
INFLUENCE OF CODIFIED KNOWLEDGE ON SOFTWARE DESIGN

TASK PERFORMANCE: A COMPARISON OF

PAIRS WITH INDIVIDUALS

by

GEORGE MANGALARAJ

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2006

ACKNOWLEDGEMENTS

I would like to express my gratitude to my dissertation committee chairs, Dr.

Radha Mahapatra and Dr. Sridhar Nerur for their consistent support and encouragement

throughout my Ph.D. program. I am grateful for Dr. Mahapatra’s advice and guidance

during key periods in my Ph.D. student life. Dr. Nerur helped me in many ways and I

am forever indebted for them. He gave me the opportunity to work on his research

projects. Dr. Nerur also sacrificed many of his weekends to conduct the seminar that

was offered in conjunction with my dissertation research.

I would also like to express my gratitude to other members of my committee for

their support and assistance. Dr. Kenneth Price spent countless hours in guiding me

through the nuances of conducting experiments and analysis of data thereof. Dr. James

Teng exposed me to various theories and the importance of them. Dr. Craig Slinkman

introduced me to the concept of extreme programming. Dr. Mark Eakin guided me in

analyzing the data.

I would also like to thank Anil Singh and Aakash Taneja for their friendship and

they were always a source of support all through the years. Special thanks to Venugopal

Balijepally for giving me an opportunity to see and learn the logistics of running an

experimental study.

Many of my friends in the Ph.D. program helped me at various points during my

dissertation research. Ralph Yeh and Vishal Sachdev spent hours grading the solutions
 ii

and I am grateful for that. Kishen Iyengar, Vikram Bhaduria, and Anil Gurung helped

me in conducting some of the experimental sessions.

Last, but not the least, I would like thank my family members for their support.

My father was instrumental in motivating me to pursue higher studies and I am thankful

for that. I also thank my mom and my wife Johnsy, for their patience and understanding

during the time I pursued this research.

November 29, 2006

 iii

ABSTRACT

INFLUENCE OF CODIFIED KNOWLEDGE ON SOFTWARE DESIGN

TASK PERFORMANCE: A COMPARISON OF

PAIRS WITH INDIVIDUALS

Publication No. ______

George Mangalaraj, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Radha Mahapatra

The need to improve the success rates of software development projects has

prompted the software engineering community to come-up with various initiatives.

These initiatives include: new software development processes such as Extreme

Programming (XP), leveraging the development process by reusing existing knowledge

of software artifacts. XP utilizes pairs in the performance of various software

development tasks. Moreover, development of software applications is a knowledge

intensive process that utilizes both tacit and explicit knowledge. This experimental

study utilized software development professionals as subjects and manipulated the
 iv

mode of participation (individual or pairs) and availability of codified knowledge

(design patterns). Results of the study indicate that the performance of collaborating

pairs were better than the 2nd best individual in nominal pairs. Collaborating pairs also

took more time than the average time taken by nominal pairs to complete the task and

they were more satisfied than the individuals. This study also found that the codified

knowledge in the form of design patterns helped in arriving at a better solution. One

interesting finding of this study is the effect of design self-efficacy/collective-efficacy

on task performance.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... xii

LIST OF TABLES... xiii

Chapter

1. INTRODUCTION…..……... 1

 1.1 Importance of Research ... 3

 1.1.1 Software Development Process Improvements 4

 1.1.2 Knowledge Reuse and Software Artifacts 5

 1.2 Research Questions…………………………………………………….. 6

 1.3 Overview of this Research……………………………………………... 7

2. LITERATURE REVIEW…..…….. .. 8

 2.1 Knowledge Transfer…….. .. 9

 2.1.1 Knowledge ... 10

 2.1.2 Knowledge Transfer: Individual Level..................................... 11

 2.1.3 Knowledge Transfer: Group Level ... 12

 2.1.4 Knowledge Management Processes ... 12

 2.1.5 Transfer of Knowledge in Software Development 13

 vi

 2.2 Groups vs. Individuals ……………………………………………….. .. 15

 2.2.1 Group Performance... 16

 2.2.2 Group Performance - Theories ... 17

 2.2.3 Social Cognition ... 19

 2.2.4 Information sharing .. 20

 2.3 Group Processes………………………………………………............... 21

 2.3.1 Social Cognitive Theory ... 22

 2.3.2 Communication... 25

 2.3.3 Task Satisfaction... 28

 2.4 Software Engineering……………………………………………….. 29

 2.4.1 Software Development ... 29

 2.4.2 Software Design Task Characteristics 29

 2.4.3 Design Patterns ... 31

 2.4.4 Software Reuse ... 34

 2.4.5 Extreme Programming/Pair-Programming............................... 36

 2.5 Literature Review – Implications for the Current Study……………… . 37

3. RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT…..…….. 40

 3.1 Paris versus Individuals…….. ... 41

 3.1.1 Pairs and Nominal Pairs – Solution Quality 42

 3.1.2 Pairs and Nominal Pairs – Time Taken 46

 3.2 Impact of Codified Knowledge on Task Performance…….. 47

 3.2.1 Availability of Codified Knowledge and Solution Quality 47

 vii

 3.3 Mental Work Load …….. 50

 3.4 Task Satisfaction ……... 51

 3.5 Proposed Model – Individual Condition ……... 52

 3.5.1 Patterns and Design Self-efficacy... 52

 3.5.2 Mediating Role of Self-efficacy ... 53

 3.6 Proposed Model - Pair-condition……... 55

 3.6.1 Patterns and Collective efficacy ... 55

 3.6.2 Mediating Role of Design Collective Efficacy......................... 56

 3.6.3 Patterns and Communication.. 56

 3.6.4 Mediating Role of Communication .. 57

4. RESEARCH METHODOLOGY…..…….. .. 59

 4.1 Subjects…………….. 60

 4.2 Experimental Setting…………….. ... 60

 4.3 Planned Sample Size…………….. 61

 4.4 Research Design…………….. .. 61

 4.5 Experimental Task…………….. ... 62

 4.6 Pilot Test…………….. 63

 4.7 Manipulation Checks…………….. ... 64

 4.8 Measurement of Variables……………... 64

 4.8.1 Quality of the Solution.. 64

 4.8.2 Completion Time .. 65

 4.8.3 Design Self-efficacy ... 65
 viii

 4.8.4 Design Collective-efficacy ... 66

 4.8.5 Communication... 67

 4.8.6 Subjective Mental Work Load (SMWL) 68

 4.8.7 Overall Task Satisfaction.. 68

 4.9 Debriefing…………….. .. 69

 4.10 Statistical Analysis……………... 69

5. RESEARCH RESULTS…..……... 72

 5.1 Preliminary Analyses……... 72

 5.1.1 Sample Characteristics.. 72

 5.1.2 Characteristics of Dependent Variables and Mediators............ 75

 5.1.3 Assumptions Tests .. 80

 5.1.4 Tests for Interactions and Significance..................................... 83

 5.1.5 Manipulation Checks .. 84

 5.2 Hypothesis Testing…….. .. 86

 5.2.1 Pairs versus Individuals Comparison for Solution Quality 86

 5.2.2 Pairs versus Individuals Comparison for Time 89

 5.2.3 Availability of Codified Knowledge and Solution Quality 90

 5.2.4 Subjective Mental Work Load: Patterns and No Patterns 93

 5.2.5 Task Performance Satisfaction: Individuals and Groups.......... 93

 5.3 Testing of the Mediation Model – Individual Condition 95

 5.4 Testing of the Mediation Models – Pair Condition…….. 97

 5.5 Summary of Results……... 99
 ix

6. DISCUSSION AND CONCLUSIONS…..…….. 101

 6.1 Summary of Research Findings……... 103

 6.1.1 Solution Quality.. 103

 6.1.2 Completion Time .. 104

 6.1.3 Subjective Mental Workload .. 104

 6.1.4 Overall Task Satisfaction.. 105

 6.1.5 Individual Condition – Self-efficacy as a Mediator 106

 6.1.6 Pair Condition – Collective-efficacy as a Mediator 106

 6.1.7 Pair Condition – Communication Quality as a Mediator 108

 6.2 Significance of the Findings …….. ... 109

 6.2.1 Significance of Findings for Research...................................... 109

 6.2.2 Significance of Findings for Practitioners 111

 6.3 Limitations of the Study …….. ... 112

 6.4 Future Research Directions…….. 113

 6.5 Conclusions………….. 114

Appendix

 A. SUBJECT RECRUITMENT FLYER .. 115

 B. INFORMED CONSENT ... 117

 C. DEBRIEFING .. 119

 D. INSTRUCTIONS FOR VARIOUS TREATMENTS 121

 E. EXPERIMENTAL TASKS ... 126

 F. QUESTIONNAIRE .. 129
 x

 G. GRADING SCHEME FOR THE MAIN TASK ... 153

 H. GLOSSARY GIVEN TO ALL PARTICIPANTS 155

 I. DESIGN PATTERNS MATERIALS FOR PATTERN CONDITION 158

REFERENCES .. 166

BIOGRAPHICAL INFORMATION... 180

 xi

LIST OF ILLUSTRATIONS

Figure Page

2.1 Research areas to be reviewed……………………………………………… 9

2.2 Input – process – output model…………………………………………… 21

2.3 Systems Development Life Cycle (SDLC)………………………………… 29

2.4 Summary of research streams reviewed …………………………………… 39

3.1 Research model…………………………………………………………….. 41

3.2 Individual condition mediator model ……………………………………… 53

3.3 Pair condition mediator model ……………………………………………. 55

4.1 Research design – treatment conditions…………………………………… 62

5.1 Two-by-Two Factorial Research Design .. 73

5.2 Treatment Means Plot for Solution Quality .. 88

5.3 Plot for Solution Quality and Time across Treatments 92

5.4 Plots for Mean Overall Task Satisfaction across Participation....................... 95

 xii

LIST OF TABLES

Table Page

 2.1 Knowledge Management Classification .. 13

 4.1 Scales for the Constructs.. 69

 5.1 Subject Characteristics ... 73

 5.2 Rotated Factor Matrix for the Perceptual Measures 77

 5.3 Rotated Factor Matrix for Communication Measures 78

 5.4 Correlations of Measures at the Individual Level .. 79

 5.5 Power Analysis... 80

 5.6 Assumptions of Normality and Constancy of Error Variance 81

 5.7 Results of Test for Interactions .. 83

 5.8 Pattern Manipulation on Solution Quality ... 85

 5.9 ANCOVA Model Results for Solution Quality ... 87

 5.10 Bonferroni’s Custom Comparison for Solution Quality 88

 5.11 ANCOVA Model Results for Time ... 89

 5.12 Bonferroni’s Custom Comparison for Time .. 90

 5.13 Solution Quality across Codified Knowledge Treatment 91

 5.14 Solution Quality and Time across Treatments ... 92

 xiii

 5.15 ANCOVA Model Results for SMWL.. 93

 5.16 ANOVA Model Results for Task Satisfaction... 94

 5.17 Factor Level Means of Overall Task Satisfaction.. 95

 5.18 Results for the Mediator Analysis – Individual Condition 96

 5.19 Results for the Mediator Analysis – Pair Condition 98

 5.20 Hypotheses Test Results .. 99

 xiv

CHAPTER 1

INTRODUCTION

The need to improve software development project success has prompted the

software engineering community to implement various initiatives. These initiatives

include: efforts aimed at developing better software development processes such as

Extreme Programming (XP), and reuse of existing knowledge and software artifacts.

Agile software development methodologies are a new breed of software

development methodologies that promise higher success rates for software development

projects. According to a recent survey, agile software development methodologies are

gaining widespread acceptance in the industry (Ambler, 2006). These methodologies

are strikingly different from the traditional software development methodologies.

Extreme programming is a popular Agile Software Development Methodology which

calls for the use of pairs in development of software applications.

Pairs are claimed to provide better solutions than individuals. Efficacy of pairs

working in software programming tasks has been studied to a great extent in the past

whereas studies that compared the performance of pairs with individuals in software

design tasks are limited (Al-Kilidar, et al., 2005). Characteristics of software design

tasks are different from those of programming tasks. Errors that occur during the design

 1

phase of software development would require far greater resources to fix than the errors

that occur in other phases of the project (Beck, 1999).

Development of software applications is a knowledge intensive process utilizing

both tacit and explicit knowledge. The development of software application has often

been characterized as knowledge work. Knowledge has also been described as the raw

material in software development (Walz, et al., 1993). The development of software

applications require the integration of various knowledge elements (Robillard, 1999).

Two types of knowledge had been identified by researchers in developing software

applications: domain knowledge and technical knowledge (Tiwana, 2004). These

knowledge elements contain both explicit and tacit components. Integration of these

diverse knowledge elements is required to effectively meet the user requirements of a

particular system.

In order to manage the knowledge intensive process, various tools and

techniques are available during the development of software applications. One such

technique is the use of design patterns. Design patterns are formulated based on the

knowledge of expert software designers and they provide standard solutions to recurring

software design problems. Design patterns codify software design knowledge that can

be readily used. Design patterns also enable novices to apply expert solutions for

frequently appearing design problems. Differences between experts and novices in the

development of software have been highlighted in the literature. Mayer (1988)

illustrates how experts and novices differ in the use of syntactic, semantic, schematic,

and strategic knowledge during computer programming task. Experts are claimed to

 2

formulate higher-level conceptual models whereas novices in general lack this

capability. Literature in the knowledge transfer area mentions the difficulty in

transferring knowledge from one situation to another. Kerievsky (2005) claims that the

availability of design patterns knowledge does not guarantee their use in a design task.

Cognitive science approach to knowledge transfer also views the availability of

knowledge to solve a particular problem does not guarantee the application of it to solve

similar problems (Gray and Orasanu, 1987).

The experiment proposed and conducted in this study utilized individuals and

pairs in the performance of software design tasks. This study also manipulated the

availability of codified knowledge during the performance of the tasks. Results from

this study are expected to unravel the effectiveness of practices to codify software

development knowledge and also the efficacy of performing software design tasks in

pairs. Findings of this study will also be applicable to the practitioners in areas such as

knowledge management, software reuse, dyads versus individuals’ performance on

software design tasks, and group processes variables that are salient.

1.1 Importance of Research

Companies are investing millions of dollars in the development of new software

applications. Literature highlights that many of the software development projects fail

to meet the project objectives. According to a report compiled by the Standish group,

only 28% of the IT projects were successful in meeting time, budget and functionality

criteria (Standish Group, 2001). A more recent report, published in 2004 placed the

project success rates at 29%, thus showing virtually no change in the success of

 3

software development projects. Design of software applications is one of the important

phases in the development of any software application. In a specific software

development project, requirements specification and design phases consume more than

half the development cost (Walz, et al., 1993). Expensive errors are claimed to be

committed during the design phase of a project (Guindon, 1990). Moreover, the cost of

fixing a software bug early in the design phase is lot cheaper than fixing the bug after

the software application is fully implemented (Beck, 1999). This highlights the

importance of the design phase in software development.

Scholarly research on project failures had found variety of reasons such as

escalation of commitment to failing projects, non reporting of negative information

about projects in due time, and improper management of software development project

risks (Montealegre and Keil, 2000; Smith and Keil, 2003; Wallace and Keil, 2004).

Some of the reasons attributed to the success of the software development projects are:

user involvement, minimized scope with small milestones, standard software

infrastructure, and adherence to formal software development methodology (Standish

Group, 2001). The software engineering community and the industry has come up with

ways and means to increase the success of software projects. These initiatives include:

efforts to create better software development processes, and reuse of existing

knowledge and software artifacts.

1.1.1 Software Development Process Improvements

There are divergent opinions on how the software development process should

be improved. On the one end, there is a move to make software development processes

 4

more formalized. This is reflected in the efforts of the Software Engineering Institute’s

Capability Maturity Model (CMM). CMM defines five levels of process maturity and

organizations are rated based on their process maturity levels. Organizations at level 1

of process maturity do not have formal software development processes in place.

Organizations at level 5 of process maturity have optimized software development

processes (Boehm and Turner, 2004).

On the other end, there are advocates for software development methodologies

that are less process oriented. The movement for Agile Software Development is an

example of this phenomenon. Agile software development encompasses a wide array of

methodologies that subscribe to the “Agile Manifesto” proposed by the Agile Alliance

(Highsmith, 2002). Examples of agile methods are: Extreme Programming, SCRUM,

Adaptive Software Development, Dynamic Systems Development Methodology, and

Feature Driven Development.

Extreme programming (XP) is one of the most popular agile software

development methodologies. XP utilizes individuals working together in pairs on the

software development tasks. Some of the benefits of pairing are: reduction of

programming errors that leads to better software quality, transfer and sharing of

knowledge between the pair, and increased morale in the development group (Beck,

1999). There are anecdotal as well as some empirical evidence supporting this claim.

1.1.2 Knowledge Reuse and Software Artifacts

The software engineering community has developed tools and technologies that

assist in the reuse of existing software artifacts. Reuse of existing artifacts help in

 5

improving the productivity as well as the quality of software development projects

(Prieto-Diaz, 1993). There are various levels at which reuse of software artifacts can be

done. At the simplest level, concrete implementations such as code or modules are

reused. Reuse of common class libraries is an example of simple reuse. At a more

complex level, abstract software design components are reused after suitable adaptation.

Reuse of design patterns is an example of complex reuse.

Design patterns capture the expertise of seasoned software developers and they

provide standard solutions to recurring software design problems. The concept of

patterns had its origin in the pioneering work of Chris Alexander in the field of

architecture. There are many different types of design patterns available to meet the

needs of various design problems. Design patterns are a form of codified knowledge.

Application of such knowledge to solve a new problem is akin to knowledge transfer.

Some of the benefits of using design patterns are: provides standard vocabulary among

developers, documents the design, abstracts the design problem from the details, and

creates adaptable solutions (Cline, 1996). There are a handful of empirical studies on

design patterns (Prechelt, et al., 2001; Prechelt, et al., 2002).

1.2 Research Questions

This study addresses the following research questions:

 1. Do software designers working in pairs have a greater effect on the outcome of

the design task than individuals?

 2. Does the use of codified knowledge in the form of design patterns, influences

the outcome of the design task?

 6

1.3 Overview of this Research

Here is an overview of this dissertation research: Chapter 2 reviews literature

from four areas that were found to be pertinent to this study. These areas are:

knowledge transfer, groups versus individuals, software engineering, and group

processes. Chapter 3 develops the research models and discusses the theoretical

rationale to support the model. Chapter 4 outlines the research design to be used and

discusses the data analysis technique to be adopted. Measurements of various constructs

are also presented in this section. Chapter 5 presents the results of the various statistical

analyses that were performed. The final chapter discusses the findings of the study and

presents future research directions.

 7

CHAPTER 2

LITERATURE REVIEW

This chapter reviews literature pertaining to knowledge transfer and the

performance of software design tasks by pairs. In consonance with the questions posed

in the study, this chapter reviews the pertinent literature in knowledge transfer,

individual and group differences in task performance, group processes and software

engineering. The first section reviews the literature on knowledge transfer with

emphasis on knowledge transfer in groups and knowledge transfer in software

development. The second section reviews literature on the performances of groups

versus individuals on a variety of tasks. The third section reviews literature on group

processes such as collective efficacy beliefs and communication, which influence the

functioning of groups. The fourth section reviews literature on software engineering

with emphasis on characteristics of design tasks, reuse of software artifacts, and design

patterns. Figure 2.1, graphically depicts the research areas to be reviewed for this study.

 8

Individual vs.
Groups

Knowledge
Transfer

2.1 Knowledge Transfer

Knowledge transfer refers to how knowledge acquired in one situation applies

or fails to apply in other situations (Singley and Anderson, 1989). Failure in the transfer

of knowledge indicates that availability of knowledge about a task does not always lead

to superior performance. The individual must also know how to apply the knowledge to

the task at hand (Singley and Anderson, 1989).

Researchers distinguish “transfer of knowledge” from “learning” on the basis of

the task performed after the learning episode. In “transfer of knowledge”, the follow-up

task is different from the task performed during the learning episode, whereas in

“learning” the same task is repeated (Gick and Holyoak, 1987).

Knowledge transfer has been studied at various levels of analysis such as

individual, group, and organizational level. Knowledge transfer at the individual level

has been studied to a greater extent in the literature. These studies pertain to the transfer

Group
Processes

Task Environment: Software design problem

Current
Research

Figure 2.1: Research areas to be reviewed

 9

of knowledge during training sessions (Argote, et al., 2000). Researches in the strategic

management area were primarily oriented at the organizational level outcomes of

knowledge transfer. Zellmer-Bruhn (2003) highlights that the existing research in

knowledge transfer is predominantly oriented at the macro level and relatively less

attention has been given to group level knowledge transfer activities. Importance of

studying knowledge management at the group level has also been underscored in the

literature (Nonaka and Takeuchi, 1995).

2.1.1 Knowledge

Knowledge is a multifaceted concept with multilayered meanings. The never-

ending search, for the meaning, is characterized by the history of philosophy (Nonaka,

1994). This study does not go into the details about the definition of knowledge as

enunciated by philosophers and researchers. Though there is no consensus in the

definition of knowledge, there is agreement in the various types of knowledge. Different

types of knowledge and their implications has been discussed in the literature (Blackler,

1995). Two common types of knowledge are tacit and explicit knowledge.

Tacit Knowledge: Tacit knowledge is rooted in action, experience, and

involvement in a specific context (Alavi and Leidner, 2001). Tacit knowledge

encompasses insights, intuition, and implied assumptions (Majchrzak, et al., 2004).

Explicit Knowledge: Explicit knowledge is articulated, codified, and

communicated in symbolic and normal language (Alavi and Leidner, 2001). Explicit

knowledge has also been referred to as codified knowledge, declarative knowledge, etc.

 10

2.1.2 Knowledge Transfer: Individual Level

Transfer of knowledge in individuals across broad domains and tasks has been

studied extensively in the past. Locke propounded the doctrine of formal discipline

which claimed that the mind was composed of a collection of general faculties, and

transfer between dissimilar domains are possible due to the utilization of common

faculty (Singley and Anderson, 1989). Refuting this faculty view of transfer, which

emphasized on more broader transfer of knowledge, Throndike proposed the theory of

identical elements (Thorndike, 1906). According to this theory, knowledge transfer is

much more specific in nature. For example, knowing addition helps learning

multiplication and this has been credited to the identical elements present between them

(Singley and Anderson, 1989). Theory of identical elements met with limited empirical

support. Cognitive theories such as Gestalt theory consider transfer as a pattern of

dynamic relationship discovered or understood in one situation may be applicable to

another (Bower and Hilgard, 1981). Unlike Throndike’s identical elements view,

Gestalt theory considers that identical elements alone cannot bring about transfer of

knowledge and there should be common patterns, configurations, or relationships.

Problems with transfer of knowledge bring to focus the need to consider

similarities between the original problem and the subsequent problem. One of the

problems associated with knowledge transfer is that people tend to access previous

knowledge that bears surface rather than structural similarity to the problem at hand

(Thompson, et al., 2000).

 11

2.1.3 Knowledge Transfer: Group Level

Two types of studies are prevalent at the group level knowledge transfer. These

are: within group knowledge transfer (Thomas-Hunt, et al., 2003) and across team

knowledge transfer (Kane, et al., 2005). Research in social cognition suggests that in

team level problem solving, knowledge of the individual member should be retrieved

and articulated in order for it to be transferred to the new problem (Larson and

Christensen, 1993).

Hansen (1999) studied transfer of codified knowledge between organizational

units. The codified knowledge studied was either context dependent or context

independent. Strength of ties was found to play a major role in the transfer of

knowledge between various organizational units.

2.1.4 Knowledge Management Processes

Research on issues related to knowledge management has been the focus of

attention of both Management and Information Systems researchers. Corporations are

spending enormous amounts of money on building Knowledge Management Systems.

Knowledge management processes has been classified in the literature either as

knowledge creation or knowledge reuse. Though the literature gives importance to

knowledge creation, knowledge reuse is clearly related to organizational effectiveness

(Markus, 2001). Argote et al. (2003) classifies studies in knowledge management based

on the knowledge management context and knowledge management outcomes. Table

2.1 presents the classification of knowledge management. Knowledge management

outcome consists of knowledge creation, knowledge retention, and knowledge transfer.

 12

The context in which knowledge management takes place are the properties of units

involved in knowledge management, properties of the relationship between units

involved in knowledge management, and the properties of the knowledge that is

managed.

The current study is primarily interested in the knowledge transfer aspect of

knowledge management. Knowledge transfer is evident when experience acquired in

one context is transferred to another context (Argote, et al., 2000). The context for

knowledge transfer is based on the properties of units, relationships, and knowledge and

is highlighted in figure 2.1. Properties of units refer to the properties of individuals /

groups involved in knowledge transfer. Properties of relationship between units refer to

things such as the network structure. Properties of knowledge refer to the type of

knowledge used such as explicit or tacit and this study utilized codified knowledge.

Table 2.1 Knowledge Management Classification

 Knowledge Management Context

Knowledge

Management Outcome

Properties of

units

Properties of the

relationship between units

Properties of

knowledge

Creation

Retention

Transfer

2.1.5 Transfer of Knowledge in Software Development

Though Information Systems researchers have extensively studied, systems that

help transfer knowledge or reuse existing components, few of the studies are

specifically focused on knowledge transfer during software development. Knowledge

 13

transfer in virtual software development teams was studied by (Sarker, et al., 2005).

Their study found that credibility, communication, capability, and culture of the

software development team to influence knowledge sharing. Tiwana and McLean

(2005) studied how expertise of software development team members was integrated to

achieve team creativity. They argued that an individual’s expertise is of no use unless it

is transferred/shared among team members. They also highlight the difficulty in

achieving this transfer during software development. Faraj and Sproull (2000) coined

the term ‘expertise coordination’ to highlight the importance of knowledge in software

development. Expertise coordination consists of socially shared cognitive processes that

develop and evolve in order to meet task-based skill and knowledge dependencies.

Their empirical study on software development teams found that expertise coordination

plays a significant role in explaining team performance above and beyond traditional

factors.

Walz, et al.(1993) specifically studied the role of knowledge acquisition,

sharing, and integration during the design of software applications. They carried out an

industrial case-study and found that most conflicts found during software design were

dialectic or educational, and were not personal. Team members exchanged knowledge

through discussions to overcome the apparent differences in carrying out the design

task. One interesting finding of their case study was that 75% of time spent during the

design phase involved learning about requirements, and technical and domain

knowledge about the project.

 14

Roberts, et al. (2001) studied the role of consulting practices and universities as

“knowledge link” in the implementation of formal software development

methodologies. The “knowledge links” transfer knowledge about software development

methodologies to the adopting organizations.

2.2 Groups vs. Individuals

Although, writing computer programs is a solitary activity, development of a

complete software application is mostly a team-based activity. Individuals with

specialized roles collaborate to produce the application. Newer software development

methodologies, such as Extreme Programming go one step further by utilizing pairs to

do the development task. Limited empirical support has been put forward for the

effectiveness of such pairs working together (Nosek, 1998).

Small group research is replete with many studies that compare the benefits of

group vis-à-vis individuals in physical activity, problem solving, and memory recall

tasks. Various theories and concepts are used to explain the apparent discrepancy in the

output of groups in comparison to individuals. According to Steiner (1972),

determinants of group productivity depends on task demands, resources that are brought

to bear on the task, and processes involved in transforming the resources. Actual

productivity is hampered by the loss due to faulty processes which could be: loss in

motivation of individual members and loss due to situational constraints resulting from

social interaction processes that are characterized as coordination loss.

 15

There are other reasons that explain process gains in task performing groups.

These are: assembly effects where group interaction results in newer insights for the

problem at hand; social compensation effects that occur when the task is of high

importance to the group and the group members compensate for the inability of another

group member to perform the task; and the Kohler effect. In the Kohler effect, the less

able group member steps-up his performance to match the performance of others in the

group (Brodbeck and Greitemeyer, 2000). The following paragraphs review the

literature on individual versus group performance for diverse tasks.

2.2.1 Group Performance

Physical Activity: Initial studies on groups vs. individual performance were

focused on physical activities such as pulling a rope (Ringelmann, 1913), and cycling

competition results (Triplett, 1898), both cited in (Brown 2001). Ringelmann found that

group productivity is less than the individual’s productivity. Triplett found

improvement in the performance of individuals in the presence of another person.

Problem Solving Tasks: In problem solving tasks, in general, groups were found

to be better than the average individual, but seldom better than the best individual

(Hare, 1994). Potential performance of the group is higher than the actual performance

in certain conditions and Steiner’s concept of process losses and gains were used to

explain this mismatch (Steiner, 1972). Apart from various group properties, task

characteristics also influenced group performance to a great extent. Groups are better

than individuals in judgment tasks as the probability of getting accurate judgment in

groups is higher. Under certain conditions groups are also found to perform better than

 16

the best individuals in solving complex tasks. Performance of groups relative to

individuals is dependent on the characteristics of the task, the group processes, group

size, and time availability.

Remembering: Research findings on group remembering in memory recognition

tasks is that although groups on average typically do not perform as well as their “best

member”, they perform better than individuals on an average (Argote, 1999). When

groups were compared to the best individuals, groups performed significantly better

than the best individuals on recall of random items but not of organized stories.

Superiority of groups on recall is due to several processes (a) groups have access to a

wider pool of information than individuals, (b) groups make fewer errors than

individuals, and (c) groups are better than individuals at determining what they could

and could not recognize correctly (Argote, 1999).

Brainstorming: Individuals working alone produced more ideas than same

number of persons working as a group (Hare, 1994). This has been attributed to

“production blocking” due to group members taking turns talking and group leaders

taking time to talk more.

2.2.2 Group Performance - Theories

Differences in the performance of task performing groups have been explained

through various theories. Two prominent theoretical concepts in this area are social

facilitation and social loafing.

Social Facilitation: This theory has been used to explain improvements in

individual performance due to the presence of others. Moreover, performance

 17

improvements were present when tasks were simple and disappeared when tasks were

complex (Brown, 2001). Zajonc (1965) proposed that the presence of another member

of same species increased the arousal or drive and such increased drive in the task

performing person increases the likelihood of well learned responses while hampering

novel or poorly learned responses. Bond and Titus (1983), in their meta-analysis of 241

studies, found that the presence of others increases the speed of simple task

performance and decreases the speed of complex task performance. They also found

that the presence of others impairs complex performance accuracy and slightly

facilitates simple performance accuracy.

Social Loafing: Social loafing explains the decrease in group performance due

to motivational loss resulting in withholding of effort by the group members.

Individuals will exert less effort if the outcome responsibility is shared or when they

believe their efforts are dispensable (Hare, 1994). Social loafing is widely prevalent

during the performance of mundane tasks (Brown, 2001) that are additive and

conjunctive. Social loafing can be eliminated by telling subjects that their individual

outputs can be identified or by increasing the difficulty of the task (Hare, 1994).

Motivational gains in groups are also said to occur under certain conditions.

Social compensation effect and the Kohler effect are used to explain such performance

gains. Social compensation occurs when the individuals expect their partners to be less-

able and the superior group member works hard to make-up for the apparent

deficiencies of the partner (Brown, 2001).

 18

Under certain conditions, the less-able member may step-up his performance to

match that of the superior performer. This type of effect has been observed in physical

endurance tasks when the discrepancy between the superior and the less-able member’s

skills are not great. This effect is called as the Kohler effect (Brown, 2001).

2.2.3 Social Cognition

Social cognition is a subset of cognitive psychology pertaining to the study of

group cognition. Social cognition refers to those social processes that relate to the

acquisition, storage, transmission, manipulation and use of information for the purpose

of creating a group-level intellective product (Larson and Christensen, 1993). In a

similar vein, researchers have studied distributed cognition that pertains to the

representation of knowledge, propagation of knowledge between different individuals

and artifacts, and transformation of it when operated by individuals and artifacts (Flor

and Hutchins, 1991).

Social cognition differs from individual cognition because recalling a piece of

information from memory is not the same as mentioning it in a group context (Larson

and Christensen, 1993). In the individual level, recalling information is enough while

solving a problem whereas for a task performing group, that information needs to be

recalled and shared by a member of the group.

Collective cognition also refers to the cognitive process involved in groups.

According to Gibson (2001), collective cognition involves four phases: accumulation –

acquire knowledge and information through perceiving, filtering, and storing;

interaction – group members share knowledge through retrieving, exchanging, and

 19

structuring; examination – group members examine information through negotiating,

interpreting, and evaluating; and accommodation – group members integrate, decide

and act. These phases are not sequential as the groups may traverse from one phase to

another iteratively (Gibson, 2001). Processes involved in collective cognition highlight

the importance of sharing knowledge in task groups.

Some of the properties of the distributed cognition system are the exploration of

a larger number of alternatives when there is less commonly shared information, reuse

of existing system knowledge in the form of declarative memory, sharing of goals and

plans that help in efficient communication and shared memory of alternative plans (Flor

and Hutchins, 1991).

2.2.4 Information sharing

Information sharing in groups is an important aspect in the transfer of

knowledge in a group environment. Research on information sharing revealed that

group members are more likely to share ideas that members already have in common

than to discuss unshared ideas that are unique to the members of the group (Wittenbaum

and Staseer, 1996). Stasser and Titus (1985) argue, through their information-sampling

model, that the statistical probability of an information to be mentioned during group

discussion increases with the number of people possessing that information in the

group.

Group size affects the sampling advantage of shared over unshared information

with large groups focusing only on shared information compared to smaller groups

 20

(Argote, 1999). Presence of experts and duration of the problem solving task were also

found to increase the amount of unshared information among group members.

2.3 Group Processes

In recent times, software development utilizing teams with pairs working

together on a certain task is becoming popular. The advantages of such co-operative

work are many and are emphasized in the literature.

One of the prominent ways of studying teams/pairs is the use of Input-Process-

Output model (McGrath 2000). Many studies on teams have utilized this model in

analyzing team performance. This model traces causal paths that were hypothesized to

influence group performance in solving non-eureka problems (Littlepage, et al., 1995).

Limitations of the I-P-O model have been emphasized based on the difficulty in

accounting for mediators in the model (Ilgen, et al., 2005).

Input Process Output

Figure 2.2 Input-process-output model

Development of software applications is a knowledge intensive process, and the

industry and the research community are developing ways to manage this process. One

of the ways past knowledge is utilized in software development is through the use of

design patterns. This study is geared to understand these two phenomena.

 21

In order to explain for the performance differences in the utilization of patterns

while working in pairs, it would be germane to study the presence of potential

process/mediator variables. Two streams of literature were tapped into towards this end.

The first stream is based on the social cognitive theory that explains the relationship

between knowledge and performance in individuals and in groups. The second stream

is from the small group literature that pertains to the effect of communication on

performance gains. Following paragraphs review these two streams of research.

2.3.1 Social Cognitive Theory

Bandura’s, Social Cognitive Theory(SCT) explains psychosocial functioning in

terms of triadic reciprocal causation between: personal and cognitive factors,

environmental factors, and behavior (Wood and Bandura, 1989). This theory tries to

explain why people sometimes would not perform optimally in spite of knowing well

how to do it. SCT explains the disconnect in performance through a self-referent

thought that mediates the relationship between knowledge and action (Bandura, 1986).

This self-referent thought has been conceptualized as self-efficacy at the individual level

and collective efficacy at the group level.

Self-efficacy: The concept of self-efficacy is based on Bandura’s Social

Cognitive Theory. According to Bandura (1986), self-efficacy is defined as “people’s

judgments of their capabilities to organize and execute courses of action required to

attain designated types of performances”. Perceived self-efficacy is also claimed to

determine an individuals’ effort expenditure and persistence on task-related activities.

 22

Self-efficacy differs from self-esteem in that the latter is more of a trait measure

and is concerned with the evaluation of self-worth in relation to personal standards or

cultural values (Bandura, 1986).

Self-efficacy beliefs emerge based on four sources of information: past

performance accomplishments, vicarious experience, verbal persuasion, and

physiological and emotional arousal (Bandura, 1986). Though the experience gained

through various sources is a major contributor for the development of self-efficacy, the

literature highlights other sources of self-efficacy development. Gist and Mitchell

(1992) outline three types of assessment processes which are involved in the formation

of self-efficacy: analysis of task requirements, attributional analysis of experience, and

assessment of personal and situational resources/constraints. For novel problems,

efficacy beliefs are based partly on a detailed assessment of personal and situational

resources and constraints (Gist and Mitchell, 1992).

In the Information Systems literature, self-efficacy has been widely used. Many

of the studies utilized the self-efficacy construct pertaining to the use of computers and

the effect of users’ efficacy beliefs on it. Compeau and Higgins (1995) developed a

construct called computer self-efficacy that was used to explain the use of computers by

individuals. Research on this stream also utilized training to increase self-efficacy of the

individuals (Yi and Davis, 2003). In these studies, self-efficacy was found to be a strong

predictor of performance. Sharing of knowledge in the formation of knowledge

repositories has also been shown to be associated with the employee’s belief about his

‘knowledge self-efficacy’ (Kankanhalli, et al., 2005).

 23

In the software development area, self-efficacy has been used. Hunton and

Beeler (1997) found that self-efficacy beliefs of users’ were related to their participation

in systems development initiatives in an organization. Hertel, et al.(2003) studied

programmers who had contributed to the development of the Linux operating system

and found self-efficacy beliefs of individual programmers to be strongly related to their

level of contribution in software development.

Two types of self-efficacy have been discussed in the literature: general self-

efficacy, and task specific self-efficacy. General self-efficacy has been described as a

trait variable and refers to a person’s beliefs about generally performing tasks. Specific

self-efficacy is domain and task specific, and it varies depending on the context studied

(Stajkovic and Luthans, 1998). The majority of the studies have utilized task specific

efficacy measures (Gibson, et al., 2000).

Collective Efficacy: Collective efficacy is the collective belief that the group is

capable of doing a certain task. This phenomenon has been increasingly studied in the

management literature in the context of task performance. Efficacy at the group level

has been studied in three different ways with little variation among them: Group

efficacy, Team efficacy, and Collective efficacy. Group efficacy is a broader construct

and is measured in different ways whereas collective efficacy and team efficacy are task

specific. Distinction between collective and team efficacy is primarily on the level of

analysis. The collective efficacy construct can pertain to team, organization, country

level and team efficacy beliefs which pertain to a particular team (Gully, et al., 2002).

 24

Zaccaro, et al. (1995) define collective efficacy to represent “a sense of

collective competence shared among individuals when allocating, coordinating, and

integrating their resources in a successful concerted response to specific situational

demands”. Hence some of the important elements in the definition of collective efficacy

are: (1) shared beliefs, (2) competence in a collective’s coordination activities, (3)

inclusion of other members’ resources, and (4) the situational and behavioral, or task

specificity of collective efficacy.

Past literature has indicated that the antecedents for collective efficacy beliefs

are to be somewhat similar to the ones in the formation of self-efficacy beliefs.

Collective efficacy forms through group interaction wherein group members combine

and integrate information about each other and about their task, context, process, and

prior performance (Gibson, 1999; Zaccaro, et al., 1995). It involves: interactive,

coordinative, and synergetic social dynamics (Fernández-Ballesteros, et al., 2002).

Group potency, a group belief is closely related to the concept of collective

efficacy. Collective efficacy differs from group potency with regard to the specificity of

the task. Group potency is associated with the belief about overall group effectiveness

(Baker, 2001).

2.3.2 Communication

There are differing opinions about the role of communication on the group

performance in problem solving tasks. According to Steiner(1972), faulty group

interaction and communications contribute to process loss during task performance.

Simultaneously, other researchers argue that group communication has the potential to

 25

enhance coordination thereby reducing process losses. They claim that communication

helps in the optimal combination of group efforts, discuss understanding of the task,

share and combine views, and structure group processes (Tschan, 1995). This has been

conceptualized as assembly bonus effects (Collins and Guetzkow, 1964). Researchers

who subscribe to reductionism contend that groups will perform, at best, as well as their

members and at worst, process loss will be there in groups due to group interaction

(Pavitt, 2003). Propp (2003) argues that communication is central to the exploration of

assembly bonus effects and the process gains in group performance of tasks. Assembly

bonus effects are claimed to occur through a variety of mechanisms such as overcoming

omission/commission errors, and integration of information that results in new

information, raising awareness for new information, and elicitation and evaluation of

the information. Hirokawa (1982a) claims that the empirical evidence of the effect of

communication on group decision making and problem solving is not consistent due to

diverse research methodologies adopted in such studies.

Perspectives on group communication: Hirokawa and Salazar, 1999(1999)

outlines different perspectives on the role of communication on group decision making

performance. Three perspectives outlined by them are: (a) mediational: communication

mediates the relationship between knowledge/information resources and performance;

(b) functional: interaction plays a major role in the social interaction necessary for

effective performance; and (c) constitutive: communication is conceptualized as

developmental that allows social construction of meaning.

 26

Function of communication: Some of the functions put forward by group

communication researchers are (Poole and Hirokawa, 1996): (a) social information

processing that involves analysis and combination of information, (b) analysis of

contingencies in choice making, (c) procedural maintenance during task performance,

(d) establishment and monitoring of goals, (e) coordination and motivation of group

members, and (f) persuasion and social influence.

Measurement of communication: Communication in a task can be analyzed with

respect to the amount, content, sequence, and quality of communication (Tschan, 1995).

Measurement of communication related constructs were done in a variety of ways in the

literature. Some of the group interaction variables pertaining to communication, used in

past research, include: communication quality (Salazar, et al., 1994), communication

process (Oetzel, 2001), communication cycles (Tschan, 1995), and frequency of

communication (Hirokawa, 1982b).

Communication and software development: Studies pertaining to software

development teams have investigated communication processes in different ways. Many

of the studies surveyed software development organizations to find how communication

is related to project performance (Brodbeck, 2001; Hoegl and Gemuenden, 2001;

Hoegl, et al., 2003; Sarker, et al., 2005). Sonnentag (2000) found that in software

development teams, excellent developers are described by their co-workers to have

good communication and cooperative capabilities. Ocker, et al.(1998) studied how

various group communication technologies are helpful in gathering user requirements

 27

for systems development and found face-to-face communication in tandem with

asynchronous electronic communication to be helpful during software development.

2.3.3 Task Satisfaction

Group work is claimed to increase satisfaction of members and satisfaction has

also been used as an effectiveness criterion in groups (Campion, et al., 1993). In the

context of job satisfaction, Locke defines job satisfaction as, “a pleasurable or positive

emotional state resulting from the appraisal of one’s job or job experiences”(Locke,

1976). In a similar fashion, a member’s satisfaction with the task can be defined as the

positive emotional state resulting from the appraisal of one’s task experiences.

Some of the factors that have an impact on task satisfaction of group members

are (Shaw, et al., 2000): (a) task interdependence, (b) reward interdependence, and (c) a

members’ preferences for group work. Group member satisfaction is said to be more in

the context of cooperative work rather than in the context of competition between

members of the group (Hare, 1994).

Human beings are said to prefer working in groups due to various reasons.

These include: the need for intimacy, need for power, and the need for affiliation

(Forsyth, 1999). Social identity theory has also been used to explain the preference for

group work (Hinsz and Nickell, 2004).

Hinsz and Nickell (2004) argues that the positive attitude associated with being

a group member should be reflected in the increased satisfaction of group members

while performing a task.

 28

2.4 Software Engineering

2.4.1 Software Development

Development of software application is generally done through a sequence of

steps. The six primary phases involved in a systems development life cycle are (Blum,

1994; Guindon, 1990): (a) Requirement Analysis, (b) Design and Development, (c)

Testing, (d) Implementation, (e) Maintenance, and (e) Support.

Requirement
Analysis

ImplementationTesting Support Design and
Development

Maintenance

Figure 2.3 Systems Development Life Cycle (SDLC)

Figure 2.3 schematically represents the various phases involved in software

development. Requirement analysis is the first phase in the development of any

software application and in this phase, requirements are gathered from the end users.

The next phase is the analysis and design phase where software is designed to suit the

customers’ requirements. The design stage is followed by the development phase where

the actual software is developed. Testing of the developed software is done before it is

implemented and used. In the maintenance phase, on-going customization and

enhancements of the implemented software is done. Customer support is the last phase

in the systems development life cycle and here the end user support is given to the

users’ of the developed IS application.

2.4.2 Software Design Task Characteristics

This study considers the design and development phase in software

development. In this phase, detailed architectural design of the software application is

 29

created based on the requirements of the software application. Requirements

specification and design phases in software development consume more than half the

development cost (Walz, et al., 1993) and moreover, errors committed during this phase

are very expensive to correct (Guindon, 1990).

Problem space theory explains the complexity of design tasks. A problem space

is composed of a description of the initial state, the goal state, and a set of operators to

transform a state into another state. Appropriate operators are selected and applied

based on the knowledge of the current state and control knowledge (Newell and Simon,

1972). There are always several alternate paths available for traversing from the initial

state to the goal state. According to Simon (1973), the characteristics of ill-structured

problems are: incomplete specification of the problem, no definite way to evaluate

whether solution has been reached, knowledge from many sources to be integrated, and

no predetermined solution path.

Software design tasks are characterized by incompletely specified requirements

with no predetermined solution path. Design problems also require the integration of

knowledge from multiple domains which are at varying abstraction levels (Guindon,

1990). Hence software design tasks are classified as an ill-structured problem. A data

driven approach is recommended to solve ill-structured problems. Knowledge from

previous experience is retrieved and inferences are made based on the new requirements

(Guindon, 1990). Concepts from the problem space theory have been used to study the

difference between different design techniques and their impact on the mental workload

(Morris, et al., 1999).

 30

Various tools have been developed to carryout the design tasks. Computer

Aided Software Engineering (CASE) tools are widely used in this phase to create the

design documents. Apart from the tools, there are techniques, such as, object-oriented

analysis, that are available to formalize this process and also to produce artifacts that are

consistent with general notations such as the Unified Modeling Language (UML).

2.4.3 Design Patterns

Design patterns specify standard solutions to software development problems

(Guerraoui, 1996). These solutions represent both static and dynamic structures that

occur repeatedly in developing applications in a particular domain (Coplien and

Schmidt, 1995). Though the concept of design patterns for object-oriented programming

was highlighted earlier by Coad (1992), Gamma, et al. (1995) seminal book on design

patterns made these quite popular among the software development community. Use of

pattern oriented design techniques have now spread to the conceptual data modeling

domain (Batra, 2005).

The concept of design patterns in software engineering is derived from the

works of Christopher Alexander, who promoted the use of architectural patterns in

design of buildings. Gamma, et al. in their book describe design patterns as

“descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context”.

There are numerous design patterns available and these patterns can also be

specific to a particular domain. There are formal processes through which these patterns

are developed and acknowledged. Design patterns have four essential elements: pattern

 31

name, problem description, solution description, and the consequences of using the

pattern (Gamma, et al., 1995).

Patterns are claimed to capture engineering knowledge (Hagge and Lippe, 2005;

May and Taylor, 2003) and communicate architectural knowledge. Experts are claimed

to exercise their knowledge by finding patterns based on their experience in different

contexts, and applying these to a new context (Swap, et al., 2001). Importance of design

patterns in capturing and documenting practices and expertise of expert software

architects are highlighted in the literature (Schmidt, 1996). Researchers had even

predicted that a wealth of software design knowledge would be captured in the form of

patterns and frameworks(Guerraoui, 1996).

Some of the benefits of design patterns are they: (1) provide standard

vocabulary among developers, (2) document the design, (3) abstract the design problem

from the details, (4) create adaptable solutions (Cline, 1996), (5) increase programmer

productivity, (6) encourage the use of best practices, (7) improve communication

among developers, (8) help novices to hone their design skills (Prechelt, et al., 2002),

(9) give system’s flexibility, extensibility, or portability (Gamma, et al., 1995), and

finally (10) reduce time spent in documenting the code (Goldfedder and Rising, 1996).

Some of the difficulties in using design patterns include the difficulty to learn these

patterns, and the hard to learn classification schemes used to describe them (Cline,

1996).

 32

2.4.3.1 Empirical Research on Design Patterns:

Researchers have attempted to empirically validate the claimed benefits of

design patterns. Studies carried out in a maintenance environment by Prechelt et al.

(2002) found design patterns to improve the maintainability of programs when pattern

comment lines were used. In another study, they also found that at times the use of

design patterns made a program difficult to maintain and provided unnecessary

flexibility (Prechelt, et al., 2001). Purao, et al.(2003) developed a semi-automated

system that used a reuse-based design approach that implemented learning through

analogical reasoning. They developed and tested a design assistant system and found

that system with learning capability outperformed the ordinary approach without

learning.

2.4.3.2 Use of Design Patterns:

Using patterns requires (1) domain independent patterns to be interpreted in

order to find their applicability, (2) adjustment of the selected patterns to suit the

problem domain, and (3) integration of the selected pattern with other design elements

(Purao, et al., 2003). Knowing design patterns is not enough to use the patterns; and the

user should be able to intelligently apply it to the problem (Kerievsky, 2005).

Goldfedder and Rising (1996), in their article on design patterns training highlight the

importance of explaining design patterns in the context of users’ domain. They quote

from the authors’ personal communication with Ralph Johnson’s “… people can’t learn

patterns without trying them out. Also, people need to find them in their own problem

domain”

 33

2.4.4 Software Reuse

Use of design patterns could also be conceptualized as the reuse of an

Information System design artifact. Software reuse refers to the use of existing software

artifacts such as code, design frameworks, etc. Software reuse has been vigorously

pursued in the industry due to the resultant productivity and quality gains in using

existing software artifacts (Prieto-Diaz, 1993). Extensive research has been done on

software reuse, and there are few review articles in this field (Krueger, 1992; Mili, et

al., 1995). Tools such as Computer Aided Software Engineering and technologies such

as Object-oriented programming languages have facilitated reuse in software

development. IS research on reuse has also mirrored this with many studies proposing

and evaluating new tools that aid in the reuse of software artifacts.

Software reuse has been characterized by three stages: retrieval, adaptation, and

integration (Prieto-Diaz, 1993). Two common types of reuse have been discussed in the

literature: black box reuse and white box reuse. Black box reuse refers to the reuse of

software components without any modifications, whereas white box reuse refers to the

reuse of components after modification and adaptation (Prieto-Diaz, 1993). Sen (1997)

classified software design reuse into the demand-side and supply-side reuse.

There are many studies in software reuse and they are oriented towards

programming code/module reuse, there are few specific studies that are available on

design artifact reuse. Existing literature on reuse in software engineering has focused on

technical and organizational factors, while ignoring cognitive characteristics of

 34

individual developers (Parsons and Saunders, 2004). Some of the studies in reuse that

studied cognitive aspects include (Parsons and Saunders, 2004; Sen, 1997).

Sen (1997) studied the role of opportunism in software design reuse and

concluded that designers indeed use opportunism in software reuse. He concluded that

sequence of steps for reusing a design artifact cannot be decided a priori. Parsons and

Saunders (2004) analyzed anchoring and adjustment for design artifact reuse.

Anchoring refers to the tendency of problem solver to make final estimates closer to the

initial estimate for a solvable problem without performing adjustment. In the reuse

scenario, they contend that developers tend to use the extraneous functionality of the

reuse artifact even when it is not needed in the implementation.

Behavioral aspects in software reuse have been studied more extensively.

Rothenberger (2003) studied organizational factors that aid reuse. Some of the factors

considered in the study include: client influence, project culture, project attributes, and

developer reuse experience. Morisio (2002) studied the factors that aid in the success or

failure of software reuse. They found human factors, management’s commitment to

introduce the reuse process, and existence of commonality between applications to be

critical.

Reuse of object-oriented analysis models have also been studied in the literature

(Irwin, 2002). Reuse of such models did not have any effect on the quality of the object-

oriented analysis models. Similarity of the source and target problems did affect the

reuse of the artifacts.

 35

Use of design patterns will require adaptation of domain neutral patterns to the

target domain. Based on the knowledge of software reuse, use of design patterns can be

considered to be a white box reuse focusing on the demand-side of the reuse process.

Both cognitive and behavioral aspects influence the success of reuse of design

components.

2.4.5 Extreme Programming/Pair-Programming

Extreme Programming (XP) is one of the Agile Software Development

approaches that promise to make software development projects more successful. XP

focuses on small teams of 3 to 10 programmers and requires the participation of one or

more customers as members of the development team for providing ongoing expertise.

XP methodology has pair programming as one of its core requirements. Pair

programming involves two programmers working side by side at one computer,

collaborating on the designing, coding and testing of the software application.

The performance of pairs is expected to be of much higher quality. Pair

programming encourages each programmer to drive the other partner a little harder to

excel. There are also some anecdotal evidence to indicate that collaboration improved

both the performance and enjoyment of the whole problem solving process for the

programmers (Nosek, 1998). Past research has shown that when two programmers work

together, they work twice as fast and generate twice as many solutions to a problem as

two working alone, while achieving higher defect prevention and removal, and thus

leading to a higher quality product (Williams and Kessler, 2000). Parrish, et al.(2004)

did a study based on data from 48 programmers who worked at various levels of

 36

collaboration and found that productivity did not improve as a result of programming

concurrently. Since their data was derived from projects that did not directly utilize

pair-programming, they speculated that XP’s formalized pair-programming

environment may increase productivity.

Empirical research on pair working in software development has primarily

concentrated on the programming aspect of software development. Hitherto only one

study has been done which addresses the effectiveness of pair-designers vis-à-vis

individuals (Al-Kilidar, et al., 2005). Of the two types of tasks they studied, they found

pairs to be more effective in simple design tasks, but did not find differences between

pairs and individuals in the complex design task. One major limitation they highlighted

was the likely presence of learning effects as they used same subjects once in pair

condition and again in solo condition.

2.5 Literature Review – Implications for the Current Study

Based on the review of the literature, the following statements succinctly

capture the salient points pertinent to the current study. Figure 2.4 graphically

represents the areas that were reviewed in this study.

• Software development is a knowledge intensive process involving integration as

well as transfer of various knowledge elements.

• Codification of design knowledge through design patterns and the subsequent

transfer of it are not always easy.

 37

o Transfer of knowledge is greatly dependent on the problem solvers’

perception of similarity between the source and target problems.

o Reuse of design artifacts which can be conceptualized as a transfer

involves both cognitive as well as behavioral issues.

• Knowledge Transfer

o Types of knowledge

o Different knowledge transfer processes

• Pairs working together in software design and development tasks are becoming

increasingly popular.

o Pairs are not always better than the best individual in problem solving

tasks.

o Systems design is an intellective problem solving task.

o Groups share common knowledge the most and sharing of unique

knowledge is hampered by various group dynamics.

o Social cognition literature highlights the benefits of group interaction

and its impact on cognitive processes.

o Group processes play a major role in the effective functioning of groups.

 38

Knowledge Transfer Group
• Knowledge types • Efficacy
• Individual vs. groups • Communication
• KM systems • Task satisfaction

Knowledge transfer in
software development

Software Engineering Individuals vs. Groups
• SDLC • Performance
• Design Patterns • Information sharing
• Software Reuse • Social cognition
• Pair-programming

Figure 2.4 Summary of research streams reviewed

Based on review of literature, the next chapter develops the various hypotheses

that are planned to be analyzed in this study.

 39

CHAPTER 3

RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT

This study investigates the effect of collaborating pairs on the performance of

design tasks. It also analyses the role of design patterns, a codified form of knowledge,

in task performance. To this end, hypotheses were developed based on the past

literature.

This chapter presents the hypotheses that were proposed in this study in the

following fashion. The first part of this chapter presents the hypotheses pertaining to the

individual and collaborating pair comparison in terms of solution quality, time taken,

subjective mental workload and overall task satisfaction. The subsequent part of this

chapter presents the hypotheses pertaining to the individual condition. The last part of

this chapter presents hypotheses that are applicable to the collaborating pair condition.

The primary research questions addressed by this study are:

1. Are there any differences in the design task performance outcomes

between an individual working alone and a collaborating pair working

together?

2. Are there any differences in the design task performance outcomes based

on the availability of codified knowledge?

 40

3. Are there any differences in the time taken to solve the design problems

between individuals and the collaborating pairs?

4. Are there any differences in the overall task satisfaction between an

individuals working alone and a collaborating pairs working together?

Apart from addressing these primary research questions, this study also

examines the role of design self-efficacy and communication on task performance.

3.1 Pairs versus Individuals

Research in the comparison of group and individual performance has been

enduring with Shaw’s work appearing in the early 1930s. Since then, numerous studies

have appeared in this area. According to Hill (1982), in the past, research on group

versus individual performance comparisons was done in four different ways: (a) group

versus individual direct comparison, (b) group versus the most competent member of a

statistical aggregate, (c) group versus statistically pooled responses, and (d) group

versus math models.

Individual/Pair

With design
patterns/without
design patterns

Outcome
Quality of solution
Subjective Mental

Work Load
Time Taken
Task satisfaction

H1a, H1b, H2, H2b,
H5

H3, H4

Figure 3.1 Research model

 41

3.1.1 Pairs and Nominal Pairs – Solution Quality

In the group versus individual direct comparison, collaborating groups perform

better than independent individuals on a wide range of tasks (Laughlin, et al., 2006).

These tasks varied from learning/concept attainment, concept mastery/creativity, and

abstract/complex problem solving (Hill, 1982). Here the comparison is done between an

equal number of collaborating groups and individuals, for example, 20 multiple member

groups with 20 individuals.

Shaw (1932) found groups to be superior to individuals in solving complex

problems. Subsequently, Marquart (1955) performed similar experiments, but this time

she utilized statistical aggregates obtained by combining individual performances and

co-acting groups. Marquart’s comparison of groups versus statistical aggregates showed

no statistical differences in the performance of groups vs. individuals. The discrepant

findings were explained by the increased probability of the presence of a competent

individual in the groups who could solve the problem. Hence groups benefited from the

aggregation of members which increases the probability of having a competent

individual to solve the problem (Hill, 1982).

Groups can also be compared to the most competent member of a statistical

aggregate. According to Laughlin et al. (2006), a more stringent way to test groups

versus individual performance would be comparing ‘n’ groups of size ‘m’ with

equivalent number of ‘n x m’ individuals. This type of comparison can use nominal

groups and allow us to compare groups with 1st best, 2nd best, and so on.

 42

Superior performance of groups relative to individuals is dependent on the

characteristics of the task, group processes, group size, and time availability. According

to Davis and Harless (1996), the sensitivity of relative group performance to task type

and conditions makes it important to continue research in group performance in order to

understand social processing of information.

Task characteristics: Characteristics of the task play a major role in the apparent

discrepancies between group and individual performance. In complex problems, groups

performed better than the average individuals due to the pooling of information and the

correction of errors by each other which results in assembly bonus effects (Hill, 1982).

In simple tasks, the superiority of groups was primarily attributed to the groups’

increased probability of getting a competent person.

Tasks can be classified using various typologies (McGrath, 1984; Steiner,

1972). One of Steiner’s classifications of tasks is conjunctive and disjunctive tasks. In

disjunctive tasks, a single competent person in the group can lead the group to a correct

solution whereas in a conjunctive task, the whole group should perform the task and

know the correct answer to solve the problem. Working in pairs has an advantage over,

individuals because there is an increased chance that one member of the pair will have

the correct solution (Steiner, 1972). Brodbeck and Greitemeyer (2000), in their dynamic

model of group performance, highlight that group members working collaboratively

learn to correct each others’ error.

Laughlin and Ellis (1986) classifies tasks into a continuum that ranges from

intellective to judgmental. An intellective task is a problem solving task that has a

 43

correct solution and high result demonstrability. A judgmental task on the other hand is

an evaluative task that does not have a demonstrably correct solution.

According to Laughlin, et al. (2002), groups perform at the level of the best

individual (independent or best group member) on highly demonstrable problems.

Groups perform at the level of the second-best individual (independent or best group

member) on less demonstrable vocabulary and analogy problems.

Superiority of groups in problem solving tasks is not consistently found in the

literature. Small groups, typically do a better job of solving unitary, optimizing tasks,

such as solving a mathematical problem, than the average of individuals in nominal

groups of comparable size. Groups however suffer in performance relative to the best-

performing member of nominal groups (Davis and Harless, 1996).

Group Processes: Group processes also determine the performances of groups in

comparison to individuals working alone. For instance, in groups performing

brainstorming, the performance of real groups suffers in comparison to statisticized

groups in both quantity and quality of ideas generated (Diehl and Stroebe, 1987). The

possible reasons attributed to this include: production blocking, evaluation

apprehension, and free riding.

Groups resolve disagreement among their members in proposing a collective

response through various social combination processes. Laughlin, et al. (1991) in their

experiments found groups to perform at the level of the second best individual for

recognizing the correct hypotheses (truth), and the level of best individuals for

nonplausible hypotheses (rejection of error).

 44

Group size: Size of the group also was found to be factor in comparing the

performance of groups versus individuals on problem solving tasks. Laughlin, et

al.(2006) found that groups with at least 3 members are needed to achieve superior

group performance compared to the best individual performance on highly intellective

problems. They also found groups’ performance to improve significantly from two

member to three member groups, and the improvements to decline as the group size

increased from 3 to 4, and 4 to 5.

Available Time: Time that is available to perform a task is also found to

influence group performance. Laughlin, et al. (1991) found that groups performed at the

level of best individuals when the time allowed was more for information rich rule

induction problems.

Software design problems are called as wicked problems (Poppendieck, 2002).

Software design problems usually have multiple correct solutions. For example, there

may be many alternate feasible solutions for a given problem. Because of this a design

task cannot be called as a purely intellective task with a single solution. Groups have

been found to perform better in intellective task. The size of groups used in this study is

two and according to Laughlin (2006), group size of at least three is needed for the

group to perform better than the best individual. Moreover, the time allowed is the same

for the subjects in the individual as well as in the pair condition. Groups are found to

perform better than the best individual when the available time is more. Based on the

above arguments the following hypotheses were developed.

 45

H1a: Performance in terms of solution quality of the best individual in a nominal

pair will be better than the collaborating pair’s performance.

H1b: Performance in terms of solution quality of collaborating pairs will be

better than the second best individual in nominal pairs.

3.1.2 Pairs and Nominal Pairs – Time Taken

This study uses time taken to solve the problem as one of the measures of

performance. In the past research on pair programming, Nosek (1998) found that

individuals took more time than a collaborating pair in a programming task, but they

were not statistically different from each other. Pairs were found to take less time to

complete tasks than individuals. However, since two people were involved, their total

time for a task in terms of man-hours was more. This has often been highlighted in the

literature on pair-programming (Williams, et al., 2000; Williams and Kessler, 2000).

However, small group literature indicates that groups take longer to solve

problems that are not amenable to division of labor (Hare, 1976). Software design tasks

are inherently indivisible hence division of labor is not possible. Some of the reasons

attributed for the longer time taken by groups are: the time involved in error-checking

(Hare, 1976), the time involved in communication (Hill, 1982), the time required to

become familiar with each other (Hill, 1982), low motivation, and personality conflict

(Hare, 1976).

 Based on the above arguments, the following hypothesis is arrived at.

H2: Collaborating pairs will take longer time to complete the design task than

the nominal pairs.

 46

3.2 Impact of Codified Knowledge on Task Performance

Development of software application is a knowledge intensive endeavor.

Knowledge of the software application domain, programming languages, tools and

technologies are needed to be integrated during the development of a software

application. Knowledge that is gained through past experience in software development

has to be transferred and applied to the new problem situation. Research on knowledge

management calls this as transfer of knowledge. Markus (2001) claims that the reuse of

knowledge is clearly related to organizational effectiveness.

3.2.1 Availability of Codified Knowledge and Solution Quality

Software developers reuse designs that have worked well in the past and their

repertoire of design experience grows with their personal experience (Beck, et al.,

1996). Design patterns formalize the reuse of past design experience by explicitly

codifying past design knowledge and making it available to both experts and novice

designers. Various benefits of design patterns are given in the literature. These include:

increase in programmer productivity, creation of adaptable solutions, use of best

practices, and development of flexible and extensible systems.

In the knowledge management literature, knowledge transfer is said to occur

through various mechanisms such as internalization and socialization (Nonaka, 1994).

In socialization, individuals share their experience with others. In internalization,

individuals apply explicit knowledge and transform it to tacit knowledge. In the pair

condition, socialization is present and in pairs with design patterns conditions both

socialization and internalization are present. Hence, pattern condition provides an

 47

additional source of knowledge which the subjects can utilize through the process of

internalization.

Distributed cognitive systems literature informs us that the cognitive properties

of such a system are influenced by structures within the individual as well as the

artifacts outside the individuals (Flor and Hutchins, 1991). In distributed cognition

parlance, artifacts such as design patterns can be equated to ‘external structured

representational media’. Hutchins (1995) argues that the use of such artifacts in groups

can transform a seemingly complex task into a simple perceptual task.

Problem solving involves the application of declarative knowledge which is

used to move from the initial representation of the problem to appropriate goal state by

applying correct operators. There are four general ways of enhancing the search for

correct operators during human problem solving (Newell and Simon, 1972): (a)

applying algorithms, (b) applying heuristics, (c) following creative techniques, and (d)

increasing the availability of declarative knowledge. Batra (2005) argues that during

problem solving, the presence of patterns enhances the search for correct operators by

employing heuristics, and stimulates existing operators in new ways. Guindon (1990),

argues that the cognitive processes involved in software design calls for the recognition

of partial solutions at various abstraction levels that were based on previous experience.

Design patterns provide partial solutions to the design problem at hand and this should

benefit the system designers.

According to Laughlin and Ellis (1986), intellective task is a problem solving

task that has a correct solution and demonstrability of result is high. Conditions for

 48

result demonstrability are (Laughlin and Ellis, 1986): (1) Group consensus on the

problem solving system, i.e. vocabulary, syntax, terms, axioms, and relationships; (2)

sufficient information within the system; (3) group members should have sufficient

knowledge of the system to recognize and accept the solution proposed by another

member; and (4) enough motivation should be there for the member who knows the

correct solution to demonstrate that solution to others.

The availability of patterns helps in improving the result demonstrability. First

of all, patterns give a shared vocabulary to the problem solving group members

(Freeman, et al., 2004) that creates group consensus on the problem solving system.

Second of all, presence of patterns increases the availability of information within the

problem solving system. Moreover, groups with the design pattern knowledge can infer

an appropriate solution based on the available design patterns and hence increase the

result demonstrability of the solution.

Research in group information sharing highlights that when the result

demonstrability of the solution increases, two things happen: groups are likely to

discuss more extensively, and share unique or unshared information (Stasser and

Stewart, 1992).

There are very few studies that have empirically analyzed the role of design

patterns on the quality of design solutions. Prechelt et al. (2002) carried out an

experiment and found pattern comment lines to help in the maintainability of programs

in a maintenance environment. In a separate study they also found that, at times, the use

of design patterns made a program difficult to maintain and resulted in unnecessary

 49

flexibility of systems (Prechelt, et al., 2001). There is a dearth of studies that explicitly

study the role of design patterns on solution quality.

Some of the benefits of design patterns are they: (1) create adaptable solutions

(Cline, 1996), (2) increase programmer productivity, (3) improve communication

among developers, and (4) help novices to hone their design skills (Prechelt, et al.,

2002),. Based on the claimed benefits of design patterns, this study argues that

availability of codified knowledge in the form of design patterns will improve the

solution quality of design problems.

H3: Performance in terms of solution quality will be higher in the design pattern

condition than in the condition without design pattern.

3.3 Mental Work Load

Concepts from the human problem solving domain are widely used in analysis,

design, and programming aspects of software application development. Availability of

design patterns during the course of solving design problems can also be studied with

the perspective of human problem solving pertaining to changes in the cognitive

processing requirements. Cognitive processing requirements for a task are based on the

degree to which the problem representation is cognitively easy to access, modify, and

integrate within the new problem (Morris, et al., 1999). Human beings are considered as

information processors and the same concept is applied to groups as well (Hinsz, et al.,

1997).

Codified knowledge helps in formulating solutions that require minimal

cognitive strain. Gibson (2001) highlights how a recalled script leads to a behavior with
 50

minimal cognitive strain, due to the prior knowledge and feedback substituting for an

explicit and detailed analysis of a complex task.

In the context of human problem solving, pattern recognition reduces the effort

of processing facts individually and speeds up understanding or the generalization of

insight (Reeves, 1996). Research on distributed cognition, and stimulating structures

inform us that the external artifacts such as the design patterns in this case will reduce

the cognitive load of the problem solver (Hayne, et al., 2003; Hutchins, 1995). Guindon

(1990) argues that the resolution of ill-structured problems involves the use of a data

driven approach that requires little cognitive cost as opposed to goal-directed behavior.

A data-driven approach relies more on past experience. Availability of design patterns

should help developers utilize more of a data-driven approach to solve the problem as

compared to a goal-directed approach.

H4: Subjective mental work load will be lower in the design pattern condition

than in the condition without design pattern.

3.4 Task Satisfaction

Shaw argues that higher task interdependence will lead to higher task

satisfaction (Shaw, et al., 2000). Software design task done jointly by the collaborating

pairs would be a highly interdependent task and this should lead to better task

satisfaction.

Hinsz and Nickell (2004), in their study, found that groups are more satisfied

than individuals in the performance of goal setting tasks even though the performance

levels were not statistically different between the groups and individuals. In

 51

brainstorming tasks, collaborating groups are found to be more satisfied than

individuals even though the quantity and quality of ideas were inferior to individuals

(Nijstad, et al., 2006).

Past research in pair-programming, has also shown that pairs working on

programming tasks exhibited higher task satisfaction than individuals (Cockburn and

Williams, 2001; Nosek, 1998).

Based on the argument above the following hypothesis was arrived at.

H5: Task satisfaction will be higher in the pair condition than in the individual

condition.

3.5 Proposed Model – Individual Condition

Two separate models for design task performance are proposed to explain the

differences in the performances of individuals and pairs.

3.5.1Patterns and Design Self-efficacy

This study argues that availability of patterns, an additional resource which

captures the experience of seasoned software developers, will help in the increase of a

person’s perceived self-efficacy. Patterns are claimed to provide proven solutions to

recurring design problems. These patterns provide codified form of knowledge to the

developers.

Self-efficacy beliefs are formed based on the knowledge/abilities of the

individuals. The individuals, in the pattern condition will have both tacit knowledge and

the codified knowledge. Tacit knowledge comes from their experience in the field and

the codified knowledge is provided by the design patterns.

 52

According to Gist and Mitchell (1992), individuals use both internal and

external cues to form self-efficacy beliefs. Some of the highlighted external cues are the

availability of resources to perform a task, task complexity, and interdependence of the

task with others. Moreover, if the situation in which the task is performed is new then

detailed assessment of self-efficacy will be done by the individuals (Gist and Mitchell,

1992). Because of this, individuals in the pattern condition could consider the

availability of patterns while formulating their efficacy beliefs.

This study utilized design self-efficacy, which is a domain specific construct

that pertains to the performance of software engineering design. Researchers have

indicated the need for the domain specific self-efficacy constructs that provide more

robust results than general measures of self-efficacy (Salanova, et al., 2003)

Hi1: Individuals in the pattern condition will exhibit significantly higher design

self-efficacy than individuals in the no pattern condition.

Design Self
Efficacy

Pattern / No pattern Performance

Hi1

Hi2

Figure 3.2 Individual condition mediator model

3.5.2 Mediating Role of Self-efficacy

Perception about efficacy has always been related to the improvements in the

task performance. Individuals with high self-efficacy are willing to exert more effort

and they are more persistent in overcoming obstacles while solving problems (Bandura,

 53

1986) and consequently results in better task performance. They are also more willing

to work toward a difficult goal.

Numerous studies have analyzed the relationship between self-efficacy and task

performance. For example, meta-analytic studies have quantitatively analyzed this

relationship under various settings (Judge and Bono, 2001; Stajkovic and Luthans,

1998). Both task specific self-efficacy and generalized self-efficacy are found to impact

task performance. Stajkovic and Luthans (1998) found self-efficacy to be a strong

predictor of task performance under varying task complexities. They also found this

relationship to be strongest under a low task complexity condition.

Many times, self-efficacy was claimed to have mediated the relationship

between task knowledge, experience, and task performance. Bandura (1986)

conceptualized self-efficacy to be the mediator between knowledge and task

performance. Self-efficacy explains how individuals make judgments about their

capabilities and how their self-percepts of efficacy affect their motivation and behavior.

Based on these arguments, the following hypothesis was formulated.

Hi2: Perceptions of design self-efficacy will mediate the positive relationship

between pattern availability and design task performance.

 54

3.6 Proposed Model - Pair-condition

Collective
Design Efficacy

Pattern / No pattern Performance

3.6.1 Patterns and Collective efficacy

Antecedents in the formation of collective efficacy are also claimed to be

similar to the ones in the formation of self-efficacy beliefs. Taggar and Seijts (2003)

outlined how the formation of collective efficacy beliefs utilize the availability of

additional resources. Individuals, in the pattern condition have additional resource in the

form of codified knowledge. Availability of expert knowledge in the form of design

patterns could significantly increase the efficacy beliefs of individuals. Arguments that

were put forward in an earlier section on design patterns and self-efficacy also hold

good for the relationship between the availability of design patterns and collective

efficacy.

Hp1: Pairs in the pattern condition will exhibit significantly higher collective

efficacy than pairs in the no pattern condition.

Communication

Hi1

Hi2

Hp3

Hp4

Figure 3.3 Pair condition mediator model

 55

3.6.2 Mediating Role of Design Collective Efficacy

Like self-efficacy, which has been found to impact task performance, collective

efficacy has also been found to be a predictor of task performance. When the members

feel more confident about their work in a certain domain, they will be more motivated

to work and persist in the face of difficulties (Zaccaro, et al., 1995). Collective efficacy

has been found to positively influence group performance in variety of settings (Gully,

et al., 2002; Pescosolido, 2001).

Gully, et al.(2002) performed a meta-analysis on the studies in collective

efficacy, team potency and team performance. Their findings suggest that both

collective efficacy and team potency were strongly related to team performance. They

also found that collective efficacy is task specific, whereas team potency is task general,

and the results mirrored this distinction.

Hp2: Perceptions of design collective efficacy will mediate the positive

relationship between pattern availability and design task performance.

3.6.3 Patterns and Communication

Availability of design patterns can help the group to focus on what needs to be

communicated during group problem solving. The role of referents which affect

communication in performing a task has been studied in the literature. Although the

“referential communication task” is done in a controlled setting, the referents simulate

the process of reference that occurs in natural settings (Krauss and Fussell, 1990).

Referential communication restrains the participants from straying away from the

topical domain that is defined by the task. Hence, design patterns can be argued to

 56

improve communication effectiveness by orienting the subjects to solve design

problems while utilizing the design patterns.

One of the serious problems in the effectiveness of interpersonal communication

is differences in the meaning of words attributed by the participants (Phillips, 1966).

Patterns provide a standard shared vocabulary for the designers (Cline, 1996; Freeman,

et al., 2004). Shared vocabulary must help in reducing the ambiguity in communication.

Rising (1999) states that the expertise captured by design patterns, with a well defined

vocabulary of pattern names and standard solutions, help improve communication

during software development. Schmidt, et al. (1996) notes that software projects often

fail because of the inability of developers to communicate good designs. Design pattern

descriptions communicate designs by articulating the structure and behavior of

solutions.

Based on the above arguments, the following hypothesis is presented.

Hp3: Pairs in the pattern condition will exhibit significantly higher

communication quality than pairs in the no pattern condition.

3.6.4 Mediating Role of Communication

Researchers have divergent views on the role of communication on task

performance. Assembly bonus effects, as outlined, are present when there is effective

communication (Propp, 2003). Many of the group effectiveness models explicitly linked

communication, coordination, and cooperation in relation to group performance; a

compilation of such models can be found in Yeatts and Hyten (1998). Various

theoretical perspectives in communication research: mediational, functional, and

 57

constitutive approach links communication to task performance through one mechanism

or another.

Transfer of tacit knowledge between individuals is claimed to occur through the

process of socialization (Nonaka, 1994). Proper communication between the pairs will

greatly help in mutual sharing of knowledge thereby creating a socializing environment.

This study argues that the communication quality is a mediator between design pattern

availability and task performance.

Hp4: Perceptions of communication quality will mediate the positive

relationship between pattern availability and design task performance.

The next chapter presents the research method adopted to test the various

hypotheses outlined in this study.

 58

CHAPTER 4

RESEARCH METHODOLOGY

This study utilized a laboratory experiment with practitioners as subjects to test

the various hypotheses formulated in the previous chapter. Laboratory experiments

provide sufficient control to study the real effects of the variables under consideration.

Using practitioners as subjects provided realism to the study and improved the

generalizability of the outcomes.

 This study utilized a completely randomized design with two treatments having

two levels:

(a) Individual/collaborating pair condition

(b) With design patterns/without design patterns.

Subjects belonging to all four treatments worked on two design problems. The

first one was the warm-up task, and the second one was the main design task. The

following variables were measured and studied.

Dependent variables: Quality of the solution, time taken, subjective mental work

load, and task satisfaction.

Mediating variables: Design self-efficacy/collective efficacy, and

communication quality.

 59

Demographics, as well as, potential covariates such as gender, years of software

development experience, and experience in object-oriented programming and design

were collected and utilized in the data analysis.

4.1 Subjects

The target participants for this study were software development professionals

who had not used design patterns in their workplace and were willing to volunteer time

for the study. As an incentive, participants in the study were offered a free seminar on

Object-oriented design with design patterns offered by Dr. Nerur, an experienced IS

faculty member. Flyers were distributed to members of various organizations in the

Dallas/Fort Worth Metroplex. A copy of the flyer is attached as Appendix A. Interested

participants were asked to register at a website. A total of 177 volunteers registered and

expressed their willingness to participate in the study. E-mails were sent to the

registrants with the dates and times of the experimental and seminar sessions.

Since the study involved human subjects, appropriate approval was obtained

from the University’s Office of Research Compliance.

4.2 Experimental Setting

Experiments were conducted in the university’s behavioral lab. This lab has 9

closed cubicles. Each cubicle has a table with seating for two. Experimental subjects

were provided with scratch papers, and pencils for carrying out the problem solving

task. Stop clocks were also placed in each cubicle during the experimental session.

They served two purposes: to measure the time taken for task completion and to keep

the subjects informed of their progress. All subjects were provided with a glossary of

 60

Unified Modeling Language class diagramming notations that they could use in their

solution (see appendix H). Subjects were also briefed on these notations. Subjects drew

the class UML diagrams on sheet of paper. Subjects in the pair condition were asked to

work collaboratively and arrive at a single solution that is agreeable to both the

individuals in the pair. Subjects were also presented with the inform consent for their

participation (see appendix B). All the four treatment conditions had their own task

instructions and these instructions are presented in appendix D.

4.3 Planned Sample Size

The planned sample size for each of the four experimental conditions was 24.

This study utilized hypothesis with nominal groups which called for equal number of

subjects in the individual and the pair condition. Each of the pair condition had 24

subjects resulting in 12 collaborating pairs. In the two individual conditions, there were

24 subjects each, yielding 12 nominal pairs for the statistical analysis. The total sample

size for the experiment was expected to be 96. Eight experimental sessions, spread over

a three-month period, were planned and conducted. The maximum participation in an

experimental session was 18 subjects.

4.4 Research Design

Subjects were randomly assigned to various treatment conditions. From the pool

of potential participants, e-mails were sent to select individuals asking for their

participation in a particular day’s session. If the participants confirm their participation,

subsequent e-mails were sent with detailed instruction about the time and the venue for

the experimental sessions. Two experimental sessions were held on the same day. The

 61

first experimental session did not provide the design patterns and the second

experimental session had the pattern condition. After the subjects arrived for a

particular experimental session, they were randomly assigned to the individual or to the

collaborating pair condition.

In the pattern condition, four patterns were provided to the participants in the

form of design documents and these patterns were useful in solving the warm-up and

the main design tasks.

With patterns Without patterns

Individual Condition I Condition II

Pair Condition III Condition IV

Figure 4.1 Research design – treatment conditions

4.5 Experimental Task

There were two experimental tasks that the subjects performed. Both tasks

required the creation of Unified Modeling Language (UML) class diagrams for the

problems. These tasks consisted of a warm-up and a main experimental task. The warm-

up task lasted 20 minutes and the experimental task had duration of 80 minutes to

complete. The warm-up task was based on the problem statement outlined in Freeman,

et al.(2004). The main design task was based on the problem statement found in Richter

(2004). Appendix E has both the problem statements. Subjects in the pattern condition

 62

were provided with documentation for the necessary design patterns. Appendix I shows

the materials on design patterns given to the subjects in the design patterns condition.

Subjects were asked to complete the questionnaire on efficacy beliefs before

they started working on the design task. Measurements of the remaining variables were

done after the completion of the task. The whole experimental session lasted for

approximately two hours.

4.6 Pilot Test

A walk through and a pilot test were done to fine-tune the experimental

procedures before the start of the actual experimental sessions. The walk through tested

the manipulations and experimental materials in all treatment conditions. The purpose

of the walkthrough was to assess all aspects of the experiment such as the task

instructions, the effectiveness of manipulations, and appropriateness of the tasks.

A pilot test of the experiment was conducted prior to the main experimental

sessions. For the pilot test, eleven students from the Advanced Analysis and Design

course, and 4 from local software development organizations participated. A total of 15

subjects participated in the pilot study. All the treatment conditions had at least two

subjects. Based on the feedback, as well as the observation of the experimenter, the

required changes were made in the scripts as well as other materials used for the

experiment. Some of the items were changed based on the insights gained from the pilot

study. The time required to perform the task was also found to be adequate. On an

average, 49.31 minutes were used by the subjects to finish the task.

 63

4.7 Manipulation Checks

Two primary manipulations were done in this experiment. These pertain to the

availability of design patterns and the mode of task performance. A manipulation check

was done to ensure that the pattern condition group utilized patterns in solving the

design problems. Before the task was performed the experimenter asked the subjects in

the pattern condition to utilize the patterns. After the completion of the experimental

task, subjects in the pattern condition were asked to describe in writing the steps they

followed in solving the problem and the design patterns they used.

Subjects were randomly assigned either to the individual condition or to the

collaborating pair condition. In the collaborating pair condition, subjects were asked to

come-up with a single solution that was agreeable to both the participants. Moreover,

after the completion of the task, subjects were asked about their collaborators level of

contribution in the task performance.

4.8 Measurement of Variables

All variables, with the exception of solution quality and time, were measured

using scales developed in the extant literature. Table 4.1 summarizes these scales. Task

performance was operationalized using two measures: (1) quality of solution, and (2)

time taken

4.8.1 Solution Quality

Past literature highlights the difficulty in measuring the quality of conceptual

solutions. Rehder, et al.(1997) outlined an unbiased way to compare software designs

that were produced using divergent languages, and methodologies. Their method

 64

basically decomposed a design into a large number of atomic design “features” that are

not biased towards one language, paradigm, or methodology. Their scoring system also

allowed design alternatives and optional features.

The solution of an expert designer was utilized to decompose the problem into

atomic design features. Purao, et al.(2003) utilized a coding scheme that took note of

Type I – omission error and Type II – commission error. Completeness of the solution

is captured by omission errors and correctness of the solution is captured by

commission errors. Solutions developed by subjects were evaluated based on these

guidelines. Appendix G presents the scoring scheme used to grade these solutions. The

quality of solution was be evaluated by two Ph.D. students who were blind to various

hypotheses in the study.

4.8.2 Completion Time

In the past, empirical studies involving design patterns used time taken to

complete a design task as a dependent variable (Prechelt, et al., 2001). In line with this,

the time taken to solve the main design task was used as one of the dependent variables.

Stop clocks were used to measure time.

4.8.3 Design Self-efficacy

The scale for design self-efficacy was developed based on the existing self-

efficacy measures. Bandura (1986) states that the time elapsed between the assessments

of self-efficacy and action is an important factor in affecting the degree of relationship.

In light of this, design self-efficacy was measured before the subjects worked on the

design task. There are diverse ways of measuring the self-efficacy of an individual. Past

 65

literature indicates five distinct ways to measure this construct (Lee and Bobko, 1994).

Measurement scale used in this study for design self-efficacy was formulated based on

the self-efficacy scales that have been used in the past (Jones, 1986; Kankanhalli, et al.,

2005). In total six items were formulated and a seven point likert scale was used to

measure this construct.

4.8.4 Design Collective-efficacy

Collective efficacy differs from group efficacy in terms of the way it is

measured. Collective efficacy is aggregation of individual members’ belief about

group’s efficacy whereas group efficacy is consensus about a group’s efficacy (Mulvey

and Klein, 1998). Three different ways of measuring collective efficacy has been

highlighted in the literature. The first method utilizes the aggregation of perceptions of

individual self-efficacies, the second method uses the average individual perceptions of

group efficacy, and the third method involves the generation of a single consensual

measure of group efficacy (Katz-Navon and Erez, 2005).

Whiteoak (2004) found that the three methods of measuring group efficacy

highlighted earlier did not differ in terms of their consistency, the magnitude of their

relationship with goals or the degree to which they were affected by performance for the

kind of task they studied.

This study adopted the method of aggregating individual self-efficacies in

arriving at the pair’s collective efficacy. However, there are concerns in this way of

measuring the efficacy beliefs (Katz-Navon and Erez, 2005) due to the varying levels of

analysis with one being at the individual level and the other being at the group level. In

 66

measuring the individual self-efficacy beliefs and aggregating the scores, Bandura notes

that it is not possible to fully disentangle individual beliefs from the group context as

the individual will use group referent implicitly while forming the collective efficacy

beliefs.

4.8.5 Communication

Communication has been measured in many ways in the literature. In some of

the studies, entire communication, in the group, was transcribed and coded using

various coding schemes such as Bales, Interaction Process Analysis, and Hirokawa’s

functional coding scheme. Observers were also used in the past to code while the group

was performing the task. Based on the code, communication patterns were analyzed and

it was related to group decision making/problem solving effectiveness. Researchers also

used network analysis to study the communication patterns in the software development

teams (Brodbeck, 2001). Perceptual measures for measuring various communication

constructs have also been attempted to. Most of such studies have used survey

methodology to measure these constructs using well validated scales.

Hoegl and Gemuenden (2001) analyzed software development teams and

measured quality of communication on these dimensions: frequency, formalization,

structure, and openness of information exchange. Of these two of the dimensions were

used in this study to measure communication between the partners in a collaborating

pair. Formalization and structure dimensions of communication quality were not

measured in this study as it pertained to teams of larger size. Six items were used to

measure this construct.

 67

4.8.6 Subjective Mental Work Load (SMWL)

System analysis tasks are equated to an ill-structured problem solving exercise

(Agarwal, et al., 1996). Past research in system analysis have tried to capture the

cognitive processes of the analysts through process tracing techniques such as protocol

analysis (Sen, 1997). Instead of relying on verbalization techniques, (Morris, et al.,

1999) used NASA’s Subjective Mental Workload questionnaire to asses the subject’s

mental work load during object-oriented and structured system analysis task. According

to Hart and Staveland (1988), mental workload emerges from the interaction between

requirements of a task, the circumstances under which it is performed, and the skills,

behaviors, and perceptions of the operator.

Past research has measured subjective mental workload with NASA’s Task

Load Index (NASA-TLX)(Morris, et al., 1999; Speier and Morris, 2003). In the

NASA’s TLX, SMW consists of seven dimensions: mental demand, physical demand,

temporal demand, performance, effort, and frustration level. This study adapted

NASA’s TLX instrument by eliminating physical demand in order to suit the study

conditions. In total five dimensions of mental workload were measured in this study.

4.8.7 Overall Task Satisfaction

Overall task satisfaction represents the affective response of the individual to

the overall task performance. The scale for overall task satisfaction was based on the

existing task satisfaction measures in the literature (Balijepally, 2005).

 68

Table 4.1 Scales for the Constructs

Construct Number

of items
Source

Design-self efficacy 6 Adapted from self-efficacy scales of Jones
(1986) and Kankanhalli, et al.(2005)

Communication 6 Adapted from communication measure of
(Hoegl and Gemuenden, 2001)

Subjective mental workload 15 Adapted NASA TLX instrument (Morris,
et al., 1999)

Task satisfaction 4 Balijepally (2005)

4.9 Debriefing

Debriefing of the subjects in all the four treatment conditions were done.

Subjects were informed of the research objective and were asked not to reveal details

about the experiment to their friends and colleagues who were planning to participate.

Subjects were also given an opportunity to get clarification on any aspect of the study.

Appendix C presents the debriefing form used to debrief the subjects.

4.10 Statistical Analysis

Multiple statistical procedures were planned to be utilized to test the various

hypotheses presented in the study. Before the actual hypotheses testing, preliminary

analysis of the data was done using procedures such as factor analysis, and reliability

analysis. Suitable assumption checks as well as the manipulation checks were also

carried out.

Testing hypothesis H1a, H1b, H2, and H3 require the use of nominal pairs. The

dependent measures utilized in these hypotheses: quality of solution, and time taken

 69

were measured at the group level for the collaborating pairs. Nominal pairs were be

created by randomly assigning individuals to nominal pairs. In total 24 nominal pairs

were planned to be made. Nominal pair design allows us to identify first best in the

nominal pair and 2nd best in the nominal pair. Hence two-way Analysis of Variance

(ANOVA) with one factor being mode of participation with three levels (collaborating

pairs, 1st best individual in the nominal pair, and 2nd best individual in the nominal

pair) with second factor being the availability of design patterns was used to analyze the

solution quality of subjects. Subject’s experience in object-oriented programming

language was used as a covariate in this analysis.

Hypothesis H4 and H5 utilizes dependent measures, subjective mental work load

and solution quality that were measured individually in the pair condition. Hence two-

way ANOVA procedure will be utilized. The first factor, the mode of participation had

two levels: individual and collaborating pair. The second factor, availability of codified

knowledge had two levels: with design patterns and without design patterns.

Analysis pertaining to potential mediator hypotheses were done using the

general procedures outlined by Baron and Kenny (1986). According to Baron and

Kenny (1986), to test the presence of mediators, three separate regression analysis are

needed. The three regression equations are: a) regression of mediator on the

independent variable, b) regression of the dependent variable on the independent

variable, and c) regression of dependent variable on both the independent variable and

on the mediator.

 70

This study used categorical independent variable. Regression analysis with

indicator variable for the availability of patterns could be performed to test the

mediators.

(1) Simple regression analysis with availability of pattern as an independent

variable design self-efficacy as the dependent variable.

(2) Simple regression analysis with availability of pattern as an independent

variable and quality of solution as the dependent variable.

(3) Multiple regression analysis with availability of pattern and design self-

efficacy as the independent variables and quality of solution as the dependent variable.

 For the pair condition, two mediators were proposed in this study. These

variables are collective design efficacy and communication quality. Mediator analysis

very similar to one that was carried out for the individual condition was utilized for the

pair condition also. Next chapter presents the hypotheses tests that were carried out.

 71

CHAPTER 5

RESEARCH RESULTS

This chapter presents the results of preliminary analyses of the data, hypotheses

testing and manipulation checks in the experimental conditions.

5.1 Preliminary Analyses

Preliminary analyses of the data were carried out before proceeding to the actual

hypotheses testing. Analyses of the sample characteristics, and validity and reliability of

the dependent measures were done. Tests for various assumptions of the statistical

techniques used for the hypotheses testing were also done.

5.1.1 Sample Characteristics

In total 100 subjects participated in the experiments conducted over a period of

eight experimental sessions. Data from 4 subjects were dropped and this balanced the

design.

Reasons for dropping 4 subject’s data are: (1) Subject deciding to leave early:

one subject in individual – pattern condition, (2) Subject not completing the dependent

measures questionnaire: one subject in individual – no pattern condition and a pair of

subjects in the pattern condition. After dropping these 4 subjects, the usable sample size

became 96. Figure 5.1 describes various experimental conditions with the related

sample sizes. Table 5.1 presents the demographics characteristics of the subjects.

 72

 Codified Knowledge
 Patterns No patterns

Individual
Condition I

n = 24a

12 nominal pairs

Condition II

n = 24b

12 nominal pairs

M
od

e
of

 P
ar

tic
ip

at
io

n

Pair
Condition III

n = 24b

12 collaborating pairs

Condition IV

n = 24

12 collaborating pairs
Total sample size (N) = 96
a – a subject was dropped from the sample for not completing the task.
b – a subject and a pair were dropped for not completing the measures completely.

Figure 5.1 Two-by-Two Factorial Research Design

Table 5.1 Subject Characteristics
 Description Subjects % of subjects

Gender

Male
Female

85
11

88.5 %
11.5 %

Age

< 25
26 – 30
31 – 35
36 – 40
41 – 45
46 <
Did not provide

14
31
25
10
7
6
3

14.6 %
32.3 %
26.0 %
10.4 %
7.3 %
6.3 %
3.1 %

Education

High school
Community college
Undergraduate degree
Graduate degree
Doctoral degree
Did not provide

2
6
30
55
1
2

2.1 %
6.3 %
31.3 %
57.3 %
1.0 %
2.1 %

Programming Experience

0-1 years
1-2 years
2-4 years
4-6 years
6 < years

4
4
16
28
44

4.2 %
4.2 %
16.7 %
29.2 %
45.8 %

OO Programming Experience

0-1 years
1-2 years
2-4 years
4-6 years
6 < years
Did not provide

11
17
36
14
17
1

11.5 %
17.7 %
37.5 %
14.6 %
17.7 %
1.0 %

OO Design Experience

No experience
Novice
Intermediate
Expert

2
25
61
8

2.1 %
26.0 %
63.5 %
8.3 %

 73

Analysis of variance tests were done to check whether the demographic

characteristics of subjects differed across the four treatment conditions. Results of the

tests are as follows: education (F = 0.206; p = 0.892), programming experience (F =

0.609; p = 0.611), object-oriented programming experience (F = 0.408; p = 0.748), and

object-oriented design experience (F = 0.361; p = 0.781). Results of the ANOVA

analyses of self-reported educational level, programming experience, object-oriented

programming experience, and object-oriented designing experience showed no

significant differences across the four treatment conditions.

One of the primary manipulations done in this study was the availability of

codified knowledge in the form of design patterns. If the participants were quite familiar

with design patterns then they might not need the documents related to design patterns

to apply it in a given design problem. Hence, if the subjects were experienced in the use

of design pattern then the manipulation of design pattern availability would lose its

meaning. In order to avoid this situation, prospective subjects for the study were clearly

told that the study utilizes subjects who have not used Design Patterns in their work

(refer to appendix A).

In order to check whether the subjects were familiar with design patterns, before

the experiment began, subjects were asked to rate their familiarity with design patterns.

In the past, Shaft and Vessey (2006) had taken such an approach in their experiment on

software comprehension to ascertain the domain experience of subjects. Response of the

subjects indicated that 98% of the subjects had little or no experience on design

patterns. An ANOVA test of the subjects’ familiarity with design patterns across four

 74

treatment conditions showed no significant differences (F = 1.412; p = 0.244). Results

from these tests indicated that the subjects were sufficiently unfamiliar with the design

patterns and the subject characteristics did not vary across the treatment conditions.

Subjects were randomly paired to form the collaborating pairs. There was a

chance that the members of a resultant pair had previous experience of working together

in their workplaces. This study was not designed to exclude such pairs; nevertheless the

collaborating pairs were asked whether they had worked together before. Of the 24

collaborating pairs, members of 3 pairs had worked together before the experiment.

Hence, 88% of the members collaborating pairs used in the study did not have previous

experience of working together.

Of the reported demographics variables, object-oriented programming

experience was used as a covariate in the subsequent analysis. The design task used in

the study pertained to the creation of class diagrams that in reality will be translated in

to object-oriented programming code. This variable was found to be a significant

covariate (F = 7.818; p= 0.007).

5.1.2 Characteristics of Dependent Variables and Mediators

The variables that were measured in this study are: 1. Quality of solution; 2.

Time taken; 3. Subjective Mental Work Load; 4. Task satisfaction; 5. Design self-

efficacy; and 6. Communication quality. The following paragraphs describe the

preliminary analyses done with regard to these measures.

Quality of solution: Solutions provided by the various subjects were evaluated

based on a predefined grading scheme. This grading scheme was devised based on the

 75

solution of an expert. Appendix G outlines the grading scheme. Two PhD students

independently graded all the 72 solutions. The resultant scores were assessed for inter-

rater reliability and it was found to be 0.960. Because of the high inter-rater reliability,

the average of the two scores was used in the subsequent analysis as the score for

solution quality.

Subjective Mental Work Load (SMWL): This was measured using an adapted

version of NASA’s Task Load Instrument. SMWL is conceptualized with five

dimensions: mental demand, time constraints, performance, effort, and level of

frustration. This instrument had 15 items in total. Of these 15 items, 10 items pertained

to the pairs of the underlying dimensions. Subjects were asked to select a dimension in

the pair that contributed mostly to their experienced mental work load. Score for

SMWL was arrived based on the counts of number of times each dimension influenced

the mental workload and multiplied by the salience of each dimension that was rated on

a scale of 0 to 100. Dimension scores were added to together to obtain an overall

measure of SMWL. Procedures for calculating the SMWL was based on the works of

Speier and Morris (2003).

Time: Time taken to complete the main design task was measured as one of the

dependent variables. Maximum of 80 minutes was allowed for the main task. The

average time taken to complete the task was 57.24 minutes with a standard deviation of

17.49. In total, 6 individuals and 6 pairs took the whole allotted time of 80 minutes.

Perceptual Measures: There were three perceptual constructs used in the study

and they were design self-efficacy (DSE), overall task satisfaction (TS), and

 76

communication (COMF and COMQ). These variables were measured using sixteen

items. Of the three variables Communication quality was measured only in the pair

condition. The other two variables were measured across all the treatments conditions.

Since not all the perceptual measures were measured in all of the four treatment

conditions, two separate factor analyses were done in order to determine the factor

structure. In the first factor analysis, items pertaining to design self-efficacy and task

satisfaction were used. Table 5.2 presents the factor loadings. Exploratory factor

analysis with varimax rotation of the perceptual measures yielded two factors. These

factors pertained to Design Self-efficacy and Task satisfaction.

Table 5.2 Rotated Factor Matrix for the Perceptual Measures

Factor 1

Design Efficacy

Factor 2

Task Satisfaction

Communality

DSE1 0.797 0.210 0.679

DSE2 0.891 0.195 0.833

DSE3 0.855 0.280 0.810

DSE4 0.720 0.108 0.530

DSE5 0.865 0.343 0.866

DSE6 0.855 0.185 0.765

TS1 0.259 0.810 0.723

TS2 0.178 0.894 0.831

TS3 0.275 0.840 0.782

TS4 0.146 0.812 0.680

Eigen Values 4.353 3.145

Cumulative Variance
Explained

43.53% 74.98%

In the pair conditions, aspects of communication were also measured using a six

item scale. Separate factor analysis was done for this to ascertain the factor structure.

 77

Communication was measured using 6 items and they loaded in to two separate factors.

These factors pertained to communication frequency and quality. Hence two dimension

of communication was used to analyze the data separately. Following table 5.3 presents

the results of this factor analysis.

Table 5.3 Rotated Factor Matrix for Communication Measures

 Component
 Factor 1 Factor 2 Communality
COM1 0.911 0.195 0.868
COM2 0.966 0.127 0.948
COM3 0.880 -0.022 0.774
COM4 0.171 0.643 0.443
COM5 0.001 0.891 0.794
COM6 0.062 0.900 0.814
Eigen Values 2.569 2.072
Cumulative
Variance
Explained 42.82% 77.35%

Reliability of Measures: Reliability of the perceptual measures were calculated

in terms of Cronbach’s alpha and they are as follows: Design Self-Efficacy (0.93), Task

satisfaction (0.89), Communication Frequency (0.91), and Communication Quality

(0.75). According to Nunnally (1978), reliabilities exceeding 0.70 are considered to be

acceptable.

The time taken to solve the design problem and the solution quality was

assessed at the individual level. Correlation between the solution quality and time taken

was 0.268. The mean and standard deviation solution quality score was 38.951 and

15.462. The mean and standard deviation of time taken was 56.888 and 17.590. The

following table 5.4 presents the correlations of measures that were assessed at the

 78

individual level. The diagonals values depict the mean and standard deviations (in

parenthesis) for all of these measures.

Table 5.4 Correlations of Measures at the Individual Level

 OOEV DSE SMWL TS COMF COMQ
Object-oriented
Programming

Experience
(OOEV)

3.094
(1.223)

Design Self-
efficacy
(DSE) 0.347

4.639
(1.147)

Subjective Mental
Work Load
(SMWL) -0.164 -0.158

62.207
(13.336)

Task Satisfaction
(TS) 0.143 0.430 -0.256

5.117
(1.226)

Communication
Frequency
(COMF) -0.123 0.175 0.410 -0.271

6.383
(1.043)

Communication
Quality

(COMQ) -0.043 0.173 0.168 0.136 0.195
5.882

(0.976)

Power Analysis: Power analysis was conducted for the experimental results.

Effect sizes were calculated using the procedures outlined by Levine and Hullett (2002).

Cohen(1992) classified effect sizes into three general levels: small effect size = 0.10,

medium effect size = 0.25 and large effect size = 0.40. In this study, most of the effect

sizes (eta-squared) were of small in nature. In some cases, especially the analysis of pair

mediation model, and analysis of subjective mental workload involves very low effect

size and they correspond to very low power level and this is of concern. Power levels

for other factors are adequate to find differences in the various treatment conditions.

The following table 5.5 summarizes the results of this analysis.

 79

Table 5.5 Power Analysis
Dependent Variable Factor Effect Size

(Eta Squared)
Partial Eta
Squared

Power at
alpha = 0.05

Solution Quality Mode of participation
Availability of Pattern

0.141
0.086

0.184
0.120

0.927
0.835

Time Mode of participation
Availability of Pattern

0.135
0.082

0.149
0.096

0.849
0.736

Subjective Mental
Work Load

Mode of participation
Availability of Pattern

0.000
0.001

0.005
0.001

0.095
0.055

Task Satisfaction Mode of participation
Availability of Pattern

0.043
0.050

0.046
0.053

0.545
0.612

Individual Mediation Model
Solution Quality Availability of Pattern 0.115 0.115 0.667
Design Self-efficacy Availability of Pattern 0.002 0.002 0.061
Solution Quality Availability of Pattern

Design Self-efficacy
0.106
0.105

0.119
0.120

0.673
0.679

Pair Mediation Model
Solution Quality Availability of Pattern 0.050 0.050 0.178
Design Collective-
efficacy

Availability of Pattern 0.205 0.205 0.625

Solution Quality Availability of Pattern
Design Collective-
efficacy

0.001
0.147

0.001
0.155

0.052
0.466

Communication
Frequency

Availability of Pattern 0.865 0.865 0.145

Communication
Quality

Availability of Pattern 0.005 0.005 0.061

Solution Quality Availability of Pattern
Communication
Frequency

0.048
0.000

0.048
0.000

0.166
0.050

Solution Quality Availability of Pattern
Communication Quality

0.047
0.011

0.047
0.011

0.164
0.077

5.1.3 Assumptions Tests

This study utilized ANOVA/ANCOVA techniques to analyze the various

hypotheses. Underlying assumptions of ANOVA models are: (1) constancy of error

variance, (2) independence of error terms, and (3) normality of error terms were tested

for. ANCOVA models also rely on two additional assumptions: (1) Equality of slopes

of the different treatment regression lines, and (2) linearity of regression lines (Neter, et

 80

al., 1996). Apart from these assumption tests, tests were performed to detect outliers in

the data.

Assumptions of constancy of error terms: This assumption was tested using the

Modified Levene test for the ANOVA procedure. Results of these tests indicated that

the assumption of constancy of error terms cannot be rejected. Table 5.6 presents the

results of these tests.

Table 5.6 Assumptions of Normality and Constancy of Error Variance

Variable Omnibus Test for
Normality

Modified Levene test for
Constant Variance

 Statistic Significance Statistic Significance
Solution Quality 5.392 0.068 0.551 0.737
Time 1.993 0.369 1.139 0.349
Task Satisfaction 13.665 0.001 0.123 0.946
Subjective Mental Work Load 4.489 0.106 2.061 0.112

Individual Mediation Model
Design Self-efficacy 0.299 0.861 0.456 0.503
Solution Quality 6.030 0.050 0.068 0.795

Pairs Mediation Models
Design Collective Efficacy 2.487 0.288 0.269 0.609
Solution Quality 0.051 0.975 0.284 0.600
Communication Frequency 12.300 0.002 0.608 0.444
Communication Quality 1.753 0.416 0.051 0.823

Assumptions of Normality: Data were coded with indicator variables and

multiple regression procedure was used to test assumptions. Normality of error terms

were checked using Omnibus Normality tests. The normality assumptions could not be

rejected for most of variables. Task satisfaction and communication frequency variables

alone had normality assumptions violations according to the Omnibus test. Further

 81

analyses were done taking this aspect into consideration. Following table 5.6 presents

results of these tests.

Assumptions of independence of error terms: When the data is obtained in a

time sequence or there is some logical sequence in the way data is ordered then

assumptions of independence of error terms may be of an issue. Neter et al. (1996)

suggest that the randomization in a study could be the most important insurance policy.

This experiment randomly assigned subjects to various treatments and hence violation

of this assumption is unlikely.

Assumptions on equality of treatment slopes: This study utilized experience

with object-oriented programming as the covariate. An F-test was conducted to test the

equality of slopes across the treatment conditions as specified by Neter, et al (1996).

Multiple regression analysis with indicator variables for the treatment conditions was

used to create a full model and a reduced model. Full model utilized all the treatment

conditions and their interaction with the covariate. Reduced model had the treatment

variables and the covariate alone. At alpha = 0.05, the equality of slopes assumptions

could not be rejected.

Assumptions regarding linearity of regression relation: A general linear

regression model with the covariate was used to test the linearity assumption. Neter et al

(1996) specify that linearity of regression function can be evaluated using the residual

plot against the fitted values. Hence a residual plot was used to test this and there was

no apparent departure from linear relationship.

 82

5.1.4 Tests for Interactions and Significance

According to Neter, et al. (1996), analysis of factor effects in a two factor

analysis of variance should be done after considering the effect of interactions. Presence

of significant interactions between the factors would require the use of cell means

model.

Tests for significant interactions were carried out utilizing ANCOVA procedure.

As mentioned earlier, experience in Object-oriented programming was considered as

the covariate. Each of the dependent measure was tested separately in a 3 (best

individual, second best individual, collaborating pair) and 2 (Pattern and no pattern)

ANCOVA design.

Table 5.7 Results of Test for Interactions

Dependent
Variables

Mode of
Participation

F-ratio (p-value)

Availability of
Design Patterns
F-ratio (p-value)

Interaction
F-ratio (p-value)

Quality of Solution 7.315 (0.001) 8.874 (0.004) 0.391(0.678)
Time 6.584 (0.002) 5.982 (0.017) 0.060 (0.941)
Task Satisfaction 4.378 (0.039) 5.140 (0.026) 0.784 (0.378)
Subjective Mental
Work Load

37.142 (0.205) 0.366 (0.547) 1.081 (0.302)

The table 5.7 summarizes the results and it can be seen that there is no

significant interaction effects at alpha < 0.05 for all the four dependent variables. Since

there were no significant interactions, factor level means were used for further analysis.

Control for experiment-wide error rate: This study utilized four dependent

variables. There are two ways in which group comparison can be made with multiple

outcome variables: (a) conduct multiple Analysis of Variance (ANOVA)s or (b)

conduct a Multivariate Analysis of Variance (MANOVA) followed by multiple

 83

ANOVAs (Huberty and Morris, 1989). Multiple ANOVAs are done when the outcome

variables are conceptually different. In this study, baring the performance measures of

time and solution quality, the other two variables are conceptually different. Moreover,

according to Hair, et al.(1998), MANOVA requires a recommended minimum cell size

of 20. The minimum cell size in this study is 12 and does not meet the criteria for

MANOVA.

Huberty and Morris (1989) outline a procedure for adjusting the overall Type I

(Bonferroni type adjustment) error probability while using multiple univariate tests. For

m tests, the alpha level for each test (α1) is given by the overall alpha level αm divided

by m. Hence for this study m = 4 and for a family wide α = 0.05, we get αm = 0.0125.

As can be seen from the table 5.7, most of the main effects that were found significant

had p-values less than 0.0125. This should dispel any concerns about the experiment-

wide error rate. Significance of mode of participation on task satisfaction was p = 0.039

and this exceeded the overall experiment-wide αm of 0.0125. Caution is advised on the

interpretation of results pertaining to the task satisfaction outcome measure.

5.1.5 Manipulation Checks

This study had two treatments: mode of participation and availability of design

patterns (codified knowledge). Manipulation checks were done to see whether these

treatments had the intended effects.

Mode of Participation: In this treatment there are two levels: Individual and

collaborating pair. Subjects in the collaborating pairs were asked individually about the

active participation of the other member of the pair using a questionnaire item that

 84

utilized a 7 point Likert scale (1 -did not agree to 7 – strongly agree). Descriptive

statistics results indicate that the mean level of active participation is 6.28 with standard

deviation of 0.886. No subject rated below 4.0 (i.e.) neutral rating for their partner’s

participation during the design task performance. Based on this, it is argued that the

design solution was indeed arrived collaboratively in the pair condition.

Availability of Design Patterns: Subjects in the availability of design condition

were provided with design patterns to be used during the task performance. Participants

under all the four treatment conditions were asked about their use of design patterns to

arrive at the solution. In the availability of pattern condition, 94% of the participants

used one or more design patterns to arrive at the solution. In the non-availability of

pattern condition, only 5.5% of the participants used the correct design patterns to arrive

at the solution. In order to ascertain whether the use of design patterns in the no patterns

was a cause for concern, two separate ANOVA analyses were done. First ANOVA test

included the data from the subjects that had used design patterns in the no pattern

condition and other ANOVA test excluded the same data. Results from these tests did

not differ significantly and hence the subsequent analyses were done utilizing the

complete data set. Table 5.8 presents the results of the tests.

Table 5.8 Pattern Manipulation on Solution Quality

ANOVA Results

Mode of
Participation

F-ratio (p-value)

Availability of
Design Patterns
F-ratio (p-value)

Interaction
F-ratio

 (p-value)
With all available data 7.315 (0.001) 8.874 (0.004) 0.391(0.678)
Excluding data of subjects who
used patterns in the no pattern
condition

7.094 (0.002) 10.801 (0.002) 0.373(0.690)

 85

Results of the manipulation checks indicate that both the manipulations have

worked in the intended way. Hence the next section presents the subsequent hypotheses

testing that were done.

5.2 Hypothesis Testing

This study utilized ANOVA/ANCOVA models to test the various hypotheses

elucidated earlier. Following analyses were done:

(1) Two-Way ANCOVA for dependent measure of quality of solution, and time

(2) One-way ANOVA for Task Satisfaction and Subjective Mental Work Load

(3) Mediator Analyses were done using series of three simple/multiple

regression analysis.

5.2.1 Pairs versus Individuals Comparison for Solution Quality

This study utilized nominal pairs to compare with collaborating pairs. Nominal

pairs were formed by randomly grouping two individuals in a given treatment

condition. Based on these nominal groupings, best and second best individual in

nominal pairs were arrived at. Hypotheses concerning collaborating pairs and individual

performance were analyzed using a 3 (Best individual, second best individual in

nominal pair, and collaborating pair) x 2 (Pattern, No Pattern) ANCOVA design. Prior

programming experience with object-oriented languages was used as the covariate. In

the collaborating pair, the average experience of the pair was used as the covariate.

Table 5.9 presents the results of this analysis.

 86

Table 5.9 ANCOVA Model Results for Solution Quality

Source
Sum of
Squares df

Mean
Square F-ratio p-value

Object-oriented
programming
Experience

1282.311 1 1282.311 7.819 .004

Participation 2399.411 2 1199.705 7.315 .001
Pattern 1455.441 1 1455.441 8.874 .004
Participation * Pattern 128.387 2 64.193 .391 .678
Error 10660.543 65 164.008
Corrected Total 16973.580 71

ANCOVA results indicated the presence of significant main effects of both

participation and the availability of patterns and absence of interaction effect present.

Because of this further analysis on factor levels means was done.

Hypothesis H1a and H1b were examined using pair-wise comparison between the

levels of participation. Bonferroni’s procedure is best when the number of contrasts of

interest is small and has been specified in advance and the number of contrasts of

interest is about the same as the number of factor levels or less (Neter, et al., 1996).

H1a: Performance in terms of solution quality of the best individual in a nominal

pair will be better than the collaborating pair’s performance.

H1b: Performance in terms of solution quality of collaborating pairs will be

better than the second best individual in nominal pairs.

The table 5.10 presents the comparisons that were tested using Bonferroni’s

custom comparisons.

 87

Table 5.10 Bonferroni’s Custom Comparison for Solution Quality

 Mean ean Standard
Deviation
Standard
Deviation

t-value t-value p-value p-value

Hypothesis H1a
Best Individual –
Nominal Pair

45.292 16.082

Collaborating Pair 42.104 12.993

0.842 0.403

Hypothesis H1b
2nd best Individual –
Nominal Pair

29.458 12.813

Collaborating Pair 42.104 12.993

2.875 0.005

As can been seen hypothesis H1b was supported. Performance of collaborating

pairs was better than the second best individual in the nominal pair. Performance of the

best individual in a nominal pair is not significantly better than the performance of the

collaborating pair though the mean solution quality value is somewhat higher than the

collaborating pair’s value (45.3 vs. 42.1).

Estimated Marginal Means of Solution Quality Estimated
Marginal Means

45.0

40.0

35.0

30.0

Figure 5.2 Treatment Means Plot for Solution Quality

Collaborating Pair Best Individual 2nd best Individual
- Nominal Pair - Nominal Pair

Mode of Participation

 88

Further analysis of solution quality in terms of average individual performance

of a nominal pair over the collaborating pairs’ performance revealed no statistical

difference between them. Collaborating pairs had higher average score in terms of

solution quality when compared to average individual scores in the nominal pairs (42.10

vs. 37.1).

5.2.2 Pairs versus Individuals Comparison for Time

Hypotheses concerning collaborating pairs and individual performance in terms

of time taken to complete the design task were analyzed using a 3 (Best individual,

second best individual in nominal pair and collaborating pair) x 2 (Pattern, No Pattern)

ANOVA design. The analysis was quite similar to the earlier one regarding the solution

quality of the design. Table 5.11 presents the results of this analysis. ANCOVA results

indicated the presence of significant main effects of both participation and the

availability of patterns and there were no significant interaction effect present. Because

of this further analysis on factor levels means was done.

Table 5.11 ANCOVA Model Results for Time

Source
Sum of
Squares df Mean Square F-ratio p-value

Object-oriented
programming
Experience

633.236 1 633.236 2.444 .062

Participation 2955.259 2 1477.629 5.704 .005
Pattern 1790.595 1 1790.595 6.912 .011
Participation * Pattern 99.105 2 49.552 .191 .826
Error 16839.097 65 259.063
Corrected Total 21969.111 71

 89

Hypothesis 2 was examined using pair-wise comparison between the levels of

participation and time taken. Bonferroni’s custom comparison was done to compare the

time taken by collaborating pairs with the average time taken by individuals. The table

5.12 presents the results of this analysis.

H2: Collaborating pairs will take longer to complete the design task than the

average nominal pair.

Table 5.12 Bonferroni’s Custom Comparison for Time

Factor Level Mean Standard
Deviation

t-value p-vale

Best Individual –
Nominal Pair

63.83 19.174

2nd best Individual –
Nominal Pair

48.96 16.241

Collaborating Pair 64.29 13.741

2.832074 0.006

This hypothesis was supported and collaborating pairs took significantly more

time than the average nominal group performance time at p=0.006. Moreover, further

analysis revealed that the best individual in a nominal pair took almost similar time to

complete the design task.

5.2.3 Availability of Codified Knowledge and Solution Quality

 Effect of codified knowledge on the solution quality was analyzed using a 3

(Best individual, second best individual in nominal pair and collaborating pair) x 2

(Pattern, No Pattern) ANCOVA design. Experience with object-oriented programming

was used as the covariate for this analysis.

 90

Refer table 5.8 for the ANCOVA test results. Since the interaction term (mode

of participation x availability of codified knowledge) is not significant (p-value = .678),

analysis of main effects became salient. Hypothesis H3 explored the main effects of the

codified knowledge.

H3: Solution quality will be higher in the design pattern condition than in the

condition without design pattern.

The following table 5.13 presents the means and standard deviations for both,

pattern and no pattern condition.

Table 5.13 Solution Quality across Codified Knowledge Treatment

Condition Mean Solution
Quality

Standard
Deviation

No Pattern 34.319 15.304
Patterns 43.722 14.457

Results of the ANCOVA analysis show that these means are significantly

different and the p-value = 0.004. Refer table 5.8 for the results of the ANCOVA

analysis. Because of this we can conclude that the mean solution quality under pattern

condition is significantly better than the mean solution quality in the no pattern

condition.

Table 5.14 presents the means and standard deviations for both the performance

measures. Figure 5.3, plots the means for solution quality and time taken across various

treatment conditions.

 91

Table 5.14 Solution Quality and Time across Treatments

Solution Quality Time Taken Treatment Count
Mean Standard

Deviation
Mean Standard

Deviation
1stBestNP:
NoPatterns

12

40.13 15.49 63.83 15.82

1stBestNP:
Patterns

12

50.45 15.57 53.08 21.34

2ndBestNP:
NoPatterns

12

23.58 10.99 52.50 19.14

2ndBestNP:
Patterns

12

35.33 12.13 45.42 12.56

CPairs: NoPatterns 12 39.25 13.97 69.58 13.37
CPairs: Patterns 12 44.96 11.83 56.92 13.41
Note:
1stBestNP: 1st Best Nominal Pair
2ndBestNP: 2nd Best Nominal pair
CPairs: Collaborating Pair

Performance Measures

0
10
20
30
40
50
60
70
80

1st
Best

NP:N
oP

att
ern

1st
Best

NP:Patt
ern

2n
dB

est
NP:N

oP
att

ern

2n
dB

est
NP:Pa

tte
rn

CPair
s:N

oP
att

ern
s

CPair
s:P

att
ern

s

Treatment

So
lu

tio
n

Q
ua

lit
y

/ T
im

e

Mean Solution Quality

Mean Time Taken

Figure 5.3 Plot for Solution Quality and Time across Treatments

 92

5.2.4 Subjective Mental Work Load: Patterns and No Patterns

Subjective Mental Work Load was measured individually in the collaborating

pair conditions. Hence two-way ANOVA model with two levels for each of the factor

was used to examine the hypothesis pertaining to the mental workload. Subject’s

Object-oriented programming experience was used as the covariate. Fourteen of the 96

subjects did not fully complete the SMWL instrument. Due to this, reduced sample size

of 82 was used to examine the following hypothesis.

H4: Subjective mental work load will be lower in the design pattern condition

than in the condition without design pattern.

Table 5.15 ANCOVA Model Results for SMWL

Source
 Sum of
Squares df Mean Square F-ratio p-value

Object-oriented
programming experience 377.001 1 377.001 2.115 .075

Participation 7.198 1 7.198 .040 .841
Pattern 70.737 1 70.737 .397 .531
Participation * Pattern 210.513 1 210.513 1.181 .281
Error 13727.21 77 178.275
Corrected Total 14405.47

6 81

The table 5.15 presents ANCOVA results and as can be seen SMWL is not

significantly influenced by the availability of patterns. Hence this hypothesis was not

supported.

5.2.5 Task Performance Satisfaction: Individuals and Groups

 Satisfaction with the task performed was measured individually and hence

separate data for both the members of the collaborating pairs were available.

 93

Assumptions of normality of error terms assumptions were violated in the Omnibus

Normality test by the task satisfaction variable. Lack of normality is not a major

concern for fixed ANOVA models and Kurtosis of error distribution is more important

than skewness in terms of the effects on inference (Neter et al, 1996). Assumption

regarding Kurtosis could not be rejected at alpha = 0.05. Hence for analyzing this

hypothesis, two-way ANOVA model with two levels for each of the factor was used.

H5: Satisfaction with the task performance will be higher in the collaborating

pair condition than in the individual condition.

Table 5.16 ANOVA Model Results for Task Satisfaction

Source
Sum of
Squares df Mean Square F-ratio p-value

Participation 6.126 1 6.126 4.387 .039
Pattern 7.178 1 7.178 5.140 .026
Participation * Pattern 1.094 1 1.094 .784 .378
Error 128.471 92 1.396
Corrected Total 142.869 95

Results of the tests are presented in table 5.16. As can be seen there are

significant differences at alpha = 0.05 between the satisfaction levels of subjects who

performed alone and the subjects who worked in collaborating pairs. Figure 5.4 presents

the means of overall task satisfaction and the table 5.17 presents the factor levels means

for overall task satisfaction. Caution is advised in interpreting the results of this

hypothesis tests as the p-value exceeds the experiment-wide αm value of 0.0125.

 94

Table 5.17 Factor Level Means of Overall Task Satisfaction

Factor Level Task Satisfaction
Mean

Standard
Deviation

Individual 4.865 1.282
Pair 5.370 1.125

Means of Task SatisfactionTask Satisfaction

8.00

6.00

4.00

2.00

0.00
Individual Pairs

Mode of Participation

Figure 5.4 Plot for Mean Overall Task Satisfaction across Participation

5.3 Testing of the Mediation Model – Individual Condition

Perception about design self-efficacy (DSE) was hypothesized to be the

mediating variable between pattern availability and task performance. Based on this

argument, following two hypotheses were formulated:

Hi1: Individuals in the pattern condition will exhibit significantly higher design

self-efficacy than individuals in no pattern condition.

Hi2: Perceptions of design self-efficacy will mediate the positive relationship

between pattern availability and design task performance.

 95

To examine these hypotheses, three regression analyses were performed.

Availability of patterns was represented by an indicator variable.

a) Regressing design self-efficacy on the availability of pattern treatment,

b) Regressing solution quality on the availability of pattern treatment, and

c) Regressing of solution quality on both the availability of pattern and on the

design self-efficacy.

 Following table 5.18 summarizes the results of these tests.

Table 5.18 Results for the Mediator Analysis – Individual Condition

Step Dependent Variable Independent
Variables

t-value Significance

1 Design self-efficacy
(DSE)

Pattern 0.312 0.378

2 Solution Quality Pattern 2.444 0.009
3 Solution Quality DSE

Pattern
2.477
2.460

0.009
0.009

From the results of this analysis, it can be inferred that the hypothesis Hi1 is not

supported. Since design pattern does not affect the perceptions of design self-efficacy

the hypothesis about it being a mediator cannot be supported too. Subsequent regression

analysis revealed that design self-efficacy itself is significant predictor of solution

quality (t=2.462, p=0.009). Table 5.19 also shows that the design self-efficacy is

significant (t-value=2.477, p=0.009) when it is added as an independent variable in the

model with patterns.

 96

5.4 Testing of the Mediation Models – Pair Condition

Two mediators were hypothesized for the collaborating pair condition:

collective design self-efficacy and communication quality. Collective efficacy was

arrived at based on the average of individual self-efficacy of a collaborating pair. In the

literature, it has been found that this way of measuring collective efficacy is comparable

to measuring efficacy beliefs at the group level. Communication quality was measured

using two dimensions with focus on frequency of communication exchange and quality

of the exchange. Hypotheses that pertain to mediation analyzes are:

Hp1: Pairs in the pattern condition will exhibit significantly higher collective

efficacy than pairs in the no pattern condition.

Hp2: Perceptions of design collective efficacy will mediate the positive

relationship between pattern availability and design task performance.

Hp3: Pairs in the pattern condition will exhibit significantly higher

communication quality and frequency than pairs in the no pattern condition.

Hp4: Perceptions of the communication quality and frequency will mediate the

positive relationship between pattern availability and design task performance.

Tests of these hypotheses were done quite similar to the test for mediation that

was done for the individual condition. The following table 5.19 summarizes the results

of these tests.

 97

Table 5.19 Results for the Mediator Analysis – Pair Condition

Step Dependent
Variable

Independent
Variables

t-value Significance

Design collective-efficacy (DCE) as the mediating variable/factor:
availability of pattern
1 DCE Pattern 2.206 0.019
2 Solution Quality Pattern 1.080 0.146
3 Solution Quality DCE

Pattern
1.817
0.254

0.042
0.401

Communication quality (COMQ)/Communication frequency (COMF) as the
mediating variable/factor: availability of pattern
1 COMQ Pattern 0.327 0.374
2 COMF Pattern -0.930 0.819
3 Solution Quality Pattern 1.080 0.146
4 Solution Quality COMQ

Pattern
-0.930
1.139

0.819
0.134

5 Solution Quality COMF
Pattern

-0.028
1.030

0.511
0.158

From the results of this analysis, it can be inferred that except for hypothesis Hp1

none of the other three hypotheses are supported. Hence the argument of design

collective efficacy, and communication quality to be the mediator could not be

supported too. Availability of design patterns had a positive effect on the perceptions of

design collective-efficacy. Solution quality was not statistically different between the

pattern condition and no pattern condition. This meant the subsequent analyzes for

design collective efficacy and communication quality as mediators for patterns and

solution quality is not going find support Table 5.19 above also shows that the design

self-efficacy is significant at higher alpha level of 0.05 when it is added as a mediator in

the model with patterns.

 98

Subsequent regression analysis revealed that design collective-efficacy itself is

significant predictor of solution quality (t=2.174, p=0.021). This study measured design

self-efficacy individually and then arrived at the aggregated design collective efficacy

for the pair. Subsequent analysis also indicated that the design self-efficacy in the pair

condition was significantly higher than the design self-efficacy in the individual

condition (F = 5.166 and p = 0.025).

5.5 Summary of Results

The following table 5.20 summarizes the findings of this study. As can be seen

few of the hypotheses were supported. The next chapter concludes this research with

discussion on the findings and presents future research directions.

Table 5.20 Hypotheses Test Results

Hypothesis Result

Effect of mode of participation on performance
H1a: Performance in terms of solution quality of the best individual in

a nominal pair will be better than the collaborating pair’s performance.
Not
Supported

H1b: Performance in terms of solution quality of collaborating pairs
will be better than the second best individual in nominal pairs.

Supported

H2: Collaborating pairs will take longer to complete the design task
than the average nominal pair.

Supported

Effect of codified knowledge on performance
H3: Solution quality will be higher in the design pattern condition

than in the condition without design pattern.

Supported

Effect of codified knowledge on subjective mental workload
H5: Subjective mental work load will be lower in the design pattern

condition than in the condition without design pattern.

Not
supported

Effect of mode of participation on overall task satisfaction
H6: Satisfaction with the task performance will be higher in the pair

condition than in the individual condition.

Supported

 99

Table 5.20 - continued

Hypothesis Result

Individual Mediator Model – Design Self-efficacy
Hi1: Individuals in the pattern condition will exhibit significantly

higher design self-efficacy than individuals in no pattern condition.
Hi2: Perceptions of design self-efficacy will mediate the positive

relationship between pattern availability and design task performance.

Not
Supported

Not
Supported

Pair Mediator Model – Design Collective-efficacy/Communication
Hp1: Pairs in the pattern condition will exhibit significantly higher

collective efficacy than pairs in the no pattern condition.
Hp2: Perceptions of design collective efficacy will mediate the

positive relationship between pattern availability and design task performance.

Hp3: Pairs in the pattern condition will exhibit significantly higher

communication quality than pairs in the no pattern condition.
Hp4: Perceptions of the communication quality will mediate the

positive relationship between pattern availability and design task performance.

Supported

Not
Supported

Not
supported
Not
Supported

Next chapter discusses the findings of the study and presents future research

directions.

 100

CHAPTER 6

DISCUSSION AND CONCLUSIONS

Development of software application is a complex enterprise. High failure rates

of software development projects have been documented (Standish Group, 2001).

Academicians and practitioners are spearheading the efforts to find better ways of

developing software. Some of the initiatives in this area are: (a) streamlining the

software development processes and (b) reusing existing knowledge of prior design

experiences in the design of software applications.

(a) Software development process improvement: Extreme programming, an

agile software development methodology, claims to increase the success rate of

software development projects. Popularity of these methodologies can be seen in a

recent survey that claimed wide acceptance of these development methodologies

(Ambler, 2006). Extreme programming calls for the use of pairs in various activities

related to software development. Some of the benefits attributed to pair programming

are reduced errors in tasks performed, knowledge transfer between pairs, and increased

satisfaction.

There exists anecdotal evidence that the use of pairs has a positive effect on task

performance. Researchers have looked at the perceived benefits of pair-programming to

a great extent. Many of the experimental studies utilized students as subjects. The

 101

effectiveness of pairs in designing software application is yet to be rigorously

researched in the academic community. This study borrowed concepts from the small

group research area to analyze the effectiveness of pairs in comparison to individuals.

(b) Reuse of existing knowledge: Design patterns provide standard solutions to

recurring software design problems. Various benefits are claimed due to the reuse of

existing knowledge through design patterns. Some of these benefits include: improved

communication through the use of standard vocabulary, improved design

documentation, and creation of adaptable software solutions.

There are many different kinds of design patterns in use. Of these, the design

patterns elucidated by Gamma et al.(1995) are more popular. Modern programming

languages, such as Sun’s Java programming language, utilize these patterns extensively.

Software development tools used in modeling also provide built in support for these

design patterns.

Though design patterns have been in vogue for a long time, few studies have

analyzed the role of design patterns on solution quality. This study has borrowed

concepts from knowledge transfer literature to analyze the effectiveness of design

patterns.

This research studied two important aspects of software application

development through a controlled experiment. First was the role of pairs in the design

of software applications. Second was the role of codified knowledge in the design of

software application. Apart from these major aspects, this study also addressed the role

of efficacy beliefs and communication quality on task performance.

 102

6.1 Summary of Research Findings

The following paragraphs summarize the results of this study.

6.1.1 Solution Quality

This study found that while working on a design task, collaborating pairs

performed better than the second best performing individual in a nominal pair. As

argued, the best individuals performed slightly better than the collaborating pairs but the

differences were not statistically significant. Moreover, post-hoc tests revealed that the

performance in terms of solution quality of collaborating pairs was slightly higher than

the performance of average nominal pair though the performance difference was not

statistically significant.

Findings from small groups research indicate, that the performance of groups

will not be better than the best performing individual, but is likely to be better than the

average individual’s performance (Hare, 1994). Under certain conditions, such as when

the solution demonstrability is high and the group size is larger than two, groups are

claimed to outperform at the level of best individuals in a nominal pair (Laughlin, et al.,

2006). Findings from this study are consistent with the research findings in the small

group area.

This study also analyzed the role of design patterns on task performance.

Research aimed at empirically evaluating the role of design patterns on solution quality

is sparse. This study argued that design patterns are a form of codified knowledge and

 103

that their use would positively affect solution quality. Study results indicated that the

availability of design patterns significantly affect solution quality.

6.1.2 Completion Time

Findings of this study indicated that collaborating pairs utilized significantly

higher amount of time to arrive at the solution compared to the average time taken by

individuals. This finding is consistent with the findings in small groups research. In

contrast, proponents of pair programming often cited research done on pair

programming to show that the collaborating pairs took less time to complete the task

than the individuals (Williams, et al., 2000). Findings of this study, however, are

consistent with research in the small group area where collaborating groups were found

to take more time to complete the tasks.

6.1.3 Subjective Mental Workload

Research in the past analyzed the mental workload during the performance of

computer programming tasks. Subjective mental work load (SMWL) was measured

using an instrument developed by NASA, and adapted to this particular study.

Subjective mental work load was measured at the individual level. As a result of this,

two separate values of SMWL pertaining to both the individuals in a collaborating pair

condition were available.

This study hypothesized that the subjective mental workload would be lower for

the pattern condition than in the condition without design patterns. Results did not

support this contention. Analysis also revealed that the mode of participation, pairs

versus individual, also had no impact on the SMWL.

 104

Subsequent power analysis revealed the effect size was very small (0.001) and

the power level (5.5%) was inadequate to find any significant relationships between the

treatment conditions. Because of this, it is difficult to draw any conclusion based on the

current study. Obviously a higher sample size would be helpful in obtaining a better

perspective on the role of design patterns on subjective mental work load.

6.1.4 Overall Task Satisfaction

This study hypothesized that the members of a collaborating pair is likely to

have a higher level of overall task satisfaction compared to individuals working alone.

Analysis of the data supported this contention. Collaborating pairs were found to

experience significantly higher overall task satisfaction than individuals. This result is

consistent with prior findings in the area of small group research. It is also inline with

arguments presented by the proponents of extreme programming who claim that pair

programming leads to increased task satisfaction. Research in the Information Systems

field on pair programming also indicated that pair programming was more enjoyable

(Nosek, 1998).

Further analysis also revealed that subjects in the pattern condition also had

significantly higher overall task satisfaction compared to those who were in the no

design pattern condition. Though this relationship was not hypothesized in this study,

nevertheless it is an interesting finding. Further research on the availability of codified

knowledge and the overall task satisfaction could be of great importance in the field of

knowledge management.

 105

6.1.5 Individual Condition - Self-efficacy as a Mediator

Data collected in the individual condition was analyzed separately to test the

mediating role of design self-efficacy. This study hypothesized that design self-efficacy

was a mediator in the relationship between the availability of design patterns and

performance. Results of the analysis revealed no relationship between the availability of

design patterns and the efficacy beliefs of the subjects. Because of this the hypothesis

pertaining to the mediating role of design self-efficacy was not supported.

Efficacy beliefs were not affected by the presence of design patterns and this

could be due to various reasons. For routine tasks, self-efficacy beliefs are formed by

individuals based on their past experience (Gist and Mitchell, 1992). Subjects of this

study were experienced software development professionals. Hence these subjects could

have formed the efficacy beliefs without carefully evaluating the additional resources

that were made available to them in the pattern condition.

Further analysis indicated that self-efficacy, instead of being a mediator, was a

predictor of task performance. This finding is interesting as hitherto the concept of self-

efficacy, in the Information Research area, is primarily studied in the context of

computer usage and in the context of software training (Compeau and Higgins, 1995; Yi

and Davis, 2003).

6.1.6 Pair Condition - Collective-efficacy as a Mediator

This study measured individual self-efficacy and based on that it computed the

design collective efficacy of pairs. In total, the sample size used for this analysis was

24. This study hypothesized that the design collective efficacy was a mediator in the

 106

relationship between the availability of design patterns and performance. Presence of

design patterns was found to significantly influence the efficacy beliefs of pairs.

Availability of design patterns was not found to influence the solution quality. Because

of this the hypothesis pertaining to the mediating role of design collective-efficacy was

not supported.

This finding was also quite contrary to the findings in the individual condition.

In the individual condition, presence of design patterns did not have an impact on the

efficacy beliefs and whereas in the pair condition, there was an impact. Moreover,

availability of design patterns did not have an influence on the solution quality and this

result was contrary to the findings in the individual condition where the design patterns

had an impact on solution quality. Reason for this discrepancy could be in the pair

condition individuals could have done a more detailed evaluation of their resources in

arriving at the efficacy beliefs and whereas it was not done in the individual condition.

An evidence for this could be the significantly higher levels of design self-efficacy

prevalent among the subjects in the pair condition in comparison to the subjects in the

individual condition. In the pattern condition, subjects participated in the design pattern

seminar before they performed the task. Members of the pairs in the pattern condition

could have believed that their partner must be capable of utilizing the design patterns

during task performance. This could have lead to higher design self-efficacy for the

subjects in the pattern condition.

There could be many reasons for the lack of significant relationship between

availability of design patterns and solution quality. The power level for this comparison

 107

was quite low (18%). The mean solution quality score in the pattern condition was

44.96 with standard deviation of 11.83 and whereas in condition without design pattern

the mean solution quality score was 39.25 with standard deviation of 13.97. An

increased sample size could have given a better picture of the influence of design

patterns on task performance in the pair condition.

Further analysis indicated that design collective-efficacy, instead of being a

mediator, was a predictor of task performance. Further analysis also indicated subjects

who performed in the collaborating pair condition to have significantly higher levels of

self-efficacy in comparison to subjects in the individual condition. This finding is

interesting because higher levels of design self-efficacy beliefs leads to better task

performance, and could potentially make a case for pair-programming.

6.1.7 Pair Condition – Communication Quality as a Mediator

This study hypothesized that the quality of communication in the pair conditions

to mediate the relationship between the availability of patterns and solution quality.

Availability of design patterns was found to have no influence on the solution quality.

Hence, it was decided not to proceed with further analysis on the mediating role of

communication quality.

As mentioned earlier, the effect size of design pattern availability on task

performance was very small (0.047) and the resulting power level was (18%). Two

aspects of communication were analyzed in this study: communication frequency and

communication quality. Design patterns did not have an impact on either of these

constructs. Here again the power levels for the statistical tests were low (14% and 6%

 108

respectively). The sample size used in this analysis was 24 and a higher sample size

could have revealed a better picture.

6.2 Significance of the Findings

This study made important contributions to the stream of research aimed at

evaluating the usefulness of pairs in software development activities. Apart from this

primary objective, this study also evaluated the role of design patterns in the design of

software applications. This study analyzed potential mediators and process variables in

the performance of tasks by individuals and pairs.

6.2.1 Significance of Findings for Research

Though programming in pairs has been studied in the past, this is the first major

study to evaluate the performance of pairs in a software design task. This study also

utilized professional developers from various software development organizations and

therefore, the study’s findings are more generalizable. This study differed from many of

the studies that were done in pair programming wherein the comparison was between

equal numbers of individuals and equal number of pairs. Pair superiority in those

circumstances was established due to the greater number of people working on the task.

Probability of a pair having somebody with the knowledge to perform the task is higher

in those circumstances. This study used nominal pairs, a more rigorous way of

comparing pairs with individuals on task performance. In this study equal number of

subjects performed the tasks in all the four conditions. Some of the significant outcomes

of this research are presented here.

 109

First, this study found that the collaborating pair’s performance in terms of

software quality was significantly better than the performance of the second best

individual in a nominal pair. Though statistically not significant, the performance of the

collaborating pairs was also found to be somewhat better than the performance of the

average individual’s performance. These findings are consistent with the research on

small groups.

Second, this study found collaborating pairs to take more time to finish the

design task compared to the average time taken by individuals. Again, this finding is

quite consistent with the research on small groups.

Third, use of design patterns was found to significantly influence the quality of

design solution. This is study has made a beginning in ascertaining the effectiveness of

design patterns.

Fourth, collaborating pairs had more overall task satisfaction than the subjects

who worked alone. This finding is quite consistent with the research done in small

groups as well as in pair-programming. Likewise availability of codified knowledge in

the form of design patterns made the participants more satisfied.

Fifth, design self-efficacy was found to be an important predictor of object-

oriented design task performance. Though design self-efficacy was conceptualized as a

mediator between the availability of design patterns and solution quality, results

indicated it to be a predicator in both the individual and collaborating pair conditions.

 110

6.2.2 Significance of Findings for Practitioners

Extreme programming and associated agile software development

methodologies are gaining increasing popularity in the industry (Ambler, 2006).

Likewise systems that promote the reuse of software artifacts and knowledge are

increasingly becoming popular in the industry. Hence, the findings of this study are

significant to practitioners in many ways.

First, collaborating pairs find their overall task satisfaction to be higher than

individuals working alone. This benefit with collaborative work can be used as one of

the major reason for the adoption of extreme programming.

Second, this study found that the best individuals will perform somewhat better

than the collaborating pairs though statistically they were not significantly different.

Hiring exceptional developers may not always be feasible in organizations. Hence

pairing individuals during software development helps organizations to get near the

quality levels of best individuals.

Third, this study has found collaborative pairs took more time to complete the

design task than the average time taken by individuals. Hence organizations should take

this into consideration while scheduling projects using extreme programming practices.

Fourth, findings of this study have reaffirmed the case for knowledge

codification strategies. Tools that have built-in facilities for the exploitation of codified

knowledge are likely to benefit the software engineering community. For example,

visual modeling tools that can apply design patterns directly while designing the system

will be of great help.

 111

Fifth, this study also found efficacy beliefs about software design to be an

important predictor of performance. Research on social cognitive theory indicates that

efficacy beliefs can be enhanced through behavioral modeling (Gist and Mitchell,

1992). Organizations may initiate programs that increase the efficacy beliefs of software

designers. This is likely to enhance the quality of software designs.

6.3 Limitations of the Study

There are some potential limitations present in this study and the conclusions

should be viewed in light of them. First, though this study utilized software

development professionals as subjects it is still a laboratory experiment. Because of this

some important situational variables that may be present in an actual workplace, could

be absent in the laboratory environment. However, laboratory experiment provides the

necessary control to make causal inferences of the phenomena studied.

 Second, the sample size used to test some of the hypotheses was small. This

obviously resulted in insufficient power, as revealed in the power analysis, to unravel

some hypothesized relationships. A larger sample might show support for some of these

hypotheses that did not find support in this study.

The third limitation pertains to the way pairs are made up in the study. Though

this study utilized software development professionals as subjects, the way the pairs

were formed was different from ongoing pairs in any organization. Pairs in this study

were strangers. They have very little opportunity to interact with each other before

performing the experimental task. Past studies have indicated that the performance of

pairs to improve with sufficient amount jelling period between the pairs (Williams, et

 112

al., 2000). This study provided 20 minutes for the warm-up task, and for the members

of the pairs to jell. There may be differences in the performance of pairs with increased

time for jelling.

6.4 Future Research Directions

This is one of the early studies of software design investigating the phenomenon

involving pairs. There are ample opportunities to expand on the current findings.

First, a longitudinal study can be done to see whether the performance of pairs

improves on a task that is performed subsequent to the main task. Longitudinal studies

can help to unravel any learning effects that may be present during group work.

Second, this study randomly paired individuals to arrive at the collaborating

pairs. Individual ability/knowledge levels were not taken in to account while pairing

members. It will be interesting to see how the effectiveness of pair varies with the

differences between the knowledge levels of the pairs.

Third, this study analyzed the use of design patterns as a form of codified

knowledge. There could be other factors that could be salient in the utilization of

codified knowledge and those could be explored. For instance, this study provided 4

design patterns to the subjects during the task performance. Research could be done to

see the effect of amount of codified knowledge (i.e) the number of design patterns on

the utilization of the same.

Fourth, design self/collective efficacy was found be an important predictor in

both the individual and pair condition. Research is needed in this area to further analyze

this relationship between self-efficacy and software design performance.

 113

Fifth, this study utilized a single design task across all the treatment conditions.

Characteristics of the task impact the performance of groups. Further studies with

varying task characteristics can shed more light in to the effectiveness of groups.

6.5 Conclusions

This study empirically examined some of the important concepts in software

engineering. This is one of the early studies of software design investigating the

phenomenon involving pairs and design pattern. This experimental study utilized

software development professionals as subjects and manipulated the mode of

participation (individual or pairs) and availability of codified knowledge (design

patterns). Results of the study indicate that the performance of collaborating pairs were

better than the 2nd best individual in nominal pairs. Collaborating pairs also took more

time than the average time taken by nominal pairs to complete the task and they were

more satisfied than the individuals. This study also found that the codified knowledge in

the form of design patterns helped in arriving at a better solution. Findings of the study

have great implications to both the research as well as the practitioner communities.

 114

APPENDIX A

SUBJECT RECRUITMENT FLYER

 115

Subject Recruitment Flyer

Dr. Radha Mahapatra and Dr. Sridhar Nerur of the University of Texas at Arlington are

conducting a study to understand the role of Design Patterns in object-oriented design.

We are currently recruiting volunteers to participate in this study.

Participants will receive a free seminar on Design Patterns covering the following

topics:

• What are design patterns

• Classification of design patterns (GOF’s)

• How to use design patterns in designing OO applications

• Design patterns and effective OO design

In addition they will also receive supplementary resources on design patterns and their

usage. Study participants will also work individually or collectively to solve one or

more software design problems and will fill out a questionnaire.

Who is eligible to participate?

If you are experienced in OO development but have not used design patterns at work

and want to gain a broader understanding of design patterns then this seminar is right

for you.

When and where?

These seminars are currently being held in the Business Building of UT Arlington. You

can register for this seminar at: http://www3.uta.edu/faculty/mangalaraj/seminar.html

For more information please contact George Mangalaraj at mangalaraj@uta.edu

Or call 817-272-3562

 116

http://students.uta.edu/ga/gam7722/design.aspx
http://www3.uta.edu/faculty/mangalaraj/seminar.html
mailto:mangalaraj@uta.edu

APPENDIX B

INFORMED CONSENT

 117

INFORMED CONSENT

Software Design Experiment

In this study you will be asked to work on a software design problem using
object-oriented design principles. You may be working individually or with another
partner. You will work initially on a warm-up task before working on the main design
task. The total duration of the experimental session will be approximately two hours.
Problem statements will be provided to you with any additional materials required for
solving the problems. You will also be asked to complete a questionnaire about your
reactions to working on the task.

Since you may be working with another person you may experience emotional
discomfort, similar to what you could experience in the work place when working on
tasks of this nature. Those discomforts may include fatigue, boredom or frustration
when you work with other people to solve design problems.

The major benefit you will get in participating in this study is to get an
understanding of modern software design practices that may be of great value. You will
also be presented with a certificate of participation in the “Design Pattern” seminar.
You will be debriefed immediately after the experiment. The benefits to the investigator
are increased understandings of pair working on design problems and the usefulness of
design techniques involving software design patterns.

Your participation in this experiment is voluntary and you can withdraw your
informed consent at any time, if you find any procedures objectionable. Records of your
participation and any data collected will be held in strict confidence.

This research study has been reviewed and approved by the University of Texas
at Arlington Institutional Review Board. This research is under the supervision of Dr.
Radha Mahapatra. Dr. Mahapatra’s office is in 521 of the Business Building and his
phone number is (817) 272-3590. Please feel free to contact him if you have questions.
If you have any questions about your rights as a subject or about a research related
injury, you may contact a member of the Office or Research Compliance at 817-272-
3723.

I had a chance to ask all questions regarding this study. I hereby consent to
participate in the experiment and understand the above procedures.

Signature: ………………….. Print Name: …………………….

Date: …………………….

 118

APPENDIX C

DEBRIEFING

 119

Debriefing

In this study we are interested in examining the effectiveness of working

individually versus working in pairs while performing design tasks. We are also
interested in studying the effect of codified knowledge on the effectiveness of pair
versus individuals in performing the design task. Pairs are increasingly used in software
development projects for various tasks and they are claimed to increase the quality and
productivity. Similarly, design patterns are claimed to provide codified form of
knowledge and increase the software design quality. Our specific interest in this study is
to see whether there were differences in the quality of solution, and productivity due to
the use of pairs/individuals and with design patterns or without it. We are also interested
in the work load, efficacy beliefs, task communication, and satisfaction when tasks were
done individual or pairs with or without design patterns.

In studying this we randomly assigned members to individual or pair condition,
and with or without design pattern conditions. Quality of your design and time taken to
solve the design problem will be used to judge the effect of various factors on the
effectiveness of pair/individuals and with/without design patterns in performing
software design tasks.
 We will be conducting this study with more professionals from your
organization. It is vitally important to us and the success of this experiment that you
keep the information that you have learned here in confidence. Please do not tell anyone
about this experiment. We are confident that we can trust you and thank you.
 This research is under the supervision of Dr. Radha Mahapatra and you can
contact him at his office which is in room 521 of the Business Building and his phone is
(817) 272-3590. If you are interested in knowing the results of this study, then please
feel free to contact him after 5 weeks

Please sign below to indicate that you understand this debriefing and that you
promise to keep what you have learned in confidence. Again, thank you very much for
your participation.

Signature: ………………….. Print Name: …………………….

Date: …………………….

 120

APPENDIX D

INSTRUCTIONS FOR VARIOUS TREATMENTS

 121

Individual – No Pattern Condition

Task Instructions

Today you will work on two software design problems. The first one is a practice task

and the second one is the actual experimental task. Duration for the practice task is 20

minutes and the duration of the experimental task is of 80 minutes. Relevant problem

descriptions are given in separate sheets.

- You are required to come up with an object-oriented solution

- Your solution should strive for flexibility of design. Try to adhere to good OO

design principles.

- The deliverable is a class diagram using the UML notations. You may refer to

the summary of relevant UML notations given in the handout.

- Your class diagram should show the classes and the relationships between them.

- Please present your solution in the space provided for it.

- You are welcome to use the scratch papers for preliminary solutions.

- Briefly describe the approach you adopted to identify the classes and their

relationships. In other words, what was the rationale for your design?

Basic documentation of UML notations and glossary of terms used in OO design are

provided in your packet. While you may talk your ideas loud, you may not converse

with any other person during the task performance. You are requested to complete the

questionnaire and turn it in with the solution.

 122

Individual – Pattern Condition

Task Instructions

Today you will work on two software design problems. The first one is a practice task

and the second one is the actual experimental task. Duration for the practice task is 20

minutes and the duration of the experimental task is of 80 minutes. Relevant problem

descriptions are given in separate sheets.

- You are required to come up with an object-oriented solution

- Your solution should strive for flexibility of design. Try to adhere to good OO

design principles.

- The deliverable is a class diagram using the UML notations. You may refer to

the summary of relevant UML notations given in the handout.

- You are encouraged to refer to the handout on design patterns and use them in

your solution.

- Your class diagram should show the classes and the relationships between them.

- Please present your solution in the space provided for it.

- You are welcome to use the scratch papers for preliminary solutions.

- Briefly describe the approach you adopted to identify the classes and their

relationships. In other words, what was the rationale for your design?

Basic documentation of UML notations and glossary of terms used in OO design are

provided. Catalog of design patterns are also provided in the handout. While you may

talk your ideas loud, you may not converse with any other person during the task

performance. You are requested to complete the questionnaire and turn it in with the

solution.

 123

Pair – No Pattern Condition

Task Instructions

Today you will work on two software design problems collaboratively with another

partner. The first one is a practice task and the second one is the actual experimental

task. Duration for the practice task is 20 minutes and the duration of the experimental

task is of 80 minutes. Relevant problem descriptions are given in separate sheets.

- You are required to come up with an object-oriented solution

- Your solution should strive for flexibility of design. Try to adhere to good OO

design principles.

- The deliverable is a class diagram using the UML notations. You may refer to

the summary of relevant UML notations given in the handout.

- Your class diagram should show the classes and the relationships between them.

- Please present your solution in the space provided for it.

- You are welcome to use the scratch papers for preliminary solutions.

- Briefly describe the approach you adopted to identify the classes and their

relationships. In other words, what was the rationale for your design?

You may actively converse with each other to discuss the tasks at hand. You are

encouraged to collaboratively arrive at a consensual solution. Basic documentation of

UML notations and glossary of terms used in OO design are provided in your packet.

Please work together to arrive at a single solution that both of you agree to. You are

requested to complete the questionnaires and turn it in with the solution.

 124

Task Instructions

Today you will work on two software design problems collaboratively with another

partner. The first one is a practice task and the second one is the actual experimental

task. Duration for the practice task is 20 minutes and the duration of the experimental

task is of 80 minutes. Relevant problem descriptions are given in separate sheets.

- You are required to come up with an object-oriented solution

- Your solution should strive for flexibility of design. Try to adhere to good OO

design principles.

- The deliverable is a class diagram using the UML notations. You may refer to

the summary of relevant UML notations given in the handout.

- You are encouraged to refer to the handout on design patterns and use them in

your solution.

- Your class diagram should show the classes and the relationships between them.

- Please present your solution in the space provided for it.

- You are welcome to use the scratch papers for preliminary solutions.

- Briefly describe the approach you adopted to identify the classes and their

relationships. In other words, what was the rationale for your design?

Basic documentation of UML notations and glossary of terms used in OO design are

provided in your packet. Catalog of design patterns are also provided in the handout.

Please work together to arrive at a single solution that both of you agree to. You are

requested to complete the questionnaires and turn it in with the solution. You are

requested to complete the questionnaires and turn it in with the solution.

 125

APPENDIX E

EXPERIMENTAL TASKS

 126

Warm-up Task

Time: 20 minutes

Duck Pond Simulation Game*
XYZ Corporation is in the process of designing a duck pond simulation game. The
game can display a large variety of duck species swimming and making quacking
sounds. Some of the duck types that are planned to be used in the simulation game
include: Mallard Duck, Redhead Duck, Bufflehead Duck, and Pintail Duck. They are
also planning to add Rubber Duck to the game. Real ducks are capable of quacking and
flying whereas the rubber ducks can only squeak and cannot fly. All the ducks have a
behavior to display themselves on the screen.

You are required to draw a class diagram that can be used to implement the system
described above.

* Note: This problem description is adapted from the one found in Freeman, E., Freeman, E., Sierra, K.,
and Bates, B. Head First design patterns, O'Reilly, Sebastopol, CA, 2004.

 127

Main Task

Maximum Time: 80 minutes

Weather Monitor†

You must develop software that allows clients to periodically check for changes in the
status of sensors in a weather monitoring station. Example of various sensors could be
temperature gauge, pressure gauge, humidity sensor, etc. A client must be able to create
a monitor that will periodically check a particular sensor in the network. If the state of
that sensor has changed since the monitor last checked the sensor, the monitor should
write an event to a global event log.

A sensor is uniquely designated by its sensor id. When making its initial monitoring
request, the client specifies the id of the sensor to be monitored and the monitoring
period. At that point, the monitor is initialized but has not yet been started. The client
makes a subsequent request to start the monitor. The client should be able to start and
stop the monitor at any time.

Each sensor has an interface to check its current state, although the precise interface
differs from sensor to sensor. As an example, to check a temperature sensor, you invoke
its getTemparature method, whereas to check a relative humidity sensor, you call its
getRh method. The various sensor classes are provided by different vendors, so you are
not permitted to change the interfaces of those classes.

The components that make up the states of different sensors may also differ. For
example, the state of a temperature sensor is defined by a floating point value. A
relative humidity sensor state, on the other hand, is represented by a string.

Assume the existence of an Event Log and an Event class. The Event Log classes define
a method, logEvent that takes an Event as an argument and places that Event in the Log.
You should write a specific type of Event, a Sensor Change Event that includes the id of
the sensor.

You are required to draw a class diagram that can be used to implement the system
described above.

† Note: This problem description is adapted from the one found in Richter, C. "Design Problems and
Object-Oriented Solutions," Objective Engineering,
Inc.,http://www.oeng.com/problemsandsolutions.htm, 2004, Last Accessed: 6th December, 2006

 128

APPENDIX F

QUESTIONNAIRE

 129

Individuals – No Patterns

Demographics and Background Questions

1. Please circle your gender:

Male Female

2. Please indicate your age on your last birthday __________

3. Highest educational level:

a) High school b) Technical school or community college c) Undergraduate
degree

d) Graduate degree d) Doctoral degree e) Others ____________

4. Indicate number of years of your programming experience in any programming

language?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

5. Indicate number of years of your programming experience in object-oriented languages?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

6. What would you consider to be your level of experience in object-oriented design?

a) No experience b) Novice c) Intermediate d) Expert

7. What would you consider to be your level of experience in design patterns?

a) No experience b) Novice c) Intermediate d) Expert

8. What object-orient programming languages are you familiar with?

 a) C++ b) C# c) Java d) Small Talk e) Objective-C

f) Eiffel g) Python h) VB.NET i) Others ____________

1. I have confidence in my ability to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

 130

2. I have the necessary knowledge to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. This design problem is well within the scope of my abilities

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. I do not anticipate any problems in doing the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. I have the necessary expertise/resources to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. My past experiences and accomplishments increase my confidence in solving

the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Task Load Index

We would like to know about the workload you experienced in performing this task.
Feelings of workload can come from several different factors. For example, some
people feel that mental or time demands are the most important factors in perceived
workload. Others may feel that their performance or amount of frustration is the most
important part of their feelings of workload.
Here are the definitions of factors that contribute to workload.
Factor Definition
Mental
Demand

How much mental and perceptual activity was required (e.g., thinking,
deciding, calculating, remembering, looking, searching, etc.)?

Time
Demand

How much time pressure did you feel due to the rate or place at which
the tasks occurred?

Effort How hard did you have to work (mentally) to accomplish your level of
performance?

Frustration
Level

How insecure, discouraged, irritated, stressed, and annoyed versus
secure, gratified, content, relaxed, and complacent did you feel during
the task?

Performance How successful do you think you were in accomplishing the goals of the
task?

 131

For each pair of the 10 items listed below, select the item that represents the more
important contributor to workload for the task you performed this session.

1 Effort □ - Performance □

2 Time Demand □ - Effort □

3 Performance □ - Frustration □

4 Time Demand □ - Frustration □

5 Time Demand □ - Mental Demand □

6 Frustration □ - Effort □

7 Performance □ - Time Demand □

8 Frustration □ - Mental Demand □

9 Performance □ - Mental Demand □

10 Mental Demand □ - Effort □

For questions 1 to 5, place an “X” on each scale at the point that matches your
experience. Your ratings will play an important role in evaluation being conducted;
therefore, your participation is greatly appreciated.

1. Mental Demand

Low High

2. Time Demand

Low High

3. Performance

Good Poor

 132

4. Effort

Low High

5. Frustration

Low High

How do you feel about your overall experience of working on the task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very
Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very
Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

1. How do you feel about the main design task you performed today?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

2. How do you feel about the main design task you performed, as compared to the warm up
task?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

 133

Briefly describe the approach you adopted to identify the classes and their relationships.

In other words, what was the rationale for your design?

Did you use any pattern? If so could you use specify the patterns you used?

 134

Individuals – Patterns

Demographics and Background Questions

1. Please circle your gender:

Male Female

2. Please indicate your age on your last birthday __________

3. Highest educational level:

a) High school b) Technical school or community college c) Undergraduate degree

d) Graduate degree d) Doctoral degree e) Others ____________

4. Indicate number of years of your programming experience in any programming

language?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

5. Indicate number of years of your programming experience in object-oriented languages?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

6. What would you consider to be your level of experience in object-oriented design?

a) No experience b) Novice c) Intermediate d) Expert

7. What would you consider to be your level of experience in design patterns?

a) No experience b) Novice c) Intermediate d) Expert

8. What object-orient programming languages are you familiar with?

 a) C++ b) C# c) Java d) Small Talk e) Objective-C

f) Eiffel g) Python h) VB.NET i) Others ____________

1. I have confidence in my ability to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

 135

2. I have the necessary knowledge to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. This design problem is well within the scope of my abilities

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. I do not anticipate any problems in doing the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. I have the necessary expertise/resources to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. My past experiences and accomplishments increase my confidence in solving

the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Task Load Index

We would like to know about the workload you experienced in performing this task.
Feelings of workload can come from several different factors. For example, some
people feel that mental or time demands are the most important factors in perceived
workload. Others may feel that their performance or amount of frustration is the most
important part of their feelings of workload.
Here are the definitions of factors that contribute to workload.
Factor Definition
Mental
Demand

How much mental and perceptual activity was required (e.g., thinking,
deciding, calculating, remembering, looking, searching, etc.)?

Time Demand How much time pressure did you feel due to the rate or place at which
the tasks occurred?

Effort How hard did you have to work (mentally) to accomplish your level of
performance?

Frustration
Level

How insecure, discouraged, irritated, stressed, and annoyed versus
secure, gratified, content, relaxed, and complacent did you feel during
the task?

Performance How successful do you think you were in accomplishing the goals of
the task?

 136

For each pair of the 10 items listed below, select the item that represents the more
important contributor to workload for the task you performed this session.

1 Effort □ - Performance □

2 Time Demand □ - Effort □

3 Performance □ - Frustration □

4 Time Demand □ - Frustration □

5 Time Demand □ - Mental Demand □

6 Frustration □ - Effort □

7 Performance □ - Time Demand □

8 Frustration □ - Mental Demand □

9 Performance □ - Mental Demand □

10 Mental Demand □ - Effort □

For questions 1 to 5, place an “X” on each scale at the point that matches your
experience. Your ratings will play an important role in evaluation being conducted;
therefore, your participation is greatly appreciated.

1. Mental Demand

Low High

2. Time Demand

Low High

3. Performance

Good Poor

 137

4. Effort

Low High

5. Frustration

Low High

How do you feel about your overall experience of working on the task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

1. How do you feel about the main design task you performed today?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

2. How do you feel about the main design task you performed, as compared to the warm
up task?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

1. Design patterns were easy to use for the tasks done

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. Design patterns gives flexibility/extensibility to the design we did

 138

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. Please briefly state any problems in using design patterns for the tasks
performed

4. In what ways did the design patterns help you in solving the problems today?

Briefly describe the approach you adopted to identify the classes and their relationships.
In other words, what was the rationale for your design?

What patterns did you use to arrive at the solution?

 139

Pairs – No Patterns

Demographics and Background Questions

1. Please circle your gender:

Male Female

2. Please indicate your age on your last birthday __________

3. Highest educational level:

a) High school b) Technical school or community college c) Undergraduate degree

d) Graduate degree d) Doctoral degree e) Others ____________

4. Indicate number of years of your programming experience in any programming

language?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

5. Indicate number of years of your programming experience in object-oriented languages?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

6. What would you consider to be your level of experience in object-oriented design?

a) No experience b) Novice c) Intermediate d) Expert

7. What would you consider to be your level of experience in design patterns?

a) No experience b) Novice c) Intermediate d) Expert

8. What object-orient programming languages are you familiar with?

 a) C++ b) C# c) Java d) Small Talk e) Objective-C

f) Eiffel g) Python h) VB.NET i) Others ____________

9. Before today’s task performance, have you ever worked with your partner?

a) Yes b) No

 140

1. I have confidence in my ability to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. I have the necessary knowledge to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. This design problem is well within the scope of my abilities

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. I do not anticipate any problems in doing the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. I have the necessary expertise/resources to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. My past experiences and accomplishments increase my confidence in solving

the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Task Load Index

We would like to know about the workload you experienced in performing this task.
Feelings of workload can come from several different factors. For example, some
people feel that mental or time demands are the most important factors in perceived
workload. Others may feel that their performance or amount of frustration is the most
important part of their feelings of workload.

Here are the definitions of factors that contribute to workload.

Factor Definition
Mental
Demand

How much mental and perceptual activity was required (e.g., thinking,
deciding, calculating, remembering, looking, searching, etc.)?

Time Demand How much time pressure did you feel due to the rate or place at which
the tasks occurred?

Effort How hard did you have to work (mentally) to accomplish your level of
performance?

 141

Frustration
Level

How insecure, discouraged, irritated, stressed, and annoyed versus
secure, gratified, content, relaxed, and complacent did you feel during
the task?

Performance How successful do you think you were in accomplishing the goals of
the task?

For each pair of the 10 items listed below, select the item that represents the more
important contributor to workload for the task you performed this session.

1 Effort □ - Performance □

2 Time Demand □ - Effort □

3 Performance □ - Frustration □

4 Time Demand □ - Frustration □

5 Time Demand □ - Mental Demand □

6 Frustration □ - Effort □

7 Performance □ - Time Demand □

8 Frustration □ - Mental Demand □

9 Performance □ - Mental Demand □

10 Mental Demand □ - Effort □

For questions 1 to 5, place an “X” on each scale at the point that matches your
experience. Your ratings will play an important role in evaluation being conducted;
therefore, your participation is greatly appreciated.

1. Mental Demand

Low High

2. Time Demand

Low High

 142

3. Performance

Good Poor

4. Effort

Low High

5. Frustration

Low High

1. We frequently communicated with each other while performing the task.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. We frequently exchanged ideas about the problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. We frequently exchanged ideas about solutions to the problem.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. I had no difficulty understanding my partner’s ideas about the task.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. Our discussion improved my understanding of the problem.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. Our discussions helped us craft a better solution to the problem.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

How do you feel about your overall experience of working on the task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

 143

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

1. How do you feel about the main design task you performed today?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

2. How do you feel about the main design task you performed, as compared to the warm up
task?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

1. Overall, we could interrelate to each other’s unique skills

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. Overall, we could interrelate to each other’s unique expertise

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. I could recognize the potential value of my partner’s expertise

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

1. We explored multiple solutions for the given problems

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. We helped each other in finding flaws with the design

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

 144

3. We could easily identify the right solutions to the problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. My partner actively participated in solving the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Briefly describe the approach you adopted to identify the classes and their relationships.

In other words, what was the rationale for your design?

What patterns did you use to arrive at the solution?

 145

Pairs – Patterns

Demographics and Background Questions

1. Please circle your gender:

Male Female

2. Please indicate your age on your last birthday __________

3. Highest educational level:

a) High school b) Technical school or community college c) Undergraduate degree

d) Graduate degree d) Doctoral degree e) Others ____________

4. Indicate number of years of your programming experience in any programming

language?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

5. Indicate number of years of your programming experience in object-oriented languages?

a) 0 – 1 b) 1 – 2 c) 2-4 d) 4-6 e) >6

6. What would you consider to be your level of experience in object-oriented design?

a) No experience b) Novice c) Intermediate d) Expert

7. What would you consider to be your level of experience in design patterns?

a) No experience b) Novice c) Intermediate d) Expert

8. What object-orient programming languages are you familiar with?

 a) C++ b) C# c) Java d) Small Talk e) Objective-C

f) Eiffel g) Python h) VB.NET i) Others ____________

9. Before today’s task performance, have you ever worked with your partner?

a) Yes b) No

 146

1. I have confidence in my ability to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. I have the necessary knowledge to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. This design problem is well within the scope of my abilities

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. I do not anticipate any problems in doing the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. I have the necessary expertise/resources to solve this design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. My past experiences and accomplishments increase my confidence in solving

the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

Task Load Index

We would like to know about the workload you experienced in performing this task.
Feelings of workload can come from several different factors. For example, some
people feel that mental or time demands are the most important factors in perceived
workload. Others may feel that their performance or amount of frustration is the most
important part of their feelings of workload.

Here are the definitions of factors that contribute to workload.

Factor Definition
Mental
Demand

How much mental and perceptual activity was required (e.g., thinking,
deciding, calculating, remembering, looking, searching, etc.)?

Time Demand How much time pressure did you feel due to the rate or place at which
the tasks occurred?

Effort How hard did you have to work (mentally) to accomplish your level of
performance?

Frustration How insecure, discouraged, irritated, stressed, and annoyed versus

 147

Level secure, gratified, content, relaxed, and complacent did you feel during
the task?

Performance How successful do you think you were in accomplishing the goals of
the task?

For each pair of the 10 items listed below, select the item that represents the more
important contributor to workload for the task you performed this session.

1 Effort □ - Performance □

2 Time Demand □ - Effort □

3 Performance □ - Frustration □

4 Time Demand □ - Frustration □

5 Time Demand □ - Mental Demand □

6 Frustration □ - Effort □

7 Performance □ - Time Demand □

8 Frustration □ - Mental Demand □

9 Performance □ - Mental Demand □

10 Mental Demand □ - Effort □

For questions 1 to 5, place an “X” on each scale at the point that matches your
experience. Your ratings will play an important role in evaluation being conducted;
therefore, your participation is greatly appreciated.

1. Mental Demand

Low High

2. Time Demand

Low High

 148

3. Performance

Good Poor

4. Effort

Low High

5. Frustration

Low High

1. We frequently communicated with each other while performing the task.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. We frequently exchanged ideas about the problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. We frequently exchanged ideas about solutions to the problem.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. I had no difficulty understanding my partner’s ideas about the task.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. Our discussion improved my understanding of the problem.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. Our discussions helped us craft a better solution to the problem.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

 149

How do you feel about your overall experience of working on the task today?

Very Dissatisfied 1 2 3 4 5 6 7 Very Satisfied

Very Displeased 1 2 3 4 5 6 7 Very Pleased

Very Frustrated 1 2 3 4 5 6 7 Very Contended

Absolutely Terrible 1 2 3 4 5 6 7 Absolutely
Delighted

1. How do you feel about the main design task you performed today?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

2. How do you feel about the main design task you performed, as compared to the warm up
task?

Very Easy 1 2 3 4 5 6 7 Very Difficult

Very Simple 1 2 3 4 5 6 7 Very Complex

5. Design patterns were easy to use for the tasks done

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. Design patterns gives flexibility/extensibility to the design we did

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

7. Please briefly state any problems in using design patterns for the tasks
performed

 150

8. In what ways did the design patterns help you in solving the problems today?

4. Overall, we could interrelate to each other’s unique skills

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. Overall, we could interrelate to each other’s unique expertise

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

6. I could recognize the potential value of my partner’s expertise

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

1. We explored multiple solutions for the given problems

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

2. We helped each other in finding flaws with the design

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

3. We could easily identify the right solutions to the problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

4. My partner actively participated in solving the design problem

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

5. Presence of another person helped in better utilizing the design patterns.

Strongly disagree 1 2 3 4 5 6 7 Strongly agree

 151

Briefly describe the approach you adopted to identify the classes and their relationships.

In other words, what was the rationale for your design?

What patterns did you use to arrive at the solution?

 152

APPENDIX G

GRADING SCHEME FOR THE MAIN TASK

 153

Grading Sheet for Weather Monitoring Station Problem
Subject ID:

N
o

Description Purpose Points Points
 Scored

Remarks

A. Classes
1 Monitor Sensors are monitored by this class 5

2 Sensor Can be abstract or an interface 5

3 Specific Sensor Temperature, Pressure sensors etc 5

4 Event log Log of various events 5

5 Event Generic class 5

6 Change Event This is the sensor change event 5

7 Adapter class Adapter for the sensors to handle

different states
10

8 PollToken To store state and compare 10

B. Associations
1 Monitor/Sensors

Interface
Polltoken object is returned to
monitor

5

2 Event logging Monitor detects changes when they
occur, creates change event

10

3 Specific sensor /
PollToken

Specific sensors creating polltoken 5

4 Comparing states Monitor should be able to compare
polltokens (previous state polltoken
is the current state polltoken)

10

6 Sensor Adapter/
Sensor

Sensor Adapters forward poll to
specific sensors

10

C. Optional Classes
1
2
3
D. Unnecessary/Wrong Classes
1 -
2 -
3 -
 Total

Patterns Used:

Note: Class names are given for illustration only and the evaluated solution can have
different names for them.

 154

APPENDIX H

GLOSSARY GIVEN TO ALL PARTICIPANTS

 155

Glossary‡
Abstract class: A class whose primary purpose is to define an interface. An abstract class defers
some or all of its implementation to subclasses. An abstract class cannot be instantiated.

Abstract operation: An operation that declares a signature but doesn’t implement it.

Class: A class defines an object’s interface and implementation. It specifies the object’s internal
representation and defines the operations the object can perform.

Class diagram: A diagram that depicts classes, their internal structure and operations, and the
static relationships between them.

Concrete class: A class having no abstract operations. It can be instantiated.

Delegation: An implementation mechanism in which an object forwards or delegates a request
to another object. The delegate carries out the request on behalf of the original object.

Design pattern: A design pattern systematically names, motivates, and explains a general design
that addresses a recurring design problem in object-oriented systems. It describes the problem,
the solution, when to apply the solution, and its consequences. The solution is a general
arrangement of objects and classes that solve the problem.

Encapsulation: The result of hiding a representation and implementation in an object. The
representation is not visible and cannot be accessed directly from outside the object. Operations
are the only way to access and modify an object’s representation.

Inheritance: A relationship that defines one entity in terms of another. Class inheritance defines
a new class in terms of one or more parent classes. The new class inherits its interface and its
implementation from its parents. The new class is called a subclass or a derived class.

Instance variable: A piece of data that defines part of an object’s representation.

Interface: The set of all signatures defined by an object’s operations. The interface describes the
set of requests to which an object can respond.

 Object: A run-time entity that packages both data and the procedures that operates on that data.

Object composition: Assembling or composing objects to get more complex behavior.

Object reference: A value that identifies another object.

Overriding: Redefining an operation in a subclass.

Polymorphism: The ability to substitute objects of matching interface for one another at run-
time.

‡ Note: These descriptions are based on Gamma, E., Helm, R., Johnson, R.E., and Vlissides, J. Design
patterns : elements of reusable object-oriented software, Addison-Wesley, Reading, Mass., 1995.

 156

UML Notations for Class Diagram§

Abstract <<interface>>
ClassX InterfaceX

method1()

§ Note: These UML notations are based on Larman, C. Applying UML and patterns : an introduction to
object-oriented analysis and design and iterative development, Prentice Hall PTR, Upper Saddle River,
N.J., 2004.

ClassA ClassB

Association
Class

Associations:

Whole Part
1 *Composition

Composition:

1..10
Class

One to ten

1..*Class

One or more

5
Class

Exactly five

Multiplicity:

ClassY

generalization

interface
implementation

method()

 157

APPENDIX I

DESIGN PATTERNS MATERIALS FOR PATTERN CONDITION

 158

Design Patterns**

The Strategy Pattern

• It defines a family of algorithms,
encapsulates each one, and makes them
interchangeable.

• Strategy lets the algorithm vary
independently from clients that use it.

** These patterns are based on the outlines presented in the following books:
(a) Gamma, E., Helm, R., Johnson, R.E., and Vlissides, J. Design patterns : elements of reusable object-
oriented software, Addison-Wesley, Reading, Mass., 1995.,
(b) Freeman, E., Freeman, E., Sierra, K., and Bates, B. Head First design patterns, O'Reilly, Sebastopol,
CA, 2004., and
(c) Martin, R.C. Agile software development : principles, patterns, and practices, Prentice Hall, Upper
Saddle River, N.J., 2003.

 159

The Strategy Pattern

The Strategy Pattern - Example

 160

CalculateTaxOrder

USTax CanadaTax

The Strategy Pattern

The Adapter Pattern

• It converts the interface of a class into
another interface the clients expect.

• Adapter lets classes work together that
couldn’t otherwise because of
incompatible interfaces.

 161

The Adapter Pattern

The Adapter Pattern - Example

 162

The Observer Pattern

• Defines a one-to-many dependency
between objects so that when one object
changes state, all of its dependents are
notified and updated automatically.

The Observer Pattern

 163

The Observer Pattern Example

The Memento Pattern

• It is used when there is a need to return an
object to one of its previous states.

• Example: request for an “undo”

 164

The Memento Pattern

 165

REFERENCES

Agarwal, R., Sinha, A.P., and Tanniru, M. "The role of prior experience and task
characteristics in object-oriented modeling: An empirical study," International Journal
of Human-Computer Studies (45:6), 1996, pp. 639-667.

Alavi, M., and Leidner, D.E. "Review: Knowledge management and knowledge
management systems: Conceptual foundations and research issues," MIS Quarterly
(25:1), 2001, pp. 107-136.

Al-Kilidar, H., Parkin, P., Aurum, A., and Jeffery, R. "Evaluation of effects of pair
work on quality of designs," Proceedings of the Australian Software Engineering
Conference, 2005, pp. 78- 87.

Ambler, S. "Survey Says: Agile Works in Practice," Dr. Dobb's Journal, (31:9), Sep
2006.

Argote, L. Organizational learning: creating, retaining, and transferring knowledge,
Kluwer Academic, Boston, 1999.

Argote, L., Ingram, P., Levine, J.M., and Moreland, R.L. "Knowledge transfer in
organizations: Learning from the experience of others," Organizational Behavior and
Human Decision Processes (82:1), 2000, pp. 1-8.

Argote, L., McEvily, B., and Reagans, R. "Managing knowledge in organizations: An
integrative framework and review of emerging themes," Management Science (49:4),
2003, pp. 571-582.

Baker, D.F. "The development of collective efficacy in small task groups," Small Group
Research (32:4), 2001, pp. 451-474.

Balijepally, V. "Task complexity and effectiveness of pair programming: an
experimental study," University of Texas at Arlington, 2005.

Bandura, A. Social foundations of thought and action: a social cognitive theory,
Prentice-Hall, Englewood Cliffs, N.J., 1986.

 166

Baron, R.M., and Kenny, D.A. "The Moderator Mediator Variable Distinction in Social
Psychological-Research - Conceptual, Strategic, and Statistical Considerations,"
Journal of Personality and Social Psychology (51:6), 1986, pp. 1173-1182.

Batra, D. "Conceptual data modeling patterns: Representation and validation," Journal
of Database Management (16:2), 2005, pp. 84-106.

Beck, K. Extreme programming explained : embrace change, Addison-Wesley, Harlow,
1999.

Beck, K., Crocker, R., Meszaros, G., Coplien, J.O., Dominick, L., Paulisch, F., and
Vlissides, J. "Industrial experience with design patterns," Proceedings of the Software
Engineering, 1996., Proceedings of the 18th International Conference on, Berlin, 1996,
pp. 103 - 114.

Blackler, F. "Knowledge, knowledge work and organizations: An overview and
interpretation," Organization Studies (16:6), 1995, pp. 1021-1046.

Blum, B.I. "A taxonomy of software development methods," Communications of the
ACM (37:11), 1994, pp. 82 - 94.

Boehm, B.W., and Turner, R. Balancing agility and discipline : a guide for the
perplexed, Addison-Wesley, Boston, 2004.

Bond, C.F., and Titus, L.J. "Social Facilitation - a Meta-Analysis of 241 Studies,"
Psychological Bulletin (94:2), 1983, pp. 265-292.

Bower, G.H., and Hilgard, E.R. Theories of learning, Prentice-Hall, Englewood Cliffs,
N.J., 1981.

Brodbeck, F., and Greitemeyer, T. "A Dynamic Model of Group Performance:
Considering the Group Members' Capacity To Learn.," Group Processes & Intergroup
Relations (3:2), 2000, pp. 159.

Brodbeck, F.C. "Communication and performance in software development projects,"
European Journal of Work and Organizational Psychology (10:1), 2001, pp. 73-94.

Brown, R. Group processes : dynamics within and between groups, Blackwell
Publishers, Oxford, UK ; Malden, Mass., 2001.

Campion, M.A., Medsker, G.J., and Higgs, A.C. "Relations between Work Group
Characteristics and Effectiveness - Implications for Designing Effective Work Groups,"
Personnel Psychology (46:4), 1993, pp. 823-850.

 167

Cline, M.P. "The pros and cons of adopting and applying design patterns in the real
world," Communications of the ACM (39:10), 1996, pp. 47-49.

Coad, P. "Object-Oriented Patterns.," Communications of the ACM (35:9), 1992, pp.
152-159.

Cockburn, A., and Williams, L. "The Costs and Benefits of Pair Programming," In
Extreme Programming Examined, G. Succi and M. Marchesi (eds.), Pearson Education,
Upper Saddle River, NJ, 2001, pp. 223-243.

Cohen, J. "A Power Primer," Psychological Bulletin (112:1), 1992, pp. 155-159.

Collins, B.E., and Guetzkow, H. A social psychology of group processes for decision
making., Wiley, New York, 1964.

Compeau, D.R., and Higgins, C.A. "Computer Self-Efficacy - Development of a
Measure and Initial Test," MIS Quarterly (19:2), 1995, pp. 189-211.

Coplien, J.O., and Schmidt, D.C. Pattern languages of program design, Addison-
Wesley, Reading, Mass., 1995.

Davis, D.D., and Harless, D.W. "Group vs. Individual Performance in a Price-Searching
Experiment," Organizational Behavior and Human Decision Processes (66:2), 1996,
pp. 215-227.

Diehl, M., and Stroebe, W. "Productivity loss in brainstorming groups: Toward the
solution of riddle," Journal of Personality and Social Psychology (53:3), 1987, pp. 497-
509.

Faraj, S., and Sproull, L. "Coordinating Expertise in Software Development Teams,"
Management Science (46:12), 2000, pp. 1554.

Fernández-Ballesteros, R., Díez-Nicolás, J., Caprara, G.V., Barbaranelli, C., and
Bandura, A. "Determinants and Structural Relation of Personal Efficacy to Collective
Efficacy.," Applied Psychology: An International Review (51:1), 2002, pp. 107.

Flor, N.V., and Hutchins, E.L. "Analyzing distributed cognition in software teams: A
case study of team programming during perfective software maintenance," Proceedings
of the Empirical Studies of Programmers: Fourth Workshop, 1991, pp. 36-64.

Forsyth, D.R. Group dynamics, Brooks/Cole, Belmont, Calif., 1999.

Freeman, E., Freeman, E., Sierra, K., and Bates, B. Head First design patterns,
O'Reilly, Sebastopol, CA, 2004.
 168

Gamma, E., Helm, R., Johnson, R.E., and Vlissides, J. Design patterns : elements of
reusable object-oriented software, Addison-Wesley, Reading, Mass., 1995.

Gibson, C.B. "Do they do what they believe they can? Group efficacy and group
effectiveness across tasks and cultures," Academy of Management Journal (42:2), 1999,
pp. 138-152.

Gibson, C.B. "From knowledge accumulation to accommodation: cycles of collective
cognition in work groups," Journal of Organizational Behavior (22), 2001, pp. 121-
134.

Gibson, C.B., Randel, A.E., and Earley, P.C. "Understanding group efficacy - An
empirical test of multiple assessment methods," Group & Organization Management
(25:1), 2000, pp. 67-97.

Gick, M.L., and Holyoak, K.J. "The cognitive basis of knowledge transfer," In Transfer
of learning : contemporary research and applications, S. M. Cormier and J. D. Hagman
(eds.), Academic Press, San Diego, 1987, pp. 9-46.

Gist, M.E., and Mitchell, T.R. "Self-Efficacy - a Theoretical-Analysis of Its
Determinants and Malleability," Academy of Management Review (17:2), 1992, pp.
183-211.

Goldfedder, B., and Rising, L. "A Training Experience with Patterns.," Communications
of the ACM (39:10), 1996, pp. 60-64.

Gray, W.D., and Orasanu, J.M. "Transfer of cognitive skills," In Transfer of learning :
contemporary research and applications, S. M. Cormier and J. D. Hagman (eds.),
Academic Press, San Diego, 1987, pp. 183-215.

Guerraoui, R. "Strategic Directions in Object-Oriented Programming.," ACM
Computing Surveys (28:4), 1996, pp. 691-700.

Guindon, R. "Knowledge Exploited by Experts During Software System-Design,"
International Journal of Man-Machine Studies (33:3), 1990, pp. 279-304.

Gully, S.M., Incalcaterra, K.A., Joshi, A., and Beaubien, J.M. "A meta-analysis of team-
efficacy, potency, and performance: Interdependence and level of analysis as
moderators of observed relationships," Journal of Applied Psychology (87:5), 2002, pp.
819-832.

Hagge, L., and Lippe, K. "Sharing Requirements Engineering Experience Using
Patterns.," IEEE Software (22:1), 2005, pp. 24-31.
 169

Hair, J.F., Tatham, R.L., Anderson, R.E., and Black, W. Multivariate data analysis,
Prentice Hall, Upper Saddle River, N.J., 1998.

Hansen, M.T. "The Search-Transfer Problem: The Role of Weak Ties in Sharing
Knowledge across Organization Subunits.," Administrative Science Quarterly (44:1),
1999, pp. 82.

Hare, A.P. Handbook of small group research, Free Press, New York, 1976.

Hare, A.P. "Individual versus groups," In Small group research : a handbook, A. P.
Hare (ed.) Ablex Pub., Norwood, N.J., 1994, pp. 261-270.

Hart, S.G., and Staveland, L.E. "Development of NASA-TLX: Results of empirical and
theoretical research," In Human mental workload, P. A. Hancock and N. Meshkati
(eds.), North-Holland, New York, N.Y., 1988, pp. 139-183.

Hayne, S.C., Smith, C.A.P., and Turk, D. "The effectiveness of groups recognizing
patterns," International Journal of Human-Computer Studies (59:5), 2003, pp. 523-543.

Hertel, G., Niedner, S., and Herrmann, S. "Motivation of software developers in Open
Source projects: an Internet-based survey of contributors to the Linux kernel," Research
Policy (32:7), 2003, pp. 1159-1177.

Highsmith, J.A. Agile software development ecosystems, Addison-Wesley, Boston,
2002.

Hill, G.W. "Group Versus Individual-Performance - Are N + 1 Heads Better Than
One," Psychological Bulletin (91:3), 1982, pp. 517-539.

Hinsz, V.B., and Nickell, G.S. "Positive reactions to working in groups in a study of
group and individual goal decision making," Group Dynamics-Theory Research and
Practice (8:4), 2004, pp. 253-264.

Hinsz, V.B., Tindale, R.S., and Vollrath, D.A. "The emerging conceptualization of
groups as information processors," Psychological Bulletin (121:1), 1997, pp. 43-64.

Hirokawa, R.Y. "Group communication and problem-solving effectiveness I: A critical
review of inconsistent findings," Communication Quarterly (30:2), 1982a, pp. 134-141.

Hirokawa, R.Y. "Group communication and problem-solving effectiveness II: An
exploratory investigations of procedural functions," The Western Journal of Speech
Communication (47), 1982b, pp. 59-74.

 170

Hirokawa, R.Y., and Salazar, A.J. "Task-group communication and decision-making
performance," In The handbook of group communication theory & research, L. R. Frey,
D. S. Gouran and M. S. Poole (eds.), Sage Publications Inc., Thousand Oaks, Calif.,
1999, pp. 167-191.

Hoegl, M., and Gemuenden, H.G. "Teamwork quality and the success of innovative
projects: A theoretical concept and empirical evidence," Organization Science (12:4),
2001, pp. 435-449.

Hoegl, M., Parboteeah, K.P., and Gemuenden, H.G. "When teamwork really matters:
task innovativeness as a moderator of the teamwork-performance relationship in
software development projects," Journal of Engineering and Technology Management
(20:4), 2003, pp. 281-302.

Huberty, C.J., and Morris, J.D. "Multivariate Analysis of Versus Multiple Univariate
Analyses," Psychological Bulletin (105:2), 1989, pp. 302-308.

Hunton, J.E., and Beeler, J.O. "Effects of user participation in systems development: A
longitudinal field experiment.," MIS Quarterly (21:4), 1997, pp. 359.

Hutchins, E. "How a Cockpit Remembers Its Speeds," Cognitive Science (19:3), 1995,
pp. 265-288.

Ilgen, D.R., Hollenbeck, J.R., Johnson, M., and Jundt, D. "Teams in organizations:
From input-process-output models to IMOI models," Annual Review of Psychology
(56), 2005, pp. 517-543.

Irwin, G. "The role of similarity in the reuse of object-oriented analysis models,"
Journal of Management Information Systems (19:2), 2002, pp. 219-248.

Jones, G.R. "Socialization Tactics, Self-Efficacy, and Newcomers Adjustments to
Organizations," Academy of Management Journal (29:2), 1986, pp. 262-279.

Judge, T.A., and Bono, J.E. "Relationship of Core Self-Evaluations Traits -- Self-
Esteem, Generalized Self-Efficacy, Locus of Control, and Emotional Stability -- With
Job Satisfaction and Job Performance: A Meta-Analysis.," Journal of Applied
Psychology (86:1), 2001, pp. 80-92.

Kane, A.A., Argote, L., and Levine, J.M. "Knowledge transfer between groups via
personnel rotation: Effects of social identity and knowledge quality," Organizational
Behavior and Human Decision Processes (96:1), 2005, pp. 56-71.

 171

Kankanhalli, A., Tan, B.C.Y., and Wei, K.K. "Contributing knowledge to electronic
knowledge repositories: An empirical investigation," Mis Quarterly (29:1), 2005, pp.
113-143.

Katz-Navon, T.Y., and Erez, M. "When collective- and self-efficacy affect team
performance," Small Group Research (36:4), 2005, pp. 437-465.

Kerievsky, J. Refactoring to patterns, Addison-Wesley, Boston, 2005.

Krauss, R.M., and Fussell, S.R. "Mututal knowledge and communicative effectiveness,"
In Intellectual teamwork : social and technological foundations of cooperative work, J.
R. Galegher, R. E. Kraut and C. Egido (eds.), L. Erlbaum Associates, Hillsdale, N.J.,
1990, pp. 111-145.

Krueger, C.W. "Software Reuse," Computing Surveys (24:2), 1992, pp. 131-183.

Larman, C. Applying UML and patterns : an introduction to object-oriented analysis
and design and iterative development, Prentice Hall PTR, Upper Saddle River, N.J.,
2004.

Larson, J.R., and Christensen, C. "Groups as Problem-Solving Units - toward a New
Meaning of Social Cognition," British Journal of Social Psychology (32), 1993, pp. 5-
30.

Laughlin, P.R., Bonner, B.L., and Miner, A.G. "Groups perform better than the best
individuals on Letters-to-Numbers problems," Organizational Behavior & Human
Decision Processes (88:2), 2002, pp. 605-620.

Laughlin, P.R., and Ellis, A.L. "Demonstrability and Social Combination Processes on
Mathematical Intellective Tasks," Journal of Experimental Social Psychology (22:3),
1986, pp. 177-189.

Laughlin, P.R., Hatch, E.C., Silver, J.S., and Boh, L. "Groups perform better than the
best individuals on letters-to-numbers problems: effects of group size," Journal of
Personality and Social Psychology (90:4), 2006, pp. 644-651.

Laughlin, P.R., VanderStoep, S.W., and Hollingshead, A.B. "Collective Individual
Induction: Recognition of Truth, Rejection of Error, and Collective Information
Processing," Journal of Personality and Social Psychology (61:1), 1991, pp. 50-67.

Lee, C., and Bobko, P. "Self-Efficacy Beliefs - Comparison of 5 Measures," Journal of
Applied Psychology (79:3), 1994, pp. 364-369.

 172

Levine, T.R., and Hullett, C.R. "Eta squared, partial eta squared, and misreporting of
effect size in communication research," Human Communication Research (28:4), 2002,
pp. 612-625.

Littlepage, G.E., Schmidt, G.W., Whisler, E.W., and Frost, A.G. "An Input-Process-
Output Analysis of Influence and Performance in Problem-Solving Groups," Journal of
Personality and Social Psychology (69:5), 1995, pp. 877-889.

Locke, E.A. "The nature and causes of job satisfaction," In Handbook of industrial and
organizational psychology, M. D. Dunnette (ed.) Rand McNally College Pub. Co.,
Chicago, 1976, pp. 1297-1349.

Majchrzak, A., Cooper, L.P., and Neece, O.E. "Knowledge reuse for innovation,"
Management Science (50:2), 2004, pp. 174-188.

Markus, M.L. "Toward a theory of knowledge reuse: Types of knowledge reuse
situations and factors in reuse success," Journal of Management Information Systems
(18:1), 2001, pp. 57-93.

Marquart, D.I. "Group problem solving," Journal of Social Psychology (41), 1955, pp.
102-113.

Martin, R.C. Agile software development : principles, patterns, and practices, Prentice
Hall, Upper Saddle River, N.J., 2003.

May, D., and Taylor, P. "Knowledge management with patterns.," Communications of
the ACM (46:7), 2003, pp. 94-99.

Mayer, R.E. "From novice to expert," In Handbook of human-computer interaction, M.
Helander (ed.) North-Holland, Amsterdam; New York, 1988, pp. 569-580.

McGrath, J.E. Groups : interaction and performance, Prentice-Hall, Englewood Cliffs,
N.J., 1984.

Mili, H., Mili, F., and Mili, A. "Reusing Software - Issues and Research Directions,"
Ieee Transactions on Software Engineering (21:6), 1995, pp. 528-562.

Montealegre, R., and Keil, M. "De-escalating information technology projects: lessons
from the denver international airport.," MIS Quarterly (24:3), 2000, pp. 417-447.

Morisio, M., Ezran, M., and Tully, C. "Success and failure factors in software reuse,"
Ieee Transactions on Software Engineering (28:4), 2002, pp. 340-357.

 173

Morris, M.G., Speier, C., and Hoffer, J.A. "An examination of procedural and object-
oriented systems analysis methods: Does prior experience help or hinder
performance?," Decision Sciences (30:1), 1999, pp. 107-136.

Mulvey, P.W., and Klein, H.J. "The impact of perceived loafing and collective efficacy
on group goal processes and group performance," Organizational Behavior and Human
Decision Processes (74:1), 1998, pp. 62-87.

Neter, J., Kutner, M.H., Wasserman, W., and Nachtsheim, C.J. Applied linear statistical
models, Irwin, Chicago, 1996.

Newell, A., and Simon, H.A. Human problem solving, Prentice-Hall, Englewood Cliffs,
N.J.,, 1972.

Nijstad, B.A., Stroebe, W., and Lodewijkx, H.F.M. "The illusion of group productivity:
a reduction of failures explanation," European Journal of Social Psychology (36:1),
2006, pp. 31-48.

Nonaka, I. "A Dynamic Theory of Organizational Knowledge Creation," Organization
Science (5:1), 1994, pp. 14-37.

Nonaka, I.o., and Takeuchi, H. The knowledge-creating company, Oxford University
Press, New York Oxford, 1995.

Nosek, J.T. "The Case for Collaborative Programming," Communications of the ACM
(41:3), 1998, pp. 105-108.

Nunnally, J.C. Psychometric theory, McGraw-Hill, New York, 1978.

Ocker, R., Fjermestad, J., Hiltz, S.R., and Johnson, K. "Effects of four modes of group
communication on the outcomes of software requirements determination," Journal of
Management Information Systems (15:1), 1998, pp. 99.

Oetzel, J.G. "Self-construals, communication processes, and group outcomes in
homogeneous and heterogeneous groups," Small Group Research (32:1), 2001, pp. 19-
54.

Parrish, A., Smith, R., Hale, D., and Hale, J. "A field study of developer pairs:
Productivity impacts and implications," IEEE Software (21:5), 2004, pp. 76-79.

Parsons, J., and Saunders, C. "Cognitive heuristics in software engineering: Applying
and extending anchoring and adjustment to artifact reuse," IEEE Transactions on
Software Engineering (30:12), 2004, pp. 873-888.

 174

Pavitt, C. "Why we still have to be reductionists about group memory," Human
Communication Research (29:4), 2003, pp. 624-629.

Pescosolido, A.T. "Informal leaders and the development of group efficacy.," Small
Group Research (32:1), 2001, pp. 74.

Phillips, G.M. Communication and the small group, Bobbs-Merrill, Indianapolis,, 1966.

Poole, M.S., and Hirokawa, R.Y. "Introduction: Communication and group decision
making," In Communication and group decision making, R. Y. Hirokawa and M. S.
Poole (eds.), SAGE Publications, Thousand Oaks, Calif., 1996, pp. 3-18.

Poppendieck, M. "Wicked Projects," Software Development Magazine, May 2002.

Prechelt, L., Unger, B., Tichy, W.F., Brossler, P., and Votta, L.G. "A controlled
experiment in maintenance comparing design patterns to simpler solutions," IEEE
Transactions on Software Engineering (27:12), 2001, pp. 1134-1144.

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., and Tichy, W.F. "Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance," IEEE Transactions on Software Engineering (28:6), 2002, pp. 595-606.

Prieto-Diaz, R. "Status report: software reusability," Software, IEEE (10:3), 1993, pp.
61-66.

Propp, K.M. "In search of the assembly bonus effect: Continued exploration of
communication's role in group memory," Human Communication Research (29:4),
2003, pp. 600-606.

Purao, S., Storey, V.C., and Han, T.D. "Improving analysis pattern reuse in conceptual
design: Augmenting automated processes with supervised learning," Information
Systems Research (14:3), 2003, pp. 269-290.

Reeves, W.W. Cognition and complexity : the cognitive science of managing
complexity, Scarecrow Press, Lanham, Md., 1996.

Rehder, B., Pennington, N., and Lee, A.Y. "Scoring the completeness of software
designs," Journal of Systems and Software (36:1), 1997, pp. 33-68.

Richter, C. "Design Problems and Object-Oriented Solutions," Objective Engineering,
Inc.,http://www.oeng.com/problemsandsolutions.htm, 2004, Last Accessed: 6th
December, 2006

 175

http://www.oeng.com/problemsandsolutions.htm

Ringelmann, M. "Recherches sur les moteurs animés: travail de l'homme," Annales de
l'Insitut National Agronomique (2nd series:12), 1913, pp. 1-40.

Rising, L. "Patterns: A way to reuse expertise," Ieee Communications Magazine (37:4),
1999, pp. 34-36.

Roberts, T.L., Leigh, W., Purvis, R.L., and Parzinger, M.J. "Utilizing knowledge links
in the implementation of system development methodologies," Information and
Software Technology (43:11), 2001, pp. 635-640.

Robillard, P.N. "The role of knowledge in software development.," Communications of
the ACM (42:1), 1999, pp. 87-92.

Rothenberger, M.A. "Project-level reuse factors: Drivers for variation within software
development environments," Decision Sciences (34:1), 2003, pp. 83-106.

Salanova, M., Llorens, S., Cifre, E., Martinez, I.M., and Schaufeli, W.B. "Perceived
collective efficacy, subjective well-being and task performance among electronic work
groups - An experimental study," Small Group Research (34:1), 2003, pp. 43-73.

Salazar, A.J., Hirokawa, R.Y., Propp, K.M., Julian, K.M., and Leatham, G.B. "In
Search of True Causes - Examination of the Effect of Group Potential and Group-
Interaction on Decision Performance," Human Communication Research (20:4), 1994,
pp. 529-559.

Sarker, S., Sarker, S., Nicholson, D.B., and Joshi, K.D. "Knowledge transfer in virtual
systems development teams: An exploratory study of four key enablers," IEEE
Transactions on Professional Communication (48:2), 2005, pp. 201-218.

Schmidt, D. "Using design patterns to guide the development of reusable object-
oriented software," ACM Computing Surveys (28:4es), 1996, pp. 162.

Schmidt, D.C., Fayad, M., and Johnson, R.E. "Software Patterns.," Communications of
the ACM (39:10), 1996, pp. 36-39.

Sen, A. "The Role of Opportunism in the Software Design Reuse Process.," IEEE
Transactions on Software Engineering (23:7), 1997, pp. 418-436.

Shaft, T.M., and Vessey, I. "The Role of Cognitive Fit in the Relationship Between
Software Comprehension and Modification," MIS Quarterly (30:1), 2006, pp. 29-55.

Shaw, J.D., Duffy, M.K., and Stark, E.M. "Interdependence and preference for group
work: Main and congruence effects on the satisfaction and performance of group
members," Journal of Management (26:2), 2000, pp. 259-279.
 176

Shaw, M.E. "A comparison of individuals and small groups in the rational solution to
complex problems," American Journal of Psychology (44), 1932, pp. 491-504.

Simon, H.A. "The structure of ill structured problems," Artificial Intelligence (4), 1973,
pp. 181-201.

Singley, M.K., and Anderson, J.R. The transfer of cognitive skill, Harvard University
press, Cambridge, Mass., 1989.

Smith, H.J., and Keil, M. "The reluctance to report bad news on troubled software
projects: a theoretical model.," Information Systems Journal (13:1), 2003, pp. 69-95.

Sonnentag, S. "Excellent performance: The role of communication and cooperation
processes," Applied Psychology-an International Review-Psychologie Appliquee-Revue
Internationale (49:3), 2000, pp. 483-497.

Speier, C., and Morris, M.G. "The influence of query interface design on decision-
making performance," MIS Quarterly (27:3), 2003, pp. 397-423.

Stajkovic, A.D., and Luthans, F. "Self-efficacy and work-related performance: A meta-
analysis.," Psychological Bulletin (124:2), 1998, pp. 240.

Standish Group "Extreme Chaos," The Standish Group, 2001.

Stasser, G., and Stewart, D. "Discovery of Hidden Profiles by Decision-Making Groups
- Solving a Problem Versus Making a Judgment," Journal of Personality and Social
Psychology (63:3), 1992, pp. 426-434.

Stasser, G., and Titus, W. "Pooling of Unshared Information in Group Decision-Making
- Biased Information Sampling During Discussion," Journal of Personality and Social
Psychology (48:6), 1985, pp. 1467-1478.

Steiner, I.D. Group process and productivity, Academic Press, New York, 1972.

Swap, W., Leonard, D., Shields, M., and Abrams, L. "Using mentoring and storytelling
to transfer knowledge in the workplace," Journal of Management Information Systems
(18:1), 2001, pp. 95-114.

Taggar, S., and Seijts, G.H. "Leader and staff role-efficacy as antecedents of collective-
efficacy and team performance," Human Performance (16:2), 2003, pp. 131-156.

 177

Thomas-Hunt, M.C., Ogden, T.Y., and Neale, M.A. "Who's really sharing? Effects of
social and expert status on knowledge exchange within groups," Management Science
(49:4), 2003, pp. 464-477.

Thompson, L., Gentner, D., and Loewenstein, J. "Avoiding missed opportunities in
managerial life: Analogical training more powerful than individual case training,"
Organizational Behavior and Human Decision Processes (82:1), 2000, pp. 60-75.

Thorndike, E.L. Principles of Teaching, A. G. Seiler, New York, 1906.

Tiwana, A. "An empirical study of the effect of knowledge integration on software
development performance," Information and Software Technology (46:13), 2004, pp.
899-906.

Tiwana, A., and McLean, E.R. "Expertise integration and creativity in Information
Systems Development," Journal of Management Information Systems (22:1), 2005, pp.
13-43.

Triplett, N. "The dynamogenic factors in pacemaking and competition," American
Journal of Psychology (9), 1898, pp. 507-33.

Tschan, F. "Communication Enhances Small-Group Performance If It Conforms to
Task Requirements - the Concept of Ideal Communication Cycles," Basic and Applied
Social Psychology (17:3), 1995, pp. 371-393.

Wallace, L., and Keil, M. "Software projects risks and their effect on outcomes.,"
Communications of the ACM (47:4), 2004, pp. 68-73.

Walz, D.B., Elam, J.J., and Curtis, B. "Inside a software design team: Knowledge
acquisition, sharing, and integration.," Communications of the ACM (36:10), 1993, pp.
63-77.

Whiteoak, J.W., Chalip, L., and Hort, L.K. "Assessing group efficacy - Comparing three
methods of measurement," Small Group Research (35:2), 2004, pp. 158-173.

Williams, L., Kessler, R.R., Cunningham, W., and Jeffries, R. "Strengthening the case
for pair programming," IEEE Software (17:4), 2000, pp. 19-25.

Williams, L.A., and Kessler, R.R. "All I Really Need to Know About Pair Programming
I Learned in Kindergarten," Communications of the ACM (43:5), 2000, pp. 108-114.

Wittenbaum, G.M., and Staseer, G. "Management of information in small groups," In
What's social about social cognition? : research on socially shared cognition in small

 178

groups, J. L. Nye and A. M. Brower (eds.), Sage Publications, Thousand Oaks, Calif.,
1996, pp. 3-28.

Wood, R., and Bandura, A. "Social Cognitive Theory of Organizational Management,"
Academy of Management Review (14:3), 1989, pp. 361-384.

Yeatts, D.E., and Hyten, C. High-performing self-managed work teams : a comparison
of theory to practice, Sage Publications, Thousand Oaks, 1998.

Yi, M.Y., and Davis, F.D. "Developing and Validating an Observational Learning
Model of Computer Software Training and Skill Acquisition.," Information Systems
Research (14:2), 2003, pp. 146.

Zaccaro, S.J., Blair, V., Peterson, C., and Zazanis, M. "Collective Efficacy," In Self-
efficacy, adaptation, and adjustment : theory, research, and application, J. E. Maddux
(ed.) Plenum Press, New York, 1995, pp. 395.

Zajonc, R.B. "Social facilitation.," Science (149:3681), 1965, pp. 269-274.

Zellmer-Bruhn, M.E. "Interruptive events and team knowledge acquisition,"
Management Science (49:4), 2003, pp. 514-528.

 179

BIOGRAPHICAL INFORMATION

George Mangalaraj holds Bachelors in Mechanical Engineering degree from the

Coimbatore Institute of Technology, India; Post Graduate Diploma in Management

from Indira Gandhi National Open University, India; and Masters in Information

Systems degree from the University of Texas at Arlington. He has nearly five years of

industry experience that include experience in software development. He has published

his research in refereed journals and conference proceedings. With his teaching and

research, he hopes to make a positive impact on the academic community.

 180

	Demographics and Background Questions
	Task Load Index
	Demographics and Background Questions
	Task Load Index
	Demographics and Background Questions
	Task Load Index
	Demographics and Background Questions
	Task Load Index

