FREQUENCY RESPONSE APPROXIMATION METHODS
OF THE DISSIPATIVE MODEL OF FLUID

TRANSMISSION LINES

JOHN D. KING

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2006



Copyright © by John D. King 2006

All Rights Reserved



To my wife Lilia

and my daughter Emily



ACKNOWLEDGEMENTS

I want to thank Dr. Hullender for inspiring me in my decision to research fluid
line dynamics while attending his course in Dynamic Systems Modeling. Dr. Hullender
introduced the dissipative model of a fluid transmission and discussed the thesis by
Tom Wongputorn, “Time Domain Simulation of Systems with Fluid Transmission
Lines”. This was the beginning for me to a much deeper understanding of modeling
systems beyond the simple lump parameter models I have studied previously.

I also want to recognize Tom Wongputorn for his application of the Gauss —
Newton method and the standard he set for this research. It was personally very
challenging for me to attempt to build on his work.

I am very grateful to Dr. Nomura who provided me with the mathematical tools
to tackle this research and also sparked my interest in continuum mechanics and the
Navier-Stokes equations. I really enjoyed attending his courses.

In general I want to thank all the professors that I have studied under at The
University of Texas at Arlington. Each one has greatly helped me to be a much better
engineer.

Finally, I want to express my very special gratitude to my wife Lilia who has

supported me through my work.

March 20, 2006

v



ABSTRACT

FREQUENCY RESPONSE APPROXIMATION METHODS
OF THE DISSIPATIVE MODEL OF FLUID

TRANSMISSION LINES

Publication No.

John D. King, M.S.

The University of Texas at Arlington, 2006

Supervising Professor: David A. Hullender

This thesis introduces an accurate and efficient method of obtaining a linear
approximation for a nonlinear model of a complete fluid transmission line system using
Matlab® Signal Processing Toolbox and Symbolic Math Toolbox programs. This
technique is then packaged in a Graphical User Interface program to streamline the
process of analyzing a total system.

The nonlinear model applied in this thesis is called the dissipative model and is
also referred to as the “exact” model, because it’s derivation uses all of the Navier-
Stokes equations as well as the equations of state. It has been studied and tested against

real data and is recognized as the most accurate of all the known models.



Other modeling approaches are discussed in this work to illustrate the
completeness of the dissipative model. The modal technique introduced in this thesis is
inspired by the modal approximation method that is based on truncating the infinite
series representation of the dissipative model. This modal approximation method is
covered in depth in this document.

The method of approximating the frequency response of a fluid transmission
line with a rational polynomial transfer function using the Matlab® ‘invfreqs’ least
squares curve fitting algorithm has already been introduced. This work improves the
technique by proving that an accurate result can be obtained by matching the mode with
the resonant frequency, adding one additional order to the characteristic equation, and
then normalizing the result by dividing the approximated transfer function by the steady
state gain. It also improves the technique by applying the ‘invfreqs’ command to a total
system rather than just the one line. The result is that the order of a linear transfer

function for a total fluid transmission line system can be greatly reduced.
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CHAPTER 1
INTRODUCTION

1.1 System Modeling Background

Engineers want to predict the performance of a system before spending the time
and capital to produce one that may not function as required. Models are produced to
simulate the actual system and modifications are made to the design based on the
performance of the model. The most convenient way to simulate a system is to produce
a quantitative mathematical model. The performance of a system can often be very
accurately predicted using a mathematical model that quantifies all the measurable
dynamic behavior. Depending on the accuracy required these models can be very
simple to extremely complex.

The simplest models are composed linear differential equations containing very
generalized or “lumped” coefficients representing the system’s physical parameters.
Circuit theory is an example of this modeling approach and is quite adequate to obtain
an accurate output for a small electric circuit operating at low frequencies, but not for a
very long electrical transmission line or a circuit operating at very high frequencies.
Fluid systems likewise, can be modeled with the “same” equations, but the accuracy
limited. The model that an engineer uses has to represent all the dynamics that can have

a measurable effect on the result [1/2].



1.2 Fluid Transmission Line Modeling History

Fluid and electrical transmission line dynamics have been studied extensively
since their wide span application in the 20" century. Heaviside is credited with the
formulation of transmission line theory for electrical lines in 1887, and his equations are
referred to as the telegrapher’s equations. In contrast to circuit theory, Heaviside’s
equations are based on distributing the parameters of inductance and resistance along
the length of the line. Electrical transmission line theory is derived from the Maxwell’s
equations which are nonlinear partial differential equations. He also proved that an
electrical transmission line can be modeled using just two functions, the propagation

operator I" and the characteristic impedance Z, [3].

A fluid transmission line system, like a long electrical transmission line, also
needs to be modeled with distributed parameters to accurately quantify the dynamic
behavior. The approach is very similar to electrical transmission line theory, but fluid
transmission line theory is derived from the Navier-Stokes equations which are the
foundational equations of fluid mechanics [4]. These equations obey the basic laws of
conservation of momentum, mass, and energy:

1.) Momentum: The acceleration of fluid particles.

2.) Continuity: The conservation of mass.

3.) Energy: The dissipation of heat.

Since the Navier-Stokes equations do not cover the issue of compressibility whether it
be a gas or a liquid, an additional equation needs to be included in the total solution:

4.) State: The influence of the compressibility of the fluid.



Iberall [5] was the first to produce a solution that included viscous friction and
heat transfer effects. Gerlach [6] produced the first exact first order or classical model
solution. From this work researchers have developed several distributed parameter
models which is documented by Goodson and Leonard [7]. The dissipative model is
considered to be the most accurate [8].

1.3 Rational Polynomial Approximations

The major obstacle to the distributed parameter model is that it is nonlinear and
not in the form of a finite order rational polynomial familiar in classical modeling and
control theory. This is a problem because the resulting transfer function cannot be
transformed to the time domain using inverse Laplace transform techniques. To exactly
represent a distributed parameter model in rational polynomial form would require an
infinite order transfer function, because the frequency response of an exact solution
oscillates to infinity. It is important to note that all real systems are distributed
parameter and a finite order rational polynomial transfer function is simply an
approximation. The goal in systems modeling is to have a transfer function
approximation of the order that covers the required frequency range of operation [9].

Model Order Reduction is a branch of dynamic systems modeling research that
seeks to simply or reduce the complexity of a system model without losing measurable
output behavior [10]. The distributed parameter model is an infinite order
representation of a system, and researchers have sought for methods to approximate it
with a finite order model. Brown [11/12] was the first to approximate Iberall’s solution

in the Laplace domain to obtain a step and impulse time domain response. D'Souza and



Oldenburger [13] further developed Brown’s approach to include the effects of line
vibration. Hullender and Healey [14] developed a rational polynomial approximation
by obtaining a Tailor’s series expansion of the dissipative solution based on the mode
number. Hullender and Hsue [15] applied the modal approximation approach to the
seven unique solutions of the dissipative model. Hullender and Woods [16] applied the
modal approximation method to the development of a minimum-order state-space
model. Nursilo [17] introduced an approach to correct modal approximations at zero
frequency. Wongputorn [18] introduced an approach by applying a least-squares curve

fitting algorithm in Matlab® to the frequency response of the dissipative model.



CHAPTER 2
FLUID TRANSMISSION LINE MODELING

2.1 Modeling Overview

Each of the commonly accepted fluid transmission line models are developed
and compared in this chapter in order to illustrate the importance of having a model that
simulates all the dynamics and also the importance of minimizing the model to the
frequency of operation.

2.2 Lumped Parameter Line Models

The simplest mathematical model of a fluid transmission line is the lumped
parameter model. In this model the three physical parameters, resistance, inertance, and
capacitance are assumed to be located in one or more discrete locations along the fluid
transmission line. This model is constructed with a system of linear ordinary
differential equations (ODEs). This model is useful since it can be integrated into a
larger mechanical system of lumped parameter components to produce a rational
polynomial transfer function. The inverse Laplace transform can then be applied to this

result to obtain the time domain response of the system.



Flow and

Pressure Capacitance
Input
—_— @ Inertance
Resistance Flow and
Pressure
Output

Figure 2.1 Basic lumped parameter model

The equations that define this model are as follows:

P -P,=RQ, 2.1)
P -P,=LO, 2.2)
0,-0,=CpP, 2.3)

The Laplace transform of these equations when ignoring initial conditions are:

P,-P,=RQ, (2.4)
PR _Paut :L S Qin (25)
0,-0,=CsP, (2.6)

Combining these three equations results in the following matrix form:

P b,
1 —[LS'FIJ
= R (2.7)

2
RO —RCps (1+RCps+LCps ) RO,

This is a second order model of the fluid line system. The problem with this

model is that in reality are parameters are distributed along the line and not just located



at a discrete point as indicated by the diagram. The lumped parameter model can be

modified to attempt to represent the distributed nature of the parameters as shown.

Flow and _ _
Pressure Capacitance Capacitance
Input
—_— @ Inertance Inertance
Resistance Resistance Flow and
Pressure
Output

Figure 2.2 Two element lumped parameter model

In this example the line is split into two identical lumped parameter models
where all the parameters are split into two lumped elements (lumping by length). This
results in the following equation.

2

P P.
out 1 _ £S+1 in
= R (2.8)

_ 2
ko, | |-RCys (1+RC,s+LC,s)|| R,

If the line is divided n times then this equation would apply:

P TP
out 1 —(LS'H] in
— R (2.9)

_ 2
RO, | [-RCps (4RC,s+LC,s*)| | Ro,

The following figure shows the frequency response plots of a lumped parameter fluid

transmission line.



20 T 0

Decibels
=
T

Y
(=]
T

-500 ’ ’ ””H;l ’ ’ "””;2 ’ ’ ”””3
10 10 10 10

Frequency rad/sec

40+

140+

-160

-180
10

Frequency rad/sec

Figure 2.3 Magnitude and phase frequency response plots of a transmission line
modeled with single element lumped parameters
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Figure 2.4 Magnitude and phase frequency response plots of a transmission line
modeled with two element lumped parameters



This approach is really a form of finite element analysis. It is interesting to note
that the frequency response quickly dies out after one peak in the case of the single
element line and after two peaks with the two element line. The peaks are referred to as
the “modes” of the frequency response. Each mode is equivalent to a second order
rational polynomial transfer function. These lumped parameter models are derived
from linear differential equations and produce a rational polynomial transfer function
which can be transformed into a time domain function via the inverse Laplace
transform.

In reality the frequency response of any system in nature has in infinite number
of peaks as the magnitude dies out. An “exact” transfer function should then be a
function of a cyclical function. The development of the distributed parameter model
will show that the cyclical functions used to produce this model are hyperbolic sine and
hyperbolic cosine functions. The only problem with distributed parameter models is
that they are nonlinear and cannot be inverse Laplace transformed to produce a time
domain response.

2.3 Distributed Parameter Line Models

The actual governing equations of a fluid transmission line are nonlinear partial
differential equations (PDEs) that model the distributed nature of the three parameters
of resistance, inertance, and capacitance. The governing equations used are the Navier-
Stokes equations and the equation of state. The equation of state is used because the
compressibility of both liquid and gas is taken into account. This results in a more

accurate model of the line.

10
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Figure 2.5 Distributed parameter model

The governing equations are as follows:

Momentum Equation
[au ou Ou} _ 0P 40°u  d’u Jlou 10 (6 v)
P, = tH + -
o ox | or Ax 30x°  or’ r or 3 ox\or r)| (2.10)
Continuity Equation

(;,04_,0{6@;_'_6\2_‘_\/}4_‘}6,0
t

+ua—'020

2.11
or Ox @11

Vox or r

Energy Equation

o’T laT
2.12
{62 or ar} @12

6T

)% =g
o

1
+T (v~ >

State Equation for Liquids

dp _dp

o B (2.13)

State Equation for Gases

. 4P (2.14)
Py Wy '

11



The Laplace Transforms of the governing PDEs are as follows:

dP(x,5) __Z,7*(5)

i I3 0(x,5) (2.15)
dO(x,s) _ s _
&1z, P(x,5) (2.16)
where:
(x,s)0(0,L)xC (2.17)
—_ pOCO

Z, = r (2.18)
S =ws (2.19)

w=L
c, (2.20)

Several models have been developed using these equations all of which have two

functions in common:
Propagation Operator I'(s)
Characteristic Impedance ~ Z(S)

These functions are so named because of the following relationships:

P(x,,$) _ e{r(” y 2} 2.21)
P(xlas)

P(x,s) _

—Q(x, 9 Z_(s) (2.22)

12



The propagation operator governs the propagation of the input pressure through
the line. The characteristic impedance governs the fluid flow. Note that the
characteristic impedance is not a function of the length of the line. These two functions
are sufficient to completely model a transmission line.

2.3.1 Lossless Line Model

The lossless fluid transmission line model uses the momentum, continuity, and
state equations but excludes the heat transfer governed by the energy equation and the
dissipation effects.

Momentum Equation (excluding dissipation terms)

Oou  Op
—+L =0 2.23
Poar " ox 223)

Continuity Equation (excluding dissipation terms)

P —tu—+——=0 (2.24)

State Equation for Liquids

do_de e
Py, B '
State Equation for Gases
dp _dP
—=— 2.26
o (220

These form the following wave equations:

13



5 (2.27)

9’0 _ py 9°Q
x> or?

(2.28)
The solution to the wave equation in matrix form is as follows:
1 _Z_ sinh[
cqsh r coshl” (2.29)
sinh 1
in Z coshl"  coshl o
This form is consistent in all of the distributed parameter models. The only

difference is in the calculation of the propagation operator and the characteristic

impedance. The propagation operator and the characteristic impedance functions are

defined in the lossless fluid transmission line model as:

M(s)= Ls (2.30)
Co
pO 0
7 =
. (5) 7702 (2.31)

2.3.2 Linear Friction Model

The linear friction transmission line model uses the following equations:

Momentum Equation
(linear friction term resulting in pressure loss being proportional to average velocity)

ou Op
T+ |+ = 2.32
o St v |+ 2 23)

14



The linear friction term is defined by the following equation.

AP
pOUF = _E

(2.33)

The Hagen-Poiseuille theory for pressure drop in a pipe with laminar flow is given as:

AP _ VP
2
Ax r
This simplifies F to:
8V
F="—0
r

Vv
— 0
“Te
0
Resulting in:
F =8a

Continuity Equation (excluding dissipation terms)

2o ou
-~ 4+ — =0
o Py

State Equation for Liquids

dp_dP
p, B

State Equation for Gases

dp_dp
P My

15

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



The propagation operator and characteristic impedance functions are defined by

the linear friction transmission line model as:

Ls [ F

M(s)==2 1+ (2.41)
C s

Z.(s)=2% f L (2.42)
T, s

The viscous transmission line model applies the Navier-Stokes equations with

2.3.3 Viscous Line Model

the exception of heat transfer terms.

Momentum Equation

—+=
or r or

p, Q= 0P 0, 1ou (2.43)
‘ot ox '

Continuity Equation

op Ou Ov v
S —+—+—|=0 2.44
o1 p“{ax or r} (244)

State Equation for Liquids

dp_dP

2.4
p B (245)

State Equation for Gases

dp_dp

2.46
o R (2.46)

16



The propagation operator and characteristic impedance functions are defined by

the viscous transmission line model as:

M(s) = f}‘j (2.47)

Z.(s)=BZ, (2.48)
1

ZJI{j :)] (2.49)

Jo and J; are zero and first order Bessel functions of the first kind respectively. Z. and
oy are the characteristic and viscous frequency respectively.
2.3.4 Dissipative Transmission Line Model

The dissipative transmission line model is derived from all the original Navier-
Stokes equations and the equation of state to include all the effects of viscosity, heat

transfer, and compressibility. The characteristic impedance and the propagation

_ s |[I+(y-DB,
r(s)_@ /I—B, (2.50)

YA
Z.(s)= °
O BB,

operator are as follows:

(2.51)

17



where the two Bessel function ratios are as follows.

. i)

(2.52)

= (2.53)

and the line impedance constant is defined as follows.

_ P
z =t (2.54)

r

The specific heat ratio is given by the following equation.

y=-* (2.55)
(8

v

2.4 Normalized Parameters

In practice, all of the distributed parameter models are normalized with respect
to time for the purpose of frequency response comparison.

Normalized Laplace Operator

(2.56)

18



Viscous Frequency
w =— (2.57)

Replacing the Laplace operator with the normalized operator produces the following.

S=Sh (2.58)

v

gives the normalized propagation operator as:

. _sw [1+(y-1HB
r - v rag
() © N 1-B (2.59)

Defining the dissipation number as:

D = (2.60)

and simplifying the normalized propagation operator gives the following equation.

_ _ [1+(y-1B
r(s)=Dy5 |/ % .
(5)=D,s,— B (2.61)

The dissipation number is often a used as a reference point when comparing
various frequency responses. The dissipation number can also be written as:

VL
D, =— (2.62)
C,r

The pressure waves in a fluid transmission line propagate at the speed of sound
in the line, ¢,, making the dissipative number a function of this value. The speed of
sound is a function of the fluid density and the compressibility (inverse of bulk

modulus) of the system.

19



The characteristic frequency is represented by the following relationship.

w =2 (2.63)

The dissipative transmission line model approach is referred to as viscous theory

and has been proven to be the most accurate model.

25 ‘ ‘

20

Decibels

_20 L P S S S S S | L P S S S S SR L P S S S S S
10 10’ 10° 10°

Normalized Frequency rad/sec

Figure 2.6 Frequency magnitude response of a blocked hydraulic line using the
dissipative model
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Figure 2.7 Frequency phase response of a blocked hydraulic line using the dissipative
model

2.5 Transmission Line Model Comparison

This section applies each of the five models covered in the last section to a
blocked fluid transmission line and compares the resulting frequency response plots.

Qout=0
Qin Pout
Pin = 5e6 MPa

Figure 2.8 Blocked transmission line illustration
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Fluid Properties

Density = 870 Kg/m®

Kinematic Viscosity = 4.6e-5 m%/s
Prandtl Number = 1

Specific Heat Ratio = 1

Bulk Modulus = 1.21¢9 N/m?

Line Properties

Length=2m
Diameter = 0.01 m
Bulk Modulus = 1.73¢7 N/m’
2.5.1 Lumped Parameter Model
The lumped parameter approach requires the computation of values for the line

inertance and capacitance.

Pin = Pow = (R + Ls)QOin (2.64)

0,, = C,5Pou (2.65)

Pin = Pou = (R + Ls)C ,sPou (2.66)

P, =(C,Ls* + C,Rs +1)Pou (2.67)
— 1

P, = > Pin (2.68)
(C,Ls* +C,Rs +1)

22



1280

. 2.69
A =
R = 128 (4.6e-5)(870 )(2) _ 3.261e8 N-s (2.70)
77(0.01)* m’
yoJl4
;= Pl 2.71
. (2.71)
L= BT 551567 NS 2.72)
77(0.01/2) m’
_V
c = 2.73)

The effective bulk modulus of the system takes into account the compressibility
of both the hydraulic fluid and the hydraulic hose. The tangent bulk modulus is
measured at a specific point and pressure whereas the secant bulk modulus is average

change in pressure and volume. The secant bulk modulus is used in all computations.

oP
==V, | —
B, O[aV}T,E (2.74)
AP
=y = 275
o=l @7
1) -
ﬂs viap T.E '
v, [ ar, v. [av
= Sfluid |:_ Sfluid :| + hose|: hose :| (277)
I[gs V VﬂuidAP T, 4 I/hOS@AP T,E
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In this system the liquid is compressing and the hose is expanding which
explains the assignment of the positive and negative signs in the equation. The volume

of the system is also the volume of the hose and the equation can be rewritten as

follows.
1 _ Vi | _ BV g +| BV hose (2.78)
IBS 4 VﬂuidAP T VAP 1. |
b +| - (2.79)
ﬂs V ﬂﬂuid T.E ﬂhose T.E

Assuming that the volume of the fluid is equal to the total volume gives

1 1 1
= +| — (2.80)
’85 ’Bﬂuid T.E ’Bhose T.E
B i B
ﬁe :ﬁs — [ fluid? hose (2.81)
’8 fluid * ’8 hose
1.21e9)(1.73e7 N
ﬁe = ( X ) =1.706e7 — (2.82)
1.21e9 +1.73e7 m>
2 5
— : 2
C =V _ {0.01/2) )=9.21e-12 n (2.83)
B 1.71e7 N
The transfer function for the lumped parameter model is:
1
Pin (2.84)

" (0.20403¢-352+0.3003¢-35+1)
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2.5.2 Distributed Parameter Models

The distributed parameter matrix transfer function for this causality reduces to

—_ in

" coshl

This transfer function will be applied to the next four models.

(2.85)

The only

difference is in the calculation of the propagation operator. The impedance constant is

not required in this causality since the solution is the pressure output and not fluid flow.

2.5.2.1 Lossless Line Model

M(s)= E
Co
c() : ﬁe
0
¢, =227 =140.2 m/s
870
[(s)=—25_ = 014285
140.2

2.5.2.2 Linear Friction Model

%
r(s):ﬁ 1+ 2

2

c, SF

Fsy =2 1+8(4.6e—52):0.01438 [, 14.72
1402\ 5(0.005) s

25

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)



2.5.2.3 Viscous Model

F(s)=

27| 2
| v (2.92)

2.5.2.4 Dissipative Model

Ms)="

w, ( s ]
2J| j.|—
. | @, (2.93)

The viscous model and the dissipative model for the line have the same resulting
propagation operator as well as the same transfer function due to the fact that the

specific heat ratio of liquid is unity.
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Figure 2.9 Frequency magnitude response of common fluid transmission line models
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CHAPTER 3

MODAL APPROXIMATION APPROACH

3.1 Model Overview

As a result of being derived from partial differential equations the dissipative
model transfer function is not in the rational polynomial form familiar in system

modeling and control theory.

1 _Z, sinh[
cc?sh r cosh G.1)
sinh [ 1

0, Z coshl cosh o

Fluid line systems actually contain several components in addition to the fluid line or

lines.

Tank Handle

Pump

Spool
Valve

Hydraulic Cylinder and Piston

Figure 3.1 Hydraulic log splitter
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In order to integrate this model with other lumped parameters in a total system it

is necessary to approximate the resulting transfer function as a rational polynomial

transfer function. This effort has been the focus of much of the latest research in this

field.

There are four possible causalities to a fluid line problem as follows:

0 coshl 3 1
" | | Zsinh[  Z sinhl
- 1 coshl™
Qout -

Z sinh[ Z sinh[" |

P, Z coshl Z,

sinh sinh

P Z, _Z, coshl
. sinh sinh " -
P 1 Z sinh[
coshl sinh [
_ sinh 1
o Z coshl coshl" |
1 _Z_ sinh[
"1 | coshl cosh
| sinhl 1

0,

Q, Z coshl cosh

Qoul

Qout

(3.2)

(3.3)

(3.4)

(3.5)

In these four equations are seven unique transfer functions that will be defined as

follows:

29



_ coshl
1 Z sinhl

1
> Z sinhT

_ sinhl
3 Z coshl

_ 1
4 coshl

C = Z, .cosh r
s sinhl

Z

C

C =—
6 sinhl

C = Z sinh [
7 cosh

3.2 Model Derivation

coshl = Ij 1+

30

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)



B = % (3.15)

B = = (3.16)

Where:

O is the Prandt] number
Olo; is the i™ zero of the zero-order Bessel function

Ol1; is the i™ zero of the first-order Bessel function

The infinite product representation of the propagation operator is

- —
1+ %

® a’
1+(y—l)D =

F(s)=Ds — = (3.17)
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Multiply both the numerator and denominator terms by ﬁ{H;z} and by

i=l 0.

I 2
i=1 0,i

[(1 + Uf] 1+ Uz] +(y- 1){1 + U”:J{l + UfJ][{l + SZJ(l + i J]
F(E) - D E aO,l 0,2 al,l al,z aO,l aO,Z
" . . . . _ _ 3.18
[{1 +Szj{1 +Sz}...—{1 +SZJ{1 +SZJ][(1 +U;?J{1 +UfJ] G:19)
a(),l aO,Z al,l al,z aO,l al,z

This can be reduced to:

) 0'_ .
M {H > } appropriately and expanding to get the following equation:

+as+as’+---+a s
y 1 2 2m :| (3'19)

Frs)=Dys
(5) " { b1§+b2§2+...+b2m§2’"

The polynomial coefficients a; and b; are functions of the Prandtl number and m only.

3.2.1 Modal Approximation of 1/cosh I

This result is applied to the series equation for cosh I'.

e 3
_Q D?5? +a,5+a, s>+ +a, 52"
coshlF =[]<1+ n 4 1z e (3.20)
1= 1 2 blS +b2S +"'+b2mS
2
g J
A new variable called the dimensionless root index for cosh I' is introduced
1 (.1 .
/]C = " |j— i=123......... (3.21)
D\ 2
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0 =2 —2m

_ )

— S +a,sta,s"+---+a, S

coshl" = I_l 1+ yra 2 am
1= ]TZ/.iC b1S+b2S +’+b2mS

(3.22)

The goal is to simplify the equation as a rational polynomial first by combining the

unity term and series term as follows.

=2

- - — em= S - - — <m
(bs+bs*+-+b 5" )+ (y+as+a5 +-+a, 5°")
m ﬂzAz m

=1 (bl§+b2§2 +. .L.+b2m§2'"‘1 ) (3.23)

Then divide both the numerator and denominator by § to get:

. (bl +b,5+-+b, 57" )+ S - (y+al§+a2§2 +.. .+a2m§2m)
coshll — . T A .
|_1| (b, +b,5+--+b,, 52" (3.24)

Combining terms in the numerator results in:

° (b+c§+c§2+---+c +§2'”+‘)
|: 1162 3 2m+2° (3.25)

coshll =
” (b5 +b,52 +--+b,, 52
The polynomial coefficients b; are functions of the Prandtl number and m only
whereas the polynomial coefficients c¢; are functions of the Prandtl number, m, the
specific heat ratio, and the dimensionless root index.

Factoring the numerator and denominator results in the following equation:
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@ | (5+z )(5+z,)..... (§2+2Ciw§+a)?)

vi vi

cosh ' = I;I (s+p )5+7,)...(5+p5, )

The real root terms in both the numerator and the denominator virtually cancel each

(3.26)

other out for lines with low damping and cosh I" can be approximated as:

© | 52+2C @, S+a)

coshF = I_l (3.27)
1= aClS +bCl
The transfer function 1/cosh I is:
1 as+b
- _ - — — (3.28)
coshl' = s'+2¢ws+w
n = number of second order modes
The values for the coefficients have been tabulated.
3.2.2 Modal Approximation of Z.sinh I'/cosh I’
Substitute the infinite product series form for sinh I" and cosh T'.
r 1+
Z sinhl _y {u{ lfiZH
cosh” ‘
(3.29)

-]
L 772(' 1)2
P
2

Substitute in the equation for the propagation operator.
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- [ D5 [1+(y-1)B,
- e
— I ; -
Z sinhl -ZDs 1+(y-1)B,, \
coshl ' 1-B,

D’s’ 1+(y—1)Bm}

(3.30)
41
: }(i-lﬂ

2

Substitute the equation for the characteristic impedance.

- HDst{H(y—DBW}
7, sinhl _ Z, D3 \/W e 1-B,
coshl . /(1-B)(+(y-1)B,) " 1-B.

=), DS’ 1+(y—1)8m}

It #(z‘—lj{ 1-B

(3.31)

2
The matrix transfer function when modal approximation method is applied is in
the following form to remove the Z; term in the development of the modal

approximation model of the individual terms.

P 1 _Z_ sinh
_ cosh Z,coshl (3.32)
sinh 1
ZOQin ZOQout

Z coshl cosh

> ), DS {H(y—l)Bm}
Z sinhl" _ 1 ps DB, * mwi'| 1-B
Z,coshl  \J(1-B)(I+(y-DB,) " 1-B

o) DS’ 1+<y—1>3m} (3.33)

1=1 nl(l_lj |: l—Br
2

Reducing Bessel function terms gives
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. 2224 (y—
i 1+Dni I+(y-DB,
Zsinh[ _ D5~ i 1-B,

Z,coshl ~ (1-B)) (3.34)
@ D’s* | 1+(y-1)B
I—| 1+ n S 5 |: (ly B) ra'j|
1= 1 —_
ﬂz(i_j r
2
Substitute the infinite product series form of the Bessel functions produces:
_ .
e
1+(y-1) -
o 252 a;.
0 1+l])72§2 S
) ! 1+5
o 2
1- -

Z sinhl _ Ds I a,| (339)
Z,coshl” 1+i r 1+i§ - .
o a’ - al,

- - 1+(y-1) -
=1+ Ij! 1+ o
a. || . 252 a;,
0,i 1+ DnS . _ 0,i

= N

2 s a,

-

=+ s

a;,

Multiply both the numerator and denominator terms b 1+ and b
y L a2 y
0,i

00 0—7
l|:l |:1+0'§} appropriately to get the following equation:
0,i
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Z sinhl"

ixs

=Ds

Z,, coshl’ " . ;
| 1+
=i 2

Another dimensionless root index for the sinh I" polynomial is introduced.

) s
n| 1+ +(y-D |1+
i=1 2
2.2 ao’l
K
i
I'I{H
H{H‘ +(y-D N1+
D5’

A="1
s D

n

(3.36)

(3.37)

Substitute the dimensionless root indices of both cosh I" and sinh I' into the equation.

Z_ sinhl’

D

n

Ll

Z, coshl”

|
-
-

i
©
to
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This equation can be simplified into the following form.

Z, sinhl |.(§+L71)(§+L72) G+i,) E![(“fl)(“fz) ----- 6+7 )G +20,0,5 + )

The real root terms in both the numerator and the denominator do not
necessarily cancel each other out for lines with low damping as in the case of cosh I'.

Z.sinh [
Z,coshl

If is divided by the first real root (s +u,), the residues of the resulting real

roots approach zero.

Z sinh[ (_"‘_)Zn: as+h
c = S u Zl Zl (3'40)
Z,coshl Las 2l w5t

n = number of second order modes
The values for the coefficients have been tabulated.
3.2.3 Modal Approximation of sinh I'/ Z.cosh I"

As stated earlier, the form of the transfer function when the Modal
Approximation method is applied is in the following form to remove the Z, term in the
development of the modal approximation model of the individual terms.

Z,sinh [

P — 41
Z coshl (3-41)

Substitute the infinite product series form for sinh I" and cosh T'.
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Z I 41+
Z,sinh[ _ ° I'I{ nziZH

Z coshl
) = (3.42)
2] 1+(. ljz
T i—
2
Substitute in the equation for the propagation operator.
D2S2|:1+(y_1)3m}
+(y- - ! 1-B
ZDs M 1+ —
1-B, = i’
Z,sinh [
o SIY L : (3.43)
Z coshl D5 1+(y-1)B
® ! 1-B
Z []41+ - " 5
")
2
Substitute in the equation for the characteristic impedance.
1 1 D:S2|:1+(1y_;)3m:|
+ — o —
7.5 VDB, {1+ =5,
1-B, = i’
? S”ﬂ;; = L (3.44)
cos -
c D:S2|:1+(y I)Brﬂ
Z, - 1-B,
Ja=B)i+nE )N | N
J(A+(y-1B,, nl(l._zj

Reducing Bessel function terms and canceling out the impedance constant gives
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Z,sinh [0

Z coshl

=[D,s(1+(y-1)B,,)]

DZSZ{
1+

8

1+(y-DB,

1-B,

|

n2i2

Dzs{
0 1+

1+(y-DB,

1-B,

|

nl(i—lj
2

Substitute the infinite product series form of the Bessel functions produces

Z,sinh
Z coshl

- | )
= D3| L+(y-D]{— 2

05
1+

05
1+

0,i

a

8

_ - _
1+
hd al,i
1+(y—1)!:| -
1+
* D2§2 a()l'
4+ 5 -
1= T1 1+i2
1_ kel al,i
s
I+
aO,i
+&
hd ali
1+(y—1)!:| a§
1+—
2§2 0’2.
1+ n . — 0,
1 S
772[1'—) 1+—
2 kel al,i
1- -
1= S
1+——
a,,

Combine the following term as one quotient.
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To get the following:

Substitute into the equation to get

i

- = DﬂS i : i
Z_coshl’ « &
1+
D a’

Combine the following term as one quotient

i B

(3.47)

(3.48)

(3.49)



1+
1 had al,i
] - (3.50)
I+
L aO,i

To get the following

® s ® S
1+ b+
”{ as,} { a}
: : (3.51)

Substitute into the equation to get

. & . & ] 5
Zsinhl _ ”{Hm}ﬂy _DH{HQT} H{HC{L}
=Dg5s L 4
Z coshll & w = w - (3.52)
H{Hq;_} ”{Hﬂj}ﬂ y—1)|:|{1+m}

| &
17
Al L5 ”{+a:_}
n‘['—IJ M 5 + 5
20 Yla) a
S

Factor out the following term.
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® 5
1+
”{ as,}
L (3.53)

i+ ' '
& O 2 1 - Y- 0 Y PPN iy P
Z sinhl ”{1+:}+(y_nﬂ{l+j} fq{Ha& H{HHJ}W{H";} (3.54)
0 :DE 4 L o
Z coshl |_| 1+§ - g ) . ) &
) b l_|:|1 1+a§- ﬂ{l-'-cf}-'-(y_l)ﬂ{“cf}

My
— | =] & S PR W
") ezl otatoia)

Introduce the dimensionless root indices to get the following equation.

o0 [ & © &
I I e

€
. SQ{l%}ﬂ}/ﬂ)’j{H%Hl: E {1 } ﬁ{u s }J,ﬁ{ s} |
=it
;ﬁz “1{1 +a§}_ Q{IJ'C}&}J'Q{“C}@} |

ﬂ:lg

\ SQNT”‘ SQNTS\ SQNT”‘

(3.55)

S\

I

This equation can be simplified into the following form.

Z_ sinhl D5 (s+a)s+a)...(s+a,) rl[(S+l’)(s+r) ..... E+r, 1)(S2+ZZQ) 5 a)z)]
Z, cosh" (5 +B)S b)) 5 4B, ) |
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The real root terms in both the numerator and the denominator do not

necessarily cancel each other out for lines with low damping as in the case of cosh I

I Z.sinh [

Z,coshl

approach zero.

is divided by the Laplace operator, the residues of the resulting real roots

Z_ sinhl" as+b.
e =3 (—) (—) (3.57)
SZ,coshl" =) 5 +2Za)s+wz s+p| \5+p
The inclusion of one real pole gives a very accurate approximation.
1 n a s +
SZ,coshl  (s+p,) = 2(&)s+a)2
3.3 Modal Approximation Residue Coefficient Tables
Table 3.1 Residue Coefficients for Air (Pneumatic Transmission Lines)
Z/sinh T’ 1/Z.sinh T’

A Veosh I (-1)‘Dnai/zco/ [ -1)DubiZs| () ZgDuai| (-1)ZaDyb;

®, (‘; Z.cosh I'/sinh I coshI'/Z.sinh T’

D120 (-1)*(1-20)b; Z.sinh I'/cosh I sinh I'/Z.cosh I

7\,5 Dnai/Zo Dnbi/Zo Z()Dnai Z()Dnbi
0.02] 0.0451] 64.163| -0.000159| -0.002586 1.4286 8.2617 1.3797| -2.14E-5
0.04| 0.0901] 32.083] -0.000635| -0.010345 1.4287 8.2618 1.3798| -8.54E-5
0.06] 0.1352| 21.390| -0.001428| -0.023279 1.4288 8.2618 1.3800| -1.92E-4
0.08] 0.1803] 16.045| -0.002539] -0.041390 1.4289 8.2619 1.3802| -3.40E-4
0.10] 0.2254| 12.838] -0.003966| -0.064685 1.4291 8.2621 1.3805| -5.31E-4
0.20] 0.4509| 6.4266| -0.015830] -0.25915 1.4306 8.2631 1.3829| -0.00208
0.30] 0.6768] 4.2930| -0.035494| -0.58462 1.4332 8.2650 1.3869| -0.00451
0.40] 0.9032| 3.2288| -0.062787 -1.0431 1.4369 8.2677 1.3925| -0.00759
0.50] 1.1304] 2.5922| -0.097464 -1.6375 1.4416 8.2714 1.3996] -0.01101
0.60] 1.3584| 2.1695| -0.13919 -2.3713 1.4473 8.2762 1.4083| -0.01436
0.70] 1.5875| 1.8688] -0.18755 -3.2489 1.4542 8.2822 1.4185] -0.01713
0.80[ 1.8177| 1.6444| -0.24200 -4.2751 1.4620 8.2898 1.4301] -0.01873
0.90] 2.0493] 1.4708| -0.30192 -5.4556 1.4710 8.2991 1.4431| -0.01848
1.00] 2.2824] 1.3327| -0.36653 -6.7962 1.4809 8.3105 1.4573] -0.01563
1.20] 2.7535] 1.1272] -0.50624 -9.9828 1.5038 8.3406 1.4887| 0.001035

44




Table 3.1 — Continued

1.30] 2.9917| 1.0488] -0.57924 -11.841 1.5166 8.3600, 1.5055| 0.01646
1.35] 3.1115| 1.0142] -0.61602 -12.839 1.5233 8.3709] 1.5140] 0.02626
1.38] 3.1836/ 0.99459 -0.6381 -13.460 1.5274 83779 1.5192] 0.03286
1.40] 3.2317| 0.98202 -0.6528 -13.884 1.5302 8.3827 1.5227| 0.03757
1.50] 3.4737| 0.92437 -0.7257 -16.116 1.5444 8.4091 1.5400,  0.06496
2.00] 4.7114] 0.72401 -1.0434 -30.217 1.6199 8.5995 1.6170] 0.30086
3.00] 7.2868| 0.52103 -1.3385 -72.731 1.7364 9.1569] 1.6597] 0.95333
4.00] 9.9163] 0.41536 -1.5376 -133.45 1.7917 9.6372| 1.6268 1.2416
5.00] 12.571] 0.35102 -1.8441 -213.52 1.8236 10.007] 1.6052 1.2040
10.00] 26.286| 0.22229 -3.4749 -940.55 1.9113 12.073] 1.6641] 0.57002
15.00] 40.539| 0.17476 -4.2906 -2230.3 1.9395 14.396] 1.7273| 0.83770
20.00] 55.034| 0.14745 -4.8375 -4084.1 1.9494 16.347|  1.7617 1.2725
25.00] 69.661| 0.12923 -5.2970 -6508.5 1.9547 18.016] 1.7838 1.6704
30.00] 84.376] 0.11602 -5.6900 -9508.2 1.9581 19.506] 1.7997] 2.0472
35.00] 99.157| 0.10588 -6.0263 -13086 1.9605 20.868 1.8119] 2.4182
40.00 113.99] 0.09778 -6.3149 -17243 1.9622 22.131 1.8215  2.7879
45.00 128.86] 0.09112 -6.5633 -21982 1.9635 23.331 1.8294)  3.1576
50.00] 143.76] 0.08551 -6.7775 -27302 1.9644 24427 1.8358] 3.5271
55.00] 158.69| 0.08071 -6.9623 -33204 1.9652 25.482] 1.8413 3.8964
60.00] 173.64| 0.07653 -7.1213 -39690 1.9657 26.486] 1.8459] 4.2654
70.00] 203.59| 0.06958 -7.3734 -54410 1.9665 28.364] 1.8534] 5.0024
80.00] 233.60] 0.06400 -7.5525 -71464 1.9669 30.095|  1.8591 5.7372
90.00] 263.66| 0.05937 -7.6720 -90851 1.9671 31.703] 1.8536] 6.4684
100.00] 293.74| 0.05547 -7.7425 -112572 1.9672 33.205] 1.8774] 7.1946
150.00] 444.46| 0.04220 -7.6011 -256130 1.9663 39.516] 1.8814 10.698
200.00] 595.39| 0.03429 -7.0233 -457800 1.9647 44366 1.8714 13.883
300.00] 897.35| 0.02500 -5.5689] -1034823 1.9617 51.192|  1.8836 19.052
400.00] 1199.2| 0.01964 -4.2872] -1842813 1.9595 55.539] 1.8835| 22.734
500.00] 1500.8) 0.01614 -3.3103] -2881478 1.9579 58.387| | 1.8830] 25.300
600.00] 1802.3) 0.01367 -2.5920] -4150748 1.9568 60.313] 1.8825 27.099
700.00] 2103.8| 0.01185 -2.0646| -5650623 1.9560 61.655| 1.8820] 28.384
800.00] 2405.1] 0.01044 -1.6728] -7381119 1.9554 62.619] 1.8816] 29.321
900.00] 2706.4| 0.00933 -1.3771] -9342256 1.9550 63.330 1.8814| 30.019
1000.00] 3007.5| 0.00843 -1.1501] -11534000 1.9547 63.866] 1.8811 30.550
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Table 3.2 Residue Coefficients for Liquid (Hydraulic Transmission Lines)

Z/sinh T’ 1/Z¢sinh T’
1/cosh T’ . . _ _

Ae (-1YDyayZo | (-1yDubiZy| (-1YZeDyar| (-1)ZyDyb;

m, (; Z.cosh I'/sinh I coshI'/Z.sinh T’

A, 1) (1-20)a] (-1 (1-2)b; Z.sinh I'/cosh T’ sinh I'/Z,cosh T"

Dnai/Zo Dnbi/Zo Z()Dnai Z()Dnbi
0.01| 0.0267| 108.31| -6.7412E-6| -9.0755E-4 2.0000 11.566 1.3824| -7.6476E-6
0.02| 0.0534| 54.154| -2.6965E-5| -3.6302E-3 2.0000 11.566 1.3824| -3.0590E-5
0.03| 0.0801| 36.103| -6.0670E-5| -8.1680E-3 2.0000 11.566 1.3824| -6.8828E-5
0.04| 0.1068| 27.077| -1.0786E-4| -1.4521E-2 2.0000 11.566 1.3824| -1.2236E-4
0.05| 0.1335| 21.662| -1.6852E-4| -2.2689E-2 2.0000 11.566 1.3824| -1.9118E-4
0.06| 0.1602| 18.052| -2.4267E-4| -3.2672E-2 2.0000 11.566 1.3824| -2.7530E-4
0.07| 0.1869| 15.473| -3.3030E-4| -4.4471E-2 2.0000 11.566 1.3824| -3.7471E-4
0.08] 0.2136| 13.339| -4.3141E-4| -5.8084E-2 2.0000 11.566 1.3824| -4.8941E-4
0.09] 0.2403| 12.035| -5.4599E-4| -7.3513E-2 2.0000 11.567 1.3824| -6.1940E-4
0.10| 0.2670| 10.832| -6.7404E-4| -9.0758E-2 2.0000 11.567 1.3824| -7.6467E-4
0.20| 0.5340| 5.4172| -2.6952E-3| -3.6306E-1 2.0001 11.567 1.3825| -3.0577E-3
0.30| 0.8010| 3.6130| -6.0607E-3 -8.702E-1 2.0003 11.568 1.3828| -6.8764E-3
0.40| 1.0681| 2.7113| -1.0765E-2 -1.4528 2.0005 11.569 1.3831| -1.2216E-2
0.50| 1.3352| 2.1707| -1.6803E-2 -2.2706 2.0007 11.571 1.3835| -1.9069E-2
0.60| 1.6023| 1.8106| -2.4165E-2 -3.2707 2.0011 11.573 1.3840| -2.7428E-2
0.70| 1.8696| 1.5536| -3.2840E-2 -4.4535 2.0015 11.575 1.3846| -3.7283E-2
0.80| 2.1369| 1.3611| -4.2817E-2 -5.8194 2.0019 11.578 1.3852| -4.8619E-2
0.90| 2.4043| 1.2116| -5.4081E-2 -7.3689 2.0024 11.581 1.3860| -6.1425E-2
1.00| 2.6718| 1.0921| -6.6615E-2 -9.1026 2.0030 11.584 1.3868| -7.5681E-2
1.05| 2.8056| 1.0410| -7.3354E-2 -10.039 2.0033 11.586 1.3873| -8.3351E-2
1.10| 2.9394| 0.9945| -8.0403E-2 -11.021 2.0036 11.588 1.3878| -9.1376E-2
1.20| 3.2072| 0.9134| -9.5425E-2 -13.125 2.0043 11.593 1.3888| -1.0849E-1
1.30| 3.4751| 0.8448| -1.1166E-1 -15.414 2.0050 11.597 1.3899| -1.2698E-1
1.40| 3.7432| 0.7862| -1.2908E-1 -17.891 2.0058 11.603 1.3911| -1.4686E-1
1.60| 4.2796| 0.6912| -1.6739E-1 -23.408 2.0075 11.615 1.3937| -1.9062E-1
1.80| 4.8171| 0.6177| -2.1015E-1 -29.684 2.0094 11.629 1.3967| -2.3954E-1
2.00] 5.3553] 0.5593| -2.5710E-1 -36.725 2.0114 11.645 1.4000| -2.9338E-1
3.00] 8.0609| 0.3868| -5.4497E-1 -83.734 2.0242 11.765 1.4206| -6.2620E-1
4.00 10.796| 0.3036| -8.9161E-1 -151.34 2.0394 11.967 1.4472 -1.0338
5.00] 13.566| 0.2554 -1.2545 -240.78 2.0550 12.267 1.4775 -1.4699
10.0 27.867| 0.1613 -2.4968 -1037.6 2.0957 14.935 1.6156 -3.0903
15.0 42.640| 0.1262 -3.0243 -2419.6 2.0904 17.737 1.6885 -3.8995
20.0| 57.558| 0.1061 -3.4562 -4388.6 2.0808 19.996 1.7294 -4.5559
25.0 72.570, 0.0930 -3.8498 -6952.0 2.0736 21.941 1.7571 -5.1628
30.0| 87.647| 0.0836 -4.2000 -10113 2.0680 23.698 1.7776 -5.7056
35.0 102.77| 0.0764 -4.5144 -13875 2.0634 25.313 1.7934 -6.1952
40.0 117.94| 0.0707 -4.8011 -18238 2.0596 26.815 1.8062 -6.6428
45.0 133.14/ 0.0661 -5.0651 -23204 2.0564 28.223 1.8167 -7.0562
50.0| 148.36| 0.0622 -5.3101 -28774 2.0536 29.552 1.8256 -7.4404
55.0 163.60| 0.0589 -5.5387 -34950 2.0511 30.813 1.8332 -7.7995
60.0| 178.86| 0.0560 -5.7528 -41731 2.0490 32.017 1.8398 -8.1363
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Table 3.2 - Continued

70.0 209.43] 0.0513 -6.1438 -57113 2.0454 34.275 1.8508 -8.7528
80.0] 240.05] 0.0475 -6.4932 -74925 2.0424 36.369 1.8596 -9.3049
90.0] 270.71| 0.0444 -6.8079 -95171 2.0399 38.327 1.8668 -9.8032
100 301.41] 0.0418 -7.0929|  -1.1785ES 2.0377 40.172 1.8728| -1.0255E1
150] 455.23] 0.0330 -8.1857]  -2.6786ES 2.0303 48.150 1.8930] -1.1999E1
200] 609.32| 0.0278 -8.8940]  -4.7895ES 2.0257 54.724 1.9045| -1.3143E1
250] 763.82| 0.0243 -9.3460, -7.5117ES 2.0224 60.376 1.9120| -1.3885E1
300 918.36] 0.0217 -9.6132]  -1.0846E6 2.0200 65.354 1.9172| -1.4337E1
350/ 1073.0] 0.0197 -9.7418]  -1.4791E6 2.0180 69.807 1.9211| -1.4572E1
400] 1227.7| 0.0180 -9.7642]  -1.9348E6 2.0164 73.831 1.9241| -1.4639E1
450] 1382.4] 0.0166 -9.7046]  -2.4515E6 2.0150 77.496 1.9264| -1.4576E1
500 1537.2] 0.0155 -9.5817] -3.0294E6 2.0138 80.850 1.9283| -1.4414E1
550/ 1692.0] 0.0145 -9.4101]  -3.6683E6 2.0128 83.933 1.9298| -1.4174E1
600 1846.8] 0.0136 -9.2018]  -4.3683E6 2.0119 86.776 1.9310| -1.3875E1
650/ 2001.6) 0.0129 -8.9662|  -5.1293E6 2.0111 89.402 1.9320| -1.3532E1
700 2156.4) 0.0122 -8.7111]  -5.9513E6 2.0103 91.834 1.9329| -1.3157E1
800] 2466.1] 0.0110 -8.1668]  -7.7783E6 2.0090 96.182 1.9342| -1.2351E1
900 2775.7] 0.0100 -7.6061]  -9.8490E6 2.0080 99.937 1.9351| -1.1515E1
1000] 3085.4| 0.0092 -70529| -1.2164E7 2.0071 103.19 1.9358| -1.0686E1

Table 3.3 Residue Coefficients for the Real Poles of Zy / sinh I" and Zo cosh I" / sinh T

Residue Coefficients for Zy/ sinh I and

] Pole ZycoshI' /sinh '
Ki D,/ Zy
1 -10.1400 0.169386
2 -45.1979 0.046074
3 -107.923 0.019571
4 -198.487 0.010568
5 -316.905 0.006128
6 -462.886 0.004161
7 -638.069 0.003323
8 -837.815 0.000873
9 -1069.95 0.001907
10 -1326.08 0.000560
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Table 3.4 Residue Coefficients for the Real Poles of 1/Z¢ sinh I" and cosh ['/Zg sinh T

Residue Coefficients for 1/ Zy sinh I" and
] Pole coshI'/ Zysinh I’
Ki D,/ Zy
0 -5.78319 0.689837
1 -30.4713 0.129436
2 -74.8862 0.51558
3 -139.043 0.26872
4 -222.939 0.016075
5 -326.461 0.009828
6 -450.314 0.007266
7 -592.386 0.004908
8 -756.437 0.003949
9 -938.303 0.001649

3.4 Modal Approximation of a Blocked Hydraulic Line

The tabulated values for residue coefficients are a function of the dimensionless
root Indices /]C and /]S which are functions of the dissipative number, D .

_ VL (4.6e-5)(2)

D = =0.02628
" oer’ (140.0)(0.01/2)° (3.59)
For a four mode approximation (i=1,2,3,4):
1 1
A= |i— 3.60
c 0.02628(1 2) (3.60)
A =[19.02 57.07 95.12 133.17] (3.61)
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Figure 3.2 Log-log plot of natural frequency of a hydraulic line as a function of the
dimensionless root index

Interpolation gives the following values for the natural frequencies for each mode.

G, =[54.65 169.92 286.43 403.45] (3.62)
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Figure 3.3 Log-log plot of natural frequency of a hydraulic line as a function of the
dimensionless root index

Interpolation gives the following values for the damping ratios for each mode.

¢ =[0.1100 0.0577 0.0431 0.0360] (3.63)
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Figure 3.4 Log-log plot of residue coefficient, (-1)i+1(1-2i)a; of a hydraulic line as a
function of the dimensionless root index

Interpolation gives the following values for the residue coefficient, a; for each mode.
(<1)*'(1-2i)a =[-33719 -5.6274 -6.9538 -7.8178] (3.64)
1

a =[33719 -1.8758 1.3908 -1.1168] (3.65)
l
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Figure 3.5 Log-log plot of residue coefficient, (-1)i+1(1-2i)b; of a hydraulic line as a
function of the dimensionless root index

Interpolation gives the following values for the residue coefficient, b; for each mode.
(1)1 (1-2i)p. =[-4004 -37,760 -1.0678e5 -2.1736¢5 | (3.66)
1

b =[4004 -12,587 2,1357 -3,1052] (3.67)
1
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CHAPTER 4
FREQUENCY RESPONSE CURVE FITTING

4.1 Least Squares Method for Linear Curve Fitting

The modal method of Hullender and Healey [14] approximates each modal
response by appropriately truncating the Taylor series form of the exact solution.
Another approach is to apply a curve fit algorithm to the frequency response of the
exact solution. Linear regression is the use of algorithms to model data points with a
linear equation. The least squares method developed by Gauss and Legendre [19] is
the most common technique used to model linear data in the form of a line or a
polynomial.

The following are experimental data points.
f(xl):.f‘l)f(xz):.f;)'..f(xn):fn (4'1)
The goal is to obtain the best approximation of this data by a linear equation

representation.
f(x)=ax +b (4.2)
The least squares method obtains an equation in which the total squared error is

minimized.

E*(a.b)= N 1F ()~ /T 43)
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_NEx f - (Ef)Zx)
NY 2= (Xx)

a (4.4)

b= AT ) - EZx )N x,f)
NY x? = (X xj)z

(4.5)

4.2 Nonlinear Least Squares Overview

System models derived from partial differential equations are nonlinear and
cannot be approximated with the simple least squares method described in the previous
section.

4.2.1 Newton’s Iterative Method

Newton’s method [20] is an iterative process to approximate a real zero of a

differentiable function. As in all iterate processes, a first approximation of the zero r is

made. The first approximation is chosen as the x-intercept of a tangent line L

i = flx / .
: V=
i "
E /',-/"rlf
| 0
! e
i 0 f(x1%f/
; A
; Pl
"""""""" i“";:_‘_‘:—?‘l‘" ittty ettty
—— :__ /_/j/ X? )(‘l
L
P
el

Figure 4.1 First approximation using tangent line x-intercept
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The equation of the tangent line can be written as:

y=f(x)=f(x)(x-x) (4.6)
Solve for (x2):
_S(x)
X, =X, —f'(xl) 4.7)

In general the process is repeated until the desired convergence is reached.

LS

To TR 4.8)
f'(x,)#0

It is important that the first approximation is sufficiently close to r that successive
approximations converge.
4.2.2 Newton’s Method in Optimization

Newton’s method for determining the real roots of a function can be modified to
approximate local the maxima and minima of a function. Local maxima and minima

points are stationary points and the slope of the derivative at these points is zero.

L)

X a1 n f"(xn) (4.9)
f'(x,)#0

4.2.3 The Gauss-Newton Method

The Gauss-Newton Method [21] is an iterative approach to solve nonlinear least
squares problems. Since nonlinear functions are multivariable, the Jacobian is used in

the same fashion (with some modification) as the derivative in the single variable
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Newton’s method of Optimization. The Jacobian is the matrix of all first order partial

derivatives and is analogous to the derivative of a multivariable function.

p=p =, (P (P () f(PY) (4.10)
o o .. 9
ap, dp, ap,
Jo=| @.11)
of, o, .. 9.
op, op, ap,

In the iterative process an initial guess p’ is made and subsequent

approximations for p are made using equation 4.10. The inverse matrix of equation
4.10 is not computed directly. Instead the following equation is solved

p'=pt+ot (4.12)

Where 8" is solved by the following linear equation

TP (p") 8" ==T,(p") £ (p") 4.13)

4.3 Approximation of the Dissipative Model Using Gauss-Newton Method

The following rational polynomial transfer function is to be obtained by
applying the Gauss-Newton method to the frequency response data points of the exact

solution of a fluid line system.

_B(s)_ bs"+bs"+--+b
A(s) s'tas"'+tas+-+a

(4.14)

H(s)

Levi [22] was the first to document the application of the linear least-squares

technique to approximate a transfer function with a rational polynomial. Levi’s
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technique was limited to systems with no poles on the imaginary axis. Sanathanan and
Koerner [23] applied an iterative search method to solve for any system (SK iteration).
The Matlab® command ‘invfreqs’ program applies two algorithms to obtain the
solution in the form of equation 4.13. The non-iterative algorithm is based on Levi’s
work and the iterative algorithm is based on the damped Gauss-Newton method.
4.3.1 Levi’s Algorithm
The exact transfer function provided by the dissipative model is sampled for wy
frequencies (k=1,2,...m). The transfer function H(s) can be represented in the

following form.

2 H(w) =) () (4.15)
k=1 k=1
iy =0 BUW) _ BU@)" +by(j)" + 4D,
H(jw) = — T2 PRTE = (4.16)
; “ ; Ajw) F0w) +a(w)™ +a,(ja)" ™+ +a,
The error in this algorithm is
B(s)
=H -7
e(s) = H(s) 46) (4.17)
This equation is multiplied on both sides to remove the denominator term.
A(s)e(s) = A(s)H (s) — B(s) (4.18)
A(s)e(s) is defined as the new error function E.
E = A(s)H(s) — B(s) (4.19)
E =Y A(jw)H(jw) = B(j@,) (4.20)

k=1
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The goal is to minimize the Frobenius or Euclean norm of E. This is the square root of

the sum of the absolute squares of its elements.

rral;n;||E||2 (4.21)

The Matlab® ‘invfreqs’ program is based on Levi’s work, but does not use the
method directly. The program uses the following equations to define the numerator

A(s) and the denominator B(s) of the transfer function H(s).

A(jw,) =@ ]a] + (e (4.22)
B(jw) =[a][p] (4.23)

@], =lGw)™ Gay? (4.24)
@ =la, a; - a] (4.25)
5l =6 5 - b)) (4.26)

The error function E, is then represented in the following form.

E= g([@k][?zk] + e Gay (@] (4.27)
E= (@]a] +GapGa) -[alB) (4.28)
£=3nGeplalal +noage {al ] (4.29)
min 3 Gal@]al + a)io) {al Al (430)
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This is then represented as follows.

min kz’i“l H[Z]@ - [€]], (4.31)

hGa)” hGa)” e kG ()T - -l
()™ k(@)™ - b ()" ()T e -l
Ao U@ mG@™ Gyt Gy |

hG@)T hG@)T ek, (@) ()™ - 1

The following is the vector containing the polynomial coefficients that are to be
approximated using this method.

HWIZ[al a va b b - bJT (4.33)

2 n 1 2

el =[-rGe) nGe) hGe)y - hGe)] 4

~1T~|T ~ T r-
[]4]" e =[4" [¢] (439)
The parameter vector 6 is solved using orthogonal matrix triangularization.

4.3.2 Iterative Algorithm to Estimate 6

As in section 4.2.3 the Jacobian is used as a multivariable derivative.

IR(6) (4.36)

J(8) = Y.
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R()- R ()
6" -6

J(8) =

RO )=R(O)+J(B)E -6)

min |R(8)+ T (6) 6" -6)

J(O)Y J(O)YEO -6)=-J(8)" R(O)

6" =60-(J(8) J(8) 'J(8) R(E)

RN | - Hjw (jw )n—Z -Hjw) (jw )n_1 (jw )n_2
~H(j9)(j) D0 ) U4 i 1
Aje) Aja) Ajw)  Aja)  Aje) Aje)
- n—2 n1 n—2
~H(je,) (e, ~H(jw, )(je,) —Hjw) (@) - (w) 1
A(jes)) A(jesy) Ajey)  AGay)  AGwy) Ajje,)
J (@ = ) R ] . n2 ) oo o n2
o - H(je, (@, ~ H(j@, )(je3)) —HGe,) (o) vay) 1
Aje) Aje,) Ajegy)  Ajwy)  AGe) Ajey)
i n1 ' 2 ’ ! : n2 . :
~H(jw @)  ~H(j@,)jw,) -Hj®,) (@, () 1
| AU, AGjw,) Ajow,)  Ajw,)  Ajw,) AGa,) |

RO), =[H(Ga)-h H(jw)-h, H(jw)=h,
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)



The following equation is equation 4.41 with the damping term A added. This is the

Damped Gauss-Newton method.

8" =60-A(J@) JB) 'J(B) R(O) (4.44)
RO R(O)Y< R(O) R(O) (4.45)
H(J(&)TJ(Q))'IJ(Q)TR(Q)s 0.01 H (4.46)

62



CHAPTER 5
APPLICATION OF MATLAB® FUNCTIONS TO OBTAIN A FINITE
ORDER TRANSFER FUNCTION OF A TOTAL FLUID
TRANSMISSION LINE SYSTEM

5.1 Total Fluid Transmission Line System

The hyperbolic transfer function matrix defines the input/output relationship of a
single fluid line. Typical hydraulic and pneumatic systems contain a number of fluid
lines and other resistive, inductive, and capacitive components.
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Figure 5.1 Hydraulic brake valve schematic (Mico)

5.2 Application of Matlab® Symbolic Toolbox Commands to Model a Fluid
Transmission Line

The following section provides example applications of Matlab® commands to

model a fluid transmission line system. Both a lumped and a distrubuted parameter
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model are presented to illustrate the need to approximate the distributed parameter
model after the frequency domain transfer function is obtained.
5.2.1 Frequency and Time Response of Lumped Model
The Matlab® Symbolic Toolbox provides the ‘solve.m’ program that will solve

an ‘n’ number of symbolic equations for an ‘n’ number of unknowns. For example, the
simple lumped parameter model for the blocked hydraulic transmission line discussed
earlier can be solved using the following command:

Sol=solve(Pin- Pout=(RL+LI*s)*Qin''Qin=CP*Pout*s','Pout,Qin’) (5.1)
Matlab® responds with the following output.

Sol=
Pout:[1xIsym] (5.2)
Qin:[Ix1sym]

To view the individual solution of Py type:
Pout =Sol.Pout (5.3)
Matlab® responds with the following output:

Pout =

(5.4)
Pin/(1 + CP *s *RL + CP * "2 * LI)

The input pressure value, Pj,, needs to expressed as unity in order to obtain the
transfer function of the line rather than the particular solution. This can be

accomplished using the ‘subs’ command to replace a symbolic term with a real value.

TF =subs(Pout, 'Pin’',1) (5.5)
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TF =

(5.6)
1/(1+CP *s*RL + CP *s"2 *LI)
An optional command can be used to make the solution in a typeset form.
pretty(SolLTF) (5.7
1
---------------------------------- (5.8)

1+CPsRL+CPs’ LI
The present form of the solution is symbolic and needs to be converted in a form
that Matlab® can process. The ‘subs’ command is used to replace all the symbolic
elements with actual values. Before the ‘subs’ command can be run the values for each

symbolic parameter must already be in the Matlab® workspace.

p =870;

Vis =4.6¢-5;

Bf =1.21e9;

Bl =1.73¢7;

Be =(Bf * Bl)/(Bf + Bl);

L=2;

d=0.01; (5.9)
r=d/2;

V =L*pi*r'2;
LI=(p*L)/(pi*r"2);

CP =V/Beg;

RL =(128* Vis*p *L)/(pi* d"4);
Pin =1;

Note: all parameters are derived from metric units (m, Kg, and s).
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TF = subs(TF,'LI', LI)
TF = subs(TF,'CP', CP) (5.10)
TF = subs(TF,'RL',RL)

Matlab® will return the solution in whole number form.

TF =1/(1 + 3118859599 6492442475 7420014269 27/...
1038459371 7069655257 0609926584 40192 *s +...
3390064782 2274391516 9174379291 15/...

1661534994 7311448411 2975882535 043072 *s"2)

(5.11)

This can be cleaned up using the ‘vpa’ command to convert the rational whole
number expressions to decimal form and the symbolic propagation operator can be

replaced with this result using the ‘subs’ command.

TF = vpa(TF,5) (5.12)
TF =
1/(1.+.30034¢ - 2 ¥*s +.20403¢ - 3 *s2) (5.13)

This result cannot be processed by Matlab® commands designed for transfer
functions such as the ‘step’ and ‘bode’ commands. One reason for this is that the
Laplace operator in this result is symbolic. This can be converted to a Matlab® transfer
function by performing the following operations.

Num =[1]
Den =[0.30034e-2 0.20403e-3 1] (5.14)
TF = tf(Num, Den)

This produces the following output in the Matlab® workspace command line.
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Transfer function:

________________ (5.15)
0.000204s"2+0.003003s +1
This result can be processed by the commands ‘bode’ and ‘step’ to produce the

frequency response and time domain response respectively.

bode(TF) (5.16)
step(TF) (5.17)

The natural frequency can be obtained from the characteristic equation of the second

order RLC model as follows:

s’ +2¢,ws+ W (5.18)
s’ +5s L (5.19)
L LC
w = |- =70 (5.20)
n LC .
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5.2.2 Frequency and Time Response of the Dissipative Model

This approach can also be applied to the more complex dissipative model. One

major advantage of this approach is that the causality does not need to be considered as

in the modal approximation method. The following symbolic equations can always be

used to define the line dynamics.
Distributed Parameter Line Equations

Qin = C11*Pin - C21* Pout

Qout =C21*Pin - C11* Pout
Distributed Parameter Transfer Functions, C; and C,

C1 = cosh(G)/(Z *sinh(Q))

C2 =1/(Z*sinh(QG))
Impedance Constant, Z,

Z =70/(sqrt(1-B) *sqrt(1+ (v-1)* Bsigma))
Normalized Propagation Operator, I'

G =Dn *s*sqrt((1+ (v-1)*Bsigma)/(1-B))
Unnormalized Propagation Operator, I

G =Dn*(s*(r"*2)/Vis) *sqrt((1+ (v-1) * Bsigma)/(1- B))
Normalized Bessel Function Ratio with Prandt]l Number, B,

Bsigma = 2 *besselj(1, j *sqrt(sigma *s))/...
(3* sqrt(sigma *s) * besselj(0, j * sqrt(sigma *s)))

Unnormalized Bessel Function Ratio with Prandtl Number, B.,
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Bsigma = 2 *besselj(1, j*sqrt(sigma * (s * (r"2)/Vis)))/...
(J* sqrt(sigma * (s * (1"2)/Vis)) *... (5.29)
besselj(0, j* sqrt(sigma * (s * (1"2)/Vis))))

Normalized and Unnormalized Bessel Function Ratio, B;
B =2*besselj(1,]*sqrt(s))/(j*sqrt(s) * besselj(0, j * sqrt(s))) (5.30)

B =2 *besselj(1,]*sqrt((s * (1"2)/Vis)))/...
(G*sqrt((s * (r*2)/Vis)) * besselj(0, j* sqrt((s * (r*2)/Vis))))

(5.31)
The two dissipative line equations can be solved as follows using the ‘solve’ command
to obtain a symbolic solution for the transfer function.
Sol = solve('Qin = C11-C21*Pout','0 = C21-C11*Pout','Qin,Pout')  (5.32)
As in the lumped parameter model, the input pressure value, Pi,, is expressed as unity in
order to obtain the transfer function of the line rather than the particular solution.

The solve command provides the following symbolic solution for the transfer function.

TF =

5.33
C21/C11 (3.33)

The next step is to replace the symbolic terms by actual numeric values using the ‘subs’
command. This requires that the numeric values for C11 and C21 already exist in the
Matlab® workspace.

TF = subs(TF,'C21',C21) (5.34)

TF = subs(TF,'C11',C11) (5.35)

If the propagation operator, I', is treated as a symbol, the result is the familiar
distributed parameter transfer function for a blocked line, 1/cosh I'. The computation of

the propagation operator produces a rather complex result.
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G =

6060337502 6040832/42 4275113695 3196875 *s...

*(1/(1 - 25/1073741 824 * besseli(1, 1073741824 /...

1697100454 78127875 *1357680363 8250230" (1/2)... (5.36)
* g7 (1/2)) *1357680363 82502307 (1/2)/s (1/2)...

besseli(0, 1073741824 /169710045 478127875 * ...

1357680363 8250230~ (1/2) *s* (1/2)" (1/2)

This can be cleaned up using the ‘vpa’ command and the symbolic propagation operator

can be replaced with this result using the ‘subs’ command.

G=
14284e-1*s*(1/(1.-2.7129 * besseli(1.,.73721* s (1/2))/s™ (1/2)... (5.37)
/besseli(0,.73721* s (1/2))))"(1/2)

TF =
1/cosh(.14284¢ - 1*s* (1/(1.- 2.7129 * besseli(1.,.73721*s* (1/2))/s* (1/2)/...

(5.38)
besseli(0,.73721%s* (1/2))* (1/2))

It is important to mention that not only is this result not a convenient rational
polynomial form but also that this form is not recognized as a transfer function by
Matlab®. This result cannot be processed by Matlab® commands designed for transfer
functions such as the ‘step’ and ‘bode’ commands. The Laplace operator in this result
is symbolic and needs to be replaced by jo which must be an array of a specified
frequency range. A range of 1:10,000 is usually sufficient to cover all significant modes
of the response.

w =[1:10000] (5.39)

TFfreqs = subs(TF,'s', j* w) (5.40)
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The result is 10,000 data points that can now be graphed using the following

commands.
TFmag = 20 *log10(abs(TFfreqs))
TFphase = angle(TFfreqs) *180/pi

g = figure('Name',' Magnitude Plot');
semilogx(w, TFmag)
title('Magnitude Plot');
xlabel('Frequency rad/sec');
ylabel('Decibels");

h = figure('Name',' Phase Plot');

semilogx(w, TFphase)

title("Phase Plot');
xlabel('Frequencyrad/sec'); ylabel('Degrees');

20 ; ;
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Figure 5.4 Frequency magnitude response of dissipative model
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Figure 5.5 Frequency response phase plot of dissipative model
The complex transfer function needs to be processed by the ‘invfreqs’ command
to produce a rational polynomial transfer function. By inspection of the frequency
response graph, the appropriate order can be determined for the desired frequency

range.
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Figure 5.6 Determination of required number of modes
In this example the frequency range to be analyzed is 1000 rad/sec. This
requires the rational polynomial approximation to contain five 2™ order modes.
wa =[1:1000] (5.45)
Here the exact solution needs to be scaled back from 10,000 rad/sec to 1,000 rad/sec in
order to be processed by the ‘invfreqs’ command.

TFfreqswa = subs(TF,'s', j * wa) (5.46)
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Since there are five 2™ order modes, a 10™ order characteristic equation needs to

used. The numerator should be one order less than the denominator to produce a stable

transfer function.

[Num, Den] = invfreqs(TFfreqswa, wa,9,10) (5.47)
TFA = tf(Num, Den) (5.48)
Transfer function :

160.3 s"9 +1.354e005 s"8 -2.618e008 s*7 +1.592e¢011 s76 -1.437e014 s”5 + ...
6.554e016 s™4 -2.792e019 73 +6.89¢021 s*2 -1.346e024 s + 2.952¢026
________________________________________________________________________________________ (5.49)

s™0 +241.2 s"9 +1.891e006 s78 +3.435e¢008 s*7 +1.141e012 s"6 +1.444e014
2.511e017 s™4 +1.904e019 s73 +1.696e022 s*2 +7.076e023 s +1.814e026

The following commands are used to obtain the frequency response of the
approximate rational polynomial transfer function and plot a comparison graph with the

frequency response of the exact solution.

TFAfreqs = freqs(Num,Den, w) (5.50)
TFAmag = 20 *log10(abs(TFAfreqs)) (5.51)
TFmag = 20*log10(abs(TFfreqs)) (5.52)

g = figure('Name',' Magnitude Plot');
semilogx(w, TFmag,'b', w,TFAmag,'r');
title('Magnitude Plot');
xlabel('Frequency rad/sec');
ylabel('Decibels');

(5.53)
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Figure 5.7 Frequency magnitude response of approximation without fit-error weighting

This result accurately models the exact response at the high frequencies but fails
at the low end of the frequency range. The gain of the approximation is also very
inaccurate. The ‘invfreqs’ command can be modified to allow fit-errors to be weighted
verses frequency.

[Num, Den] = invfreqs(TFfreqs, wa,9,10, wt,100); (5.54)

76



2 I:I T T T

1a

-10

Decibels

-20

-30

-40

_SI:I 1 1 PR S S B A | 1 1 PR S S N B | 1 1 ||||||I~ L |||||||+

i 10 10’ 1 10
Frequency md'sec

Figure 5.8 Frequency magnitude response of approximation with fit-error weighting

This result almost exactly models the exact solution out to 1000 rad/sec. The
steady state gain of the approximation should be unity. The frequency magnitude

response curve shows a small error. The gain can be calculated with the following

command.
Gain = dcgain(TFA) (5.55)
Gain =

(5.56)
1.04894105 026723

The approximated transfer function can be divided by this amount to achieve a steady

state gain of unity.
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Figure 5.9 Frequency magnitude response of approximation with normalized gain

Setting the steady state gain to unity resulted in a small increase in error of the
response at higher frequencies. Figure 5.10 shows the comparison magnitude and phase
plots of modal approximations using ‘invfreqs’ where the maximum frequency for each

mode is the resonant frequency of the respective mode.
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Figure 5.10 Frequency response of approximation with normalized gain for the first
five modes
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These approximations more accurately model the exact solution than the modal
approached covered in Chapter 3. A more accurate approximation can be achieved by
increasing the order of each mode by a factor of one. The drawback is that the transfer

function is of higher order, which is contrary to the objective of order reduction.
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Figure 5.11 Frequency magnitude response of approximation using additional order for
each mode
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Figure 5.12 Frequency phase response of approximation using additional order for each
mode
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Figure 5.13 Step input response of modal approximations using ‘invfreqs’
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As expected, a step input to each model does not result in much variation in the
time domain response, but an impulse input results in significant variation in the. This
illustrates the importance of having a model that is accurate in the frequency range that

the system operates.
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Figure 5.14 Impulse input response of modal approximations using ‘invfreqs’

The goal of obtaining a finite order rational polynomial transfer function that
accurately models that exact solution has been accomplished. Now the result can be
implemented with other block elements to model a total system using classical control
theory methods. An even better approach is to use the ‘solve’ command and ‘invfreqs’

to obtain an approximated transfer function for the total system.
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5.3 Application of Matlab® Symbolic Toolbox Commands to Model a Total Fluid
Transmission Line System

The ‘solve’ command can provide symbolic solutions for problems with any
number of unknowns. In the following hydraulic brake system, there are seven

transmission lines, four capacitive elements, and one resistive element.

[} L]

] [ ]

Figure 5.15 Multiple line system with capacitive and resistive elements
Each line is modeled with two equations for a total of 14 dissipative equations.
There is three summation equations where lines are joined. Resistive and Capacitive
Elements are modeled as lumped elements in the total system. This system is defined

by a total of 22 equations. The ‘solve’ command is as follows:

83



Sol = solve('1-P11=Rin*QI11',...
'Q11=CI11*P11-C21*Ps1','Q21=C21*P11-C11*Psl",...
'Q12=CI2*Ps]-C22*Ps2','Q22 = C22*Ps1-C12*Ps2,...
'Q13=C13*Psl-C23*Ps3','Q23=C23*Ps1-C13*Ps3',...
'Q14=Cl4*Ps2-C24*P24','Q24 = C24*Ps2-C14*P24',...
'Q15=C15*Ps2-C25*P25','Q25=C25*Ps2-C15*P25',...
'Q16=C16*Ps3-C26*P26','Q26 = C26*Ps3-C16*P26',... (5.57)
'Q17 = C17*Ps3-C27*P27','Q27 = C27 *Ps3-C17*P27',...

'Q24 = Cp4*P24*5','Q25=Cp5*P25*,...

'Q26 = Cp6* P26 *s','Q27 = Cp7 * P27 *s,...
'Q21=Q12+Q13",'Q22=Q14+Q15','Q23= Q16+Q17',...
'Q11,Q21,Q12,Q22,Q13,Q23,Q14,Q24,Q15,Q25,Q16,Q26,Q17,Q27...
P11,Psl,Ps2,Ps3,P24,P25,P26,P27')

The individual solutions (symbolic and numeric) contain too many terms to
attempt to document. The following figures are the magnitude and phase plots for the

pressure output of line number 7.
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Figure 5.16 Frequency response plots for seven line brake system
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Figure 5.19 Impulse response modal approximation plot for seven line brake system

87



The advantage of combining the total system in ‘solve’ is that the order of the
system transfer function for a given frequency range will be reduced. If this is not
possible then the resulting transfer function must be combined in the classical method

with transfer functions of the remaining system components.

. ® ) ) ..
5.4 Application of Matlab = Matrix Commands to Model a Total Fluid Transmission
Line System

Another method of solving the system equations is to use a matrix. In this

approach, the only symbolic term is the Laplace operator.

B=[4]x] 9

1 Rn0 0 0 000O0O0O0GO0OO0O0 1 0 0 0 0 0 0 O_Qll_
0 1 000000000 0OTO0O-CI1) CH 0 0 0 0 0 0 o
0 01 00000000O0GO0O00-C2()CLI) 0 0 0 0 0 0 o
0 001 000000O0O0O00O0O0 0 -Cl2 C@2 0 0 0 0 0 o
0 0 0010000000000 0 -C22 Cl2) 0 0 0 0 0 o1
0 00001 00000O0GO0O0O0 0 0 -CI3) C23) 0 0 0 0 0
0 000001 0000O0GO0OO0 O 0 -C23) CI3) 0 0 0 0 014
0 0000001 000O0GO0OO0 0 0 0 -Cl4 C2@) 0 0 0 o4
0 0 000000100O0O0O00O0 0 0 0 -C24 Cl@ 0 0 0 ots
0 0 0000000100000 0 0 0 0 -CL5 C25 0 0 Qs
0|_]o0o0000000010000 0 0 0 0 -C25 CI5) 0 0 Q16
0 0 00000000O0T1000 0 0 0 0 0 -Cl6) C26) O Q26 (5.59)
0 0 0000000O0O0O0TLOO 0 0 0 0 0 -C26) CL6) 0 Q17
0 0 00000000O0O0OTILIO0 0 0 0 0 0 0 -Cun 2l | gy
0 0 00000000O0O0O0OT1L 0 0 0 0 0 o -can 1 | pyy
0 0 000000100O0O0O0O0 0 0 0 0 -Cp*s 0 0 0 Psl
0 0 0000000010000 0 0 0 0 0 -Cp*s 0 0 Ps2
0 0 0000O0O0O0ODO0OOTILOO0 0 0 0 0 0 0 -Cp*s 0 Ps3
0

0 00000000O0O0OOT1L 0 0 0 0 0 0 0 -Cp*s || P24
0 P25

0 1-10-1000000000 0 0 0 0 0 0 0 0
0 P26

0001 00-10-100000 0 0 0 0 0 0 0 0

P27
| 0] 000001 000O0-10-10 0 0 0 0 0 0 0 0o L™
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The following Matlab® command solves this equation using Gaussian Elimination.

X = A\ B (5.60)

5.5 Application of Matlab® Graphical User Interface to Produce the Fluid
Transmission System Analyzer

The Matlab® tools previously covered have been incorporated into a Graphical
User Interface program that simplifies the process of obtaining a transfer function of a
fluid transmission line system. This program is prompted by inputting ‘FLRAR1’ in the

Matlab® command line. The Graphical User Interface initially appears as follows:

=Tk

<} FLUID TRANSMISSION LINE SYSTEM ANALYZER

MATERIAL CONSTANTS MODEL DIAGRAM

FLUID DENSITY
KINEMATICWISCOCITY
PRANDTL NUMBER
SPECIFIC HEAT RATIO
FLUID BULK MODULUS
LINE BULK MODULUS

MODEL PROPERTIES
LINE DIAMETER

MNUMBER OF LINES -

SAVE FILE LOAD FILE FILE MNAME I

Figure 5.20 GUI opening screen shot

The first thing required is to input the material constants of the fluid and the line

in the upper left corner as in the following example.
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Note: all parameters are derived from metric units (m, kg, and s).

MATERIAL CONSTANTS
FLUID DEMSITY 8710
EINEMATICWISCOCITY 4 he-005
FRANDTL MUMBER 1
SFECIFIC HEAT RATIC 1
FLUID BULE MODULLS 1.21e+009
LIMNE BULK KODULLIS 1 73@+007

Figure 5.21 GUI material constants section

MODEL FROFERTIES
LINE DIAMETER | 0.0
MUMBER OF LINES |,7'
NUMBER OF OUTFUTS |4
MUMBER OF FLOWY SUMMATIONS 4

OUTPUT SELECTOR [Fararersy
SOLVE FOR: [

Ll fbeliedle]

Figure 5.22 GUI model properties section
After completing the Model Properties section, the Model Diagram section will

automatically illustrate the model with a line diagram as shown here.
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MODEL DIAGRAM

4B > 15
2
e—
3
B[k =17

Figure 5.23 GUI model diagram section

The individual line lengths are specified in the Line Lengths section.

LINE LENGTHS
ouTPUT ouTPUT

L1 | 2 L2 I 1 L3 I 1 L4 | 1 L5 1
OuUTRUT OuTRUT
LE | 1 L? 1

Figure 5.24 GUI line lengths section
The program will place the word “OUTPUT” above the lines that are output
lines. The input valve resistance, the output valve resistance and output capacitance

values are then placed in the following fields.

LUMPED PABAMETERS

Rin Be-+003 Rout I 0 CPout I Se012

Figure 5.25 GUI line lengths section
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Rout and CPout is restricted to the same values for all outputs. The program is
now ready to calculate the frequency response of the system using the Dissipative line
model. Click on the Frequency Response Analysis button to calculate the frequency

response.

SYSTEM SOLUTION
FREQUEMCY REEFOMNSE ANALYEIS |

NUMBER OF MODES I LI

UPPER FREQUENCY

UPPER FREQUEMCY OWERIDE I

RUN COMFIGURATIOMN

Figure 5.26 GUI system solution section before analysis
The program uses the following algorithm to determine the modal frequencies.

a=0

for m=1

for k=1:9990

if TFmag(k+1) >= TFmag(k)

if TFmag(k+1) >= TFmag(k+2)
MF(m)= w(k+1) (5.61)
m=m+1

end

end

a=atl]

end

end
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SYSTEM SOLUTION
FREQUEMCY REEFOMNSE ANALYEIS |

NUMBER OF MODES |4 LI

UPPER FREQUENCY 335

UPPER FREQUEMCY OWERIDE I

RUN COMFIGURATIOMN

Figure 5.27 GUI system solution section after analysis
Occasionally the algorithm fails to match mode to frequency, and a manual
override is necessary. The algorithm fails when modes do not have a local maximum
point. The manual frequency input can be determined by inspecting the frequency
magnitude response plot. The Upper Frequency value automatically shows after
selecting the number of modes. Finally, the Run Configuration button is pushed to
calculate the modal approximation and plot the approximated response against the exact

response.
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<} Figure No. 2: Magnitude Plot - 0] x|
File Edit %iew Ingert Tools ‘Window Help
DEeEda YA A/ BP0

Magnitude Plot
1D T T T

Decibels

70 Ll Ll Ll R T
10 10° 10° 10° 10
Frequency radisec

“} Figure No. 3: Phase Plot - 10| x|

File Edit Wiew Insert Tools ‘Window Help

DEEdE "A A/ BED

Phase Plot
EDD T T T

180 -

100 |

200 Ll | .......l2 Ll L

10 10’ 10 10° 10
Frequency radisec

Figure 5.28 GUI frequency response comparison output

The transfer function is displayed in the Matlab® command line.
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Transfer function:

1,122 38 - 1347 3*7 + 4,346e005 36 - Z,016e006 545 + 1.803e010 34 - 4.622e012 3*3

+ 1,981ed13 22 + 1.167e017 3 + 3.724e018

(5.62)

g9 + 208.9 38 + 2,1e005 57 + 3.197e007 36 + 1.217e010 5*5 + 1.211e0lZ 54

+ 1.923e014 23 + 1.033e0l6 32 + Z.607e0LlY 3 + 3.724e013

The file can also be saved and loaded as needed. This command only saves the

solution parameters. The Frequency Response Analysis button needs to be pushed after

opening the file.

<} FLUID TRANSMISSION LINE SYSTEM ANALYZER =] 3
MATERIAL CONSTANTS MODEL DIAGRAM
FLUID DENSITY 870
KINEMATIC VISCOCITY 16e-005 Ae————>5
PRANDTL NUMBER 1
SFECIFIC HEAT RATIO 1 2
FLUID BULK MODULUS 1.212+009
:
LINE BULK MODULUS 1.732+007
3
MODEL PROPERTIES G pe—L————— 7
LINE DIAMETER 0.0
MNUMBER OF LINES |7 -
MUMBER OF OUTPUTS [ =
NUMBER OF FLOWY SUMMATIONS [5 - SYSTEM SOLUTION
OUTPUT SELECTOR [papspepy - FREQUENCY RESPONSE ANALYSIS |
SOLVE FOR: [pg -
NUMBER OF MODES [57 7]
UPPER FREQUENCY 566
LINE LENGTHS
OUTRUT OuTPUT UPFER FREQUENCY OVERIDE A5
R N B[ U L6 [
QUTRUT QuTRUT RUN CONFIGURATION |
LE 1 L7 1
LUMPED PARAMETERS
Rin Se+008 Fout a CPout 2e-012 SAYE FILE LOAD FILE FILE MNAME SEVEMN

Figure 5.29 GUI complete screen shot
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-} FLRAR1.fig

File Edit Layout Tooks Help

DEH 2@ BB B39 B

IT 40 (0, 100 BRO) L6O 190 RO 2P0 280 G0 PEO R0 400, D0 AFO, (490 5RO, S50 SPO, eRe B3O, (7O DO RO PN RO, 8% 8RO, 800 910
{ - HEEEEEEEEEEEEEEEEE NN NN NN [Tt rrerrrrrrrrrrrrr et rTT
e | 1N -
1 A MATERIAL CONSTANTS = MODEL DIAGRAM .
| @|=|*H FLUID DENSITY - H
- | || EH] KINEMATIC YISCOCITY - 0
i PR PRANDTL NUMBER g ]
(=50 SPECIFIC HEAT RATIO B =
: El| =) =] FLUID BULK MODULUS el H
3 =11 05 _
i LINE BULK MODULUS = O
:__|\|\|\||||\|\||||\|\l\llll\l\llll\l\l\llll\l_ E
n MODEL PROPERTIES - H
1 LINE DIAMETER - H
21 NUMEER OF LINES = - ogs 5 53 5 5 =
=1 HUMBER OF OUTPLTS =] o B W W N W R R
S NUMBER OF FLOW SUMMATIONS = H SYSTEM SOLUTION B
5 H QUTPUT SELECTOR = H -
il oLVt = g FREQUENCY RESPONSE ANALYSIS | g
:i: I NUMBER OF MODESI vI u
B [ [T T T T T T IT T T T I T T T TITITITTTITITTITITTTTITT I
a1 - UPPER FREQUENCY u
a1 LINE LENGTHS H -
A OUTPUT oUTPUT QUTPUT QUTPUT OUTPUT I UPPER FREQUENCY OVERIDE l— u
B T e e R u Il
71 OUTPUT QUTPUT QUTPUT OUTPUT OUTPUT N RUN CONFIGURATION | N
| LE [ o L7 0 e[ L9 [To Lo | ]
m’i|\|\|\||||\|\||||\|\|\||||\|\||||\|\|\||||\|7 H
b [T T T T T T T T T T T T T T T T T T T T TP T T T T TT I TTITTTTITITTT
u LUMPED PARAMETERS N u
H  Rn [TTO Rout [0 cPout [0 H  SAYEFLE | LOADFIE |  FILENAME H
- | A 1 A A 6 I A - 0 A A I M I A :
wstert| @3 oD W L@ =L
Figure 5.30 GUI layout editor screen shot
$014, $750LMS $50LN12
$IFLRARL $)50LME $150LN13
$FLRARL $50LM7 $50LM14
$50LM1 $s0LME $]50LM15
$50LMz $50LMg $S0LM1E
£50LMz $]50LN10 4 ]SOLNSELECT
$150LM4 $]50LM11 4| SOLNSELECTZ

Figure 5.31 GUI files
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5.6 Fluid Transmission System Analyzer Frequency Selection Application

A frequency response may be obtained that does not have modal frequencies
defined by a local maxima.  The following figure is the result of a five mode
approximation of the same seven line system covered in the previous section. The

program fails to produce a perfect curve fit because the incorrect modal frequency is
selected by the program.

<} Figure No. 2: Magnitude Plot - O] x|
File Edit “iew Insert Tools Window Help

IteRa yar/, 220
Magnitude Plot

10

Decibels

'EDD T T T Y
10 10 10 10 10

Freguency radfsec

Figure 5.32 Failure of frequency determination algorithm
The frequency selected for the fifth mode is 566 rad/sec. By inspection of the
plot this is the frequency of the sixth mode. The problem in this example is the fourth

mode does not have a local maxima. In cases like this the Frequency Override feature
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must be used. A frequency of 425 rad/sec is determined by visual inspection and
entered into the Frequency Override field and the configuration is rerun to produce the

following approximation.

<} Figure No. 3: Magnitude Plot - O] x|
File Edit “iew Insert Tools Window Help
IDeda A/ @peo

Magnitude Plot
1':' T LR R | T L R | T UL L |

Decibels

_EDD 1 ||||||||.I 1 ||||||||2 1 1111l 1 [ N

10 10 10 10° 10
Freguency radfsec

Figure 5.33 Accurate approximation using frequency override
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CHAPTER 6
SUMMARY OF RESEARCH AND RECOMMENDATION FOR FUTURE STUDY

6.1 Summary of Research

This research presents a method of solving for a total fluid transmission line
system using the dissipative model and then applying the Matlab® ‘invfreqs’ algorithm
to the frequency response of the total system rather than individual lines. This can be
accomplished using the symbolic ‘solve’ command or by matrix operations using a
symbolic Laplace operator. The advantage of this is apparent when there are several
lines in the system. Previously each line would be approximated in the Laplace domain
and the linear transfer functions lumped together. In this research, one approximation is
made on the total system rather than combining several approximations eliminating
combined error.

In addition to efficiently combining multiple fluid lines all the elements can be
combined before performing a modal approximation. Lumped resistive and capacitive
components as well as higher order elements can be combined with the lines and solved
for the frequency response of a particular output. Any element in the system can be
nonlinear. The only requirement is that the element is represented in the Laplace
domain.

An algorithm for matching mode to frequency is also introduced and all the tools

presented in this work are combined into a single user friendly program using the
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Matlab® Graphical User Interface. This program provides an efficient method to
analyze a fluid transmission line system. To obtain a copy of the program send an
email request to: johnduaneking@hotmail.com.

6.2 Recommendation for Future Study

The modifications made to the modal solution provided by ‘invfreqs’ was to
normalize the transfer function to produce a steady state gain of unity and to increase
the order of the total number of modes by one. Improving the accuracy of the
approximation process so that the additional order can be reduced would be a major
improvement. The algorithm to determine modal frequency is based on the local
maxima of the frequency magnitude response. Occasionally, the modal frequency is not
defined by a local maxima and a manual determination of the frequency needs to be
made. Perhaps and algorithm based on inflection points would perform better. The
phase plot appears to have distinct inflection points.

The Matlab® features applied in this work are only a few of the tools available to
compute and analyze system models. One suggestion would be to produce a graphical
user interface that permits the inclusion of all system components. The program
introduced in this work is limited to multiple connected lines, an input resistive element
and output resistive and capacitive elements. A more comprehensive program should
be more flexible to allow for the input of all components of the system. Another
approach would be to find a method to automatically input a transfer function into

Matlab® Simulink and integrate this feature into an analysis program.
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APPENDIX A

MODEL COMPARISON PROGRAM
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The following Matlab® program plots a comparative frequency response of each of the

five models.

function system = MODELCOMP
syms s

%%%6%%0%%%%%%%%%%Model Properties%%%%%%%6%%%%%%%%%%%%%
p=870;

Vis=4.6e-5;

sigma=1;

v=1;

Bf=1.21¢9;

Bl=1.73¢7;

L=2;

d=0.01;

r=d/2;

V=L*pi*r"2;
w=[1:1000];

Pin=5¢6;

Be = (Bf * Bl)/(Bf + Bl)
c=sqrt(Be/p)
Dn=(Vis*L/(c*1"2))
we=c/L;

wv=Vis/r"\2;

%%%%%%%%Model 1: Lumped Parameter Model Calculation%%%%%%%%%%%

LI=(p*L)/(pi*r"2)

CP=V/Be
RL=(128*Vis*p*L)/(pi*d"4)
Sol=solve('Pin-Pout=(RL+LI*s)*Qin','Qin=CP*Pout*s','Pout,Qin")
Pout=Sol.Pout

TFM1=Pout
TFM1=subs(TFM1,'LI',LI);
TFM1=subs(TFM1,'CP',CP);
TFMI1=subs(TFM1,'RL',RL);
TFMI1=subs(TFM1,'wv',wv);
TFM1=subs(TFM1,'Pin',Pin);
TFM1=subs(TFM1,'s',j*w);
TFM1IMAG=20*log10(abs(TFM1));
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%%%6%%%6%%%%%%%Model 2: Lossless Line Model Calculation%%6%%%%6%%%%

G2=L*s/c;

TFM2=Pin/cosh(G2);
TFM2=subs(TFM2,'s',j*w);
TFM2MAG=20*log10(abs(TFM2));
TFM2PHASE=angle(TFM2)*180/pi;

%%%%%%%%%%%Model 3: Linear Friction Model Calculation%%6%%6%6%%%6%6%%

G3=((s/wc))*sqrt(1+(8*wv/(s)));
TFM3=Pin/cosh(G3);
TFM3=subs(TFM3,'s',j*w);
TFM3MAG=20*log10(abs(TFM3));
TFM3PHASE=angle(TFM3)*180/pi;

%%%%%%%%%%Model 4: Viscous Model Calculation%6%6%%0%6%%%%6%6%%6%6%%%

B=1/sqrt(1-(2*besselj(1,j*sqrt((s/wv)))/(*sqrt((s/wv))*besselj(0,j*sqrt((s/wv))))));
G4=B*s/wc;

TFM4=Pin/cosh(G4);

TFM4=subs(TFM4,'s',j*w);

TFM4AMAG=20*log10(abs(TFM4));

TFMA4PHASE=angle(TFM4)*180/pi;

%%%6%%%%%%%%Model 5: Dissipative Model Calculation%%%%%%%%6%6%%%%%%6%6%:%%%

Bsigma=2*besselj(1,j*sqrt(sigma*(s/wv)))/(j*sqrt(sigma*(s/wv))*besselj(0,j*sqrt(sigma*(s/wv))));
B=2*besselj(1,j*sqrt((s/wv)))/(j*sqrt((s/wv))*besselj(0,j*sqrt((s/wv))));
G5=Dn*(s/wv)*sqrt((1+(v-1)*Bsigma)/(1-B));

TFM5=Pin/cosh(G5);

TFMS5=subs(TFM5,'s",j*w);

TFM5MAG=20*log10(abs(TFM5));

TFM5PHASE=angle(TFMS5)*180/pi;

%%%%%%%%%%%Comparison P1ot%%6%%6%6%%6%%%6%%%%%%%%%% %%
g = figure('Name','Magnitude Plot');
semilogx(w,TFMIMAG,w,TFM2MAG,w,TFM3MAG,w,TFM4MAG,w,TFM5MAG)
title('Magnitude Plot');

xlabel("Frequency rad/sec');

ylabel('Decibels");

end
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APPENDIX B

TRUNCATED PRODUCT SERIES MODAL
APPROXIMATION PROGRAM
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The following Matlab® program calculates the modal approximation transfer function for
1/cosh I and compares the resulting frequency response with 1/cosh I'.  Note that you

must have the tables imported.
function system = MODAL(sigma,v,p,Vis,Bf,BL,L,d,i)

%%%%%6%%%6%%%%%%LOAD TABLES%%%%%%%%%:%%%6%%%%%%%%%%:%%%:%%%
syms H P;

form = input('Hydraulic or Pneumatic (H/P):')

if form=H

data = xlsread('data-liquid.xls');

else

data = xlsread('data-air.xls");

end

%%%%%%%%%%%CALCULATE DISSIPATION NUMBER%%%%%%%%6%0%%6%%%%:%%%%
r=d/2;

Be = (Bf * Bl)/(Bf + Bl)

c=sqrt(Be/p)

Dn=(Vis*L/(c*1"2))

%%%%%%% %% %% CALCULATE COSH ROOT INDICES%%6%%6%%%%% %% % %6%0%6%6%%6%%o
if i=

i=[1];

else if i==

i=[12];

else if i==

i=[12 3];

else if i==4

i=[1234];

else if i==

i=[12345],

end

end

end

end

end
Lambda_c=(1/Dn)*(i-1/2)
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%%%6%%%%%%%%CALCULATE RESIDUE COEFFICIENTS%%%%%%0%%%%:%%%%%%%%
DI = data(:,1);

NF = data(:,2);

DR = data(:,3);

CA1l = data(:,4);

CBI1 = data(:,5);

w = interpl (DLLNF,Lambda_c)

d = interpl(DL,DR,Lambda_c)

cosh_residue a = interpl(DI,CAl,Lambda c)

cosh_residue b = interpl(DI,CB1,Lambda c)

a=cosh_residue a./(((-1)."(i+1)).*(1-2.*1))
b= cosh_residue b./(((-1).~(i+1)).*(1-2.*1))

9%%%%%%%%%% CALCULATE RATIONAL POLYNOMIAL APPROXIMATION %%%%%%%%

Li=length(i);

for k=1:Li

num=[a(k) b(k)]

den=[1 2*d(k)*w(k) w(k)"2]
APPROXTF(k)=tf(num,den)
k=k+1;

end

%%%%%%%%%%% EXACT MODEL CALCULATION %%%%%%%%%%6%%%%:%%%%%%

w=[0.01:10001];

syms s

Z0=(p*c)/(pi*r"2);
Bsigma=2*besselj(1,j*sqrt(sigma*(s)))/(j*sqrt(sigma*(s))*besselj(0,j*sqrt(sigma*(s))));
B=2*besselj(1,j*sqrt((s)))/(*sqrt((s))*besselj(0,j*sqrt((s))));
Z=70/(sqrt(1-B)*sqrt(1+(v-1)*Bsigma));
G=Dn*(s)*sqrt((1+(v-1)*Bsigma)/(1-B));
EXACT=1/cosh(G);

EXACT=vpa(EXACT.5)

EXACT=subs(EXACT,'s',j*w);
EXACTMAG=20*log10(abs(EXACT));
EXACTPHASE=angle(EXACT)*180/pi;

%%%6%%%%%%%% MODAL COMPARISON TO EXACT %%%%%%%%%%%:%%%%%:%%%
if length(i)==1

Gainsum1=dcgain(APPROXTF(1));

TFsum1=APPROXTF(1)/Gainsum1

[n1,d1] = tfdata(TFsuml,'v");

APPROXI1=fregqs(nl,d1,w);

APPROXMAG1=20*log10(abs(APPROX1));

APPROXPHASE1=angle(APPROX1)*180/pi;

g = figure('Name','Magnitude Plot');
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semilogx(w,EXACTMAG,w,APPROXMAG1)
title('Magnitude Plot');

xlabel('Normalized Frequency rad/sec');
ylabel('Decibels");

h = figure('Name','Phase Plot');
semilogx(w,EXACTPHASE,w,APPROXPHASE1)
title("Phase Comparison Plots');

xlabel('Normalized Frequency rad/sec');
ylabel('Degrees');

elseif length(i)==2
Gainsum1=dcgain(APPROXTF(1));
TFsum1=APPROXTF(1)/Gainsum1;
TFsum2=(APPROXTEF(1)+APPROXTF(2));
Gainsum2=dcgain(TFsum?2);
TFsum2=TFsum2/Gainsum?2;

[n1,d1] = tfdata(TFsuml,'v");
[n2,d2] = tfdata(TFsum2,'v");

APPROXI1=freqs(nl,d1,w);
APPROX2=freqs(n2,d2,w);

APPROXMAG1=20*1og10(abs(APPROX1));
APPROXMAG2=20*log10(abs(APPROX2));

APPROXPHASE1=angle(APPROX1)*180/pi;
APPROXPHASE2=angle(APPROX2)*180/pi;

g = figure('Name','Magnitude Plot');
semilogx(w,EXACTMAG,w,APPROXMAG1,w,APPROXMAG?2)
title('Magnitude Plot');

xlabel('Normalized Frequency rad/sec');

ylabel('Decibels");

h = figure('Name','Phase Plot');
semilogx(w,EXACTPHASE,w,APPROXPHASE1,w,APPROXPHASE?2)
title("Phase Comparison Plots');

xlabel('Normalized Frequency rad/sec');

ylabel('Degrees');

elseif length(i)=3

Gainsum1=dcgain(APPROXTF(1));
TFsum1=APPROXTF(1)/Gainsum1
TFsum2=(APPROXTF(1)+APPROXTF(2))
Gainsum2=dcgain(TFsum?2);

TFsum2=TFsum2/Gainsum?2
TFsum3=(APPROXTF(1)+APPROXTF(2)+APPROXTF(3))
Gainsum3=dcgain(TFsum3);

TFsum3=TFsum3/Gainsum3

[n1,d1] = tfdata(TFsuml,'v");
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[n2,d2] = tfdata(TFsum2,'v");
[n3,d3] = tfdata(TFsum3,'v");

APPROXI1=fregs(nl,d1,w);
APPROX2=freqs(n2,d2,w);
APPROX3=freqs(n3,d3,w);

APPROXMAG1=20*1og10(abs(APPROX1));
APPROXMAG2=20*1og10(abs(APPROX2));
APPROXMAG3=20*1og10(abs(APPROX3));

APPROXPHASE1=angle(APPROX1)*180/pi;
APPROXPHASE2=angle(APPROX2)*180/pi;
APPROXPHASE3=angle(APPROX3)*180/pi;

g = figure('Name','Magnitude Plot');
semilogx(w,EXACTMAG,w,APPROXMAG1,w,APPROXMAG2,w,APPROXMAG3)
title('Magnitude Plot');

xlabel('Normalized Frequency rad/sec');

ylabel('Decibels");

h = figure('Name','Phase Plot');
semilogx(w,EXACTPHASE,w,APPROXPHASE1,w,APPROXPHASE?2)
title("Phase Comparison Plots');

xlabel('Normalized Frequency rad/sec');

ylabel('Degrees');

elseif length(i)==4

Gainsum1=dcgain(APPROXTF(1));
TFsum1=APPROXTF(1)/Gainsum1
TFsum2=(APPROXTF(1)+APPROXTF(2));
Gainsum2=dcgain(TFsum?2);

TFsum2=TFsum2/Gainsum?2
TFsum3=(APPROXTF(1)+APPROXTF(2)+APPROXTF(3));
Gainsum3=dcgain(TFsum3);

TFsum3=TFsum3/Gainsum3
TFsum4=(APPROXTF(1)+APPROXTF(2)+APPROXTF(3)+APPROXTF(4));
Gainsum4=dcgain(TFsum4);

TFsum4=TFsum4/Gainsum4

[n1,d1] = tfdata(TFsuml,'v");
[n2,d2] = tfdata(TFsum2,'v");
[n3,d3] = tfdata(TFsum3,'v");
[n4,d4] = tfdata(TFsum4,'v");

APPROXI1=freqs(nl,d1,w);
APPROX2=freqs(n2,d2,w);
APPROX3=freqs(n3,d3,w);
APPROX4=freqs(n4,d4,w);
APPROXMAG1=20*log10(abs(APPROX1));
APPROXMAG2=20*log10(abs(APPROX2));
APPROXMAG3=20*log10(abs(APPROX3));
APPROXMAG4=20*log10(abs(APPROX4));
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APPROXPHASE1=angle(APPROX1)*180/pi;

APPROXPHASE2=angle(APPROX2)*180/pi;

APPROXPHASE3=angle(APPROX3)*180/pi;

APPROXPHASE4=angle(APPROX4)*180/pi;

g = figure('Name','Magnitude Plot');
semilogx(w,EXACTMAG,w,APPROXMAG1,w,APPROXMAG2,w,APPROXMAG3,w,APPROXMAG
4)

title('Magnitude Plot');

xlabel('Normalized Frequency rad/sec');

ylabel('Decibels');

h = figure('Name','Phase Plot');
semilogx(w,EXACTPHASE,w,APPROXPHASE,w,APPROXPHASE2,w,APPROXPHASE3,w,APPRO
XPHASE4)

title("Phase Comparison Plots');

xlabel('Normalized Frequency rad/sec');

ylabel('Degrees');

end
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APPENDIX C

‘INVFREQS’ MODAL APPROXIMATION
COMPARISON PROGRAM
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The following Matlab® program plots the frequency response of several modal

approximations of a given fluid line using the ‘invfreqs’ command.

function system = MODALDISS
warning off

syms s

%%%%%%%%6%%%%%%%%%%%% Model Properties %%%%%%%%%%%%%%%%%%%%
p=870;

Vis=4.6e-5;

Bf=1.21¢9;

Bl=1.73¢7,

L=2;

d=0.01;

r=d/2;

V=L*pi*r"2;

Be = (Bf * Bl)/(Bf + Bl);
c=sqrt(Be/p);
Dn=(Vis*L/(c*1"2));
sigma=1;

v=1;

%%%6%0%%%%%% Number of Modal Approximations to Plot %%%%%6%6%%%%%%6%6%%%%%%
ModeNum=5

%%%0%0%%%0%0%6%0%%%6%0%%%%0%6%%%%% Exact %%%%%%%%%%%%:%%%%%%%%%%%

B=2*besselj(1,j*sqrt((s*(1"2)/Vis)))/(j*sqrt((s*(r"2)/Vis))*besselj(0,j*sqrt((s* (1"2)/ Vis))));
Bsigma=2*besselj(1,j*sqrt(sigma*(s*(1"2)/Vis)))/(j*sqrt(sigma*(s*(r"2)/Vis))*besselj(0,j *sqrt(sigma*(s*
(r"2)/Vis))));

Z0=(p*c)/(pi*r"2);

Z=70/(sqrt(1-B)*sqrt(1+(v-1)*Bsigma));

G=Dn*(s*(t"2)/Vis)*sqrt((1+(v-1)*Bsigma)/(1-B));

w=[1:10000];
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Cl1=cosh(G)/(Z*sinh(G));

C21=1/(Z*sinh(G));
Sol=solve('QIN=C11-C21*POUT",'0=C21-C11*POUT','QIN,POUT");
TF=Sol.POUT;

TF=subs(TF,'C11',C11);

TF=subs(TF,'C21',C21);

TFfreqs=subs(TF,'s",j*w);

TFmag=20*log10(abs(TFfreqs));

TFphase=angle(TFfreqs)*180/pi;

%%%6%0%6%%%%%%6%%%%%%%%Modal Frequency Range%%%%%%%6%%%%%%%6%:%%%%%
a=0;

for m=1;

for k=1:9990;

if TFmag(k+1) >= TFmag(k);

if TFmag(k+1) >= TFmag(k+2);
Modefreqs(m)= w(k+1);
m=m-+1;

end;

end;

a=a+tl;

end

end

%%%6%%%%6%%6%%6%%6%%%%%%% Approximation Plots %%%%%%%%6%%%%%%%%%%%%

g = figure('Name','Magnitude Plot');
for m=1:ModeNum,;

Modefreqs(m);
wa=[1:Modefreqs(m)];
TFfreqs=subs(TF,'s',j*wa);
wt=ones(size(wa));
[Num,Den]=invfreqs(TFfreqs,wa,(2*m-1),(2*m),wt,100);
TFA=tf(Num,Den);
Gain=dcgain(TFA);

TFA=TFA/Gain;

[Num,Den] = tfdata(TFA,'v");
TFAfreqs=freqs(Num,Den,w);
TFAmag=20*log10(abs(TFAfreqs));
semilogx(w,TFmag,'b',w,TFAmag,'");
hold on

title('Magnitude Plot');
xlabel('Frequency rad/sec');
ylabel('Decibels");

end

hold off
h = figure('Name','Phase Plot');
for m=1:5;

Modefreqs(m);
wa=[1:Modefreqs(m)];
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TFfreqs=subs(TF,'s',j*wa);
wt=ones(size(wa));
[Num,Den]=invfreqs(TFfreqs,wa,(2*m-1),(2*m),wt,100);
TFA=tf(Num,Den);

Gain=dcgain(TFA);

TFA=TFA/Gain;

[Num,Den] = tfdata(TFA,'v");
TFAfreqs=freqs(Num,Den,w);
TFAphase=angle(TFAfreqs)*180/pi;
semilogx(w, TFphase,'b',w,TFAphase,'");
hold on

title('"Phase Plot');

xlabel("Frequency rad/sec');
ylabel('Degrees');

end
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