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ABSTRACT 

 

  

 INFERENCE OF NODE AND EDGE REPLACEMENT GRAPH GRAMMARS 

  

  

 

Publication No. ______ 

 

Jacek Kukluk, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Lawrence B. Holder 

In this dissertation we study the inference of node and edge replacement graph 

grammars. The approach is based on previous research in frequent isomorphic 

subgraphs discovery. We extend the search for frequent subgraphs by checking for 

overlap among the instances of the subgraphs in the input graph. If subgraphs overlap 

by one node, we propose a node replacement graph grammar production. If subgraphs 

overlap by two nodes or two nodes and an edge, we propose an edge replacement graph 

grammar production. We also can infer a hierarchy of productions by compressing 
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portions of a graph described by a production and then inferring new productions on the 

compressed graph.  

We validate the approach to node replacement grammar inference in 

experiments where we generate graphs from known grammars and measure how well 

the approach infers the original grammar from the generated graph. We show how this 

method performs in extracting the organization of XML files. We convert an XML file 

into a tree and infer a graph grammar from it. We compare the inferred graph grammar 

to the Document Type Definition of the XML file. We report the graph grammar we 

found from XML files used in the National Library of Medicine, the United States 

Patent and Trademark Office, and major baseball leagues. We also apply the algorithm 

to biological domains. We show the graph grammars found in biological molecules and 

in biological networks, and analyze learning curves of the algorithm as we increase the 

number of biological networks input to the method. 

We also describe an algorithm and experiments for inference of edge 

replacement graph grammars. This method generates candidate recursive graph 

grammar productions based on finding isomorphic subgraphs which overlap by two 

nodes. If there is no edge between the two overlapping nodes, the method generates a 

recursive graph grammar production with a virtual edge. We guide the search for the 

graph grammar using the Minimum Description Length (MDL) of a graph and the size 

of a graph. We show experiments where we generate graphs from known graph 

grammars, use our method to infer the grammar from the generated graphs, and then 

measure the error between the original and inferred grammars. Experiments show that 
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the method performs well on several types of grammars, and specifically that error 

decreases with increased numbers of unique labels in the graph.  

 We briefly discuss other grammar inference algorithms indicating that our 

study extends classes of learnable graph grammars.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Noam Chomsky [Chomsky56] pointed out that one of the main concerns of a 

linguist is to discover simple grammars for natural languages and study those grammars 

with the hope of finding a general theory of linguistic structure. A vast amount of 

research has been done in inferring grammars [ICGI94 , ICGI98, ICGI00, ICGI02, 

Lari91]. These analyses focus on string grammars where symbols appear in a sequence. 

We are concerned with graph grammars, which can represent much larger classes of 

problems than string grammars. We examine the classes of graph grammars presently 

learnable. As string grammars represent the language, we are looking for graph 

grammars that represent graph properties and can generalize these properties from finite 

graph examples into generators that can generate an infinite number of graphs. String 

grammars can be inferred from a finite number of sentences and generalize to an infinite 

number of sentences. Inferring graph grammars will generalize the knowledge from the 

examples into a concise form and generalize to an infinite number of entities from the 

domain. We examine existing approaches to the inference of graph grammars and 

experimentally explore one of them showing its features and limitations.  

String grammars are fundamental to linguistics and computer science. Graph 

grammars can represent relations in data which strings cannot. Graph grammars can 
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represent hierarchical structures in data and generalize knowledge in graph domains. 

They have been applied as analytical tools in physics, biology, and engineering 

[Gernert97, Milo02]. We study the problem of grammar inference. We introduce an 

algorithm which builds on previous work in discovering frequent subgraphs in a graph 

[Cook94]. We check if subgraphs overlap and if they overlap by one node, we use this 

node and subgraph structure to propose a node replacement graph grammar. We 

developed an algorithm for edge replacement grammar inference where we check for 

overlap by two nodes. If an overlap exists and there is an edge between the overlapping 

nodes, we propose a grammar production with a real non-terminal edge. If there is no 

edge between overlapping nodes, we propose a production with a virtual edge. We can 

apply grammar inference algorithms in domains with relational data. In this work we 

selected several of them: chemical structures, XML files, and biological networks. A 

vast amount of research has been done in string grammar inference [Sakakibara97]. We 

found only a few studies in graph grammar inference.  

 

1.2 Contributions 

We developed two algorithms to infer graph grammars from structured data 

represented as a graph. The methods can detect recursive and non-recursive motifs in 

structured data and build a hierarchy of recursive graph grammar productions. We 

showed how the grammars we can infer fit into the hierarchy of graph grammars. There 

was no method shown before which can infer these classes of graph grammars. In this 

work we use graph grammar as a data mining tool. We often refer to the ability of a 
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graph grammar to regenerate the input graph, but inferring such grammars is not the 

purpose of the work. Graph grammars in our study show interesting patterns and 

organize data into a hierarchy. We implemented the algorithms and tested them on 

synthetic and non-synthetic data. For this reason we developed and implemented a 

generator which generates a graph from a known graph grammar. We showed how 

inferring graph grammars depends on the presence of noise, the complexity of graph 

grammar structure, the number of different labels present in the graph, and the size of 

the generated graph. We showed limitations of node replacement recursive graph 

grammars and how edge replacement recursive graph grammars overcome some of 

these limitations. To validate the approach, we conducted experiments in real-world 

domains: chemical molecules, biological and XML file structure. We inferred the 

structure of XML files which describe data in the National Library of Medicine, the 

United States Patent and Trademark Office, and in the domain of baseball. We show 

how the algorithms perform in inferring grammars from biological networks and how in 

this domain inference error depends on the number of examples in the input set.  We 

experimentally verified the polynomial complexity of the algorithm in this domain.  

Chapter two describes related work in graph grammar inference algorithms and 

frequent subgraph discovery algorithms. In chapter three we describe classes of graph 

grammars and give the definition of a node and an edge replacement grammar our 

algorithm is capable to infer showing their place in the hierarchy of graph grammars. 

Chapter four presents the algorithms for node and edge replacement graph grammar 

inference. Chapter five describes the graph generator used in the experimental 



 

 4 

evaluation. Experiments with node replacement graph grammars we placed in chapter 

six and experiments with edge replacement graph grammars in chapter seven. Chapter 

eight presents experimental results for inferring XML schema using graph grammars. 

Chapter nine contains learning curves and experiments with biological networks. 

Chapter ten closes the dissertation with conclusions and future directions.  
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CHAPTER 2 

RELATED WORK 

 

In this chapter we describe existing approaches to graph grammar inference. 

These ideas are based on decomposition of a graph, inference of probabilities associated 

with grammar rules, learning deterministic tree grammars, and searching for an edge 

connecting frequent subgraphs. The second part of this chapter discusses approaches to 

frequent subgraph discovery.  

 

2.1 Graph Grammar Inference  

Jeltsch and Kreowski [Jeltsch90] did a theoretical study of inferring hyperedge 

replacement graph grammars from simple undirected, unlabeled graphs. Their paper 

leads through an example where from four complete bipartite graphs K3,1  , K3,2  , K3,3  , 

K3,4  , the authors describe the inference of a grammar that can generate a more general 

class of bipartite graphs  K3,n , where n≥1. The authors define four operations that lead 

to a final hyperedge replacement grammar. The operations are: INIT, DECOMPOSE, 

RENAME, and REDUCE. The INIT operation will start the process from a grammar 

which has all sample graphs in its productions and therefore it generates only the 

sample graphs. Then, the DECOMPOSE operation transforms the initial productions 

into productions that are more general but can still produce every graph from the sample 

graphs. RENAME allows for changing names of non-terminal labels. REDUCE 
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removes redundant productions. Jeltsch and Kreowski (Jeltsch, 1990) start the process 

from a grammar which has all the sample graphs in its productions. Then they transform 

the initial productions into productions that are more general but can still produce every 

graph from the sample graphs. Their approach guarantees that the final grammar will 

generate graphs that contain all sample graphs. In the example in Figure 1 the initial 

grammar has productions S-> K3,1  , S-> K3,2  , S-> K3,3  , S-> K3,4.  The production S-> 

K3,2  is decomposed into two productions. If in the second production D-> K3,1 , we 

rename D with S, this production and initial production  S-> K3,1 are the same and can 

be reduced with the REDUCE operation. 

 

S

K3,1 K3,2 K3,3
K3,4

S
D

D

K3,1

 

Figure 1: Initial grammar and decomposition of 
productionS-> K3,2  into two productions. 

 

Oates et al. [Oates03] discuss the problem of inferring probabilities of every 

grammar rule for stochastic hyperedge replacement context free graph grammars. They 

call their program Parameter Estimation for Graph Grammars (PEGG).  They assume 
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that the grammar is given. Given a structure of a grammar S and a finite set of graphs E 

generated by grammar S, they ask what are the probabilities θ associated with every rule 

of the grammar. Their strategy is to look for a set of parameters θ that maximizes the 

probability p(E| S, θ). Their work is based on the work of Lari and Young [Lari91] in 

estimation of stochastic-context free string grammars.  In the example in Figure 2, the 

grammar has three rules. In their experiments they generated 10 graphs from this 

grammar with initial probabilities 0.6, 0.2, 0.2 associated with first, second and third 

rule respectively. With their algorithm they estimated probabilities and found their 

values θ=(0.6486, 0.2973, 0.0542) which are close to the initial values.   

1S
S

2 1 o 2
S

1 2

S

S

 

Figure 2: Grammar used in Oates et al. [Oates03] experiments 
to infer probabilities associated with three grammar rules. 

 

In terms of similarity to string grammar inference we consider the Sequitur 

system developed by Nevill-Manning and Witten [Nevill97]. Sequitur infers a 

hierarchical structure by replacing substrings based on grammar rules. The new, 

compressed string is searched for substrings which can be described by the grammar 

rules, and they are then compressed with the grammar and the process continues 

iteratively. Similarly, in our approach we replace the part of a graph described by the 
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inferred graph grammar with a single node and we look for grammar rules on the 

compressed graph and repeat this process iteratively until the graph is fully compressed.  

Carrasco et al. [Carrasco01] gave an algorithm for learning deterministic tree 

grammars. Their approach emerges from concepts of learning context free sting 

grammars. The problem was previously studied by Sakakibara [Sakakibara92]. 

Carrasco et al. says that the problem of identifying context free grammars is equivalent 

to the problem of identifying regular tree languages. It is because of the derivation trees 

of context free grammars form a regular tree language. A deterministic tree automata 

DTA is an acceptor of rooted, ordered directed trees. The set of accepted trees defines 

regular tree language. DTA is a 4-tuple A=(Q, V, δ, F), where 

-Q is a finite set of states; 

-V is a finite set of labels; 

- QF ⊂   is the subset of accepting states 

- δ ={ δ0 , δ1 , … , δn} is a set of transition functions of the form δk: V→ Qk   

Trees are represented by a functional notation. Following the example provided 

by Carrasco et al. [Carrasco01], the tree in Figure 3 is represented by t=a ( b ( a ( b c ) ) 

c.  The root has labeled ‘a’ and it branches into two subtrees t1 = ( b ( a ( b c ) and t2=c. 

In general, a tree at a node with label x can branch into subtrees t1, t2, …, tn. The tree or 

a subtree is represented by t=x(t1, t2, …, tn). DTA processes the tree bottom-up. It 

results from recursive definition of the transition function: 

⎩
⎨
⎧

=
leafaistifa

subtreeaistifttx
t kk

)(

))(,),(,(
)(

0

1

δ
δδδ

δ
K
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Every node in t has an associated state in DTA. In order to process the tree in 

Figure 3, the following transition functions are defined δ0 (b)=q1 , δ0(c)=q2 , δ2 (a, q1 , 

q2)=q2 , δ1 (b,  q2)=q1. The tree is processed from the bottom starting with b and c 

nodes. With transition δ0 they are assigned states q1 and q2. Following up the tree we 

read ‘a’ and assigned state q2 with transition δ2. Next δ1 (b,  q2)=q1  and finally the root 

of the tree is found to be in state q2. The state assigned to the root must be an accepting 

state, for the tree to be accepted by DTA. If VT is the set of all trees whose nodes are 

labeled with symbols from V, DTA accepts regular tree language { }FtVtL T ∈∈= )(:δ . 

Carrasco et al. inference algorithm is looking for states represented by subtrees and 

transition functions δ. They are also looking for probabilities of every transition to infer 

stochastic tree automata.   

 

Figure 3: The ordered, rooted tree coded as a(b(a(bc))c and 
processed bottom-up by deterministic tree automata [Carrasco01] . 

 
The most relevant work to this research is Jonyer et al.’s approach to node-

replacement graph grammar inference [Jonyer02, Jonyer04].  Their algorithm starts by 

finding frequently occurring subgraphs in the input graphs. Frequent subgraphs are 

those that when replaced by single nodes minimize the description length of the graph. 
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They check if isomorphic instances of the subgraphs that minimize the measure are 

connected by one edge.  If they are, a production S→ PS is proposed, where P is the 

frequent subgraph. P and S are connected by one edge. Our approach is similar to 

Jonyer’s in that we also start by finding frequently occurring subgraphs, but we test if 

the instances of the subgraphs overlap by one node. Jonyer’s method of testing if 

subgraphs are adjacent by one edge limits his grammars to description of “chains” of 

isomorphic subgraphs connected by one edge. Since an edge of a frequent subgraph 

connecting it to the other isomorphic subgraph can be included to the subgraph 

structure, testing subgraphs for overlap allows us to propose a class of grammars that 

have more expressive power than the graph structures covered by Jonyer’s grammars. 

For example, testing for overlap allows us to propose grammars which can describe tree 

structures, while Jonyer’s approach does not allow for tree grammars. We conducted 

experiments with Jonyer’s approach, called SubdueGL, to illustrate the types of graph 

grammars it can find and its limitations. We generated graphs from the grammar and 

then used SubdueGL to infer this grammar. We show our results in Figure 4. In this 

figure, above the productions, we indicated a percentage that signifies the probability 

with which we are using every production. In Figure 4 we show a grammar which 

generates squares and triangles connected in series. Every square or triangle is 

connected to another square or triangle by one edge. The edge that connects the patterns 

is labeled nx. The labels on the vertices and edges of the patterns are distinct. 40% 

probability is assigned to both nonterminal square and nonterminal triangle. Terminal 

square and triangle are assigned probability 10%. In Figure 4, below the grammar we 
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drew one generated graph. It contains four squares and three triangles. Square is found 

by SubdueGL to be the pattern that when all occurrences of its instances in the graph 

would be replaced by single node, the description length of the graph is minimized. 

SubdueGL also detects that instances of square in the graph are connected by one edge 

prompting the inference of recursive production S1. The graph is compressed with S1, 

and in the second iteration instances of triangles are detected and production S2 is 

found.  

 

Figure 4: SubdueGL finds recursive grammar in two iterations. 

 

In Figure 5 we generated a tree from a grammar that has two productions. The 

first production is selected 60% of the time and the second production is a terminal 

which is a single vertex and is selected 40% of the time. and the inferred grammar and 

the compressed graph are shown on the right side of the figure. We see that inferred by 

SubdueGL graph grammar cannot regenerate the tree. It detects only chain of subgraphs 
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connected by an edge. We see later in the dissertation graph grammars inferred with 

node replacement grammars which can regenerate trees. Next, we describe frequent 

subgraph discovery algorithms.  

a
nx

S

Grammar

b

S

a
bb

S

60% 40%

Grammar found

b

a

bb

a
S

Generated graph
a
nx

b bb

a
nx

b
bb

a a

bb

a a
nx

b
bb

a a
nx

b
bb

a a

nx

S
a
nx

b

b

a

bb

a

Compressed graph
a
nx

S

 

Figure 5: Graph grammar inference from a tree. 

 

2.2 Frequent Subgraph Discovery Algorithms 

In our approach we use the frequent subgraph discovery algorithm Subdue 

developed by Cook and Holder [Cook94]. We would like to mention other algorithms 

developed to discover frequent subgraphs and therefore have the potential to be 

modified into algorithms which can infer a graph grammar. Kuramochi and Karypis 

[Kuramochi01] implemented the FSG algorithm for finding all frequent subgraphs in 

large graph databases. FSG starts by all frequent one and two edge subgraphs. Then, in 

each iteration, it generates candidate subgraphs by expanding the subgraphs found in 

the previous iteration by one edge. In every iteration, the algorithm checks how many 
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times the candidate subgraph occurs within an entire graph. The candidates, whose 

frequency is below a user-defined level, are pruned. The algorithm returns all subgraphs 

occurring more frequently than the given level. In the candidate generation phase, 

computation costs of testing graphs for isomorphism are reduced by building a unique 

code for the graph (canonical labeling).  

Yan and Han introduced gSpan [Yan02], which does not require candidate 

generation to discover frequent substructures. The authors combine depth first search 

and lexicographic order in their algorithm. Their algorithm starts from all frequent one-

edge graphs. The labels on these edges together with labels on incident nodes define a 

code for every such graph. Expansion of these one-edge graphs maps them to longer 

codes. The codes are stored in a tree structure such that if ),,,( 10 maaa K=α  

and ),,,,( 10 baaa mK=β , then the β code is a child of the α  code. Since every graph can 

map to many codes, the codes in the tree structure are not unique. If there are two codes 

in the code tree that map to the same graph and one is smaller then the other, the branch 

with the smaller code is pruned during depth first search traversal of the code tree. Only 

the minimum code uniquely defines the graph. Code ordering and pruning reduces the 

cost of matching frequent subgraphs in gSpan. 

The challenge of using frequent subgraph mining algorithms like gSpan or FSG 

to infer graph grammars would be the modification to allow subgraph instances to 

overlap. Overlapping substructures are available as an option in the Subdue algorithm 

[Cook94]. Also, Subdue allows for identification of one substructure with the best 

compression score, which we can modify to identify one grammar production with the 
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best score, while FSG and gSpan return all candidate subgraphs above a user-defined 

frequency level leaving interpretation and final selection for the user.  

We gave an outline of several approaches to inference of graph grammars. In 

addition to the described approaches we would like to mention a few others. Doshi at el. 

[Doshi02] similar to SubdueGL use instances of frequent subgraphs that minimize 

description length of a graph to infer stochastic graph grammars. Fletcher [Fletcher01] 

describes an algorithm to learn graph grammars which represent two dimensional 

structures drawn on a discrete Cartesian grid. Sánchez at el. discus inference of graph 

grammars that describe texture symbols [Sanchez01]. We found that only a few papers 

address inference of graph grammars. The problem is open for more systematic study.  

Described approaches differ in the way the graph grammar is built. The 

approach of Jeltsch and Kreowski [Kreowski90] starts from the grammar where all the 

sample graphs are initially on the right hand side of the production. The algorithm 

progresses by transformation towards reduction and generalization. SubdueGL works in 

the opposite direction. It starts with no grammar and then discovers one production in 

the first iteration, compresses the graph with it and subsequent iterations bring more 

productions. Oates et al.’s approach builds an automaton that accepts ordered trees. 

They are looking for states, transition functions and probabilities of productions.   

Jeltsch and Kreowski’s approach requires a set of disconnected graphs as an 

input. SubdueGL can find recursive graph grammas in a set of disconnected graphs as 

well as in one connected graph. Figure 4 illustrates an example where SubdueGL finds 

two productions of the recursive graph grammar. These productions together with the 



 

 15 

compressed graph can regenerate the original graph. SubdueGL finds chains of 

isomorphic subgraphs connected by one edge and replaces them with a production rule. 

This feature is also a major limitation of the algorithm. In Figure 5 we used a grammar 

that can generate trees. We used one of the generated trees as an input to SubdueGL. 

We show the grammar found by SubdueGL on the right side of the drawing. SubdueGL 

found the chain of isomorphic subgraphs in the tree, but the limitation that subgraphs 

are connected by one edge does not allow for learning a grammar which represents a 

tree. The learned productions together with the compressed graph cannot regenerate the 

input tree.  

We conclude that research in graph grammar inference has focused on classes of 

graph grammars limited to a subset of context free graph grammars operating on: 

- chains of isomorphic subgraphs  

- rooted ordered trees,  

- undirected unlabeled graphs for which operations of decomposition and merging into a 

grammar can be defined  

Based on analyzed research in the inference of graph grammars we would like 

to list three directions: 

(1) Decomposition of sample graphs and merging a graph grammar from 

decomposed subgraphs. This approach is inspired by Jeltsch and Kreowski’s 

theoretical study. It involves decomposition of sample graphs into smaller units 

and merging them into a graph grammar. Other methods of decomposing and 

merging are open directions. 
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(2) Building automata which accept sample graphs. The automata theory and 

languages for strings is a very well defined field [Hopcroft79]. String grammar 

inference is also a well studied problem [ICGI00,ICGI94,ICGI98,ICGI02]. The 

concepts of automata inference that accept graphs can draw from these studies. 

Carrasco et al. [Carrasco01] studied rooted, ordered trees which were coded into 

strings. The string was processed by deterministic tree automata to find if the 

tree represented by it is accepted in the language. Representing other classes of 

graphs as strings would allow for applying concepts from string processing into 

processing graphs.  

(3) Finding frequently occurring instances of subgraphs and examination of their 

connections. SubdueGL examines if instances of the same subgraph are 

connected by one edge. The one edge restriction is a major limitation of this 

approach. An open research problem is in finding methods to examine 

connections between frequent subgraphs which are more complicated than one 

edge connection. Consequently, how to construct a graph grammar from 

frequent instances of subgraphs and information about their connections 

becomes an issue we study in this dissertation. In the next chapter we discuss 

definitions and classes of these graph grammars.  
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CHAPTER 3 

CLASSES OF GRAPH GRAMMARS 

 

In this chapter we introduce classes of graph grammars as they are known in the 

literature. We describe the hierarchy of graph grammars and define classes of graph 

grammars that we can infer with our algorithm: node and edge replacement graph 

grammars.   

3.1 Graph Grammar Definition 

The Chomsky hierarchy of text grammars includes four types: type 3 - regular 

grammars, type 2 -context-free grammars, type 1 - context-sensitive grammars, and type 

0 - unrestricted grammars. The Chomsky hierarchy of string grammars is well-defined 

because of its relation to finite state automata, pushdown automata, and Turing 

machines. Graph grammars do not have such relations. 

In this section we give an overview of different classes of graph grammars. 

These classes are often investigated in the literature. In this survey of definitions and 

hierarchy of graph grammars we intend to provide an initial framework for the graph 

grammar inference problem.  

A graph grammar is a pair G = (S, P), where S is the starting graph and P is a 

set of production rules.  Graph replacement grammars have productions of the form 

(M, D, C), where M is the mother graph, D is the daughter graph, and C is a set of 

connection instructions [Rozenberg97]. All occurrences of subgraph M in a host graph 
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H are replaced with D using the set of connections C. L(G) is the set of graphs 

generated by graph grammar G.  

Defining a new class of graph grammars requires specification of rewriting 

rulers (M and D), and an embedding mechanism C. The embedding mechanism is the 

criterion to classify graph grammars. Authors also point out that embedding 

mechanisms are among the most important features in studies about graph grammars 

[Janssens83 , Flasinski98].  

We can distinguish two classes of grammars based on the nature of productions: 

node replacement graph grammars and edge replacement graph grammars. Janssens and 

Rozenberg [Janssens80]  introduce node label controlled (NLC) graph grammars.  

 

3.2  Node Label Controlled (NLC) Graph Grammar 

A node label controlled graph grammar (NLC) [Rozenberg97] is a 5- tuple 

( )SCPG ,,,,Δ∑= , where  

∑ - is an alphabet of node labels, 

Δ - is an alphabet of terminal node labels, ∑⊆Δ , 

P -is a finite set of productions which are pairs ),( Yd , with ∑∈d and Y is a graph 

C -is a connection relation, a function from ∑ into ∑2  

S - is the initial graph 

NLC productions replace a single vertex with a graph. There is no separate 

connection relation for every production. The connection relations are global, the same 

for all productions.  The connection relations apply only to neighboring vertices of a 
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mother vertex. The neighborhood of a vertex v in a graph is the set of all the vertices 

adjacent to v. If the mother vertex does not have neighbor vertices labeled as in the list 

of connection relations C, then these connections are not introduced. Because the 

embedding of a daughter graph D depends on the labels on the neighboring vertices of 

the mother vertex M, some papers [Rozenberg86] point out the context-sensitive nature 

of NLC embedding. We observe that the labels of the vertices adjacent to the mother 

vertex M do not influence the decision of whether M will be replaced by D or not. 

Those labels decide only the nature of the connections of D to the host graph. 

Therefore, we classify NLC grammars to context free grammars. 

As an example [Rozenberg86], let },{ ba=Δ , },,{ baA=∑ , and S  be a node 

with label A ,  then the two productions of P  are given below and the connection 

relation C is on the right of the productions.  

 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

a

b

ba

b

a

A

C

},{

,

,

,

 

Figure 6: Example of Node Label Controlled (NLC) Graph Grammar. 

 

The language of the graphs generated by the above grammar consists of all 

bipartite graphs nnK , . Neighborhood controlled embedding (NCE) graph grammars have 

a similar definition to NLC grammars. The difference is that the embedding relation C 

maps labels of neighboring vertices of M to particular vertices (not based on labels) of a 
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daughter graph D. The embedding relation is no longer global but is given for every 

production separately.  

 

3.3 Neighborhood Controlled Embedding (NCE) Graph Grammar 

The neighborhood controlled embedding (NCE) graph grammar [Rozenberg97] 

is a 4-tuple ( )SPG ,,,Δ∑= , where ∑ , Δ , and S are defined as in the definition of 

NLC grammars. P  is a finite set of productions, which are pairs ),,( CYd , with 

∑∈d and Y is a graph. C  is a connection relation, DVC ×Σ⊆ , and DV  is a set of nodes 

of Y . 

For example the initial graph S  and a production with connection relation of an NCE 

grammar are given below.  Labels a, b, c of a host graph and vertices x1, x2, x3, x4 are 

used in specifying the connection relation C.   
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Figure 7: Example of Neighborhood Controlled Embedding (NCE) Graph Grammar. 

 

Janssens and Rozenberg [Janssens82] proved that the set of graphs generated by 

NCE grammars is the same as generated by NLC grammars (NCE=NLC). edNCE has 

more generation power than NCE and NLC. The small letter ‘e’ before the name of the 

grammar means that edges are labeled and they are used in connection instructions. The 

‘d’ means that edges are directed.  
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3.4 Edge-Labeled Directed Neighborhood Controlled Embedding (edNCE) Graph 
Grammar 

 

An edge-labeled directed neighborhood controlled embedding (edNCE) graph 

grammar is a system ( )SCPG ,,,,,, ΩΓΔ∑= , where  

∑ - is an alphabet of node labels, 

Δ - is an alphabet of terminal node labels, ∑⊆Δ , 

Γ - is an alphabet of edge labels,  

Ω -is an alphabet of terminal edge labels, Γ⊆Ω , 

P -is a finite set of productions of the form ),,( CYd , with ∑∈d and Y is a graph, 

C -is a connection relation,  { }outinVC Y ,××Γ×Γ×Σ⊆ , 

S - is the initial graph. 

 

For example the connection relation given below specifies how vertices of a 

daughter graph x1, x2, x3 will be connected to the vertices of a host graph.  The first 

line from the list of connection relations means that vertex x1 of the daughter graph will 

be adjacent to a vertex with label ‘a’ of a host graph if vertex with label ‘a’ is adjacent 

to the mother vertex ‘A’ on an  edge labeled ‘p’. The label on an edge between x1 and 

‘a’ will be ‘d’. The direction of this edge will be from x1 to ‘a’. Remaining lines have 

similar meaning.  
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Figure 8: Example of Edge-Labeled Directed Neighborhood Controlled 
Embedding (edNCE) Graph Grammar 

 

3.5 Hierarchy and Other Classes of  Node Replacement Graph Grammars 

We gave the definition of an edNCE grammar. The eNLC and edNLC 

grammars also were defined [Rozenberg97, Flasinski98, Kim97]. Definitions of the 

eNLC and edNLC grammars used the connection relation based on labels on vertices of 

mother and daughter graphs and labels on edges. We can impose restrictions on 

connection relations of NLC, NCE, eNLC, eNCE grammars to form new classes of 

grammars. The desired property of these classes is confluence. A graph grammar is 

confluent if the result of a derivation does not depend on the order of production 

applied. If the result depends on the order of derivation, the grammar is not confluent. 

We list below some of the restrictions [Rozenberg97, Flasinski98, Kim97]. In 

parentheses we give an abbreviation used as a prefix in the names of grammars.   

(B) Boundary graph grammars. No two non-terminal nodes are adjacent in the right-

hand side of each production and in the starting graph. Boundary grammars are 

confluent.  

(Lin) Linear graph grammars. At each derivational step, daughter graph contains at 

most one non-terminal label.  
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(A) Apex graph grammars.  Connection instructions contain only terminal nodes.  

(-) Regular graph grammars. The right hand side graph is a single non-terminal or 

consists of two connected nodes, terminal and non-terminal.  

To show the relation of different node replacement grammars we reproduced the 

results of Changwook Kim [Kim97] in Figure 9. The arrows indicate inclusion. For 

instance, the arrow from B-NCE to NCE means that B-NCE ⊆  NCE. 

NLC=NCE eNCE

B-eNCEB-NCE

B-NLC

Lin-NCE

Lin-NLC

Lin-eNCE A-NCE A-eNCE

A-NLC

Lin-A-eNCELin-A-NCE

Lin-A-NLC  

Figure 9: A hierarchy of node replacement graph grammars [Kim97]. 

 

Hyperedge replacement grammars is another class of graph grammars. Their 

definition [Rozenberg97, Habel92, Drewes90] allows for replacement of more complex 
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structures than a single edge. Our focus is on inference of graph grammars and for this 

purpose we are interested in a grammar, which uses only one edge in its productions. 

An edge replacement graph grammar is a system  ( )SCPG ,,,,,, ΩΓΔ∑= , where  

∑ ,Δ ,Γ , Ω , S are as defined before, P  is a finite set of productions of the form 

),,( CYe , e is a single edge with a label from ( )Ω−Γ , Y  is a graph, and C  is a gluing 

relation, 
⎭
⎬
⎫

⎩
⎨
⎧

→
→

)()(

)()(

Yendetail

Ybeginehead
. 

In every production, the right hand side, graph Y, has two nodes marked in 

addition to their labels begin and end. When the production is applied, edge e is 

removed from the host graph and vertices incident to e are replaced with Y’s vertices 

marked begin and end. Vertices of the host graph previously incident to e preserve all 

other connections to the host graph. The labels of these two vertices are replaced by 

new labels of graph Y. 

Until this point we described different classes of graph grammars where the 

decision of whether a production will be applied or not did not depend on the 

environment of the replaced edge, node, or graph. All these classes of grammars we 

classify to context free graph grammars. We would like to introduce two definitions of 

context sensitive grammars.  

Edge replacement context sensitive graph grammar is a 

system ( )SCPG ,,,,,, ΩΓΔ∑= , where  

∑ ,Δ ,Γ , Ω , and S are as defined before,  

P - is a finite set of conditional productions of the form 
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e is a single edge with a label from ( )Ω−Γ  and Y is a graph. Replacement of an edge e 

with a graph Y occurs only if specified conditions are met. 

C -is a gluing relation, where O  and P are sets of labels Σ⊆PO, .  

 

A context sensitive (edNCE) graph grammar is a system 

( )SCPG ,,,,,, ΩΓΔ∑= , where  

∑ ,Δ ,Γ , Ω , and S are as defined before,  

P -is a finite set of conditional productions of the form 

( ){ } { }outinVCandYdthenOdodneighborhoif Y ,××Γ×Γ×Σ⊆→⊆ , 

with ∑∈d and Y is a graph, C - is a connection relation, O  is a set of labels Σ⊆O . 

Replacement of a vertex d with a graph Y occurs only if conditions specified are met. 

 

3.6 Node Replacement Recursive Graph Grammar Definition 

We give the definition of a graph and a graph grammar which is relevant to our 

approach. The defined graph has labels on vertices and edges. Every edge of the graph 

can be directed or undirected.   The definition of a graph grammar describes the class of 

grammars that can be inferred by our approach. We emphasize the role of recursive 

productions in the name of the grammar, because the type of inferred productions are 

such that the non-terminal label on the left side of the production appears one or more 
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times in the node labels of a graph on the right side. This is the main characteristic of 

our grammar productions. Our approach can also infer non-recursive productions. The 

embedding mechanism of the grammar consists of connection instructions. Every 

connection instruction is a pair of vertices that indicate where the production graph can 

connect to itself in a recursive fashion. Our graph generator can generate a larger class 

of graph grammars than defined below. We will describe the grammars used in 

generation later in the dissertation.  

 

A labeled graph G is a 6-tuple, ( )LEVG ,,,,, ηνμ= , where 

V - is the set of nodes, 

VVE ×⊆ - is the set of edges,  

LV →:μ  - is a function assigning labels to the nodes, 

LEv →:  - is a function assigning labels to the edges, 

}1,0{: →Eη - is a function assigning direction property to edges (0 if undirected, 1 if 

directed).  

L - is a set of labels on nodes and edges.  

 

A node replacement recursive graph grammar is a tuple ( )PGr ,,, ΓΔ∑= , where 

∑ - is an alphabet of node labels, 

Δ - is an alphabet of terminal node labels, ∑⊆Δ , 

Γ - is an alphabet of edge labels, which are all terminals,  
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P - is a finite set of productions of the form ),,( CGd , where Δ−∑∈d , G is a graph, and 

there are two types of productions:  

(1) recursive productions of the form ),,( CGd , with Δ−∑∈d , G is a graph, where there is 

at least one node in G labeled d . C  is an embedding mechanism with a set of 

connection instructions, VVC ×⊆ , where V  is the set of nodes of G .  A connection 

instruction Cvv ji ∈),(  implies that derivation can take place by replacing iv  in one 

instance of G  with jv  in another instance of G . All the edges incident to iv are incident 

to jv . All the edges incident to jv remain unchanged. 

(2) non-recursive production, there is no node in G labeled d (our inference algorithm 

does not infer an embedding mechanism for these productions).  

 

3.7 Edge Replacement Recursive Graph Grammar Definition 

An edge replacement recursive graph grammar is a 5-tuple ( )PGr ,,,, ΩΓΔ∑= , 

where 

∑ - is an alphabet of node labels, 

Δ - is an alphabet of terminal node labels, ∑⊆Δ , 

Γ - is an alphabet of edge labels,  

Ω -is an alphabet of terminal edge labels, ∑⊆Ω , 

P - is a finite set of productions of the form ),,( CGd , G is a graph, and there are two 

types of productions:  
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(1) recursive productions, where Ω−Γ∈d , and there is at least one edge in 

G labeled d . C  is an embedding mechanism with a set of connection instructions, 

);( VVVVC ××⊆ , where V  is the set of nodes of G . A connection instruction 

Cvvvv lkji ∈),;,(  implies that derivation can take place by replacing iv , kv  in one instance 

of G  with lj vv ,  respectively, in another instance of G . All the edges incident to iv are 

incident to jv , and all the edges incident to kv  are incident to lv . All the edges incident to 

jv and kv remain unchanged. If, in derivation process after applying connection 

instruction ),;,( lkji vvvv , nodes ji vv , are adjacent by an edge, we call edge ),( ji vve =  a 

real edge, otherwise edge  ),( ji vve = is used only in the specification of the grammar 

and we call this edge a virtual edge. 

(2) non-recursive production, where Δ−∑∈d , there is no node, or edge in 

G labeled d (our inference algorithm does not infer an embedding mechanism for these 

productions).  

 

3.8 Definition of Data Structures Used in the Algorithm 

We introduce the definition of two data structures used in our algorithm. 

Substructure S of a graph G is a data structure which consists of: (1) graph definition of 

a substructure SG which is a graph isomorphic to a subgraph of G, (2)  list of instances 

(I1, I2, …, In) where every instance is a subgraph of G isomorphic to SG. 

Recursive substructure recursiveSub is a data structure which consists of: 
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(1) graph definition of a substructure SG  which is a graph isomorphic to a subgraph of 

G 

(2) list of connection instructions which are pairs of integer numbers describing how 

instances of the substructure can overlap to comprise one instance of the 

corresponding grammar production rule. 

(3) List of recursive instances (IR1, IR2, …, IRn) where every instance IRk is a subgraph 

of G. Every instance IRk  consist of one or more isomorphic, overlapping by no more 

than one vertex in the algorithm for node graph grammar inference and no more 

than two vertices in edge grammar inference, copies of SG. 

In our definition of a substructure we refer to subgraph isomorphism. However, 

in our algorithm we are not solving the subgraph isomorphism problem. We are using a 

polynomial time beam search to discover substructures and graph isomorphism to 

collect instances of the substructures.  

 

3.9 Node Replacement Graph Grammar in Hierarchy of Graph Grammars 

We encountered in the existing literature a classification of graph grammars 

based on the embedding mechanism [Kim97]. The embedding mechanism is important 

in the generation process, but if we use graph grammars in parsing or as a tool to mine 

data and visualize common patterns, the embedding mechanism may have less 

importance or can be omitted. Without the embedding mechanism the graph grammar 

still conveys information about graph structures used in productions and relations 

between them. In Figure 10 we give the classification of graph grammars based on the 
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type of their productions, not based on the type of embedding mechanism.  The 

production of the grammars in the hierarchy is of the form ),,( CGd  where d is the left 

hand side of the production, G is a graph, and C is the embedding mechanism. d can be 

a single node, a single edge or a graph, and we respectively call the grammar a node-, 

edge- or graph replacement grammar. If the replacement of d with G does not depend 

on vertices adjacent to d or edges incident to d, nor any other vertices or edges outside d 

in a graph hosting d, we call the grammar context free. Otherwise, the grammar is 

context sensitive.   

We wanted to place the graph grammars we are able to infer in this hierarchy. 

We circled two of them. Node replacement recursive graph grammar is the one 

described in this dissertation. The set of grammars inferred by Jonyer et al. (Jonyer, 

2002, 2004) we call chain grammars. Chain grammars describe graphs or a portion of 

graphs composed from isomorphic subgraphs where every subgraph is adjacent to the 

other by one edge. The productions of chain grammars are of the form S→ PS, where P 

is the subgraph. P and S are connected by one edge. Chain grammars are a subset of 

node replacement recursive graph grammars.  Node replacement graph grammars 

describe a more general class of graph grammars than our algorithm is able to learn. An 

example of a node replacement graph grammar that we cannot learn is a grammar with 

alternating productions, as shown later in Figure 28. 
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Figure 10: Hierarchy of graph grammars. 
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CHAPTER 4 

THE GRAPH GRAMMAR INFERENCE ALGORITHMS 

 

In this chapter we introduce two algorithms. The first algorithm is for node 

replacement graph grammar inference and the second for edge replacement graph 

grammar inference.  We start from an informal description of the first algorithm using 

an example. Then we show pseudocode and explain how we detect overlap between 

substructures and determine connection instructions. Then we show how to find overlap 

by two nodes used to propose an edge replacement grammar. We define the virtual and 

real non-terminal edges in edge replacement graph grammars.  

 

4.1 Node Replacement Graph Grammar Inference Algorithm 

We will first describe the algorithm informally allowing for an intuitive 

understanding of the idea. The example in Figure 11 shows a graph composed of three 

overlapping substructures.  The algorithm generates candidate substructures and 

evaluates them using the following measure of compression, 

( )
( ) ( )SGsizeSsize

Gsize

|+
 

where G is the input graph, S is a substructure and SG | is the graph derived 

from G  by compressing each instance of S into a single node. ( )gsize  can be computed 

simply by adding the number of nodes and edges: ( ) ( ) ( )gedgesgverticesgsize += . Another 
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successful measure of ( )gsize  is the Minimum Description Length (MDL) discussed in 

detail in (Cook 1994). Either of these measures can be used to guide the search and 

determine the best graph grammar.  

 

Figure 11: A graph with overlapping substructures and a 
graph grammar representation of it. 

 
In Figure 11, the subgraphs overlap at nodes 3 and 4. The algorithm starts by 

finding nodes with the same label. There are seven nodes labeled “a” and three nodes 

labeled “b”. The single node labeled “a” becomes a candidate substructure with seven 

instances I1={1}, I2={3}, I3={4}, I4={6}, I5={7},  I6={9}, I7={10}. The numbers in 

parentheses refer to the nodes in Figure 11. This initial substructure will be expanded by 

a node and an edge in each iteration of the algorithm’s main discovery loop.  Similarly, 

the initial substructure of a node labeled “b” and its instances are determined. Both of 

these substructures are expanded simultaneously. Let us follow the expansion of only 

one substructure, which starts from all nodes labeled “b.”  Table 1 gives the instance 

expansion at every step and a substructure value. We expand the instances I by edge 

labeled y and a vertex labeled a, which gives us the set of instances I’.  Instances I can 

also be expanded by edge z or x. Similarly, we expand I’ by edge z and a vertex a, 
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which gives us I’’. I’ can also be expanded by edge x.  We omit in Table 1 alternative 

expansions of I by z, x and I’ by x. These additional expansions are part of our 

algorithm.  They lead to the same solution. When the set of instances I’’ is expanded by 

the edge with label x, we detect an overlap, i.e., two or more instances share the same 

node. The overlapping instances of the substructure allow us to propose the recursive 

graph grammar shown on the right of Figure 11. This grammar can compress the entire 

graph to one node and has a better substructure value than any other substructure 

discovered so far. 

.  

Table 1: Expansion of instances which start from nodes labeled “b” in Figure 11. 

Expansion Instances ( )
( ) ( )SGsizeSsize

Gsize

|+
 

initial instances I  ={ I1={2}, I2={5}, I3={8}} 19/(1+19)=0.95 
I expanded by y I’ ={ I1={2, 3}, I2={5, 6}, I3={8, 9} } 19/(3+13)=1.19 
I’ expanded by z I’’={ I1={2, 3, 4}, I2={5, 6, 7}, I3={8, 9, 10}} 19/(5+7)=1.58 
I’’ Expanded by x 
 

I’’’ ={ I1={2, 3, 4, 1}, I2={5, 6, 7, 3}, I3={8, 
9, 10, 4}} (overlap !) 

19/(7+1)=2.38 

 

The grammar from Figure 11 consists of a graph isomorphic to three 

overlapping substructures and connection instructions. We find connection instructions 

when we check for overlaps.  In this example there are two connection instructions, 1-3 

and 1-4. Hence, in generation of a graph from the grammar, in every derivation step an 

isomorphic copy of the subgraph definition will be connected to the existing graph by 

connecting node 1 of the subgraph to either a node 3 or a node 4 in the existing graph. 

The grammar shown on the right in Figure 11 cannot only regenerate the graph shown 

on the left, but also generate generalizations of this graph. Generalization in this 
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example means that the grammar describes graphs composed from one or more star 

looking substructures of four nodes labeled “a” and “b”. All these substructures overlap 

on a node with the label “a”. 

Our graph grammar inference method is based on Cook et al.’s [Cook94] 

substructure discovery algorithm called Subdue.  Subdue is looking for repetitive, 

highly-compressing subgraphs. The algorithm starts by finding all nodes with the same 

label. It maintains a list of the best subgraphs found so far. In each iteration new 

candidates for the best subgraphs are created by expanding all the subgraphs in the list 

by one edge or an edge and a node. Then, candidates for the best subgraphs are 

evaluated. In the evaluation process, every occurrence of a candidate subgraph within 

the entire graph is temporarily replaced by a new node. The compression achieved with 

this replacement is measured by calculating minimum description length or size 

(number of nodes + number of edges) of an original and compressed graph. Only 

subgraphs with the highest compression ratio remain in the list of the best subgraphs. 

Subdue spends a majority of computation time on isomorphism testing. Subdue has 

been applied to data from several domains, including DNA, chemical compounds, 

seismic events, aviation incident reports, and social networks [Su99, Chittimoori99, 

Gonzalez00, Mehta03]. 

Algorithm 1 is our grammar discovery pseudocode.  The function 

INFER_GRAMMAR is similar to the descriptions of Cook et al. [Cook94] for 

substructure discovery and Jonyer et al. [Jonyer02] for discovering grammars 

describing chains of isomorphic subgraphs connected by one edge. The input to the 
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algorithm is a graph G which can be one connected graph or set of disconnected graphs. 

G can have directed edges or undirected edges. The algorithm assumes labels on nodes 

and edges. The algorithm processes the list of substructures Q. In Figure 12 we see an 

example of a substructure definition. A substructure consists of a graph definition and a 

set of instances from the input graph that are isomorphic to the graph definition. The 

example in Figure 12 is a continuation of the example in Figure 11. The numbers in 

parentheses refer to nodes of the graph in Figure 11. 

The algorithm starts (line 3) with a list of substructures where every 

substructure is a single node and its instances are all nodes in the graph with this node 

label. The best substructure is initially the first substructure in the Q list (line 4). In line 

8 we extend each substructure in Q in all possible ways by a single edge and a node or 

only by single edge if both nodes are already in the graph definition of the substructure. 

We allow instances to grow and overlap, but any two instances can overlap by only one 

node. We keep all extended substructures in newQ. We evaluate substructures in newQ 

in line 12. The recursive substructure recursiveSub is evaluated along with non-

recursive substructures and is competing with non-recursive substructures. The total 

number of substructures considered is determined by the input parameter Limit. In line 

19 we compress G with bestSub. Compression replaces every instance of bestSub with a 

single node. This node is labeled with a non-terminal label. The compressed graph is 

further processed until it cannot be compressed any more. In consecutive iterations 

bestSub can have one or more non-terminal labels. It allows us to create a hierarchy of 

grammar productions.  The input parameter Beam specifies the width of a beam search, 
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i.e., the length of Q. For more details about the algorithm see [Cook94, Jonyer02, 

Jonyer04]. 

The function RECURSIFY_SUBSTRUCTURE takes substructure S and, if 

instances of S overlap, proposes recursive substructure recursiveSub. The list of 

connection instructions and the list of recursive instances are two main components of 

recursiveSub. We initialize them in line 1 and 2. We check for overlap in line 4. Figure 

12 assists us in explaining conversion of substructure S into recursive substructure. 

Every instance graph has two positive integers assigned to it. One integer, in 

parentheses in Figure 12, is the number of a node in the processed graph G. The second 

integer is a node number of an instance graph. The instances are isomorphic to the 

substructure graph definition and instance node numbers are assigned to them according 

to this isomorphism. We check for overlap in line 4. Given pair of instances (I1, I2) we 

examine if there is a node Gv∈ , which also belongs to I1 and I2. We find two 

overlapping nodes, [3] and [4], examining node numbers in parentheses in the example 

in Figure 12.  Having the number of node Gv∈ we find corresponding to v  two node 

numbers of instance graphs 1IvI ∈ and 2
' IvI ∈ (line 5 and 6). The pair of integers ),( '

II vv is 

a connection instruction. There are two connection instructions in Figure 12, 1-3 and 1-

4. If ),( '
II vv  is not already in the list of connections instructions for recursive 

substructure, we include it in line 8.  

 



 

 38 

 

Figure 12: Substructure and its instances while determining 
connection instructions (continuation of the example from 
Figure 11). 

 

We create the recursive substructure’s instance list in lines 10 to 13 of 

RECURSIFY_SUBSTRUCTURE. A recursive instance is a connected subgraph of G 

which can be described by the discovered grammar production. It means that for every 

subset of instances {Im, Im+1, …, Il} from the instance list of S, in which union  Im ∪  Im+1 

∪… ∪  Il  is a connected graph, we create one recursive instance IRk= Im ∪  Im+1 ∪… ∪  

Il .  The recursive instances are no longer isomorphic as instances of S and they vary in 

size. Every recursive instance is compressed to a single node in the evaluation process.  

Subdue uses a heuristic search whose complexity is polynomial in the size of 

the input graph [Cook00]. Our modification does not change the complexity of this 

algorithm. The overlap test is the main computationally expensive addition of our 

grammar discovery algorithm. Analyzing informally, the number of nodes of an 

instance graph is not larger than V, where V is the number of nodes in the input graph. 

Checking two instances for overlap will not take more than )V( 2O time. The number of 

pairs of instances is no more than 2V , so the entire overlap test will not take more 

than )V( 4O  time.  
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Algorithm 1 Graph grammar discovery.  
 
INFER_GRAMMAR (graph G, integer Beam, integer Limit) 

1. grammar={} 
2. repeat 
3.     queue Q ={v | v is a node in G having a unique label} 
4.     bestSub= first substructure in Q 
5.     repeat 
6.         newQ ={} 
7.         for each substructure S ∈  Q 
8.             newSubs = extend substructure S in all possible ways by a single edge and a 

node  
9.             recursiveSub = RECURSIFY_SUBSTRUCTURE(S) 
10.             newQ = newQ ∪ newSubs ∪ recursiveSub 
11.             Limit=Limit-1 
12.             evaluate substructures in newQ  
13.         end for 
14.         if best substructure in newQ better than bestSub 
15.         then bestSub = best substructure in newQ 
16.         Q=newQ 
17.     until Q is empty or Limit ≤ 0 
18.     grammar = grammar ∪ bestSub  
19.     G = G compressed by bestSub 
20. until bestSub cannot compress the graph G 
21. return grammar 

 
 RECURSIFY_SUBSTRUCTURE (substructure S) 

1. recursiveSub → connectionInstructionList = {} 
2. recursiveSub →Instances = {} 
3. for all pairs of instances (I1, I2),   I1∈S, I2∈S 
4.     if (I1  and I2 overlap on node Gv∈ ) 
5.         Iv  = GET_INSTANCE_NODE(v, I1 ) 

6.         '
Iv  = GET_INSTANCE_NODE(v, I2 ) 

7.         if  ( ∉),( '
II vv  (recursiveSub → connectionInstructionList) ) 

8.             Add ),( '
II vv  to  (recursiveSub → connectionInstructionList) 

9.         end if 
10.         if  I1∩ IRk ≠ Ø  or I2∩ IRk ≠ Ø  , where IRk is any member of recursiveSub 

→Instances 
11.             modify IRk  ,    IRk= IRk∪  I1∪  I2 else 
12.             create new entry IRk= I1∪  I2 and add it to recursiveSub →Instances 
13.         end if     
14.     end if 
15. end for 
16. return recursiveSub  
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In our first example from Figure 11, we described a grammar with only one 

production. Now we would like to introduce a complex example to illustrate the 

inference of a grammar which describes a more general tree structure. In Figure 13 we 

have a tree with all nodes having the same label. There are two repetitive subgraphs in 

the tree. One has three edges labeled “a,” “b,” and “c.” The other has two edges with 

labels “x” and “y.”  There are also three edges K1, K2, and K3 which are not part of any 

repetitive subgraph. In the first iteration we find grammar production S1, because 

overlapping subgraphs with edges “a,” “b,” and “c” score the highest in compressing 

the graph. Examining production S1, we notice that node 3 is not involved in 

connection instructions. It is consistent with the input graph where there are no two 

subgraphs overlapping on this node. The compressed graph, at this point, contains the 

node S1, edges K1, K2, K3 and subgraphs with edges “x” and “y.” In the second 

iteration our program finds all overlapping substructures with edges “x” and “y” and 

proposes production S2. Compressing the tree with production S2 results in a graph 

which we use as an initial production S, because the graph can be compressed no 

further. In Figure 13 productions for S1 and S2 have graphs as terminals. We will omit 

drawing terminal graphs in subsequent figures. The tree used in this example was used 

in our experiments, and the grammar on the right in Figure 13 is the actual inferred 

grammar.   
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Figure 13: The tree (left) and inferred tree grammar (right).  

 
We notice that in Figure 13 productions S1 and S2 are recursive with two 

connection instructions but production S is not recursive and does not have connection 

instructions. Each grammar production can have one or more connection instructions. If 

the grammar production does not have a connection instruction, it is a non-recursive 

production. Each connection instruction consists of two integers. They are the numbers 

of vertices in two isomorphic subgraphs. Connection instructions are determined from 

overlap. They show how instances overlap in the input graph and can be used in 

generation. We compress portions of the graph described by productions. Connection 

instructions show how one instance connects to its isomorphic copy. They do not show 

how an instance is connected to the compressed graph. We do not infer the embedding 

mechanism of recursive and non-recursive productions for the compressed graph, but 

this is an issue for further theoretical and experimental study. When a production is 

non-recursive, instances do not overlap and do not connect to each other. We do not 

explicitly give an embedding mechanism for this case. We discuss possible solutions in 

the future work section of the dissertation.  
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4.2 Edge Replacement Graph Grammar Inference Algorithm 

There is overlap in the recurring patterns or motifs representing the building 

blocks of networks in nature. Palla et al. [Palla05] point out the existence of an overlap 

between parts of graphs representing social networks and proteins. They call them 

overlapping communities. In our method of graph grammar inference we search for 

overlap between isomorphic subgraphs of a graph. The overlap allows for proposing 

recursive graph-grammar productions. The first approach was to search for overlap by a 

single node, which led to developing an algorithm for inference of Node Replacement 

Recursive Graph Grammars (Kukluk06). Now, we describe an extension to the node-

replacement approach that allows inference of Edge Replacement Recursive Graph 

Grammars. One limitation of node replacement grammars is shown in Figure 14, where 

all the nodes have the same labels. We infer a node replacement grammar from the 

graph in Figure 14 (a). The grammar inferred in Figure 14 (b), if used for generation, 

would replace node 2 with node 1 of an isomorphic copy of an instance. This grammar 

can generate the graph in Figure 14 (c), but it cannot regenerate the original graph in 

Figure 14 (a). Motivated by this limitation of node replacement grammars, we extended 

the approach to edge replacement grammars by allowing for overlap between two 

nodes. We discuss inference error and how different search-guiding measures influence 

error. We also address how different numbers of labels used in the graph affect the 

inference error.  
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Figure 14: Graph with overlapping squares (a), inferred node-
replacement grammar (b), and graph generated from inferred 
grammar (c) 

 

In the definition of edge replacement recursive graph grammars we have two 

types of productions. The recursive production has a graph in its definition with one or 

more non-terminal edges which we can replace with the structure of the graph to which 

these non-terminal edges belong. We infer an embedding mechanism for recursive 

productions which consists of four integers for every non-terminal edge. These integers 

are node numbers. Two nodes belong to one instance of a graph and two to the other. 

They describe how instance of a graph defined in the grammar production would be 

expanded during derivations. Non-recursive productions replace a single node with a 

graph. Our algorithm does not infer the embedding mechanism for non-recursive 

productions. In every iteration of the grammar inference algorithm we are finding only 

one production, and it is ether non-recursive or recursive. The reader can refer to 

examples in Figure 15 and Figure 33 while examining the definition. In Figure 15 (a) 
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we see an example of the grammar used for generation and in Figure 15 (b) the 

equivalent inferred grammar.  

 

Figure 15: The original grammar (a) used to generate 
examples and the inferred grammar (b).  

 

 

The edge replacement algorithm operates on a data structure called a 

substructure (similar to the algorithm for node replacement grammar inference) which 

in Algorithm 2 we represent by S. A substructure consists of a graph definition of the 

repetitive subgraph and its instances. We illustrate it in Figure 16. We defined two 

functions in Algorithm 2: INFER_GRAMMAR and RECURSIFY_SUBSTRUCTURE. 

The first function is consistent with Cook et al.’s [Cook 1994] algorithm. Initially, the 

graph definitions of substructures are single nodes, and there are as many substructure 

inserted into the queue Q at line 3 as there are different labels on nodes in the input 

graph. At line 8 we expand the substructure in all possible ways by a single edge or by 

single edge and a node. We allow substructures to grow and their instances to overlap 

but by no more than two nodes. We evaluate substructures at line 12. The total number 

of substructures considered is determined by the input parameter Limit. The input 
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parameter Beam specifies the width of a beam search, i.e., the length of Q. For more 

details about the algorithm see [Cook94, Jonyer02, Jonyer04].  

Our addition to Cook et al.’s [Cook94] algorithm is the procedure 

RECURSIFY_SUBSTRUCTURE. This procedure takes substructure S and examines 

its instances for overlap at line 4. If two nodes 21 ,vv  in G both belong to two different 

instances, we propose a recursive grammar rule. In lines 5, 6, and 7 we determine the 

type of non-terminal edge. If 21 ,vv  are adjacent by an edge, it is a real edge, and we 

determine its label which we use to specify the terminating production (see Figure 33). 

Lines 11, 12, 13 produce recursive instances. Every instance IR is a portion of the input 

graph G which contains two or more overlapping instances of S.  

We insert recursive substructures together with non-recursive substructures into 

the newQ in line 10 of the RECURSIFY_SUBSTRUCTURE procedure. Recursive 

substructures compete with non-recursive substructures. They are evaluated at line 12. 

In our experiments we used two evaluation measures: 

( )
( ) ( )[ ] 2| SGsizeNTSsize

Gsize

++
, 

( )
( ) )|( SGsizeNTSsize

Gsize

++
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Algorithm 2 Graph grammar discovery.  
INFER_GRAMMAR (graph G, integer Beam,  
      integer Limit) 
1. grammar={} 
2. repeat  
3.   queue Q ={v | v is a node in G having a unique   
          label} 
4.    bestSub= first substructure in Q 
5.     repeat 
6.       newQ ={} 
7.       for each substructure S ∈  Q 
8.         newSubs = extend substructure S in all  
               possible ways by a single edge and a node  
9.        recursiveSub = RECURSIFY_SUBSTRUCTURE (S) 
10.        newQ = newQ ∪ newSubs ∪ recursiveSub 
11.        Limit=Limit-1 
12.        evaluate substructures in newQ  
13.       end for   
14.      if best substructure in newQ better than bestSub 
15.      then bestSub = best substructure in newQ 
16.      Q=newQ  
17.     until Q is empty or Limit ≤ 0 
18.     grammar = grammar ∪ bestSub  
19.     G = G compressed by bestSub 
20. until bestSub cannot compress the graph G 
21. return grammar 
 
RECURSIFY_SUBSTRUCTURE (substructure S) 
1. recS → connectList = {} 
2. recS →Instances = {} 
3. for all pairs of instances (I1, I2),   I1∈S, I2∈S 
4.   if (I1  and I2 overlap on two nodes Gvv ∈21 , )  
5.     if  (v1, v2 adjacent by an edge in G)  
6.        edge.type=real, edge.label=label(v1, v2) else 
7.        edge.type=virtual, edge.label=NULL  
8.      ( )lkji vvvv ,;,  = GET_CONNEC( 2121 ,,, IIvv ) 

9.      if ( ( )∉edgevvvv lkji ,,;,  (recS → connectList)) 

10.    add ( )edgevvvv lkji ,,;,  to (recS → connectList) 

11.      if  I1∩ IRk ≠ Ø  or I2∩ IRk ≠ Ø  , where IRk is any member of recS →Instances 
12.          IRk= IRk∪  I1∪  I2 else 
13.          create new entry IRk= I1∪  I2 and add it to  
                recS →Instances 
14. return recS 
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Let us call these measures a measure with square (first) and a measure without 

square (second). Initially, we only used measure without square but with this measure 

the inferred graph is often missing one edge in comparison to the original grammar. 

Therefore, we introduced the measure with square which includes the missing edge to 

the inferred grammar. NT is the number of connection instructions. G|S is a graph G 

where we compress all instances of the substructure S to a single node. The reason of 

using measure with square is to put more emphasis on compression than it is in the case 

of the measure without square. This emphasis of compression can be achieved in two 

different ways: (1) minimizing value of size(S) or (2) enlarging value of size(G|S). We 

chose to enlarge size(G|S) by applying exponent 2, but it is not a strong preference and 

other exponents or algebraic methods of emphasizing the size(G|S) in reference to 

size(S) are expected to have similar effects. The size we measure with two methods: (1) 

Minimum Description Length (MDL) and (2) number of nodes plus number of edges. 

We discuss the effects of these different evaluation methods on inference error later in 

the section dedicated to experiments. The original Subdue algorithm uses a heuristic 

search whose complexity is polynomial in the size of the input graph. Our additions 

have their main computations in checking for overlap between instances of 

substructures, and they do not change the complexity of this algorithm.  
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Figure 16: The input graph (a), substructure graph definition (b) 
and four overlapping instances of repetitive subgraph (c). 

 

The algorithm can learn grammars with multiple productions. When we find a 

production (recursive or not), we compress a portion of the graph described by the 

production in line 19 of the algorithm. Every connected subgraph described by the 

production is compressed into a node.  Then we perform inference again on the 

compressed graph. We progress with alternating inference and compression until we 

cannot compress the graph any more.  
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CHAPTER 5 

 

GENERATION OF GRAPHS FROM STOCHASTIC GRAPH GRAMMARS  

 

In this chapter we describe the graph generator. We use this generator to 

generate graphs in experiments reported in the following chapters. We explain how we 

add noise and corruption to the generated graphs.  

 

5.1 Overview 

We developed a graph generator to generate graphs from a known grammar. We 

can generate directed or undirected graphs with labels on nodes and edges. Our 

generator produces a graph by replacing a non-terminal node or edge by a graph until 

all nodes and edges are terminal. We identify non-terminal nodes and edges by labels 

S#, where # is an integer. We assign a real number from 0% to 100% to every 

production. This number is the probability of selecting the production. We mark two 

nodes of a graph used in a production with v1 and v2 to indicate connection nodes to 

the graph with non-terminal edges. 

Let us examine the example from Figure 17, where we show the input file for 

the example grammar, its graphical representation and one, possible, derivation 

(generation) of a graph. We have a graph grammar with three productions. We see the 

format of an input file where every production starts from S# and is following by a 
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probability and a graph definition. A node definition begins with the letter v followed 

by the node number. One node is marked v1 and one v2. An edge definition begins with 

the letter e and is following by the first node number, the second node number, and the 

edge label. The first production has assigned probability 100% and is the starting graph 

of a grammar. It has one non-terminal node labeled S1. S1 can be replaced with two 

graphs: a square with probability 60% or two edge graph with probability 40%. We 

additionally mark node v1 with a ‘*” as we use ‘*’ in other figures in this work where 

we limit productions to node replacement productions. In the example of the derivation 

in Figure 17 we show the steps to generate the graph assuming that the generator 

selected in order the first, second and third productions.  

 

5.2 Graph Grammar Generation Algorithm 

Algorithm 3 describes the generation process. There are five input parameters to 

the function GENERATE_GRAPH. The generation process expands the graph as long 

as there are any non-terminal edges or nodes. Since selection of a production is random 

according to the probability distribution specified in the input file, the number of nodes 

of a generated graph is also random. We place limits on the size of the generated graph 

with two parameters: minNodes and maxNodes. We generate graphs from the grammar 

until the number of nodes is between minNodes and maxNodes or the number of 

generated graphs is larger than maxIterations. We distinguish two different distorting 

operations to the graph generated from grammar: corruption and added noise. 

Corruption involves the redirection of randomly selected edges. The number of edges of 
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a graph multiplied by noise gives the number of redirected edges, where noise is a value 

from 0 to 1. We redirect an edge  ),( 21 vve =  by replacing nodes 1v and 2v with two new, 

randomly selected graph nodes 1'v and 2'v . When we add noise, we do not destroy 

generated graph structure. We add new nodes and new edges with labels assigned 

randomly from labels used in already generated graph structure. We compute the 

number of added nodes from the formula (noise/(1- noise))*number_of_nodes. The 

number of added edges we find from (noise/(1- noise))*number_of_edges. A new edge 

connects two nodes selected randomly from existing nodes of the generated structure 

and newly added nodes. We use two functions of Algorithm 3 to perform these 

described distortions: CORRUPT_GRAPH_STRUCTURE and 

ADD_NOISE_TO_GRAPH.  

The generation process starts by selecting a starting graph. There are one or 

more productions whose left side is S. The starting graph is selected from the right side 

of these productions. Then the starting graph is examined for non-terminal edges and 

nodes. The function GENERATE_GRAPH_FROM_GRAMMAR of Algorithm 3 

operates on the starting graph. When a non-terminal node or edge is identified, we call 

the recursive function EXPAND_GRAPH_BY_EDGE_OR_NODE (Algorithm 4). This 

function identifies the graph to be added from the right side of production rules whose 

left side matches the label of a non-terminal node or edge. After replacing the non-

terminal edge or node with a graph, the procedure searches through the newly added 

nodes and edges for non-terminals. If it finds one, it calls itself recursively. The process 

continues until the generated graph does not have any non-terminals. 
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Input file Graphical representation Example derivation 
S 
100% 
v1 1 a 
v2 2 b 
v 3 S1 
e 1 3 t1 
e 3 2 t2 
e 2 1 t3 
 
S1                S1 
60%             40% 
v1 1 c           v1 1 d 
v2 2 f           v2 2  e 
v 3 d            v 3 g 
v 4 e            e 1 3 t7 
e 1 3 t4        e 3 2 t8 
e 3 4 S1 
e 4 2 t5 
e 2 1 t6 
 

 

Let as assume that generator 
selected in order first, second 
and third production. The 
derivation of a graph will be: 
1) First production is 
applied and starting graph is a 
triangle with one non-terminal 
node S1. 
2) Second production is 
applied and all incident edges 
to node S1 are redirected to 
node labeled c  

a

b S1

t2

t3 t1

c d

f e

t4

t5

t6 S1

 
3) Node S1 is deleted  
4) Third production is 
applied and edge S1 is 
replaced by graph from right 
side of third production 

 
 

Figure 17: Input format to graph generator and example derivation. 
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Algorithm 3 Graph generation from graph grammar 
 
GENERATE GRAPH (grammar, minNodes, maxNodes, noise, maxIterations) 

1. while ( NOT(  minNodes  ≤ numberNodes(graph)  ≤  maxNodes ) AND  
2. (number of generated graphs ≤ maxIterations)) do 
3.     graph=GENERATE_GRAPH_FROM_GRAMMAR(grammar) 
4.     CORRUPT_GRAPH_STRUCTURE (graph, noise) 
5.     ADD_NOISE_TO_GRAPH (graph, noise)     
6. end while 
7. return graph 

 
CORRUPT_GRAPH_STRUCTURE (graph, noise) 

1. while (number of redirected edges  ≤  noise*number_of_edges(graph)) do 
2.     select random edge ),( 21 vve =  

3.     replace nodes 21,vv  with new nodes 21 ',' vv randomly selected from the graph  

4. end while 
5. return graph 

 
ADD_NOISE_TO_GRAPH (graph, noise) 

1. while ( number of added nodes  ≤  (noise/(1- noise))*number_of_nodes 
(graph) do 

2.     add new node to the graph with a label randomly selected from labels used 
already in the graph 

3. while ( number of added edges  ≤  (noise/(1- noise))*number_of_edges 
(graph) ) do 

4.     select two nodes 21,vv  from existing graph and add new edge ),( 21 vve =  with 

label  
           already used in the graph 
5. return graph 

 
GENERATE_GRAPH_FROM_GRAMMAR (grammar) 

1. Select starting graph from right side of productions whose left side is S. Selection 
is made according to probability distribution determined by probabilities given in 
input file for every production.  

2. for all edges graphe∈  
3.     if  e has non-terminal label 
4.         node_or_edge=edge 
5.         EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, NULL, e,  

node_or_edge) 
6.     end if 
7. for all nodes graphv∈  

8.  if  v has non-terminal label 
9.          node_or_edge=node 
10.         EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, v, NULL, 

node_or_edge) 
11.     end if 
12. return graph 
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Algorithm 4 Recursive expansion of a graph by an edge or node.   
 
EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, v, e, node_or_edge) 

1. From all productions whose left side is the same as label of v (or e if 
node_or_edge=edge) select graphToAdd from right side of the 
production according to probability distribution determined by 
probabilities given in input file for every production. 

2. Add all edges and nodes of graphToAdd to graph 
3. if   node_or_edge==node 
4.     Identify a connectingNode of graphToAdd (this node is marked in 

the input file) 
5.     Make all edges incident to graphv∈  incident to connectingNode 
6.     Delete v 
7. end if 
8. if   node_or_node==edge 
9.     Identify a connectingNode1 and connectingNode2  of graphToAdd  

(marked in the input file)   
10.     Given input edge e=(v1,v2), graphe∈ , make all edges incident to v1 

incident to connectingNode1          
           and all edges incident to v2 incident to  connectingNode2  
11. Delete e, v1, v2 
12. end if 
13. for all edges graphToAdde∈  
14.     if  e has non-terminal label 
15.         node_or_edge=edge 
16.         EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, NULL, e,  

node_or_edge) 
17.     end if 
18. for all nodes graphToAddv∈  
19.  if  v has non-terminal label 
20.          node_or_edge=node 
21.         EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, v, NULL, 

node_or_edge) 
22.     end if 
23. return graph 



 

 55 

 

 
CHAPTER 6 

EXPERIMENTS WITH NODE REPLACEMENT GRAPH GRAMMARS 

 

In this chapter we present experiments to analyze the performance of the node 

replacement graph grammar inference algorithm. We begin the chapter with 

methodology and the MDL role in determining complexity of a grammar. Then we 

introduce the definition of an error. Next, follow several experiments showing how 

error depends on noise, complexity of a grammar, number of labels, and size of a graph. 

We examine experiments indicating limitations of the algorithm. The last experiment 

shows the graph grammar inferred from chemical structure. The chapter ends with 

conclusions.  

 

6.1 Methodology 

Having our algorithm implemented, we faced the challenge of evaluating its 

performance. There are an infinite number of grammars as well as graphs generated 

from these grammars. In our experiments we restricted grammars to node replacement 

grammars with two productions. The second production replaces a non-terminal node 

with a single terminal node. In Figure 18 we give an example of such a grammar. The 

grammar on the left is of the form used in generation. The grammar on the right is the 

inferred grammar in our experiment. The inferred grammar production is assumed to 
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have a terminating alternative with the same structure as the recursive alternative, but 

with no non-terminals. We omit terminating production in Figure 18. We associate 

probabilities with productions used in generation. These probabilities define how often 

a particular production is used in derivations. Assigning probabilities to productions 

helps us to control the size of the generated graph. Our inference algorithm does not 

infer probabilities. Oates et al. [Oates03] addresses the problem of inferring 

probabilities assuming that the productions of a grammar are given. We are considering 

inferring probabilities along with productions as a future work. 
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Figure 18: An example of a graph grammar used in the experiments. 

 

We examined grammars with one, two, and three non-terminals. The first 

productions of the grammars have an undirected, connected graph with labels on nodes 

and edges on the right side.  We use all possible connected simple graphs with three, 

four, and five nodes as the structures of graphs used in the productions. There are 

twenty nine different simple connected undirected unlabeled graphs [Read98]. We show 

them in Figure 22. Our graph generator generates graphs from the known grammar that 

is based on one of the twenty nine graph structures. Then we use our inference 

algorithm to infer the grammar from the generated graph. We measure an error between 
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the original and inferred grammar. We use MDL as a measure of the complexity of a 

grammar.  Our results describe the dependency of the grammar inference error on 

complexity, noise, number of labels, and size of generated graphs.  

 

6.2  MDL as a Measure of Complexity of a Grammar 

We seek to understand the relationship between graph grammar inference and 

grammar complexity, and so need a measure of grammar complexity. One such measure 

is the Minimum Description Length (MDL) of a graph, which is the minimum number 

of bits necessary to completely describe the graph. Here we define the MDL measure, 

which while not provably minimal, is designed to be a near-minimal encoding of a 

graph. See [Cook94] for a more detailed discussion.  

ebitsrbitsvbitsgraph ++=)(MDL ,   where  

vbits  is the number of bits needed to encode the nodes and node labels of the graph 

ulvvvbits lglg += , 

v  is the number of nodes in the graph          

vlg is the number of bits to encode the number of nodes v in the graph 

ul is the number of unique labels in the graph 

rbits is the number of bits needed to encode the rows of the adjacency matrix of the 

graph 

∑
=
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bvrbits
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lg)1lg()1(  

b is the maximum number of 1s in any row of the adjacency matrix 
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ik is the number of 1s in a row i of the adjacency matrix 

ebits  is the number of bits needed to encode edges given in adjacency matrix 

mKleebits u lg)1()lg1( +++= , 

 e  is the number of edges of a graph 

m is the maximum number of edges between any two nodes; in our graphs m=1 because 

graphs are simple, therefore 0lg)1( =+ mK  

K is number of 1s in adjacency matrix of a graph, in our graphs eK =  

 

Since all the grammars in our experiments have two productions and the second 

production replaces a non-terminal with a single node, the complexity of the grammar 

will vary depending only on the graph on the right side of the first production. We 

would like our results for one, two and three non-terminal grammars to be comparable; 

therefore we do not want our measure of complexity of a grammar to be dependent on 

the number of non-terminals. In every graph used in the productions we reserve three 

nodes. We give the same label to these nodes. When we generate a graph, we replace 

one, two, or three labels of these nodes with the non-terminal S when we need a 

grammar with one, two or three non-terminals. However, when we measure MDL of a 

graph we leave the original three labels unchanged. In our experiments we always use 

that same non-terminal label. In the general case a production can contain different non-

terminals. Every non-terminal would need to be counted as a different label of a graph 

and MDL would increase with increasing number of non-terminals. 
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 Next, we give an example of calculating the MDL of a graph using the graph 

structure from Figure 18. The adjacency matrix of the graph and the MDL calculation 

are as follows. 
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02.251lg)16()9lg1(6lg)1()lg1( =+++=+++= mKleebits u  

ebitsrbitsvbitsgraph ++=)(MDL =65.48 

 

We can compare this result with an MDL value 26.09 of a triangle with three 

vertices, three edges and four different labels.  

 

6.3 Error 

We introduce a measure to compare the original grammar to the inferred 

grammar. Our definition of an error has two aspects. First, there is the structural 

difference between the inferred and the original graph used in the productions. Second, 

there is the difference between the number of non-terminals and the number of 

connection instructions. If there is no error, the number of non-terminals in the original 
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grammar is the same as the number of connection instructions in the inferred grammar. 

We compute the structural difference between graphs with an algorithm for inexact 

graph match initially proposed by Bunke and Allermann [Bunke1983]. For more details 

see also [Cook94].  

In our experiments we measure an error based on structural difference. Another 

approach to measuring the accuracy of the inferred grammar would be based on a graph 

grammar parser. We would consider accurate the inferred grammars that can parse the 

input graph.  Graph grammar parser would require subgraph isomorphism test which is 

computationally expensive and much more difficult in implementation than the error 

measure we are using. For these reasons we did not pursue implementation of graph 

grammar parser.  

We would like our error to be a value between 0 and 1; therefore, we normalize 

the error by having in the denominator the sum of the size of the graph used in the 

original grammar and the number of non-terminals. We do not allow an error to be 

larger than 1; therefore, we take the minimum of 1 and our measure as a final value. 

The restriction that the error is not larger than 1 prohibits unnecessary influence on the 

average error taken from several values by inferred graph structure significantly larger 

than the graph used in the original grammar.   

⎟
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21 ,        where  

)g,matchCost( 21g  is the minimal number of operations required to transform 1g to 

a graph isomorphic to 2g , or 2g to a graph isomorphic to 1g . The operations are: 
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insertion of an edge or node, deletion of a node or an edge, or substitution of a node or 

edge label.           

CI#  is the number of inferred connection instructions  

NT#  is the number of non-terminals in the original grammar 

)size( 1g  is the sum of the number of nodes and edges in the graph used in the 

grammar production 

In Figure 19 we see two productions we use in our example of error calculation. 

The production on the left is the original production and the production on the right is 

inferred production. The production on the left has two non-terminals, 2# =NT . 

Production on the right has one inferred connection instruction,  1# =CI . There are three 

nodes and two edges in the graph structure on the right, 5)size( 1 =g . We can transform 

graph from the left to the graph on the right in Figure 19 by removing two edges and 

one node from the graph on the right. Therefore 3)g,matchCost( 21 =g The inference error  

57.0
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Figure 19: Graph grammar inference error.  

 
6.4  Experiment 1: Error as a Function of Noise and Complexity of a Grammar 

We used twenty nine graphs from Figure 22 in grammar productions. We 

assigned different labels to nodes and edges of these graphs except three nodes used for 



 

 62 

non-terminals. We generated graphs with noise from 0 to 0.9 in 0.1 increments. For 

every value of noise and MDL we generated thirty graphs from the known grammar and 

inferred the grammar from the generated graph. We computed the inference error and 

averaged it over thirty examples. We generated 8700 graphs to plot each of the three 

graphs in Figure 20.  The first plot shows results for grammars with one non-terminal. 

The second and the third plot show results for grammars with two and three non-

terminals. We did not corrupt the generated graph structure in experiments in Figure 20. 

As noise we added nodes and edges to the generated graph structure. We used only the 

ADD_NOISE_TO_GRAPH function of our generator.  Figure 21 has the same results 

as Figure 20 with the difference that we corrupted the graph structure generated from 

the grammar and then we added nodes and edges to the graph. We used both 

CORRUPT_GRAPH_STRUCTURE and ADD_NOISE_TO_GRAPH functions of the 

generator to distort the graph.  
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                        (a)                                           (b)                                           (c) 

Figure 20: Error as a function of noise and MDL where graph 
structure was not corrupted: one non-terminal (a), two non-
terminals (b), and three non-terminals (c)  
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(a)                                           (b)                                           (c) 

Figure 21: Error as a function of noise and MDL where graph structure was 
corrupted: one non-terminal (a), two non-terminals (b), and three non-terminals (c). 

  

We see trends in the plots in Figure 20 and Figure 21. Error decreases as MDL 

increases. A low value of MDL is associated with small graphs, with three or four nodes 

and a few edges. These graphs, when used on the right hand side of a grammar 

production, generate graphs with fewer labels than grammars with high MDL. Smaller 

numbers of labels in the graph increase the inference error, because everything in the 

graph looks similar, and the approach is more likely to propose another grammar which 

is very different than the original. As expected, the error increases as the noise increases 

in experiments with corrupted graph structure. However, there is little dependency of an 

error from the noise if the graph generated from the grammar is not corrupted (Figure 

20). 

We average the value of an error over ten values of noise which gives us the 

value we can associate with the graph structure.  It allowed us to order graph structures 

used in the grammar productions based on average inference error. In Figure 22 we 

show all twenty nine connected simple graphs with three, four and five nodes used in 

productions ordered in non-decreasing MDL value of a graph structure. In Table 2 we 
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give an order of graph structures for six experiments with corrupted and non-corrupted 

structures and one, two, and three non-terminals. The numbers in the table refer to 

structure numbers in Figure 22. We see in Table 2 that graph number 21 is close to the 

beginning of the list in all six experiments.  Graphs number 1, 2, and 11 are close to the 

end of all six lists. We conclude that when graph number 21 is used in the grammar 

production, it is the easiest for our inference algorithm to find the correct grammar. 

When graph number 1, 2, or 11 is used in the grammar production and generated graphs 

have noise present, we infer grammars with some error. We also observe a tendency of 

decreasing error with increasing MDL in the graph orders in Table 2. Graph 29 has the 

highest MDL, because it has the most nodes and edges. In five experiments graph 29 is 

closer to the end of the list.  

 

Figure 22: Twenty nine simple connected graphs ordered according 
to non-decreasing MDL value. 
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Table 2: Twenty nine simple graphs ordered according to increasing 
average inference error of six experiments in Figure 20 and Figure 21. 
The numbers in the table refer to structures in Figure 22. 

1
  

21    17    22    15     8    10    23    28    20    27    29    19     26   
12    16     3    18     4    24    25     9     5     7    14     6    13    
11     1     2 

2 21    23    22    15    18    16    17    20    19     9    28    12    10    
14    26    13    27    25     8    24    29     4     5     7     3     6    
11     2     1 
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21    15    23    16    17    19    18    14     9    13    28    12     27   
26    25    24     5    10     4    29    22     6    20     7    11     2     
8     1     3 

1 8    10    12    21    17    15    20    23    16    19    18    22    13    
14     9    27     4    28    25     3     7    29    24     6    26     5    
11     1     2 

2 9    17    19    16    21    13    18     8    15    14    10    12    25    
27    23    22    24    20    26    28     4     3     6     5    29     7    
11     1     2 
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9    19    14    12    18    16    13    15    21    17     4    23     10    
25    27    26     5     6    24    20    28    22    29     8     7     3    
11     1     2 

 

Quantitative definition of an error allows us to automate the process and 

perform tests on thousands of graphs. The error is caused by a wrongly inferred graph 

structure used in the production or number of connection instructions which is too large 

or too small. However, there are cases where the inferred grammar represents the graph 

well, but the graph in the production has a different structure. For example, we observed 

that the grammar with MDL=55.58 and graph number 11 causes an error even if we 

infer the grammar from graphs with no corruption and zero noise. The inferred graph 

structure contains two overlapping copies of the graph used in the original grammar 

production. We illustrate it in Figure 23: An inference error where larger graph structure 

is proposed: original grammar (a) and inferred grammar (b). The structure has 
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significant error, yet does subjectively capture the recursive structure of the original 

grammar. 

 

6.5  Experiment 2: Error as a Function of Number of Labels and Complexity of 
a Grammar 

 

We would like to evaluate how error depends on the number of different labels 

used in a grammar. We restricted graph structures used in productions to graphs with 

five nodes. Every graph structure we labeled with 1, 2, 3, 4, 5 or 6 different labels. For 

every value of MDL and number of labels we generated 30 different graphs from the 

grammar and computed average error between them and the learned grammars. The 

generated graphs were without corruption and without noise. We show the results for 

one, two, and three non-terminals in Figure 25. Below the three dimensional plots, for 

clarity, we give two dimensional plots with triangles representing the errors. The larger 

and lighter the triangle the larger is the error. We see that the error increases as the 

number of different labels decreases. We see on the two dimensional plots the shift in 

error towards graphs with higher MDL when the number of non-terminals increases.  

The average error for graphs with only one label is 1 or very close to 1.  The 

most frequent inference error results from the tendency of our algorithm to propose one-

edge grammars when inferred from a graph with only one label. We illustrate this in 

Figure 24 where we see a production with a pentagon using only one label “a”.  The 

inferred grammar has one edge with two connection instructions 1-1 and 1-2. Since all 

the edges in the generated graph have the same label and all the nodes have the same 
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label, this grammar compresses the graph well and is evaluated highly by our 

compression-based measure. However, this one-edge grammar cannot generate even a 

single pentagon. An evaluation measure which penalizes grammars for an inability to 

generate an input graph would bias the algorithm away from single-edge grammars and 

could correct the one-edge grammar problem. However, this approach would require 

graph-grammar parsing, which is computationally complex. 

.  
(a)                                                      (b) 

Figure 23: An inference error where larger graph structure is proposed: 
original grammar (a) and inferred grammar (b). 
 

 

                                               (a)                                                      (b) 

Figure 24: Error where inferred grammar is reduced to production with single 
edge: original grammar (a) and inferred grammar (b). 
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6.6  Experiment 3: Error as a Function of Size of a Graph and Complexity of a 
Grammar 

 

We generated graphs from grammars with two non-terminals and noise=0.2. 

The number of nodes of the generated graphs was from the interval [x, x+20], where we 

change x from 20 to 420. For each value of x and MDL we generated thirty graphs and 

compute average inference error over them. We show in Figure 26 the results for 

corrupted and not corrupted graph structure. We concluded that there is no dependency 

between the size of a sample graph and inference error.  
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                       (a)                                              (b)                                                 (c) 

Figure 25 : Error as a function of MDL and number of different 
labels used in a grammar definition: one non-terminal (a), two 
non-terminals (b), and three non-terminals (c).  . 
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                                 (a)                                                        (b) 

Figure 26: Error as a function of MDL and size of generated 
graphs (noise=0.2, two non-terminals): (a) uncorrupted graph 
structure, (b) corrupted graph structure 

 

6.7  Experiment 4: Limitations 

In Figure 27 we show an example illustrating the limits of our approach. In 

Figure 27 (a) we have a graph consisting of overlapping squares. All labels on nodes are 

the same, and we omit them. The squares do not overlap by one node but by an edge. 

Our algorithm assumes that only one node overlaps in the instances of the substructure 

and therefore infers the grammar shown in Figure 27 (b). The inferred grammar can 

generate chains, an example of which is shown in Figure 4 (c). The original input graph 

is not in the set of graphs generated by the inferred grammar. An extension of our 

method to overlapping edges would allow us to infer the correct grammar in this 

example.  
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(a)                                                       (b)                                                        (c) 

Figure 27: Graph with overlapping squares (a), inferred 
grammar (b), and graph generated from inferred grammar (c) 

 

Figure 28 shows another example illustrating the limits of our algorithm.  The 

first graph in the first production on the left is a square with two non-terminals labeled 

S1, and the graph of the second production is a triangle with one non-terminal labeled 

S. Our algorithm is not designed to find alternating productions of this type. We 

generated a graph from the grammar on the left, and the grammar we inferred is on the 

right in Figure 28. The inferred grammar has one production in which the graph 

combines both the triangle and square. The set of graphs generated by alternating 

squares and triangles according to the grammar from the left does not match exactly the 

set of graphs of the inferred grammar. Nevertheless, we consider it an accurate 

inference, because the inferred grammar will describe the majority of every graph 

generated by the original grammar. If we were learning alternating productions, we 

would need to infer multiple productions in one iteration or allow for multiple 

compression passes on the input graph.  
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Figure 28: The grammar with alternating productions (left) 
and inferred grammar (right).  

 
6.8  Experiment 5: Chemical Structures 

As an example from the real-world domain of chemistry, we use four chemical 

structures as the input graphs in our next experiment. Figure 29 and Figure 30 show the 

structures of the molecules and the grammar productions we found in these structures. 

The first structure in Figure 29 is the structure of cellulose with hydrogen bonding. The 

second molecule is macrocyclic gallium carboxylate [Uhl04]. We found a grammar 

production with the Ga-Ga bond. The graph used in the production definition appears 

four times in the structure. The third structure in Figure 29 is water-soluble tin-based 

metallodendrimer [Schumann03]. We inferred two productions. We found production 

S1 in the first iteration. Production S1 has connection instruction 1-1 which means that 

vertex number 1 is replaced by an isomorphic instance of the right hand side of the S1 

production, and the connecting vertex in the new instance of a graph is also vertex 1. 

We found the second production after all instances of S1 were compresses into a single 

vertex. The graph on the right hand side of production S is a graph of a chemical 

structure compressed with S1.  
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In Figure 30 we have the structure of a dendronized polymer [Zhang03].  Its 

graph grammar representation consists of three productions. Zhang et al. describe 

several chemical structures where the graph we found in production S2 in Figure 30 

appears two, six, and fourteen times. Since production S1 conveys the idea of “one or 

more” connected graphs of the S1 structure, it intends to describe the entire family of 

chemical structures described in Zhang et al.’s paper. The grammar productions we 

found capture the underlying motifs of the chemical structures. They show the repetitive 

connected components, the basic building blocks of the structures. We can search for 

such underlying building block motifs in different domains, hoping that they will 

improve our understanding of chemical, biological, computer, and social networks.  
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Chemical structure  Inferred productions 
cellulose with hydrogen bonding 
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water-soluble tin-based metallodendrimer 

Si[CH2CH2Sn(CH2CH2CONHCH2CH2OH)3)]4 

 
 

Figure 29: Three chemical structures (left) and the inferred grammar production (right). 
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Figure 30: The structure of dendronized polymer and its 
representation in hierarchical graph grammar productions. 

 
6.9 Experiment 6: Learning Curves 

We wanted to examine the learning process on a graph grammar with several 

productions. Since there are an infinite number of different graph grammars, we decided 

to select one example with several different graph structures used in the grammar 

productions. We show this example in Figure 31, where we see the graph grammar used 

to generate graphs. There are five productions. The last production with only one node 

is a terminating production. Each graph in the first four productions had two non-
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terminal nodes. The first four productions are chosen with probability 0.1 in the 

generation process. The terminating production is chosen with probability 0.6. 
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Figure 31: Graph grammar used for graph generation 

 
We generate sets of graphs with 10, 20, 30, and up to 100 graphs generated from 

the grammar in Figure 31. Every graph in the set has 30 to 40 nodes. We compare the 

first four grammar productions found by our algorithm to the original grammar in 

Figure 31. As a measure of an error, we use the minimal match cost of a transformation 

from one graph structure to the other, as described in section 8.3 where we talk about 

the measure of the error. We calculate the match cost of the structure of the graph from 

the first inferred grammar production to the four structures of the original productions 

and choose the smallest value. Then, we calculate the match cost of the structure from 

the second inferred production to the three structures from the original grammar not 

selected before and select the smallest value. Similarly, we find the smallest match cost 

between the structure of the third inferred production and the two structures left. The 

last inferred production we compare to the remaining production from the original 

grammar. The process of matching productions from the inferred grammar to the 

original grammar is greedy. It may not find the minimal error of matching four 

productions, because we do not explore all possible matchings. The inference error we 
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compute as a sum of the four errors we just explained. We repeat generation and error 

determination thirty times and compute the average value of the error. In Figure 32 we 

show the grammar inference error and time as a function of the number of graphs in the 

input set. We see that time in the range 10 to 100 graphs has close to linear increase. 

The error decreases sharply as we increase the set of graphs from 10 to 30. The error 

does not reach zero. The input graph has now four patterns. We often infer productions 

which contain two of the patterns or a portion of two patterns which causes the error.   
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Figure 32: Error and time as a function of number of graphs in the training set.  

 
 

6.10 Summary of Results and Conclusions 

 
We described experiments with node replacement graph grammars. The 

algorithm we described has its limitations: the left side of the production is limited to 

one single node; only connecting two single nodes is allowed in derivations. The 

algorithm finds recursive productions if repetitive patterns occur within an input graph 
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and they overlap. If such patterns do not exist, the algorithm finds non-recursive 

productions and builds a hierarchical structure of the input data. Grammar productions 

with graphs of higher complexity measured by MDL are inferred with smaller error. 

There is little dependency of error on noise if the generated graphs are not corrupted. 

The error of grammar inference increases as the number of different labels used in the 

grammar decreases. There is no dependency between the size of a sample graph and 

inference error. If all labels on nodes are the same and all labels on edges are the same, 

the algorithm produces a grammar which has only one edge in the graph definition. 

One-edge grammars over-generalize if the input graph is a tree, and they are inaccurate 

in many other graphs. This tendency to find one-edge grammars from large, connected 

graphs is due to the fact that one-edge grammars score high because they can compress 

the entire graph.  

Grammars inferred by the approach developed by Jonyer et al. [Jonyer04] were 

limited to chains of isomorphic subgraphs which must be connected by a single edge. 

Since the connecting edge can be included in the production’s subgraph, and 

isomorphic subgraphs will overlap by one vertex, our approach can infer Jonyer et al.’s  

class of grammars. As we noticed in our experiment shown in Figure 27, when the 

subgraphs overlap by more than one node, our algorithm still looks for overlap on only 

one node and infers a grammar which cannot generate the input graph. Therefore one 

extension to the algorithm is a modification which allows for overlap larger than a 

single node, which we accomplish in the algorithm for Edge Replacement Recursive 

Graph Grammars.  The next chapter presents experimental results using this algorithm. 
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CHAPTER 7 

EXPERIMENTS WITH EDGE REPLACEMENT GRAPH GRAMMARS 

 

In this chapter we describe experiments on edge replacement graph grammars. 

We show examples of productions inferred with real and virtual edges. We show how 

different evaluation measures, different graph structures, and noise, influence the 

inference error. Next, we report experiments with chemical structures. A summary of 

experiments and conclusion ends the chapter.  

7.1 Introduction 

We describe experiments on the algorithm for inference of edge replacement 

graph grammars. This method generates candidate recursive graph grammar 

productions based on finding isomorphic subgraphs which overlap by two nodes. If 

there is no edge between the two overlapping nodes, the method generates a 

recursive graph grammar production with a virtual edge. We guide the search for the 

graph grammar using the Minimum Description Length (MDL) of a graph and the 

size of a graph. We show experiments where we generate graphs from known graph 

grammars, use our method to infer the grammar from the generated graphs, and then 

measure the error between the original and inferred grammars.  
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7.2. Methodology 

In our experiments we generate thirty graphs from a known grammar, and then 

we infer the grammar from every generated graph. We compute the average inference 

error over these thirty examples.  The generated graphs have 40 to 60 nodes. Our 

generator can assign a random label to a node or an edge. We compare the original 

grammar and inferred grammar using the following measure of the error:  
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⎞
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⎝

⎛

+
−+
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NTg

NTCIgg
Error

#)size(
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21 , where 

)g,matchCost( 21g  is the minimal number of operations required to transform 1g into a 

graph isomorphic to 2g , or 2g into a graph isomorphic to 1g . The operations are: 

insertion of an edge or node, deletion of an edge or node, or substitution of a node or 

edge label.  

CI#  is the number of inferred connection instructions  

NT#  is the number of non-terminal edges in the original grammar 

)size( 1g  is the sum of the number of nodes and edges in the graph used in the grammar 

production 

)g,matchCost( 21g  measures the structural difference between two graphs with an 

algorithm for inexact graph match initially proposed by Bunke and Allermann 

[Bunke83]. For more details see also [Cook94]. Our definition of an error has two 

aspects. First, there is the structural difference between the inferred and the original 

graph used in the productions. Second, there is the difference between the number of 
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non-terminals and the number of connection instructions. If there is no error, the 

number of non-terminals in the original grammar is the same as the number of 

connection instructions in the inferred grammar. We would like our error to be a value 

between 0 and 1; therefore, we normalize the error by having in the denominator the 

sum of the size of the graph used in the original grammar and the number of non-

terminals. We do not allow an error to be larger than 1; therefore, we take the minimum 

of 1 and our measure as a final value. The restriction that the error is not larger than 1 

prohibits unnecessary influence on the average error by inferred graph structures 

significantly larger than the graph used in the original grammar. We now describe 

several experiments showing different aspects of the edge replacement graph grammar 

inference algorithm.  

7.3. Experiment 1: Virtual and Real Edges in Productions 

In Figure 33 we see the graph on the top where all nodes have the same label 

and on the bottom of the figure the grammar inferred from this graph. We intend to 

demonstrate verity of productions and the nature of edge replacement grammars our 

approach can handle. The input graph has four different repetitive patterns. We did not 

generate this graph. We constructed it manually such that we can find different 

productions in it.  In every pattern subgraphs overlap on two nodes. The part of the 

graph with overlapping squares is isolated. The rest of the graph is a connected graph. 

The four patterns correspond to nodes S1, S2, S3, S4 of the first production S. Our 

approach finds production S last. Production S is a non-recursive node replacement 

production for which we do not infer connection instructions. We find production S by 
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compressing the input graph with recursive edge replacement productions found earlier. 

Production S1 we find first because it compresses the graph the most. This production 

has two non-terminal edges. Edge S1a is virtual. Edge S1b is real. We can replace both 

S1a and S1b non-terminal edges with the graph on the right hand side of production S1 

or terminate. Connection instructions for S1a and S1b are different as is their 

termination. The terminating edge of S1b is an edge with label q. The termination of 

S1a is by taking no action. We mark it by two nodes without an edge. We compress to a 

single node the part of the input graph described by the S1 production before we repeat 

the inference process. We also do similar compression after finding S2, S3, and S4. The 

second production we find is S2. This production has two virtual edges as non-

terminals. The production S3 has two non-terminal real edges and production S4 has 

one non-terminal real edge.  

Productions S3 and S4 can regenerate the portions of the graph they describe. 

We consider the inferred grammar correct, although productions S1 and S2 cannot 

regenerate the structures from which we inferred them. In the generation process we 

replace a non-terminal edge with a graph and then if the expanded portion of a graph 

contains a non-terminal edge it is expanded further. In this paradigm there is no way 

that expanded portions of the generated graph will have any additional links or 

connections between them except the connection which includes two nodes of the 

expanded non-terminal edge. In order to regenerate structures covered by productions 

S1 and S2, we would need a more sophisticated generation mechanism with context 
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sensitive embedding mechanism. This mechanism, inferred during induction, would 

indicate nodes to merge during the generation process.  

 
(a) 

 
(b) 

Figure 33. The graph (a) and inferred grammar from this graph (b). 
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7.4. Experiment 2: Inference Error with Different Evaluation Measures  

In Figure 34 we examine how inference error is affected by different evaluation 

measures. We see four plots. Each plot has seven points. Every point we found by 

generating a graph using the 9-cycle grammar shown in Figure 34. We assigned label 

“a” to six nodes and one edge of the cycle. All other nodes and edges have distinct 

labels which we omit in the figure. We generated thirty graphs with 40 to 60 nodes from 

the cycle grammar. We inferred the grammar from the generated graph and measured 

the inference error. We computed the average over thirty errors for the value of a single 

point in the plots. We examined the error value where we used MDL to measure 

size(G), size(S) and size(G|S) in two cases: (1) measure without square and (2) measure 

with square. We examined the same two cases while measuring size by adding the 

number of nodes and edges ( ) ( ) ( )gedgesgnodesgsize += . 

 

( )
( ) ( )[ ]2| SGsizeNTSsize

Gsize

++

( )
( ) )|( SGsizeNTSsize

Gsize

++

 

Figure 34: The influence on the inference error of evaluation 
measures using a graph grammar of a 9-cycle.  
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The error is high in all four cases when we use only one unique label in the 

graph. In Figure 35 (a) we show the grammar inferred from the graph with one label 

only. It is a two edge graph where both edges are non-terminals. This grammar can 

compress the entire graph and has a small structure and therefore scores high by our 

evaluation measure. The error drops to zero when we use three distinct labels in the 

graph with the square evaluation measure but it does not reach zero at all when we use 

the evaluation measure without the square. In Figure 35 (b) we show the grammar 

inferred using the evaluation measure without the square. We expect to infer the cycle 

but instead we infer the structure still missing one edge. The missing edge is the 

overlapping edge. This grammar with missing edge, however, compresses the input 

graph very well and therefore scores well. It leaves only one edge uncompressed from 

the entire graph. When we use ( )[ ]2| SGsize  instead of ( )SGsize |  in our evaluation 

measure, compressing the entire graph, including the remaining single edge, becomes 

more important than small structure in the inferred grammar and we infer the complete 

cycle.  
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(a) 

 

(b) 

Figure 35: Two-edge grammar inferred from the graphs with 
only one label on nodes and edges (a) and inferred grammar 
with evaluation measure size(G)/(size(S)+NT+size(G|S)) 
where cycle is expected (b). 

 
 

7.5. Experiment 3: Inference Error with Different Graph Structures  

We are interested in how inference error depends on grammar structure. We 

tested several structures. We show results in Figure 36. Every point in the plots in 

Figure 36 was an average of the inference error from thirty experiments. In every 

experiment we generated graphs with 40 to 60 nodes. Every label of an edge and a node 

of the graphs not marked in the Figure 36 and Figure 37 was assigned a label chosen 

from k distinct labels, where k is an integer from 1 to 7 in Figure 36 and from 1 to 16 in 

Figure 37. We see that the smallest error we achieved is for the tree structure. As we 

complicate the structure and increase the average degree of nodes and the ratio of the 

number of edges to the number of nodes, the error increases. 
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In Figure 36 increased structural complexity increases the inference error. In our 

experiments with node replacement graph grammar we noticed an opposite trend. With 

increased complexity measured by MDL we observe decreased error. These results 

suggest that identifying the non-terminal node and the pattern can be easier when 

structure complexity (ration of edges to nodes) increases. However, when we infer edge 

replacement graph grammars, identifying the non-terminal edge and the pattern is more 

difficult with increased structural complexity.    

 The highest error we had with complete graph. We show this case separately in 

Figure 37. We observed the average value of the inference error for a complete graph 

with six nodes. Then we removed from the complete graph four edges and repeated the 

experiment. Next, we remove from the complete graph eight edges and repeated the 

experiments again. As we see in Figure 37, the more edges we have in the graph and the 

closer the graph is to the complete graph, the higher the average error. In other words, 

the closer the graph is to the complete graph the more unique labels we need to decrease 

the error.  
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Figure 36: The influence on the error of different graph 
structures used in grammar productions. 

 
(a) 

 

(b) 

Figure 37: The change in the error with reduced number of edges 
from the complete graph structure (a) and an example of the 
inferred grammar (b).  
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7.6. Experiment 4: Inference Error in the Presence of Noise 

In Figure 38 we show the results of an experiment where we generated graphs 

with the number of nodes from 40 to 60. The Peterson graph (Figure 38 (a)) was the 

structure we used in the graph grammar. The Peterson graph has 10 nodes and 15 edges 

which allowed us to vary the number of non-terminal edges in the structure. We 

assigned distinct labels to all nodes except six and all edges except six. We generated 

graphs with 1, 2, 3, 4, and 5 non-terminals and noise value, 0.1, 0.2, …, 0.8. For every 

value of noise and number of non-terminals we generated thirty graphs from the 

grammar and computed average inference error over thirty values. We distinguish two 

types of noise: corrupted and not corrupted. Not corrupted noise is the addition of nodes 

and edges to the graph structure generated from the grammar. We add the number of 

nodes equal to (noise/(1- noise))*number_of_nodes and number of edges equal to 

(noise/(1- noise))*number_of_edges. Every new edge randomly connects two nodes of 

the graph. We randomly assigned the labels to added edges and nodes from labels 

already existing in the graph. We do not change the structure generated from the graph 

grammar in the not-corrupted version. However, in the corrupted version we change the 

structure of that generated from the grammar graph. After adding additional nodes and 

edges, in the way we do for non-corrupted version, we redirect randomly selected 

edges. The number of edges of a graph multiplied by noise gives the number of 

redirected edges. We randomly assign two new nodes to every selected edge. The 

results in Figure 38 show that there is little influence on error from the number of non-

terminals. We see an increase in the error in the not-corrupted version when the number 
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of non-terminals reaches 5, but for number of non-terminals 1-4 we do not see any 

significant changes. Also, the error in the not-corrupted version does not increase 

significantly as long as the value of noise is less than about 0.5. Corruption of the graph 

structure, as expected, causes greater error than non-corruption. The error increases 

significantly even with 0.1 noise, and is close to 100% for noise 0.3 and higher.  

 

7.7. Experiment 5: Chemical Structure 

In Figure 39 (a) we show the chemical structure of G tetrad (Neidle, 1999). 

Versions of this structure are used in research on the HIV-1 virus (Phan, 2005). We 

converted this structure to a graph which we use as an input to our grammar inference 

algorithm. We found the grammar which represents the repetitive pattern of this 

chemical structure. We show the grammar in Figure 39 (b). This experiment 

demonstrates the potential application of our approach and also a weakness for further 

study. Although the grammar production we found captures the underlying motifs of the 

chemical structure, it cannot regenerate the original structure which has the ring form.  
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Figure 38: Inference error of a graph grammar with the Peterson 
graph structure in the presence of noise and different number of 
non-terminals. Peterson graph (a), results with corrupted (b) and 
not corrupted graphs structure (c).  
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7.8. Summary of Experiments and Conclusion 

We described the approach to graph grammar inference which extends the class 

of learnable graph grammars. Node Replacement Recursive Graph Grammar inference 

was limited to the patterns where instances overlap on exactly one node. Allowing 

instances to overlap on two nodes led to the definition of real and virtual non-terminal 

edges. With this approach we can infer the grammar generating chains of squares 

overlapping on one edge which was not possible with node replacement grammars. 

Patterns often overlap on two nodes in chemical structures, as we saw in the example of 

the previous section; therefore, we have an approach which can find and represent 

important patterns in the chemical domain.  

The performance of the algorithm depends on the number of distinct labels in 

the input graph. If there is only one label, the algorithm finds a two edge grammar. If 

we use three or more labels in the input graph, the inference error drops to zero or to a 

value close to zero in inference of grammars with a graph structure of a tree, cycle, 

Peterson graph, and tetrahedron. However, as we complicate the structure and increase 

the average degree of nodes and the ratio of the number of edges to number of nodes, 

the error increases. The highest error we had is with a complete graph. The closer the 

graph structure of the grammar is to a complete graph, the more unique labels we need 

to use in the graph to achieve the same level of average inference error. If we generate 

graphs from a graph grammar and then add nodes and edges to this graph, it does not 

influence significantly the inference error in the range of noise 0 to 0.5. There is little 

influence on error from the number of non-terminal edges in the Peterson graph 
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grammar structure when the number of non-terminals changes from 1 to 4. Using the 

evaluation measure without square causes our approach to infer the grammar without 

one overlapping edge. The evaluation measure with square overcomes this deficiency.  

 

Figure 39: The chemical structure of G tetrad (a) and inferred grammar structure (b). 

 

The approach we described in this dissertation has its limitations. It requires two 

or more unique labels in the graph, otherwise it infers a two-edge grammar. The 

approach has higher error when inferring more complete graphs. The inferred 
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grammars, as in the example of chemical structure, can represent the underlying pattern 

of the structure, but cannot regenerate the structure if it has the ring form. The approach 

requires the existence in the input graph of frequently occurring isomorphic subgraphs 

and their overlap by one edge to infer recursive productions. Otherwise, the approach 

can infer non-recursive productions.  
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CHAPTER 8 

INFERRING XML SCHEMA USING GRAPH GRAMMARS  

 

In this chapter we show how our method performs in extracting the organization 

of XML files. We convert an XML file into a tree and infer a graph grammar from it. 

We compare the inferred graph grammar to the Document Type Definition of an XML 

file. We report the graph grammar we found from the XML files used in the National 

Library of Medicine and the United States Patent and Trademark Office. Our third 

domain describes a major baseball league.  

 

8.1 Introduction 

The World Wide Web Consortium (W3C) released in 1998 the XML 

recommendation which defines parts of XML document [Harold99]. XML is composed 

of elements and their attributes. Elements can contain other elements such that they 

form a hierarchical tree. Software developers often write an XML document and then 

they write the XML schema or DTD.  Several software packages exist which do 

automatic XML schema generation from XML documenst: Microsoft XSD Inference, 

Altova XML Spy, EditML Pro, Sonic Software Releases Sonic Stylus Studio and more.  

These systems are specifically designed to generate XML schema. Our algorithm is 

more general and is designed to infer graph grammars from any structural data, 

therefore we do not intend to compete with professional schema generation systems. 
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Rather, we would like to show an algorithm applicable to many domains and verify it 

on structures of XML files indicating future direction in analysis of structural data. 

An example in Figure 40 shows a graph composed of three overlapping 

substructures and the graph grammar representation of it. In Figure 41 we see an 

example of a substructure definition. A substructure consists of a graph definition and a 

set of instances from the input graph that are isomorphic to the graph definition. 

 

 

Figure 40: A graph with overlapping substructures and a graph 
grammar representation of it. 

 

 

Figure 41: Substructure and its instances while determining 
connection instructions (continuation of the example from Figure 40). 

 
Every connection instruction has two integers which are indices to the node of a 

graph used in production. These two integers can refer to arbitrary nodes of the 
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production graph. However, in our experiments with the structure of XML files we 

encounter often connection 1-1 or 2-2 where the node refers to itself. In this case, in the 

figures presenting our experimental results we do not draw terminating productions, 

instead we label one of the nodes S# | X, where X is the terminal node label and S# is s 

non-terminal label with production number #. For clarity we illustrate it Figure 42. 

  

 

Figure 42: Shorter notation of graph tree grammars where we 
omit terminating production.  

 

8.2 XML File Conversion to a Graph 

We developed a converter which converts an XML file into a tree. We used the 

Java implementation of the Document Object Model (DOM) in our converter. 

According to [Ahmed01] there are twelve DOM node types: Element, Attr, Text, 

CDATASection, EntityReference, Entity, ProcessingInstruction, Comment, Document, 

DocumentType, DocumentFragment, and Notation. However in our implementation we 

build a directed tree with the root node always labeled DOC and then the only type of 

data we extract in the examples below is ‘Element’. From the perspective of our graph 

grammar inference algorithm we need a pattern which is repeated in the graph so we 

eliminated unique text data (names, card numbers, and price values). We do not assign 

labels to the edges of the tree.  
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In Algorithm 5 we show a recursive procedure PRINT_NODE. We call this 

procedure to convert a DOM tree to a file representing a graph we further use in graph 

grammar inference. We first call PRINT_NODE procedure with root node of the DOM 

tree and vertex=1 as input parameters. Then, in line 2, we print to a file the root node of 

a tree with label Doc. If the input node to the procedure has children and the child is 

type Element, we execute lines 6 through 9. In these lines we advance an integer which 

becomes the number of a child node in the newly created graph.  We print the node 

number and its label and then we print the directed edge to this node from parent node. 

In Figure 43 we show an example of a file where we store the graph after conversion 

from the DOM tree. The example in Figure 44 corresponds to a graph in Figure 45.  

 

 

Figure 43: A file which describes the graph further use to infer graph grammar. 

vertex 1 DOC  
vertex 2 PharmacologicalActionSubstanceSet 
directed edge from to 1 2 - 
vertex 3 Substance 
directed edge from to 2 3 - 
vertex 4 RecordUI 
directed edge from to 3 4 – 
…. 
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8.3 Domain 1: National Library of Medicine 

We selected domains for our experiments where we can easily identify the 

meaning of the results.  XML files often contain data with repetitive structures. An 

example of the beginning of such a file with pharmacology data and its Document Type 

Definition (DTD) we show in Figure 44. This is a sample file we found on National 

Library of Medicine website.  The tree after conversion of this file we show in Figure 

45. In Figure 46 we see graph grammar found by our inference algorithm. Productions 

S1 and S2 give the representation of a structure of an XML file which contains 

pharmacological data. Examining DTD we see that element 

PharmacologicalActionSubstanceSet contains zero or more Substance elements. It is 

indicated by ‘*’. Similarly, element PharmacologicalActionList contains one or more 

Algorithm 5 Converting DOM tree to a graph file.  
 
              integer PRINT_NODE (node n, integer vertex) 
 1   if  (n.getNodeType()==DOCUMENT_NODE)  
 2                print(“vertex Number ”, vertex, Doc) 
 3      parent=vertex; 
 4    for (childNode=n.getFirstNode();  childNode≠NULL;  
 5      childNode=childNode.getNextSibling()) 
 6              if (childNode.getNodeType()==ELEMENT_NODE) 
 7                    vertex++; 
 8                   print(“vertex ”, vertex, childNode.getNodeName()) 
 9                    print(“directed edge from to ”, parent, vertex ) 
10                   vertex= PRINT_NODE (childNode, vertex) 
11            end if 
12  end for   
6 return vertex 
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PharmacologicalActionOfSubstance elements. It is marked in DTD with a ‘+’. We 

discover these two concepts in production S1 and S2 in Figure 46. However, our 

inference algorithm cannot distinguish between ‘one or more’ and ‘zero or more’ 

concepts. In the generation process we would connect the node labeled S2 of one 

instance of the production graph to the node with the same label of another instance. 

The process would continue until the node labeled S2 would be replaced by label 

PharmacologicalActionSubstanceSet. Production S1 is included as a non-terminal node 

of production S2. In our present implementation we do not specify to which node of a 

graph on the right hand side of S1 we would connect Substance node of S2. Following 

from the parent to the child nodes of the structure of graphs of S1 and S2 we can find 

the corresponding DTD entries. For example PharmacologicalActionOfSubstance has 

only one child DescriptorReferredTo. It corresponds to the DTD entry <!ELEMENT 

PharmacologicalActionOfSubstance (DescriptorReferredTo)>. 
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<?xml version="1.0"?> 
<!-- Sample for pa_substance2006.xml  --> 
<!DOCTYPE 
PharmacologicalActionSubstanceSet 
SYSTEM  "pa_substance2006.dtd"> 
<!-- Root element --> 
<PharmacologicalActionSubstanceSet> 
   <!-- Substance 1 (Descriptor) --> 
   <Substance> 
      <RecordUI>D000536</RecordUI> 
      <RecordName> 
         <String>Aluminum Hydroxide</String> 
      </RecordName> 
      <!-- The list of PAs for this substance --> 
      <PharmacologicalActionList> 
         <!-- First PA --> 
         <PharmacologicalActionOfSubstance> 
            <DescriptorReferredTo> 
               
<DescriptorUI>D000276</DescriptorUI> 
               <DescriptorName> 
                  <String>Adjuvants, 
Immunologic</String> 
               </DescriptorName> 
            </DescriptorReferredTo> 
         </PharmacologicalActionOfSubstance> 
…. 

<!ENTITY  % DescriptorReference 
"(DescriptorUI, DescriptorName)"> 
<!ELEMENT 
PharmacologicalActionSubstanceSet 
(Substance*)> 
<!ELEMENT Substance 
((RecordUI,RecordName),                      
PharmacologicalActionList)+> 
<!ELEMENT PharmacologicalActionList 
(PharmacologicalActionOfSubstance)+> 
<!ELEMENT 
PharmacologicalActionOfSubstance 
(DescriptorReferredTo)> 
 
<!ELEMENT DescriptorReferredTo 
(%DescriptorReference;)> 
<!ELEMENT DescriptorUI (#PCDATA)> 
<!ELEMENT DescriptorName (String)> 
<!ELEMENT RecordUI (#PCDATA) > 
<!ELEMENT RecordName (String) > 
<!ELEMENT String (#PCDATA)> 
 

Figure 44: An XML file describing pharmacology data and 
Document Type Definition (DTD) of it 
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Figure 45: A graph representation of an XML file. 

 

 

Figure 46: Graph grammar found by inference algorithm from the XML tree. 

 

8.4 Domain 2: United States Patent and Trademark Office 

In Figure 47 we show a graph grammar inferred from an XML file we found on 

the United States Patent and Trademark Office website. This is a sample XML file with 
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description of a patent of handheld type four-cycle engine. We converted this XML file 

to a tree which had 2960 nodes and 2959 edges. Figure 47 shows the first eleven 

productions inferred from the input tree. They are presented in order. Production S1 has 

the highest compression value and production S11 the lowest. If we liked to show the 

complete graph grammar which represents the entire graph with 2960 nodes, we would 

need to show the remaining graph after its portions are compressed with productions 

S1-S11. The compressed graph is too big to show.  

 

Figure 47: Graph grammar inferred from XML file of a sample patent. 

 

In Table 3 we show selected entries of the DTD for the XML file from which 

we inferred a graph grammar. We selected these entries to compare with the inferred 
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graph grammar rules in Figure 47. Productions S1, S2, S6, and S10 describe a 

paragraph. The paragraph is depicted by ‘p’. ‘b’ stands for bold formatting and figref 

for a reference to a figure. The production S6 is recursive and corresponds to the DTD 

entry which says that the paragraph can have zero or more figure references. We 

consider that our inference algorithm found this concept correctly, even though we 

interpret rule S6 as ‘one or more’ (not ‘zero or more’) of ‘figref’ in ‘p’. DTD also 

allows for a paragraph to have zero or more bold formatting. Productions S1, S2 and 

S10 indicate different number of bold formatting in a paragraph accompanied with 

figure reference but these productions are non-recursive and do not convey the concept 

of one or more. Therefore, the inferred grammar does not adequately represent the 

number of bold formatting in a paragraph. 

The root of a tree on the right hand side of S3 has two children: category and 

patcit. S3 is a recursive production. It corresponds to the DTD description where us-

cited-patents can have one or more children patcit and category. The child category in 

DTD is optional. It is indicated by a question mark in Table 3. We do not find any 

indication in the inferred grammar that the element category is optional. We also did not 

find us-classification, which is the third optional element of us-cited-patents in DTD. In 

our current implementation of the graph grammar inference algorithm we do not show 

explicitly which child node is optional. A post-processing which would show optional 

child nodes is possible. For instance, the node document-id appears in two productions 

S3 and S9. S9 has two children country and doc-number. S3 has four children country, 

doc-number, kind, and date. Comparing the children in these two cases, we can 
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conclude that nodes kind and date are optional children of document-id. It is in 

agreement with the DTD definition. The element drawings in Table 3 has two 

alternative elements doc-page+ and figure+.  We correctly found that drawings can have 

one or more figures in production S4. Although our inferred grammar can indirectly 

indicate alternative elements we did not find doc-page in the inferred graph grammar 

because this element does not appear in processed XML file.  

Table 3: Selected entries of the DTD for patent data 

S1, S2, S6, 
S10 

Paragraph <!ELEMENT p (#PCDATA | b | i | u | sup | sub | 
smallcaps | br | pre | dl | ul | ol | figref | patcit | nplcit | bio-
deposit | crossref | img | chemistry | maths | tables | table-
external)*> 

S3 Patent citation  <!ELEMENT us-cited-patents (patcit , category? , us-
classification?)+> 

S4 drawings <!ELEMENT drawings (doc-page+ | figure+)> 
S3, S9 Document 

identification  
<!ELEMENT document-id (country , doc-number , kind? 
, name? , date?)> 
 

S5 Applicants  <!ELEMENT applicants (applicant+)> 
S5 applicant  <!ELEMENT applicant (addressbook+ , nationality , 

residence , us-rights* , designated-states? , designated-
states-as-inventor?)> 

S8 Field of 
search.  

<!ELEMENT field-of-search (classification-ipc | 
classification-national)+> 

S11 Priority claim. <!ELEMENT priority-claim (country , doc-number? , 
date , office-of-filing? , (priority-doc-requested | priority-
doc-attached)?)> 

S11 Applications 
in which 
priority is 
claimed.  

 
<!ELEMENT priority-claims (priority-claim+)> 

 

The concept in production S5 that ‘applicants’ contain one or more ‘applicant’ 

and in production S11 that ‘priority-claims’ contain one or more ‘priority-claim’ is 
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exactly the same as in the DTD in Table 3.  The differences between concepts found in 

the inferred grammar and defined in the DTD result from the limitation of our inference 

algorithm and from the fact that we used only one XML patent file and we discovered 

concepts included in this file while the DTD specifies rules for larger set of patents in 

the United States Patent and Trademark Office which may not be applied in the file in 

the experiment.  

 

8.5 Domain 3: Major League Baseball 

We use an example XML file from [Harold99] which describes the 1998 Major 

League Baseball season in our experiment in Figure 48. The inferred grammar has six 

productions. Production S6 is a non-recursive production. Productions S1-S5 are 

recursive.  Production S1 describes the player and it expresses the idea that a team can 

have one or more players. Production S2 shows that a division can have one or more 

teams. S3 indicates that a league can have one or more divisions. A season of 

production S5 can have one or more leagues. We do not show DTD definitions for this 

domain. Instead, we attempt to write DTD rules based on inferred graph grammar. 

Based on production S1 we can write 

<!ELEMENT Team (Player +)> 

<!ELEMENT Player (Surname, Given Name, Position, At Bats, Doubles, 

Walks, Steals, Errors, Games, Sacrifice Flies, Runs, Sacrifice Hits, Triples, Struck out, 

Home Runs,  RBI, Caught Stealing, Hit by Pitch, Hits, Games Started)> 

Based on production S2 we write:  
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<!ELEMENT Division (Team +)> 

<!ELEMENT Team (Team City, Team Name)> 

The graph on the right hand side of production S3 contains node S2. In our 

implementation of the graph grammar inference algorithm we do not have a mechanism 

which would infer embedding mechanism when production contains a non-terminal 

node label of another production. Lack of this mechanism prevents us from writing 

DTD entry based on production S6, S5, S4, and S3. We recognize the need for the 

above case as a future work.  Although we cannot formally write DTD entries when 

node has non-terminal label of another productions, these production along with the rest 

of the grammar show what is the structure of data. It shows the frequently accruing 

recursive motives, the underlying motives of the file. 

 

8.6. Summary of Experiments and Conclusion 

We applied algorithm to trees with labels on nodes and directed unlabeled 

edges. The trees we found by converting an XML file structure. Unique information 

like names or identification numbers was not part of the processed tree.  

We used XML files from three domains in our experiments: pharmacy, patent 

and baseball. In these domains we found recursive and non-recursive productions. In the 

pharmacy domain we found two recursive concepts: Pharmacological Action Substance 

Set contains ‘one or more’ Substance elements, and Pharmacological Action List 

contains one or more Pharmacological Action Substance.  In the patent domain we 

found that field-of-search is classified with ‘one or more’ classification-nationals, 



 

 107 

drawings contain one or more figures, applicants contains ‘one or more’ applicant 

elements, priority-claims contain ‘one or more’ priority-claim elements, and us-cited-

patents contains ‘one or more’ category and patent citations. In the baseball domain we 

inferred that a team has one or more players, a division has one or more teams, a league 

has one or more divisions, and a season has one or more leagues. We inferred these 

recursive concepts in the form of subgraphs which represent relations for more than two 

entities we listed above.  

We showed that the introduced algorithm of graph grammar inference can 

extract the organization and hierarchy of the structure of XML files. We compared the 

inferred graph grammar to the DTD noticing correspondence between DTD statements 

and graph grammar productions. Indirect detection of alternative or optional elements is 

possible if in the inferred grammar we find nodes with the same label but different 

children. The alternative and optional element detection is not part of our implemented 

algorithm. It remains as a future work.  

The method has its limitations. Many of the concepts expressed with the DTD 

or XML schema we cannot express. For example, we cannot express limits. If a 

particular item has to accrue two but no more than five times, our inference algorithm 

can detect it as one or more. We also do not infer an embedding mechanism when one 

production contains a non-terminal node label of another production. We cannot 

distinguish between ‘zero or more’ and ‘one or more’ occurrences of the same element.  

We interpret both of them as ‘one or more’ occurrences. Our graph grammar inference 

method was created for graphs in general. In this work we applied it to data stored in 
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XML files. Since we converted XML files to a tree structure, we use our inference 

algorithm only partially. One can achieve much better results than reported in this work 

if we would design a schema inference algorithm specifically for XML. Also, the 

limitation to trees instead of general graphs allows for faster processing and simpler 

algorithms. However, recently new concepts were proposed related to representing 

information in the World Wide Web called the Resource Description Framework 

(RDF). We find that trees are not sufficient to represent some of the RDF concepts and 

a graph structure with labels on nodes and edges is required [Brickley00]. Our graph 

grammar inference algorithm can handle such graphs. Performing grammar inference 

on World Wide Web data described by RDF is our future interest.  

 

 

Figure 48: Graph grammar extracted from an XML file of 1998 
Major League Baseball season. 
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CHAPTER 9 

INFERRING RECURSIVE PATTERNS IN BIOLOGICAL NETWORKS 

 

This chapter describes experiments on biological networks. After introduction 

of the database we show learning curves. Then we report experiments with specific 

biological networks of different species and different networks of the same species. We 

show how the learning process changes when we increase the size of a sample set. We 

examine how computation time changes with an increased number of nodes in the input 

graphs.  

9.1 Introduction 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) contains graphical 

representations of cellular processes. We transform this representation to a graph form 

accepted by our algorithm. The graphs represent processes like metabolism, membrane 

transport, and biosynthesis. We group the graphs into sets which allow us to search for 

common recursive patterns which can help to understand basic building blocks and 

hierarchical organization of processes. There are two reasons for performing 

experiments in this domain: 1) we wanted to evaluate the algorithm, and 2) we wanted 

to find graph grammars which represent features of the domain. We perform 

experiments in two different categories: 1) different biological networks within species, 

and 2) different species for a particular biological network.  
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9.2 Experiments with Sets of Different Biological Networks  

The biological networks used in our experiments were from KEGG. We use a 

graph representation which has labels on vertices and edges. The label entry represents 

a molecule, a molecule group or a pathway. A node labeled entry can be connected to a 

node labeled type. The type can be a value of the set: enzyme, ortholog, gene, group, 

compound, or map. A reaction is a process where a material is changed to another 

material catalyzed by an enzyme. A reaction, for example, can have one or more 

enzyme entries, and one or more compounds. Labels on edges show relationships 

between entities. The meanings are:  Rct_to_P : reaction to Product , S_to_Rct : 

substrate to reaction, E_to_Rct : enzyme (gene) to reaction, E_to_Rel : enzyme to 

relation, Rel_to_E : relation to enzyme. Nodes labeled ECrel indicate an enzyme-

enzyme relation meaning that two enzymes catalyze successive reactions.  

 We use ten species in our experiments. The abbreviated names of the species and 

their meanings are: 

bsu - Bacillus subtilis,    

sty - Salmonella enterica serovar Typhi CT18 

xcc - Xanthomonas campestris pv. campestris ATCC 33913 

pto - Picrophilus torridus 

mka - Methanopyrus kandleri 

pho - Pyrococcus horikoshii 

sfx - Shigella flexneri 2457T (serotype 2a) 
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efa - Enterococcus faecalis 

bar - Bacillus anthracis Ames 0581 

The species we selected randomly from the database.  The number of networks 

is different for each species. We wanted to see how our algorithm performs when we 

increase sample size of graphs supplied to our inference algorithm.  For this purpose we 

divided all the networks into 11 sets such that the last set (11th) has all the species. Set 

10 excludes the 11th portion of all networks. Set 9 excludes 2/11 of all networks and set 

1 has 1/11 of all networks. If all networks in the species do not divide by 11 evenly we 

distribute the remaining networks randomly to the 11 sets.   

We would like to compare our inferred grammar from sets of different sizes to 

the original, true, ideal grammar which represents the species. However, such a graph 

grammar is not known. In the first experiment we adopted as an original grammar the 

grammar inferred from the last set.  From each set we infer four grammar productions 

which score the highest in the evaluation. We compute the error (distance) of an 

inferred grammar to the grammar inferred from the set with all networks. The 

computation of an error is the same as it is described in section 6.8 on Learning Curves. 

The error is the minimal number of edges, vertices, and labels required to be change or 

removed to transform the structure of graph productions from one grammar to the other. 

In figures we refer to it as #transformations.  In Table 4 and in Figure 49 we show the 

results of the experiment. Every value in the table is an average from three runs. In 

every run we randomly shuffle the networks over 11 sets such that sets are different in 
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every run. The last column in the table is the average over 11 table entries.  Data in 

Table 5 and Figure 50 is organized in the same way.  

Table 4: Change in inferred grammar from set with increased number of 
graphs measured as a distance to the grammar inferred from the biggest set. 
#Set bsu dme sty xcc pto mka pho stx efa bar Average 

1 4.7 6.3 13.3 7.3 14.0 8.0 22.7 6.0 9.0 6.7 9.8 
2 3.3 5.7 13.3 2.3 7.7 6.0 4.3 4.7 6.7 5.3 5.9 
3 5.3 5.0 10.3 6.0 8.7 0.0 3.7 7.3 12.0 5.0 6.3 
4 4.3 8.7 14.3 2.7 8.7 0.7 0.0 7.0 6.7 1.3 5.4 
5 1.0 6.3 13.3 2.0 4.0 2.3 5.0 3.7 6.3 2.3 4.6 
6 1.3 5.7 8.0 5.0 6.0 0.7 2.7 2.3 4.3 3.0 3.9 
7 1.0 3.7 8.0 8.7 5.0 1.3 0.7 1.7 3.7 2.3 3.6 
8 1.3 3.0 7.3 8.0 4.3 0.0 0.7 1.7 0.0 3.3 3.0 
9 1.0 1.7 8.0 8.0 4.3 2.0 0.0 1.7 1.3 3.3 3.1 

10 0.0 2.0 3.0 10.0 2.0 2.0 0.0 1.7 1.3 0.0 2.2 
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

In our next experiment we use a different approach. Instead of comparing the 

inferred grammar to the grammar inferred from the biggest set, we compare the inferred 

grammar to the grammar inferred from the next bigger set.  The grammar inferred from 

set 1 we compare to the grammar inferred from set 2, from set 2 to set 3, …, and the 

grammar from set 10 to the grammar from set 11.  We compute the error in the same 

way as in the last experiment.  In Figure 51 we show the graph grammar inferred from a 

set of thirty and a set of one hundred and ten graphs of Picrophilus torridus (pto). 
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Figure 49: Change in inferred grammar measured in reference 
to the biggest set in networks of ten species: bsu, dme, sty, 
xcc, pto (a), mka, pho, stx, efa, bar (b), and average (c). 
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Table 5: Change in inferred grammar from set of increased number of graphs 
measured as a distance to the grammar inferred from the next bigger set. 

#Set bsu dme sty xcc eco pto pho mka stx efa bar Average 
1 6.7 5.3 5.7 4.0 7.7 6.7 18.0 3.7 6.0 8.7 2.7 6.8 
2 7.7 3.3 6.7 5.0 9.7 7.7 8.3 6.0 9.3 5.3 4.7 6.6 
3 4.0 3.3 5.7 9.0 0.7 4.0 5.0 0.7 5.7 9.3 3.7 4.7 
4 4.3 3.0 3.0 0.7 4.7 4.3 3.3 1.7 4.3 5.3 1.0 3.1 
5 2.3 3.7 7.7 4.3 2.0 2.3 6.0 1.7 1.3 4.7 0.7 3.4 
6 2.3 2.7 0.0 5.7 1.0 2.3 3.3 2.0 0.7 4.7 0.7 2.3 
7 1.0 2.3 5.7 0.7 5.0 1.0 0.0 1.3 1.0 3.7 1.0 2.2 
8 0.0 1.3 3.0 0.0 0.0 0.0 0.7 2.0 0.0 1.3 0.0 0.8 
9 0.0 1.7 5.0 3.0 2.3 0.0 0.0 0.0 0.0 0.0 3.3 1.5 

10 0.0 2.0 3.0 10.0 2.0 0.0 0.0 2.0 1.7 1.3 0.0 2.2 
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Figure 50: Change in inferred grammar measured in reference 
to the consecutive bigger set in networks of ten species bsu, 
dme, sty, xcc, pto (a), mka, pho, stx, efa, bar (b), and average 
(c). 
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a) b) 

Figure 51: Graph grammar inferred from a set of thirty (a) and one hundred and ten (b) 
graphs of Picrophilus torridus (pto). 

 

9.3 Experiments with Biological Networks from Different Species  

In this experiment we construct sets of species with the same biological 

network. We used ten biological networks in our experiments. The networks’ numbers 

and their meanings are: 

10  Glycolysis / Gluconeogenesis 

20  Citrate cycle (TCA cycle) 

30  Pentose phosphate pathway 

51  Fructose and mannose metabolism 
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61  Fatty acid biosynthesis (path 1) 

401  Novobiocin biosynthesis 

602 Blood group glycolipid biosynthesis-neolactoseries 

730 Thiamine metabolism 

830 Retinol metabolism 

930 Caprolactam degradation 

The first experiment in this section is analogous the first experiment of the 

previous section. In this experiment we examine the change in networks. We created 11 

sets. Set number 1 has ten networks, set 2 has twenty networks, and so on. We increase 

the number of networks in every set by ten such that the last set 11 has one hundred and 

ten networks. We measure the number of transformations required to transform the 

grammar inferred from the set to the grammar inferred from set 11 using the method 

described in the section on Learning Curves. We show results in Table 6 and Figure 52.  

Every value in the table is an average from three runs. In every run we randomly shuffle 

the networks over 11 sets such that sets are different in every run. The last column in 

the table is the average over 11 table entries. In Table 7 and Figure 53 we show results 

from an experiment where we measure the change from one set to the next bigger set, in 

the same way as in the previous section. Table 8 and the following Figure 54 show how 

computation time changes when we increase the size of the input set. We collect how 

many vertices has the graph created from all graphs in the input set and the time needed 

for graph grammar inference from the set. In Figure 55 and Figure 56 we show result 

for network 20 and 30 analogous to results in Figure 54 but with three runs. In every run 
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we randomly shuffle the networks over 11 sets such that sets are different in every run. 

Figure 57 shows sample graph grammars inferred from the set with ten and seventy 

graphs of network 10. 

 
Table 6: Change in inferred grammar from set of increased number of 
graphs measured as a distance to the grammar inferred from the biggest set. 

 
#Set n10 n20 n30 n51 n61 n401 n602 n730 n830 n930 Avg 

1 2.67 16.33 6.00 3.00 30.67 0.33 3.33 0.00 6.67 4.00 7.30 
2 2.67 26.33 3.33 11.33 14.00 0.33 6.00 0.00 6.67 6.67 7.73 
3 0.33 8.33 1.33 16.33 8.00 0.00 6.00 0.00 0.00 2.67 4.30 
4 0.33 8.33 0.00 22.00 28.00 0.00 1.33 7.67 0.00 2.00 6.97 
5 0.67 8.33 0.00 0.00 49.33 0.00 1.33 0.00 0.00 2.00 6.17 
6 0.67 8.33 0.00 5.67 64.00 0.00 2.00 0.00 0.67 4.00 8.53 
7 4.33 0.00 0.00 5.67 44.00 0.00 1.33 0.00 0.00 4.00 5.93 
8 0.67 0.00 0.00 16.33 22.67 0.00 1.33 0.00 0.00 6.00 4.70 
9 0.33 0.00 0.00 16.33 0.00 0.00 1.33 0.00 0.00 6.00 2.40 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 4.00 0.47 
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Figure 52: Change in inferred grammar measured in reference to 
the biggest set in ten networks: network 10, 20, 30, 51, 61 (a), 
network 401, 602, 730, 830, 930 (b), and average (c). 
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Table 7: Change in inferred grammar from set of increased number of graphs 
measured as a distance to the grammar inferred from next bigger set. 

 
#Set n10 n20 n30 n51 n61 n401 n602 n730 n830 n930 Avg 

1 5.33 16.67 4.00 14.67 31.00 0.67 2.67 0.00 0.00 2.67 7.77 
2 3.00 18.00 1.33 24.33 18.00 0.33 0.00 7.67 6.67 4.00 8.33 
3 0.67 0.00 0.67 0.00 20.00 0.00 4.67 8.00 0.00 0.67 3.47 
4 0.33 0.00 0.00 15.00 19.33 0.00 0.67 0.00 0.00 0.00 3.53 
5 0.00 0.00 0.00 22.00 11.67 0.00 1.33 0.00 0.67 2.00 3.77 
6 4.00 0.00 0.00 6.67 22.00 0.00 0.67 0.00 0.67 4.00 3.80 
7 4.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 2.00 2.60 
8 0.33 0.00 0.00 13.33 22.67 0.00 0.00 0.00 0.00 0.00 3.63 
9 0.33 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 2.00 0.30 

10 0.00 0.00 0.00 16.33 0.00 0.00 0.67 0.00 0.00 4.00 2.10 
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(c) 

Figure 53: Change in inferred grammar measured in reference to 
the consecutive bigger set in ten networks: network 10, 20, 30, 
51, 61 (a), network 401, 602, 730, 830, 930 (b), and average (c). 
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Table 8: Time [sec] of grammar inference as a function of number 
of vertices in the graph in ten networks. 

#V net10 
[sec] 

#V net20 
[sec] 

#V net30 
[sec] 

#V net51 
[sec] 

7263 494 5946 395 4882 174 3924 75 
15609 1891 12059 1504 10252 609 7848 182 
24058 5071 18123 3275 15832 2350 12342 390 
32033 9824 24186 4595 20871 4544 16305 700 
39799 13565 29662 6569 26074 6724 20139 1027 
47625 17985 35694 9055 31103 9547 23955 1881 
54978 22087 40821 9120 35894 10357 27528 2182 
62252 21973 46372 11769 40414 12566 31314 2839 
70621 12601 52167 14308 45980 17104 36348 4123 
78004 13081 57627 15264 50562 16672 40068 4893 
85428 15919 63111 16035 55431 16332 43953 6413 

 

#V net61 
[sec] 

#V net401 
[sec] 

#V net602 
[sec] 

5685 139 5140 35 3924 5 
11117 367 10314 114 7848 14 
16646 916 15225 274 12342 21 
22054 1643 20458 524 16305 32 
28603 3177 25577 1624 20139 50 
35049 4773 30684 2358 23955 113 
40856 7793 35728 2096 27528 190 
46366 9254 40787 2702 31314 185 
51671 10369 45885 6546 36348 209 
56972 12660 50977 8762 40068 272 
62463 15772 56033 7138 43953 498 
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Table 8 - Continued 

#V net730 
[sec] 

#V net860 
[sec] 

#V net930 
[sec] 

2391 5 5715 40 1346 3 
4959 13 11198 117 2722 9 
7203 23 17246 286 4098 11 
9366 33 22902 491 5381 19 

11556 49 28588 779 6565 24 
13692 61 34272 1122 7902 33 
16098 78 39837 1536 9134 51 
18492 100 45394 2310 10306 56 
21060 138 51702 2818 11799 72 
23385 108 58313 3980 13190 91 
25932 130 64494 5195 14581 111 
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(b) 

Figure 54: Time of grammar inference as a function of number of vertices 
in the graph in ten networks, linear scale (a) and logarithmic scale (b).   
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(b) 

Figure 55: Time of grammar inference of network 20 in three runs of shuffled 
species in input sets, linear scale (a) and logarithmic scale (b).  
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Figure 56: Time of grammar inference of network 30 in three runs of 
shuffled species in input sets, linear scale (a) and logarithmic scale (b). 

 
 
 
 
 
 
 
 
 
 
 



 

 127 

 
S1

type gene

reaction

entry entry

S_to_RctRct_to_P

compound
typetype

compound

entry

relation compoundsubtype
E_to_Rel

maplink
type

E_to_Rct

S2 entry enzymetype

entry|S3

relation

maplinkcompound

subtype
Rel_to_E type

1
1-1

S3

S4
relation

type

ECrel

Rel_to_E

S1|S4 compound
subtype

link
entry type compound

1

1-1  
 

a) b) 

Figure 57: Graph grammar inferred from a set of ten (a) and seventy (b) 
graphs of network 00010. 

 

The experiments on the biological network domain give us insight into the 

performance of the algorithm and to the biological networks. Examining Figure 49 we 

notice that some species, like dme, have a very regular set of biological networks. 

Increasing the size of the set does not change the inferred grammar. While in other 

species, like xcc, the set of biological networks is very diverse resulting in significant 

changes on the curve. Several curves, pto, pho, efa, gradually decrease with the last 

values being zero. It shows us that our algorithm performed well and with increasing 

number of graphs in the input set we find the grammar which does not change more 

with increased number of graphs which indicates that grammar found represents the 
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input set well.  The very bottom chart in Figure 49 shows the average change. We see 

that with the increasing number of graphs in the input sets the curve declines to zero 

which tells us that with the increasing number of graphs we infer more accurate 

grammar.  We find confirmation of these observations in experiments with sets of 

biological networks of different species which describe the same process we show in 

Figure 52. The average change also declines to zero. We see fewer changes in curves in 

Figure 52 than in Figure 49. It tells us that there is less diversity in set of species within 

one network than there is in sets of networks within one species.  

In Figure 54 we show the computation time as a function of the number of 

vertices in the input set. We plotted two curves, one in linear, and one in logarithmic 

scale. The curves in linear scale become almost straight lines in logarithmic scale which 

confirms experimentally the polynomial complexity of the algorithm.  Time curves of 

network 10, 30, and 401 have a surprising dip towards the right end of the scale where 

we would expect an increase in computation time, but instead observe a decrease.  We 

suspected that it is because in these cases the input set of graphs gets compressed very 

well in iteration one or two of grammar inference and the compressed graph used in 

iterations three and four is small which results in faster execution time. However, a 

closer look at the number of vertices in each iteration did not confirm this. Since the 

isomorphism test and the heuristic used in the algorithm have the main influence on the 

computation time, we tend towards relating the decreasing time phenomenon to these 

features of the algorithm.   
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation we have studied algorithms for inferring node and edge 

replacement graph grammar. The algorithm starts from all nodes with the same label 

and grows them by adding to them one node or node and an edge at a time. We 

developed a substructure which consists of the definition of a graph and all subgraphs 

appearing in the input graph that are isomorphic to this graph definition (i.e., instances).  

Every time we add a new node to the substructure we check if instances overlap on one 

node. The overlap of instances proposes a recursive graph grammar production which 

expresses concepts of ‘one or more’ of the same substructures. The input graph to our 

algorithm is an arbitrary directed or undirected graph with labels on nodes and edges. 

We described two algorithms for inference of two classes of graph grammars.  

The first class of graph grammars we call Node Replacement Recursive Graph 

Grammars. The second we call Edge Replacement Recursive Graph Grammars. The 

algorithms are based on previous work in frequent substructure discovery. We used 

frequently occurring, highly compressing, subgraphs as a guide to find the basic 

building blocks of the input graphs. The algorithms check if frequent subgraphs overlap 

by a node (node replacement) or two nodes (edge replacement) and propose a recursive 

graph grammar production if they do.  
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The node replacement recursive graph grammar inference algorithm limits 

productions to one single node on the left hand side. The algorithm infers either 

recursive or non-recursive productions depending if frequent subgraphs in the input 

graphs overlap or not. Smaller inference error occurs when the inferred pattern has 

higher MDL value, i.e., is more complex. We infer a graph grammar with only one edge 

because it is evaluated the highest when nodes and edges in the graph are labeled with 

only one label. Our approach can infer Jonyer et al.’s  class of grammars. 

Our approach can find embedding mechanism for recursive productions in the 

form of connection instructions. When a production is non-recursive, instances do not 

overlap and do not connect to each other. We do not explicitly give an embedding 

mechanism for this case. Adding a precise embedding mechanism for non-recursive 

productions would require reference to the nodes of the compressed portion of the graph 

and the remaining uncompressed portion of the graph. It means that we would not be 

minimizing the description length of a graph with the compressed substructure but 

enlarging it. Another approach to specifying connection instructions for non-recursive 

productions would be to allow for a less precise mechanism where we can mark nodes 

that connect the substructure to the reset of the graph and give labels of vertices in the 

uncompressed portion to which the nodes are connected.  This method might be useful 

in some applications where this information is important but would not allow for 

regeneration of the structure of the input graph from the inferred grammar.  

In our approach we infer one production in each iteration. The one time 

compression pass on the input graph prevents us from learning alternating productions, 
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because the inferred production has no way to refer to productions in future iterations. 

We could infer alternating productions using two different approaches: 1) do multiple 

compression passes on the input graph or 2) search for multiple productions in one 

iteration.   

We proposed inference of edge replacement recursive graph grammars as an 

extension to the algorithm for node replacement inference. We allowed for overlap by 

two nodes and we inferred grammars with a real or virtual edge. With this approach we 

can infer the grammar generating chains of squares overlapping on one edge which was 

not possible with node replacement grammars. Patterns often overlap on two nodes in 

chemical structures, therefore, we have an approach which can find and represent 

important patterns in the chemical domain. If there is only one label, the algorithm finds 

a two edge grammar. If we use three or more labels in the input graph, the inference 

error drops to zero or to a value close to zero in inference of grammars with a graph 

structure of a tree, cycle, Peterson graph, and tetrahedron. Adding edges to the inferred 

pattern increases the error. The highest error we had is with a complete graph. 

We used XML files from three domains in our experiments: pharmacy, patent 

and baseball. In these domains we found recursive and non-recursive productions. We 

showed that the introduced algorithm of the graph grammar inference can extract the 

organization and hierarchy of the structure of XML files. We compared the inferred 

graph grammar to the DTD, noticing correspondence between DTD statements and 

graph grammar productions. Indirect detection of alternative or optional elements is 

possible if in the inferred grammar we find nodes with the same label but different 
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children. Alternative and optional element detection is not part of our implemented 

algorithm. It remains as a future work. Performing grammar inference on World Wide 

Web data described by RDF is also a future direction in this domain. 

In experiments with biological networks we notice that some species, like dme, 

have a very regular set of biological networks. Increasing the size of the set does not 

change the inferred grammar. While in other species, like xcc, the set of biological 

networks is very diverse. Several curves (pto, pho, efa), which represent the change in 

error with the increased sample set, gradually decrease, with the last values being zero. 

It shows us that our algorithm performed well and with an increasing number of graphs 

in the input set we find the grammar, which does not change more with an increased 

number of graphs, which indicates that the grammar found represents the input set well. 

The computation time curves we plotted in linear scale become almost straight lines in 

logarithmic scale, which confirms experimentally the polynomial complexity of the 

algorithm.  

We would like to indicate general future directions in graph grammar inference 

research. They are:  

(1) Integration of inference of non-recursive, node-replacement and edge-

replacement productions into one graph grammar inference algorithm. The user of the 

algorithm might be interested in the best recursive or non-recursive graph pattern which 

describes the data. The most interesting pattern can be the one which scores the highest 

in the evaluation process. We can achieve the integration by placing candidate patterns 
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on the queue and let non-recursive, recursive node and edge replacement productions 

compete against each other. 

 (2) Develop algorithms which allow for learning larger classes of graph 

grammars. In this dissertation we extended classes of presently learnable graph 

grammars. It is possible to extend it even further into context sensitive graph grammars 

where we could still replace nodes and edges, but whether or not this replacement takes 

place depends on the neighborhood of the replaced node or edge. In order to regenerate 

structures we would need more sophisticated generation mechanism with a context 

sensitive embedding mechanism. This mechanism, inferred during induction, would 

indicate nodes to merge during the generation process. We can explore other techniques 

like decomposition of graphs in searching for the best grammar which describes the 

data.  

(3) Investigate learnable properties of graphs from the perspective of graph 

grammars. Planarity or average degree of nodes are standard properties of graphs, and 

algorithms exist for determining whether these properties. With graph grammars we can 

check other properties, for example the existence of recursive patterns, repetitive 

patterns, hierarchical patterns or overlapping patterns.  

(4) Identify experimental areas and show the significance of graph grammar 

inference in these domains. One of the new domains we approach is visual languages, 

where graph grammar inference from the sample of a language can give a grammar to 

be used to check newly written programs.  
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(5) Use graph grammar inference to identify building blocks, modularity and 

motifs in biology, software, social networks, and electronics circuits. We did 

experiments in biology and XML domains. Biological and chemical structures are still 

very promising areas of the application of recursive graph grammars. Social networks, 

Very Large Scale Integrated circuits, and the Internet are domains with relational data 

whose hierarchy and recursive properties we can explore with graph grammars. 

(6) Expand graph grammar inference to learning stochastic graph grammars. 

This extension would require assigning a probability to each production. We can 

evaluate this probability based on the portion of the input graph covered by the inferred 

production.   

(7) Developing a better error measure for evaluating inferred graph grammars. 

In our experiments we measured an error based on structural difference. Another 

approach to measuring is the accuracy of the inferred grammar would be based on a 

graph grammar parser. We would consider accurate the inferred grammars that can 

parse the input graph.  Graph grammar parser would require subgraph isomorphism test 

which is computationally expensive and much more difficult in implementation than the 

error measure we are using. 
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