

 INFERENCE OF NODE AND EDGE REPLACEMENT GRAPH GRAMMARS

by

JACEK KUKLUK

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

Copyright © by Jacek Kukluk 2007

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Lawrence B. Holder for leading this research, for his

advice, patience, and encouragement.

October 23, 2006

 iv

ABSTRACT

 INFERENCE OF NODE AND EDGE REPLACEMENT GRAPH GRAMMARS

Publication No. ______

Jacek Kukluk, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Lawrence B. Holder

In this dissertation we study the inference of node and edge replacement graph

grammars. The approach is based on previous research in frequent isomorphic

subgraphs discovery. We extend the search for frequent subgraphs by checking for

overlap among the instances of the subgraphs in the input graph. If subgraphs overlap

by one node, we propose a node replacement graph grammar production. If subgraphs

overlap by two nodes or two nodes and an edge, we propose an edge replacement graph

grammar production. We also can infer a hierarchy of productions by compressing

 v

portions of a graph described by a production and then inferring new productions on the

compressed graph.

We validate the approach to node replacement grammar inference in

experiments where we generate graphs from known grammars and measure how well

the approach infers the original grammar from the generated graph. We show how this

method performs in extracting the organization of XML files. We convert an XML file

into a tree and infer a graph grammar from it. We compare the inferred graph grammar

to the Document Type Definition of the XML file. We report the graph grammar we

found from XML files used in the National Library of Medicine, the United States

Patent and Trademark Office, and major baseball leagues. We also apply the algorithm

to biological domains. We show the graph grammars found in biological molecules and

in biological networks, and analyze learning curves of the algorithm as we increase the

number of biological networks input to the method.

We also describe an algorithm and experiments for inference of edge

replacement graph grammars. This method generates candidate recursive graph

grammar productions based on finding isomorphic subgraphs which overlap by two

nodes. If there is no edge between the two overlapping nodes, the method generates a

recursive graph grammar production with a virtual edge. We guide the search for the

graph grammar using the Minimum Description Length (MDL) of a graph and the size

of a graph. We show experiments where we generate graphs from known graph

grammars, use our method to infer the grammar from the generated graphs, and then

measure the error between the original and inferred grammars. Experiments show that

 vi

the method performs well on several types of grammars, and specifically that error

decreases with increased numbers of unique labels in the graph.

 We briefly discuss other grammar inference algorithms indicating that our

study extends classes of learnable graph grammars.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS...iii

ABSTRACT .. iv

TABLE OF CONTENTS ...vii

LIST OF ILLUSTRATIONS.. x

1. INTRODUCTION .. 1

1.1 Overview... 1

1.2 Contributions .. 2

2. RELATED WORK... 5

2.1 Graph Grammar Inference .. 5

2.2 Frequent Subgraph Discovery Algorithms ... 12

3. CLASSES OF GRAPH GRAMMARS .. 17

3.1 Graph Grammar Definition... 17

3.2 Node Label Controlled (NLC) Graph Grammar ... 18

3.3 Neighborhood Controlled Embedding (NCE) Graph Grammar................... 20

3.4 Edge-Labeled Directed Neighborhood Controlled Embedding
(edNCE) Graph Grammar... 21

3.5 Hierarchy and Other Classes of Node Replacement
Graph Grammars .. 22

3.6 Node Replacement Recursive Graph Grammar Definition 25

 viii

3.7 Edge Replacement Recursive Graph Grammar Definition 27

3.8 Definition of Data Structures Used in the Algorithm................................... 28

3.9 Node Replacement Graph Grammar in Hierarchy of Graph Grammars 29

4. THE GRAPH GRAMMAR INFERENCE ALGORITHMS...................................... 32

4.1 Node Replacement Graph Grammar Inference Algorithm........................... 32

4.2 Edge Replacement Graph Grammar Inference Algorithm 42

5. GENERATION OF GRAPHS FROM STOCHASTIC GRAPH GRAMMARS....... 49

5.1 Overview... 49

5.2 Graph Grammar Generation Algorithm.. 50

6. EXPERIMENTS WITH NODE REPLACEMENT GRAPH GRAMMARS 55

6.1 Methodology... 55

6.2 MDL as a Measure of Complexity of a Grammar....................................... 57

6.3 Error .. 59

6.4 Experiment 1: Error as a Function of Noise
and Complexity of a Grammar ... 61

6.5 Experiment 2: Error as a Function of Number of Labels
and Complexity of a Grammar ... 66

6.6 Experiment 3: Error as a Function of Size of a Graph

and Complexity of a Grammar ... 68

6.7 Experiment 4: Limitations ... 69

6.8 Experiment 5: Chemical Structures ... 71

6.9 Experiment 6: Learning Curves.. 74

6.10 Summary of Results and Conclusions .. 76

7. EXPERIMENTS WITH EDGE REPLACEMENT GRAPH GRAMMARS............. 78

 ix

7.1 Introduction... 78

7.2 Methodology... 79

7.3 Experiment 1: Virtual and Real Edges in Productions 80

7.4 Experiment 2: Inference Error with Different Evaluation Measures............ 83

7.5 Experiment 3: Inference Error with Different Graph Structures 85

7.6 Experiment 4: Inference Error in the Presence of Noise 88

7.7 Experiment 5: Chemical Structure.. 89

7.8 Summary of Experiments and Conclusion ... 91

8. INFERRING XML SCHEMA USING GRAPH GRAMMARS 94

8.1 Introduction... 94

8.2 XML File Conversion to a Graph... 96

8.3 Domain 1: National Library of Medicine ... 98

8.4 Domain 2: United States Patent and Trademark Office 101

8.5 Domain 3: Major League Baseball ... 105

8.6. Summary of Experiments and Conclusion .. 106

9. INFERRING RECURSIVE PATTERNS IN BIOLOGICAL NETWORKS........... 109

9.1 Introduction... 109

9.2 Experiments with Sets of Different Biological Networks 110

9.3 Experiments with Biological Networks from Different Species 116

10. CONCLUSIONS AND FUTURE WORK... 129

REFERENCES ... 135

BIOGRAPHICAL INFORMATION.. 143

 x

 LIST OF ILLUSTRATIONS

Figure Page

 1. Initial grammar and decomposition of productionS-> K3,2 into two
productions. .. 6

 2. Grammar used in Oates et al. [Oates03] experiments to infer
probabilities associated with three grammar rules. .. 7

 3. The ordered, rooted tree coded as a(b(a(bc))c and processed bottom-up
by deterministic tree automata [Carrasco01] ... 9

 4. SubdueGL finds recursive grammar in two iterations. .. 11

 5. Graph grammar inference from a tree. .. 12

 6. Example of Node Label Controlled (NLC) Graph Grammar. 19

 7. Example of Neighborhood Controlled Embedding (NCE) Graph
Grammar... 20

 8. Example of Edge-Labeled Directed Neighborhood Controlled
Embedding (edNCE) Graph Grammar... 22

 9. A hierarchy of node replacement graph grammars [Kim97]..................................... 23

 10. Hierarchy of graph grammars. ... 31

 11. A graph with overlapping substructures and a graph grammar
representation of it. ... 33

 12. Substructure and its instances while determining connection
instructions (continuation of the example from Figure 11)...................................... 38

 13. The tree (left) and inferred tree grammar (right). .. 41

 14. Graph with overlapping squares (a), inferred node-replacement
grammar (b), and graph generated from inferred grammar (c) 43

 xi

 15. The original grammar (a) used to generate examples and the inferred
grammar (b). ... 44

 16. The input graph (a), substructure graph definition (b) and four
overlapping instances of repetitive subgraph (c).. 48

 17. Input format to graph generator and example derivation. 52

 18. An example of a graph grammar used in the experiments. 56

 19. Graph grammar inference error. .. 61

 20. Error as a function of noise and MDL where graph structure was not
corrupted: one non-terminal (a), two non-terminals (b), and three non-
terminals (c).. 62

 21. Error as a function of noise and MDL where graph structure was
corrupted: one non-terminal (a), two non-terminals (b), and three non-
terminals (c).. 63

 22. Twenty nine simple connected graphs ordered according to non-
decreasing MDL value. .. 64

 23. An inference error where larger graph structure is proposed: original
grammar (a) and inferred grammar (b)... 67

 24. Error where inferred grammar is reduced to production with single
edge: original grammar (a) and inferred grammar (b).. 67

 25. Error as a function of MDL and number of different labels used in a
grammar definition: one non-terminal (a), two non-terminals (b), and
three non-terminals (c). 68

 26. Error as a function of MDL and size of generated graphs (noise=0.2,
two non-terminals): (a) uncorrupted graph structure, (b) corrupted
graph structure .. 69

 27. Graph with overlapping squares (a), inferred grammar (b), and graph
generated from inferred grammar (c) ... 70

 28. The grammar with alternating productions (left) and inferred grammar
(right). ... 71

 29. Three chemical structures (left) and the inferred grammar production
(right). ... 73

 xii

 30. The structure of dendronized polymer and its representation in
hierarchical graph grammar productions.. 74

 31. Graph grammar used for graph generation.. 75

 32. Error and time as a function of number of graphs in the training set. 76

 33. The graph (a) and inferred grammar from this graph (b). 82

 34. The influence on the inference error of evaluation measures using a
graph grammar of a 9-cycle.. 83

 35. Two-edge grammar inferred from the graphs with only one label on
nodes and edges (a) and inferred grammar with evaluation measure
size(G)/(size(S)+NT+size(G|S)) where cycle is expected (b). 85

 36. The influence on the error of different graph structures used in
grammar productions.. 87

 37. The change in the error with reduced number of edges from the
complete graph structure (a) and an example of the inferred grammar
(b). .. 87

 38. Inference error of a graph grammar with the Peterson graph structure in
the presence of noise and different number of non-terminals. Peterson
graph (a), results with corrupted (b) and not corrupted graphs structure
(c).. 90

 39. The chemical structure of G tetrad (a) and inferred grammar structure
(b). .. 92

 40. A graph with overlapping substructures and a graph grammar
representation of it. ... 95

 41. Substructure and its instances while determining connection
instructions (continuation of the example from Figure 40)...................................... 95

 42. Shorter notation of graph tree grammars where we omit terminating
production... 96

 43. A file which describes the graph further use to infer graph grammar. 97

 44. An XML file describing pharmacology data and Document Type
Definition (DTD) of it .. 100

 45. A graph representation of an XML file. .. 101

 xiii

 46. Graph grammar found by inference algorithm from the XML tree....................... 101

 47. Graph grammar inferred from XML file of a sample patent. 102

 48. Graph grammar extracted from an XML file of 1998 Major League
Baseball season... 108

 49. Change in inferred grammar measured in reference to the biggest set in
networks of ten species: bsu, dme, sty, xcc, pto (a), mka, pho, stx, efa,
bar (b), and average (c)... 113

 50. Change in inferred grammar measured in reference to the consecutive
bigger set in networks of ten species bsu, dme, sty, xcc, pto (a), mka,
pho, stx, efa, bar (b), and average (c). .. 115

 51. Graph grammar inferred from a set of thirty (a) and one hundred and
ten (b) graphs of Picrophilus torridus (pto). ... 116

 52. Change in inferred grammar measured in reference to the biggest set in
ten networks: network 10, 20, 30, 51, 61 (a), network 401, 602, 730,
830, 930 (b), and average (c).. 119

 53. Change in inferred grammar measured in reference to the consecutive
bigger set in ten networks: network 10, 20, 30, 51, 61 (a), network 401,
602, 730, 830, 930 (b), and average (c).. 121

 54. Time of grammar inference as a function of number of vertices in the
graph in ten networks, linear scale (a) and logarithmic scale (b). 124

 55. Time of grammar inference of network 20 in three runs of shuffled
species in input sets, linear scale (a) and logarithmic scale (b).............................. 125

 56. Time of grammar inference of network 30 in three runs of shuffled
species in input sets, linear scale (a) and logarithmic scale (b).............................. 126

 57. Graph grammar inferred from a set of ten (a) and seventy (b) graphs of
network 00010. ... 127

 xiv

 LIST OF TABLES

 Table Page

 1. Expansion of instances which start from nodes
labeled “b” in Figure 11.. 34

 2. Twenty nine simple graphs ordered according to increasing average
inference error of six experiments in Figure 20 and Figure 21. The
numbers in the table refer to structures in Figure 22. ... 65

 3. Selected entries of the DTD for patent data... 104

 4. Change in inferred grammar from set with increased number of graphs
measured as a distance to the grammar inferred from the biggest set. 112

 5. Change in inferred grammar from set of increased number of graphs
measured as a distance to the grammar inferred from the next bigger
set. ... 114

 6. Change in inferred grammar from set of increased number of graphs
measured as a distance to the grammar inferred from the biggest set. 118

 7. Change in inferred grammar from set of increased number of graphs
measured as a distance to the grammar inferred from next bigger set. 120

 8. Time [sec] of grammar inference as a function of number of vertices in
the graph in ten networks.. 122

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

Noam Chomsky [Chomsky56] pointed out that one of the main concerns of a

linguist is to discover simple grammars for natural languages and study those grammars

with the hope of finding a general theory of linguistic structure. A vast amount of

research has been done in inferring grammars [ICGI94 , ICGI98, ICGI00, ICGI02,

Lari91]. These analyses focus on string grammars where symbols appear in a sequence.

We are concerned with graph grammars, which can represent much larger classes of

problems than string grammars. We examine the classes of graph grammars presently

learnable. As string grammars represent the language, we are looking for graph

grammars that represent graph properties and can generalize these properties from finite

graph examples into generators that can generate an infinite number of graphs. String

grammars can be inferred from a finite number of sentences and generalize to an infinite

number of sentences. Inferring graph grammars will generalize the knowledge from the

examples into a concise form and generalize to an infinite number of entities from the

domain. We examine existing approaches to the inference of graph grammars and

experimentally explore one of them showing its features and limitations.

String grammars are fundamental to linguistics and computer science. Graph

grammars can represent relations in data which strings cannot. Graph grammars can

 2

represent hierarchical structures in data and generalize knowledge in graph domains.

They have been applied as analytical tools in physics, biology, and engineering

[Gernert97, Milo02]. We study the problem of grammar inference. We introduce an

algorithm which builds on previous work in discovering frequent subgraphs in a graph

[Cook94]. We check if subgraphs overlap and if they overlap by one node, we use this

node and subgraph structure to propose a node replacement graph grammar. We

developed an algorithm for edge replacement grammar inference where we check for

overlap by two nodes. If an overlap exists and there is an edge between the overlapping

nodes, we propose a grammar production with a real non-terminal edge. If there is no

edge between overlapping nodes, we propose a production with a virtual edge. We can

apply grammar inference algorithms in domains with relational data. In this work we

selected several of them: chemical structures, XML files, and biological networks. A

vast amount of research has been done in string grammar inference [Sakakibara97]. We

found only a few studies in graph grammar inference.

1.2 Contributions

We developed two algorithms to infer graph grammars from structured data

represented as a graph. The methods can detect recursive and non-recursive motifs in

structured data and build a hierarchy of recursive graph grammar productions. We

showed how the grammars we can infer fit into the hierarchy of graph grammars. There

was no method shown before which can infer these classes of graph grammars. In this

work we use graph grammar as a data mining tool. We often refer to the ability of a

 3

graph grammar to regenerate the input graph, but inferring such grammars is not the

purpose of the work. Graph grammars in our study show interesting patterns and

organize data into a hierarchy. We implemented the algorithms and tested them on

synthetic and non-synthetic data. For this reason we developed and implemented a

generator which generates a graph from a known graph grammar. We showed how

inferring graph grammars depends on the presence of noise, the complexity of graph

grammar structure, the number of different labels present in the graph, and the size of

the generated graph. We showed limitations of node replacement recursive graph

grammars and how edge replacement recursive graph grammars overcome some of

these limitations. To validate the approach, we conducted experiments in real-world

domains: chemical molecules, biological and XML file structure. We inferred the

structure of XML files which describe data in the National Library of Medicine, the

United States Patent and Trademark Office, and in the domain of baseball. We show

how the algorithms perform in inferring grammars from biological networks and how in

this domain inference error depends on the number of examples in the input set. We

experimentally verified the polynomial complexity of the algorithm in this domain.

Chapter two describes related work in graph grammar inference algorithms and

frequent subgraph discovery algorithms. In chapter three we describe classes of graph

grammars and give the definition of a node and an edge replacement grammar our

algorithm is capable to infer showing their place in the hierarchy of graph grammars.

Chapter four presents the algorithms for node and edge replacement graph grammar

inference. Chapter five describes the graph generator used in the experimental

 4

evaluation. Experiments with node replacement graph grammars we placed in chapter

six and experiments with edge replacement graph grammars in chapter seven. Chapter

eight presents experimental results for inferring XML schema using graph grammars.

Chapter nine contains learning curves and experiments with biological networks.

Chapter ten closes the dissertation with conclusions and future directions.

 5

CHAPTER 2

RELATED WORK

In this chapter we describe existing approaches to graph grammar inference.

These ideas are based on decomposition of a graph, inference of probabilities associated

with grammar rules, learning deterministic tree grammars, and searching for an edge

connecting frequent subgraphs. The second part of this chapter discusses approaches to

frequent subgraph discovery.

2.1 Graph Grammar Inference

Jeltsch and Kreowski [Jeltsch90] did a theoretical study of inferring hyperedge

replacement graph grammars from simple undirected, unlabeled graphs. Their paper

leads through an example where from four complete bipartite graphs K3,1 , K3,2 , K3,3 ,

K3,4 , the authors describe the inference of a grammar that can generate a more general

class of bipartite graphs K3,n , where n≥1. The authors define four operations that lead

to a final hyperedge replacement grammar. The operations are: INIT, DECOMPOSE,

RENAME, and REDUCE. The INIT operation will start the process from a grammar

which has all sample graphs in its productions and therefore it generates only the

sample graphs. Then, the DECOMPOSE operation transforms the initial productions

into productions that are more general but can still produce every graph from the sample

graphs. RENAME allows for changing names of non-terminal labels. REDUCE

 6

removes redundant productions. Jeltsch and Kreowski (Jeltsch, 1990) start the process

from a grammar which has all the sample graphs in its productions. Then they transform

the initial productions into productions that are more general but can still produce every

graph from the sample graphs. Their approach guarantees that the final grammar will

generate graphs that contain all sample graphs. In the example in Figure 1 the initial

grammar has productions S-> K3,1 , S-> K3,2 , S-> K3,3 , S-> K3,4. The production S->

K3,2 is decomposed into two productions. If in the second production D-> K3,1 , we

rename D with S, this production and initial production S-> K3,1 are the same and can

be reduced with the REDUCE operation.

S

K3,1 K3,2 K3,3
K3,4

S
D

D

K3,1

Figure 1: Initial grammar and decomposition of
productionS-> K3,2 into two productions.

Oates et al. [Oates03] discuss the problem of inferring probabilities of every

grammar rule for stochastic hyperedge replacement context free graph grammars. They

call their program Parameter Estimation for Graph Grammars (PEGG). They assume

 7

that the grammar is given. Given a structure of a grammar S and a finite set of graphs E

generated by grammar S, they ask what are the probabilities θ associated with every rule

of the grammar. Their strategy is to look for a set of parameters θ that maximizes the

probability p(E| S, θ). Their work is based on the work of Lari and Young [Lari91] in

estimation of stochastic-context free string grammars. In the example in Figure 2, the

grammar has three rules. In their experiments they generated 10 graphs from this

grammar with initial probabilities 0.6, 0.2, 0.2 associated with first, second and third

rule respectively. With their algorithm they estimated probabilities and found their

values θ=(0.6486, 0.2973, 0.0542) which are close to the initial values.

1S
S

2 1 o 2
S

1 2

S

S

Figure 2: Grammar used in Oates et al. [Oates03] experiments
to infer probabilities associated with three grammar rules.

In terms of similarity to string grammar inference we consider the Sequitur

system developed by Nevill-Manning and Witten [Nevill97]. Sequitur infers a

hierarchical structure by replacing substrings based on grammar rules. The new,

compressed string is searched for substrings which can be described by the grammar

rules, and they are then compressed with the grammar and the process continues

iteratively. Similarly, in our approach we replace the part of a graph described by the

 8

inferred graph grammar with a single node and we look for grammar rules on the

compressed graph and repeat this process iteratively until the graph is fully compressed.

Carrasco et al. [Carrasco01] gave an algorithm for learning deterministic tree

grammars. Their approach emerges from concepts of learning context free sting

grammars. The problem was previously studied by Sakakibara [Sakakibara92].

Carrasco et al. says that the problem of identifying context free grammars is equivalent

to the problem of identifying regular tree languages. It is because of the derivation trees

of context free grammars form a regular tree language. A deterministic tree automata

DTA is an acceptor of rooted, ordered directed trees. The set of accepted trees defines

regular tree language. DTA is a 4-tuple A=(Q, V, δ, F), where

-Q is a finite set of states;

-V is a finite set of labels;

- QF ⊂ is the subset of accepting states

- δ ={ δ0 , δ1 , … , δn} is a set of transition functions of the form δk: V→ Qk

Trees are represented by a functional notation. Following the example provided

by Carrasco et al. [Carrasco01], the tree in Figure 3 is represented by t=a (b (a (b c))

c. The root has labeled ‘a’ and it branches into two subtrees t1 = (b (a (b c) and t2=c.

In general, a tree at a node with label x can branch into subtrees t1, t2, …, tn. The tree or

a subtree is represented by t=x(t1, t2, …, tn). DTA processes the tree bottom-up. It

results from recursive definition of the transition function:

⎩
⎨
⎧

=
leafaistifa

subtreeaistifttx
t kk

)(

))(,),(,(
)(

0

1

δ
δδδ

δ
K

 9

Every node in t has an associated state in DTA. In order to process the tree in

Figure 3, the following transition functions are defined δ0 (b)=q1 , δ0(c)=q2 , δ2 (a, q1 ,

q2)=q2 , δ1 (b, q2)=q1. The tree is processed from the bottom starting with b and c

nodes. With transition δ0 they are assigned states q1 and q2. Following up the tree we

read ‘a’ and assigned state q2 with transition δ2. Next δ1 (b, q2)=q1 and finally the root

of the tree is found to be in state q2. The state assigned to the root must be an accepting

state, for the tree to be accepted by DTA. If VT is the set of all trees whose nodes are

labeled with symbols from V, DTA accepts regular tree language { }FtVtL T ∈∈=)(:δ .

Carrasco et al. inference algorithm is looking for states represented by subtrees and

transition functions δ. They are also looking for probabilities of every transition to infer

stochastic tree automata.

Figure 3: The ordered, rooted tree coded as a(b(a(bc))c and
processed bottom-up by deterministic tree automata [Carrasco01] .

The most relevant work to this research is Jonyer et al.’s approach to node-

replacement graph grammar inference [Jonyer02, Jonyer04]. Their algorithm starts by

finding frequently occurring subgraphs in the input graphs. Frequent subgraphs are

those that when replaced by single nodes minimize the description length of the graph.

 10

They check if isomorphic instances of the subgraphs that minimize the measure are

connected by one edge. If they are, a production S→ PS is proposed, where P is the

frequent subgraph. P and S are connected by one edge. Our approach is similar to

Jonyer’s in that we also start by finding frequently occurring subgraphs, but we test if

the instances of the subgraphs overlap by one node. Jonyer’s method of testing if

subgraphs are adjacent by one edge limits his grammars to description of “chains” of

isomorphic subgraphs connected by one edge. Since an edge of a frequent subgraph

connecting it to the other isomorphic subgraph can be included to the subgraph

structure, testing subgraphs for overlap allows us to propose a class of grammars that

have more expressive power than the graph structures covered by Jonyer’s grammars.

For example, testing for overlap allows us to propose grammars which can describe tree

structures, while Jonyer’s approach does not allow for tree grammars. We conducted

experiments with Jonyer’s approach, called SubdueGL, to illustrate the types of graph

grammars it can find and its limitations. We generated graphs from the grammar and

then used SubdueGL to infer this grammar. We show our results in Figure 4. In this

figure, above the productions, we indicated a percentage that signifies the probability

with which we are using every production. In Figure 4 we show a grammar which

generates squares and triangles connected in series. Every square or triangle is

connected to another square or triangle by one edge. The edge that connects the patterns

is labeled nx. The labels on the vertices and edges of the patterns are distinct. 40%

probability is assigned to both nonterminal square and nonterminal triangle. Terminal

square and triangle are assigned probability 10%. In Figure 4, below the grammar we

 11

drew one generated graph. It contains four squares and three triangles. Square is found

by SubdueGL to be the pattern that when all occurrences of its instances in the graph

would be replaced by single node, the description length of the graph is minimized.

SubdueGL also detects that instances of square in the graph are connected by one edge

prompting the inference of recursive production S1. The graph is compressed with S1,

and in the second iteration instances of triangles are detected and production S2 is

found.

Figure 4: SubdueGL finds recursive grammar in two iterations.

In Figure 5 we generated a tree from a grammar that has two productions. The

first production is selected 60% of the time and the second production is a terminal

which is a single vertex and is selected 40% of the time. and the inferred grammar and

the compressed graph are shown on the right side of the figure. We see that inferred by

SubdueGL graph grammar cannot regenerate the tree. It detects only chain of subgraphs

 12

connected by an edge. We see later in the dissertation graph grammars inferred with

node replacement grammars which can regenerate trees. Next, we describe frequent

subgraph discovery algorithms.

a
nx

S

Grammar

b

S

a
bb

S

60% 40%

Grammar found

b

a

bb

a
S

Generated graph
a
nx

b bb

a
nx

b
bb

a a

bb

a a
nx

b
bb

a a
nx

b
bb

a a

nx

S
a
nx

b

b

a

bb

a

Compressed graph
a
nx

S

Figure 5: Graph grammar inference from a tree.

2.2 Frequent Subgraph Discovery Algorithms

In our approach we use the frequent subgraph discovery algorithm Subdue

developed by Cook and Holder [Cook94]. We would like to mention other algorithms

developed to discover frequent subgraphs and therefore have the potential to be

modified into algorithms which can infer a graph grammar. Kuramochi and Karypis

[Kuramochi01] implemented the FSG algorithm for finding all frequent subgraphs in

large graph databases. FSG starts by all frequent one and two edge subgraphs. Then, in

each iteration, it generates candidate subgraphs by expanding the subgraphs found in

the previous iteration by one edge. In every iteration, the algorithm checks how many

 13

times the candidate subgraph occurs within an entire graph. The candidates, whose

frequency is below a user-defined level, are pruned. The algorithm returns all subgraphs

occurring more frequently than the given level. In the candidate generation phase,

computation costs of testing graphs for isomorphism are reduced by building a unique

code for the graph (canonical labeling).

Yan and Han introduced gSpan [Yan02], which does not require candidate

generation to discover frequent substructures. The authors combine depth first search

and lexicographic order in their algorithm. Their algorithm starts from all frequent one-

edge graphs. The labels on these edges together with labels on incident nodes define a

code for every such graph. Expansion of these one-edge graphs maps them to longer

codes. The codes are stored in a tree structure such that if),,,(10 maaa K=α

and),,,,(10 baaa mK=β , then the β code is a child of the α code. Since every graph can

map to many codes, the codes in the tree structure are not unique. If there are two codes

in the code tree that map to the same graph and one is smaller then the other, the branch

with the smaller code is pruned during depth first search traversal of the code tree. Only

the minimum code uniquely defines the graph. Code ordering and pruning reduces the

cost of matching frequent subgraphs in gSpan.

The challenge of using frequent subgraph mining algorithms like gSpan or FSG

to infer graph grammars would be the modification to allow subgraph instances to

overlap. Overlapping substructures are available as an option in the Subdue algorithm

[Cook94]. Also, Subdue allows for identification of one substructure with the best

compression score, which we can modify to identify one grammar production with the

 14

best score, while FSG and gSpan return all candidate subgraphs above a user-defined

frequency level leaving interpretation and final selection for the user.

We gave an outline of several approaches to inference of graph grammars. In

addition to the described approaches we would like to mention a few others. Doshi at el.

[Doshi02] similar to SubdueGL use instances of frequent subgraphs that minimize

description length of a graph to infer stochastic graph grammars. Fletcher [Fletcher01]

describes an algorithm to learn graph grammars which represent two dimensional

structures drawn on a discrete Cartesian grid. Sánchez at el. discus inference of graph

grammars that describe texture symbols [Sanchez01]. We found that only a few papers

address inference of graph grammars. The problem is open for more systematic study.

Described approaches differ in the way the graph grammar is built. The

approach of Jeltsch and Kreowski [Kreowski90] starts from the grammar where all the

sample graphs are initially on the right hand side of the production. The algorithm

progresses by transformation towards reduction and generalization. SubdueGL works in

the opposite direction. It starts with no grammar and then discovers one production in

the first iteration, compresses the graph with it and subsequent iterations bring more

productions. Oates et al.’s approach builds an automaton that accepts ordered trees.

They are looking for states, transition functions and probabilities of productions.

Jeltsch and Kreowski’s approach requires a set of disconnected graphs as an

input. SubdueGL can find recursive graph grammas in a set of disconnected graphs as

well as in one connected graph. Figure 4 illustrates an example where SubdueGL finds

two productions of the recursive graph grammar. These productions together with the

 15

compressed graph can regenerate the original graph. SubdueGL finds chains of

isomorphic subgraphs connected by one edge and replaces them with a production rule.

This feature is also a major limitation of the algorithm. In Figure 5 we used a grammar

that can generate trees. We used one of the generated trees as an input to SubdueGL.

We show the grammar found by SubdueGL on the right side of the drawing. SubdueGL

found the chain of isomorphic subgraphs in the tree, but the limitation that subgraphs

are connected by one edge does not allow for learning a grammar which represents a

tree. The learned productions together with the compressed graph cannot regenerate the

input tree.

We conclude that research in graph grammar inference has focused on classes of

graph grammars limited to a subset of context free graph grammars operating on:

- chains of isomorphic subgraphs

- rooted ordered trees,

- undirected unlabeled graphs for which operations of decomposition and merging into a

grammar can be defined

Based on analyzed research in the inference of graph grammars we would like

to list three directions:

(1) Decomposition of sample graphs and merging a graph grammar from

decomposed subgraphs. This approach is inspired by Jeltsch and Kreowski’s

theoretical study. It involves decomposition of sample graphs into smaller units

and merging them into a graph grammar. Other methods of decomposing and

merging are open directions.

 16

(2) Building automata which accept sample graphs. The automata theory and

languages for strings is a very well defined field [Hopcroft79]. String grammar

inference is also a well studied problem [ICGI00,ICGI94,ICGI98,ICGI02]. The

concepts of automata inference that accept graphs can draw from these studies.

Carrasco et al. [Carrasco01] studied rooted, ordered trees which were coded into

strings. The string was processed by deterministic tree automata to find if the

tree represented by it is accepted in the language. Representing other classes of

graphs as strings would allow for applying concepts from string processing into

processing graphs.

(3) Finding frequently occurring instances of subgraphs and examination of their

connections. SubdueGL examines if instances of the same subgraph are

connected by one edge. The one edge restriction is a major limitation of this

approach. An open research problem is in finding methods to examine

connections between frequent subgraphs which are more complicated than one

edge connection. Consequently, how to construct a graph grammar from

frequent instances of subgraphs and information about their connections

becomes an issue we study in this dissertation. In the next chapter we discuss

definitions and classes of these graph grammars.

 17

CHAPTER 3

CLASSES OF GRAPH GRAMMARS

In this chapter we introduce classes of graph grammars as they are known in the

literature. We describe the hierarchy of graph grammars and define classes of graph

grammars that we can infer with our algorithm: node and edge replacement graph

grammars.

3.1 Graph Grammar Definition

The Chomsky hierarchy of text grammars includes four types: type 3 - regular

grammars, type 2 -context-free grammars, type 1 - context-sensitive grammars, and type

0 - unrestricted grammars. The Chomsky hierarchy of string grammars is well-defined

because of its relation to finite state automata, pushdown automata, and Turing

machines. Graph grammars do not have such relations.

In this section we give an overview of different classes of graph grammars.

These classes are often investigated in the literature. In this survey of definitions and

hierarchy of graph grammars we intend to provide an initial framework for the graph

grammar inference problem.

A graph grammar is a pair G = (S, P), where S is the starting graph and P is a

set of production rules. Graph replacement grammars have productions of the form

(M, D, C), where M is the mother graph, D is the daughter graph, and C is a set of

connection instructions [Rozenberg97]. All occurrences of subgraph M in a host graph

 18

H are replaced with D using the set of connections C. L(G) is the set of graphs

generated by graph grammar G.

Defining a new class of graph grammars requires specification of rewriting

rulers (M and D), and an embedding mechanism C. The embedding mechanism is the

criterion to classify graph grammars. Authors also point out that embedding

mechanisms are among the most important features in studies about graph grammars

[Janssens83 , Flasinski98].

We can distinguish two classes of grammars based on the nature of productions:

node replacement graph grammars and edge replacement graph grammars. Janssens and

Rozenberg [Janssens80] introduce node label controlled (NLC) graph grammars.

3.2 Node Label Controlled (NLC) Graph Grammar

A node label controlled graph grammar (NLC) [Rozenberg97] is a 5- tuple

()SCPG ,,,,Δ∑= , where

∑ - is an alphabet of node labels,

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,

P -is a finite set of productions which are pairs),(Yd , with ∑∈d and Y is a graph

C -is a connection relation, a function from ∑ into ∑2

S - is the initial graph

NLC productions replace a single vertex with a graph. There is no separate

connection relation for every production. The connection relations are global, the same

for all productions. The connection relations apply only to neighboring vertices of a

 19

mother vertex. The neighborhood of a vertex v in a graph is the set of all the vertices

adjacent to v. If the mother vertex does not have neighbor vertices labeled as in the list

of connection relations C, then these connections are not introduced. Because the

embedding of a daughter graph D depends on the labels on the neighboring vertices of

the mother vertex M, some papers [Rozenberg86] point out the context-sensitive nature

of NLC embedding. We observe that the labels of the vertices adjacent to the mother

vertex M do not influence the decision of whether M will be replaced by D or not.

Those labels decide only the nature of the connections of D to the host graph.

Therefore, we classify NLC grammars to context free grammars.

As an example [Rozenberg86], let },{ ba=Δ , },,{ baA=∑ , and S be a node

with label A , then the two productions of P are given below and the connection

relation C is on the right of the productions.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

a

b

ba

b

a

A

C

},{

,

,

,

Figure 6: Example of Node Label Controlled (NLC) Graph Grammar.

The language of the graphs generated by the above grammar consists of all

bipartite graphs nnK , . Neighborhood controlled embedding (NCE) graph grammars have

a similar definition to NLC grammars. The difference is that the embedding relation C

maps labels of neighboring vertices of M to particular vertices (not based on labels) of a

 20

daughter graph D. The embedding relation is no longer global but is given for every

production separately.

3.3 Neighborhood Controlled Embedding (NCE) Graph Grammar

The neighborhood controlled embedding (NCE) graph grammar [Rozenberg97]

is a 4-tuple ()SPG ,,,Δ∑= , where ∑ , Δ , and S are defined as in the definition of

NLC grammars. P is a finite set of productions, which are pairs),,(CYd , with

∑∈d and Y is a graph. C is a connection relation, DVC ×Σ⊆ , and DV is a set of nodes

of Y .

For example the initial graph S and a production with connection relation of an NCE

grammar are given below. Labels a, b, c of a host graph and vertices x1, x2, x3, x4 are

used in specifying the connection relation C.

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

4

3,2

1

,

,

,

x

xx

x

c

b

a

C

Figure 7: Example of Neighborhood Controlled Embedding (NCE) Graph Grammar.

Janssens and Rozenberg [Janssens82] proved that the set of graphs generated by

NCE grammars is the same as generated by NLC grammars (NCE=NLC). edNCE has

more generation power than NCE and NLC. The small letter ‘e’ before the name of the

grammar means that edges are labeled and they are used in connection instructions. The

‘d’ means that edges are directed.

 21

3.4 Edge-Labeled Directed Neighborhood Controlled Embedding (edNCE) Graph
Grammar

An edge-labeled directed neighborhood controlled embedding (edNCE) graph

grammar is a system ()SCPG ,,,,,, ΩΓΔ∑= , where

∑ - is an alphabet of node labels,

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,

Γ - is an alphabet of edge labels,

Ω -is an alphabet of terminal edge labels, Γ⊆Ω ,

P -is a finite set of productions of the form),,(CYd , with ∑∈d and Y is a graph,

C -is a connection relation, { }outinVC Y ,××Γ×Γ×Σ⊆ ,

S - is the initial graph.

For example the connection relation given below specifies how vertices of a

daughter graph x1, x2, x3 will be connected to the vertices of a host graph. The first

line from the list of connection relations means that vertex x1 of the daughter graph will

be adjacent to a vertex with label ‘a’ of a host graph if vertex with label ‘a’ is adjacent

to the mother vertex ‘A’ on an edge labeled ‘p’. The label on an edge between x1 and

‘a’ will be ‘d’. The direction of this edge will be from x1 to ‘a’. Remaining lines have

similar meaning.

 22

S A

a

b

c

x1

x3x4

A

d d

d e

x2k

lm

p
t

z

z

z

z z

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

inxgmc

inxftb

inxdpa

C

,3,,,

,2,,,

,1,,,

Figure 8: Example of Edge-Labeled Directed Neighborhood Controlled
Embedding (edNCE) Graph Grammar

3.5 Hierarchy and Other Classes of Node Replacement Graph Grammars

We gave the definition of an edNCE grammar. The eNLC and edNLC

grammars also were defined [Rozenberg97, Flasinski98, Kim97]. Definitions of the

eNLC and edNLC grammars used the connection relation based on labels on vertices of

mother and daughter graphs and labels on edges. We can impose restrictions on

connection relations of NLC, NCE, eNLC, eNCE grammars to form new classes of

grammars. The desired property of these classes is confluence. A graph grammar is

confluent if the result of a derivation does not depend on the order of production

applied. If the result depends on the order of derivation, the grammar is not confluent.

We list below some of the restrictions [Rozenberg97, Flasinski98, Kim97]. In

parentheses we give an abbreviation used as a prefix in the names of grammars.

(B) Boundary graph grammars. No two non-terminal nodes are adjacent in the right-

hand side of each production and in the starting graph. Boundary grammars are

confluent.

(Lin) Linear graph grammars. At each derivational step, daughter graph contains at

most one non-terminal label.

 23

(A) Apex graph grammars. Connection instructions contain only terminal nodes.

(-) Regular graph grammars. The right hand side graph is a single non-terminal or

consists of two connected nodes, terminal and non-terminal.

To show the relation of different node replacement grammars we reproduced the

results of Changwook Kim [Kim97] in Figure 9. The arrows indicate inclusion. For

instance, the arrow from B-NCE to NCE means that B-NCE ⊆ NCE.

NLC=NCE eNCE

B-eNCEB-NCE

B-NLC

Lin-NCE

Lin-NLC

Lin-eNCE A-NCE A-eNCE

A-NLC

Lin-A-eNCELin-A-NCE

Lin-A-NLC

Figure 9: A hierarchy of node replacement graph grammars [Kim97].

Hyperedge replacement grammars is another class of graph grammars. Their

definition [Rozenberg97, Habel92, Drewes90] allows for replacement of more complex

 24

structures than a single edge. Our focus is on inference of graph grammars and for this

purpose we are interested in a grammar, which uses only one edge in its productions.

An edge replacement graph grammar is a system ()SCPG ,,,,,, ΩΓΔ∑= , where

∑ ,Δ ,Γ , Ω , S are as defined before, P is a finite set of productions of the form

),,(CYe , e is a single edge with a label from ()Ω−Γ , Y is a graph, and C is a gluing

relation,
⎭
⎬
⎫

⎩
⎨
⎧

→
→

)()(

)()(

Yendetail

Ybeginehead
.

In every production, the right hand side, graph Y, has two nodes marked in

addition to their labels begin and end. When the production is applied, edge e is

removed from the host graph and vertices incident to e are replaced with Y’s vertices

marked begin and end. Vertices of the host graph previously incident to e preserve all

other connections to the host graph. The labels of these two vertices are replaced by

new labels of graph Y.

Until this point we described different classes of graph grammars where the

decision of whether a production will be applied or not did not depend on the

environment of the replaced edge, node, or graph. All these classes of grammars we

classify to context free graph grammars. We would like to introduce two definitions of

context sensitive grammars.

Edge replacement context sensitive graph grammar is a

system ()SCPG ,,,,,, ΩΓΔ∑= , where

∑ ,Δ ,Γ , Ω , and S are as defined before,

P - is a finite set of conditional productions of the form

 25

()()
⎭
⎬
⎫

⎩
⎨
⎧

→
→

=→
⎭
⎬
⎫

⎩
⎨
⎧

⊆
⊆

)()(

)()(

))((Yendetail

Ybeginehead
CandYethan

Petailodneighborho

andOeheadodneighborho
if

e is a single edge with a label from ()Ω−Γ and Y is a graph. Replacement of an edge e

with a graph Y occurs only if specified conditions are met.

C -is a gluing relation, where O and P are sets of labels Σ⊆PO, .

A context sensitive (edNCE) graph grammar is a system

()SCPG ,,,,,, ΩΓΔ∑= , where

∑ ,Δ ,Γ , Ω , and S are as defined before,

P -is a finite set of conditional productions of the form

(){ } { }outinVCandYdthenOdodneighborhoif Y ,××Γ×Γ×Σ⊆→⊆ ,

with ∑∈d and Y is a graph, C - is a connection relation, O is a set of labels Σ⊆O .

Replacement of a vertex d with a graph Y occurs only if conditions specified are met.

3.6 Node Replacement Recursive Graph Grammar Definition

We give the definition of a graph and a graph grammar which is relevant to our

approach. The defined graph has labels on vertices and edges. Every edge of the graph

can be directed or undirected. The definition of a graph grammar describes the class of

grammars that can be inferred by our approach. We emphasize the role of recursive

productions in the name of the grammar, because the type of inferred productions are

such that the non-terminal label on the left side of the production appears one or more

 26

times in the node labels of a graph on the right side. This is the main characteristic of

our grammar productions. Our approach can also infer non-recursive productions. The

embedding mechanism of the grammar consists of connection instructions. Every

connection instruction is a pair of vertices that indicate where the production graph can

connect to itself in a recursive fashion. Our graph generator can generate a larger class

of graph grammars than defined below. We will describe the grammars used in

generation later in the dissertation.

A labeled graph G is a 6-tuple, ()LEVG ,,,,, ηνμ= , where

V - is the set of nodes,

VVE ×⊆ - is the set of edges,

LV →:μ - is a function assigning labels to the nodes,

LEv →: - is a function assigning labels to the edges,

}1,0{: →Eη - is a function assigning direction property to edges (0 if undirected, 1 if

directed).

L - is a set of labels on nodes and edges.

A node replacement recursive graph grammar is a tuple ()PGr ,,, ΓΔ∑= , where

∑ - is an alphabet of node labels,

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,

Γ - is an alphabet of edge labels, which are all terminals,

 27

P - is a finite set of productions of the form),,(CGd , where Δ−∑∈d , G is a graph, and

there are two types of productions:

(1) recursive productions of the form),,(CGd , with Δ−∑∈d , G is a graph, where there is

at least one node in G labeled d . C is an embedding mechanism with a set of

connection instructions, VVC ×⊆ , where V is the set of nodes of G . A connection

instruction Cvv ji ∈),(implies that derivation can take place by replacing iv in one

instance of G with jv in another instance of G . All the edges incident to iv are incident

to jv . All the edges incident to jv remain unchanged.

(2) non-recursive production, there is no node in G labeled d (our inference algorithm

does not infer an embedding mechanism for these productions).

3.7 Edge Replacement Recursive Graph Grammar Definition

An edge replacement recursive graph grammar is a 5-tuple ()PGr ,,,, ΩΓΔ∑= ,

where

∑ - is an alphabet of node labels,

Δ - is an alphabet of terminal node labels, ∑⊆Δ ,

Γ - is an alphabet of edge labels,

Ω -is an alphabet of terminal edge labels, ∑⊆Ω ,

P - is a finite set of productions of the form),,(CGd , G is a graph, and there are two

types of productions:

 28

(1) recursive productions, where Ω−Γ∈d , and there is at least one edge in

G labeled d . C is an embedding mechanism with a set of connection instructions,

);(VVVVC ××⊆ , where V is the set of nodes of G . A connection instruction

Cvvvv lkji ∈),;,(implies that derivation can take place by replacing iv , kv in one instance

of G with lj vv , respectively, in another instance of G . All the edges incident to iv are

incident to jv , and all the edges incident to kv are incident to lv . All the edges incident to

jv and kv remain unchanged. If, in derivation process after applying connection

instruction),;,(lkji vvvv , nodes ji vv , are adjacent by an edge, we call edge),(ji vve = a

real edge, otherwise edge),(ji vve = is used only in the specification of the grammar

and we call this edge a virtual edge.

(2) non-recursive production, where Δ−∑∈d , there is no node, or edge in

G labeled d (our inference algorithm does not infer an embedding mechanism for these

productions).

3.8 Definition of Data Structures Used in the Algorithm

We introduce the definition of two data structures used in our algorithm.

Substructure S of a graph G is a data structure which consists of: (1) graph definition of

a substructure SG which is a graph isomorphic to a subgraph of G, (2) list of instances

(I1, I2, …, In) where every instance is a subgraph of G isomorphic to SG.

Recursive substructure recursiveSub is a data structure which consists of:

 29

(1) graph definition of a substructure SG which is a graph isomorphic to a subgraph of

G

(2) list of connection instructions which are pairs of integer numbers describing how

instances of the substructure can overlap to comprise one instance of the

corresponding grammar production rule.

(3) List of recursive instances (IR1, IR2, …, IRn) where every instance IRk is a subgraph

of G. Every instance IRk consist of one or more isomorphic, overlapping by no more

than one vertex in the algorithm for node graph grammar inference and no more

than two vertices in edge grammar inference, copies of SG.

In our definition of a substructure we refer to subgraph isomorphism. However,

in our algorithm we are not solving the subgraph isomorphism problem. We are using a

polynomial time beam search to discover substructures and graph isomorphism to

collect instances of the substructures.

3.9 Node Replacement Graph Grammar in Hierarchy of Graph Grammars

We encountered in the existing literature a classification of graph grammars

based on the embedding mechanism [Kim97]. The embedding mechanism is important

in the generation process, but if we use graph grammars in parsing or as a tool to mine

data and visualize common patterns, the embedding mechanism may have less

importance or can be omitted. Without the embedding mechanism the graph grammar

still conveys information about graph structures used in productions and relations

between them. In Figure 10 we give the classification of graph grammars based on the

 30

type of their productions, not based on the type of embedding mechanism. The

production of the grammars in the hierarchy is of the form),,(CGd where d is the left

hand side of the production, G is a graph, and C is the embedding mechanism. d can be

a single node, a single edge or a graph, and we respectively call the grammar a node-,

edge- or graph replacement grammar. If the replacement of d with G does not depend

on vertices adjacent to d or edges incident to d, nor any other vertices or edges outside d

in a graph hosting d, we call the grammar context free. Otherwise, the grammar is

context sensitive.

We wanted to place the graph grammars we are able to infer in this hierarchy.

We circled two of them. Node replacement recursive graph grammar is the one

described in this dissertation. The set of grammars inferred by Jonyer et al. (Jonyer,

2002, 2004) we call chain grammars. Chain grammars describe graphs or a portion of

graphs composed from isomorphic subgraphs where every subgraph is adjacent to the

other by one edge. The productions of chain grammars are of the form S→ PS, where P

is the subgraph. P and S are connected by one edge. Chain grammars are a subset of

node replacement recursive graph grammars. Node replacement graph grammars

describe a more general class of graph grammars than our algorithm is able to learn. An

example of a node replacement graph grammar that we cannot learn is a grammar with

alternating productions, as shown later in Figure 28.

 31

Context Sensitive

Graph Replacement
Context Sensitive

Edge and Node
Replacement

Context Sensitive

Edge Replacement
Context Sensitive

Node Replacement
Context Sensitive

Context Free

Graph Replacement
Context Free

Edge and Node
Replacement
Context Free

Edge Replacement
Context Free

Node Replacement
Recursive Context Free

Chain Grammars

Node Replacement
Context Free

Figure 10: Hierarchy of graph grammars.

 32

CHAPTER 4

THE GRAPH GRAMMAR INFERENCE ALGORITHMS

In this chapter we introduce two algorithms. The first algorithm is for node

replacement graph grammar inference and the second for edge replacement graph

grammar inference. We start from an informal description of the first algorithm using

an example. Then we show pseudocode and explain how we detect overlap between

substructures and determine connection instructions. Then we show how to find overlap

by two nodes used to propose an edge replacement grammar. We define the virtual and

real non-terminal edges in edge replacement graph grammars.

4.1 Node Replacement Graph Grammar Inference Algorithm

We will first describe the algorithm informally allowing for an intuitive

understanding of the idea. The example in Figure 11 shows a graph composed of three

overlapping substructures. The algorithm generates candidate substructures and

evaluates them using the following measure of compression,

()
() ()SGsizeSsize

Gsize

|+

where G is the input graph, S is a substructure and SG | is the graph derived

from G by compressing each instance of S into a single node. ()gsize can be computed

simply by adding the number of nodes and edges: () () ()gedgesgverticesgsize += . Another

 33

successful measure of ()gsize is the Minimum Description Length (MDL) discussed in

detail in (Cook 1994). Either of these measures can be used to guide the search and

determine the best graph grammar.

Figure 11: A graph with overlapping substructures and a
graph grammar representation of it.

In Figure 11, the subgraphs overlap at nodes 3 and 4. The algorithm starts by

finding nodes with the same label. There are seven nodes labeled “a” and three nodes

labeled “b”. The single node labeled “a” becomes a candidate substructure with seven

instances I1={1}, I2={3}, I3={4}, I4={6}, I5={7}, I6={9}, I7={10}. The numbers in

parentheses refer to the nodes in Figure 11. This initial substructure will be expanded by

a node and an edge in each iteration of the algorithm’s main discovery loop. Similarly,

the initial substructure of a node labeled “b” and its instances are determined. Both of

these substructures are expanded simultaneously. Let us follow the expansion of only

one substructure, which starts from all nodes labeled “b.” Table 1 gives the instance

expansion at every step and a substructure value. We expand the instances I by edge

labeled y and a vertex labeled a, which gives us the set of instances I’. Instances I can

also be expanded by edge z or x. Similarly, we expand I’ by edge z and a vertex a,

 34

which gives us I’’. I’ can also be expanded by edge x. We omit in Table 1 alternative

expansions of I by z, x and I’ by x. These additional expansions are part of our

algorithm. They lead to the same solution. When the set of instances I’’ is expanded by

the edge with label x, we detect an overlap, i.e., two or more instances share the same

node. The overlapping instances of the substructure allow us to propose the recursive

graph grammar shown on the right of Figure 11. This grammar can compress the entire

graph to one node and has a better substructure value than any other substructure

discovered so far.

.

Table 1: Expansion of instances which start from nodes labeled “b” in Figure 11.

Expansion Instances ()
() ()SGsizeSsize

Gsize

|+

initial instances I ={ I1={2}, I2={5}, I3={8}} 19/(1+19)=0.95
I expanded by y I’ ={ I1={2, 3}, I2={5, 6}, I3={8, 9} } 19/(3+13)=1.19
I’ expanded by z I’’={ I1={2, 3, 4}, I2={5, 6, 7}, I3={8, 9, 10}} 19/(5+7)=1.58
I’’ Expanded by x

I’’’ ={ I1={2, 3, 4, 1}, I2={5, 6, 7, 3}, I3={8,
9, 10, 4}} (overlap !)

19/(7+1)=2.38

The grammar from Figure 11 consists of a graph isomorphic to three

overlapping substructures and connection instructions. We find connection instructions

when we check for overlaps. In this example there are two connection instructions, 1-3

and 1-4. Hence, in generation of a graph from the grammar, in every derivation step an

isomorphic copy of the subgraph definition will be connected to the existing graph by

connecting node 1 of the subgraph to either a node 3 or a node 4 in the existing graph.

The grammar shown on the right in Figure 11 cannot only regenerate the graph shown

on the left, but also generate generalizations of this graph. Generalization in this

 35

example means that the grammar describes graphs composed from one or more star

looking substructures of four nodes labeled “a” and “b”. All these substructures overlap

on a node with the label “a”.

Our graph grammar inference method is based on Cook et al.’s [Cook94]

substructure discovery algorithm called Subdue. Subdue is looking for repetitive,

highly-compressing subgraphs. The algorithm starts by finding all nodes with the same

label. It maintains a list of the best subgraphs found so far. In each iteration new

candidates for the best subgraphs are created by expanding all the subgraphs in the list

by one edge or an edge and a node. Then, candidates for the best subgraphs are

evaluated. In the evaluation process, every occurrence of a candidate subgraph within

the entire graph is temporarily replaced by a new node. The compression achieved with

this replacement is measured by calculating minimum description length or size

(number of nodes + number of edges) of an original and compressed graph. Only

subgraphs with the highest compression ratio remain in the list of the best subgraphs.

Subdue spends a majority of computation time on isomorphism testing. Subdue has

been applied to data from several domains, including DNA, chemical compounds,

seismic events, aviation incident reports, and social networks [Su99, Chittimoori99,

Gonzalez00, Mehta03].

Algorithm 1 is our grammar discovery pseudocode. The function

INFER_GRAMMAR is similar to the descriptions of Cook et al. [Cook94] for

substructure discovery and Jonyer et al. [Jonyer02] for discovering grammars

describing chains of isomorphic subgraphs connected by one edge. The input to the

 36

algorithm is a graph G which can be one connected graph or set of disconnected graphs.

G can have directed edges or undirected edges. The algorithm assumes labels on nodes

and edges. The algorithm processes the list of substructures Q. In Figure 12 we see an

example of a substructure definition. A substructure consists of a graph definition and a

set of instances from the input graph that are isomorphic to the graph definition. The

example in Figure 12 is a continuation of the example in Figure 11. The numbers in

parentheses refer to nodes of the graph in Figure 11.

The algorithm starts (line 3) with a list of substructures where every

substructure is a single node and its instances are all nodes in the graph with this node

label. The best substructure is initially the first substructure in the Q list (line 4). In line

8 we extend each substructure in Q in all possible ways by a single edge and a node or

only by single edge if both nodes are already in the graph definition of the substructure.

We allow instances to grow and overlap, but any two instances can overlap by only one

node. We keep all extended substructures in newQ. We evaluate substructures in newQ

in line 12. The recursive substructure recursiveSub is evaluated along with non-

recursive substructures and is competing with non-recursive substructures. The total

number of substructures considered is determined by the input parameter Limit. In line

19 we compress G with bestSub. Compression replaces every instance of bestSub with a

single node. This node is labeled with a non-terminal label. The compressed graph is

further processed until it cannot be compressed any more. In consecutive iterations

bestSub can have one or more non-terminal labels. It allows us to create a hierarchy of

grammar productions. The input parameter Beam specifies the width of a beam search,

 37

i.e., the length of Q. For more details about the algorithm see [Cook94, Jonyer02,

Jonyer04].

The function RECURSIFY_SUBSTRUCTURE takes substructure S and, if

instances of S overlap, proposes recursive substructure recursiveSub. The list of

connection instructions and the list of recursive instances are two main components of

recursiveSub. We initialize them in line 1 and 2. We check for overlap in line 4. Figure

12 assists us in explaining conversion of substructure S into recursive substructure.

Every instance graph has two positive integers assigned to it. One integer, in

parentheses in Figure 12, is the number of a node in the processed graph G. The second

integer is a node number of an instance graph. The instances are isomorphic to the

substructure graph definition and instance node numbers are assigned to them according

to this isomorphism. We check for overlap in line 4. Given pair of instances (I1, I2) we

examine if there is a node Gv∈ , which also belongs to I1 and I2. We find two

overlapping nodes, [3] and [4], examining node numbers in parentheses in the example

in Figure 12. Having the number of node Gv∈ we find corresponding to v two node

numbers of instance graphs 1IvI ∈ and 2
' IvI ∈ (line 5 and 6). The pair of integers),('

II vv is

a connection instruction. There are two connection instructions in Figure 12, 1-3 and 1-

4. If),('
II vv is not already in the list of connections instructions for recursive

substructure, we include it in line 8.

 38

Figure 12: Substructure and its instances while determining
connection instructions (continuation of the example from
Figure 11).

We create the recursive substructure’s instance list in lines 10 to 13 of

RECURSIFY_SUBSTRUCTURE. A recursive instance is a connected subgraph of G

which can be described by the discovered grammar production. It means that for every

subset of instances {Im, Im+1, …, Il} from the instance list of S, in which union Im ∪ Im+1

∪… ∪ Il is a connected graph, we create one recursive instance IRk= Im ∪ Im+1 ∪… ∪

Il . The recursive instances are no longer isomorphic as instances of S and they vary in

size. Every recursive instance is compressed to a single node in the evaluation process.

Subdue uses a heuristic search whose complexity is polynomial in the size of

the input graph [Cook00]. Our modification does not change the complexity of this

algorithm. The overlap test is the main computationally expensive addition of our

grammar discovery algorithm. Analyzing informally, the number of nodes of an

instance graph is not larger than V, where V is the number of nodes in the input graph.

Checking two instances for overlap will not take more than)V(2O time. The number of

pairs of instances is no more than 2V , so the entire overlap test will not take more

than)V(4O time.

 39

Algorithm 1 Graph grammar discovery.

INFER_GRAMMAR (graph G, integer Beam, integer Limit)

1. grammar={}
2. repeat
3. queue Q ={v | v is a node in G having a unique label}
4. bestSub= first substructure in Q
5. repeat
6. newQ ={}
7. for each substructure S ∈ Q
8. newSubs = extend substructure S in all possible ways by a single edge and a

node
9. recursiveSub = RECURSIFY_SUBSTRUCTURE(S)
10. newQ = newQ ∪ newSubs ∪ recursiveSub
11. Limit=Limit-1
12. evaluate substructures in newQ
13. end for
14. if best substructure in newQ better than bestSub
15. then bestSub = best substructure in newQ
16. Q=newQ
17. until Q is empty or Limit ≤ 0
18. grammar = grammar ∪ bestSub
19. G = G compressed by bestSub
20. until bestSub cannot compress the graph G
21. return grammar

 RECURSIFY_SUBSTRUCTURE (substructure S)

1. recursiveSub → connectionInstructionList = {}
2. recursiveSub →Instances = {}
3. for all pairs of instances (I1, I2), I1∈S, I2∈S
4. if (I1 and I2 overlap on node Gv∈)
5. Iv = GET_INSTANCE_NODE(v, I1)

6. '
Iv = GET_INSTANCE_NODE(v, I2)

7. if (∉),('
II vv (recursiveSub → connectionInstructionList))

8. Add),('
II vv to (recursiveSub → connectionInstructionList)

9. end if
10. if I1∩ IRk ≠ Ø or I2∩ IRk ≠ Ø , where IRk is any member of recursiveSub

→Instances
11. modify IRk , IRk= IRk∪ I1∪ I2 else
12. create new entry IRk= I1∪ I2 and add it to recursiveSub →Instances
13. end if
14. end if
15. end for
16. return recursiveSub

 40

In our first example from Figure 11, we described a grammar with only one

production. Now we would like to introduce a complex example to illustrate the

inference of a grammar which describes a more general tree structure. In Figure 13 we

have a tree with all nodes having the same label. There are two repetitive subgraphs in

the tree. One has three edges labeled “a,” “b,” and “c.” The other has two edges with

labels “x” and “y.” There are also three edges K1, K2, and K3 which are not part of any

repetitive subgraph. In the first iteration we find grammar production S1, because

overlapping subgraphs with edges “a,” “b,” and “c” score the highest in compressing

the graph. Examining production S1, we notice that node 3 is not involved in

connection instructions. It is consistent with the input graph where there are no two

subgraphs overlapping on this node. The compressed graph, at this point, contains the

node S1, edges K1, K2, K3 and subgraphs with edges “x” and “y.” In the second

iteration our program finds all overlapping substructures with edges “x” and “y” and

proposes production S2. Compressing the tree with production S2 results in a graph

which we use as an initial production S, because the graph can be compressed no

further. In Figure 13 productions for S1 and S2 have graphs as terminals. We will omit

drawing terminal graphs in subsequent figures. The tree used in this example was used

in our experiments, and the grammar on the right in Figure 13 is the actual inferred

grammar.

 41

Figure 13: The tree (left) and inferred tree grammar (right).

We notice that in Figure 13 productions S1 and S2 are recursive with two

connection instructions but production S is not recursive and does not have connection

instructions. Each grammar production can have one or more connection instructions. If

the grammar production does not have a connection instruction, it is a non-recursive

production. Each connection instruction consists of two integers. They are the numbers

of vertices in two isomorphic subgraphs. Connection instructions are determined from

overlap. They show how instances overlap in the input graph and can be used in

generation. We compress portions of the graph described by productions. Connection

instructions show how one instance connects to its isomorphic copy. They do not show

how an instance is connected to the compressed graph. We do not infer the embedding

mechanism of recursive and non-recursive productions for the compressed graph, but

this is an issue for further theoretical and experimental study. When a production is

non-recursive, instances do not overlap and do not connect to each other. We do not

explicitly give an embedding mechanism for this case. We discuss possible solutions in

the future work section of the dissertation.

 42

4.2 Edge Replacement Graph Grammar Inference Algorithm

There is overlap in the recurring patterns or motifs representing the building

blocks of networks in nature. Palla et al. [Palla05] point out the existence of an overlap

between parts of graphs representing social networks and proteins. They call them

overlapping communities. In our method of graph grammar inference we search for

overlap between isomorphic subgraphs of a graph. The overlap allows for proposing

recursive graph-grammar productions. The first approach was to search for overlap by a

single node, which led to developing an algorithm for inference of Node Replacement

Recursive Graph Grammars (Kukluk06). Now, we describe an extension to the node-

replacement approach that allows inference of Edge Replacement Recursive Graph

Grammars. One limitation of node replacement grammars is shown in Figure 14, where

all the nodes have the same labels. We infer a node replacement grammar from the

graph in Figure 14 (a). The grammar inferred in Figure 14 (b), if used for generation,

would replace node 2 with node 1 of an isomorphic copy of an instance. This grammar

can generate the graph in Figure 14 (c), but it cannot regenerate the original graph in

Figure 14 (a). Motivated by this limitation of node replacement grammars, we extended

the approach to edge replacement grammars by allowing for overlap between two

nodes. We discuss inference error and how different search-guiding measures influence

error. We also address how different numbers of labels used in the graph affect the

inference error.

 43

Figure 14: Graph with overlapping squares (a), inferred node-
replacement grammar (b), and graph generated from inferred
grammar (c)

In the definition of edge replacement recursive graph grammars we have two

types of productions. The recursive production has a graph in its definition with one or

more non-terminal edges which we can replace with the structure of the graph to which

these non-terminal edges belong. We infer an embedding mechanism for recursive

productions which consists of four integers for every non-terminal edge. These integers

are node numbers. Two nodes belong to one instance of a graph and two to the other.

They describe how instance of a graph defined in the grammar production would be

expanded during derivations. Non-recursive productions replace a single node with a

graph. Our algorithm does not infer the embedding mechanism for non-recursive

productions. In every iteration of the grammar inference algorithm we are finding only

one production, and it is ether non-recursive or recursive. The reader can refer to

examples in Figure 15 and Figure 33 while examining the definition. In Figure 15 (a)

 44

we see an example of the grammar used for generation and in Figure 15 (b) the

equivalent inferred grammar.

Figure 15: The original grammar (a) used to generate
examples and the inferred grammar (b).

The edge replacement algorithm operates on a data structure called a

substructure (similar to the algorithm for node replacement grammar inference) which

in Algorithm 2 we represent by S. A substructure consists of a graph definition of the

repetitive subgraph and its instances. We illustrate it in Figure 16. We defined two

functions in Algorithm 2: INFER_GRAMMAR and RECURSIFY_SUBSTRUCTURE.

The first function is consistent with Cook et al.’s [Cook 1994] algorithm. Initially, the

graph definitions of substructures are single nodes, and there are as many substructure

inserted into the queue Q at line 3 as there are different labels on nodes in the input

graph. At line 8 we expand the substructure in all possible ways by a single edge or by

single edge and a node. We allow substructures to grow and their instances to overlap

but by no more than two nodes. We evaluate substructures at line 12. The total number

of substructures considered is determined by the input parameter Limit. The input

 45

parameter Beam specifies the width of a beam search, i.e., the length of Q. For more

details about the algorithm see [Cook94, Jonyer02, Jonyer04].

Our addition to Cook et al.’s [Cook94] algorithm is the procedure

RECURSIFY_SUBSTRUCTURE. This procedure takes substructure S and examines

its instances for overlap at line 4. If two nodes 21 ,vv in G both belong to two different

instances, we propose a recursive grammar rule. In lines 5, 6, and 7 we determine the

type of non-terminal edge. If 21 ,vv are adjacent by an edge, it is a real edge, and we

determine its label which we use to specify the terminating production (see Figure 33).

Lines 11, 12, 13 produce recursive instances. Every instance IR is a portion of the input

graph G which contains two or more overlapping instances of S.

We insert recursive substructures together with non-recursive substructures into

the newQ in line 10 of the RECURSIFY_SUBSTRUCTURE procedure. Recursive

substructures compete with non-recursive substructures. They are evaluated at line 12.

In our experiments we used two evaluation measures:

()
() ()[] 2| SGsizeNTSsize

Gsize

++
,

()
())|(SGsizeNTSsize

Gsize

++

 46

Algorithm 2 Graph grammar discovery.
INFER_GRAMMAR (graph G, integer Beam,
 integer Limit)
1. grammar={}
2. repeat
3. queue Q ={v | v is a node in G having a unique
 label}
4. bestSub= first substructure in Q
5. repeat
6. newQ ={}
7. for each substructure S ∈ Q
8. newSubs = extend substructure S in all
 possible ways by a single edge and a node
9. recursiveSub = RECURSIFY_SUBSTRUCTURE (S)
10. newQ = newQ ∪ newSubs ∪ recursiveSub
11. Limit=Limit-1
12. evaluate substructures in newQ
13. end for
14. if best substructure in newQ better than bestSub
15. then bestSub = best substructure in newQ
16. Q=newQ
17. until Q is empty or Limit ≤ 0
18. grammar = grammar ∪ bestSub
19. G = G compressed by bestSub
20. until bestSub cannot compress the graph G
21. return grammar

RECURSIFY_SUBSTRUCTURE (substructure S)
1. recS → connectList = {}
2. recS →Instances = {}
3. for all pairs of instances (I1, I2), I1∈S, I2∈S
4. if (I1 and I2 overlap on two nodes Gvv ∈21 ,)
5. if (v1, v2 adjacent by an edge in G)
6. edge.type=real, edge.label=label(v1, v2) else
7. edge.type=virtual, edge.label=NULL
8. ()lkji vvvv ,;, = GET_CONNEC(2121 ,,, IIvv)

9. if (()∉edgevvvv lkji ,,;, (recS → connectList))

10. add ()edgevvvv lkji ,,;, to (recS → connectList)

11. if I1∩ IRk ≠ Ø or I2∩ IRk ≠ Ø , where IRk is any member of recS →Instances
12. IRk= IRk∪ I1∪ I2 else
13. create new entry IRk= I1∪ I2 and add it to
 recS →Instances
14. return recS

 47

Let us call these measures a measure with square (first) and a measure without

square (second). Initially, we only used measure without square but with this measure

the inferred graph is often missing one edge in comparison to the original grammar.

Therefore, we introduced the measure with square which includes the missing edge to

the inferred grammar. NT is the number of connection instructions. G|S is a graph G

where we compress all instances of the substructure S to a single node. The reason of

using measure with square is to put more emphasis on compression than it is in the case

of the measure without square. This emphasis of compression can be achieved in two

different ways: (1) minimizing value of size(S) or (2) enlarging value of size(G|S). We

chose to enlarge size(G|S) by applying exponent 2, but it is not a strong preference and

other exponents or algebraic methods of emphasizing the size(G|S) in reference to

size(S) are expected to have similar effects. The size we measure with two methods: (1)

Minimum Description Length (MDL) and (2) number of nodes plus number of edges.

We discuss the effects of these different evaluation methods on inference error later in

the section dedicated to experiments. The original Subdue algorithm uses a heuristic

search whose complexity is polynomial in the size of the input graph. Our additions

have their main computations in checking for overlap between instances of

substructures, and they do not change the complexity of this algorithm.

 48

Figure 16: The input graph (a), substructure graph definition (b)
and four overlapping instances of repetitive subgraph (c).

The algorithm can learn grammars with multiple productions. When we find a

production (recursive or not), we compress a portion of the graph described by the

production in line 19 of the algorithm. Every connected subgraph described by the

production is compressed into a node. Then we perform inference again on the

compressed graph. We progress with alternating inference and compression until we

cannot compress the graph any more.

 49

CHAPTER 5

GENERATION OF GRAPHS FROM STOCHASTIC GRAPH GRAMMARS

In this chapter we describe the graph generator. We use this generator to

generate graphs in experiments reported in the following chapters. We explain how we

add noise and corruption to the generated graphs.

5.1 Overview

We developed a graph generator to generate graphs from a known grammar. We

can generate directed or undirected graphs with labels on nodes and edges. Our

generator produces a graph by replacing a non-terminal node or edge by a graph until

all nodes and edges are terminal. We identify non-terminal nodes and edges by labels

S#, where # is an integer. We assign a real number from 0% to 100% to every

production. This number is the probability of selecting the production. We mark two

nodes of a graph used in a production with v1 and v2 to indicate connection nodes to

the graph with non-terminal edges.

Let us examine the example from Figure 17, where we show the input file for

the example grammar, its graphical representation and one, possible, derivation

(generation) of a graph. We have a graph grammar with three productions. We see the

format of an input file where every production starts from S# and is following by a

 50

probability and a graph definition. A node definition begins with the letter v followed

by the node number. One node is marked v1 and one v2. An edge definition begins with

the letter e and is following by the first node number, the second node number, and the

edge label. The first production has assigned probability 100% and is the starting graph

of a grammar. It has one non-terminal node labeled S1. S1 can be replaced with two

graphs: a square with probability 60% or two edge graph with probability 40%. We

additionally mark node v1 with a ‘*” as we use ‘*’ in other figures in this work where

we limit productions to node replacement productions. In the example of the derivation

in Figure 17 we show the steps to generate the graph assuming that the generator

selected in order the first, second and third productions.

5.2 Graph Grammar Generation Algorithm

Algorithm 3 describes the generation process. There are five input parameters to

the function GENERATE_GRAPH. The generation process expands the graph as long

as there are any non-terminal edges or nodes. Since selection of a production is random

according to the probability distribution specified in the input file, the number of nodes

of a generated graph is also random. We place limits on the size of the generated graph

with two parameters: minNodes and maxNodes. We generate graphs from the grammar

until the number of nodes is between minNodes and maxNodes or the number of

generated graphs is larger than maxIterations. We distinguish two different distorting

operations to the graph generated from grammar: corruption and added noise.

Corruption involves the redirection of randomly selected edges. The number of edges of

 51

a graph multiplied by noise gives the number of redirected edges, where noise is a value

from 0 to 1. We redirect an edge),(21 vve = by replacing nodes 1v and 2v with two new,

randomly selected graph nodes 1'v and 2'v . When we add noise, we do not destroy

generated graph structure. We add new nodes and new edges with labels assigned

randomly from labels used in already generated graph structure. We compute the

number of added nodes from the formula (noise/(1- noise))*number_of_nodes. The

number of added edges we find from (noise/(1- noise))*number_of_edges. A new edge

connects two nodes selected randomly from existing nodes of the generated structure

and newly added nodes. We use two functions of Algorithm 3 to perform these

described distortions: CORRUPT_GRAPH_STRUCTURE and

ADD_NOISE_TO_GRAPH.

The generation process starts by selecting a starting graph. There are one or

more productions whose left side is S. The starting graph is selected from the right side

of these productions. Then the starting graph is examined for non-terminal edges and

nodes. The function GENERATE_GRAPH_FROM_GRAMMAR of Algorithm 3

operates on the starting graph. When a non-terminal node or edge is identified, we call

the recursive function EXPAND_GRAPH_BY_EDGE_OR_NODE (Algorithm 4). This

function identifies the graph to be added from the right side of production rules whose

left side matches the label of a non-terminal node or edge. After replacing the non-

terminal edge or node with a graph, the procedure searches through the newly added

nodes and edges for non-terminals. If it finds one, it calls itself recursively. The process

continues until the generated graph does not have any non-terminals.

 52

Input file Graphical representation Example derivation
S
100%
v1 1 a
v2 2 b
v 3 S1
e 1 3 t1
e 3 2 t2
e 2 1 t3

S1 S1
60% 40%
v1 1 c v1 1 d
v2 2 f v2 2 e
v 3 d v 3 g
v 4 e e 1 3 t7
e 1 3 t4 e 3 2 t8
e 3 4 S1
e 4 2 t5
e 2 1 t6

Let as assume that generator
selected in order first, second
and third production. The
derivation of a graph will be:
1) First production is
applied and starting graph is a
triangle with one non-terminal
node S1.
2) Second production is
applied and all incident edges
to node S1 are redirected to
node labeled c

a

b S1

t2

t3 t1

c d

f e

t4

t5

t6 S1

3) Node S1 is deleted
4) Third production is
applied and edge S1 is
replaced by graph from right
side of third production

Figure 17: Input format to graph generator and example derivation.

 53

Algorithm 3 Graph generation from graph grammar

GENERATE GRAPH (grammar, minNodes, maxNodes, noise, maxIterations)

1. while (NOT(minNodes ≤ numberNodes(graph) ≤ maxNodes) AND
2. (number of generated graphs ≤ maxIterations)) do
3. graph=GENERATE_GRAPH_FROM_GRAMMAR(grammar)
4. CORRUPT_GRAPH_STRUCTURE (graph, noise)
5. ADD_NOISE_TO_GRAPH (graph, noise)
6. end while
7. return graph

CORRUPT_GRAPH_STRUCTURE (graph, noise)

1. while (number of redirected edges ≤ noise*number_of_edges(graph)) do
2. select random edge),(21 vve =

3. replace nodes 21,vv with new nodes 21 ',' vv randomly selected from the graph

4. end while
5. return graph

ADD_NOISE_TO_GRAPH (graph, noise)

1. while (number of added nodes ≤ (noise/(1- noise))*number_of_nodes
(graph) do

2. add new node to the graph with a label randomly selected from labels used
already in the graph

3. while (number of added edges ≤ (noise/(1- noise))*number_of_edges
(graph)) do

4. select two nodes 21,vv from existing graph and add new edge),(21 vve = with

label
 already used in the graph
5. return graph

GENERATE_GRAPH_FROM_GRAMMAR (grammar)

1. Select starting graph from right side of productions whose left side is S. Selection
is made according to probability distribution determined by probabilities given in
input file for every production.

2. for all edges graphe∈
3. if e has non-terminal label
4. node_or_edge=edge
5. EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, NULL, e,

node_or_edge)
6. end if
7. for all nodes graphv∈

8. if v has non-terminal label
9. node_or_edge=node
10. EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, v, NULL,

node_or_edge)
11. end if
12. return graph

 54

Algorithm 4 Recursive expansion of a graph by an edge or node.

EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, v, e, node_or_edge)

1. From all productions whose left side is the same as label of v (or e if
node_or_edge=edge) select graphToAdd from right side of the
production according to probability distribution determined by
probabilities given in input file for every production.

2. Add all edges and nodes of graphToAdd to graph
3. if node_or_edge==node
4. Identify a connectingNode of graphToAdd (this node is marked in

the input file)
5. Make all edges incident to graphv∈ incident to connectingNode
6. Delete v
7. end if
8. if node_or_node==edge
9. Identify a connectingNode1 and connectingNode2 of graphToAdd

(marked in the input file)
10. Given input edge e=(v1,v2), graphe∈ , make all edges incident to v1

incident to connectingNode1
 and all edges incident to v2 incident to connectingNode2
11. Delete e, v1, v2
12. end if
13. for all edges graphToAdde∈
14. if e has non-terminal label
15. node_or_edge=edge
16. EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, NULL, e,

node_or_edge)
17. end if
18. for all nodes graphToAddv∈
19. if v has non-terminal label
20. node_or_edge=node
21. EXPAND_GRAPH_BY_EDGE_OR_NODE (graph, v, NULL,

node_or_edge)
22. end if
23. return graph

 55

CHAPTER 6

EXPERIMENTS WITH NODE REPLACEMENT GRAPH GRAMMARS

In this chapter we present experiments to analyze the performance of the node

replacement graph grammar inference algorithm. We begin the chapter with

methodology and the MDL role in determining complexity of a grammar. Then we

introduce the definition of an error. Next, follow several experiments showing how

error depends on noise, complexity of a grammar, number of labels, and size of a graph.

We examine experiments indicating limitations of the algorithm. The last experiment

shows the graph grammar inferred from chemical structure. The chapter ends with

conclusions.

6.1 Methodology

Having our algorithm implemented, we faced the challenge of evaluating its

performance. There are an infinite number of grammars as well as graphs generated

from these grammars. In our experiments we restricted grammars to node replacement

grammars with two productions. The second production replaces a non-terminal node

with a single terminal node. In Figure 18 we give an example of such a grammar. The

grammar on the left is of the form used in generation. The grammar on the right is the

inferred grammar in our experiment. The inferred grammar production is assumed to

 56

have a terminating alternative with the same structure as the recursive alternative, but

with no non-terminals. We omit terminating production in Figure 18. We associate

probabilities with productions used in generation. These probabilities define how often

a particular production is used in derivations. Assigning probabilities to productions

helps us to control the size of the generated graph. Our inference algorithm does not

infer probabilities. Oates et al. [Oates03] addresses the problem of inferring

probabilities assuming that the productions of a grammar are given. We are considering

inferring probabilities along with productions as a future work.

S a

(S)

(S)

Connection
instructions

1-2
1-5

60% 40%
a

b
c

S

S

d
ef

h

g

i

* a

b
c

a
a

d
ef

h

g

i
(S)

1

2
3

4

5

S

Figure 18: An example of a graph grammar used in the experiments.

We examined grammars with one, two, and three non-terminals. The first

productions of the grammars have an undirected, connected graph with labels on nodes

and edges on the right side. We use all possible connected simple graphs with three,

four, and five nodes as the structures of graphs used in the productions. There are

twenty nine different simple connected undirected unlabeled graphs [Read98]. We show

them in Figure 22. Our graph generator generates graphs from the known grammar that

is based on one of the twenty nine graph structures. Then we use our inference

algorithm to infer the grammar from the generated graph. We measure an error between

 57

the original and inferred grammar. We use MDL as a measure of the complexity of a

grammar. Our results describe the dependency of the grammar inference error on

complexity, noise, number of labels, and size of generated graphs.

6.2 MDL as a Measure of Complexity of a Grammar

We seek to understand the relationship between graph grammar inference and

grammar complexity, and so need a measure of grammar complexity. One such measure

is the Minimum Description Length (MDL) of a graph, which is the minimum number

of bits necessary to completely describe the graph. Here we define the MDL measure,

which while not provably minimal, is designed to be a near-minimal encoding of a

graph. See [Cook94] for a more detailed discussion.

ebitsrbitsvbitsgraph ++=)(MDL , where

vbits is the number of bits needed to encode the nodes and node labels of the graph

ulvvvbits lglg += ,

v is the number of nodes in the graph

vlg is the number of bits to encode the number of nodes v in the graph

ul is the number of unique labels in the graph

rbits is the number of bits needed to encode the rows of the adjacency matrix of the

graph

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

v

i ik

v
bvrbits

1

lg)1lg()1(

b is the maximum number of 1s in any row of the adjacency matrix

 58

ik is the number of 1s in a row i of the adjacency matrix

ebits is the number of bits needed to encode edges given in adjacency matrix

mKleebits u lg)1()lg1(+++= ,

 e is the number of edges of a graph

m is the maximum number of edges between any two nodes; in our graphs m=1 because

graphs are simple, therefore 0lg)1(=+ mK

K is number of 1s in adjacency matrix of a graph, in our graphs eK =

Since all the grammars in our experiments have two productions and the second

production replaces a non-terminal with a single node, the complexity of the grammar

will vary depending only on the graph on the right side of the first production. We

would like our results for one, two and three non-terminal grammars to be comparable;

therefore we do not want our measure of complexity of a grammar to be dependent on

the number of non-terminals. In every graph used in the productions we reserve three

nodes. We give the same label to these nodes. When we generate a graph, we replace

one, two, or three labels of these nodes with the non-terminal S when we need a

grammar with one, two or three non-terminals. However, when we measure MDL of a

graph we leave the original three labels unchanged. In our experiments we always use

that same non-terminal label. In the general case a production can contain different non-

terminals. Every non-terminal would need to be counted as a different label of a graph

and MDL would increase with increasing number of non-terminals.

 59

 Next, we give an example of calculating the MDL of a graph using the graph

structure from Figure 18. The adjacency matrix of the graph and the MDL calculation

are as follows.

a

c

b

a

a

acbaa

1

1

111

1

17.189lg55lglglg =+=+= ulvvvbits

29.22
0

5
lg

1

5
lg

1

5
lg

3

5
lg

1

5
lg)13lg()15(lg)1lg()1(

1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++= ∑

=

v

i ik

v
bvrbits

02.251lg)16()9lg1(6lg)1()lg1(=+++=+++= mKleebits u

ebitsrbitsvbitsgraph ++=)(MDL =65.48

We can compare this result with an MDL value 26.09 of a triangle with three

vertices, three edges and four different labels.

6.3 Error

We introduce a measure to compare the original grammar to the inferred

grammar. Our definition of an error has two aspects. First, there is the structural

difference between the inferred and the original graph used in the productions. Second,

there is the difference between the number of non-terminals and the number of

connection instructions. If there is no error, the number of non-terminals in the original

 60

grammar is the same as the number of connection instructions in the inferred grammar.

We compute the structural difference between graphs with an algorithm for inexact

graph match initially proposed by Bunke and Allermann [Bunke1983]. For more details

see also [Cook94].

In our experiments we measure an error based on structural difference. Another

approach to measuring the accuracy of the inferred grammar would be based on a graph

grammar parser. We would consider accurate the inferred grammars that can parse the

input graph. Graph grammar parser would require subgraph isomorphism test which is

computationally expensive and much more difficult in implementation than the error

measure we are using. For these reasons we did not pursue implementation of graph

grammar parser.

We would like our error to be a value between 0 and 1; therefore, we normalize

the error by having in the denominator the sum of the size of the graph used in the

original grammar and the number of non-terminals. We do not allow an error to be

larger than 1; therefore, we take the minimum of 1 and our measure as a final value.

The restriction that the error is not larger than 1 prohibits unnecessary influence on the

average error taken from several values by inferred graph structure significantly larger

than the graph used in the original grammar.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21 , where

)g,matchCost(21g is the minimal number of operations required to transform 1g to

a graph isomorphic to 2g , or 2g to a graph isomorphic to 1g . The operations are:

 61

insertion of an edge or node, deletion of a node or an edge, or substitution of a node or

edge label.

CI# is the number of inferred connection instructions

NT# is the number of non-terminals in the original grammar

)size(1g is the sum of the number of nodes and edges in the graph used in the

grammar production

In Figure 19 we see two productions we use in our example of error calculation.

The production on the left is the original production and the production on the right is

inferred production. The production on the left has two non-terminals, 2# =NT .

Production on the right has one inferred connection instruction, 1# =CI . There are three

nodes and two edges in the graph structure on the right, 5)size(1 =g . We can transform

graph from the left to the graph on the right in Figure 19 by removing two edges and

one node from the graph on the right. Therefore 3)g,matchCost(21 =g The inference error

57.0
25

|21|3
,1min

#)size(

##),(matchCost
,1min

1

21 =⎟
⎠

⎞
⎜
⎝

⎛
+
−+=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

Figure 19: Graph grammar inference error.

6.4 Experiment 1: Error as a Function of Noise and Complexity of a Grammar

We used twenty nine graphs from Figure 22 in grammar productions. We

assigned different labels to nodes and edges of these graphs except three nodes used for

 62

non-terminals. We generated graphs with noise from 0 to 0.9 in 0.1 increments. For

every value of noise and MDL we generated thirty graphs from the known grammar and

inferred the grammar from the generated graph. We computed the inference error and

averaged it over thirty examples. We generated 8700 graphs to plot each of the three

graphs in Figure 20. The first plot shows results for grammars with one non-terminal.

The second and the third plot show results for grammars with two and three non-

terminals. We did not corrupt the generated graph structure in experiments in Figure 20.

As noise we added nodes and edges to the generated graph structure. We used only the

ADD_NOISE_TO_GRAPH function of our generator. Figure 21 has the same results

as Figure 20 with the difference that we corrupted the graph structure generated from

the grammar and then we added nodes and edges to the graph. We used both

CORRUPT_GRAPH_STRUCTURE and ADD_NOISE_TO_GRAPH functions of the

generator to distort the graph.

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

 (a) (b) (c)

Figure 20: Error as a function of noise and MDL where graph
structure was not corrupted: one non-terminal (a), two non-
terminals (b), and three non-terminals (c)

 63

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

0
0.2

0.4
0.6

0.8

20

40

60

80

0

0.5

1

(a) (b) (c)

Figure 21: Error as a function of noise and MDL where graph structure was
corrupted: one non-terminal (a), two non-terminals (b), and three non-terminals (c).

We see trends in the plots in Figure 20 and Figure 21. Error decreases as MDL

increases. A low value of MDL is associated with small graphs, with three or four nodes

and a few edges. These graphs, when used on the right hand side of a grammar

production, generate graphs with fewer labels than grammars with high MDL. Smaller

numbers of labels in the graph increase the inference error, because everything in the

graph looks similar, and the approach is more likely to propose another grammar which

is very different than the original. As expected, the error increases as the noise increases

in experiments with corrupted graph structure. However, there is little dependency of an

error from the noise if the graph generated from the grammar is not corrupted (Figure

20).

We average the value of an error over ten values of noise which gives us the

value we can associate with the graph structure. It allowed us to order graph structures

used in the grammar productions based on average inference error. In Figure 22 we

show all twenty nine connected simple graphs with three, four and five nodes used in

productions ordered in non-decreasing MDL value of a graph structure. In Table 2 we

 64

give an order of graph structures for six experiments with corrupted and non-corrupted

structures and one, two, and three non-terminals. The numbers in the table refer to

structure numbers in Figure 22. We see in Table 2 that graph number 21 is close to the

beginning of the list in all six experiments. Graphs number 1, 2, and 11 are close to the

end of all six lists. We conclude that when graph number 21 is used in the grammar

production, it is the easiest for our inference algorithm to find the correct grammar.

When graph number 1, 2, or 11 is used in the grammar production and generated graphs

have noise present, we infer grammars with some error. We also observe a tendency of

decreasing error with increasing MDL in the graph orders in Table 2. Graph 29 has the

highest MDL, because it has the most nodes and edges. In five experiments graph 29 is

closer to the end of the list.

Figure 22: Twenty nine simple connected graphs ordered according
to non-decreasing MDL value.

 65

Table 2: Twenty nine simple graphs ordered according to increasing
average inference error of six experiments in Figure 20 and Figure 21.
The numbers in the table refer to structures in Figure 22.

1

21 17 22 15 8 10 23 28 20 27 29 19 26
12 16 3 18 4 24 25 9 5 7 14 6 13
11 1 2

2 21 23 22 15 18 16 17 20 19 9 28 12 10
14 26 13 27 25 8 24 29 4 5 7 3 6
11 2 1

3 N
ot

 C
or

ru
pt

ed

21 15 23 16 17 19 18 14 9 13 28 12 27
26 25 24 5 10 4 29 22 6 20 7 11 2
8 1 3

1 8 10 12 21 17 15 20 23 16 19 18 22 13
14 9 27 4 28 25 3 7 29 24 6 26 5
11 1 2

2 9 17 19 16 21 13 18 8 15 14 10 12 25
27 23 22 24 20 26 28 4 3 6 5 29 7
11 1 2

N
um

be
r

of
 n

on
-t

er
m

in
al

s

3

C
or

ru
pt

ed

9 19 14 12 18 16 13 15 21 17 4 23 10
25 27 26 5 6 24 20 28 22 29 8 7 3
11 1 2

Quantitative definition of an error allows us to automate the process and

perform tests on thousands of graphs. The error is caused by a wrongly inferred graph

structure used in the production or number of connection instructions which is too large

or too small. However, there are cases where the inferred grammar represents the graph

well, but the graph in the production has a different structure. For example, we observed

that the grammar with MDL=55.58 and graph number 11 causes an error even if we

infer the grammar from graphs with no corruption and zero noise. The inferred graph

structure contains two overlapping copies of the graph used in the original grammar

production. We illustrate it in Figure 23: An inference error where larger graph structure

is proposed: original grammar (a) and inferred grammar (b). The structure has

 66

significant error, yet does subjectively capture the recursive structure of the original

grammar.

6.5 Experiment 2: Error as a Function of Number of Labels and Complexity of
a Grammar

We would like to evaluate how error depends on the number of different labels

used in a grammar. We restricted graph structures used in productions to graphs with

five nodes. Every graph structure we labeled with 1, 2, 3, 4, 5 or 6 different labels. For

every value of MDL and number of labels we generated 30 different graphs from the

grammar and computed average error between them and the learned grammars. The

generated graphs were without corruption and without noise. We show the results for

one, two, and three non-terminals in Figure 25. Below the three dimensional plots, for

clarity, we give two dimensional plots with triangles representing the errors. The larger

and lighter the triangle the larger is the error. We see that the error increases as the

number of different labels decreases. We see on the two dimensional plots the shift in

error towards graphs with higher MDL when the number of non-terminals increases.

The average error for graphs with only one label is 1 or very close to 1. The

most frequent inference error results from the tendency of our algorithm to propose one-

edge grammars when inferred from a graph with only one label. We illustrate this in

Figure 24 where we see a production with a pentagon using only one label “a”. The

inferred grammar has one edge with two connection instructions 1-1 and 1-2. Since all

the edges in the generated graph have the same label and all the nodes have the same

 67

label, this grammar compresses the graph well and is evaluated highly by our

compression-based measure. However, this one-edge grammar cannot generate even a

single pentagon. An evaluation measure which penalizes grammars for an inability to

generate an input graph would bias the algorithm away from single-edge grammars and

could correct the one-edge grammar problem. However, this approach would require

graph-grammar parsing, which is computationally complex.

.
(a) (b)

Figure 23: An inference error where larger graph structure is proposed:
original grammar (a) and inferred grammar (b).

 (a) (b)

Figure 24: Error where inferred grammar is reduced to production with single
edge: original grammar (a) and inferred grammar (b).

 68

6.6 Experiment 3: Error as a Function of Size of a Graph and Complexity of a
Grammar

We generated graphs from grammars with two non-terminals and noise=0.2.

The number of nodes of the generated graphs was from the interval [x, x+20], where we

change x from 20 to 420. For each value of x and MDL we generated thirty graphs and

compute average inference error over them. We show in Figure 26 the results for

corrupted and not corrupted graph structure. We concluded that there is no dependency

between the size of a sample graph and inference error.

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

1
2

3
4

5
6

30
40

50
60

70

0
0.5

1

20 40 60 80
0

1

2

3

4

5

6

7

 (a) (b) (c)

Figure 25 : Error as a function of MDL and number of different
labels used in a grammar definition: one non-terminal (a), two
non-terminals (b), and three non-terminals (c). .

 69

100
200

300
400

20

40

60

80

0

0.5

1

100
200

300
400

20

40

60

80

0

0.5

1

 (a) (b)

Figure 26: Error as a function of MDL and size of generated
graphs (noise=0.2, two non-terminals): (a) uncorrupted graph
structure, (b) corrupted graph structure

6.7 Experiment 4: Limitations

In Figure 27 we show an example illustrating the limits of our approach. In

Figure 27 (a) we have a graph consisting of overlapping squares. All labels on nodes are

the same, and we omit them. The squares do not overlap by one node but by an edge.

Our algorithm assumes that only one node overlaps in the instances of the substructure

and therefore infers the grammar shown in Figure 27 (b). The inferred grammar can

generate chains, an example of which is shown in Figure 4 (c). The original input graph

is not in the set of graphs generated by the inferred grammar. An extension of our

method to overlapping edges would allow us to infer the correct grammar in this

example.

 70

(a) (b) (c)

Figure 27: Graph with overlapping squares (a), inferred
grammar (b), and graph generated from inferred grammar (c)

Figure 28 shows another example illustrating the limits of our algorithm. The

first graph in the first production on the left is a square with two non-terminals labeled

S1, and the graph of the second production is a triangle with one non-terminal labeled

S. Our algorithm is not designed to find alternating productions of this type. We

generated a graph from the grammar on the left, and the grammar we inferred is on the

right in Figure 28. The inferred grammar has one production in which the graph

combines both the triangle and square. The set of graphs generated by alternating

squares and triangles according to the grammar from the left does not match exactly the

set of graphs of the inferred grammar. Nevertheless, we consider it an accurate

inference, because the inferred grammar will describe the majority of every graph

generated by the original grammar. If we were learning alternating productions, we

would need to infer multiple productions in one iteration or allow for multiple

compression passes on the input graph.

 71

Figure 28: The grammar with alternating productions (left)
and inferred grammar (right).

6.8 Experiment 5: Chemical Structures

As an example from the real-world domain of chemistry, we use four chemical

structures as the input graphs in our next experiment. Figure 29 and Figure 30 show the

structures of the molecules and the grammar productions we found in these structures.

The first structure in Figure 29 is the structure of cellulose with hydrogen bonding. The

second molecule is macrocyclic gallium carboxylate [Uhl04]. We found a grammar

production with the Ga-Ga bond. The graph used in the production definition appears

four times in the structure. The third structure in Figure 29 is water-soluble tin-based

metallodendrimer [Schumann03]. We inferred two productions. We found production

S1 in the first iteration. Production S1 has connection instruction 1-1 which means that

vertex number 1 is replaced by an isomorphic instance of the right hand side of the S1

production, and the connecting vertex in the new instance of a graph is also vertex 1.

We found the second production after all instances of S1 were compresses into a single

vertex. The graph on the right hand side of production S is a graph of a chemical

structure compressed with S1.

 72

In Figure 30 we have the structure of a dendronized polymer [Zhang03]. Its

graph grammar representation consists of three productions. Zhang et al. describe

several chemical structures where the graph we found in production S2 in Figure 30

appears two, six, and fourteen times. Since production S1 conveys the idea of “one or

more” connected graphs of the S1 structure, it intends to describe the entire family of

chemical structures described in Zhang et al.’s paper. The grammar productions we

found capture the underlying motifs of the chemical structures. They show the repetitive

connected components, the basic building blocks of the structures. We can search for

such underlying building block motifs in different domains, hoping that they will

improve our understanding of chemical, biological, computer, and social networks.

 73

Chemical structure Inferred productions
cellulose with hydrogen bonding

Macrocyclic gallium carboxylate

Ga O C

OGa

OC

O

R

R

GaOC

O Ga

O C

O

R

R

Ga O C

OGa

OC

O

R

R

GaOC

O Ga

O C

O

R

R

water-soluble tin-based metallodendrimer

Si[CH2CH2Sn(CH2CH2CONHCH2CH2OH)3)]4

Figure 29: Three chemical structures (left) and the inferred grammar production (right).

 74

Figure 30: The structure of dendronized polymer and its
representation in hierarchical graph grammar productions.

6.9 Experiment 6: Learning Curves

We wanted to examine the learning process on a graph grammar with several

productions. Since there are an infinite number of different graph grammars, we decided

to select one example with several different graph structures used in the grammar

productions. We show this example in Figure 31, where we see the graph grammar used

to generate graphs. There are five productions. The last production with only one node

is a terminating production. Each graph in the first four productions had two non-

 75

terminal nodes. The first four productions are chosen with probability 0.1 in the

generation process. The terminating production is chosen with probability 0.6.

S

0.1

a

b
SS

ax
cd

e

* a f

S S

h

k i

j

a
S l

m S

a

x

y SS

a

0.1 0.1 0.1 0.6

n o
u t

vwr
g

p z1 z2 z3
z4* * *

r

Figure 31: Graph grammar used for graph generation

We generate sets of graphs with 10, 20, 30, and up to 100 graphs generated from

the grammar in Figure 31. Every graph in the set has 30 to 40 nodes. We compare the

first four grammar productions found by our algorithm to the original grammar in

Figure 31. As a measure of an error, we use the minimal match cost of a transformation

from one graph structure to the other, as described in section 8.3 where we talk about

the measure of the error. We calculate the match cost of the structure of the graph from

the first inferred grammar production to the four structures of the original productions

and choose the smallest value. Then, we calculate the match cost of the structure from

the second inferred production to the three structures from the original grammar not

selected before and select the smallest value. Similarly, we find the smallest match cost

between the structure of the third inferred production and the two structures left. The

last inferred production we compare to the remaining production from the original

grammar. The process of matching productions from the inferred grammar to the

original grammar is greedy. It may not find the minimal error of matching four

productions, because we do not explore all possible matchings. The inference error we

 76

compute as a sum of the four errors we just explained. We repeat generation and error

determination thirty times and compute the average value of the error. In Figure 32 we

show the grammar inference error and time as a function of the number of graphs in the

input set. We see that time in the range 10 to 100 graphs has close to linear increase.

The error decreases sharply as we increase the set of graphs from 10 to 30. The error

does not reach zero. The input graph has now four patterns. We often infer productions

which contain two of the patterns or a portion of two patterns which causes the error.

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

Er
ro

r,

Ti

m
e

 [s
ec

]

Figure 32: Error and time as a function of number of graphs in the training set.

6.10 Summary of Results and Conclusions

We described experiments with node replacement graph grammars. The

algorithm we described has its limitations: the left side of the production is limited to

one single node; only connecting two single nodes is allowed in derivations. The

algorithm finds recursive productions if repetitive patterns occur within an input graph

 77

and they overlap. If such patterns do not exist, the algorithm finds non-recursive

productions and builds a hierarchical structure of the input data. Grammar productions

with graphs of higher complexity measured by MDL are inferred with smaller error.

There is little dependency of error on noise if the generated graphs are not corrupted.

The error of grammar inference increases as the number of different labels used in the

grammar decreases. There is no dependency between the size of a sample graph and

inference error. If all labels on nodes are the same and all labels on edges are the same,

the algorithm produces a grammar which has only one edge in the graph definition.

One-edge grammars over-generalize if the input graph is a tree, and they are inaccurate

in many other graphs. This tendency to find one-edge grammars from large, connected

graphs is due to the fact that one-edge grammars score high because they can compress

the entire graph.

Grammars inferred by the approach developed by Jonyer et al. [Jonyer04] were

limited to chains of isomorphic subgraphs which must be connected by a single edge.

Since the connecting edge can be included in the production’s subgraph, and

isomorphic subgraphs will overlap by one vertex, our approach can infer Jonyer et al.’s

class of grammars. As we noticed in our experiment shown in Figure 27, when the

subgraphs overlap by more than one node, our algorithm still looks for overlap on only

one node and infers a grammar which cannot generate the input graph. Therefore one

extension to the algorithm is a modification which allows for overlap larger than a

single node, which we accomplish in the algorithm for Edge Replacement Recursive

Graph Grammars. The next chapter presents experimental results using this algorithm.

 78

CHAPTER 7

EXPERIMENTS WITH EDGE REPLACEMENT GRAPH GRAMMARS

In this chapter we describe experiments on edge replacement graph grammars.

We show examples of productions inferred with real and virtual edges. We show how

different evaluation measures, different graph structures, and noise, influence the

inference error. Next, we report experiments with chemical structures. A summary of

experiments and conclusion ends the chapter.

7.1 Introduction

We describe experiments on the algorithm for inference of edge replacement

graph grammars. This method generates candidate recursive graph grammar

productions based on finding isomorphic subgraphs which overlap by two nodes. If

there is no edge between the two overlapping nodes, the method generates a

recursive graph grammar production with a virtual edge. We guide the search for the

graph grammar using the Minimum Description Length (MDL) of a graph and the

size of a graph. We show experiments where we generate graphs from known graph

grammars, use our method to infer the grammar from the generated graphs, and then

measure the error between the original and inferred grammars.

 79

7.2. Methodology

In our experiments we generate thirty graphs from a known grammar, and then

we infer the grammar from every generated graph. We compute the average inference

error over these thirty examples. The generated graphs have 40 to 60 nodes. Our

generator can assign a random label to a node or an edge. We compare the original

grammar and inferred grammar using the following measure of the error:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21 , where

)g,matchCost(21g is the minimal number of operations required to transform 1g into a

graph isomorphic to 2g , or 2g into a graph isomorphic to 1g . The operations are:

insertion of an edge or node, deletion of an edge or node, or substitution of a node or

edge label.

CI# is the number of inferred connection instructions

NT# is the number of non-terminal edges in the original grammar

)size(1g is the sum of the number of nodes and edges in the graph used in the grammar

production

)g,matchCost(21g measures the structural difference between two graphs with an

algorithm for inexact graph match initially proposed by Bunke and Allermann

[Bunke83]. For more details see also [Cook94]. Our definition of an error has two

aspects. First, there is the structural difference between the inferred and the original

graph used in the productions. Second, there is the difference between the number of

 80

non-terminals and the number of connection instructions. If there is no error, the

number of non-terminals in the original grammar is the same as the number of

connection instructions in the inferred grammar. We would like our error to be a value

between 0 and 1; therefore, we normalize the error by having in the denominator the

sum of the size of the graph used in the original grammar and the number of non-

terminals. We do not allow an error to be larger than 1; therefore, we take the minimum

of 1 and our measure as a final value. The restriction that the error is not larger than 1

prohibits unnecessary influence on the average error by inferred graph structures

significantly larger than the graph used in the original grammar. We now describe

several experiments showing different aspects of the edge replacement graph grammar

inference algorithm.

7.3. Experiment 1: Virtual and Real Edges in Productions

In Figure 33 we see the graph on the top where all nodes have the same label

and on the bottom of the figure the grammar inferred from this graph. We intend to

demonstrate verity of productions and the nature of edge replacement grammars our

approach can handle. The input graph has four different repetitive patterns. We did not

generate this graph. We constructed it manually such that we can find different

productions in it. In every pattern subgraphs overlap on two nodes. The part of the

graph with overlapping squares is isolated. The rest of the graph is a connected graph.

The four patterns correspond to nodes S1, S2, S3, S4 of the first production S. Our

approach finds production S last. Production S is a non-recursive node replacement

production for which we do not infer connection instructions. We find production S by

 81

compressing the input graph with recursive edge replacement productions found earlier.

Production S1 we find first because it compresses the graph the most. This production

has two non-terminal edges. Edge S1a is virtual. Edge S1b is real. We can replace both

S1a and S1b non-terminal edges with the graph on the right hand side of production S1

or terminate. Connection instructions for S1a and S1b are different as is their

termination. The terminating edge of S1b is an edge with label q. The termination of

S1a is by taking no action. We mark it by two nodes without an edge. We compress to a

single node the part of the input graph described by the S1 production before we repeat

the inference process. We also do similar compression after finding S2, S3, and S4. The

second production we find is S2. This production has two virtual edges as non-

terminals. The production S3 has two non-terminal real edges and production S4 has

one non-terminal real edge.

Productions S3 and S4 can regenerate the portions of the graph they describe.

We consider the inferred grammar correct, although productions S1 and S2 cannot

regenerate the structures from which we inferred them. In the generation process we

replace a non-terminal edge with a graph and then if the expanded portion of a graph

contains a non-terminal edge it is expanded further. In this paradigm there is no way

that expanded portions of the generated graph will have any additional links or

connections between them except the connection which includes two nodes of the

expanded non-terminal edge. In order to regenerate structures covered by productions

S1 and S2, we would need a more sophisticated generation mechanism with context

 82

sensitive embedding mechanism. This mechanism, inferred during induction, would

indicate nodes to merge during the generation process.

(a)

(b)

Figure 33. The graph (a) and inferred grammar from this graph (b).

 83

7.4. Experiment 2: Inference Error with Different Evaluation Measures

In Figure 34 we examine how inference error is affected by different evaluation

measures. We see four plots. Each plot has seven points. Every point we found by

generating a graph using the 9-cycle grammar shown in Figure 34. We assigned label

“a” to six nodes and one edge of the cycle. All other nodes and edges have distinct

labels which we omit in the figure. We generated thirty graphs with 40 to 60 nodes from

the cycle grammar. We inferred the grammar from the generated graph and measured

the inference error. We computed the average over thirty errors for the value of a single

point in the plots. We examined the error value where we used MDL to measure

size(G), size(S) and size(G|S) in two cases: (1) measure without square and (2) measure

with square. We examined the same two cases while measuring size by adding the

number of nodes and edges () () ()gedgesgnodesgsize += .

()
() ()[]2| SGsizeNTSsize

Gsize

++

()
())|(SGsizeNTSsize

Gsize

++

Figure 34: The influence on the inference error of evaluation
measures using a graph grammar of a 9-cycle.

 84

The error is high in all four cases when we use only one unique label in the

graph. In Figure 35 (a) we show the grammar inferred from the graph with one label

only. It is a two edge graph where both edges are non-terminals. This grammar can

compress the entire graph and has a small structure and therefore scores high by our

evaluation measure. The error drops to zero when we use three distinct labels in the

graph with the square evaluation measure but it does not reach zero at all when we use

the evaluation measure without the square. In Figure 35 (b) we show the grammar

inferred using the evaluation measure without the square. We expect to infer the cycle

but instead we infer the structure still missing one edge. The missing edge is the

overlapping edge. This grammar with missing edge, however, compresses the input

graph very well and therefore scores well. It leaves only one edge uncompressed from

the entire graph. When we use ()[]2| SGsize instead of ()SGsize | in our evaluation

measure, compressing the entire graph, including the remaining single edge, becomes

more important than small structure in the inferred grammar and we infer the complete

cycle.

 85

(a)

(b)

Figure 35: Two-edge grammar inferred from the graphs with
only one label on nodes and edges (a) and inferred grammar
with evaluation measure size(G)/(size(S)+NT+size(G|S))
where cycle is expected (b).

7.5. Experiment 3: Inference Error with Different Graph Structures

We are interested in how inference error depends on grammar structure. We

tested several structures. We show results in Figure 36. Every point in the plots in

Figure 36 was an average of the inference error from thirty experiments. In every

experiment we generated graphs with 40 to 60 nodes. Every label of an edge and a node

of the graphs not marked in the Figure 36 and Figure 37 was assigned a label chosen

from k distinct labels, where k is an integer from 1 to 7 in Figure 36 and from 1 to 16 in

Figure 37. We see that the smallest error we achieved is for the tree structure. As we

complicate the structure and increase the average degree of nodes and the ratio of the

number of edges to the number of nodes, the error increases.

 86

In Figure 36 increased structural complexity increases the inference error. In our

experiments with node replacement graph grammar we noticed an opposite trend. With

increased complexity measured by MDL we observe decreased error. These results

suggest that identifying the non-terminal node and the pattern can be easier when

structure complexity (ration of edges to nodes) increases. However, when we infer edge

replacement graph grammars, identifying the non-terminal edge and the pattern is more

difficult with increased structural complexity.

 The highest error we had with complete graph. We show this case separately in

Figure 37. We observed the average value of the inference error for a complete graph

with six nodes. Then we removed from the complete graph four edges and repeated the

experiment. Next, we remove from the complete graph eight edges and repeated the

experiments again. As we see in Figure 37, the more edges we have in the graph and the

closer the graph is to the complete graph, the higher the average error. In other words,

the closer the graph is to the complete graph the more unique labels we need to decrease

the error.

 87

Figure 36: The influence on the error of different graph
structures used in grammar productions.

(a)

(b)

Figure 37: The change in the error with reduced number of edges
from the complete graph structure (a) and an example of the
inferred grammar (b).

 88

7.6. Experiment 4: Inference Error in the Presence of Noise

In Figure 38 we show the results of an experiment where we generated graphs

with the number of nodes from 40 to 60. The Peterson graph (Figure 38 (a)) was the

structure we used in the graph grammar. The Peterson graph has 10 nodes and 15 edges

which allowed us to vary the number of non-terminal edges in the structure. We

assigned distinct labels to all nodes except six and all edges except six. We generated

graphs with 1, 2, 3, 4, and 5 non-terminals and noise value, 0.1, 0.2, …, 0.8. For every

value of noise and number of non-terminals we generated thirty graphs from the

grammar and computed average inference error over thirty values. We distinguish two

types of noise: corrupted and not corrupted. Not corrupted noise is the addition of nodes

and edges to the graph structure generated from the grammar. We add the number of

nodes equal to (noise/(1- noise))*number_of_nodes and number of edges equal to

(noise/(1- noise))*number_of_edges. Every new edge randomly connects two nodes of

the graph. We randomly assigned the labels to added edges and nodes from labels

already existing in the graph. We do not change the structure generated from the graph

grammar in the not-corrupted version. However, in the corrupted version we change the

structure of that generated from the grammar graph. After adding additional nodes and

edges, in the way we do for non-corrupted version, we redirect randomly selected

edges. The number of edges of a graph multiplied by noise gives the number of

redirected edges. We randomly assign two new nodes to every selected edge. The

results in Figure 38 show that there is little influence on error from the number of non-

terminals. We see an increase in the error in the not-corrupted version when the number

 89

of non-terminals reaches 5, but for number of non-terminals 1-4 we do not see any

significant changes. Also, the error in the not-corrupted version does not increase

significantly as long as the value of noise is less than about 0.5. Corruption of the graph

structure, as expected, causes greater error than non-corruption. The error increases

significantly even with 0.1 noise, and is close to 100% for noise 0.3 and higher.

7.7. Experiment 5: Chemical Structure

In Figure 39 (a) we show the chemical structure of G tetrad (Neidle, 1999).

Versions of this structure are used in research on the HIV-1 virus (Phan, 2005). We

converted this structure to a graph which we use as an input to our grammar inference

algorithm. We found the grammar which represents the repetitive pattern of this

chemical structure. We show the grammar in Figure 39 (b). This experiment

demonstrates the potential application of our approach and also a weakness for further

study. Although the grammar production we found captures the underlying motifs of the

chemical structure, it cannot regenerate the original structure which has the ring form.

 90

0

0.2

0.4

0.6

0.8 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

Figure 38: Inference error of a graph grammar with the Peterson
graph structure in the presence of noise and different number of
non-terminals. Peterson graph (a), results with corrupted (b) and
not corrupted graphs structure (c).

 91

7.8. Summary of Experiments and Conclusion

We described the approach to graph grammar inference which extends the class

of learnable graph grammars. Node Replacement Recursive Graph Grammar inference

was limited to the patterns where instances overlap on exactly one node. Allowing

instances to overlap on two nodes led to the definition of real and virtual non-terminal

edges. With this approach we can infer the grammar generating chains of squares

overlapping on one edge which was not possible with node replacement grammars.

Patterns often overlap on two nodes in chemical structures, as we saw in the example of

the previous section; therefore, we have an approach which can find and represent

important patterns in the chemical domain.

The performance of the algorithm depends on the number of distinct labels in

the input graph. If there is only one label, the algorithm finds a two edge grammar. If

we use three or more labels in the input graph, the inference error drops to zero or to a

value close to zero in inference of grammars with a graph structure of a tree, cycle,

Peterson graph, and tetrahedron. However, as we complicate the structure and increase

the average degree of nodes and the ratio of the number of edges to number of nodes,

the error increases. The highest error we had is with a complete graph. The closer the

graph structure of the grammar is to a complete graph, the more unique labels we need

to use in the graph to achieve the same level of average inference error. If we generate

graphs from a graph grammar and then add nodes and edges to this graph, it does not

influence significantly the inference error in the range of noise 0 to 0.5. There is little

influence on error from the number of non-terminal edges in the Peterson graph

 92

grammar structure when the number of non-terminals changes from 1 to 4. Using the

evaluation measure without square causes our approach to infer the grammar without

one overlapping edge. The evaluation measure with square overcomes this deficiency.

Figure 39: The chemical structure of G tetrad (a) and inferred grammar structure (b).

The approach we described in this dissertation has its limitations. It requires two

or more unique labels in the graph, otherwise it infers a two-edge grammar. The

approach has higher error when inferring more complete graphs. The inferred

 93

grammars, as in the example of chemical structure, can represent the underlying pattern

of the structure, but cannot regenerate the structure if it has the ring form. The approach

requires the existence in the input graph of frequently occurring isomorphic subgraphs

and their overlap by one edge to infer recursive productions. Otherwise, the approach

can infer non-recursive productions.

 94

CHAPTER 8

INFERRING XML SCHEMA USING GRAPH GRAMMARS

In this chapter we show how our method performs in extracting the organization

of XML files. We convert an XML file into a tree and infer a graph grammar from it.

We compare the inferred graph grammar to the Document Type Definition of an XML

file. We report the graph grammar we found from the XML files used in the National

Library of Medicine and the United States Patent and Trademark Office. Our third

domain describes a major baseball league.

8.1 Introduction

The World Wide Web Consortium (W3C) released in 1998 the XML

recommendation which defines parts of XML document [Harold99]. XML is composed

of elements and their attributes. Elements can contain other elements such that they

form a hierarchical tree. Software developers often write an XML document and then

they write the XML schema or DTD. Several software packages exist which do

automatic XML schema generation from XML documenst: Microsoft XSD Inference,

Altova XML Spy, EditML Pro, Sonic Software Releases Sonic Stylus Studio and more.

These systems are specifically designed to generate XML schema. Our algorithm is

more general and is designed to infer graph grammars from any structural data,

therefore we do not intend to compete with professional schema generation systems.

 95

Rather, we would like to show an algorithm applicable to many domains and verify it

on structures of XML files indicating future direction in analysis of structural data.

An example in Figure 40 shows a graph composed of three overlapping

substructures and the graph grammar representation of it. In Figure 41 we see an

example of a substructure definition. A substructure consists of a graph definition and a

set of instances from the input graph that are isomorphic to the graph definition.

Figure 40: A graph with overlapping substructures and a graph
grammar representation of it.

Figure 41: Substructure and its instances while determining
connection instructions (continuation of the example from Figure 40).

Every connection instruction has two integers which are indices to the node of a

graph used in production. These two integers can refer to arbitrary nodes of the

 96

production graph. However, in our experiments with the structure of XML files we

encounter often connection 1-1 or 2-2 where the node refers to itself. In this case, in the

figures presenting our experimental results we do not draw terminating productions,

instead we label one of the nodes S# | X, where X is the terminal node label and S# is s

non-terminal label with production number #. For clarity we illustrate it Figure 42.

Figure 42: Shorter notation of graph tree grammars where we
omit terminating production.

8.2 XML File Conversion to a Graph

We developed a converter which converts an XML file into a tree. We used the

Java implementation of the Document Object Model (DOM) in our converter.

According to [Ahmed01] there are twelve DOM node types: Element, Attr, Text,

CDATASection, EntityReference, Entity, ProcessingInstruction, Comment, Document,

DocumentType, DocumentFragment, and Notation. However in our implementation we

build a directed tree with the root node always labeled DOC and then the only type of

data we extract in the examples below is ‘Element’. From the perspective of our graph

grammar inference algorithm we need a pattern which is repeated in the graph so we

eliminated unique text data (names, card numbers, and price values). We do not assign

labels to the edges of the tree.

 97

In Algorithm 5 we show a recursive procedure PRINT_NODE. We call this

procedure to convert a DOM tree to a file representing a graph we further use in graph

grammar inference. We first call PRINT_NODE procedure with root node of the DOM

tree and vertex=1 as input parameters. Then, in line 2, we print to a file the root node of

a tree with label Doc. If the input node to the procedure has children and the child is

type Element, we execute lines 6 through 9. In these lines we advance an integer which

becomes the number of a child node in the newly created graph. We print the node

number and its label and then we print the directed edge to this node from parent node.

In Figure 43 we show an example of a file where we store the graph after conversion

from the DOM tree. The example in Figure 44 corresponds to a graph in Figure 45.

Figure 43: A file which describes the graph further use to infer graph grammar.

vertex 1 DOC
vertex 2 PharmacologicalActionSubstanceSet
directed edge from to 1 2 -
vertex 3 Substance
directed edge from to 2 3 -
vertex 4 RecordUI
directed edge from to 3 4 –
….

 98

8.3 Domain 1: National Library of Medicine

We selected domains for our experiments where we can easily identify the

meaning of the results. XML files often contain data with repetitive structures. An

example of the beginning of such a file with pharmacology data and its Document Type

Definition (DTD) we show in Figure 44. This is a sample file we found on National

Library of Medicine website. The tree after conversion of this file we show in Figure

45. In Figure 46 we see graph grammar found by our inference algorithm. Productions

S1 and S2 give the representation of a structure of an XML file which contains

pharmacological data. Examining DTD we see that element

PharmacologicalActionSubstanceSet contains zero or more Substance elements. It is

indicated by ‘*’. Similarly, element PharmacologicalActionList contains one or more

Algorithm 5 Converting DOM tree to a graph file.

 integer PRINT_NODE (node n, integer vertex)
 1 if (n.getNodeType()==DOCUMENT_NODE)
 2 print(“vertex Number ”, vertex, Doc)
 3 parent=vertex;
 4 for (childNode=n.getFirstNode(); childNode≠NULL;
 5 childNode=childNode.getNextSibling())
 6 if (childNode.getNodeType()==ELEMENT_NODE)
 7 vertex++;
 8 print(“vertex ”, vertex, childNode.getNodeName())
 9 print(“directed edge from to ”, parent, vertex)
10 vertex= PRINT_NODE (childNode, vertex)
11 end if
12 end for
6 return vertex

 99

PharmacologicalActionOfSubstance elements. It is marked in DTD with a ‘+’. We

discover these two concepts in production S1 and S2 in Figure 46. However, our

inference algorithm cannot distinguish between ‘one or more’ and ‘zero or more’

concepts. In the generation process we would connect the node labeled S2 of one

instance of the production graph to the node with the same label of another instance.

The process would continue until the node labeled S2 would be replaced by label

PharmacologicalActionSubstanceSet. Production S1 is included as a non-terminal node

of production S2. In our present implementation we do not specify to which node of a

graph on the right hand side of S1 we would connect Substance node of S2. Following

from the parent to the child nodes of the structure of graphs of S1 and S2 we can find

the corresponding DTD entries. For example PharmacologicalActionOfSubstance has

only one child DescriptorReferredTo. It corresponds to the DTD entry <!ELEMENT

PharmacologicalActionOfSubstance (DescriptorReferredTo)>.

 100

<?xml version="1.0"?>
<!-- Sample for pa_substance2006.xml -->
<!DOCTYPE
PharmacologicalActionSubstanceSet
SYSTEM "pa_substance2006.dtd">
<!-- Root element -->
<PharmacologicalActionSubstanceSet>
 <!-- Substance 1 (Descriptor) -->
 <Substance>
 <RecordUI>D000536</RecordUI>
 <RecordName>
 <String>Aluminum Hydroxide</String>
 </RecordName>
 <!-- The list of PAs for this substance -->
 <PharmacologicalActionList>
 <!-- First PA -->
 <PharmacologicalActionOfSubstance>
 <DescriptorReferredTo>

<DescriptorUI>D000276</DescriptorUI>
 <DescriptorName>
 <String>Adjuvants,
Immunologic</String>
 </DescriptorName>
 </DescriptorReferredTo>
 </PharmacologicalActionOfSubstance>
….

<!ENTITY % DescriptorReference
"(DescriptorUI, DescriptorName)">
<!ELEMENT
PharmacologicalActionSubstanceSet
(Substance*)>
<!ELEMENT Substance
((RecordUI,RecordName),
PharmacologicalActionList)+>
<!ELEMENT PharmacologicalActionList
(PharmacologicalActionOfSubstance)+>
<!ELEMENT
PharmacologicalActionOfSubstance
(DescriptorReferredTo)>

<!ELEMENT DescriptorReferredTo
(%DescriptorReference;)>
<!ELEMENT DescriptorUI (#PCDATA)>
<!ELEMENT DescriptorName (String)>
<!ELEMENT RecordUI (#PCDATA) >
<!ELEMENT RecordName (String) >
<!ELEMENT String (#PCDATA)>

Figure 44: An XML file describing pharmacology data and
Document Type Definition (DTD) of it

 101

Figure 45: A graph representation of an XML file.

Figure 46: Graph grammar found by inference algorithm from the XML tree.

8.4 Domain 2: United States Patent and Trademark Office

In Figure 47 we show a graph grammar inferred from an XML file we found on

the United States Patent and Trademark Office website. This is a sample XML file with

 102

description of a patent of handheld type four-cycle engine. We converted this XML file

to a tree which had 2960 nodes and 2959 edges. Figure 47 shows the first eleven

productions inferred from the input tree. They are presented in order. Production S1 has

the highest compression value and production S11 the lowest. If we liked to show the

complete graph grammar which represents the entire graph with 2960 nodes, we would

need to show the remaining graph after its portions are compressed with productions

S1-S11. The compressed graph is too big to show.

Figure 47: Graph grammar inferred from XML file of a sample patent.

In Table 3 we show selected entries of the DTD for the XML file from which

we inferred a graph grammar. We selected these entries to compare with the inferred

 103

graph grammar rules in Figure 47. Productions S1, S2, S6, and S10 describe a

paragraph. The paragraph is depicted by ‘p’. ‘b’ stands for bold formatting and figref

for a reference to a figure. The production S6 is recursive and corresponds to the DTD

entry which says that the paragraph can have zero or more figure references. We

consider that our inference algorithm found this concept correctly, even though we

interpret rule S6 as ‘one or more’ (not ‘zero or more’) of ‘figref’ in ‘p’. DTD also

allows for a paragraph to have zero or more bold formatting. Productions S1, S2 and

S10 indicate different number of bold formatting in a paragraph accompanied with

figure reference but these productions are non-recursive and do not convey the concept

of one or more. Therefore, the inferred grammar does not adequately represent the

number of bold formatting in a paragraph.

The root of a tree on the right hand side of S3 has two children: category and

patcit. S3 is a recursive production. It corresponds to the DTD description where us-

cited-patents can have one or more children patcit and category. The child category in

DTD is optional. It is indicated by a question mark in Table 3. We do not find any

indication in the inferred grammar that the element category is optional. We also did not

find us-classification, which is the third optional element of us-cited-patents in DTD. In

our current implementation of the graph grammar inference algorithm we do not show

explicitly which child node is optional. A post-processing which would show optional

child nodes is possible. For instance, the node document-id appears in two productions

S3 and S9. S9 has two children country and doc-number. S3 has four children country,

doc-number, kind, and date. Comparing the children in these two cases, we can

 104

conclude that nodes kind and date are optional children of document-id. It is in

agreement with the DTD definition. The element drawings in Table 3 has two

alternative elements doc-page+ and figure+. We correctly found that drawings can have

one or more figures in production S4. Although our inferred grammar can indirectly

indicate alternative elements we did not find doc-page in the inferred graph grammar

because this element does not appear in processed XML file.

Table 3: Selected entries of the DTD for patent data

S1, S2, S6,
S10

Paragraph <!ELEMENT p (#PCDATA | b | i | u | sup | sub |
smallcaps | br | pre | dl | ul | ol | figref | patcit | nplcit | bio-
deposit | crossref | img | chemistry | maths | tables | table-
external)*>

S3 Patent citation <!ELEMENT us-cited-patents (patcit , category? , us-
classification?)+>

S4 drawings <!ELEMENT drawings (doc-page+ | figure+)>
S3, S9 Document

identification
<!ELEMENT document-id (country , doc-number , kind?
, name? , date?)>

S5 Applicants <!ELEMENT applicants (applicant+)>
S5 applicant <!ELEMENT applicant (addressbook+ , nationality ,

residence , us-rights* , designated-states? , designated-
states-as-inventor?)>

S8 Field of
search.

<!ELEMENT field-of-search (classification-ipc |
classification-national)+>

S11 Priority claim. <!ELEMENT priority-claim (country , doc-number? ,
date , office-of-filing? , (priority-doc-requested | priority-
doc-attached)?)>

S11 Applications
in which
priority is
claimed.

<!ELEMENT priority-claims (priority-claim+)>

The concept in production S5 that ‘applicants’ contain one or more ‘applicant’

and in production S11 that ‘priority-claims’ contain one or more ‘priority-claim’ is

 105

exactly the same as in the DTD in Table 3. The differences between concepts found in

the inferred grammar and defined in the DTD result from the limitation of our inference

algorithm and from the fact that we used only one XML patent file and we discovered

concepts included in this file while the DTD specifies rules for larger set of patents in

the United States Patent and Trademark Office which may not be applied in the file in

the experiment.

8.5 Domain 3: Major League Baseball

We use an example XML file from [Harold99] which describes the 1998 Major

League Baseball season in our experiment in Figure 48. The inferred grammar has six

productions. Production S6 is a non-recursive production. Productions S1-S5 are

recursive. Production S1 describes the player and it expresses the idea that a team can

have one or more players. Production S2 shows that a division can have one or more

teams. S3 indicates that a league can have one or more divisions. A season of

production S5 can have one or more leagues. We do not show DTD definitions for this

domain. Instead, we attempt to write DTD rules based on inferred graph grammar.

Based on production S1 we can write

<!ELEMENT Team (Player +)>

<!ELEMENT Player (Surname, Given Name, Position, At Bats, Doubles,

Walks, Steals, Errors, Games, Sacrifice Flies, Runs, Sacrifice Hits, Triples, Struck out,

Home Runs, RBI, Caught Stealing, Hit by Pitch, Hits, Games Started)>

Based on production S2 we write:

 106

<!ELEMENT Division (Team +)>

<!ELEMENT Team (Team City, Team Name)>

The graph on the right hand side of production S3 contains node S2. In our

implementation of the graph grammar inference algorithm we do not have a mechanism

which would infer embedding mechanism when production contains a non-terminal

node label of another production. Lack of this mechanism prevents us from writing

DTD entry based on production S6, S5, S4, and S3. We recognize the need for the

above case as a future work. Although we cannot formally write DTD entries when

node has non-terminal label of another productions, these production along with the rest

of the grammar show what is the structure of data. It shows the frequently accruing

recursive motives, the underlying motives of the file.

8.6. Summary of Experiments and Conclusion

We applied algorithm to trees with labels on nodes and directed unlabeled

edges. The trees we found by converting an XML file structure. Unique information

like names or identification numbers was not part of the processed tree.

We used XML files from three domains in our experiments: pharmacy, patent

and baseball. In these domains we found recursive and non-recursive productions. In the

pharmacy domain we found two recursive concepts: Pharmacological Action Substance

Set contains ‘one or more’ Substance elements, and Pharmacological Action List

contains one or more Pharmacological Action Substance. In the patent domain we

found that field-of-search is classified with ‘one or more’ classification-nationals,

 107

drawings contain one or more figures, applicants contains ‘one or more’ applicant

elements, priority-claims contain ‘one or more’ priority-claim elements, and us-cited-

patents contains ‘one or more’ category and patent citations. In the baseball domain we

inferred that a team has one or more players, a division has one or more teams, a league

has one or more divisions, and a season has one or more leagues. We inferred these

recursive concepts in the form of subgraphs which represent relations for more than two

entities we listed above.

We showed that the introduced algorithm of graph grammar inference can

extract the organization and hierarchy of the structure of XML files. We compared the

inferred graph grammar to the DTD noticing correspondence between DTD statements

and graph grammar productions. Indirect detection of alternative or optional elements is

possible if in the inferred grammar we find nodes with the same label but different

children. The alternative and optional element detection is not part of our implemented

algorithm. It remains as a future work.

The method has its limitations. Many of the concepts expressed with the DTD

or XML schema we cannot express. For example, we cannot express limits. If a

particular item has to accrue two but no more than five times, our inference algorithm

can detect it as one or more. We also do not infer an embedding mechanism when one

production contains a non-terminal node label of another production. We cannot

distinguish between ‘zero or more’ and ‘one or more’ occurrences of the same element.

We interpret both of them as ‘one or more’ occurrences. Our graph grammar inference

method was created for graphs in general. In this work we applied it to data stored in

 108

XML files. Since we converted XML files to a tree structure, we use our inference

algorithm only partially. One can achieve much better results than reported in this work

if we would design a schema inference algorithm specifically for XML. Also, the

limitation to trees instead of general graphs allows for faster processing and simpler

algorithms. However, recently new concepts were proposed related to representing

information in the World Wide Web called the Resource Description Framework

(RDF). We find that trees are not sufficient to represent some of the RDF concepts and

a graph structure with labels on nodes and edges is required [Brickley00]. Our graph

grammar inference algorithm can handle such graphs. Performing grammar inference

on World Wide Web data described by RDF is our future interest.

Figure 48: Graph grammar extracted from an XML file of 1998
Major League Baseball season.

 109

CHAPTER 9

INFERRING RECURSIVE PATTERNS IN BIOLOGICAL NETWORKS

This chapter describes experiments on biological networks. After introduction

of the database we show learning curves. Then we report experiments with specific

biological networks of different species and different networks of the same species. We

show how the learning process changes when we increase the size of a sample set. We

examine how computation time changes with an increased number of nodes in the input

graphs.

9.1 Introduction

The Kyoto Encyclopedia of Genes and Genomes (KEGG) contains graphical

representations of cellular processes. We transform this representation to a graph form

accepted by our algorithm. The graphs represent processes like metabolism, membrane

transport, and biosynthesis. We group the graphs into sets which allow us to search for

common recursive patterns which can help to understand basic building blocks and

hierarchical organization of processes. There are two reasons for performing

experiments in this domain: 1) we wanted to evaluate the algorithm, and 2) we wanted

to find graph grammars which represent features of the domain. We perform

experiments in two different categories: 1) different biological networks within species,

and 2) different species for a particular biological network.

 110

9.2 Experiments with Sets of Different Biological Networks

The biological networks used in our experiments were from KEGG. We use a

graph representation which has labels on vertices and edges. The label entry represents

a molecule, a molecule group or a pathway. A node labeled entry can be connected to a

node labeled type. The type can be a value of the set: enzyme, ortholog, gene, group,

compound, or map. A reaction is a process where a material is changed to another

material catalyzed by an enzyme. A reaction, for example, can have one or more

enzyme entries, and one or more compounds. Labels on edges show relationships

between entities. The meanings are: Rct_to_P : reaction to Product , S_to_Rct :

substrate to reaction, E_to_Rct : enzyme (gene) to reaction, E_to_Rel : enzyme to

relation, Rel_to_E : relation to enzyme. Nodes labeled ECrel indicate an enzyme-

enzyme relation meaning that two enzymes catalyze successive reactions.

 We use ten species in our experiments. The abbreviated names of the species and

their meanings are:

bsu - Bacillus subtilis,

sty - Salmonella enterica serovar Typhi CT18

xcc - Xanthomonas campestris pv. campestris ATCC 33913

pto - Picrophilus torridus

mka - Methanopyrus kandleri

pho - Pyrococcus horikoshii

sfx - Shigella flexneri 2457T (serotype 2a)

 111

efa - Enterococcus faecalis

bar - Bacillus anthracis Ames 0581

The species we selected randomly from the database. The number of networks

is different for each species. We wanted to see how our algorithm performs when we

increase sample size of graphs supplied to our inference algorithm. For this purpose we

divided all the networks into 11 sets such that the last set (11th) has all the species. Set

10 excludes the 11th portion of all networks. Set 9 excludes 2/11 of all networks and set

1 has 1/11 of all networks. If all networks in the species do not divide by 11 evenly we

distribute the remaining networks randomly to the 11 sets.

We would like to compare our inferred grammar from sets of different sizes to

the original, true, ideal grammar which represents the species. However, such a graph

grammar is not known. In the first experiment we adopted as an original grammar the

grammar inferred from the last set. From each set we infer four grammar productions

which score the highest in the evaluation. We compute the error (distance) of an

inferred grammar to the grammar inferred from the set with all networks. The

computation of an error is the same as it is described in section 6.8 on Learning Curves.

The error is the minimal number of edges, vertices, and labels required to be change or

removed to transform the structure of graph productions from one grammar to the other.

In figures we refer to it as #transformations. In Table 4 and in Figure 49 we show the

results of the experiment. Every value in the table is an average from three runs. In

every run we randomly shuffle the networks over 11 sets such that sets are different in

 112

every run. The last column in the table is the average over 11 table entries. Data in

Table 5 and Figure 50 is organized in the same way.

Table 4: Change in inferred grammar from set with increased number of
graphs measured as a distance to the grammar inferred from the biggest set.
#Set bsu dme sty xcc pto mka pho stx efa bar Average

1 4.7 6.3 13.3 7.3 14.0 8.0 22.7 6.0 9.0 6.7 9.8
2 3.3 5.7 13.3 2.3 7.7 6.0 4.3 4.7 6.7 5.3 5.9
3 5.3 5.0 10.3 6.0 8.7 0.0 3.7 7.3 12.0 5.0 6.3
4 4.3 8.7 14.3 2.7 8.7 0.7 0.0 7.0 6.7 1.3 5.4
5 1.0 6.3 13.3 2.0 4.0 2.3 5.0 3.7 6.3 2.3 4.6
6 1.3 5.7 8.0 5.0 6.0 0.7 2.7 2.3 4.3 3.0 3.9
7 1.0 3.7 8.0 8.7 5.0 1.3 0.7 1.7 3.7 2.3 3.6
8 1.3 3.0 7.3 8.0 4.3 0.0 0.7 1.7 0.0 3.3 3.0
9 1.0 1.7 8.0 8.0 4.3 2.0 0.0 1.7 1.3 3.3 3.1

10 0.0 2.0 3.0 10.0 2.0 2.0 0.0 1.7 1.3 0.0 2.2
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

In our next experiment we use a different approach. Instead of comparing the

inferred grammar to the grammar inferred from the biggest set, we compare the inferred

grammar to the grammar inferred from the next bigger set. The grammar inferred from

set 1 we compare to the grammar inferred from set 2, from set 2 to set 3, …, and the

grammar from set 10 to the grammar from set 11. We compute the error in the same

way as in the last experiment. In Figure 51 we show the graph grammar inferred from a

set of thirty and a set of one hundred and ten graphs of Picrophilus torridus (pto).

 113

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

n
sf

o
rm

at
io

n
s bsu

dme

sty

xcc

pto

(a)

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

n
sf

o
rm

at
io

n
s mka

pho

stx

efa

bar

(b)

0.0
2.0
4.0
6.0

8.0
10.0
12.0

1 2 3 4 5 6 7 8 9 10 11

set number

#t
ra

n
sf

o
rm

at
io

n
s

Average

(c)

Figure 49: Change in inferred grammar measured in reference
to the biggest set in networks of ten species: bsu, dme, sty,
xcc, pto (a), mka, pho, stx, efa, bar (b), and average (c).

 114

Table 5: Change in inferred grammar from set of increased number of graphs
measured as a distance to the grammar inferred from the next bigger set.

#Set bsu dme sty xcc eco pto pho mka stx efa bar Average
1 6.7 5.3 5.7 4.0 7.7 6.7 18.0 3.7 6.0 8.7 2.7 6.8
2 7.7 3.3 6.7 5.0 9.7 7.7 8.3 6.0 9.3 5.3 4.7 6.6
3 4.0 3.3 5.7 9.0 0.7 4.0 5.0 0.7 5.7 9.3 3.7 4.7
4 4.3 3.0 3.0 0.7 4.7 4.3 3.3 1.7 4.3 5.3 1.0 3.1
5 2.3 3.7 7.7 4.3 2.0 2.3 6.0 1.7 1.3 4.7 0.7 3.4
6 2.3 2.7 0.0 5.7 1.0 2.3 3.3 2.0 0.7 4.7 0.7 2.3
7 1.0 2.3 5.7 0.7 5.0 1.0 0.0 1.3 1.0 3.7 1.0 2.2
8 0.0 1.3 3.0 0.0 0.0 0.0 0.7 2.0 0.0 1.3 0.0 0.8
9 0.0 1.7 5.0 3.0 2.3 0.0 0.0 0.0 0.0 0.0 3.3 1.5

10 0.0 2.0 3.0 10.0 2.0 0.0 0.0 2.0 1.7 1.3 0.0 2.2

 115

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 2 3 4 5 6 7 8 9 10

set number

#t
ra

ns
fo

rm
at

io
ns bsu

dme

sty

xcc

pto

(a)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1 2 3 4 5 6 7 8 9 10

set number

#t
ra

n
sf

o
rm

at
io

n
s pho

mka

stx

efa

bar

(b)

0.0

2.0

4.0

6.0

8.0

1 2 3 4 5 6 7 8 9 10

set number

#t
ra

n
sf

o
rm

at
io

n
s

Avgerage

(c)

Figure 50: Change in inferred grammar measured in reference
to the consecutive bigger set in networks of ten species bsu,
dme, sty, xcc, pto (a), mka, pho, stx, efa, bar (b), and average
(c).

 116

a) b)

Figure 51: Graph grammar inferred from a set of thirty (a) and one hundred and ten (b)
graphs of Picrophilus torridus (pto).

9.3 Experiments with Biological Networks from Different Species

In this experiment we construct sets of species with the same biological

network. We used ten biological networks in our experiments. The networks’ numbers

and their meanings are:

10 Glycolysis / Gluconeogenesis

20 Citrate cycle (TCA cycle)

30 Pentose phosphate pathway

51 Fructose and mannose metabolism

 117

61 Fatty acid biosynthesis (path 1)

401 Novobiocin biosynthesis

602 Blood group glycolipid biosynthesis-neolactoseries

730 Thiamine metabolism

830 Retinol metabolism

930 Caprolactam degradation

The first experiment in this section is analogous the first experiment of the

previous section. In this experiment we examine the change in networks. We created 11

sets. Set number 1 has ten networks, set 2 has twenty networks, and so on. We increase

the number of networks in every set by ten such that the last set 11 has one hundred and

ten networks. We measure the number of transformations required to transform the

grammar inferred from the set to the grammar inferred from set 11 using the method

described in the section on Learning Curves. We show results in Table 6 and Figure 52.

Every value in the table is an average from three runs. In every run we randomly shuffle

the networks over 11 sets such that sets are different in every run. The last column in

the table is the average over 11 table entries. In Table 7 and Figure 53 we show results

from an experiment where we measure the change from one set to the next bigger set, in

the same way as in the previous section. Table 8 and the following Figure 54 show how

computation time changes when we increase the size of the input set. We collect how

many vertices has the graph created from all graphs in the input set and the time needed

for graph grammar inference from the set. In Figure 55 and Figure 56 we show result

for network 20 and 30 analogous to results in Figure 54 but with three runs. In every run

 118

we randomly shuffle the networks over 11 sets such that sets are different in every run.

Figure 57 shows sample graph grammars inferred from the set with ten and seventy

graphs of network 10.

Table 6: Change in inferred grammar from set of increased number of
graphs measured as a distance to the grammar inferred from the biggest set.

#Set n10 n20 n30 n51 n61 n401 n602 n730 n830 n930 Avg

1 2.67 16.33 6.00 3.00 30.67 0.33 3.33 0.00 6.67 4.00 7.30
2 2.67 26.33 3.33 11.33 14.00 0.33 6.00 0.00 6.67 6.67 7.73
3 0.33 8.33 1.33 16.33 8.00 0.00 6.00 0.00 0.00 2.67 4.30
4 0.33 8.33 0.00 22.00 28.00 0.00 1.33 7.67 0.00 2.00 6.97
5 0.67 8.33 0.00 0.00 49.33 0.00 1.33 0.00 0.00 2.00 6.17
6 0.67 8.33 0.00 5.67 64.00 0.00 2.00 0.00 0.67 4.00 8.53
7 4.33 0.00 0.00 5.67 44.00 0.00 1.33 0.00 0.00 4.00 5.93
8 0.67 0.00 0.00 16.33 22.67 0.00 1.33 0.00 0.00 6.00 4.70
9 0.33 0.00 0.00 16.33 0.00 0.00 1.33 0.00 0.00 6.00 2.40

10 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 4.00 0.47
11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

 119

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

10 20 30 40 50 60 70 80 90 100 110

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s net10

net20

net30

net51

net61

(a)

0.00

2.00

4.00

6.00

8.00

10.00

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s net401

net602

net730

net830

net930

(b)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10 20 30 40 50 60 70 80 90 100 110

Average

(c)

Figure 52: Change in inferred grammar measured in reference to
the biggest set in ten networks: network 10, 20, 30, 51, 61 (a),
network 401, 602, 730, 830, 930 (b), and average (c).

 120

Table 7: Change in inferred grammar from set of increased number of graphs
measured as a distance to the grammar inferred from next bigger set.

#Set n10 n20 n30 n51 n61 n401 n602 n730 n830 n930 Avg

1 5.33 16.67 4.00 14.67 31.00 0.67 2.67 0.00 0.00 2.67 7.77
2 3.00 18.00 1.33 24.33 18.00 0.33 0.00 7.67 6.67 4.00 8.33
3 0.67 0.00 0.67 0.00 20.00 0.00 4.67 8.00 0.00 0.67 3.47
4 0.33 0.00 0.00 15.00 19.33 0.00 0.67 0.00 0.00 0.00 3.53
5 0.00 0.00 0.00 22.00 11.67 0.00 1.33 0.00 0.67 2.00 3.77
6 4.00 0.00 0.00 6.67 22.00 0.00 0.67 0.00 0.67 4.00 3.80
7 4.00 0.00 0.00 0.00 20.00 0.00 0.00 0.00 0.00 2.00 2.60
8 0.33 0.00 0.00 13.33 22.67 0.00 0.00 0.00 0.00 0.00 3.63
9 0.33 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.00 2.00 0.30

10 0.00 0.00 0.00 16.33 0.00 0.00 0.67 0.00 0.00 4.00 2.10

 121

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

10 20 30 40 50 60 70 80 90 100

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s net10

net20

net30

net51

net61

(a)

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10 20 30 40 50 60 70 80 90 100

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s net401

net602

net730

net830

net930

(b)

0.00

2.00

4.00

6.00

8.00

10.00

10 20 30 40 50 60 70 80 90 100

number of graphs in the set

#t
ra

n
sf

o
rm

at
io

n
s

Average

(c)

Figure 53: Change in inferred grammar measured in reference to
the consecutive bigger set in ten networks: network 10, 20, 30,
51, 61 (a), network 401, 602, 730, 830, 930 (b), and average (c).

 122

Table 8: Time [sec] of grammar inference as a function of number
of vertices in the graph in ten networks.

#V net10
[sec]

#V net20
[sec]

#V net30
[sec]

#V net51
[sec]

7263 494 5946 395 4882 174 3924 75
15609 1891 12059 1504 10252 609 7848 182
24058 5071 18123 3275 15832 2350 12342 390
32033 9824 24186 4595 20871 4544 16305 700
39799 13565 29662 6569 26074 6724 20139 1027
47625 17985 35694 9055 31103 9547 23955 1881
54978 22087 40821 9120 35894 10357 27528 2182
62252 21973 46372 11769 40414 12566 31314 2839
70621 12601 52167 14308 45980 17104 36348 4123
78004 13081 57627 15264 50562 16672 40068 4893
85428 15919 63111 16035 55431 16332 43953 6413

#V net61
[sec]

#V net401
[sec]

#V net602
[sec]

5685 139 5140 35 3924 5
11117 367 10314 114 7848 14
16646 916 15225 274 12342 21
22054 1643 20458 524 16305 32
28603 3177 25577 1624 20139 50
35049 4773 30684 2358 23955 113
40856 7793 35728 2096 27528 190
46366 9254 40787 2702 31314 185
51671 10369 45885 6546 36348 209
56972 12660 50977 8762 40068 272
62463 15772 56033 7138 43953 498

 123

Table 8 - Continued

#V net730
[sec]

#V net860
[sec]

#V net930
[sec]

2391 5 5715 40 1346 3
4959 13 11198 117 2722 9
7203 23 17246 286 4098 11
9366 33 22902 491 5381 19

11556 49 28588 779 6565 24
13692 61 34272 1122 7902 33
16098 78 39837 1536 9134 51
18492 100 45394 2310 10306 56
21060 138 51702 2818 11799 72
23385 108 58313 3980 13190 91
25932 130 64494 5195 14581 111

 124

0

5000

10000

15000

20000

25000

0 20000 40000 60000 80000 100000

number of vertices

ti
m

e
[s

ec
]

network 10

network 20

network 30

51

61

401

602

730

860

930

(a)

1

10

100

1000

10000

100000

1000 10000 100000

number of vertices

ti
m

e
[s

ec
]

network 10

network 20

network 30

51

61

401

602

730

860

930

(b)

Figure 54: Time of grammar inference as a function of number of vertices
in the graph in ten networks, linear scale (a) and logarithmic scale (b).

 125

0

10000

20000

30000

40000

50000

60000

5946 12059 18123 24186 29662 35694 40821 46372 52167 57627 63111

number of vertices

ti
m

e
[s

ec
]

Network 20 run 1 Network 20 run 2 Network 20 run 3

(a)

10

100

1000

10000

100000

1000 10000 100000

number of vertices

ti
m

e
[s

ec
]

Network 20 run 1 Network 20 run 2 Network 20 run 3

(b)

Figure 55: Time of grammar inference of network 20 in three runs of shuffled
species in input sets, linear scale (a) and logarithmic scale (b).

 126

0

10000

20000

30000

40000

50000

60000

4882 10252 15832 20871 26074 31103 35894 40414 45980 50562 55431

number of vertices

ti
m

e
[s

ec
]

Network 30 run 1 Network 30 run 2 Network 30 run 3

(a)

100

1000

10000

100000

1000 10000 100000

number of vertices

ti
m

e
[s

ec
]

Network 30 run 1 Network 30 run 2 Network 30 run 3

(b)

Figure 56: Time of grammar inference of network 30 in three runs of
shuffled species in input sets, linear scale (a) and logarithmic scale (b).

 127

S1

type gene

reaction

entry entry

S_to_RctRct_to_P

compound
typetype

compound

entry

relation compoundsubtype
E_to_Rel

maplink
type

E_to_Rct

S2 entry enzymetype

entry|S3

relation

maplinkcompound

subtype
Rel_to_E type

1
1-1

S3

S4
relation

type

ECrel

Rel_to_E

S1|S4 compound
subtype

link
entry type compound

1

1-1

a) b)

Figure 57: Graph grammar inferred from a set of ten (a) and seventy (b)
graphs of network 00010.

The experiments on the biological network domain give us insight into the

performance of the algorithm and to the biological networks. Examining Figure 49 we

notice that some species, like dme, have a very regular set of biological networks.

Increasing the size of the set does not change the inferred grammar. While in other

species, like xcc, the set of biological networks is very diverse resulting in significant

changes on the curve. Several curves, pto, pho, efa, gradually decrease with the last

values being zero. It shows us that our algorithm performed well and with increasing

number of graphs in the input set we find the grammar which does not change more

with increased number of graphs which indicates that grammar found represents the

 128

input set well. The very bottom chart in Figure 49 shows the average change. We see

that with the increasing number of graphs in the input sets the curve declines to zero

which tells us that with the increasing number of graphs we infer more accurate

grammar. We find confirmation of these observations in experiments with sets of

biological networks of different species which describe the same process we show in

Figure 52. The average change also declines to zero. We see fewer changes in curves in

Figure 52 than in Figure 49. It tells us that there is less diversity in set of species within

one network than there is in sets of networks within one species.

In Figure 54 we show the computation time as a function of the number of

vertices in the input set. We plotted two curves, one in linear, and one in logarithmic

scale. The curves in linear scale become almost straight lines in logarithmic scale which

confirms experimentally the polynomial complexity of the algorithm. Time curves of

network 10, 30, and 401 have a surprising dip towards the right end of the scale where

we would expect an increase in computation time, but instead observe a decrease. We

suspected that it is because in these cases the input set of graphs gets compressed very

well in iteration one or two of grammar inference and the compressed graph used in

iterations three and four is small which results in faster execution time. However, a

closer look at the number of vertices in each iteration did not confirm this. Since the

isomorphism test and the heuristic used in the algorithm have the main influence on the

computation time, we tend towards relating the decreasing time phenomenon to these

features of the algorithm.

 129

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

In this dissertation we have studied algorithms for inferring node and edge

replacement graph grammar. The algorithm starts from all nodes with the same label

and grows them by adding to them one node or node and an edge at a time. We

developed a substructure which consists of the definition of a graph and all subgraphs

appearing in the input graph that are isomorphic to this graph definition (i.e., instances).

Every time we add a new node to the substructure we check if instances overlap on one

node. The overlap of instances proposes a recursive graph grammar production which

expresses concepts of ‘one or more’ of the same substructures. The input graph to our

algorithm is an arbitrary directed or undirected graph with labels on nodes and edges.

We described two algorithms for inference of two classes of graph grammars.

The first class of graph grammars we call Node Replacement Recursive Graph

Grammars. The second we call Edge Replacement Recursive Graph Grammars. The

algorithms are based on previous work in frequent substructure discovery. We used

frequently occurring, highly compressing, subgraphs as a guide to find the basic

building blocks of the input graphs. The algorithms check if frequent subgraphs overlap

by a node (node replacement) or two nodes (edge replacement) and propose a recursive

graph grammar production if they do.

 130

The node replacement recursive graph grammar inference algorithm limits

productions to one single node on the left hand side. The algorithm infers either

recursive or non-recursive productions depending if frequent subgraphs in the input

graphs overlap or not. Smaller inference error occurs when the inferred pattern has

higher MDL value, i.e., is more complex. We infer a graph grammar with only one edge

because it is evaluated the highest when nodes and edges in the graph are labeled with

only one label. Our approach can infer Jonyer et al.’s class of grammars.

Our approach can find embedding mechanism for recursive productions in the

form of connection instructions. When a production is non-recursive, instances do not

overlap and do not connect to each other. We do not explicitly give an embedding

mechanism for this case. Adding a precise embedding mechanism for non-recursive

productions would require reference to the nodes of the compressed portion of the graph

and the remaining uncompressed portion of the graph. It means that we would not be

minimizing the description length of a graph with the compressed substructure but

enlarging it. Another approach to specifying connection instructions for non-recursive

productions would be to allow for a less precise mechanism where we can mark nodes

that connect the substructure to the reset of the graph and give labels of vertices in the

uncompressed portion to which the nodes are connected. This method might be useful

in some applications where this information is important but would not allow for

regeneration of the structure of the input graph from the inferred grammar.

In our approach we infer one production in each iteration. The one time

compression pass on the input graph prevents us from learning alternating productions,

 131

because the inferred production has no way to refer to productions in future iterations.

We could infer alternating productions using two different approaches: 1) do multiple

compression passes on the input graph or 2) search for multiple productions in one

iteration.

We proposed inference of edge replacement recursive graph grammars as an

extension to the algorithm for node replacement inference. We allowed for overlap by

two nodes and we inferred grammars with a real or virtual edge. With this approach we

can infer the grammar generating chains of squares overlapping on one edge which was

not possible with node replacement grammars. Patterns often overlap on two nodes in

chemical structures, therefore, we have an approach which can find and represent

important patterns in the chemical domain. If there is only one label, the algorithm finds

a two edge grammar. If we use three or more labels in the input graph, the inference

error drops to zero or to a value close to zero in inference of grammars with a graph

structure of a tree, cycle, Peterson graph, and tetrahedron. Adding edges to the inferred

pattern increases the error. The highest error we had is with a complete graph.

We used XML files from three domains in our experiments: pharmacy, patent

and baseball. In these domains we found recursive and non-recursive productions. We

showed that the introduced algorithm of the graph grammar inference can extract the

organization and hierarchy of the structure of XML files. We compared the inferred

graph grammar to the DTD, noticing correspondence between DTD statements and

graph grammar productions. Indirect detection of alternative or optional elements is

possible if in the inferred grammar we find nodes with the same label but different

 132

children. Alternative and optional element detection is not part of our implemented

algorithm. It remains as a future work. Performing grammar inference on World Wide

Web data described by RDF is also a future direction in this domain.

In experiments with biological networks we notice that some species, like dme,

have a very regular set of biological networks. Increasing the size of the set does not

change the inferred grammar. While in other species, like xcc, the set of biological

networks is very diverse. Several curves (pto, pho, efa), which represent the change in

error with the increased sample set, gradually decrease, with the last values being zero.

It shows us that our algorithm performed well and with an increasing number of graphs

in the input set we find the grammar, which does not change more with an increased

number of graphs, which indicates that the grammar found represents the input set well.

The computation time curves we plotted in linear scale become almost straight lines in

logarithmic scale, which confirms experimentally the polynomial complexity of the

algorithm.

We would like to indicate general future directions in graph grammar inference

research. They are:

(1) Integration of inference of non-recursive, node-replacement and edge-

replacement productions into one graph grammar inference algorithm. The user of the

algorithm might be interested in the best recursive or non-recursive graph pattern which

describes the data. The most interesting pattern can be the one which scores the highest

in the evaluation process. We can achieve the integration by placing candidate patterns

 133

on the queue and let non-recursive, recursive node and edge replacement productions

compete against each other.

 (2) Develop algorithms which allow for learning larger classes of graph

grammars. In this dissertation we extended classes of presently learnable graph

grammars. It is possible to extend it even further into context sensitive graph grammars

where we could still replace nodes and edges, but whether or not this replacement takes

place depends on the neighborhood of the replaced node or edge. In order to regenerate

structures we would need more sophisticated generation mechanism with a context

sensitive embedding mechanism. This mechanism, inferred during induction, would

indicate nodes to merge during the generation process. We can explore other techniques

like decomposition of graphs in searching for the best grammar which describes the

data.

(3) Investigate learnable properties of graphs from the perspective of graph

grammars. Planarity or average degree of nodes are standard properties of graphs, and

algorithms exist for determining whether these properties. With graph grammars we can

check other properties, for example the existence of recursive patterns, repetitive

patterns, hierarchical patterns or overlapping patterns.

(4) Identify experimental areas and show the significance of graph grammar

inference in these domains. One of the new domains we approach is visual languages,

where graph grammar inference from the sample of a language can give a grammar to

be used to check newly written programs.

 134

(5) Use graph grammar inference to identify building blocks, modularity and

motifs in biology, software, social networks, and electronics circuits. We did

experiments in biology and XML domains. Biological and chemical structures are still

very promising areas of the application of recursive graph grammars. Social networks,

Very Large Scale Integrated circuits, and the Internet are domains with relational data

whose hierarchy and recursive properties we can explore with graph grammars.

(6) Expand graph grammar inference to learning stochastic graph grammars.

This extension would require assigning a probability to each production. We can

evaluate this probability based on the portion of the input graph covered by the inferred

production.

(7) Developing a better error measure for evaluating inferred graph grammars.

In our experiments we measured an error based on structural difference. Another

approach to measuring is the accuracy of the inferred grammar would be based on a

graph grammar parser. We would consider accurate the inferred grammars that can

parse the input graph. Graph grammar parser would require subgraph isomorphism test

which is computationally expensive and much more difficult in implementation than the

error measure we are using.

 135

REFERENCES

Bunke83 H. Bunke, G. Allermann, Inexact graph matching for structural pattern

recognition. Pattern Recognition Letters, 1(4) 245-253. 1983

Carrasco01 Rafael C. Carrasco, Jose Oncina and Jorge Calera-Rubio, "Stochastic

Inference of Regular Tree Languages," Machine Learning 44, 185--

197, 2001.

Chittimoori99 R. Chittimoori, L. Holder, and D. Cook. Applying the subdue

substructure discovery system to the chemical toxicity domain. In In the

Proceedings 50 of the Twelfth International Florida AI Research

Society Conference, 90-94, 1999.

Chomsky56 Noam Chomsky, Three models of language.

IRE Transactions in Information Theory 2, 3, 113-24, 1956

Cook00 D. Cook and L. Holder, Graph-Based Data Mining. IEEE Intelligent

Systems, 15(2), pages 32-41, 2000.

Cook94 D. Cook and L. Holder, Substructure Discovery Using Minimum

Description Length and Background Knowledge. Journal of Artificial

Intelligence Research, Vol 1, (1994), 231-255, 1994

Doshi02 S. Doshi, F. Huang, and T. Oates, Inferring the Structure of Graph

 136

Grammar from Data. Proceedings of the International Conference on

Knowledge Based Computer Systems (KBCS'02) 2002.

Drewes90 F. Drewes, H. Kreowski, A note on hyperedge replacement grammars.

Lecture Notes in Computer Science 532. Graph Grammars and their

application to computer science. 1990.

Flasinski98 M. Flasinski, Power properties of NLC graph grammars with a

polynomial membership problem, Theoretical. Computer. Science.,

201(1-2), 189-231, 1998.

Fletcher01 Peter Fletcher. Connectionist learning of regular graph grammars.

Connection Science, 13, no. 2, 127-188. 2001

Fu1 King-Sun Fu, T. L. Booth. Grammatical inference: introduction and

survey—part I . IEEE Transactions on Pattern Analysis and Machine

Intelligence archive Volume 8 , Issue 3 , 343 - 359 ,1986

Fu2 King-Sun Fu, T. L. Booth. Grammatical Inference: Introduction and

Survey|Part II. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PAMI-8, no. 3: 360-375, May 1986.

Gernert97 D. Gernert, Graph grammars as an analytical tool in physics and

biology. Biosystems 1997, vol. 43, no. 3, pp. 179-187(9), 1997

Gold E Mark. Gold. Language identification in the limit. Information

Control, 10: 447-- 474, 1967.

Gonzalez00 J. A. Gonzalez, L. Holder, and D. Cook. Structural knowledge

 137

discovery used to analyze earthquake activity. In Proceedings of the

Thirteenth Annual Florida AI Research Symposium, 2000.

Habel92 A. Habel, Hyperedge Replacement: grammars and Languages. Lecture

Notes in Computer Science. 643. 1992.

Hopcroft79 John Hopcroft, Jeffrey Ullman, Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley, 1979

ICGI00 Proceedings of the 5th International Conference on Grammatical

Inference (ICGI 2000), © Springer-Verlag, LNCS 1891

ICGI02 Grammatical Inference: Algorithms and Applications; 6th International

Colloquium, ICGI 2002, volume 2484 of LNCS/LNAI. © Springer-

Verlag, 2002

ICGI94 Grammatical Inference and Applications, Second International

Colloquium, ICGI94, Alicante, Spain, September 21-23, 1994, number

862 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1994.

ICGI98 Grammatical Inference, ICGI98 , number 1433 in Lecture Notes in

Artificial Intelligence,. Springer Verlag, 1998

Janssens80 D. Janssns, G. Rozneberg, On the structure of node-label-controlled

graph languages, Information. Science. 20 (1980) 191-216

Janssens82 D. Janssens, G. Rozenberg, Graph grammars with neighborhood-

controlled embedding. Theoretical Computer Science 21, 55-74, (1982)

Janssens83 D. Janssens, G. Rozenberg, Graph grammars with node-label

 138

controlled rewriting and embedding. Lecture Notes in Computer

Science, vol. 153, Springer, Berlin, 186-205. 1983

Jeltsch90 E. Jeltsch, H. Kreowski, Grammatical Inference Based on Hyperedge

Replacement. Graph-Grammars. Lecture Notes in Computer Science

532, 1990: 461-474, 1990

Jonyer02 I. Jonyer, L. Holder, and D. Cook, Concept Formation Using Graph

Grammars, Proceedings of the KDD Workshop on Multi-Relational

Data Mining, 2002.

Jonyer04 I. Jonyer and L. Holder, and D. Cook, MDL-Based Context-Free

Graph Grammar Induction and Applications. International Journal of

Artificial Intelligence Tools, Volume 13, No. 1 pages 65-79, 2004.

Jonyer04 I. Jonyer and L.B. Holder, and D.J. Cook, MDL-Based Context-Free

Graph Grammar Induction and Applications. International Journal of

Artificial Intelligence Tools, Volume 13, No. 1 pages 65-79, 2004.

Kim97 C. Kim, A hierarchy of eNCE families of graph languages. Theoretical

Computer Science 186, 157-169, 1997.

Kreowski90 Eric Jeltsch, Hans-Jörg Kreowski, Grammatical Inference Based on

Hyperedge Replacement. Graph-Grammars and Their Application to

Computer Science. Lecture Notes in Computer Science 532, 461-474,

1991

Kuramochi01 M. Kuramochi and G. Karypis, Frequent subgraph discovery. In

 139

Proceedings of IEEE 2001 International Conference on Data Mining

(ICDM '01), 313-320, 2001.

Lari91 K. and S.J. Young. Applications of stochatic context-free grammars

using the inside-outside algorithm. Computer, Speech and Language,

pages 237--257, 1991.

Lopez98 Damián López, Jose M. Sempere. Handwritten Digit Recognition

through Inferring Graph Grammars. A First Approach. Lecture Notes

In Computer Science, Proceedings of the Joint IAPR International

Workshops on Advances in Pattern Recognition, Pages: 483 – 491,

Springer-Verlag 1998

Mehta03 R. Mehta, D. J. Cook, and L. B. Holder. Identifying inhabitants of an

intelligent environment using a graph-based data mining systems. In

Proceedings of the Florida Artifcial Intelligence Research Symposium,

2003.

Milo02 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.

Alon1, Network Motifs: Simple Building Blocks of Complex Networks,

Science. Vol 298, Issue 5594, 824-827 , 2002

Nevill-

Manning97

G. Nevill-Manning and H. Witten, Identifying Hierarchical Structure

in Sequences: A linear-time algorithm. Journal of Artificial Intelligence

Research, Vol 7, (1997), 67-82, 1997

 140

Oates03 T. Oates, S. Doshi, and F. Huang. Estimating Maximum Likelihood

Parameters for Stochastic Context-Free Graph Grammars. In T.

Horváth and A. Yamamoto, editors, Proceedings of the 13th

International Conference on Inductive Logic Programming, volume

2835 of Lecture Notes in Artificial Intelligence, pages 281--298.

Springer-Verlag, 2003.

Read98 R Read and R. Wilson, An Atlas of Graphs. Oxford University Press,

1998

Rozenberg86 G. Rozenberg, E. Welzl, Boundry NLC Graph Grammars – Basic

Definitions, Normal Forms, and Complexity. Information and Control,

69, 136-167 (1986)

Rozenberg97 G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by

Graph Transformations, Volume 1: Foundations. World Scientific

1997

Sakakibara92 Yasubumi Sakakibara. Efficient learning of context-free grammars

from positive structural examples. Information and Computation,

97:23--60, 1992.

Sakakibara97 Y. Sakakibara, Recent advances of grammatical inference. Theoretical

Computer Science, 185:15-45, 1997.

Sanchez01 Gemma Sánchez, Josep Lladós, and Karl Tombre. An Error-Correction

Graph Grammar to Recognize Textured Symbols. In 4th IAPR

 141

International Workshop on Graphics Recognition, Kingston, Ontario,

Canada, pages 135-146, September 2001.

Schumann03 H Schumann, B Wassermann, S Schutte, J Velder, Y Aksu, W.

Krause, and B Radüchel, Synthesis and Characterization of Water-

Soluble Tin-Based Metallodendrimers. Organometallics, 22, 2034-

2041, 2003

Su99 S. Su, D. Cook, and L. Holder. Knowledge discovery in molecular

biology: Identifying structural regularities in proteins. Intelligent Data

Analysis, 3, 413-436, 1999.

Uhl04 W Uhl, A Fick, Thomas Spies, Gertraud Geiseler, and Klaus Harms,

Gallium-Gallium Bonds as Key Building Blocks for the Formation of

Large Organometallic Macrocycles, on the Way to a Mesoporous

Molecule. Organometallics, 23 (1), 72 -75, 2004

Yan02 X. Yan and J. Han, gSpan: Graph-based substructure pattern mining.

In IEEE International Conference on Data Mining, Maebashi City,

Japan, 2002.

Zhang03JK A. Zhang, B. Zhang, E. Wachtersbach, M. Schmidt, and A. Schluter.

Efficient synthesis of high molar mass, first- fourth-generation

distributed dendronized polymers by the macromonomer approach.

Chemistry a European Jouranl, 9(24), 6083-6092, 2003

 142

Kukluk06 J. Kukluk, L. Holder and D. Cook, Inference of Node Replacement

Recursive Graph Grammars, Proceedings of the SIAM Conference

on Data Mining, 2006.

Brickley00 D. Brickley, Rdf Specifications, Containing Resource Description

Framework Rdf Schema and Resource Description Framework Rdf

Model and Syntax Specification, Iuniverse Inc, 2000

Harold99 E. Harold, XML Bible, Hungry Minds (1999)

 143

BIOGRAPHICAL INFORMATION

Jacek Kukluk was born in Poland in 1974. After completion of graduate study in

electrical engineering at The University of Zielona Gora (Poland) in 1999 he worked for

this university as a teacher and researcher. He taught an introductory computer

programming course and lectured in laboratories. His research in Poland focused on

power electronics. He participated in projects funded by the Committee of Science

Research of Poland related to power quality and electrical energy conversion using

power electronic devices. In 2000, Stefan Batory Foundation awarded for Jacek Kukluk

a scholarship. Thanks to this support he was able to come to the Energy Systems

Research Center at University of Texas at Arlington as a visiting scholar. While

working with researchers in power systems, he became interested in obtaining a degree

in computer science. In 2003, he completed his Master of Science in Computer Science

and Engineering at The University of Texas at Arlington. In 2006, at the same

university, he defended his dissertation and received Doctor of Philosophy in Computer

Science and Engineering.

