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ABSTRACT

CONVEX VERSIONS OF MULTIVARIATE ADAPTIVE REGRESSION
SPLINES AND IMPLEMENTATIONS FOR COMPLEX
OPTIMIZATION PROBLEMS

Publication No.

DACHUAN THOMAS SHIH, Ph.D.

The University of Texas at Arlington, 2006

Supervising Professors: Victoria C. P. Chen and Seoung Bum Kim

Multivariate Adpative Regression Splines (MARS) provide a flexible statistical
modeling method that employs forward and backward search algorithms to identify the
combination of basis functions that best fits the data. In optimization, MARS has been
used successfully to estimate the value function in stochastic dynamic programming,
and MARS could be potentially useful in many real world optimization problems where
objective (or other) functions need to be estimated from data, such as in simulation op-
timization. Many optimization methods depend on convexity, but a nonconvex MARS
approximation is inherently possible because interaction terms are products of univariate
terms. In this dissertation, convex versions of MARS are proposed. In order to ensure
MARS convexity, two major modifications are made: (1) coefficients are constrained

such that pairs of basis functions are guaranteed to jointly form convex functions; (2)

vi



The form of interaction terms is appropriately changed. Finally, MARS convexity can

be achieved by the fact that the sum of convex functions is convex.

The implementation of MARS for approximating complex optimization functions
can involve hundreds to thousands of state or decision variables. In particular, this
research studies application to an inventory forecasting stochastic dynamic programming
problem and an airline fleet assignment problem. Although one can simply attempt
a MARS approximation over all the variables, prior research on the fleet assignment
application indicates that many variables have little effect on the objective. Thus, a
data mining step to conduct variable selection is needed. This step separates potentially
critical variables from clearly redundant ones. In this dissertation, variants of two data
mining tools are explored separately and in combination for variable selection : regression

trees and multiple testing procedures based on false discovery rate.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The central objective of operations research is optimization [21], i.e., “to do things
best under the given circumstances.” This general concept has a great many applications,
for instance, in airline fleet assignment [41], distribution of goods and resources [3], emer-
gency and rescue operations [2], environmental management [58], financial planning [39],
inventory control [15], manpower and resource allocation [12], manufacturing of goods [9],
production process control [42], risk management [36], sequencing and scheduling of
tasks [37], telecommunications [29], and traffic control [48]. The well-known problem
of maximizing a linear function over a convex polyhedron is known as linear program-
ming [22, 35], and the general problem of convex optimization is to find the minimum

of a convex (or quasiconvex) function on a finite-dimensional convex body [50].

Computer modeling is having a profound effect on scientific research. Many pro-
cesses are so complex that physical experimentation is too time consuming or too ex-
pensive; or, as in the case of weather modeling, physical experiments may simply be
impossible. As a result, experiments have increasingly turned to mathematical models
to simulate these complex systems. Advances in computational power have allowed both
greater complexity and more extensive use of such models. Virtually every area of sci-
ence, engineering, and technology is affected. A computer experiment [43] is a number
of runs of the code with various inputs. Often, the codes are computationally expensive

to run, and a common objective of an experiment is to obtain a computationally-efficient
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response surface approximation (a.k.a., metamodel) of the output. The purpose of design
and analysis of computer experiments (DACE) is to provide methods for conducting com-
puter experiments to build a metamodel that can be efficiently employed to improve the
performance of a complex system. The computer experiment is typically a simulation
model [?], but in this dissertation, the computer experiments are all optimization models.
Recent reviews of DACE methods are given in Chen, Tsui, Barton and Allen [19] and

Chen, Tsui, Barton and Meckesheimer [20].

Multivariate adaptive regression splines (MARS) have been applied in DACE-based
approaches for continuous-state stochastic dynamic programming (SDP, [13, 15, 16, 18,
53, 52, 57]), Markov decision processes (MDP, [17, 47]), and, most recently, two-stage
stochastic programming (SP, [41]). The DACE-based SDP and MDP approaches used
an experimental design to discretize the continuous (or near-continuous) state space, and
then used MARS to approximate the continuous value function over the state space. In
particular, the MDP application studied an airline revenue management problem with
the objective of more accurately estimating the fair market value of a seat over time. The
two-stage SP problem studied an airline fleet assignment model that seeks an assignment
of aircraft in the first stage that swapping of crew-compatible aircraft can be achieved in
the second stage to maximize expected revenue. The DACE approach for SP was used
to create a MARS approximation of the first-stage expected profit objective function, so

as to speed up the first-stage optimization.

Under the assumption that an optimization function f is convex, it is desired that
the response surface model f that estimates f be convex as well. For example, in the
above-mentioned SDP, MDP, and SP problems, the underlying function is theoretically
convex. Convexity is not a typical assumption of statistical modeling methods, and a
specialized approach must be developed. There are several options for DACE metamod-

eling, including polynomial response surface models [7], spatial correlation models, a.k.a.,



kriging [43], MARS, regression trees [11, 26, and artifical neural networks [31]. However,
of these, only parametric polynomial models and MARS can be adapted to accommo-
date the convexity constraint. Because parametric polynomial models are known to be
insufficient for complex approximations, MARS is the best option. Convex-MARS uses
the modification of both the MARS basis functions and algorithms to build a sum of

convex functions; therefore, the final approximation will be convex.

In practice, large-scale complex optimization can involve hundreds or thousands
of variables. Although in a DACE-based approach one can simply attempt a MARS
approximation over all these variables, many of the variables may have little effect on the
performancce of objective. Thus, in order to be computationally-efficient, a data mining
step to conduct variable selection is needed. This step separates potentially critical
variables from clearly redundant ones. Data mining is the process of exploration and
analysis, by automatic or semi-automatic means, of large quantities of data in order to
discover meaningful patterns and rules (Berry and Linoff [5]). Statistical data mining
is exploratory data analysis with little or no human interaction using computationally

feasible techniques, i.e., the attempt to find unknown interesting structure (Wegman [56]).

The problem of variable selection or subset selection arises in data mining when
one wants to explain a response variable of interest by means of a subset of the candidate
explanatory variables, but there is uncertainty about which subset to use. Variable
selection is particularly of interest when the number of candidate explanatory variables
is large, and many redundant or irrelevant variables are thought to be present. Variable
selection methods have been developed in regression problems, where the number of
observations (n) is larger than the number of variables (p). Since in a DACE-based
approach, each observation requires a computationally-expensive computer experiment
run, variable selection should ideally be conducted after a small number of computer

experiment runs, likely fewer runs (n) than the number of variables (p). In order to



address this “large p and small n” problem, this dissertation studies a multiple testing

procedure based on the false discovery rate (FDR,[4]) and regression trees [11].

1.2 Research framework

This dissertation addresses two critical components for optimization computer ex-

periments:

1. Identification of potentially important input explanatory variables via data mining
variable selection for the “large p and small n” problem.

2. Convexity of a MARS response surface model fit to computer experiment data.

The approaches proposed in this dissertation and existing methods explored are listed in
Table 1.1 and described briefly below. Although variable selection is conducted prior to

fitting Convex-MARS, the latter will be presented first in this dissertation.

Table 1.1.Summary of the related methodologies in this dissertation

Proposed Methodologies Existing Methodlogies

Statistical Data Mining FDR/CART CART

Inverse FDR FDR

Statistical Modeling Convex-MARS-I MARS
Convex-MARS-II ASR-MARS

Convex-MARS-II-T

Convexity of the MARS approximation requires re-structuring and constraining
the basis functions that comprise MARS. Two versions of re-structuring of the MARS
interaction basis functions are developed, where the Convex-MARS-I is simpler, but
Convex-MARS-II is more flexible. MARS uses a forward search to select basis functions
and a backward search to “prune” basis functions. At each iteration, the method of

least squares, which has a closed form solution, is used to fit the coefficients of the basis



functions. Rather than creating a constrained least squares optimization problem that
would require a numerical optimization method, the methods in this dissertation modify
the forward and backward algorithms to specifically check that the least squares estimates
satisfy the constraints for convexity. A variant of Convex-MARS-II (Convex-MARS-II-
T) is developed that sets a conservative threshold on satisfaction of the constraints to
speed up the search algorithms. Ultimately, convexity is guaranteed by constructing an

approximation that is a sum of convex terms.

To address the “large p and small n” variable selection problem, this dissertation
studies regression trees [11] and a multiple testing procedure based on the FDR [4]. The
algorithm of classification and regression trees (CART) uses binary recursive partitioning
to separate the explanatory variable space into rectangular regions based on similarity
of the response (performance measure) values. Variables that are used to partition the
space are considered to be important. FDR uses the p-values from separate hypothesis
tests on each of the explanatory variables, and the key is identifying the threshold p-
value that separates the important variables from the unimportant ones. However, FDR
procedures were traditionally developed for classification, and not regression, so two
new versions are developed to handle the continuous or near-continuous nature of our
optimization functions that form the underlying response surfaces. The first FDR version
uses CART to categorize the the performance measure observations into a finite set of
groups (FDR/CART). The second version develops Inverse FDR, in which the groupings
are based on the explanatory variables, instead of on the responses. Further discussion
about statistical modeling methods for DACE and data mining approaches are given
in Chapter 2. Background on the MARS algorithm will also be provided in Chapter 2.
Convex versions of MARS will be described in Chapter 3 with computational results using

an inventory forecasting SDP problem [18, 15]. Chapter 4 presented the variable selection



approaches and computational results using a two-stage SP airline fleet assignment model

[41]. Finally, the conclusions and future work are given in Chapter 5.



CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

2.1 Statistical Modeling Methods for Regression

Many references on statistical modeling methods for computer experiments and
data mining may be found in Chen, Tsui, Barton and Allen [19], Chen, Tsui, Barton and
Meckesheimer [20] and Tsui, Chen, Jiang and Aslandogan [54]. A brief explanation of

candidate methods for DACE-based optimization is given below.

2.1.1 Polynomial Response Surface Models

Box and Wilson [8] proposed response surface modeling. The main goal was to
identify the levels of the explanatory variables x over the experimental region D that
optimized the mean response 7. Steepest ascent with first-order models were used to
move towards the region of the optimum, and then second-order models were used to
find a stationary point that defined a maximum, minimum, or saddle point. The general
form of a response surface (RS) model is a polynomial of degree d:

F@:B) =B+ Bimi+ D> Biwjme+ > i)
j

o k>j J

Z Z Z Bjkl:rjxkg:l + ...+ Z Bj,j,.__,j.’bg.

i k>j 1>k j
RS models are relatively easy to use, since they are linear models, and the linear model
tools may be applied. The disadvantage is that if the selected polynomial form does not
match the true response surface, then the model is inadequate. More references for RS

models can be found in Box and Draper [7] and Myers and Montgomery [40].
7



2.1.2 Spatial Correlation Models

Spatial correlation or “kriging,” models first appeared in the field of geostatis-
tics [38]. These models are now prevalent in the area of spatial statistics [33]. Kriging for
computer experiments uses a Bayesian perspective (e.g., [43]) to model each computer
experiment observation as a realization from a stochastic process, even though the com-
puter experiment is deterministic. The general form models the “stochastic” response Y

as a function of the explanatory variables x:
Y(@) =Yy Bmhim(2) + Z(2),

where the linear model component consists of known functions h,(z) with unknown
coefficients f3,,, and the stochastic component Z(z) is a random process, commonly
assumed to be Gaussian, with mean zero and covariance functions (covariogram) decayed

with distance.

2.1.3 Tree-based Models

CART, developed by Breiman et al. [11], has been a popular data mining tool
for supervised learning in data mining. It is essentially an approach utilizing recursive
partitioning (binary splits), with a forward stepwise procedure that adds model terms
and backward procedure for pruning. The model terms partition the explanatory variable

x-space into disjoint hyper-rectangular regions via indicator functions:
bt (k) = 1{z >k}, b (z;k)=1{z <k}, (2.1)

where the “split-point” k defines the separation of the regions. The model terms B,, are

the basis functions of the approximation with unknown coefficients. A univariate basis



function is a single indicator function; while an interaction basis function is a product of

univariate basis functions. The CART model form is then

f@:8) =B+ 3 BrBu(). (2.2)

The partitioning of the x-space does not keep the parent model terms since they are

redundant. For instance, assume the current set has the model term:
B,(x) = 1{x3 > 6} - 1{z4 < 8}, (2.3)
and the forward stepwise algorithm chooses to add
By(z) = By(x){z7 > 11} = 1{z3 > 6} - 1{zy < 8} - 1{z7; > 11}. (2.4)

Then the model term, in this case a parent basis function, B,(x) is dropped from the
current set. Thus, the recursive partitioning algorithm produces a binary tree with the
current set of model terms B,, (&) consisting of the M leaves or terminal nodes of the tree,
each of which corresponds to a different region R,,. In particular, the final regression tree
approximation tends to consist of higher-order interactions instead of lower-order terms,
which is the major drawback of CART. For the case of regression, CART minimizes the
squared error loss function, and the approximation is a piecewise-constant function. In
the classification regression tree, each region R,, is classified to one of the C classes. The

algorithm is exactly the same as for regression, but with a different loss function.

Friedman et al. [27] introduced the concepts of boosting (Freund and Schapire [24];
Schapire [44]) and bagging (Breiman [10]). The bagging approach fits the decision tree
model several times on boostrap subsamples and uses the average of the decision trees.
The idea of boosting is to improve the accuracy of a given learning algorithm. The
boosted trees or multiple adaptive regression trees (MART, Friedman [26]) consist of
lower-order interaction terms. More detail can be found in Hastie et al. [30] and Chen et

al. [19].
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2.1.4 Artificial Neural Network (ANN)

Artificial neural network (ANN) models are very popular in engineering (see Lipp-
mann [34] or Haykin [31] for details). Like many non-linear data modeling approaches,
ANNSs can be used to model complex relationships between response and explanatory
variables. In general, an ANN model is represented by a diagram of nodes in various
layers with weighted connections between nodes in different layers. This structure can be
used to represent a variety of statistical model forms, including multiple linear regression
and projection pursuit regression (Hastie et al. [30]). Nodes in the input layer represent
the explanatory variables, and nodes in the output layer represent the response vari-
able(s). For a linear regression model, there is no hidden layer, but more complex models
require at least one “hidden” layer in between the input and output layers. Transforma-
tions between layers (e.g., input to hidden) are defined by activation functions, of which

there are many forms (Haykin [31]).

2.1.5 Multivariate Adaptive Regression Splines (MARS)

Friedman [25] developed MARS as a statistical method for high-dimensional mod-
eling with interactions. The MARS model is a linear statistical model with a forward
stepwise algorithm to select model terms followed by a backward procedure to find the
best subset of the model terms. Prior to MARS, Friedman and Silverman [28] developed
a univariate(additive) version. A MARS approximation bends to model curvature at
various “knot” locations, and one of the objectives of the forward stepwise algorithm is
to select appropriate knots. MARS is flexible yet can be easily implemented, with the
computational effort dependent in part on the number of basis functions added to the

model. The MARS approximation has the general form

~
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where By,(x) initially is a basis function of the form described below in Equation (2.6)
that later can be smoothed, M is the number of linearly independent basis functions,
and [, is the unknown coefficient for the m-th basis function. In the forward stepwise

algorithm, univariate basis functions are truncated linear functions,
b (zk) = [+ — k)4, b (31k) =[-(z — k)], (2.6)

where [¢], = max{0, ¢} and k is a univariate knot. Basis functions in pairs corresponding
to the two forms above are added in the algorithm. Each explanatory variable is sepa-
rately assigned a set of eligible knots, and the knots are chosen to coincide with the input
levels represented in the data. Interaction basis functions are created by multiplying an
existing basis function with the two forms of the truncated linear function involving a
new variable. Both the existing basis function and the newly created interaction basis
function are considered in the MARS approximation. Thus, the form of the m-th basis

function can be written as

Lm

Bm(w) = H[Sl,m : (x'u(l,m) - kl,m)]-l— s (27)

1=1
where 7, is the explanatory variable corresponding to the I-th truncated linear func-
tion in the m-th basis function, k;,, is the knot value corresponding to Zym), and s;,
is +1 or —1. The search for new basis functions can be restricted to interactions of
a maximum order (e.g., L,, < 3 permits up through three-factor interactions). Using
a generalized cross-validation selection criterion, basis functions are added a pair at a
time; i.e., both forms of Equation (2.6). The algorithm stops when M., basis functions
have been selected, where M, is user-specified. In most cases, two-way or three-way

interactions should be sufficient. More details on MARS will be covered in Section 2.2.
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2.1.6 Support Vector Machines for Regression

Vapnik, Steven Golwich, and Alex Smola [55] proposed a version of a support
vector machines for regression, called support vector regression (SVR) in 1997, which is a
supervised learning method. The idea of SVR is to simultaneously minimize the empirical
classification error rate and maximize the geometric margin. The model produced by SVR
only depends on a subset of the training data, because the cost function for building the
model ignores any training data that is in the neighborhood of the model prediction.

Further details on SVR can be referred in Collobert and Sengio [23] and Hastie et al. [30].

2.2 Versions of MARS

Since this dissertation focuses on MARS, further details are provided in this section.
Section 2.2.1 describes the smoothed version of MARS. Then parallelized versions of
MARS [1][51] are introduced in Section 2.2.2. Finally, Section 2.2.3 presents flexible

implementations of MARS [52].

2.2.1 Smoothing MARS

The DACE-based SDP problems call for a nonlinear minimization method because
the future value functions and their MARS approximations are both nonlinear. One of
the most efficient ways to find the optimum is using first and second derivatives. Clearly,
a piecewise-linear approximation like MARS, does not possess continuous derivatives.
Friedman’s MARS provides a continuous first derivative and a continuous second deriva-
tive everywhere except at the side knots by replacing the truncated linear basis functions
[£(z — k)]+ in the forward and backward stepwise algorithms with cubic functions. To
give MARS continuity and a continuous second (including first) derivative at the side

knots, quintic functions derived by Chen et al. [14] are used in place of Friedman’s cubic
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functions. Chen [14] discovered that when the center knot & is too far from the midpoint
between k_ and k4, nonconvexities are possible in the cubic and quintic basis functions.

Specifically, when we have

k. —
e k<ng=1, or
ki —k- 5

(2.8)
k_k_<2V8——1
ki—Fk. ~5

2.2.2 Parallel Computing for MARS

The idea for parallel computing is based on the fact that the task of solving a
problem usually can be divided into a number of smaller jobs, which may be carried
out simultaneously. In general, parallel computing refers to solving intensive computa-
tional problems via parallel computers in order to obtain the solution faster. A parallel
computer is a set of processors working jointly to solve a computational problem. Two
versions of MARS parallel computing algorithms have been developed. One of them
uses a B-splines version of MARS [1], developed for numerical stability based on pure
piecewise-linear basis functions. The other was developed by Tsai [51] and was utilized

within a decision-making framework (DMF) based on Chen et al. [15].

2.2.3 Flexible Implementations of MARS

Two flexible implementations of MARS were constructed by Tsai [51]: (i) Auto-
matic Stopping Rules for MARS (ASR-MARS) and (ii) Robust MARS. Instead of using
the original MARS stopping rule that depends on a user-specified Mp., in the MARS
forward stepwise algorithm, ASR-MARS stops automatically based on the usage of the
coefficient of determination or adjusted coefficient of determination. Robust MARS aims

to obtain a MARS approximation that is less sensitive to extreme points through se-
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lecting the lower-order terms over the high-order ones given the contributions or fits are

comparable.
(i) MARS with Automatic Stopping Rules

Two automatic stopping rules are established based on the changes in the (adjusted)
coefficient of determination. The first automatic stopping rule (ASR-I) computes the
difference between the previous R? (or R?) and the current R? (or R?). The second
automatic stopping rule (ASR-II) is similar to ASR-I but the proportion of the change
in R? and R? is considered as the basis for comparison. The accepted tolerance for the

difference or the proportion of the change are user-specified.
(ii) Robust MARS

Robust MARS essentially creates an approximation function with lower-order in-
teractions that has comparably good fit to the data as the original MARS approximation.
It is considered “robust” because lower-order interactions are less sensitive to extreme

points.

2.3 Data Mining

In a multiple hypothesis test, evaluating the number of false positives is essential
since a pure use of individual inference procedures leads to a significant number of false
positives (Benjamini and Hochberg [4]). Table 2.1 shows the possible outcomes from m
hypothesis tests. Family-Wise Error Rate (FWER), traditionally used as a family error
rate in the scope of multiple hypothesis testing, is defined as the probability of creating

one or more false rejections, i.e.,
FWER =Pr[V > 1], (2.9)

where V' is the number of rejected hypotheses given the null hypothesis is true.
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Table 2.1.0utcomes from the multiple hypothesis tests of size m

Accept Hy; Reject Hy; Total

True HOi U V mo
False Hy; T S my
Total w R; m

Shaffer [45] summarized a number of methods controlling the FWER. One of the
most extensively used methods is the Bonferroni method, which rejects Hy; if p; < o,
where p; is the p-value of the i-th hypothesis (i.e., Hy;). Typically, «; is set identically for
all hypotheses (e.g., a; = =). Thus, the overall FWER is less than «. Other family-wise
methods were developed to enhance the power of the Bonferroni method. However, they
tend to be overly conservative in terms of detecting false hypotheses. Otherwise stated,

they can barely reject the null hypothesis given it is false.

Benjamini and Hochberg [4] introduced FDR, defined as the expected proportion
of false positives out of all rejected null hypotheses. The advantage of FDR is to identify
as many significant hypotheses as possible while maintaining a small number of false
positives (Storey and Tibshirani [49]; Kim et al. [32]). With a large family of hypotheses,
the advantages over FWER are substantial. In Table 2.1, R; is the number of rejected
null hypotheses, and V' is the number of falsely rejected null hypotheses. Then FDR is
defined as

o[ ] -5 2] o
Benjamini and Hochberg [4] proved that an ordered p-value controls the specified FDR.
The general FDR-procedure to determine significant variables is as follows: Consider a

set of hypotheses, p-values, and ordered p-values, denoted Hy;, p;, and p(;), respectively.

e Select a constant a, where 0 < o < 1.
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6]

e Find 7 = max i pe) < -W—O], where mo(= 72) denotes the proportion of true

HOi-
o If i > 1, Q = {All rejected Hy; with p; < p(;)} with FDR(Q) < « ; elseif 7 = 0, do

not reject any hypothesis since 2 = ().

Kim et al. [32] described an approach to statistical inference of independence of cate-
gories in each cell in the large-scale contingency table within the FDR framework and
applied their procedure to identify a number of amino acids involved in (-sheet bridges

in protein.



CHAPTER 3
CONVEX MARS

This chapter focuses on the development of Convex-MARS. A detailed discussion
for convex univariate basis functions is presented in Section 3.1 followed by Section 3.2,
which explains in detail the necessity of building a convex form of interaction terms. The
concepts of convex sets and convex functions are particularly important in optimization,
and derivative calculations are often employed for efficient optimization. To guarantee
MARS convexity, two major modifications are made: (1) coefficients are constrained such
that pairs of univariate basis functions are guaranteed to jointly form convex functions;
(2) The form of interaction basis functions is appropriately changed. A convexity proof is
provided for the pairs of univariate basis functions in quintic form in Section 3.3, and in
Section 3.4.2 this proof is extended for the new convex form of the interaction basis func-
tions. Two versions of Convex-MARS are derived. Section 3.4 describes Convex-MARS-I,
and Section 3.5 describes Convex-MARS-II. The primary difference is the convex form of
the interaction basis functions, where Convex-MARS-I is simpler, but Convex-MARS-II
is more flexible. In addition, Section 3.5.5 describes Convex-MARS-II-T, a variant for

Convex-MARS-II.

Modifications of the MARS algorithms are needed to fit Convex-MARS. Friedman’s
MARS Forward Stepwise Algorithm [25], used to adaptively select basis functions based
on lack-of-fit, is shown in Algorithm 2. Friedman refers to the explanatory variables
as covariates, so this terminology is used in this chapter. Both Convex-MARS-I and

Convex-MARS-II require the following algorithms:

17
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e Convex Interaction Transformation Algorithm (CIT) (Algorithms 1 and 5).
e Forward Coefficient Restriction Algorithm (FCR) (Algorithms 3, 6, and 8).
e Backward Iteration of Pruning and Refitting (BIPR) (Algorithms 4 and 7).

The CIT algorithms create the convex forms of the interaction basis functions. The
FCR algorithms are modifications of Friedman’s Forward Stepwise Algorithm that incor-
porates convexity restrictions on the model coefficients while selecting basis functions.
Following this, the BIPR algorithms check for nonconvexities and eliminate them. In the
original implementation, the Convex-MARS algorithm could build the approximation
by iterating between the FCR and BIPR algorithms. However, it was discovered that
setting a stricter (more conservative) threshold on the convexity restrictions in the FCR
algorithm might yield better approximation faster, and this led to Convex-MARS-II-T
that uses Algorithm 8. Finally, Section 3.6.1 presents computational results using a four-
dimensional and a nine-dimensional inventory forecasting stochastic dynamic program
studied by Chen et al. [18]. The value function is known to be convex, and the quality

of fit produced by Convex-MARS is compared to that of ASR-MARS [51].

3.1 Convex Univariate Terms

A univariate basis function is either unpaired or one of a pair added corresponding
to the two forms in Equation (2.6). An unpaired univariate basis function takes on only
one of the forms in Equation (2.6). In this case, it will only form a convex term in the
MARS approximation if its coefficient is nonnegative. In the case of a pair of univariate
basis functions, the coefficients of a pair are considered together. For example, the top
two plots in Figure 3.1 display two forms in Equation (2.6) with £ = 0. The lower left plot
in Figure 3.1 shows the sum of a pair of univariate terms that yields a convex function

while the lower right plot shows the sum of a pair that yields a concave function. The key
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is the sum of the coefficients for the pair. For the convex function, the two coefficients are
1.0 and —0.5, which sums to 0.5. However, for the concave function, the two coefficients
are 1.0 and —1.5, which sums to —0.5. It can be seen that the critical value of the sum

is zero, so a convex function can be guaranteed if that sum is nonnegative.
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Figure 3.1. Pair of basis functions.

3.2 Form of Interaction Basis Functions

A nonconvex MARS approximation is inherently possible because interaction terms
are products of univariate terms. In this case, a convex form of interaction basis functions
for MARS must be properly developed, in order to ensure MARS convexity. In other
words, not only the coefficient for the interaction basis function must be constrained, but
also a new convex form is needed to successfully construct Convex MARS. In particular,

original MARS utilizes a simple routine for smoothing each basis function to achieve con-
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tinuous derivatives, and ideally the new convex interaction basis functions would utilize
the same smoothing routine. Thus, the Convex-MARS versions in this dissertation are
constructed so that the smoothing in Section 2.2.1 can be applied. The major difference
is a transformation of the interaction basis functions must be performed to achieve a
convex form prior to using the smoothing routine. This transformation depends on what
form of convex interaction basis functions is used. One alternative for the transformation
is rotation of the covariate axes, such that the direction as well as the magnitude for the
interaction basis functions can be determined. This transforms the multiple covariates
in an interaction to a new one-dimensional variable. In order to smooth the interaction
basis functions, a cubic function, as in Friedman [25], or a quintic function, as in Chen
et al. [14], can be applied to the one-dimensional variable in the same manner as it is ap-
plied to univariate basis functions. Different versions of this approach are developed for
Convex-MARS-I and Convex-MARS-II in Sections 3.4.1 and 3.5.1, with further details

on smoothing presented in Sections 3.4.5 and 3.5.6.

3.3 Convexity Proof

In this section, a convexity proof is provided for the pairs of MARS univariate
terms in quintic form. Without loss of generality, a center knot of zero is specified. First,
define A=k, —k_, Ay =ky — k, Ay = k — k_, where k is the center knot, and k£, and
k_ are the side knots. Then the quintic functions are:

Q(z;s=4+1,k=0,k, k)=

(621 —42a[(@ — k-)"] | [-8A1 + 7A@ — k)] | [3A1 — 3Ag][(z — k)]
A3 A4 A5 ’

and

—Q(z;s=-1,k=0,k, k)=
[4A, — 6As][(z — ky)°] L [8B2 = TA[(@ — ki)'l L [2380 4 34[(@ — ki )®]
A3 A A® '




21

The goal is to prove the combined pair of univariate terms:
Q=0Qxs=+1k=0,k k) + BoQ(z;s=—-1,k =0,k , k) (3.1)

is a convex function on [k_, k], where 5; and (B, are coefficients of basis functions. As
illustrated in Figure 3.1, convexity appears assured if 8; + B > 0. Without loss of
generality, we consider the case where 3, + 8, > 0, in which 8; > 0 and By < 0. Hence,

the problem can be simplified as:

Q = 51[@(56,8 = +1ak = Oak—bk—) + %Q(Ia s = _1ak = Oa k+a k—)]’ (32)
1

given 31 > 0 and S5 < 0. In particular, % > —1 is equivalent to 81 + B2 > 0. Considering

the lower bound of %, this problem can be further simplified as
Q=Qx;s=+1,k=0,k, k) —Q(z;s=—-1,k =0,k k_). (3.3)

To prove Q = Q(x;8 = +1,k = 0,k k) — Q(z;8s = =1,k = 0,ky, k) is a convex
function on [k_, k], we take the second derivative of () with respect to x, and then we

have the following equation:

s 6[6A] —40)[(x — k)] 12[-8A; + TAS[(z — k_)?]  20[3A; — 3A][(z — k_)?]
Q" = N + i + e +
6[4A; — 6As][(x — k)] 12[—TA; + 8Ay)[(x — k4 )% 20[—3A; + 3A,][(z — ky)?]
A3 + A4 + A5 )
A1 2 Az 2
K<3 Vs:l,orK<S Vs = —1. (3.4)

Nonconvexities are produced in the cubic and quintic basis functions when the center

knot k is not close enough to the midpoint between k_ and ky [14]. Given & = 2 is
used, it follows that 92 = 2. Substitute those two values into Equation (3.4), which can

be simplified as:

- — 3 _ _ 3

A3 A4 A2 A3 A%

(3.5)
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Equation (3.5) can be decomposed as the sum of the following two components:

12/(&%) (2 — k)71~ T3 (3.6)

and
— k_|_ T — k+

12/(8%)(ky = 2)[1 — 25— = (—51)?)

(3.7)

With 0 < 225 < 1, Equation (3.6) can be shown nonnegative. Similarly, with 0 <

m_A'” < 1, Equation (3.7) can be proved nonnegative. Since, both Equation (3.6) and

Equation (3.7) are nonnegative, () is convex on [k_, k], given % <= % <= %

3.4 Convex-MARS-I
3.4.1 Convex Form of Interaction Terms

To solve the problem of the inherently nonconvex interaction terms in the original
MARS algorithm, the convex form of the m-th interaction basis function for Convex-

MARS-I is proposed as follows:

Bon(®) = [3 st (atim) — Fm) /(1 = sk} (3.8)

where the notation is the same as defined in Section 2.1.5. Consider the set of covariates
Ty(1,m) for an interaction term and corresponding knots k;,, and signs s;,,, define

Lyn—1

wo(®) = > {stm - (@om) — kim) /(1 = symkim)} (3.9)

=1

(U]_(w, sLmﬂn) = SLm:m : (xU(Lm7m) - kLm’m)/(]‘ - SLm;m kLm’m) ° (3]‘0)

In fact, the parent term defined in Equation (3.9) and split term defined in Equa-
tion (3.10) can be expressed as the following equations:

Lp—1
(AJ()(SB) = ag + Z a; xv(l,m) y (311)
=1
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where
ao = kimSim/(Simkim —1) 5 @ = spm/(1 — Simkim) (3.12)
and

W1 (m’ SLmam) = SLm,kam,m/(SLm,m kLm;m_1)+8Lmam/(1_SLm;kam,m).‘r’U(Lm;m) . (313)

The covariates for the interaction are transformed into a new corresponding one-dimensional

variable:
27 (x) = wo(z) + wi(@; s0,,m = —1) ; 21 (2) = wo(®) + wi(®;s1,,m =+1) . (3.14)
The two candidate basis functions of interactons for C-MARS-I are as follows:
b (z77) =7 = 1)y 5 0T (T T) = (2T =74 (3.15)

where the multivariate knot k in the original covariates x is transformed to the knot
7 = 0 in the dimension of z~ or z*. Plugging in wy(x) and w;(x; s, m), the general

form of a Convex-MARS-I interaction basis function is:
B (z) = [{wo(z) +wi(z)}]+ - (3.16)

The convex interaction transformation algorithm I (CIT-I) that conducts this trans-

formation is shown in Algorithm 1.

Figure 3.2 illustrates two-way interaction terms for both original MARS and Convex-
MARS. The nonconvexity of the interaction terms of original MARS is clearly visible
while our proposed modification eliminates this issue. Finally, in addition to modifying
the form of the interaction term, its coefficient must be constrained to be nonnegative

because a negative coefficient would yield a concave interaction function.
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Algorithm 1 Convex Interaction Transformation Algorithm I (CIT-I)
z=0.

for all (I=1,2,...,L,,) do
if s;,,==1 then

z += (xv(l,m) - kl,m)/(l - kl,m)-

else if s;,,==—1 then
z —= (Tom) — kim)/ (1 + kim).
end if
end for
return z.

3.4.2 Extension of Convexity Proof

In Convex-MARS-I, the multiple covariates of an interaction are reduced to the
one-dimensional variable in Equation (3.14). The proof of convexity of a Convex-MARS-
I interaction term in quintic form is similar to the convexity proof in Section 3.3, except

only a single interaction term is considered instead of a pair of interaction terms.

3.4.3 Forward Coefficient Restriction Algorithm I

One could develop a full optimization search to identify the set of convex functions
to form a convex MARS approximation. However, as with original MARS, we chose to
employ stepwise procedures to conduct a more efficient, although suboptimal, search. In
Convex-MARS, the forward stepwise procedure of original MARS is modified to check
the coefficients of newly added basis functions according to the criteria described in Sec-
tion 3.1 and Section 3.2. Nevertheless, because the basis functions are not necessarily
orthogonal, the coefficients can change during forward selection. In theory, if the true

underlying function is convex, then basis functions that introduce potential nonconvexity
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15 : 20

Figure 3.2. Comparison of MARS interaction basis functions: (a) Original MARS, (b)
Convex-MARS.

should not be needed. Forward coefficient restriction algorithm I (FCR-I, Algorithm 3)
searches for possible candidate basis functions. In essence, Algorithm 3 (FCR-I) is mod-
ified from Algorithm 2 (Friedman [25]). Algorithm 3 (FCR-I) constrains the coefficients
for basis functions throughout the searching process. Whenever there are basis functions
being added to the current set of basis functions, either a univariate pair or one basis
function (an interaction term or one univariate term) is possible. In the first case, the
sum of the two coefficients are constrained to be nonnegative if they come from a uni-
variate pair. In the latter case, the coefficient is restricted to be nonnegative if it comes

from a unpaired basis function.
3.4.4 Backward Iteration of Pruning and Refitting Algorithm I

For computational reasons, the coefficients for the previously added basis functions
are not checked in Algorithm 3 (FCR-I). Since the convex form of the basis functions are
not necessarily orthogonal, the coefficients might change each time any basis function is

added in the model. Thus, it becomes necessary to re-check the coefficients at the end.
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Algorithm 2 Friedman’s MARS forward algorithm

Initialize M = 1; maxIA = maximum # covariates in an interation.

while (m < Mpy.y) do
LOF = oo.
for allm=20,....M —1do
if basis function m involves fewer than maxIA covariates then
for allv=1ton do
if v ¢ basis function m then
for all k. =1 to K do
if basis function m is nonzero at k£ then
Split basis function at knot & into 2 new basis functions.
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF = LOF*; save mx, vk, kx.
end if
end if
end for &
end if
end for v
end if
end for m
Add basis functions(mx*, vk, kx); M+ = 2.
Orthnormalize new basis functions.

end while
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Algorithm 3 Forward Coefficient Restriction Algorithm I (FCR-I)

Initialize M =1; maxIA = maximum # covariates in an interation.

while (m < Mpax) do
LOF* = oc.
for all m =0,....M —1do
if basis function m has fewer than maxIA splits then
for allv =1 ton do
if v ¢ basis function m then
for all k=1 to K do
if basis function m is nonzero at k then
Split basis function at knot & into 2 new basis functions.
if (nonnegative coefficient from a unpaired basis function) U (nonnegative
sum of coefficients from a univariate pair of basis functions) then
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF* = LOF; save mx*, vk, kx.
end if
end if nonnegative
end if basis
end for k
end if v
end for v
end if
end for m
Add basis functions(ms*, vx, kx); M+=2.
Orthnormalize new basis functions.

end while
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Backward iteration of pruning and reffiting algorithm I (BIPR-I, Algorithm 4) re-checks
the coefficients after running Algorithm 3 (FCR-I). Algorithm 4 (BIPR-I) searches for
convexity violations and removes them. In the case of an interaction basis function, if
its coeflicient is negative, then the related basis function will be dropped. If any basis

function is dropped, Convex-MARS-I has to be refit with the remaining basis functions.

Algorithm 4 Backward Iteration of Pruning and Refitting Algorithm I (BIPR-I)

Initialize the full set of m basis functions.

while not convex do
for all basis functions C current set (i =m,m —1,...,1) do
if (negative coefficient) N (not from a univariate pair) then
Drop i-th basis function.
m=m — 1.
else if negative sum of coefficients for a univariate pair then
Drop the pair of basis function (i-th and 7 4+ 1-th ).
m=m — 2.
end if
Refit Convex-MARS-I model if any basis functions have been dropped.
end for

end while

Suppose Algorithm 3 (FCR-I) yields M nonconstant basis functions. A basis func-
tion is either by itself or one of a univariate pair. Starting from the last basis function
that was added to Convex-MARS-I model, Algorithm 4 (BIPR-I) examines the coeffi-
cient of each basis function. If a basis function is not one of a univariate pair, then it is
either an unpaired univariate basis function or an interaction basis function. Either way,

the coefficient of such a basis function must be nonnegative, and if a negative coefficient
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is found, the basis function is dropped. If a basis function is one of a univariate pair,
then the sum of the coefficients for the pair must be nonnegative. If a violation is found,
then the pair of basis functions is dropped. Once a pass through all the basis functions
is completed, and the violations have been dropped, the coefficients are refit for the re-
maining basis functions. This process repeats until no more violations are found. It is

then that the approximation can be guaranteed to be convex.

3.4.5 Smoothing Routine (Degree of Continuity)

The smoothing routine for a univariate term in Convex-MARS-I is exactly the
same as original MARS in Section 2.2.1. However, for the interaction terms, Algorithm 1
(CIT-I) transforms the covariates for an interaction term into a new corresponding one-
dimensional variable z. In the dimension of variable z, the transformed center knot is
always zero, the side knots can be set at x and —k, where k is a smoothing factor.
The larger the smoothing factor is, the smoother the approximation function will be.
Typically, x is between 0 and 1. One possible choice for x is 0.5. Thus, variable z and
side knots can be smoothed using the same smoothing routine as for a univariate basis

function.

3.5 Convex-MARS-II
3.5.1 Convex Form of Interaction Terms

To solve the problem due to inherently nonconvex interaction terms in the original
MARS algorithm and enhance the flexibility of Convex-MARS, a version of the convex
form of the interaction basis function is developed that allows them to be added in pairs.
Instead of requiring each interaction term to have a nonnegative coefficient, the coefficient

restriction would be the same as univariate pairs, for which the sum of their coefficients
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for the pair must be nonnegative. As in Convex-MARS-I, the convex form of interaction
basis functions transforms the multiple covariates in the interaction to a one-dimensional
variable that is a linear combination of the covariates. The following uses the notation
defined in Section 2.1.5. Given the set of covariates z,( ,) for an interaction term and

corresponding knots k; ,,, and signs s, define

Lpy—1
wO(m) = Z {Sl,m ' (x'u(l,m) - kl,m)/(l - Sl,mkl,m)} ) (317)
=1
wl(w; ¢m) = Om - (xv(Lm,m) - kLm,m)/(l — Pm kLm,m) . (318)

where wo(x) represents the components of an existing basis function (parent term),
wi(®; ¢m) represents the split component on variable x,,, ) that creates a new in-
teraction term. Sign ¢,, (—1 or +1) determines two distinct one-dimensional variable

directions:
27 (z) = wo(x) + wi(x; b = —1) 5 27 (2) = wolx) + wi(T; By = +1) . (3.19)

To show that 2~ and 2z are linear combinations of the covariates, re-write:

Lim—1
wo(®) = ao + Z a To(lm) (3.20)
=1
where
a0 = kimSim/ (Simkim — 1) 5 @ = Spm/(1 — Simkim) (3.21)
and
wl(w§ ¢m) = ¢kam,M/(¢m kLm,m - 1) + ¢m/(1 - ¢kam,m) * Ly(Lm,m) - (3-22)

The convex interaction transformation algorithm II (CIT-II) that conducts this trans-
formation in Equation (3.19) is shown in Algorithm 5. The major difference between
Algorithm 1 (CIT-I) and Algorithm 5 (CIT-1I) is that the latter implements a more

comprehensive search. In essence, ¢,, enhances the flexibility of the search loop.
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Algorithm 5 Convex Interaction Transformation Algorithm II (CIT-II)
2= (¢m [ (1=0m * krpm) * (Zo(Lpm) = KLpm))-
for all (I=1,2,...,.L,, —1) do

if s;,,==1 then

7 += (xv(l,m) - kl,m)/(l_kl,m)-

else if s;,,==—1 then
2 == (Tom) = Kim)/ (ki m)-
end if
end for
return z.

The m-th pair of interaction basis functions (i.e. m-th basis function with sz, ., =
—1, m + 1-th basis function with s;_,, = 1) can use either z~ or z*. Thus, the two

candidate pairs of interaction basis functions for Convex-MARS-II are as follows:

b (e 7m)=[-(c =74 s 07 (z 1) = [+ —7)]+ , (3.23)
or

b= (7)== =)y 0T (T T) = [T -7 (3.24)

where the multivariate knot k in the original covariates x is transformed to the knot
7 = 0 in the dimension of z~ or z*. Both pairs are considered in the forward algorithm
search loop to enable better flexibility. Plugging in wy(x) and wi(x; ¢y,), the general

form of a pair of Convex-MARS-II interaction basis functions is:
By(z) = [-Hwo(x) + wi(@) s 5 Bmsi(®) = [+1{wo() + wi(x)}]+ - (3.25)

To better understand the role of ¢,,, consider the two-way interaction example
shown in Figure 3.3. In Figure 3.3, knots for the two covariates are 0.25 and —0.5

for covariates x; and z», respectively, and s;,, = —1. The upper two contour plots
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demonstrate the pair of two-way interaction basis functions with ¢,, = —1, and the lower
two contour plots show the pair of two-way interaction basis functions with ¢, = 1. The

upper left plot shows the case when sy, = 1, and the upper right plot displays the case

when sy, = —1.
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Figure 3.3. Comparison of candidate pairs of Convex-MARS-II interaction basis func-
tions.
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3.5.2 Extension of Convexity Proof

In Convex-MARS-II, a pair of multi-covariate interaction basis functions is trans-
formed to a pair of univariate basis functions, as in Equation (3.23) or Equation (3.24).
The proof of convexity of a pair of Convex-MARS-II interaction terms in quintic form is

identical to the convexity proof in Section 3.3, using the transformed variables z~ or z7.

3.5.3 Forward Coefficient Restriction Algorithm II

For Convex-MARS-I, interaction basis functions are not added in pairs in Algo-
rithm 3 (FCR-I). This might potentially limit the flexibility of a Convex MARS ap-
proximation. In order to improve the fit of Convex MARS-I via the Convex-MARS-II
interaction basis functions, Algorithm 3 (FCR-I) must be modified to incorporate a more
flexible search for eligible pairs of basis functions. Such flexibility could be achieved
through incorporating ¢,,, in Equation (3.19), into the search loop for interaction terms.
Similar to Convex-MARS-I, the sum of the coefficients is restricted to be nonnegative
in the case of a pair of basis functions. For Algorithm 3 (FCR-I), only univariate basis
functions are considered as pairs; however, for forward coefficient restriction algorithm II
(FCR-II, Algorithm 6), all basis functions can be pairs when considering the coefficient

criteria.

3.5.4 Backward Iteration of Pruning and Refitting Algorithm II

Similar to Algorithm 4 (BIPR-I), backward iteration pruning and reffiting algo-
rithm IT (BIPR-II, Algorithm 7) searches for convexity violations and removes them. In
Algorithm 7, one of the pair of basis functions will be dropped if the sum of their co-
efficients is negative. Specifically, the dropped basis function has the smaller coefficient

of the pair. However, if both coefficients corresponding to respective basis functions are
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Algorithm 6 Forward Coefficient Restriction Algorithm II (FCR-II)

Initialize M = 1; maxIA = maximum # covariates in an interation.

while (m < Mp,.x) do
LOF* = oo.
for allm =0,...,.M — 1 do
if basis function m involves fewer than maxIA covariates then
for allv =1ton do
if v ¢ basis function m then
for all kK =1 to K do
for all ¢, = -1, +1 do
if basis function m is nonzero at k then
Split basis function at knot k into 2 new basis functions.
if (nonnegative coefficient from a unpaired basis function) U (nonnegative
sum of coefficients from a pair of basis functions) then
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF* = LOF; save mx, vx, k*, ¢, *.
end if
end if nonnegative
end if basis function m
end for ¢,
end for k
end if v
end for v
end if
end for m
Add basis functions(mx, vk, kk, ¢, *); M+=2.
Orthnormalize new basis functions.

end while
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negative, this pair will be dropped completely. Further, if any basis function is dropped,
Convex-MARS-IT has to be refit with the remaining basis functions. Once a pass through
all the basis functions is completed, and the violations have been dropped, the coefficients
are refit for the remaining basis functions. This process repeats until no more violations

are found. It is then that the approximation can be guaranteed to be convex.

Algorithm 7 Backward Iteration of Pruning and Refitting Algorithm IT (BIPR-II)

Initialize the full set of m basis functions.

while not convex do
for all basis functions C current set (i =m,m —1,...,1) do
if negative coefficient N unpaired then
Drop i-th basis function.
m=m — 1.
else if negative sum of coefficients for a pair then
Drop one of the pair of basis functions (i-th and 7 4+ 1-th ).
m=m — 1.
else if negative coefficients for each of a pair then
Drop the pair of basis functions (i-th and 7 + 1-th ).
m=m — 2.
end if
Refit Convex-MARS-II model if any basis functions have been dropped.
end for

end while
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3.5.5 Forward Coefficient Restriction Algorithm II-T

As we mentioned in Section 3.4.4, the coefficients for previously added basis func-
tions are not checked in the FCR forward algorithms (Algorithms 3 or 6), potentially per-
mitting coefficient violations. Although, the BIPR backward algorithms (Algorithms 4 or
7) re-check the coefficient criteria at the end of the FCR forward algorithms, many basis
functions that violate the coefficient criteria may be dropped. It is possible to re-run the
FCR forward algorithm to add more basis functions, but this was not found to improve
the fit. Instead, the coefficient criteria are modified using a stricter threshold. In partic-
ular, a slightly modified algorithm is developed, called the forward coefficient restriction
algorithm II-T (FCR-II-T, Algorithm 8). Essentially, the eligible pairs of basis functions
from Algorithm 8 (FCR-II-T) is a subset of that from Algorithm 6 (FCR-II). The dif-
ference between Algorithm 6 (FCR-II) and Algorithm 8 (FCR-II-T) is that the latter
contains a stricter convex subset of basis functions. With the stricter threshold, fewer or

possibly no coefficients violate the coefficient criteria at the end of Algorithm 6 (FCR-II).

The major issue is how to build the coefficient criteria to select a subset from
Algorithm 6 (FCR-II). For Algorithm 6 (FCR-II), the sum of the coefficients for a pair of
basis functions is constrained to be nonnegative. To find a subset from Algorithm 6 (FCR-
IT), the threshold for the coefficient criteria is now a nonnegative number, instead of just
zero. The challenge, however, lies in selecting the threshold, i.e. how to decide the
positive number, or equivalently, the threshold. One appropriate approach is to run a
multiple linear regression (MLR) on the data set prior to determining the threshold.
The maximum absolute coefficient can be obtained by taking the absolute values for the
coefficients from the MLR model accordingly. Alternatively, if MARS model is already
available, the maximum absolute coefficient can be obtained from its result. In general,
the rule of thumb is 2 ~ 20% of the absolute value of the maximum coefficient could

be a reasonable candidate for the threshold. If the threshold is set too high, then this
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can reduce flexibility since fewer basis functions are considered eligible in the searching
process. If the selected threshold is too small, then will be little difference between FCR-II

(Algorithm 6) and FCR-II-T (Algorithm 8).

3.5.6 Smoothing Routine (Degree of Continuity)

As with Convex-MARS-I, the smoothing routine for a univariate term in Convex-
MARS-II is exactly the same as original MARS. For the interaction terms, Algorithm 5
(CIT-II) transforms the covariates for an interaction term into a new corresponding one-
dimensional variable z~ or z*. Since the transformed center knot is always zero for
the interaction terms of Convex-MARS-II, similar to Algorithm CIT-I in Section 3.4.5,
the corresponding side knots can be set at x and —«k, where k is the smoothing factor.
The larger the smoothing factor is, the smoother the approximation function will be.
One possible choice for k is 0.5. Therefore, the transformed basis function in the one-
dimensional variable z~ or z*, given knots and the sign s, m, can be smoothed using

the same smoothing routine as for a univariate basis function.

3.6 Inventory Forecasting Problem

In this section, Convex-MARS is tested on four-dimensional and nine-dimensional
inventory forecasting SDP problems studied by Chen et al. [18]. The goal of the inventory
forecasting problem is to minimize the inventory holding and backorder costs. The op-
timal value function, known to be theoretically convex, specifies the minimum expected
cost to operate the system. The state of the system is represented by the inventory levels
for the products and their demand forecasts. The versions of MARS are fit to the data

for the last time period of the three-period inventory forecasting SDP.
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Algorithm 8 Forward Coefficient Restriction Algorithm with Threshold (FCR-II-T)

Initialize M = 1; maxIA = maximum # covariates in an interation.

while (m < Mp,.x) do
LOF* = oo.
for all m =0,...,M — 1 do
if basis function m involves fewer than maxIA covariates then
for all v =1 to n do
if v ¢ basis function m then
for all k=1 to K do
if basis function m is nonzero at k then
for all ¢, = -1, +1 do
Split basis function at knot k into 2 new basis functions.
if (nonnegative coefficient from a unpaired basis function) U (nonnegative
sum of coefficients from a pair of basis functions) then
Calculate lack-of-fit LOF.
if LOF < LOF* then
LOF* = LOF; save mx, vx, k%, ¢mx*.
end if
end if nonnegative
end for ¢,
end if basis function m
end for k
end if v
end for v
end if
end for m
Add basis functions(mx, vk, k*, ¢, *); M+=2.
Orthnormalize new basis functions.

end while
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3.6.1 Four-dimensional Inventory Forecasting Problem

In this inventory forecasting DP, there are two products, each with one demand
forecast. MARS was fit to a data set of 125 points from the last period. A set of 100
validation data points is used to compare the three different models, and boxplots of
the absolute errors, computed using the formula |y — f|, are shown in Figure 3.4, where
y is the actual cost of the system, and f is the MARS/Convex-MARS approximation
for the actual cost. A boxplot of the actual costs of the inventory model, for each of
the 100 validation points, is displayed in Figure 3.5 for reference. The performance
of both versions of Convex-MARS are comparable to original MARS. Further, because
versions of Convex-MARS guarantee convexity, optimization methods that depend on

this assumption can be reliably employed.
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Figure 3.4. Comparison of boxplots (four-dimensional inventory forecasting problem)
based on a validation set of 100 points: (1) Origianl MARS, (2) Convex-MARS-I, (3)
Convex-MARS-II-T.
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Figure 3.5. Boxplot of the actual cost for the four-dimensional inventory forecasting
problem.

Table 3.1 summarizes the parameter settings for original MARS, Convex-MARS-I
and Convex-MARS-II-T. In particular, the threshold for Convex MARS-II-T (Convex
version of MARS with coefficient threshold constraint), 23.34, is determined by multi-
plying 5.0% by the absolute value of maximum coefficient, 490.729, in original MARS
model. The MARS algorithms were written in C on and executed on a Dual 2.6-GHz

Athlon Workstation. In terms of CPU time, all three versions of MARS requires

Table 3.1. Setting of algorithms on the three versions of MARS based on the four-
dimensional inventory forecasting problem

Original MARS Convex-MARS-I Convex-MARS-II-T

Convex: threshold N/A N/A 23.34
ASR : N/A ASR-I:diff .002 , ASR-I:diff .002
Common Setting: points: 125, konts:3, int.:3 , M 02:100.

low computational effort (Table 3.2). However, convexity must be assured to obtain
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the global optimum for the four-dimensional inventory forecasting DP problem. In the
four-dimensional inventory forecasting problem, versions of Convex-MARS guarantee the

convexity of their approximations.

Table 3.2. Comparison of CPU time for each version of MARS based on the four-
dimensional inventory forecasting problem

original MARS Convex-MARS-I Convex-MARS-II-T
.074 sec 521 sec .028 sec

3.6.2 Nine-dimensional Inventory Forecasting Problem

In this inventory forecasting DP, there are three products, each with two demand
forecasts (for next time period and the one after). MARS was fit to a data set of 1331
points from the last period. A set of 1000 validation data points is used to compare the
three different models, and boxplots of the absolute errors, computed using the formula
ly — f |, are shown in Figure 3.4, where y is the actual cost of the system, and f is the
MARS/Convex-MARS approximation for the actual cost. A boxplot of the actual cost of
the inventory model, for each of the 1000 validation points, is displayed in Figure 3.5 for
reference. The performance of both versions of Convex-MARS are comparable to ASR-
MARS. Further, because versions of Convex-MARS guarantee convexity, optimization

methods that depend on this assumption can be reliably employed.

Table 3.3 summarizes the parameter settings for ASR-MARS, Convex-MARS-I and
Convex-MARS-II. The MARS algorithms were written in C on and executed on a Dual
2.6-GHz Athlon Workstation. In terms of CPU time, all three versions of MARS
requires low computational effort (Table 3.4). However, convexity must be assured to

obtain the global optimum for the nine-dimensional inventory forecasting DP problem. In
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Figure 3.6. Comparison of boxplots (nine-dimensional inventory forecasting problem)
based on a validation set of 1000 points: (1) ASR-MARS, (2) Convex-MARS-I, (3)
Convex-MARS-II.

Table 3.3. Setting of algorithms on the three versions of MARS based on the nine-
dimensional inventory forecasting problem

ASR-MARS Convex-MARS-I Convex-MARS-II
Robust : Robust-I: tolerance: .3 N/A N/A
Common Setting : ASR-II: diff .02 , interaction:3,

points: 1,331, konts:45, M 02:300.

the nine-dimensional inventory forecasting problem, versions of Convex-MARS guarantee

the convexity of their approximations.
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Figure 3.7. Boxplot of the actual cost for the nine-dimensional inventory forecasting
problem.

Table 3.4. Comparison of CPU time for each version of MARS based on the nine-
dimensional inventory forecasting problem

ASR-MARS Convex-MARS-I Convex-MARS-II
1.746 sec 7.228 sec 3.858 sec




CHAPTER 4
DATA MINING VARIABLE SELECTION FOR OPTIMIZATION

This chapter focuses on variable selection methods, particularly for the “large p
and small n” problem. A two-stage SP airline fleet assignment model (FAM) studied
by Pilla [41] is presented as an application. The next section briefly describes SP-FAM.
Section 4.2 illustrates the data mining process to reduce a high-dimensional decision

variable space, and Section 4.3 presents computational results on SP-FAM.

4.1 Airline Fleet Assignment Problem

The FAM studied by Pilla [41] uses a two-stage SP framework along with the Boeing
concept of D? to swap crew-compatible aircraft closer to departure, when most of the
demand has been realized. Crew-compatible aircraft have identical cockpits, allowing an
airline to swap aircraft without swapping crews. The two-stage formulation assigns crew-
compatible aircraft in the first stage, about 90 days prior to departure, so as to enhance
the demand-capturing potential of swapping in the second stage, about two weeks prior.
The stochasticity of the demand is modeled by different demand scenarios in the second
stage, and the average over the scenarios estimates the expected profit, which is the
performance measure that will be used as the response variable y in the variable selection
methods. The explanatory variables & are the crew-compatible allocation (CCA) decision
variables that specify which crew-compatible family is assigned to each flight leg. The

expected profit function is known to be concave over the CCA space.

44



45

Traditional two-stage SP uses a Benders’ approach or L-shaped method [6]; how-
ever, for large-scale problems, this can be slow to converge. Pilla [41] developed a two-
phase DACE approach to reduce the computation involved in conducting the optimiza-
tion. The DACE phase uses first-stage constraints in a multi-step process to construct
an experimental design within the feasible region, then builds a statistical model that
approximates the expected profit function in the first stage of the SP. The optimization
phase solves the two-stage problem using the DACE expected profit approximation in-
stead of solving many second-stage subproblems in every iteration. This greatly speeds
up the optimization, compared to Benders’, because the computation of the subproblems
is shifted to the DACE phase. However, further speedup may be achieved by conducting

variable selection prior to the DACE phase.

For a real airline network with 50 stations and 2358 legs, Pilla’s DACE phase
reduced the decision space from 6537 to 1264 dimensions, and his multi-step process
derived 141 initial feasible CCA region. The second-stage subproblem is then solved for
each of these design points. Among the 1264 decision variables, there are still many
useless ones that could be identified via variable selection, enabling a much smaller set
of design points. In particular, in this dissertation variable selection is conducted for the
1264 CCA variables using the initial 141 initial feasible CCA points; clearly, this is a

“large p and small n” problem.

4.2 Data Mining

The implementation of MARS for approximating optimization functions in complex
optimization problems can involve thousands of variables. Even though one can simply

attempt a MARS approximation over all these variables, many may have little impact on
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the desired performance objective. Therefore, a data mining step for variable selection

is required to adequately exclude noninformative variables.

For the airline SP-FAM problem in this dissertation, we have p = 1,264 and n =
141. In order to address this “large p and small n ” problem, we used a multiple testing
procedure based on the FDR and regression trees. The background on CART and FDR
have been introduced in Sections 2.1.3 and 2.3. The usage of CART for variable selection
is described in Section 4.2.1. With regard to FDR, the tricky issue is that traditional FDR
assumes a categorical response variable and numerical explanatory variables. In DACE,
the response and explanatory variables are both numerical, and typically continuously-
valued. Section 4.2.2 describes a new FDR based method variable selection that uses
CART to categorize a continuous response, so that a traditional FDR procedure can be
used for multiple hypothesis testing. Section 4.2.3 describes a new FDR based method
called Inverse FDR, (InvFDR) that maintains the continuous characteristic of response

variable. Thus, three variable selection methods are discussed in this dissertation:

1. Variable importance scores from CART.
2. FDR-based variable selection based on regression trees.

3. InvFDR: FDR-based variable selection grouped by predictors.

4.2.1 Variable Importance Scores from CART

CART developed by Breiman et al. [11] is a very popular data mining tool for
supervised learning. The CART forward algorithm uses binary recursive partitioning
to separate the variable space into rectangular regions based on similarity of the re-
sponse values. In this dissertation, we utilized CART software from Salford Systems
(www.salfordsystems.com). For variable selection, this software provides “relative variable

importance scores.” The variable that receives a 100 score indicates the most influential
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variable for prediction, followed by other variables based on their relative importance to
the most important one. However, there are some different options for calculating the
scores, and selecting the threshold of the scores may be subjective. Further, this method
tends to select an overly small number of variables. This motivates the development of

an objective and systematic approach for variable selection.

4.2.2 FDR-based Variable Selection with CART (FDR/CART)

Generally, a conventional FDR procedure for variable selection requires a categor-
ical response variable that separates the data into C' groups, where C is the number
of categories. For each predictor variable, we test for differences in the C' samples, us-
ing a two-sample t-test or F'-test. However, because the response variable generated by
computer experiments is continuous in most cases, we need to categorize the original
response. A mean or median value of the response variable can be used to separate the
response variable into two groups, high and low, if the response surface is monotonic. In
an air quality application addressed in Shih et al. [46], the effectiveness of this simple
grouping strategy was shown. However, if the relationship between the response and the
predictors is not monotonic, such that the separation by high and low values does not
make sense, then alternate grouping strategies are needed. In order to address this prob-
lem, we use binary regression trees (e.g., CART) to partition the response observations
into meaningful groups. An algorithm constructing binary regression trees partitions the
space into two regions using the predictor variable and splitting-point that achieves the
best improvement in fit. This partitioning process is repeated on one or both of these
regions until a termination criterion has been reached. Based on the terminal nodes of
regression trees, the response values can be separated into a certain number of groups,
and an FDR procedure can be applied for variable selection. Note that for three or more

groups, an analysis of variance (ANOVA) table is constructed for each predictor vari-
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able and its significance is tested using an F'-test. This approach simultaneously takes

advantage of both regression trees and FDR procedure.

4.2.3 Inverse FDR (InvFDR)

In order to maintain the continuous characteristic of a response variable in an
FDR procedure, InvFDR uses the groupings on the explantory variables instead of on
the responses. The main purpose is to create a set of new variables possessing the same
number of original predictors by grouping the response variable based on the predictors
and conducting an FDR procedure on these new variables. This is analogous to the
resampling technique because each new variable is re-sampled from the original response
based on each predictor variable. InvFDR is similar to the original FDR procedure,
except that the hypothesis test is conducted on the continuous response grouped by each
predictor variable, as opposed to testing each continuous predictor variable grouped by

the response values. The setting and procedure for InvFDR is as follows:

e For each predictor variable, divide the response variable into C' groups based on
the values of the predictor variable.

e For each predictor variable, conduct a statistical test (e.g., two-sample ¢-test,
ANOVA F-test) on its corresponding set of response variable groups, and record
the p-value. There will be one p-value for each predictor variable.

e Use the p-values to conduct an FDR procedure that identifies which predictor

variables are statistically significant.

If the response surface is known to be convex or concave, a common occurrence in opti-
mization, then InvFDR with C' = 3 groups should be sufficient. In general, more complex

nonlinear structure can be captured with more groups.
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4.3 Computational Results on SP-FAM Application

In this section, the results for the implementation of the three variable selection

approaches on SP-FAM [41] are illustrated.

4.3.1 Variable Selection for SP-FAM

The variable selection procedures of all three approaches were implemented on a
data set of 141 feasible CCA points from the airline fleet assignment problem sudied by
Pilla [41]. Tt should be noted that InvFDR is especially appropriate for SP-FAM becuase
the CCA decision variables & are binary {0,1} in their pure form, although fractional
values can exist. The settings and procedures for CART Variable Importance Scores,

FDR/CART, and InvFDR are described as follows:

1. Setting for CART Variable Importance Scores: Run CART and select all of those
variables with nonzero variable importance scores.

2. Setting and procedure for FDR/CART: Based on the terminal nodes of CART, the
response variable can be grouped into three groups. FDR (family a = 0.0000001)
is implemented based on the three groups.

3. Setting and procedure for InvFDR:

(a) For each x,-variable: Divide the y-values into three groups corresponding to
x,-values of 0, fractional, and 1.

(b) For each z,-variable: Conduct an ANOVA F-test on the y-values for these
three groups, and record the p-values.

(c) Conduct the FDR procedure controlling FDR at 0.05.

For the fleet assignment problem, Table 4.1 shows the results of the three variable selec-
tion approaches discussed in this dissertation. Specifically, CART variable importance

scores, FDR/CART, and InvFDR selected 36, 565, and 476 variables, respectively. In
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other words, variable reductions of 97.15%, 55.30%, and 62.34% were achieved by the

three methods.

Table 4.1.Results of the three variable selection approaches for the FAM problem

Description number of variable selected
CART Variable Importance Scores from CART 36
FDR/CART FDR with C = 3 Groups from CART 565
InvFDR Inverse FDR 476

The above approaches have been applied on a fleet assignment problem with 1,264
decision variables and 141 feasible CCA points. It should be noted that 1,264 vari-
ables were reduced to 1,061 prior to implementation of the FDR-based variable selection
grouped by predictors. Those 203 (= 1264 — 1061) were dropped because they possess
uniform values for almost all 141 observations. In order to understand the covariance
structure among the 1,061 variables, the pairwise correlations must be obtained. The
C3%! = 562,330 pairwise correlations for the 1,061 predictors variables are computed,
and Fig 4.1 shows the histogram of the pairwise correlation coefficients of those variables.
Among them, about 9,988 pairwise correlations have very strong correlation (|p| > 0.8),
and 31,418 pairwise correlations have strong correlation (|p| > 0.6). Or equivalently,
about 1.78% of C1%! pairwise correlations have very strong correlation (|p| > 0.8), and
5.59% of C3%! pairwise correlations have strong correlation (|p| > 0.6). Based on the
histogram in Figure 4.1, it suggests that a moderate variable dependency structure ex-
ists among the 1,061 variables. This might explain why more than 50% of the variables
were reduced by all three variable selection approaches tested. On the other hand,
the C37% = 113,050 pairwise correlations for the 476 variables selected by InvFDR were
computed. The histogram for the pairwise correlation coefficients of the 476 variables

Figure 4.2) indicates that about 0.00796% of C;"® pairwise correlations have very strong
2
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Figure 4.1. Histogram for pairwise correlation of the 1061 predictor variables for the
airline SP-FAM.

correlation (|p| > 0.8), and 0.11% of C4"® pairwise correlations have strong correlation
(lp| > 0.6). These relatively low proportions of highly correlated variables implies that

InvFDR was adequately performed.

4.3.2 Convex MARS for SP-FAM after Variable Selection

Using the average profit response values (y) at the feasible CCA points (), Pilla [41]
fit an ASR-MARS [52] approximation to a data set of 3,562 points (141 initial feasible
CCA points, 1,525 extreme points, and 1,896 interior points) from the airline FAM prob-
lem. This MARS fit resulted in 84 basis functions with a coefficient of determination
(R?) of 99.013%. A validation data set of 1600 points was used to test the MARS approx-
imation, and relative errors were computed using the formula ‘y;—f' In this dissertation,
we tested ASR-MARS, Convex-MARS-II and Convex-MARS-II-T in combination with
the results from the three variable selection methods. ASR-MARS does not guarantee

convexity.
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Figure 4.2. Histogram for pairwise correlation of the 476 predictor variables reduced by
Inverse FDR for the airline SP-FAM.

Boxplots of the relative errors from the nine models are shown in Figure 4.3. For
comparison, Pilla [41] recorded that the maximum relative error of his ASR-MARS model
was obtained as 4.6 x 107, and the median relative error was 9x 107%. Further, the tested
nine models provide an alternative to approximate the expected profit with reduced CCA
decision variable space. The performance of Convex-MARS is comparable with the ASR-
MARS. Because Convex-MARS guarantees convexity, optimization methods depending
on this convexity assumption can be reliably employed. In terms of accuracy, all nine
models appear to be comparable with the result using all 1264 predictor variable in
Pilla [41]. Overall, the maximum relative error is less than 1.25 x 107, and the median
for the relative error is 1.2 x 107%. To further justify the results, 36 variables were
randomly selected and tested. This resulted in a maximum relative error of 0.0727 and
a median relative error of 0.0693, which are clearly larger than those using the three

variable selection methods (Figure 4.3).
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Figure 4.3. For the airline SP-FAM, the boxplots for relative errors based on a validation
set of 1600 points from three variable selection methods combined with three versions of
MARS {1:CART, 2:FDR/CART, 3:InvFDR}®[ASR-MARS]|, {4:CART, 5:FDR/CART,
6:InvFDR }®[Convex-MARS-II-T], and {7:CART, 8: FDR/CART, 9:InvFDR} ®[Convex-
MARS-II].

Table 4.2 summarizes the parameter settings for ASR-MARS and Convex-MARS
in conjunction with the three variable selection procedures. In particular, the threshold
for Convex MARS-II-T (Convex version of MARS with coefficient threshold constraint),
150,000, is determined by multiplying 19.32% by the absolute of maximum coefficient in
ASR-MARS model based on the 476 predictors. The MARS algorithms were written in C
on and executed on a Dual 2.6-GHz Athlon Workstation. In terms of CPU time, ASR-
MARS with selected variables from the three variable selection approaches requires lower
computational effort (Table 4.3), but does not guarantee convexity. Pilla [41] showed that
18 of 1000 points randomly chosen to test the convexity of the recourse function proved
to be non-convex. However, convexity must be assured to obtain the global optimum for
the two-stage SP-FAM problem. To some extent, versions of Convex-MARS guarantee

the convexity of their approximations at the expense of run time. It is seen from Table 4.3
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Table 4.2. Setting of algorithms on the three versions of MARS based on the FAM

problem
ASR-MARS Convex-MARS-II-T Convex-MARS-II
CART,FDR,InvFDR CART,FDR,InvFDR CART,FDR,InvFDR
dim 36 ,565 , 476 36, 565, 476 36, 565, 476
Robust: tolerance 0.02 N/A N/A
Convex: threshold N/A 150,000 0

Common Setting: ASR-I.diff .015 ,

konts:5, int.:2 ,

points: 3,562,
M 02:1,264.

that the maximum difference of CPU time between Convex-MART-T and ASR-MARS

for the SP-FAM problem is 18.4 minutes.

Table 4.3. Comparison of CPU time for each version of MARS using the three variable

selection approaches based on the FAM problem

ASR-MARS Convex-MARS-II-T Convex-MARS-II
CART Variable Importance Scores 29 sec 18 sec 73 sec
FDR with 3 Groups from CART 548 sec 1654 sec 1295 sec
Inverse FDR 684 sec 936 sec 888 sec




CHAPTER 5
CONCLUSION

5.1 Contributions

One of the major contributions of this research is that convex versions of MARS
have been developed and tested on two complex complex optimization applications, an
inventory forecasting stochastic dynamic programming problem and a two-stage stochas-
tic programming fleet assignment problem. Convex-MARS essentially modifies both the
MARS basis functions and algorithms to build a sum of convex functions; therefore, the fi-
nal approximation will be convex. Convex versions of MARS proposed in this dissertation
include Convex-MARS-I, Convex-MARS-II, and Convex-MARS-II-T. In particular, the
basis functions for interaction terms have been developed based on Algorithm 1 (CIT-I)
or Algorithm 5 (CIT-II) to avoid the inherent non-convex property from original MARS.
Friedman’s MARS replaces the truncated linear basis functions [+(z—k)], in the forward
and backward stepwise algorithms with cubic functions, which provides a continuous first
derivative and a continuous second derivative everywhere except at the side knots. To give
MARS continuity and a continuous first and second derivative at the side knots, quintic
functions derived by Chen et al. [14] are utilized in place of Friedman’s cubic functions.
All these convex versions use the same smoothing algorithm as original MARS since the
interaction terms are transformed to new one-dimensional variables with basis function
forms that can be treated like univariate basis functions. Since Convex-MARS guarantees

convexity, optimization methods depending on this assumption can be reliably employed.
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Traditional two-stage stochastic programming uses a Benders’ approach or L-shaped
method [6]; however, for large-scale problems, this can be slow to converge. Pilla [41] de-
veloped a two-phase DACE approach to reduce the computation involved in conducting
the optimization. The DACE phase uses first-stage constraints in a multi-step process to
construct an experimental design within the feasible region and then builds a statistical
model that approximates the expected profit function in the first stage of the stochastic
program. The optimization phase solves the two-stage problem using the DACE ex-
pected profit approximation instead of solving many second-stage subproblems in every
iteration. Although this greatly speeds up the optimization, compared to Benders’, the
computation of the subproblems is shifted to the DACE phase. In this dissertation, the
potential for further speedup is demonstrated by conducting variable selection prior to

the DACE phase.

For variable selection, the major contributions are two new approaches for the
“large p and small n” problem based on multiple testing procedures using FDR. The first
approach is a simple scheme that uses regression trees (CART) to group the response
variable observations for the multiple testing procedure. The second approach, called
Inverse FDR, switches the roles of response and explanatory variables. Both are designed

to handle non-monotonic response surfaces.

5.2 Future Research

Table 5.1 shows the strengths and weaknesses for the methodologies developed
in this dissertation. With regard to both computational requirements and quality of
solutions, Convex-MARS and ASR-MARS are considered competitive with each other
for both inventory forecasting problem and airline fleet assignment problem. Future

research in the area of this dissertation includes the following:
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. Develop methods to automatically determine parameters for Convex MARS, e.g.,
the number of knots (K), or the threshold for Convex-MARS-T. This will enable
easier use of the algorithms.

. Compare versions of Convex-MARS more generally and comprehensively. In this
dissertation, two complex optimization problems have been tested in the paradigm
of Convex-MARS. Other than these two specific DACE-based applications, versions
of Convex-MARS can be implemented for the other optimization DACE-based op-
timization problems.

. Develop versions of Convex MARS that are compatible with Robust MARS. Robust
MARS seeks to obtain a MARS approximation that is less sensitive to extreme
points. The robust entity is not incorporated in current versions of Convex-MARS.
. Explore potential new variable selection methods such as entropy based approaches,
and FDR under dependency. Although, the methods in Section 4.2 provide impor-
tant subsets of the explanatory variable space, they cannot guarantee the orthog-
onality of the reduced variable space. An orthogonal subset of the explanatory
variable space is easier to handle in both the design of experiments and statistical
modeling tasks of DACE-based approach.

. Develop a parallel version of Convex-MARS to further reduce the time required to
generate the Convex-MARS approximation. A parallel version of MARS (Tsai [51]),
taking advantage of the parallel computing power, has already been developed.
This can be combined with parallel implementations of DACE-based optimization

approaches.



Table 5.1.Summary of the proposed methodologies in this dissertation

Strengths Weaknesses
FDR/CART can handle response is categorized
continuous response
Inverse FDR can handle test statistics

continuous response

assumed independent

Convex-MARS-I
Convex-MARS-II
Convex-MARS-II-T

convex
convex , flexible
convex , flexible

moderate accuracy

slower run time

MLR has to be

performed to set threshold,
slower run time

o8
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