

Notice that δ depends on the three distortions (D0, D1, D2) and on the variance σ2.

However, by rearranging (2.12), one can see the relationship between δ and the rates R1,

R2 and interpret δ as the excess rate that is used to reduce the central distortion given

the two side distortions or

δ = R1 −
1

2
log(

σ2

D1

) +R2 −
1

2
log(

σ2

D2

). (2.19)

If δ = 0 then

R1 =
1

2
log(

σ2

D1

) and R2 =
1

2
log(

σ2

D2

). (2.20)
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That means that all the rates are used to minimize the side distortions and in this case

D0 is equal to its maximum value Dmax
0 . In particular, D0 decreases from Dmax

0 to zero

as δ increases from zero to infinity.

2.3 Overview of Conventional Multiple Description Coding

Based on the theoretical bounds, a number of practical MDC methods for image

and video coding have been proposed during the past decade [26].

Vaishampayan proposed a simple and practical MDC scheme, known as multiple

description scalar quantizers (MDSQ), to generate two sub-streams by producing two in-

dices for each quantization level [90]. The index assignment is designed to be equivalent

to a fine quantizer when both indices are received. However, a coarse quantizer can be

used when only one index is received. More complicated quantizers, such as trellis-coded

and vector quantizers, and entropy codes were later designed to improve the coding effi-

ciency [91, 35, 93]. This MDSQ method was modified and applied to motion-compensated

predictive video coders by using two independent prediction loops [92]. Lee et al. also

proposed a two-stage multiple description video coder by adopting this MDSQ technique

[45].

An alternative way of designing the MDC algorithm is to use correlation-inducing

transforms [98, 27, 29]. In ideal source coding, the coefficients used to represent the

signal should be least correlated to maximize the coding efficiency. However, under this

paradigm it is very difficult to estimate the value of a lost coefficient from those that

remain. To achieve robustness against coefficient losses, the transform coefficients are

divided into multiple groups where the correlation within each group is minimized while

inter-group correlation is tolerated. Wang proposed applying a pair-wise correlating

transform (PCT) to each pair of uncorrelated variables obtained from the Karhunen-

Loeve transform (KLT) [98]. Goyal et al. further generalized Wang’s work to any number
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of variables, and coined the term generalized MDC (GMDC) [27]. GMDC was later

applied to image coding with correlating transforms [29]. As compared to the MDSQ

method, the PCT/GMDC has been shown to perform well at low rates [27]. Reibman et

al. adopted this PCT method and proposed a multiple description video coder that uses

motion-compensated predictions [72].

In addition to these two algorithms, many other MDC methods have also been

proposed, including FEC-based MDC [67, 66], MDC using frame expansion [30], matching

pursuits MDC [87, 58] and lapped orthogonal transform (LOT) based MDC [13].

Based on the way of generating descriptions, we categorize the MDC implementa-

tions into four classes:

A) MDC using redundant quantizers,

B) MDC by introducing controllable correlations,

C) MDC with partitioning, and

D) MDC through unequal forward error correction.

The typical MDC approaches for each class are discussed in the following sections.

2.4 Multiple Description Coding using Redundant Quantizers

� � � � � � ! � " # $ % & � ' " ( & )* + + $ , " - & " #� . ! � � & / ! � # $ 0 � & 1 & + � � $ 0 # $ . " � � � � � � ! � " # $ % & �
2 3 � " " & � 42 3 � " " & � 5

� $ ( &� & � & $ 6 & � 4
� $ ( &� & � & $ 6 & � 52 & " # � � �� & � & $ 6 & � 7 + & �

Figure 2.2. Basic architecture of multiple description scalar quantizer coding system.



19

In the first class pioneered by Vaishampayan, MDC is accomplished by using a

MD scalar quantizer, which is simply designed with some remarkable asymptotic prop-

erties [90]. Fig. 2.2 illustrates the role of a MD quantizer in a two-channel diversity

system.

In this approach, a MD qunatizer consists of two main components: a scalar quan-

tizer (that maps continuous-valued random variables to points in a countable set), and

an index assignment (that splits the information about each sample into two comple-

mentary and possibly redundant descriptions of the same sample). An index assignment

is an injection I: N → N × N (N is the set of natural numbers). When the scalar

quantizer maps the source to a finite number of points, e.g. n, the map I can be thought

of as a matrix of size n × n, in which only n locations are occupied. Apparently, there

exist n!Cn2

n = O(n3n) such distinct mappings. Two sample index assignments are shown

in Fig. 2.3.

The problem of designing good index assignments was thoroughly studied in [90],

using Ozarow’s characterization of the MD rate-distortion region for the Guassian source

as discussed in (2.5)-(2.7). Under the assumption of equal and high rates for both de-

scriptions, and for a squared error distortion measure, a construction of a large class of

index assignments is presented in [90], for which the exponential rate of decay of the

mean squared error is exactly that predicted by Ozarow’s result.

To further explain how the MDSQ works, let D1 and D2 be two descriptions that

have been generated by two coarse quantizers. As shown in Fig. 2.4, S2k and S2k+1, denote

the quantization bounds for D1 and D2 respectively. Typically, image coders based on

uniform quantizers perform inverse quantization by mapping bins to the midpoint of their

cell. With only one of the descriptions, we cannot decide the fine quantization interval,

but we can restrict to a coarser quantization bound. For instance, if only D1 is received,

but D2 is absent, the reconstruction level minimizing a mean square error distortion
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(a)

(b)

Figure 2.3. Two index assignments: (a) staggered quantization cells; (b) higher spread
cells. The idea is that bins of the scalar quantizer are placed in a matrix, and then
quantizer indices corresponding to row and column entries are sent over each channel.
If both descriptions are available, the original quantization bin can be recovered; if not,
the original quantization bin is known to be one of those in the received row/column.

metric corresponds to the midpoint of S2 and S4, i.e. S3. When both descriptions are

available, the reconstruction levels are S3 and S2 forD1 andD2, respectively. This further

implies that the reconstruction level can be refined as L, the midpoint of S2 and S3.

Obviously, using the midpoint as the reconstruction level leads to remarkably poor

performance when only one description is successfully received. To overcome this problem

it is not necessary to reconstruct the midpoints of these quantization bounds, but their

centroids instead. Using a Lagrangian formulation, a modified version of the generalized
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Lloyd algorithm can be developed to design the quantizers [90], i.e. the partitions for the

optimal encoder and the reconstruction levels for the optimum decoder. MD quantization

using entropy constrained scalar quantizers can be found in [91].8 9 8 : 8 ;8 < 8 => ?
> @{ {A8 B

Figure 2.4. Reconstruction levels of the MD scalar quantizers.

Similar methods can be obtained by replacing the scalar quantizers with vector

quantizers [91]. In the vector quantization case, a group of successive samples are blocked

and the encoder produces the indices as the output of multiple vector quantizers. Ba-

sically each description induces a partition on the space. If MDs are received, then the

signal is reconstructed as the centroid of the intersection of the cells. Other quantizer-

based MD coding approaches include constrained vector quantizers [22], lattice vector

quantizers [79] and trellis coded quantizers [35].

2.5 Multiple Description Correlating Transform

In the second category, pioneered by Wang, Orchard and Reibman, an MD corre-

lating transform is constructed by separately quantizing and coding the coefficients of a

linear block transform using P descriptions. The coefficients of the transform are scalar

quantized and grouped into P descriptions as shown in Fig. 2.5. The block transform F

is designed to introduce a controlled amount of correlation between pairs of transform

coefficients. The KLT is the optimal transform to minimizes the expected mean-square

error.
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Figure 2.5. General structure of correlating transform based multiple description coding
system.
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Figure 2.6. Diagram of the pairwise correlating transform based MD coding scheme.

The first introduction of the MDTC concept was for a two-dimensional case with

P = 2, which is also known as pairwise correlating transform (PCT) [96]. The PCT

is used to introduce controlled correlation for uncorrelated variables obtained from the

KLT or DCT. Fig. 2.6 shows the block diagram of the PCT method, in which an input

pair of Gaussian variables A and B are transformed into C and D, using



C

D


 = T



A

B


 =



T11 T12

T21 T22






A

B


 . (2.21)
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In [62], Orchard et. al. presented an analysis to optimize the correlating transform

to minimize the reconstruction error which was further extended in [96]. It is proved that

the optimal PCT transform T is

T =




1√
2β

√
β
2

− 1√
2β

√
β
2


 , β = tan(θ). (2.22)

The transform parameter, β, or the rotation angle, θ, controls the correlation between

A and B, which in turn controls the redundancy of the PCT coder. In this method, A

and B are assumed to be two independent Gaussian variables with variances σ2
A and σ2

B,

respectively. If we parameterize the correlation of C and D by the angle φ, defined as

E{CD} = σCσDcosφ, then θ can be used to vary the correlation angle φ by tan(θ) =

σA

σB
tan(φ

2
) [97].

Because the transform is, in general, nonorthogonal, quantizing A and B will lead to

degraded quantization performance if the quantization is applied to the PCT coefficients.

Therefore, A and B are first quantized to generate quantized indices A and B. Then, the

transformation is performed on A and B in the integer domain to produce correlation-

induced coefficients C and D. Consequently, (2.21) should be changed to:


C

D


 = T



A

B


 .

A lifting scheme has been proposed to study how to minimize quantization noise

in lossless discrete transforms [47]. For an arbitrary transform, T , with determinant one,

it can be factorized as

T =



a b

c d


 =




1 0

(d− 1)/b 1







1 b

0 1







1 0

(a− 1)/b 1


 . (2.23)

Hence, the lossless integer to integer transform can be implemented as the lifting structure

shown in Figure 2.7.
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Figure 2.7. Lifting structure for invertible integer-to-integer transform.

The forward PCT with quantization stepsize Q is implemented as ([·] denotes rounding)

A =

[
A

Q

]
, B =

[
B

Q

]
,

E = B +

[
a− 1

b
A

]
,

C = [bE] + A, (2.24)

D = E +

[
d− 1

b
C

]
.

Then, C and D are individually entropy coded, and their resulting bitstreams are sent on

two separate channels. Assuming both channels are received, the corresponding inverse

transform is implemented as

E = D +

[
1− d
b

C

]
,

Â = C − [bE] , (2.25)

B̂ = E +

[
1− a
b

Â

]
.

It can be easily shown that the transform pair is reversible between (A,B) and (C,D),

i.e. Â = A, B̂ = B.

If both descriptions are received intact at the destination, the inverse transform

of T is applied to C and D to produce Â and B̂, which are then used to reconstruct



25

the signal with full quality. If only one of the descriptions is received error-free, e.g. C,

inverse quantization is first applied to yield C̃, the dequantized C as shown in Figure 2.6.

An optimal linear predictor is then used to estimate D from C̃ by minimizing the mean

squared error E

{[
D −D

(
C̃

)]2
}

. The estimated D is obtained in the following form:

D̃ = −σ
2
A − σ2

Btan
2(θ)

σ2
A + σ2

Btan
2(θ)
· C̃. (2.26)

By taking the inverse transform of T on C̃ and D̃, we can obtain the estimated A and

B as follows:

Ã

B̃


 =




√
tan(θ)

2
−

√
tan(θ)

2√
1

2tan(θ)

√
1

2tan(θ)






C̃

D̃


 =




σ2
A

√
2tan(θ)

σ2
A+tan2(θ)σ2

B

· C̃
σ2

Btan(θ)
√

2tan(θ)

σ2
A+tan2(θ)σ2

B

· C̃


 . (2.27)

Finally, the decoder uses Ã and B̃ to reconstruct the signal but with degraded quality.

Recent analysis on Gaussian distributed random variables [98] suggests that it is

optimal to pair all variables according to their variances, with the kth largest paired

with the (N −k)th largest if there are N variables. However, when the smaller variable’s

variance in a pair is too small relative to the quantization error, it is no longer meaningful

to pair this variable. In this case, the two transformed coefficients’ variances are very

similar, so that the actual redundancy is larger than that predicted by theory, particularly

for very low redundancies.

Therefore, for a given redundancy, the pairing should be applied only to variables

having a large enough variance. Given variables, only the variables with large variances

should be paired. The remaining variables with small variances can be simply split among

the two descriptions. In the event that they are lost due to a channel failure, they can be

simply estimated by their mean values. The estimation errors for these small variables

are on the same order as the quantization error.

The extension of MDTC for more than two channels was presented by Goyal [28].

A solution for P = 3 was given by (2.28) for arbitrary a [25], when σ1 > σ2 > σ3 and
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description loss probabilities are equal and small, where σi is the corresponding variance

of the input random variable i of the MDTC.




a −
√

3σ1a
σ2

− σ2

6
√

3σ2
1a2

2a 0 σ2

6
√

3σ2
1a2

a
√

3σ1a
σ2

− σ2

6
√

3σ2
1a2



. (2.28)

A simple heuristic for designing systems with more than two channels is to cascade

small transforms [28]. Just as the parallel use of two-by-two transforms gave a method

for sending 2K variables over two channels, where K is a positive integer. A cascade

combination of these transforms gives a method for sending 2K variables over 2K channels.

The cascade structure simplifies the encoding, decoding, and design when compared to

using a general 2K × 2K transform.

2.6 Multiple Description Coding with Partitioning

The methods of Class C) are the most straightforward ways to generate MDs.

Typically the descriptions are created by partitioning, duplicating or combining both

strategies for the SD coefficients. In other words, the SD data is decomposed to multiple

non-overlapping/overlapping subsets, in the spatial, temporal, or frequency domain. This

method takes advantage of the fact that spatially or temporally adjacent image/video

data samples are correlated. Thus, one description can be estimated from the others.

One benefit of this approach is that no or less side information is needed. Another benefit

is that it is easy to extend the algorithm to more than two descriptions by increasing

the number of partitions. However, it is expected that the redundancy due to coding

efficiency will increase rapidly as the number of descriptions grows.

The partitioning can be flexible based on how descriptions are generated. In [73],

Ridge et. al. proposed the permuted smoothed description coding, which generates de-
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scriptions by partitioning DCT blocks into alternative odd/even stripes combined with

maximum smoothing error concealment [9]. Boulgouris applied similar checkboard par-

titioning to wavelet subbands for each frame of a video sequence [9].
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Figure 2.8. Diagram of polyphase-based MDC.

Jiang and Ortega proposed an MD coder by separating wavelet coefficients into

polyphase components [37], which is well known as Polyphase-based MDC. As described

in Fig. 2.8, the input signal x is first decomposed into two subsets y1 and y2 via a

polyphase transform. Each of these two components is quantized independently by Q1

and constitutes the primary part of the information for its corresponding channel. For

reconstruction of the other channel in case of loss, each channel also carries information

about the other channel, a coarsely quantized version by Q2. Then quantized outputs

from Q1 and Q2 are multiplexed together for transmission. At the receiver, if data from

both channels arrive, fine quantized data of both polyphase components is then used for

reconstruction. If one channel data is lost, one fine quantized polyphase and one coarsely

quantized polyphase component are used for reconstruction.
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This method explicitly separates the redundant information (coarsely quantized

polyphase components) from the primary information (finely quantized polyphase com-

ponents). It simplifies both the encoding and decoding processes compared to the MDTC

system where a correlating transform has to be executed. The complexity is also de-

creased compared to the MDSQ system since both the polyphase transform and quan-

tizers can be implemented easily. However, the way of partitioning by using polyphase

is not efficient for exploring the inherit correlation of transform coefficients. Thus this

method is not suitable for better error concealment. On the other hand, it is difficult to

determine the optimal bit rate allocated to the redundant information at low bit rates.

This actually motivate our proposed novel partitioning-based MDC algorithm presented

in Chapter 4.

Many partitioning based approaches are also developed for MDC of video signals.

In the video redundancy coding (VRC) algorithm [106], a video sequence is temporally

down-sampled into two subsets, essentially with every other frame in each subset. The

frames in each subset are coded into a description using an SD video encoder. At the

decoder, if only one description is received, the missing frames can be estimated from

the received frames.

Reibman et al. proposed the MD-split method [20], which uses the simplest pos-

sible algorithm for the MD encoder: duplication or alternation. Motion vectors and a

varying number of low-frequency DCT coefficients are duplicated, while the remained

high-frequency coefficients are alternatively split to one of the two descriptions. The

number of coefficients to duplicate can be adapted easily based on varying source and

channel statistics without explicitly informing the decoder.

In parallel, Comas et al. [21] proposed an algorithm with very similar properties.

Again, coefficients are either duplicated or sent in just one of the two descriptions. How-

ever, one description of a block contains all coefficients while the other contains only
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low-frequency coefficients, i.e. one channel gets all coefficients and the other gets a sub-

set of coefficients. By alternating on a frame or block basis for the two channels using

this strategy, balanced distortion can be achieved for each channel.

The MD-Split coder duplicates the lower frequency coefficients only. Recently, Kim

and Cho [41] extended this to allow any coefficients to be duplicated. Instead of operating

on the DCT coefficients, the matching pursuits MD video coder proposed by Tang et al.

[87] duplicates and alternates matching pursuits atoms to each description. Redundancy

is controlled by adjusting the number of duplicated atoms.

2.7 Forward Error Correction Codes-Based Multiple Description Coding

Instead of designing the source encoder to yield multiple descriptions directly, one

can apply unequal cross-packet FEC to different parts of a scalable bitstream. This

method, pioneered in [67] is commonly known as MD-FEC, which converts the prioritized

multiple-resolution bitstream into an N -packet un-prioritized MD packet stream using

efficient erasure channel codes. Each description in the MD stream occupies an entire

network packet, thus the terms “description” and “packet” are used interchangeably. Let

d(k) be the distortion when any k out of N descriptions are received.

� � � �� �� �� � � � � � � � � � � � � � � � � � � �
� � � � � � �� � ��

Figure 2.9. Progressive bitstream from the source coder partitioned into N layers.
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Figure 2.10. N -description generalized MD codes using FEC.

Given N and d(k) and a progressive bitstream, the stream is marked at N positions

as shown in Fig. 2.9 corresponding to the distortion levels d(k) and is thus partitioned

into N sections or resolution layers. The goal is to enable the ith layer to be decodable

when i or more descriptions arrive at the receiver. This can be attained using the Reed-

Solomon family of erasure-correction block codes. The ith layer is split into i equal parts,

and the (N, i,N−i+1) Reed Solomon code is applied to get the contribution from the ith

layer to each of the N descriptions. The contributions from each of the N levels are then

concatenated to form the N descriptions as described in Fig. 2.10. This packetization

strategy provides the property that the more the number of packets received, the better

the received quality.

Assume the channel model is characterized by q(i), i = −1, . . . , N−1, denoting the

probability that i+1 out of N packets are delivered to the destination. From operational

rate-distortion theory, it follows that distortion is a one-to-one function, D(r), of the
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rate r. Hence determining d(k) of order N corresponds to finding the rate partition

{R = R0, . . . RN−1} of the bitstream. Let E{D} be the expected distortion:

E{D} = q−1 · E +
N−1∑

j=0

qj ·D(Rj), (2.29)

where E denotes the source variance, i.e. the distortion encountered when the source is

represented by zero bits. Thus the total rate used Rt equals:

Rt =
R0

1
·N +

R1 −R0

2
·N + . . .+

RN−1 −RN−2

N
·N. (2.30)

Hence, the optimization problem of FEC-based MDC is equivalent to finding R that

minimizes E{D} subject to [66]:

Rt ≤ R∗, (2.31)

R0 ≤ R1 ≤ . . . ≤ RN−2 ≤ RN−1, (2.32)

Ri −Ri−1 = ki · (i+ 1), ki ≥ 0, i = 1, . . . , N − 1. (2.33)

A fast, nearly optimal algorithm to solve this optimization problem based on La-

grangian optimization has been discussed in [67]. Kim et. al. extended this method to

3-D SPIHT [40] coders for video coding [42]. In this approach, multiple-substream bit-

plane-wise UEP codes are packetized into different channels so as to generate unbalanced

MDs. Thus, the important spatial and temporal information are more robust to packet

loss.

2.8 Summary

This chapter reviews the state-of-the-art approaches of conventional MDC. We

classify them into four categories and describe the typical implementation for each class.

Amongst the variant research interests of MDC, improving quality of the reconstructed

signal and realizing optimal redundancy control are the most interesting topics. In this
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thesis, the proposed algorithms are closely related to the MD coding approaches that use

partitioning and correlating transform.



CHAPTER 3

RECONSTRUCTION FOR WAVELET-BASED MULTIPLE

DESCRIPTION IMAGE CODING

3.1 Introduction

Recently, Bajic [5] proposed a novel MD wavelet coding scheme, namely domain-

based MDC or data-partitioning based MDC (DP-MDC), which is created by optimally

partitioning the wavelet transform coefficients. The method is bandwidth-efficient in the

sense that no extra redundancy is introduced. Only the inherent spatial redundancy in

the transform domain of the signal is employed to make the bitstream robust and enable

lost descriptions to be estimated from the received ones. However, this MDC system

only focuses on finding the best way to partition the transform coefficients but ignores

efficiently adopting the inherent correlation within the signals in the reconstruction of

the corrupted coefficients at the decoder.

In this chapter, we concentrate on improving the reconstruction of lost descriptions

based on DP-MDC. Two algorithms are proposed. In the first algorithm, the corrupted

wavelet coefficients are estimated with the aid of the wavelet Hidden Markov Tree (HMT)

model [15]. Thus the cross-scale correlations can be exploited to reconstruct the lost coef-

ficients. In the second algorithm, instead of only using the immediate available neighbors

of the corrupted samples for reconstruction [54], we explore all the edge orientation cor-

relations within a local window so that we can estimate the corrupted samples using the

covariance method adaptively corresponding to the local texture statistical characteris-

tics. As a result the lost descriptions can be more accurately restored. In this sense,

33
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our reconstruction algorithm is edge-adaptive to the local texture. Hence the proposed

scheme is named as edge adaptive MD coder (EA-MDC).

The rest of this chapter is organized as follows. Section 3.2 reviews the DP-MDC

scheme proposed in [5]. In Section 3.3, we briefly discuss the HMT model and propose

a HMT based algorithm to reconstruct the corrupted descriptions for DP-MDC. Experi-

mental results are compared to those of DP-MDC. In Section 3.4, the proposed EA-MDC

framework is presented. We also evaluate the proposed coder from the sense of informa-

tion theory and give the realization of fast implementation. Extensive experiment results

are discussed. Finally, we make our conclusion in Section 3.5.

3.2 Domain Partitioning Based MD Coder

Successful estimation of missing signal coefficients relies on the autocorrelation

of the signal. The autocorrelation is typically a decreasing function of distance. It is

expected to get the best results if the missing coefficient is estimated from its imme-

diate neighbors. Moreover, the distortion will be a non-increasing function of the size

of the available neighbors surrounding a missing signal coefficient for typical estimation

algorithms [5]. Hence, Bajic proposed an optimal way to partition the coefficients in

transform domain.

Consider a signal f defined on the domain D. In the case of digital images or

video frames, the domain is typically a subset of the Z2 lattice. Suppose we wish to

create descriptions of the signal. This would amount to constructing a collection of

nonempty sets C = {S0, S1, ..., SP−1} such that
⋃P−1

i=0 Si = D. In the special case when

Si

⋂
Sj = ∅, i 6= j, C defines a partition of the domain D. In MDC, Si forms the ith

description of the signal. Without introducing extra redundancy within the partition,

the reconstruction distortion will depend on the ability of the decoder to estimate the
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missing samples from those that are available if each description has the same probability

of being lost.

We define the minimal intra-partition distance of the ith partition as

d
(i)
min = min

x,y∈Si;x 6=y
d(x, y), (3.1)

where d(x, y) is the the Euclidean distance between x and y. The minimal distance dmin

is

dmin = min
i=0,1,...,P−1

d
(i)
min. (3.2)

As dmin increases, the samples belonging to Si get further away, meaning that more

samples belonging to other subsets surround those from Si. Hence, the neighborhood

which can be used for their estimation (if Si is lost) increases with dmin. Based on this,

given the number of partitions P , the optimal partition C∗ of the signal domain is

C∗ = arg max
|C|=P

dmin(C), (3.3)

where |C| is the number of elements in C. A solution is given in [6] based on lattice

partitioning. Figure 3.1 shows how Z2 lattice can be partitioned into P = 15 partitions

with dmin =
√

17. The pattern of dark dots (enclosed in the parallelogram, labelled

0 through 14) is repeated throughout the lattice, and then domain is cut out of the

lattice. The label assigned to the point shows the index of the partition to which the

point belongs. This labelling defines the partitioning function p : Z2 → {0, 1, ..., P − 1}

which is 2-D periodic, it can be described by a 2 × 2 periodicity matrix V = [v1, v2]

whose columns are the basis vectors for the partitioning. The number of partitions

P = |det(V)|. For example, we have V = [4, 3;−1, 3]T as in Fig. 3.1.

With the optimal domain partitioning, the transform coefficients are conveniently

divided into several subsets, i.e. descriptions. An example, given in Fig. 3.2, illustrates a

two-level wavelet decomposition of a 16×16 image, generating P = 4 descriptions. Num-

bers 0 through 3 indicate the partition to which the corresponding subband coefficient
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Figure 3.1. Example of optimal partitioning with P = 15.

belongs. In this case, the minimum intra-partition distance is maximized so that more

neighbors from other descriptions are expected around the corrupted samples. Assume

the subbands are ordered in a zig-zag manner from the lowest frequency band to the high-

est frequency band, and indexed as k = 0, 1, ..., 6. Given the partitioning scheme p(x) for

the lowest frequency band, the partition for each higher frequency band is obtained by

applying modulo-shifted partitioning function, p(k)(x) = [p(x)+k]mod P . It is apparent

from Fig. 3.2 that each description contains the same number of coefficients from each

tree and also the same number of coefficients from each subband. This makes the descrip-

tions “equally important.” After partitioning, each description is encoded independently

from other descriptions.

3.3 HMT Model-Based Lost Description Reconstruction

Since the simple bi-linear interpolation only employs partial correlations inherited

from the same subband, higher order correlations can be used within the spatial oriental

tree. Motivated by this point, we proposed a lost description estimation algorithm based

on wavelet hidden markov tree model to improve the DP-MDC.
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Figure 3.2. Example of generating descriptions of a two-level decomposition using opti-
mal data partitioning: (a) the wavelet coefficients of a spatial orientation tree, (b) four
descriptions generated for the subbands, the minimum intra-partition distance is 2 in
this case.

3.3.1 Wavelet Hidden Markov Tree (HMT) Model

It is well known that the wavelet coefficients of a natural image have the following

properties: [74]

(a). Non-Gaussianity: The wavelet coefficients have peaky, heavy-tailed marginal

distributions.

(b). Persistency: Large/small values of wavelet coefficients tend to propagate through

the scales of the quad-trees.

These properties give rise to joint wavelet statistics that are succinctly captured by

the wavelet-domain hidden Markov tree model [15]. The HMT models the non-Gaussian

marginal probability density function (pdf) as a two-component Gaussian mixture. The

components are labelled by a hidden state signifying whether the coefficient is small or

large. The Gaussian component corresponding to the small state has a relatively small

variance, capturing the peakiness around the mean values, while the component corre-
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Figure 3.3. Hidden markov tree model for one-dimensional wavelet transform: every
coefficient is modelled as a mixture with a hidden state variable, each dark node represents
a continuous wavelet coefficient, connecting discrete nodes vertically across scale (solid
links) yields the hidden markov tree model.

sponding to the large state has a relatively large variance, capturing the heavy tails (the

shape of the heavy-tailed density in the region where large values are likely). The persis-

tency of wavelet coefficient magnitudes across scale is modelled by linking these hidden

states across scales in a Markov tree (see Fig. 3.3). A state transition matrix for each

link quantifies statistically the degree of persistency of large/small coefficients. Given

a set of training data (usually in the form of one or more observed images), maximum

likelihood estimates of the mixture variances and transition matrices can be calculated

using the Expectation-Maximization (EM) algorithm [15]. These parameter estimates

yield a good approximation of the joint density function of the wavelet coefficients.

The form for the marginal distribution of a wavelet coefficient comes directly from

the efficiency of the wavelet transform in representing real-world images: a few wavelet

coefficients are large, but most are small. Gaussian mixture modelling runs as follows.

Each wavelet coefficient is associated with an unobserved hidden state variable Si =

m,m = 0, ...,M − 1, where M is the number of states for each node. If M = 2, then
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S0 and S1 denote the states for coefficients with small and large variances. A state

corresponds to a zero-mean, low-variance Gaussian (Note that we only consider the high-

frequency subbands). Let

g(x;µ, σ2) =
1√
2πσ

exp{−(x− µ)2

2σ2
}.

denote the Gaussian pdf, then for the wavelet coefficient wi, we have

f(wi|Si = m) = g(wi; 0, σ
2
Si=m), m = 0, 1, (3.4)

corresponding to a zero-mean, low or high-variance Gaussian pdf for each wavelet coeffi-

cient in the highpass bands. The marginal pdf f(wi) is obtained by a convex combination

of the conditional densities

f(wi) =
∑

m

p(Si = m)g(wi; 0, σ
2
Si=m). (3.5)

Since the persistency property implies a type of Markovian relationship among

the wavelet states, with the probability of a wavelet coefficient being “large” or “small”

affected only by the size of its parent. The HMT models the dependence as one or-

der Markov: given the state of a wavelet coefficient Si, the coefficient’s ancestors and

descendants are independent from each other.

The HMT captures dependency by using a probabilistic tree that connects the

hidden state variable of a wavelet coefficient with the state variable of each of its children.

This leads to the dependency graph having the same quad-tree topology as the wavelet

coefficients (see Fig. 3.4). Each subband is represented with its own quad-tree; this

assumes that the subbands are independent. Each parent child state-to-state link has a

corresponding state transition matrix

Ai =



ǫ00i,ρ(i) ǫ01i,ρ(i)

ǫ10i,ρ(i) ǫ11i,ρ(i)


 , (3.6)
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scale J-1

Figure 3.4. HMT for an image quadtree. Each parent hidden state is connected to its
four child states. (Some parent-child connections are omitted for visual clarity.) The
two fields of nodes depict the wavelet coefficients at scales J and J − 1, respectively, and
corresponding to 2-D wavelet basis functions with a specific spatial orientation.

where Sρ(i) is the parent state of node i, ǫmr
i,ρ(i) = pSi|Sρ(i)

[
m|Sρ(i) = r

]
represents the

conditional probability that Si is in state m given Sρ(i) is in state r.

With the non-Gaussianity and persistence characterized, the HMT model can be

determined by the following parameters:

(a). the mixture variances σ2
i,m;

(b). the state transition matrices Ai;

(c). the probability of a large state at the root node for each i in the coarsest scale pL
i ,

where L is the number of decomposition levels.

Grouping these into a vector Θ, the HMT provides a parametric model for the joint pdf

f(w|Θ) of the wavelet coefficients. In general, the variance and transition parameters can

be different for each wavelet coefficient. However, this makes the model too complicated

for some applications. For example, if there is only one observation of an n-pixel image,

then we face with the impossible task of fitting parameters to data points. To reduce the
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HMT complexity, we can make the simplifying assumption that each parameter is the

same within a subband at each scale of the wavelet transform.

3.3.2 HMT Model Construction with Received Descriptions

Since partial descriptions are received at the decoder, the HMT model can be built

using the available coefficients with EM algorithm [15]. Because the wavelet coefficients

within a subband are modelled with the same two zero-mean Gaussians, the lost coeffi-

cients will follow the same model. Hence, a bilinear interpolation using the neighboring

uncorrupted coefficients is applied to the lost samples for EM algorithm initialization.

The EM algorithm starts with an initial guess Θ0 of the model parameters, then for

each iteration l, ES

[
lnf(w, S|Θ)|w,Θl

]
is calculated. Finding this expectation, called

the “E step”, amounts to calculating the state probabilities p(Si = m|w,Θl), for which

the upward-downward algorithm is used [68]. The maximization, or “M step”, consists

of relatively simple, closed form updates of the parameters in Θl to obtain Θl+1. As

l→∞, Θl approaches a local maximum of the likelihood function f(w|Θ).

The brief iterative structure of the model construction algorithm is listed as follows:

(a). Initialize equal probability for Θ0, and set iteration counter l = 0.

(b). E step: Calculate p(S|w,Θl), which is the joint pdf for the hidden state variables

(used in the maximization of ES

[
lnf(w, S|Θ)|w,Θl

]
).

(c). M step: Set Θl+1 = arg maxΘES

[
lnf(w, S|Θ)|w,Θl

]
.

(d). Set l = l + 1. If it converged, then stop the iteration; else, return to E step.

3.3.3 Lost Description Reconstruction with HMT Model

Since the initial estimation of the lost description is obtained by using bilinear

interpolation from its available neighboring coefficients, the resulting estimation error is

still a joint Gaussian random variable.
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For convenience of illustration, let wm,n be the lost wavelet coefficient located at

the position of (m,n) within a subband. Its neighboring four coefficients, wm,n−1, wm−1,n,

wm,n+1 and wm+1,n, if available, are bilinearly interpolated to estimate wm,n, which results

in ŵm,n. The corresponding estimation error is denoted as

ε = wm,n − ŵm,n = wm,n −
1

4
(wm−1,n + wm+1,n + wm,n−1 + wm,n+1).

Apparently, E{ε} = 0 according to the HMT model. Let α = E{wm,nwm±1,n}, β =

E{wm,nwm,n±1}, and γ = E{wm±1,nwm,n±1}. Thus we have

σ2
ε = E{ε2} = E{[wm,n −

1

4
(wm−1,n + wm+1,n + wm,n−1 + wm,n+1)]

2}

=
5

4
σ2 − 1

2
α− 1

2
β +

3

8
γ. (3.7)

Since a wavelet coefficient has two states corresponding to the mixture variances σ2
Si

,

Eq.(3.7) is adjusted to

σ2
ε(i,m) = E{ε2

i |Si = m} =
5

4
σ2

i,m −
1

2
α− 1

2
β +

3

8
γ, (3.8)

where σ2
ε(i,m) denotes the estimation error variance for the ith wavelet coefficient within

the current subband while σ2
i,m is the mixture variance retrieved from the HMT model.

Hence the initial estimation error is a zero-mean white Gaussian noise, the lost

description estimation problem can be expressed in the wavelet domain as

wi = yi + εi, (3.9)

where yi is the wavelet coefficient of the signal to be reconstructed, εi denotes the noise,

i.e. the initial estimation error. Using the Bayes estimator, the conditional mean estimate

of yi is [38]

E [Yi|Wi = wi, Si = m] =
σ2

i,m

σ2
ε(i,m) + σ2

i,m

wi. (3.10)
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Considering the hidden state probabilities p(Si|w,Θ), we obtain conditional mean esti-

mates for yi via the chain rule for conditional expectation

E [yi|w,Θ] =
∑

m

p(Si = m|w,Θ)× σ2
i,m

σ2
ε(i,m) + σ2

i,m

wi. (3.11)

The final decoded signal is computed as the inverse wavelet transform of the coefficients

including these estimates of the lost samples. Note that only the wavelet coefficients are

processed. The original scaling coefficients are used in the inverse transform.

3.3.4 Experimental Results

(a) (b)

Figure 3.5. Lena image is compressed at 0.21 bpp for SDC. Four descriptions are
generated and description 0 is assumed to be lost: (a) reconstructed image presented
by DP-MDC, PSNR=26.81 dB; (b) reconstructed image using the proposed algorithm,
PSNR=27.88 dB.

We carried out a set of experiments on 512×512 gray scale Lena and barbara images.

The images are transformed with a 4-level wavelet decomposition using Daubichies 9/7
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(a) (b)

Figure 3.6. Barbara image is compressed at 0.40 bpp for SDC. Description 0 is assumed
to be lost among the four transmitted descriptions: (a) reconstructed image presented
by DP-MDC, PSNR=24.22 dB; (b) reconstructed image using the proposed algorithm,
PSNR=24.88 dB.

filters. Four descriptions are generated with optimal partitioning and independently

coded. The LL band in the coarsest level is duplicated into each channel as redundancy.

In each experiment one description is assumed to be corrupted, the reconstructed images

are obtained from the estimated wavelet coefficients.

The PSNR performance of the proposed algorithm is compared with that of the DP-

MDC. Figs. 3.5 - 3.6 show the reconstructed images for both methods when description 0

is assumed to be corrupted. Evidently, our algorithm consistently outperforms DP-MDC

for both images with the same loss ratio. The gain over DP-MDC is significant, which

can be up to 1.07 dB for Lena when the bit-rate of SDC is 0.21 bpp.
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3.4 Edge Adaptive MD Coder

The HMT model based algorithm involves high computation loads when estimating

the model from the received descriptions. Moreover, the ability of improving the recon-

struction is constrained by the accuracy of the HMT model. Hence, it is not applicable

for real-world image coding. In this section, we present an edge-adaptive (EA) error

concealment technique that improves the corrupted coefficients reconstruction quality by

fully taking advantage of the intra-band correlations.

3.4.1 Edge-Adaptive Error Concealment Algorithm

This section addresses the problem of estimating a lost coefficient X0 from its

available neighbors. The available neighbors could be either coefficients belonging to the

successfully received descriptions, or previously recovered coefficients. To facilitate the

discussion, we use the set LX = {X1, X2, ..., XL}, L ≥ 1, also named as local window, to

denote the available neighbors of X0. The atomic problem in recovery is to obtain the

optimal estimation of X0 in the sense of maximizing p(X0|LX).

Although the wavelet coefficients for natural images can not be modelled by a

stationary Gaussian process, it can be viewed as locally stationary. Hence, the conditional

probability distribution function p(X0|LX) is mostly characterized by the second-order

statistics (covariance). On the other hand, the Lth-order Markov property holds for

image source, i.e. p(X0|X1, X2, ...) = p(X0|X1, X2, ..., XL). Therefore, the Maximum A

Posterior (MAP) estimate p(X0|LX) comes down to the linear minimum mean square

error (MMSE) estimate problem of minimizing {E[(X0 − X̂0)
2]}, where X̂0 is the linear

estimation of X0 based on the set of its immediate neighbors NX = {X1, X2, ..., XN},
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with N (N ≤ L) denoting the number of the immediate neighbors used in the linear

estimate

X̂0 =
N∑

k=1

wkXk. (3.12)

According to the classical Wiener filtering theory [36], the optimal weights, ~w =

[w1, w2, ..., wN ]T can be determined by the covariance of the Gaussian process

~w = (RXX)−1~rX , (3.13)

where ~rX = [r1, r2, ..., rN ]T , rk = cov(X0Xk), 1 ≤ k ≤ N , and RXX = [Rkl], Rkl =

cov(XkXl), 1 ≤ k, l ≤ N . The vector ~w in (3.13) is actually the projection of X0 onto

the subspace spanned by NX in the least-square sense. Under the assumption of a locally

stationary process, we can estimate RXX based on the covariance [36] as,

R̂XX = CTC, ~̂rX = CT~l, (3.14)

where ~l = [X1, X2, ..., XL]T is an L × 1 vector composed of all the available neighbors

inside the local window LX . C is an L × N matrix whose lth row contains the N

immediate neighbors used to estimate Xl, and is given by

C =




X1,1 . . . X1,N

...
. . .

...

XL,1 . . . XL,N



. (3.15)

By combining (3.13) and (3.14), the optimal weight ~w is obtained by

~w = (CTC)−1(CT~l). (3.16)

Image intensity field experiences a sharp transition across the edge orientation

and is almost homogeneous along the edge orientation. These geometric constraints of

edges hold in the wavelet domain, especially for high resolution subbands. The above
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covariance-based estimate can be viewed as an edge-adaptive error concealment method

that is capable of tuning ~w along an arbitrarily-oriented edge across the local window.

Therefore, important edge features can be well estimated. On the other hand, this

method is also enhanced with the way to generate descriptions by DP-MDC. When only

one description is lost, all the immediate neighbors of lost coefficients are available at the

advantage of optimal partitioning. Hence, more accurate local texture information can

be retrieved from the local window.

Intuitively the local neighbors can be divided into two classes: edge samples (close

to edges) and non-edge samples (away from edges, i.e. samples in smooth areas). For the

non-edge samples, the matrix CTC is often singular or close to singular, thus the solution

of ~w is not unique but lies in the hyperplane
∑N

k=1wk = 1, which is approximately

isotropic for any direction. In this case the solution of (3.16) can not be determined or

may cause ill-posed estimation. Hence the simple bilinear interpolation instead of EA

method is applied under this situation.

The elements of LX and NX include the available neighbors of X0, which are the

coefficients from the received descriptions and the corrupted coefficients that have been

previously reconstructed. However, some neighbors of X0 might not be available. Hence,

it is necessary to check the validity of the elements in NX and LX . An element is said

to be valid if it is either successfully received or previously reconstructed. As shown in

Fig. 3.7, the valid LX includes all the coefficients inside the (2T + 1)× (2T + 1) square

window except for X0 and the coefficients that have not been reconstructed yet. The

valid NX includes the immediate 8 coefficients of the successfully received descriptions.

Accordingly, the related rows and elements for invalid coefficients will be removed from

C and ~l.



48¶ · ¸ ¹ º » ¼ ½ ¾ · » ¿ À Á Â Ã Ä Å Ä Æ Å Ä Ç È

É Ê ¹ ¼ º ¹ Ë º Ì ½ Ì ¼ Í Î Ë · Ï Ð Ñ À
Figure 3.7. Definition of local window LX and the set of neighbors NX under the
4-description case described as in Fig. 3.2. The white points are coefficients of the
successfully received descriptions, the gray points represent the corrupted coefficients
from the lost description. The center dark point is the one to be estimated currently.

3.4.2 Evaluation for EA Algorithm.

Although wavelet transform nearly decorrelates images and can be viewed as an

approximate KLT, significant dependencies still exist between wavelet coefficients [55].

Especially strong dependencies in the form of spatial clusters exist between wavelet coef-

ficients inside each subband, which is well known as intra-band or intra-scale correlation

[10]. Liu et al. [50] uses mutual information as defined in (3.17) to measure the depen-

dencies within subbands:

I(X;Y ) =

∫

x

∫

y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy

= EXY

[
log

p(x, y)

p(x)p(y)

]
. (3.17)
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Let I(X;NX) denote the mutual information between X and its immediate neigh-

borsNX , thusNX can provide information toX through a many-to-one mapping function

T = f(X,NX), in the sense that

I(X;NX) = I(X;T ). (3.18)

However, I(X;NX) is only the upper bound of intra-scale dependency one can use

to estimateX. A function T can only approach I(X;NX). Hence a well designed function

T will reach a tight bound so that I(X;T )→ I(X;NX). In other words, the intra-band

correlation can be better adopted by a well-designed mapping function. The maximum

likelihood (ML) algorithm is a natural way to optimize this problem. The EA algorithm

is actually a Least-Square estimation approach, which is equivalent to the special case of

ML with equal prior probability under the assumption that the local texture is stationary

[46]. Therefore the EA algorithm is expected to hit a tighter bound of I(X;T ) compared

to simple bilinear interpolation.

We test the images of Lena and Barbara (512 × 512) in order to evaluate the EA

algorithm. The images are decomposed with four levels. The wavelet coefficients are

partitioned into 4 descriptions without quantization as in Fig. 3.2. It is assumed that

one of the descriptions is completely lost and all the other descriptions are successfully

received. We calculate the mutual information as in [17] between the original coefficients

and the reconstructed ones using bilinear interpolation (BI) and EA algorithm, respec-

tively. Since the LL band is dominated by low frequency coefficients, the EA method does

not show apparent improvement over BI. Hence only the high-pass subbands are consid-

ered here. Experimental results are listed in Tables 3.1. and 3.2, where the decomposition

level index is in the ascending order from coarser to finer resolutions. Apparently, the EA

algorithm achieves a larger mutual information compared to simple linear interpolation.
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A better reconstruction is expected when more intra-scale dependencies are employed to

estimate the lost coefficients.

Table 3.1. Mutual information for high-pass bands of Lena.

Level 1 2 3 4

HL 0.1808 0.2652 0.2191 0.0971
BI LH 0.2331 0.2738 0.1896 0.0911

HH 0.0947 0.1807 0.1462 0.0361
HL 0.2272 0.3964 0.3497 0.2200

EA LH 0.2854 0.2993 0.2354 0.1436
HH 0.1444 0.2818 0.1936 0.0382

Table 3.2. Mutual information for high-pass bands of Barbara.

Level 1 2 3 4

HL 0.1553 0.2076 0.2478 0.3274
BI LH 0.0833 0.1773 0.1707 0.2585

HH 0.0867 0.1280 0.2868 0.2295
HL 0.2702 0.4115 0.5235 0.6523

EA LH 0.1024 0.2725 0.3712 0.3376
HH 0.1000 0.2478 0.5286 0.2708

3.4.3 Fast Implementation for EA Algorithm

The drawback with the EA algorithm is its extremely high computational com-

plexity. The main bottleneck lies in the computation of the covariance matrix R̂XX by

(3.14). To facilitate the application of the EA algorithm, we provide a low-complexity

approach to efficiently speed up the calculation without performance sacrifice.
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Since the local windows are overlapped with each other, partial row elements are

shared by the resulting matrix C as defined in (3.15). This information should be consid-

ered while executing the EA algorithm instead of repeating the burdensome calculation.

Ò ÓÔ
Õ Ö × Ø Ù Ø Ö Ú × Ù Û Ü Ù Ø Ú Ý Þ ßà Þ á Ù Ø Õ á Ø Ý Ü Ù Ø Ö Ú ×

â Ö Ý Ü á ã Ø Ú ä Ö ã å æ ç èç é è ç ê ë
ì í

Figure 3.8. Overlapped local windows for a 4-description case. Points 0 through 4
represent the current, top, left-top, right-top and left corrupted coefficients, respectively.

Fig. 3.8 illustrates the overlapped local windows for a 4-description case, where we

use indices 0 through 4 to denote the current, top, left-top, right-top and left corrupted

coefficients, respectively. The local windows of coefficients 1 to 4 share elements with

the local window of coefficient 0, thus only the 4 points at the right-bottom corner will

introduce unknown information for estimating coefficient 0. Each element inside a local

window is related to one row of C. We rewrite (3.15) as C = [C0...Cm...CL]T , where Cm
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denotes the mth row of C. Thus RXX = CTC =
∑

mC
T
mCm. If the matrices, CT

mCm,

related to the elements inside the overlapped area are pre-stored, we can spare a lot of

multiplications. As can be seen from Fig. 3.8, only few elements at the right-bottom

corner are involved in the multiplications.

Let LX0 denotes the local windows for the corrupted coefficient X0 to be recon-

structed currently, RX0 = CT
0 C0 be the covariance matrix for estimating X0, and LXj

,

j = 1, 2, ...,M denote the local windows used for neighboring corrupted coefficients that

have been reconstructed previously, where M is the number of local windows that over-

lap with LX0 . Ci,j, i = 1, 2, ..., L denote the ith row of C for LXj
. The idea of reducing

complexity of the EA algorithm is to retrieve the matrices Ri,j = CT
i,jCi,j for LXj

that

have been previously calculated and stored in the memory, so that RX0 can be obtained

by

RX0 =
∑

j

∑

i

Ri,j +
∑

m

CT
0,mC0,m, (3.19)

where C0,m denotes the rows of C0 not available from the memory, which introduces

multiplications in computing RX0 . The fast implementation is summarized as follows. A

vector ~MR is used to represent the validity of each row in C0.

Fast implementation for computing RX0.

• Set RX0 = [0]N×N , ~MR = ~0.

• For j=1 to M do

. Find the overlapping area between LX0 and LXj
. Each element in the over-

lapping area is mapped to a corresponding entry m of ~MR.

. If ~MR(m) = 0, set ~MR(m) = 1, retrieve the Ri,j related to that element,

RX0 = RX0 +Ri,j.
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• For m=1 to M do

If ~MR(m) = 0, RX0 = RX0 + CT
0,mC0,m.

3.4.4 Simulation Results

We compare our algorithm against the DP-MDC [5] for robust image transmission.

The MD image coder is based on the wavelet codec from [18] for both methods. A set

of embedded quantizers is designed for each subband and coefficients are quantized in

a layered manner, as described in [89]. The wavelet coefficients are partitioned into the

descriptions as described in DP-MDC for each subband. Each description is indepen-

dently quantized and encoded using a context-based adaptive arithmetic coder. Four

level decompositions using 9/7 filters are applied to the images. For both methods, the

LL band is duplicated for each channel. For clarity, we represent the proposed coding

scheme as EA-MDC.

In DP-MDC, missing coefficients are bilinearly interpolated from available immedi-

ate neighbors for the high-pass subbands, whereas the EA algorithm is used in our MDC

scheme.

Table 3.3. Performance comparison in PSNR (dB) for Lena.

loss ratio (%) 0 6.25 12.5 18.75 25

DP-MDC 32.36 30.18 28.50 27.47 26.74
EA-MDC 32.36 30.75 29.39 28.52 27.91

We carried out a set of experiments on the 512× 512 Lena and Barbara images. In

accordance with [5], the bitrates of the conventional single description coding are fixed at

0.21 bpp and 0.4 bpp for Lena and Barbara, respectively. We encode the images into 16
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Figure 3.9. Average PSNRs of different MDC algorithms for : (a) Lena; (b) Barbara.
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(a) (b)

Figure 3.10. Sample image reconstruction for Lena with descriptions loss ratio of 25%
(Description 0 is assumed to be lost): (a) image reconstructed by DP-MDC, PSNR =
26.81 dB; (b) image reconstructed by EA-MDC, PSNR = 28.00 dB.

descriptions. In each experiment we fix the number of lost descriptions and completely

remove a set of descriptions according to a given description loss ratio.

Table 3.3 includes the average PSNR comparison results of Lena between DP-MDC

and our algorithm. The PSNR performance improvement over DP-MDC ranges from 0.6

to 1.2 dB under different description loss ratios. Similar experimental result for Barbara

is compared in Table 3.4. Because of the rich textures in Barbara, higher improvement,

ranging from 0.8 to 1.6 dB is achieved by using our EA algorithm. Average PSNR

results are also plotted in Fig. 3.9 which clearly shows remarkable gains of EA-MDC

over DP-MDC, especially for images with a lot of high frequency components.

It appears that the visual quality is also improved. Figs. 3.10 and 3.11 respectively

compare the Lena and Barbara images reconstructed by both methods with 25% descrip-
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(a) (b)

Figure 3.11. Sample image reconstruction for Barbara with descriptions loss ratio of
25% (Description 2 is assumed to be lost): (a) image reconstructed by DP-MDC, PSNR
= 24.30 dB; (b) image reconstructed by EA-MDC, PSNR = 25.97 dB.

(a) (b)

Figure 3.12. Comparison of the zoomed portion in Fig. 3.10.
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(a) (b)

Figure 3.13. Comparison of the zoomed portion in Fig. 3.11.

Table 3.4. Performance comparison in PSNR (dB) for Barbara.

loss ratio (%) 0 6.25 12.5 18.75 25

DP-MDC 28.78 27.16 25.90 25.03 24.25
EA-MDC 28.78 27.99 27.18 26.52 25.85

tion lost. Noticeable improvement can be found around the edges as shown in Figs. 3.12

and 3.13, for instance, the hair, the eyes and the rim of the hat in Lena, and the table

cloth, the right arm and the trousers texture in Barbara.

Since the human visual system is highly adapted to extract structural information

from the viewing field, it follows that a measure of structural information change can

provide a good approximation to perceived image distortion. Hence, a new measure,

structural similarity (SSIM) index [102], is used to quantify the visibility of distortions for

the reconstructed images. Fig. 3.14 compares the SSIM index maps of the reconstructed
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Barbara images in Fig. 3.11. The higher the SSIM index is, the better reconstruction

can be expected [102]. It is evident that the proposed algorithm achieves higher SSIM

index values in the regions containing large quantities of high-frequency components

compared to DP-MDC. This further verifies that our algorithm is suitable for recovering

the geometry structural information within the corrupted images.

(a) (b)

Figure 3.14. SSIM index maps comparison for the reconstructed images in Fig. 3.11: (a)
DP-MDC, (b) EA-MDC.

3.5 Summary

In this chapter, two algorithms are presented to improve the state-of-the-art domain-

based MD coder. Based on the wavelet HMT model, the cross-band dependency is ex-

ploited when estimating the lost descriptions. By adjusting the bilinear interpolated

corrupted coefficients with the aid of the HMT model, the reconstructed image quality

can be improved. Instead of depending on the HMT model, another scheme, named as
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EA-MDC, is proposed. It successfully retrieves the correlations along all the orientations

between the corrupted coefficient and its available neighbors inside a local window by us-

ing the covariance method. Hence the weights of linear estimation are well manipulated

to emphasize the directions along the important high-frequency components. With the

ease of adapting estimation to the dominant edge orientations, EA-MDC can effectively

reconstruct the lost descriptions by taking full advantages of the intra-scale dependency

within the wavelet subbands. The simulation results show that improvement can be ob-

tained in terms of average PSNR of up to 1.6 dB. Furthermore, the subjective quality of

EA-MDC is superior to that of DP-MDC and the HMT model based method since large

quantities of high-frequency components are well reconstructed.



CHAPTER 4

FEATURE-ORIENTED MULTIPLE DESCRIPTION WAVELET BASED

IMAGE CODING

4.1 Introduction

Recently, research interests for error-tolerant coders are concentrated on wavelet-

based MD coding. A MDSQ based wavelet algorithm is presented in [78] by optimally

selecting the number of diagonals and the quantization steps of the MD scalar quantizer.

Kim [42, 43] proposed to assign different UEP codes to each bit-plane of the SPIHT-coded

MD bitstreams [76]. Franchi et. al [57] extended the polyphase down-sampling technique

to create more flexibility in MD video coding. Different strategies are used to introduce

an amount of redundancy among the descriptions in such approaches. However, all the

strategies are designed for the sense of general data source without the ability to smartly

adjust the inserted redundancy for the benefit of specified image source, i.e. all the

candidate redundant data are equally weighted to be introduced with a predetermined

strategy. This causes inefficient redundancy allocation amongst the variantly distributed

data of a specified image. When certain packets are lost or a channel transmission fails,

only partial redundancy can significantly contribute to recover the corrupted contents.

In this chapter, we propose a novel wavelet-based MD coder, named as feature-

oriented MDC (FO-MDC). Instead of designing a complicated quantizer to code the

source data or adding weighted channel protection for descriptions, we fully exploit the

potential of the redundancy that can contribute to the lost packets reconstruction. The

wavelet coefficients of each subband are partitioned into two subsets by maximizing the

minimum intra-partition distance [6], so that more correlations between partitions can

60
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be used for data estimation. The regions (of the wavelet coefficients) sensitive to packet

loss are identified with the aid of estimation using an error concealment technique. These

identified regions hold the coefficients that really require to be well protected. Hence, we

manipulate the rate budget to allocate as many bits as possible to these coefficients. This

is realized by joint optimization of tree-structured pruning and quantizer selecting. Con-

sequently, the reconstruction of corrupted packets can greatly benefit from the inserted

redundancy at a given target rate.

The rest of this chapter is organized as follows. Section 4.2 describes the motivation

and formulates the problem. Section 4.3 discusses the FO-MDC system and the proposed

coding algorithms. Numerical results of the proposed MD coder are presented in Section

4.4. Concluding remarks are given in Section 4.5.

4.2 Problem Formulation

4.2.1 Motivation

MD coding is a technique that can tolerate data loss by benefiting from the esti-

mation with an amount of introduced redundancy. A simple MD coder based on data

partitioning, such as polyphase based MDC [37], is shown in Fig. 4.1. The source data

x, either in spatial or transform domain, are partitioned into two subsets, y1 and y2.

The data set yi is coded at a higher rate for channel i as the primary description and

is also coded at a lower rate for the other channel as the redundant description. Note

that in this framework, the primary descriptions are generated by data partitioning, i.e.

no overlapping exists between the primary descriptions of different channels. Hence the

primary description of one channel can also be considered as the candidate for the other

channel.
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Figure 4.1. A prototype of a simple MD coder based on data partitioning. The input
source data x are partitioned into two descriptions, y1 and y2, defined as the primary
descriptions. They are coded with a set of finer quantizers, Q1, at a higher rate. At the
same time, each of them is taken as the candidate of the redundant part, defined as the
redundant description, for the other channel, which is either not coded or coded with a
set of coarser quantizers, Q2 at a lower rate .

Fig. 4.1 illustrates the above MD coder. The selection of coding strategy for the

primary description is actually a problem of SDC, i.e. the conventional image coding,

which is not the focus of this work. The interests of our MD scheme are twofold. First,

in what way the data of the redundant description should be selected to benefit the lost

data estimation? Second, how can we efficiently code the set of selected data so as to

satisfy the rate constraint for the redundant description?

Wavelet image decomposition provides a hierarchical data structure for representing

images. It can be thought of as a tree-structured set of coefficients, with each coefficient

corresponding to a spatial region in the image. A wavelet spatial orientation tree is

well known as the set of coefficients from different bands that represent the same spatial

region. If the spatial region associated with any node of the tree has minor energy,

removing the nodes related to the region from the set of data to be coded will not

significantly affect the reconstruction performance. Pruning these nodes actually decrease
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the coding cost and improve the rate-distortion (RD) performance. On the other hand,

strong inherited correlations exist within some spatial regions of the subbands, especially

the ones corresponding to slow varying textures of the images. As a result, it is much

convenient for these regions to be estimated if partial coefficients of them are not available

at the receiver.

Therefore, only those coefficients, belonging to the regions with rich edges, that

are much difficult to be estimated, may significantly contribute to the distortion when

they are not available at the decoder. These coefficients are actually the candidates to be

considered for coding in the redundant description. In summary, the underlying theme

of our feature-oriented MD coder is a combination of estimation (error concealment) and

a pruned tree-structured zerotree quantization to exploit the spatial characterization.

4.2.2 Primary Description Generation

The efficiency of estimating redundant descriptions depends on how the primary

descriptions are generated. As described in Fig. 4.1, the primary description of a wavelet-

based MD coder results from the data partitioning of the transform coefficients. Thus

no extra information other than the inherited correlation between partitions can be used

to reconstruct the lost data. The amount of inherited correlation that may be exploited

depends on the way of data partitioning. The more correlation there is, the better

reconstruction performance can be expected. Hence, it is important to design an efficient

partitioning approach for generating primary descriptions.

As discussed in the previous chapter, successful estimation of missing coefficients

relies on the autocorrelation of the signal. The autocorrelation is typically a decreasing

function of distance. Better results can be expected if the missing coefficient is estimated

from its immediate neighbors. The distortion is also a non-increasing function of the

size of the available neighbors surrounding a missing coefficient for typical estimation
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algorithms. Hence we adopt the optimal partitioning algorithm proposed in [5] to gen-

erate the non-overlapped partitions for each subband. Each partition is then formed as

a primary description then.

Interestingly, the optimal partitioning for the case of two descriptions boils down

into a well-known checkboard pattern that is employed by our MD coder in the remaining

sections of this chapter. � � � � � �  ! � " # $� � � � � �  ! � " # %
& # � " ' ! ( � ) * " � + �� # , � - ) ) , # .

Figure 4.2. Primary description generation with block access for the case of two-channel
MDC. Each subband is divided into square blocks. The block size can be variant for
different subbands. Every block is then partitioned into two subsets, each subset is
associated with one of the two primary descriptions.

In the FO-MDC algorithm described in Section 4.3, the rate-distortion optimization

is executed based on the unit of a block instead of a pixel since the pixel-wise optimization

may cause much higher computation loads and more overhead bits. Hence, each subband

is divided into a group of blocks, the block size may vary for different subbands. Then

each block is further partitioned into two subsets as in Fig. 4.2 with each subset belonging
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to one of the primary descriptions. In this way the wavelet coefficients are separated into

two primary descriptions in the manner of block access.

4.2.3 Data Estimation

For one channel, if only the quantized primary description is coded and transmitted,

i.e. no redundancy is introduced, all the coefficients of the redundant description are

assumed to be lost and need to be estimated at the receiver. Estimating lost coefficients

from the primary description is naturally related to error concealment techniques. The

technique of edge-adaptive error concealment (EA-EC) proposed in the previous chapter

can be conveniently adopted to estimate the redundant description. This algorithm can

efficiently capture the geometric constraints of edges hold in the wavelet domain. On the

other hand, the simple bilinear interpolation is employed in the low-low (LL) band for its

simplicity since the LL band is dominated by coefficients with low activities. Therefore,

the redundant description can be well estimated with the primary description based on

the intra-band dependency.

4.2.4 Tree Formulation of the Redundant Description and Problem State-

ment

In this section, we describe how to construct a tree structure of the redundant

description for one of the two channels. Since the two channels are assumed to be equally

characterized, we define the notations for channel 1 in the rest part of this chapter, while

these notations are also applicable to the other channel.

Let Sp and Sr denote the primary description and the redundant description of

channel 1, respectively. Ŝr denotes the quantized Sr. At a given target rate for the

redundancy, the FO-MDC tries to insert only a subset of Ŝr into channel 1. By execut-

ing EA-EC technique described above with the quantized primary description, Ŝp, an
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estimated version of the redundant description, S̃r, can be obtained. Based on S̃r, it

is convenient to recognize those coefficients of Sr that are not sensitive to packet loss

by pruning a wavelet coefficient tree constructed from Ŝr in the rate-distortion sense.

It is natural to throw away these identified coefficients from Ŝr and reconstruct them

according to S̃r at the receiver.

Let T be the set of all trees grown from the nodes belonging to Sr in the LL band.

Let P be the set of all subtrees extracted from T . Consider a node n ∈ Sr. Let Tn be

the tree grown from n to its full depth. Let Pn be any subtree of Tn, and On be the

set of the direct descendants of n. For each wavelet coefficient wj of node n, there are

two candidates, the quantized ŵj and the estimated w̃j which can be used to recover wj.

Define their corresponding distortions as Dq
n and De

n, respectively. In the framework of

FO-MDC, we seek to minimize the distortion subject to a rate constraint. Let Dr(q, P )

and Rr(q, P ), respectively, be the distortion and rate for Sr with the quantization step

q ∈ Qr and the choice of P . Hence the problem can be formulated for the redundant

description as

min
q∈Qr,P⊆T

Dr(q, P ) subject to Rr(q, P ) ≤ Rr
T , (4.1)

where Rr
T is the target rate for Sr.

In words, our goal is to find an optimal combination between the subset of coef-

ficients (nodes) in Sr that are sensitive to packet loss and the optimal uniform scalar

quantizer, by which these sensitive coefficients are quantized before the entropy coding.

The insensitive coefficients are excluded from the bit stream and are estimated at the

receiver.
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Figure 4.3. Diagram of FO-MDC encoder.

4.3 Feature-Oriented Multiple Description Coding

4.3.1 System Outline

In the FO-MDC framework described in Fig. 4.3, the wavelet coefficients are par-

titioned into two primary descriptions. At the same time, each of these primary descrip-

tions also serves as the redundant description for the other channel. Let RT = 2(Rp
T +Rr

T ),

be the target rate for both channels, where Rp
T and Rr

T (Rr
T ≤ Rp

T ) denote the target

rates for the primary description Sp and the redundant description Sr per channel. Let

Qp be the quantizer for both primary descriptions Sp’s. Qr
i represents the quantizer for

the redundant description Sr of the ith channel, i =1, 2. The rest of the development

in this section is for channel 1 while the other channel can be done in the same man-

ner. Assume Rp and Rr denote the actual rate of Sp and Sr achieved by the MD coder.

The primary description is independently coded by varying the quantization stepsize to

minimize the distortion subject to the constraint Rp ≤ Rp
T , which is equivalent to a SDC
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optimization problem [55, 69]. The EA-EC technique is applied to the quantized Ŝp so as

to estimate Sr. The estimated S̃r is used to find an optimal combination of quantization

step, q ∈ Qr
1, and a pruned spatial tree of Sr. The resulting map for tree-pruning is sent

as side information.

The constrained optimization problem of (4.1) can be converted to an unconstrained

formulation using the well-known Lagrange multiplier method. It can be shown [80] that

the solution to (4.1) is identical to that of the equivalent unconstrained problem with

Rr(q, P ) = Rr
T :

min
q∈Qr

1,P⊆T
{Jr(q, P ) = Dr(q, P ) + λRr(q, P )} , (4.2)

where Jr(q, P ) is the Lagrangian cost including both rate and distortion. The solution

of (4.2) finds an appropriate operating point that resides on the convex hull of the rate-

distortion function through sweeping λ from 0 to ∞ [69]. We approximate the solution

of (4.2) by solving

min
q∈Qr

{
min
P⊆T

[Dr(q, P ) + λRr(q, P )]

}
. (4.3)

For fixed values of λ and q, minimizing (4.3) involves optimal tree-pruning to find

the best P . It can be written as

min
P⊆T

{
Dr(q, P ) + λ[Rr

coef (q, P ) +Rr
side(q, P )]

}
, (4.4)

where Rr
coef (q, P ) and Rr

side(q, P ) are the rates for encoding survival coefficients and

the map information of tree-pruning, respectively. Since Rr
coef (q, P ) and Rr

side(q, P ) are

correlated, we solve the problem by a two-stage algorithm. In the first stage, Rr
side(q, P )

is assumed to be 0. Thus the optimal P is found through the tree-pruning algorithm (see

Section 4.3.2), i.e.

P ∗
1 = argmin

P⊆T

{
Dr(q, P ) + λRr

coef (q, P )
}
. (4.5)

The side information is coded with the resulting P ∗
1 in the second stage. It may be

further adjusted, if necessary, to obtain the final appropriate pruned tree P ∗
2 that reflects
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the global constraint, Rr
coef (q, P ) + Rr

side(q, P ) ≤ Rr
T . This is described in Section 4.3.3.

Consequently, we can achieve a local optimal point on the convex rate-distortion curve

for each choice of (q, λ). A fast iterative algorithm is developed in Section 4.3.4 to search

for the best stepsize q ∈ Qr
1 and the associated slope λ.

4.3.2 Tree-pruning for fixed q and λ

With q and λ fixed, the following Algorithm 1 is used to find the best P ⊆ T . The

spatial trees of T formulated from the quantized redundant description Ŝr are scanned

from the finest to the coarsest resolution. Each node n can be labelled as a zerotree

root, an isolated zerotree root, or a valued node. A zerotree root is a node that the whole

subtree Tn is carved out. All the coefficients of Tn including the node n are reconstructed

from the estimated redundant description S̃r. An isolated zerotree root is a node where

the node itself is carved out while at least one of its descendants remains. A valued node

identifies a node with nonzero quantized coefficients.

Let k be the iteration count. At each node n, we assign a value to the node as:

m(k)
n =





0 if n is a zerotree root,

1 if n is an isolated zerotree root,

2 if n is a valued node,

where m
(k)
n refers to the zerotree map of node n at the kth iteration of the algorithm.

Let P (k) denote the best subtree obtained after k iterations with P (0) = T . Dq
n is the

distortion from quantizing node n. At each iteration, the probability model of T is

updated with the survived nodes using

p
(k)
d = nd/N

P ,

where NP refers to the number of surviving coefficients in Ŝr. Let d be any quantization

bin resulting from quantizing Sr using q, and nd be the number of coefficients that are
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quantized to the interval specified by d. Thus p
(k)
d is the probability estimate at the kth

iteration for bin d. With the updated model, the bitrate of each node is approximated

by the theoretical first-order entropy, which can be approached very closely by applying

adaptive arithmetic coding. The resulting bitrate is denoted as R
(k)
n .

When the node n is identified as an isolated zerotree node, a cost of the estimation

error De
n will be incurred by removing node n. Similarly, it results in a cost of De(Tn)

with the subtree Tn being pruned if node n is determined as a zerotree node, where

De(Tn) =
∑

i∈Tn
De

i . Let J∗
n and J∗(Tn) be the minimum cost associated with node n

and Tn, respectively. Note that J∗(Tn) = J∗
n for the finest resolution. The pruning al-

gorithm is executed in a bottom-up way from the finest resolution (L = N − 1) to the

coarsest resolution (L = 0), where N denotes the level of decomposition and L is the

level index.

Algorithm 1

1) Set k ← 0, L← N − 1 and P (0) ← T .

Set all m
(0)
n ← 2, i.e. all the nodes are initialized as valued nodes.

2) Update probability model based on the quantization indices associated with P (k−1)

if k ≥ 1. Estimate R
(k)
n for each survived node n with the first-order entropy.

3) For each node n at level L, determine whether to carve out either the whole subtree

Tn or the node n only. Note that each node is composed of half coefficients of a

square block as described in Section 4.2.4.

• (Valued node): If De
n ≤ Dq

n + λR
(k)
n , then J∗

n ← De
n, m

(k)
n ← 1; else J∗

n ←

[Dq
n + λR

(k)
n ],

where

De
n =

∑

j∈node n

(wj − w̃j)
2, Dq

n =
∑

j∈node n

(wj − ŵj)
2.
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• (Isolated zerotree root): When m
(k)
n = 1 (node n has been recognized as an

isolated zerotree root either in the previous or current iteration), we have to

determine whether it can be further refined as a zerotree root.

If
∑

i∈On

De(Ti) ≤
∑

i∈On

J∗(Ti), (4.6)

then

m(k)
n ← 0, J∗(Tn)← De(Tn),

else

J∗(Tn)←
[
De

n +
∑

i∈On

J∗(Ti)

]
. (4.7)

• (Zerotree root):

If

De(Tn) ≤
[
Dq

n + λR(k)
n

]
+

∑

i∈On

J∗(Ti), (4.8)

then

m(k)
n ← 0, J∗(Tn)← De(Tn),

else

J∗(Tn)←
[
Dq

n + λR(k)
n +

∑

i∈On

J∗(Ti)

]
. (4.9)

4) Set L← L− 1, go to Step 3) if L ≥ 0.

5) Carve out the nodes with m(k) = 0 or 1. If P (k) 6= P (k−1), i.e. some nodes are

pruned, then k ← k + 1, go back to Step 2) to update the probability model

and iterate again. Otherwise stop the iteration, and set the tree-pruning map as

mn ← m
(k)
n , n ∈ T . The resulting P (k) is declared as the local optimal pruned trees

P ∗
1 for the choice of (q, λ).
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It should be mentioned that a similar tree-pruning approach, known as SFQ, is

proposed in [109]. Our algorithm differs from SFQ on three aspects. First, SFQ tries

to throw away a subset of wavelet coefficients that have minor energy. There is no

further attempt to consider the correlations existing within different regions with variant

distributions, while these correlations are well exploited by Algorithm 1 with the aid of

estimation. As a result, more nodes are expected to be pruned in the rate-distortion sense.

Second, the isolated zerotree roots are ignored by SFQ, while they can be processed with

our algorithm to further spare quite a lot of bits, especially when the nodes of the low-

pass bands can be well estimated without coding. Third, our tree structure is constructed

based on the block access of the redundant description for each channel; more bits can be

spared for coding the map information compared to the pixel-access based tree structure

of SFQ.

Algorithm 1 is guaranteed to converge to a local optimal solution. Similar to

[109], we can easily prove it as follows. Assume J{P (k)} denotes the cost of P (k). Let

J
q,(k)
n = Dq

n + λR
(k)
n be the coding cost of node n. Since P (k+1) ⊆ P (k), J{P (k)} can be

expressed as

J{P (k)} =
∑

n∈P (k)

Jq,(k)
n +

∑

i∈[T−P (k)]

De
i

=
∑

n∈P (k+1)

Jq,(k)
n +

∑

i∈[T−P (k)]

De
i

∑

i∈[P (k)−P (k+1)]

J
q,(k)
i , (4.10)

where, [T−P (k)] denotes the subset of nodes that are pruned from P (k), and [P (k)−P (k+1)]

refers to the subset of nodes pruned at the (k + 1)th iteration. Similarly,

J{P (k+1)} =
∑

n∈P (k+1)

Jq,(k+1)
n +

∑

i∈[T−P (k+1)]

De
i

=
∑

n∈P (k+1)

Jq,(k+1)
n +

∑

i∈[T−P (k)]

De
i

∑

i∈[P (k)−P (k+1)]

De
i . (4.11)
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Because of the pruning,

∑

i∈[P (k)−P (k+1)]

De
i ≤

∑

i∈[P (k)−P (k+1)]

J
q,(k)
i .

Comparing (4.10) with (4.11), we have

J{P (k)} − J{P (k+1)} ≥
∑

n∈P (k+1)

[
Jq,(k)

n − Jq,(k+1)
n

]

= λ
∑

n∈P (k+1)

[
R(k)

n −R(k+1)
n

]
.

The probability of the quantization index associated with node n is always increasing with

the iteration of pruning since the number of surviving indices decreases monotonously.

Thus R
(k)
n ≥ R

(k+1)
n based on the first-order entropy approximation. This completes

the proof by J{P (k)} ≥ J{P (k+1)}. According to the experiments, Algorithm 1 usually

converges within 5 iterations.

4.3.3 Side information coding and adjustment

The tree-pruning map is deeply coupled with the choice of (q, λ). The rate for

coding map as the side information is considered in the second stage to satisfy the rate

constraint. The block access and the zerotree structure significantly reduce the number

of bits required to code the map information. Many bits are spared for those nodes if

their parents are identified as zerotree roots. We organized the valid mn (i.e. mn is not a

descendant of a zerotree root) into a vector ~m for each subband. An adaptive arithmetic

coding is applied to the resulting ~m. In this way, the side information can be coded with

a very low bitrate that will not significantly affect the total rate.

It is possible to vary the choice of (q, λ) (discussed in Section 4.3.4) so as to satisfy

|Rr
coef (q, P )+Rr

side(q, P )−Rr
T | ≤ ε at a high Rr

T for some small value ε. In this situation,

the final pruned tree, P ∗
2 , remains the same as P ∗

1 . However the rate of side information

Rr
side(q, P ) is comparable with Rr

coef (q, P ) when Rr
T is very small. It is more difficult
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to meet the rate constraint by only varying (q, λ). Therefore, it is necessary to further

prune P ∗
1 so that the resulting total rate can approach Rr

T . This is realized by Algorithm

2 that progressively prunes the nodes of P ∗
1 with high coding costs in a bottom-up way

until the rate constraint is satisfied. Let Rr
coef and Rr

side be the rate of coefficients and

side information resulting from P ∗
1 , respectively.

Algorithm 2

1) Set L← N − 1 and P ∗
2 ← P ∗

1 .

2) Update probability model. Estimate bitrate for each surviving node by the first-

order entropy.

3) Let J∗
n = Dn + λRn be the minimum cost of node n obtained from Algorithm 1,

where Dn and Rn refer to the corresponding distortion and rate. For each node

n with mn = 2 at level L, order △n = Rn/Dn in descending value and put these

nodes in a list (assume the length of the list is ML).

4) For j = 0 to ML − 1 loop

• Rr
coef ← Rr

coef −Rj.

• If |Rr
coef +Rr

side −Rr
T | ≤ ε, stop the loop and go to Step 6).

5) Update tree-pruning map and recalculate Rr
side.

If |Rr
data +Rr

side −Rr
T | ≤ ε, go to Step 6),

else L← L− 1. Go back to Step 2) if L ≥ 0.

6) Carve out the nodes associated with those pruned subtrees from P ∗
2 . Update and

encode the tree-pruning map.

4.3.4 Determine the best pair of (q, λ)

With each fixed (q, λ), an optimally pruned tree can be obtained as described above.

To satisfy the rate constraint, we have to search for the optimal pair (q∗, λ∗) in a finite
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admissible set located on the RD curve. Let R = f(q) be the function specifying the

relationship between q and R for Sr without tree-pruning. Since Rr
T ≤ RT/2, the set

of admissible q is constrained in the range of (qmin, qmax), where qmin = f−1(RT/2) and

qmax = f−1(Rr
T ).

It is burdensome and not necessary to generate the set of operating points that

includes all the potential candidates. Instead, we construct the RD curve with a few

operating points and maintain it in an operational way during the iteration in the algo-

rithm. Initially, a list of operating points, LRD = {(Rr
i , D

r
i ), 0 ≤ i ≤ M}, are computed

for Sr by bisectionally splitting the interval [qmin, qmax] with Rr
0 = Rr

T and Rr
M = RT/2,

where M is a small integer. The corresponding slopes λi can be approximated by [69]

λi ≈
∣∣∣∣
Dr

i −Dr
i−1

Rr
i −Rr

i−1

∣∣∣∣ + δ, (4.12)

where δ is an arbitrarily small positive number added to make sure that the smallest

rate is picked if λi is a singular slope value. A fast search for (q∗, λ∗) is described in the

following algorithm by iteratively shrinking the interval [ql, qh] that contains the optimal

stepsize q∗. The RD curve, i.e. LRD, is updated after each iteration. The points that are

not located on the convex hull of the RD function are removed from LRD. In this way,

heavy computation loads are avoided by tolerating an approximation of λ.

Algorithm 3

1) Set k ← 0, q(0) ← qmax, ql ← qmin and qh ← qmax. Construct LRD with a few

operating points as discussed above.

2) Quantize coefficients of Sr with q(k). Update LRD by inserting the new operating

point. Compute λ(k) with LRD using (4.12).

3) Obtain the optimal subtree P ∗
1 by pruning the tree of Sr with (q(k), λ(k)) according

to Algorithm 1.
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• If |Rr −Rr
T | ≤ ε, stop the iteration, and go to Step 5).

• If |q(k) − q(k−1)| ≤ ε (the potential of varying (q, λ) has been fully exploited;

we resort to further tree-pruning), stop the iteration, and go to Step 4).

• If Rr > Rr
T , set ql ← q(k); else set qh ← q(k).

k ← k + 1, q(k) ← 1
2
[ql + qh], go back to Step 2).

4) Obtain P ∗
2 by adjusting P ∗

1 according to Algorithm 2.

5) Code the side information and the surviving quantized coefficients according to the

tree map.

4.4 Simulation Results

In this section, we compare the proposed FO-MDC with the state-of-the-art MDSQ

scheme proposed in [78]. A four-level wavelet decomposition is used with the 10-18

Daubechies wavelet. All the subbands share the same uniform scalar quantizer. The test

images are the 512× 512 gray-scale Lena and Barbara.R ST U VW X YZ [ S R
S S S T

Figure 4.4. Subband indices for a four-level wavelet decomposition.
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In our FO-MDC, each subband is partitioned into two primary descriptions. The

target rate for both channels, RT = 2(Rp
T + Rr

T ), is allocated to their Sp and Sr. Let

Rp
k and Rr

k, k = 1 or 2, denote the actual rate of Sp and Sr obtained by a MD coder

of channel k. Thus the transmitted data of channel k is composed of the bitstreams

with the rates of Rp
k and Rr

k, respectively, where Rp
k ≤ Rp

T , and Rr
k ≤ Rr

T . This explicit

way of bit budget allocation makes it more clear and easier for redundancy control,

whereas, it is much difficult to achieve an accurate redundancy control for MDSQ- and

PCT-based MD coding approaches which employ an implicit way to vary the introduced

redundancy [90, 98].

We further divide every subband into a group of blocks. The block size depends on

the frequency bands. We emphasize the low-frequency bands with smaller block size for

their significant contributions to distortion resulting from packet loss. In our four-level

decomposition shown in Fig. 4.4, subbands 0-3 have a block size of 2 × 2, subbands

4-6 have a block size of 4 × 4, and the rest subbands have a block size of 8 × 8. Then

we apply the error concealment to estimate Sr based on Sp for each channel. It is

observed in the experiments that the estimation has minor improvement at high-pass

bands. Hence we actually execute the error concealment for subbands 0-6 only and use

zero as the estimation for the rest high-pass bands. In this way, the heavy computation

loads incurred by error concealment are significantly decreased with minor degradation.

Fig. 4.5 compares the performance attained by our FO-MDC against MDSQ. Two

target bitrates, RT = 0.5 and 1.0 bpp, are tested. The RD curves are plotted with

two-channel (central) reconstruction PSNR versus the average one-channel (side) recon-

struction PSNR. This experiment is to verify the ability to achieve reasonable tradeoff

points between the central and side decoders with variant redundancies. For a good MD

coder, it is expected to achieve higher PSNR from the central (side) decoder with the

side (central) PSNR fixed.
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Figure 4.5. Performance comparison of Lena between FO-MDC and MDSQ with the
target bit rates: (a) RT = 0.5 bpp, (b) RT = 1.0 bpp.
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Figure 4.6. Performance comparison of Barbara between FO-MDC and MDSQ with the
target bit rates: (a) RT = 0.5 bpp, (b) RT = 1.0 bpp.
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Figure 4.7. Experimental results with variant packet loss ratios. We explicitly set
RT = 0.5 bpp, Rp

T = 0.2 bpp, Rr
T = 0.05 bpp for FO-MDC. Correspondingly we choose

the MDSQ coder with the parameters that can achieve the same central PSNR at the
same target bitrate of 0.5 bpp. (a) Two-channel reconstruction performance comparison
of Lena, (b) Two-channel reconstruction performance comparison of Barbara.
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Evidently, FO-MDC achieves consistent improvement over MDSQ at all testing

points. With the same side reconstruction distortion, the performance gap of the central

decoder between these two schemes is significant, ranging from 0.6 - 2 dB. It should

be noted that the improvement of FO-MDC is remarkable even through a very simple

quantizer is used for all the subbands. As reported in [37, 16], even larger gains can

be expected if variant quantizers or superior bit-plane coding techniques are employed,

which is to be considered in our future work.

It is observed that FO-MDC is more robust at low bit rates. Since it allocates

the available bits to the coefficients sensitive to data corruption as many as possible,

whereas, MDSQ equally distributes the available bits among all the coefficients. We also

notice that FO-MDC can easily achieves more tradeoff points than MDSQ because of the

flexible rate-distortion optimizer described in Section 4.3. Consequently, the resulting

RD curve is more smooth compared to that of MDSQ which is obtained by varying the

number of diagonals in the index assignment matrix [78].

Fig. 4.5 compares the performance attained by our FO-MDC against MDSQ. Two

target bitrates, RT = 0.5 and 1.0 bpp, are tested. The RD curves are plotted with

two-channel (central) reconstruction PSNR versus the average one-channel (side) recon-

struction PSNR. This experiment is to verify the ability to achieve reasonable tradeoff

points between the central and side decoders with variant redundancies. For a good MD

coder, it is expected to achieve higher PSNR from the central (side) decoder with the

side (central) PSNR fixed.

Evidently, FO-MDC achieves consistent improvement over MDSQ at all testing

points. With the same side reconstruction distortion, the performance gap of the central

decoder between these two schemes is significant, ranging from 0.6 to 2 dB. It should

be noted that the improvement of FO-MDC is remarkable even through a very simple
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quantizer is used for all the subbands. As reported in [37, 16], even larger gains can be

expected if variant quantizers or superior bit-plane coding techniques are employed.

It is observed that FO-MDC is more robust at low bit rates, since it allocates the

available bits to the coefficients sensitive to data corruption as many as possible, whereas,

MDSQ equally distributes the available bits among all the coefficients. We also notice

that FO-MDC can easily achieves more tradeoff points than MDSQ because of the flexible

rate-distortion optimizer described in Section 4.3. Consequently, the resulting RD curve

is more smooth compared to that of MDSQ which is obtained by varying the number of

diagonals in the index assignment matrix [78].

Fig. 4.6 describes the performance for Barbara. An even larger gap can be found in

FO-MDC over MDSQ. Since Barbara is an image with rich textures and edge information,

our estimation can capture those high frequency features successfully. A lot of coefficients

can be well estimated by the EA-EC technique. Thus we spared more bits for better

encoding the remained coefficients that are sensitive to packet loss. Therefore, a larger

performance gap is expected using our FO-MDC.

In the real world, the probability that a channel is completely blocked during the

process of transmission is very low. Hence it is reasonable to assume that a certain per-

centage of the total packets are corrupted in the simulation. We simply take each block

as a packet, i.e. packets are formulated with variable sizes. A uniformly distributed

random sequence that contains the indices of the corrupted packets (blocks) are indepen-

dently generated for each channel. The probability that both channels failed is kept less

than 1%. The survived packets from both channels are combined for the two-channel

reconstruction. This experiment is tested with the packet loss ratios of 3%, 5%, 10%,

15%, 20% and 30%. For each specified packet loss ratio, we generate 20 corrupted packet

sequences and average the resulting PSNR’s.
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The target bit rate RT is fixed at 0.5 bpp. Rp
T and Rr

T are set at 0.2 bpp and 0.05

bpp, respectively. For a fair comparison, we select the MDSQ coder with the parameters

that can achieve the same central PSNR at 0.5 bpp. In the experiment, the corrupted

packet is recovered with the quantized mean value of the subband if both channels fail on

that packet. The performances under variant packet loss ratios are presented in Fig. 4.7.

Both systems achieve the same PSNR if no packet gets lost. However, the performance

of MDSQ degrades rapidly with the packet loss ratio increasing; the drop of PSNR can

be up to 3.2 dB. On the other hand, FO-MDC proves to be much more robust. The

PSNR degradation is less than 1.5 dB even for a high loss ratio of 30%.

We also execute the subjective test at low bitrates. The Barbara image is coded

with RT = 0.35 bpp. We choose 0.1375 bpp and 0.0375 bpp for Rp
T and Rr

T , respectively.

The corresponding MDSQ parameters are adjusted to attain the same central PSNR to

make sure of fair comparison. The reconstructed images with 30% packet loss are shown

in Figs. 4.8-4.9. Compared with MDSQ, FO-MDC achieves a better reconstruction of

the textures and edges with the same corrupted packets.

4.5 Summary

In this work, we have proposed a novel multiple description coding system, which

features high coding efficiency, robustness and asymptotical tradeoff points. Unlike most

of the recent developments, our approach is based on the observation that only partial

samples of the specified image source are highly sensitive to data corruption. Hence it

is reasonable to emphasize these samples with high priorities instead of equally deal-

ing with all the data. An adaptive redundancy allocator is well designed by jointly

considering the data estimation and the rate-distortion optimization. As a result, the

sensitive samples are well protected with more coding bits while the remaining data can
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still be reconstructed at acceptable qualities with the convenience of error concealment

technique.

A significant improvement is obtained by the FO-MDC compared to the state-

of-the-art MDSQ coder in both objective and subjective experiments. Furthermore, we

attain much less degradation with the variation of packet loss ratio, which shows a strong

robustness to packet-erasure channels. Since only a simple uniform quantizer is used in

our system, it is expected that there is still room for further improvement by employing

“smarter” coding techniques. It is also our interest to extend the basic idea of FO-MDC

to the case with more than two descriptions in the near future.
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(a)

(b)

Figure 4.8. Two-channel reconstructions for Barbara with packet loss ratio of 30% at
0.35 bpp (i.e. 0.175 bpp/channel). (a) MDSQ, PSNR = 25.87 dB, (b) FO-MDC, PSNR
= 26.67 dB.
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(a)

(b)

Figure 4.9. Comparison of the zoomed region in Fig. 4.8: (a) MDSQ, (b) FO-MDC.



CHAPTER 5

OPTIMAL MULTIPLE DESCRIPTION VIDEO CODING BASED ON

PAIRWISE CORRELATING TRANSFORM

5.1 Introduction

Recently, Wang et al. developed a MD encoding scheme that uses multiple descrip-

tion correlating transform (MDTC) to introduce a controlled amount of correlating (and

hence, redundancy) between the two bitstreams to improve the quality when only one

description is received [98]. This general framework has been applied to image coding.

It yields acceptable images from a one-channel reconstruction with only small amount

of redundancy. Reibman adopted this MDTC method and proposed a MD video coder

that uses motion-compensated predictions [72].

However, MD video coding is more than simply applying a MD image coder to

prediction errors. A mismatching problem occurs when doing motion compensations

with the reference frames reconstructed by only one description. Reibman proposed

a drift-free MD video coding scheme by introducing two additional side loops besides

the original center loop so that the mismatching error can be decreased. However, new

redundancy arising from the side loops has to be considered within the proposed scheme.

It is necessary to efficiently allocate the redundancy while still achieving the best rate-

distortion performance.

The rest of this chapter is organized as follows. Section 5.2 briefly reviews the

MDTC and illustrates the challenge of applying MDTC to MD video coding system. The

drift-free MDTC based coding scheme and the new problems incurred are discussed. In

Section 5.3, the measurement of redundancy rate-distortion is described. The proposed

87
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optimization approach is presented in Section 5.4. Simulation results are reported in

Section 5.5. Section 5.6 summarizes this work.

5.2 MDTC Based MD Video Coding

5.2.1 Multiple Description Transform Coding with Two Channels

As mentioned in Chapter 2, MDTC with two channels uses a pairwise correlating

transform to each pair of uncorrelated variables obtained from the KLT or DCT as

described in Fig. 2.6. Assume A and B are two independent Gaussian variables with

variances σ2
A and σ2

B respectively. They are paired and transformed into C and D using



C

D


 = T



A

B


 =




√
cot(θ)

2

√
tan(θ)

2

−
√

cot(θ)
2

√
tan(θ)

2






A

B


 . (5.1)

The transform rotation angle θ, θ ∈ (0, π
2
), controls the correlation between C and

D, which changes the redundancy of the MDTC coder. Suppose the variances of C

and D are denoted as σ2
C and σ2

D, respectively. If the dependency between C and D is

parameterized by the angle φ, described as E{CD} = σCσDcosφ, then the θ can be used

to vary φ according to tan(θ) = σA

σB
tan(φ

2
) [97]. The value of θ adjusts the projections

on the bases of MDTC, which actually distributes the source energy to the outputs. In

order to capture most principal components of the source, the basis should be skewed

toward the variable that has larger variance [28]. Since the transform is nonorthogonal

except θ = π
4
, quantizing C and D may lead to degradation. Hence the transform

is performed on the quantized indices of A and B, denoted as A and B. An invertible

integer transform is implemented to generate integer indices, thus (5.1) should be changed

to [C,D]T = Tint[A,B]T , where Tint denotes the integer correlating transform following

the method proposed in [110].
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If only one description, e.g., C, is received as shown in the top block of Fig. 2.6,

inverse quantization is first applied to yield C̃, then an optimal linear predictor is used

to estimate D from C̃ by minimizing the MSE.

D̂ = −σ
2
A − σ2

Btan
2(θ)

σ2
A + σ2

Btan
2(θ)
· C̃ (5.2)

where D̂ is the estimate of D. Take inverse transform on C̃ and D̂, the estimated Â and

B̂ can be obtained as follows:



Â

B̂


 =




√
tan(θ)
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√
tan(θ)

2√
cot(θ)
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√
cot(θ)
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C̃
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=




σ2
A

√
2tan(θ)

σ2
A+tan2(θ)σ2

B

· C̃
σ2

Btan(θ)
√

2tan(θ)

σ2
A+tan2(θ)σ2

B

· C̃


 (5.3)

The reconstruction when only D is received follows from symmetry.

5.2.2 Video Coding Using MDTC

The key challenge in developing a MD approach to video coding lies in the coding of

prediction errors. The difficulty arises from the variety of different predictions that might

be used at the decoder of a MD system. If the data from both channels are received,

the best predictor would be formed from information on both channels. If the data from

either single channel is received, two other predictors would be formed. Without motion,

it is possible to design the information on the two channels to impose a known relationship

between the two-channel predictor and the two one-channel predictors. However, when

motion compensation is used, no such design is known. Consequently, three distinct

prediction error signals might be available at the decoder. If at any time the decoder uses

a predictor whose corresponding prediction error is not available, a mismatch condition
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exists between the encoding and decoding loops. Mismatch errors are never corrected

until the encoding and decoding loops are cleared by an intra-coded frame.
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Figure 5.1. Framework for MDTC based video coding system.

In general, there are two sources for distortion in a MD video coder. One source

of distortion is the quantization of prediction errors. This is common between a single

description (SD) and an MD video coder; although the MD coder may have more than one



91

prediction loop. The second source of distortion is the mismatch between the prediction

loops at the encoder and decoder.

Reibman et al. uses three separate prediction paths at the encoder [71], to mimic

the three possible scenarios at the decoder: both descriptions received or either of the

two descriptions received. Specifically, the encoder has three frame buffers, storing the

previously reconstructed frames from both descriptions (ψ0,k−1), description one (ψ1,k−1),

and description two (ψ2,k−1), where k represents the current frame time. For each block

Xk, the encoder generates a predicted block Pi,k, i = 0, 1, 2 based on the motion vector

and the previous frame ψi,k−1. P0,k is referred as the central prediction, and P1,k and P2,k

are taken as the side predictions. Fig. 5.1 describes the framework of the MDTC based

MD video coding scheme, where Fi and Gi,k, k = 0, 1, 2 represents the prediction error

and mismatch, respectively. Note that in Fig. 5.1, the time dependency, indicated by the

subscript k, is omitted for clarity. Since the mismatch is decreased greatly by coding Gi,

this MD codec is also named as a drift-free MD video coding system.

The prediction error assuming both descriptions are available (F = X − P0) is

coded into two descriptions F1 and F2 using a MDTC based coder. If both descriptions,

F1 and F2, are available to the decoder, it can recover F , the reconstructed prediction

error from both descriptions. If the decoder receives only description i, it generates

F̃i. In the absence of any additional information, the reconstruction from description i

alone will be Pi + F̃i. However, to reduce the future mismatch between the prediction at

the encoder and decoder, the encoder also generates and codes the side prediction error

Gi = X − Pi − F̃i, transmitted as the side information Si.

Note that in this framework, the total redundancy ρ includes two parts: (1) the

redundancy introduced by MDTC, denoted as ρ1, which is controlled by varying the

transform parameter, i.e. the rotation angle θ; (2) the bits used for Gi,k, which are

primarily redundancy since a typical decoder will not use them when both descriptions
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are received. This portion of the total redundancy, ρ2, can be controlled directly by

varying the quantization accuracy of Gi, i.e. Q2.

Therefore, a new problem of allocating redundancy between the correlated MDTC

coefficients and the purely redundant side information is incurred. Heuristic redundancy

allocation is applied in [72]. The redundancy is allocated to ρ1 at first, then the rest

portion of redundancy is allocated to ρ2 when the target correlation is getting higher.

This method is simple and easy for implementation. However, it loses the property of

optimal rate-distortion design. It is very important to smartly allocate the redundancy

between ρ1 and ρ2 so that the optimal rate-distortion performance can be achieved.

Motivated by this point, we proposed an optimization approach to solve the problem.

5.3 Redundancy Rate Distortion (RRD)

All approaches to MDC involve creating redundancy in the bitstreams transmitted

over different channels. The redundancy rate distortion (RRD) function, proposed by

Wang [98], is used as a measure of the efficiency for a MDC coder.

Given the average channel rate across both channels, R, a MDC coder attempts to

jointly minimize two distortion measures, D0 (distortion of the two-channel reconstruc-

tion) and D1 (average distortion of the one-channel reconstruction given equi-probable

loss of either channel).

Conventionally, the coder minimizes D0 for a given rate R of the standard source

coder, i.e. SDC. The performance of such a coder is characterized by its rate-distortion

function for a given source. Intuitively, redundancy is the extra bit rate compared to

the SDC for the purpose of decreasing D1. More precisely, the redundancy in coding

a source at two-channel distortion D0, is the difference, ρ = R − R∗, between the per-

variable transmitted bit rate R = (R1 + R2)/2 and the lowest rate R∗ needed by any

SDC coder to achieve the same two-channel distortion D0, where R1 and R2 denote the
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rates for channel 1 and channel 2, respectively. The purpose of introducing redundancy

in a representation is to lower the average one-channel distortion D1, and the function

ρ(D1;D0) is used to represent the relationship between ρ and D1. This function describes

how many bits of redundancy per variable are required by a coder to achieve a desired D1

at a given two-channel distortion D0. Similar to RD curves, the RRD curve characterizes

the performance of a specific MD coder on the source.

5.4 Redundancy Rate-Distortion Optimization

Since the redundancy and the distortion associated with the descriptions are in-

curred by the MDTC and the side information, they can be represented by the function

of rotation angle for MDTC, θ, and the quantization parameter for the side loop, QP2

(Q2 = 2QP2). To achieve a sophisticated rate-distortion control, we construct the opti-

mization problem at the slice level [34].

Given the target redundancy, the optimal rotation angles and side information

quantization parameters for the current frame can be determined by solving the con-

strained optimization problem,

min
∑

i

D(θi, QP2,i) (5.4)

Subject to

∑

i

ρ(θi, QP2,i) ≤ ρ∗, 0 ≤ ρ∗ ≤ 1 (5.5)

where, θi and QP2,i are the rotation angle and quantization parameter, respectively, used

for the ith slice, D(θi, QP2,i) denotes the associated average one-channel reconstruction

distortion,

D(θi, QP2,i) =
1

2
[D1,i(θi, QP2,i) +D2,i(θi, QP2,i)], (5.6)
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and ρ∗ is the target redundancy. Dk,i(θi, QP2,i), k = 1, 2 is the MSE between the original

ith slice and the one reconstructed from the estimated lost description using (5.3) and the

dequantized drift errors for description k. ρ(θi, QP2,i) denotes the redundancy function

for the ith slice, which is computed as:

ρ(θi, QP2,i) = [R1(θi, QP2,i) +R2(θi, QP2,i)−Ri]/Ri

Ri is the bit rate of the ith slice under SDC scheme, while Rk, k = 1, 2 represents the bit

rate for description k of the ith slice.

To solve this problem, we construct a cost function based on RRD framework with

MSE as the distortion criterion. Thus, the optimal θi and QP2,i can be determined by:

min

{
∑

i

D(θi, QP2,i) + λ

[
∑

i

R1(θi, QP2,i)

+
∑

i

R2(θi, QP2,i)− (1 + ρ∗)
∑

i

Ri

]}
(5.7)

Since redundancy and distortion measures over the slices within a frame are addi-

tive, (5.7) can be converted to a simpler equivalent unconstrained problem as in (5.8).

(Θ,QP2) = arg min
Θ,QP2

{
∑

i

[
D(θi, QP2,i)

+λi

(
R1(θi, QP2,i) +R2(θi, QP2,i)− (1 + ρ∗)Ri

)]}
(5.8)

Where, Θ = {θ1, ..., θM} and QP2 = {QP2,1, ..., QP2,M}, M is the number of slices within

one frame.

Although (5.8) relaxes the budget constraints, it is still burdensome to pursue the

operating points on the convex hull of the RRD curve. Hence we propose a fast algorithm

to approximate this procedure for determining the best operating point of each slice. It

is optimal to introduce more redundancy between the correlating transform coefficients

and then allocate the remained redundancy to the mismatching errors incurred by linear
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prediction [97]. Therefore we first determine the optimal operating point by fixing the

QP2,i as the maximum quantization parameter allowed. A set of candidate θ’s, Θ =

{θj ∈ (0, π
2
); 1 ≤ j ≤ n}, are considered for generating the operating points. By using

the bisection algorithm [69], the optimal value of rotation angle, θ∗i , can be determined

by solving

θ∗i = argmin
θi

{[
D(θi, QP2,max) + λi

(
R1(θi, QP2,max)

+R2(θi, QP2,max)− (1 + ρ∗)Ri

)]}
(5.9)

Note that θ∗i is the rotation angle which achieves the optimal rate-distortion performance

while still does not exceed the target redundancy ρ∗. After we obtain θ∗i , a local rate-

distortion curve can be built by varying QP2,i.

QP ∗
2,i = arg min

QP2,i

{[
D(θ∗i , QP2,i) + λi

(
R1(θ

∗
i , QP2,i)

+R2(θ
∗
i , QP2,i)− (1 + ρ∗)Ri

)]}
(5.10)

Similarly, we can determine the optimal QP ∗
2,i with bisection algorithm.

5.5 Simulation Results

We examine the performance of our proposed rate-distortion optimized MDC algo-

rithm (OMDC) with the conventional non-optimized MDC method (CMDC) proposed

in [72], in which a heuristic method is used to allocate the redundancy. Two sequences,

“Foreman” and “Hall monitor” (both in CIF,30Hz), are tested in the simulations. All

the comparisons are made by assuming that one entire description is lost. Distortion

is measured as the average PSNR (dB) over the reconstructed frames using the sur-

vived description. The slice is simply formed by a row of macroblocks. Quantization
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Figure 5.2. Rate-distortion performance comparison (Foreman, CIF, 30 Hz): (a) SDC
target bit rate is 243 Kbps, two-channel reconstruction PSNR is 32.76 dB, (b) SDC target
bit rate is 408 Kbps, two-channel reconstruction PSNR is 34.48 dB.
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Figure 5.3. Rate-distortion performance comparison (Hall monitor, CIF, 30 Hz): (a)
SDC target bit rate is 111 Kbps, two-channel reconstruction PSNR is 33.86 dB, (b) SDC
target bit rate is 215 Kbps, two-channel reconstruction PSNR is 35.80 dB.
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parameters are maintained to be the same within one slice because of our optimiza-

tion strategy. The descriptions generated by the OMDC are compliant to the syntax of

H.263. Motion vectors and head information are duplicated into both descriptions. For

simplicity, the number of the coefficients paired in Y, Cb and Cr are 16, 4 and 4, respec-

tively [72]. The remained coefficients are alternatively split to one of the descriptions.

We use Θ = { jπ
32

; 1 ≤ j ≤ 15} as the candidate θi’s for (5.9).

In the experiments, a target bit rate for the SDC encoder is selected. The descrip-

tions are optimally generated by using the proposed OMDC algorithm under a given

target redundancy ρ∗. Only the first frame is intra-coded, and all the remaining frames

are inter-coded. The average luminance PSNR across time is recorded under certain

redundancy which is expressed in terms of the percentage over the reference luminance

bit rate, i.e. the bit rate of SDC. By varying ρ∗, the RRD curve can be obtained.

Fig. 5.2 shows the RRD curves obtained for “Foreman” at the bit-rates of 243 kbps

and 408 kbps. It is evident that the proposed ODMC consistently outperforms CMDC

by about 0.2 dB with the same redundancy at low bit rate (243 kbps). When the target

bit-rate increases, the improvement is also increased, the average gain is about 0.3 dB.

This is because that more redundancy is allocated to the side loop drift with a high

bit-rate budget. While at the low bit-rate, most of the bits have to be used to code

the correlating transform coefficients since the estimation can work better with fewer

transmitted information. Similar improvement can be found from “Hall monitor” as

described in Fig. 5.3, which has the gains over CMDC varying from 0.2 to 0.5 dB.

5.6 Summary

In this chapter we proposed an efficient redundancy rate-distortion optimization

approach for improving the performance of the popular MDTC based drift-free MD

video coding scheme [53]. The optimization is implemented on each slice within one
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frame. A fast sub-optimal operating points pursuit method is applied to simplify the

procedure. It is shown through simulation results that the presented approach improves

the conventional MDC scheme by 0.2-0.5 dB with the same redundancy over variant bit

rates.



CHAPTER 6

CONCLUSIONS

This thesis introduces three novel error-resilient algorithms based on the multiple

description coding techniques for image and video transmission over error-prone networks.

First, we introduced an edge-adaptive error concealment technique for improving

the state-of-the-art domain-based MD coding scheme. The intra-band dependency is

fully exploited in this algorithm by successfully retrieving the correlations along all the

orientations between a corrupted coefficient and its available neighbors inside a local

window using the covariance method. Hence, the important high-frequency components

can be well recovered by manipulating the weights of linear estimation. With the ease of

adapting estimation to the dominant edge orientations, the corrupted coefficients of the

lost descriptions can be effectively reconstructed within the wavelet subbands. The sim-

ulation results show that the presented error concealment technique achieves an excellent

performance on both objective and subjective measures.

Second, a novel feature-oriented MD coding system is presented for its high coding

efficiency and robustness. Instead of equally dealing with the wavelet coefficients, the

proposed algorithm smartly analyzes the local statistics of each subband and identifies

those samples that are highly sensitive to data corruption for the specified image source.

An adaptive redundancy allocator is well designed by jointly considering the data esti-

mation and the rate-distortion optimization. As a result, the sensitive samples are well

protected with more coding bits while the remaining data can still be reconstructed at

acceptable qualities with the convenience of error concealment technique. Extensive ex-

periments are carried out to test the efficiency and resilience of our codec. Simulation

100
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results show that significant improvement over the well-known MDSQ coder is achieved

in both objective and subjective experiments. Furthermore, much less degradation is

attained by our codec with the variation of packet loss ratios, which shows a strong

robustness to packet-erasure channels.

Finally, we proposed an efficient redundancy rate-distortion optimization approach

to improve the performance of the conventional MDTC based drift-free video coding

scheme. By using the Lagrangian relaxation method, the optimization is implemented

on each slice of a frame to achieve the best trade-off among the redundancy allocation of

the correlating transform coefficients and the side-loop drifts. The proposed algorithm

outperforms the conventional codec with the same redundancy over variant bit rates.
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IMAGE CODING BASED ON MULTIRESOLUTION DIRECTIONAL

FILTER BANK
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A.1 Introduction

In the past two decades, wavelets and filter banks (FBs) have gained considerable

interest in signal processing, partly due to the ability of the wavelet functions and their

associated regular FBs to optimally represent one-dimensional piecewise smooth signals.

However, the separable wavelets are not effective in capturing line discontinuities since

they cannot take advantage of the geometrical regularity of image structures. Imagetran-

sitions such as edges are expensive to represent through wavelets. Therefore, integrating

the geometric regularity in the image representation is a key challenge to improve the

performance of the current image coders.

Recently, Candes and Donoho constructed the curvelet transform [11], and proved

that it is an essentially optimal representation of continuous two-variable function ex-

cept at regularity along C
2. The nonlinear approximation of a function f , f

(c)
M , is recon-

structed by M curvelet coefficients, which have an asymptotic decay rate ‖f − f (c)
M ‖2 ≤

CM−2(log2M)3. This decay rate of the approximation error is a huge improvement

compared to those by the wavelet functions, or Fourier basis, which are O(M−1) and

O(M−1/2), respectively [55].

Since the space of smooth functions with singularities along C
2 curves is similar to

natural images with regions of continuous intensity value and discontinuous along smooth

curves (edges), there is a strong motivation for finding similar transforms in the discrete

domain [94]. Note that there are already several proposed methods to implement the

digital curvelet transform [19, 83], but they all are redundant.

In this appendix, two novel image coding schemes are proposed based on the mul-

tiresolution directional filter banks (DFB) [51, 52]. The first work applies a non-uniform

quincunx directional filter bank (nuqDFB) proposed in [59] to image decomposition.

Based on the study of joint statistical characteristics of coefficients of nuqDFB, we pro-

pose an embedded coder for low bit-rate image coding using the nuqDFB. The morpho-
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logical operation is employed to find the clusters of significant positions in each bit-plane.

Contexts are designed to encode these large values witharithmetic coding. The remained

sparse regions full of large quantities of zeros are coded with the aid of probability model-

ing using a tarp filter [81]. In the second work, we propose a novel embedded image coding

scheme with an overcomplete pyramidal directional filter bank (PDFB). The morpholog-

ical operation is employed progressively to identify clusters of significant coefficients in

each bit-plane. Context-based arithmetic coding is used to encode these significant coef-

ficients. We design the context models so that the intra-band and inter-band correlations

of the overcomplete PDFB can be well exploited. Experimental results show that the

proposed coding algorithms outperform the current state-of-the-art wavelet based coders,

such as SPIHT and JPEG2000, for images with directional features.

The rest of the appendix is organized as follows. Section A.2 presents the non-

uniform quincunx DFB and the fast implementation with separable structure. Then we

discuss the proposed nuqDFB based coding scheme including the algorithms for coding

clustered significant coefficients. The coding results are compared to the state-of-the-art

wavelet image coders. In Section A.3, the coding scheme based on PDFB is described.

The embedding passes and the context based arithmetic coding are discussed. Experi-

ments are carried out to justify the coding efficiency of the proposed coders. Section A.4

summarizes this Chapter.

A.2 Image Coding Based on Non-Uniform Quincunx DFB

A.2.1 The non-uniform quincunx DFB

The nuqDFB is a member of a family of multiresolution directional filter banks

(DFBs) introduced in [59]. The nuqDFB is a multiresolution FB, whose support of the

lowpass filter is the same as that of the wavelet FB. But instead of three highpass filters
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like the traditional separable FB, the nuqDFB has six (or twelve) directional highpass

subbands. Other principal characteristics of the nuqDFB are: (i) it can be implemented

by a very efficient structure, with overall complexity equal to a separable FB; (ii) at

the lowpass branch, a different multiresolutional FB can be used to cascade to obtain

a (hybrid) multiscale image decomposition; (iii) it is quite simple to design since it can

be constructed by using only two-channel diamond FBs as shown in Fig. A.1(a). The

detailed construction of the multiresolution DFB and the nuqDFB is referred to [59, 60].

In this paper, the image is decomposed by the nuqDFB at the first two highest

resolutions, and the separable wavelet FB is used at the lower scales. The partitioning

of the discrete frequency plane is depicted in Fig. A.1(b).

A.2.2 Image coding using hybrid nuqDFB and wavelet FB

Since the number of significant coefficients of the nuqDFB is less than that of

the wavelet, recognizing the statistical properties of transform coefficients is a crucial

task in design of high-performance nuqDFB based coders. An explicit way to solve this

problem is to classify the coefficients of each subband into two subsets that represent the

insignificant and significant coefficients. Thus the quantization and estimated models

can be adapted to each subset independently.

A potential approach to exploit this behavior has been introduced with the mor-

phological operation for wavelet coding [77]. Based on the observation that clusters tend

to grow both in spatial and in frequency domains, the previously detected significant

coefficients are used as seeds for the search of new significant ones. The clustering trend

of significant coefficients also exists in the nuqDFB bands. This suggests using a mor-

phological dilation to identify the significant coefficients in the nuqDFB subbands before

the coding step.
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Figure A.1. The nuqDFB employed in image coding. (a) The tree structure to implement
the nuqDFB and (b) The partitioning of the frequency plane by a hybrid nuqDFB and
wavelet decomposition..
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A.2.2.1 Progressive morphological dilation

(a) (b) (c)

Figure A.2. Structuring elements used in the progressive morphological dilation: (a)
SE1, (b) SE2, (c) SE3.

Erosion and dilation are two morphological operators frequently adopted [95]. Let

I be a binary-valued image where dilation will be applied. Dilation of a given set A ⊆ I

with set B ⊆ I is defined by

A⊕B = ∪b∈BAb, (A.1)

where B is a binary-valued array called a structuring element (SE), Ab denotes the

translation of A to a point b [31]. The dilation operation produces an enlarged set,

A⊕B, which can also be written as A ∪ (A⊕B \A), where (A⊕B \A) represents the

set of new points obtained by dilation. If A is the set of previously detected significant

points, the points in set (A⊕B \A) have a much higher probability to be recognized as

significant.

Organizing and representing each nuqDFB subband as irregular shaped clusters of

significant coefficients provide an efficient way for encoding. Exploiting cross-scale depen-

dency can further improve the detection accuracy of significant coefficients. Moreover,

shaping the clustering boundaries with less cost should also be considered with adaptive

structuring element [116]. Hence, three different SE’s, as shown in Fig. A.2, are adopted

in our coding scheme for variant steps of dilation.
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A progressive embedded coding algorithm is proposed to code the significant coef-

ficients based on morphological dilation. Three passes are performed at each bit-plane:

1) Significance detection (SD) pass: The intra-band dependency is exploited in this

pass. The square SE1 in Fig. A.2(a) is adopted to detect new significant positions

based on significant neighbors in the previous bit-planes.

2) Cross-band prediction (CBP) pass: Based on the fact that the inter-band correla-

tion exists between the successive decomposition levels, a significant cluster in a

children subband can be predicted by that in the parent subband. The diamond

SE2 in Fig. A.2(b) is employed to dilate around the associated children positions

corresponding to each significant position in the parent subband.

3) Boundary shaping (BS) pass: Typically, on the boundaries of a large cluster, there

are a few scattered significant coefficients located in small isolated clusters. It is

difficult to forecast the dimension of these isolated clusters. Hence adaptive dilation

is expected to search around a cluster. The smaller rood SE3 in Fig. A.2(c) is

adopted for dilation on the previously formed cluster boundaries which are identified

by the insignificant positions. The boundary extension is adaptively controlled

based on the occurrence of new significant positions detected. It stops until the

recursive dilation results in no more new significant positions.

The entropy coding relies upon the use of classical context adaptive arithmetic

coding to efficiently represent a collection of binary symbols. The probability models

used by the arithmetic coder involve different contexts. A context for the coefficients

to be coded is determined according to the significance status of its neighbors. Further

details can be found in [88].

Although most significant coefficients in a bit-plane can be recognized by these

three passes with the morphological dilation, there are still some scattered significant

coefficients remained undetected. Zhong et. al. suggested to explicitly coding these scat-



109

tered positions by transmitting their coordinates [116]. However, the efficiency depends

on the image source and the SE of dilation. Since these scattered significant positions

are located in the regions dominated by zeros, the probability is highly skewed. Hence

a single context model based Tarp filter entropy coder [81] is employed to process the

remaining scattered significant coefficients including the large quantity of zeros.

A.2.2.2 Tarp-filter-based coding for scattered significant coefficients

The Tarp filter technique was first introduced in [81]. The basic idea of this tech-

nique is to estimate the probability models with a causal filter that can drive a non-

adaptive arithmetic coder to binary image compression.

Consider a long series of Bernoulli random variables whose probability of being

one varies smoothly. Such an assumption is generally true for filter bank coefficients,

especially in regions where there is little activity. The probability of the next variable

being one is small and highly correlated with how far away the other nonzero variables are.

The probability of the predicted variable being one can be assumed to be proportional

to an exponential decay of the distance between the current variable and the others.

A simple first-order recursive filter can be used to estimate the probability of the next

variable being one:

p(t+ 1) = αp(t) + (1− α)v(t), (A.2)

where p(t) is the estimate of the probability of position t being one, v(t) = 0 or 1,

is the observed value at position t, and α is a parameter which controls the speed of

the probability estimate adaptation to the source data. It is easy to show that p(t)

is the output of convolving v(t) and f(t), where f(t) has the frequency response of

H(w) = 1−α
1−αe−jw .
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Simard et. al. applied this 1-D filter to 2-D binary images by three 1-D filtering

steps, which results in the Tarp filter. The first filter goes from left to right; the second

filter goes from right to left, and is executed after each full line has been processed;

the third filter goes from top to bottom for each column [81]. The processing strictly

follows a raster scanning order and only causal information is employed to estimate the

probability.

Within this work, we apply the Tarp-filter-based algorithm to the remaining regions

after the three passes discussed above, i.e. the tarp filter is only used to estimate the

probability of the scattered significant coefficients outside the clusters for each bit-plane.

This process is also defined as the scattered significant coefficient detection (SSD) pass.

The filtering is still executed in the raster scan order. If a coefficient has been coded

by the previous passes, it should be skipped without scanning. However, it conflicts

with the raster scan encoding order since this “observed” value can not be used in the

probability estimate, thus the Tarp filtering can not operate properly. To solve this,

instead of the real values of the skipped coefficients, a cumulated probability estimate

pd
c(k) is used for these coded positions, and is calculated as:

pd
c(k) = n(k)sig/N(k), (A.3)

where n(k) denotes the number of significant coefficients of the kth subband that have

already been coded, and N(k) is the total number of coefficients in subband k. By

doing this, the Tarp filtering can work appropriately without imperiling the accuracy of

probability estimation.

A.2.2.3 Algorithm summary

In this section, we summarize the coding algorithm. Five passes are used in this

approach. The produced progressive bitstream can be truncated at any pass. Let wij(k)
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be the coefficient with the coordinate (i, j) relative to the upper-left corner of subband

k. LSC(k) and LIC(k) represent the lists of significant and insignificant coefficients,

respectively. D(SEm), m = 1, 2, 3, denotes the operation of morphological dilation with

the structuring element specified by SEm. V [wij(k)|SEm] = wij(k)⊕SEm\wij(k), defines

the vicinity of wij(k) generalized by the dilation with SEm. Let P (k) be the parent of

subband k and C[wij(k)] denote the children of wij(k).

The embedding coding algorithm is described as follows.

1) (Initialization): Decompose the image with the nuqDFB. Find the maximum num-

ber of bit-planes, M , and set n←M .

2) (SD pass): If n = M , go to step 5).

Apply D(SE1) to each entry of LSP (k). Encode all w ∈ V [wij(k)|SE1] that have

not been scanned with arithmetic coding; if w is significant, encode its sign, and

add it to the end of LSC(k); else attach it to the end of LIC(k).

3) (CBP pass): If k = 0, i.e. the LL band, go to step 4).

For the significant coefficients of P (k), apply D(SE2) to each entry of C[wij(P (k))].

Similar to SD pass, encode each newly scanned coefficient. Sign coding is applied

if it is significant. Add these coefficients to the end of either LSC(k) or LIC(k)

depending on whether they are significant or not.

4) (BS pass): Apply D(SE3) to each entry of LIC(k). If a new significant coefficient is

found, the recursive dilation is implemented around it until no more new significant

coefficient is detected. Encode the scanned coefficients and update LSC(k) and

LIC(k) correspondingly.

5) (SSD pass): Use Tarp-filter-based non-adaptive arithmetic coding to encode the

remaining coefficients that have not been visited. Update LSC(k) correspondingly.
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6) (Magnitude refinement pass): If n = M , go to step 7).

Encode the nth bit of those significant coefficients recognized by processing previous

bit-planes. We employ the same context model as in JPEG2000 for this pass.

7) (New bit-plane preparation):

Empty all LIC’s, set n← n− 1, and go back to step 2).

A.2.2.4 Simulation results

For the sake of comparison, the proposed nuqDFB-based algorithm is compared

with three state-of-the-art wavelet based coding schemes: SPIHT [76] with arithmetic

coding, JPEG2000 [3] and the TCE coder [12] which was reported as the best embedding

Tarp filter based codec.

Three 512 × 512 grayscale images, Lena, Barbara and Fingerprint, are tested. A

5-level decomposition is used for SPIHT, TCE and JPEG2000 with the 9/7 Daubechies

wavelet filters. On the other hand, a 5-level nuqDFB decomposition is applied in the

proposed scheme, where the three coarser levels are decomposed using 9/7 filters and

the two finer levels are decomposed into 12 bands each using nuqDFB as described in

Section A.3.1.

Table A.1. Performance comparison (PSNR [dB]) for Barbara.

Rate(bpp) SPIHT TCE JPEG2000 nuqDFB

0.10 24.24 24.23 24.66 25.54
0.15 25.63 25.90 25.93 26.95
0.20 26.63 26.24 27.31 27.93
0.25 27.56 27.88 28.36 29.21
0.30 28.54 28.55 29.24 29.89
0.40 30.09 30.40 30.83 31.27
0.50 31.38 31.82 32.26 32.83
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Table A.2. Performance comparison (PSNR [dB]) for Fingerprint.

Rate(bpp) SPIHT TCE JPEG2000 nuqDFB

0.10 21.44 21.15 21.50 22.11
0.15 22.94 23.33 23.31 24.04
0.20 24.19 24.35 24.53 25.01
0.25 25.17 24.83 25.41 26.10
0.30 26.02 25.85 26.33 27.00
0.40 27.59 27.86 27.96 28.49
0.50 28.80 28.65 29.06 29.67

Table A.3. Performance comparison (PSNR [dB]) for Lena.

Rate(bpp) SPIHT TCE JPEG2000 nuqDFB

0.10 30.17 29.50 29.87 30.17
0.15 31.87 31.90 31.69 32.01
0.20 33.12 33.13 32.97 33.33
0.25 34.09 34.17 34.13 34.40
0.30 34.93 34.94 34.75 35.13
0.40 36.22 36.21 36.09 36.30
0.50 37.20 37.16 37.28 37.37

(a) (b)

Figure A.3. Reconstructed images of barbara at 0.25 bpp using (a) JPEG2000, PSNR =
28.36 dB, (b) nuqDFB, PSNR = 29.21 dB..
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Tables A.4 - A.5 show the performance of different systems in terms of PSNR.

The performances are calculated by truncating the embedded bitstreams at variant rates

during decoding. In the comparison, the proposed algorithm consistently outperforms

the other three schemes for all the images. The improvements are remarkable especially

for rich-edgy images such as Barbara and Fingerprint. Moreover, the proposed algorithm

is more efficient at very low bit rates since the nuqDFB can well represent the geometrical

structures even with very few coefficients. For instance, the nuqDFB-based coder gains

1.02 dB in PSNR over JPEG2000 at 0.15 bpp for Barbara image. The reconstructed

images of Barbara at 0.25 bpp using JPEG2000 and nuqDFB, respectively, are shown in

Fig. A.3.

A.3 Image coding using PDFB

A.3.1 The reduced-aliasing PDFB

A PDFB consisting of a Laplacian pyramid and a four-channel DFB (Fig. A.4(a))

is equivalent to an overcomplete five-channel FB with a decimation matrix D2 = 2I,

(I is the identity matrix). The overall directional filters can be expressed in a closed-

form formula from the Laplacian and the DFB filters [61]. It is shown that the aliasing

occurs in these filters is from iterations in the Laplacian pyramid. It can be reduced or

removed by requiring the two filters of the pyramid to satisfy the Nyquist property. This

condition means that the frequency responses of the two lowpass filters in the pyramid

(F (ω) and G(ω) in Figs. A.4(a) and (b)) should have the passband regions (including

the transition bands) limited in [−π/2, π/2]2. F (ω) and G(ω) in this paper are designed

to have transition bands in the region 0.3π < |ωi| < 0.6π.

Fig. A.4(c) depicts the frequency supports of the image decomposition, in which

the PDFB is used at the highest resolution, and the DWT is used in the next four
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resolutions. To illustrate the construction, the analysis and synthesis sides of a PDFB

with four directional filters are described in Fig. A.4(a) and (b), respectively. Note that

the conventional DFB is implemented by a binary tree of two-channel FBs [7], and the

four filters Hi(z) in Fig. A.4(a) represent the equivalent directional filters of the DFB

tree.

A.3.2 Image coding using hybrid overcomplete PDFB and wavelet FB

As discussed in Section A.2, recognizing the statistical properties of transform

coefficients is also a crucial task in design of high-performance PDFB based coders.

Similar morphological dilation is employed to help identifying the significant coefficients

of PDFB. In this way, the intra-band and cross-scale correlations can be well exploited.

On the other hand, although the overcomplete transform introduces more coefficients to

be coded, strong correlations exist between neighboring directional subbands that can

be adopted to improve the probability modelling. Hence contexts should be designed to

reflect the local statistics among the directional subbands.

Besides the coding passes introduced in Section A.2.2, a new coding pass, Neigh-

boring correlation prediction pass (NCP), is designed in PDFB based codec. This pass

is designed to capture the redundancy within the overcomplete directional subbands.

If the two spatial filters have small angle difference in their principal directions, their

corresponding decimated subbands exhibit significant dependency between those coeffi-

cients at the same positions relative to their upper-left corners. Hence, the distribution

of significant coefficients of each directional subband is highly correlated to their neigh-

boring subbands (cousin subbands). Those coefficients associated with the same positions

that have been recognized as significant by either one of the two cousin subbands are

coded. SE1 is employed to implement the dilation around the resulting new significant

coefficients.
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Figure A.4. (a) The analysis side of a PDFB; the DFB has four directional subbands
and (b) the synthesis PDFB corresponds to analysis PDFB in (c). (c) The partitioning
of the frequency plane by a hybrid PDFB and wavelet decomposition.
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A.3.2.1 Context modeling

According to the conditional probability theory, context modeling can exploit the

inter-symbol redundancy by switching between different probability models [108]. In

embedded coding systems, the coding is conducted on a series of significance maps that

correspond to a set of decreasing thresholds. After each pass of coding, all coefficients are

quantized to specific values and can be used as context information. Thus, a significant

context template, as described in Fig. A.5, is defined to exploit the coefficients that have

been coded by the previous passes or bit-planes.

w x w y w zw { | w }w ~ w � w �
w x x

w � w x �
� � � � � �� � � � � � � �w � � � � � � � � �w � � � � �

Figure A.5. Context modeling template..

In Fig. A.5, C is the current symbol that needs to be coded. c1, ..., c11 are re-

constructed values up to the current coding pass of the corresponding coefficients. We

define a series of reconstruction matrices Yn
s , in which each element is the reconstructed

value of the corresponding coefficient, n indicates the order of coding passes, s denotes

the subband index. Assume C is the (i, j)th element of the binary significance map in

pass n of subband s. Thus the intra-band correlation is derived from the 8 neighboring

coefficients,

cm = yn′

s (i+ a, j + b), a, b = -1, 0, or 1, m = 1, ..., 8. (A.4)
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where n′ = n− 1 or n since the morphological dilation does not guarantee a raster scan

order for the coefficients that have been coded. The coefficients of parent and cousin

subbands are also used to exploit the inter-band dependency

c9 = yn
s−1(Nc(i), Nc(j)),

c10 = yn−1
s+1 (Nc(i), Nc(j)),

c11 = yn
P (s)(Pc(i), Pc(j)), (A.5)

where P (·) specifies the parent of band s, Nc(·) and Pc(·) are functions for the cousin and

parent subbands, respectively, that specify the coordinates corresponding to the positions

in the current subband. Considering the weak correlation among the cousin subbands for

wavelet, c9 and c10 are not used for coding wavelet coefficients in the simulation. Thus

the NCP pass is executed only for those directional subbands.

A.3.2.2 Algorithm summary

In this section, we summarize the coding algorithm. Six passes are designed in this

approach. The produced progressive bitstream can be truncated at any pass. Let wij(k)

be the coefficient with the coordinate (i, j) relative to the upper-left corner of subband

k. LSC(k) and LIC(k) represent the lists of significant and insignificant coefficients,

respectively. D(SEm), m = 1, 2, 3, denotes the operation of morphological dilation with

the structuring element specified by SEm. V [wij(k)|SEm] = wij(k) ⊕ SEm \ wij(k),

defines the vicinity of wij(k) generated by dilation with SEm. Let P (k) and N(k) be the

parent and cousin bands of subband k, respectively. C[wij(k)] and N [wij(k)] denote the

corresponding coefficients in P (k) and N(k) associated with wij(k).

The PDFB-based coding algorithm is summarized as follows.

1) (Initialization): Decompose the image with PDFB. Find the maximum number of

bit-planes M and set n←M .
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2) (SD pass): If n = M , go to step 6).

Apply D(SE1) to each entry of LSP (k). Encode all w ∈ V [wij(k)|SE1] that have

not been scanned with arithmetic coding, if w is insignificant, attach it to the end

of LIC(k); else encode the sign of w, and add it to the end of LSC(k).

3) (CBP pass): If k = 0, i.e. the LL band, go to step 5).

For the significant coefficients of P (k), apply D(SE2) to each entry of C[wij(P (k))].

Similar to SD pass, encode each newly scanned coefficient and add these coefficients

to the end of either LSC(k) or LIC(k) depending on whether they are significant

or not.

4) (NCP pass): If subband k is a wavelet band, go to step 5).

For the significant coefficients ofN(k), applyD(SE1) to each entry ofN [wij(N(k))].

Encode each scanned coefficient. Add the coefficient to the end of LSC(k) if it is

found to be a new significant coefficient; otherwise append it to LIC(k).

5) (BS pass): Apply D(SE3) to each entry of LIC(k). If a new significant coefficient is

found, the recursive dilation is implemented around it until no more new significant

coefficient is detected. Encode the scanned coefficients and update LSC(k) and

LIC(k) correspondingly.

6) (SSD pass): The remaining coefficients are scanned and coded in raster order.

However, if one significant coefficient is found, apply D(SE3) at once, then con-

tinue to scan the following coefficients that have not been coded. Update LSC(k)

correspondingly.

7) (MR pass): If n = M , go to step 8);

Encode the nth bit of those significant coefficients recognized by previous bit-planes.

8) (New bit-plane): Empty all LIC’s, set n← n− 1, and go back to step 2).
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A.3.2.3 Simulation results

For the sake of comparison, the proposed PDFB-based algorithm is compared with

three state-of-the-art wavelet based coding schemes: SPIHT [76] with arithmetic coding,

JPEG2000 [3] and the embedded coder of morphological representation of wavelet data

(MRWD) [77]. Two 512× 512 grayscale images, Barbara and Lena, are tested. A 5-level

decomposition is used for SPIHT, MRWD and JPEG2000 with 9/7 Daubechies wavelet

filters. On the other hand, a 5-level PDFB decomposition, as described in Fig. A.4(a), is

applied in the proposed scheme, where the four coarser levels are decomposed using 9/7

filters and the level with the finest resolution is decomposed into 16 directional subbands

using PDFB.

Table A.4. Performance comparison (PSNR [dB]) for Barbara.

Rate(bpp) SPIHT MRWD JPEG2000 PDFB

0.10 24.24 24.15 24.66 25.24
0.15 25.63 25.32 25.93 26.74
0.20 26.63 26.86 27.31 27.84
0.25 27.56 27.51 28.36 28.94
0.30 28.54 28.16 29.24 29.86
0.40 30.09 30.18 30.83 30.97
0.50 31.38 31.31 32.26 32.42

Table A.4 shows the performance of Barbara with different systems in terms of

PSNR. The performances are calculated by truncating the embedded bitstreams at dif-

ferent rates during decoding. In the comparison, the proposed algorithm consistently

outperforms all the other three schemes. Although the overcomplete transform is em-

ployed in the proposed scheme, the improvements are still remarkable for rich-edgy im-

ages. This is because of that the PDFB can represent the geometrical regularity of image
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Table A.5. Performance comparison (PSNR [dB]) for Lena.

Rate(bpp) SPIHT MRWD JPEG2000 PDFB

0.10 30.17 30.18 29.87 29.86
0.15 31.87 31.55 31.69 31.87
0.20 33.12 33.14 32.97 33.07
0.25 34.09 33.90 34.13 33.98
0.30 34.93 34.57 34.75 34.91
0.40 36.22 36.17 36.09 35.96
0.50 37.20 37.01 37.22 36.78

structures with fewer coefficients and smaller magnitudes. Hence, the proposed algorithm

is more efficient at very low bit rates when a few of significant coefficients are actually

used for reconstruction. For instance, the PDFB-based coder gains 0.81 dB in PSNR

over JPEG2000 at 0.15 bpp for Barbara image. Fig. A.6 shows the zoomed portion of

the reconstructed Barbara images at 0.15 bpp for JPEG2000 and the proposed coder.

On the other hand, the PDFB-based codec exhibits competitive performance for smooth

images, such as Lena. As shown in Table A.5, the performance of our codec is comparable

to that of the other three coders, and the performance difference is getting smaller as the

bit-rate decreases.

A.4 Summary

In this appendix, two novel embedded coders have been proposed based on hybrid

multiresolution DFB. The concentrated significant coefficients in the directional subbands

are identified with the aid of progressive morphological dilation. The cluster boundaries

are adaptively shaped to detect the scattered significant coefficients. We design the

context models so as to take advantage of the the intra-band and inter-band statistical

dependencies. The highly optimized rate-distortion embedding performance is achieved
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(a) (b)

Figure A.6. Reconstructed Barbara images at 0.15 bpp using (a) JPEG2000, PSNR =
25.93 dB and (b) PDFB, PSNR = 26.74 dB..

with the progressive coding structure. Experimental results justify that the proposed

coding schemes are superior to the state-of-the-art wavelet-based image coders.
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ARQ Automatic Repeat Request.

BI Bilinear Interpolation.

DCT Discrete Cosine Transform.

DFB Directional Filter Bank.

DP-MDC Data-partitioning based Multiple Description Coding.

EA-EC Edge-Adaptive Error Concealment.

EM Expectation-Maximization.

FB Filter Bank.

FEC Forward Error Correction.

FO-MDC Feature-oriented Multiple Description Coding.

HMT Hidden Markov Tree.

KLT Karhunen-Loeve Transform.

LC Layered Coding.

LOT Lapped Orthogonal Transform.

MD Multiple Description.

MDC Multiple Description Coding.

MDSQ Multiple Description Scalar Quantizer.

MDTC Multiple Description Correlating Transform.

ML Maximum Likelihood.

nuqDFB non-uniform quincunx Directional Filter Bank.

PCT Pairwise Correlating Transform.

PDFB Pyramidal Directional Filter Bank.

POCS Projection Onto Convex Sets.

PSNR Peak Signal to Noise Ratio.

RD Rate-Distortion.

RRD Redundancy Rate Distortion.
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RTCP Real-Time Control Protocol.

RTP Realtime Transport Protocol.

RVLC Reversible Variable Length Code.

SDC Single Description Coding.

SFQ Spatial-Frequency Quantization.

SPIHT Set Partitioning in Hierarchical Trees.

SSIM Structural similarity.

TCE Tarp-filter-based system which utilizes Classification of coefficients

to achieve Embedding.

TCP Transmission Control Protocol.

UEP Unequal Error Protection.

UDP User Datagram Protocol.

VLC Variable Length Code.

VRC Video Redundancy Coding.
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