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ABSTRACT 

 

FREQUENCY RESPONSE APPROXIMATION METHODS 

 OF THE DISSIPATIVE MODEL OF FLUID 

TRANSMISSION LINES 

 

Publication No. ______ 

 

John D. King, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  David A. Hullender 

This thesis introduces an accurate and efficient method of obtaining a linear 

approximation for a nonlinear model of a complete fluid transmission line system using 

Matlab® Signal Processing Toolbox and Symbolic Math Toolbox programs.  This 

technique is then packaged in a Graphical User Interface program to streamline the 

process of analyzing a total system. 

The nonlinear model applied in this thesis is called the dissipative model and is 

also referred to as the �exact� model, because it�s derivation uses all of the Navier-

Stokes equations as well as the equations of state.  It has been studied and tested against 

real data and is recognized as the most accurate of all the known models.   
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Other modeling approaches are discussed in this work to illustrate the 

completeness of the dissipative model.  The modal technique introduced in this thesis is 

inspired by the modal approximation method that is based on truncating the infinite 

series representation of the dissipative model.  This modal approximation method is 

covered in depth in this document.   

The method of approximating the frequency response of a fluid transmission 

line with a rational polynomial transfer function using the Matlab® �invfreqs� least 

squares curve fitting algorithm has already been introduced.   This work improves the 

technique by proving that an accurate result can be obtained by matching the mode with 

the resonant frequency, adding one additional order to the characteristic equation, and 

then normalizing the result by dividing the approximated transfer function by the steady 

state gain.  It also improves the technique by applying the �invfreqs� command to a total 

system rather than just the one line.  The result is that the order of a linear transfer 

function for a total fluid transmission line system can be greatly reduced.  
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CHAPTER 1 

INTRODUCTION 

1.1  System Modeling Background 

Engineers want to predict the performance of a system before spending the time 

and capital to produce one that may not function as required.  Models are produced to 

simulate the actual system and modifications are made to the design based on the 

performance of the model.  The most convenient way to simulate a system is to produce 

a quantitative mathematical model.  The performance of a system can often be very 

accurately predicted using a mathematical model that quantifies all the measurable 

dynamic behavior.  Depending on the accuracy required these models can be very 

simple to extremely complex. 

The simplest models are composed linear differential equations containing very 

generalized or �lumped� coefficients representing the system�s physical parameters.  

Circuit theory is an example of this modeling approach and is quite adequate to obtain 

an accurate output for a small electric circuit operating at low frequencies, but not for a 

very long electrical transmission line or a circuit operating at very high frequencies.  

Fluid systems likewise, can be modeled with the �same� equations, but the accuracy 

limited. The model that an engineer uses has to represent all the dynamics that can have 

a measurable effect on the result [1/2].     
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1.2  Fluid Transmission Line Modeling History 

Fluid and electrical transmission line dynamics have been studied extensively 

since their wide span application in the 20th century.  Heaviside is credited with the 

formulation of transmission line theory for electrical lines in 1887, and his equations are 

referred to as the telegrapher�s equations.  In contrast to circuit theory, Heaviside�s 

equations are based on distributing the parameters of inductance and resistance along 

the length of the line.  Electrical transmission line theory is derived from the Maxwell�s 

equations which are nonlinear partial differential equations.  He also proved that an 

electrical transmission line can be modeled using just two functions, the propagation 

operator Γ and the characteristic impedance Ζ0 [3]. 

 A fluid transmission line system, like a long electrical transmission line, also 

needs to be modeled with distributed parameters to accurately quantify the dynamic 

behavior.  The approach is very similar to electrical transmission line theory, but fluid 

transmission line theory is derived from the Navier-Stokes equations which are the 

foundational equations of fluid mechanics [4].  These equations obey the basic laws of 

conservation of momentum, mass, and energy:  

1.) Momentum: The acceleration of fluid particles. 

2.) Continuity:  The conservation of mass. 

3.) Energy:  The dissipation of heat. 

Since the Navier-Stokes equations do not cover the issue of compressibility whether it 

be a gas or a liquid, an additional equation needs to be included in the total solution:  

4.) State: The influence of the compressibility of the fluid. 
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Iberall [5] was the first to produce a solution that included viscous friction and 

heat transfer effects.  Gerlach [6] produced the first exact first order or classical model 

solution. From this work researchers have developed several distributed parameter 

models which is documented by Goodson and Leonard [7].  The dissipative model is 

considered to be the most accurate [8].  

1.3  Rational Polynomial Approximations 

The major obstacle to the distributed parameter model is that it is nonlinear and 

not in the form of a finite order rational polynomial familiar in classical modeling and 

control theory.  This is a problem because the resulting transfer function cannot be 

transformed to the time domain using inverse Laplace transform techniques.  To exactly 

represent a distributed parameter model in rational polynomial form would require an 

infinite order transfer function, because the frequency response of an exact solution 

oscillates to infinity.   It is important to note that all real systems are distributed 

parameter and a finite order rational polynomial transfer function is simply an 

approximation.  The goal in systems modeling is to have a transfer function 

approximation of the order that covers the required frequency range of operation [9]. 

Model Order Reduction is a branch of dynamic systems modeling research that 

seeks to simply or reduce the complexity of a system model without losing measurable 

output behavior [10].  The distributed parameter model is an infinite order 

representation of a system, and researchers have sought for methods to approximate it 

with a finite order model.  Brown [11/12] was the first to approximate Iberall�s solution 

in the Laplace domain to obtain a step and impulse time domain response.  D'Souza and 
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Oldenburger [13] further developed Brown�s approach to include the effects of line 

vibration.  Hullender and Healey [14] developed a rational polynomial approximation 

by obtaining a Tailor�s series expansion of the dissipative solution based on the mode 

number.  Hullender and Hsue [15] applied the modal approximation approach to the 

seven unique solutions of the dissipative model.  Hullender and Woods [16] applied the 

modal approximation method to the development of a minimum-order state-space 

model.  Nursilo [17] introduced an approach to correct modal approximations at zero 

frequency.  Wongputorn [18] introduced an approach by applying a least-squares curve 

fitting algorithm in Matlab® to the frequency response of the dissipative model. 
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CHAPTER 2 

FLUID TRANSMISSION LINE MODELING 
2.1  Modeling Overview 

Each of the commonly accepted fluid transmission line models are developed 

and compared in this chapter in order to illustrate the importance of having a model that 

simulates all the dynamics and also the importance of minimizing the model to the 

frequency of operation.     

2.2  Lumped Parameter Line Models 

The simplest mathematical model of a fluid transmission line is the lumped 

parameter model.  In this model the three physical parameters, resistance, inertance, and 

capacitance are assumed to be located in one or more discrete locations along the fluid 

transmission line.  This model is constructed with a system of linear ordinary 

differential equations (ODEs).  This model is useful since it can be integrated into a 

larger mechanical system of lumped parameter components to produce a rational 

polynomial transfer function.  The inverse Laplace transform can then be applied to this 

result to obtain the time domain response of the system. 
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Figure 2.1  Basic lumped parameter model 

The equations that define this model are as follows: 

inRin QRPP =−  (2.1)

inoutR
QLPP &=−  (2.2)

outpoutin PCQQ &=−  (2.3)

The Laplace transform of these equations when ignoring initial conditions are: 

inRin QRPP =−  (2.4)

inoutR
QsLPP =−  (2.5)

outpoutin PsCQQ =−  (2.6)

Combining these three equations results in the following matrix form: 
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(2.7)

 

This is a second order model of the fluid line system.  The problem with this 

model is that in reality are parameters are distributed along the line and not just located 
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at a discrete point as indicated by the diagram.  The lumped parameter model can be 

modified to attempt to represent the distributed nature of the parameters as shown. 

 

 

Figure 2.2  Two element lumped parameter model 

 
In this example the line is split into two identical lumped parameter models 

where all the parameters are split into two lumped elements (lumping by length).  This 

results in the following equation. 

( ) 































++−







 +−

=
















in

in

pppout

out

RQ

P

sLCsRCsRC

s
R
L

RQ

P

21

11
2

 (2.8)

If the line is divided n times then this equation would apply: 
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The following figure shows the frequency response plots of a lumped parameter fluid 

transmission line. 
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Figure 2.3  Magnitude and phase frequency response plots of a transmission line 
modeled with single element lumped parameters 
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Figure 2.4  Magnitude and phase frequency response plots of a transmission line 
modeled with two element lumped parameters 
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This approach is really a form of finite element analysis.  It is interesting to note 

that the frequency response quickly dies out after one peak in the case of the single 

element line and after two peaks with the two element line.  The peaks are referred to as 

the �modes� of the frequency response.  Each mode is equivalent to a second order 

rational polynomial transfer function.  These lumped parameter models are derived 

from linear differential equations and produce a rational polynomial transfer function 

which can be transformed into a time domain function via the inverse Laplace 

transform.   

In reality the frequency response of any system in nature has in infinite number 

of peaks as the magnitude dies out.  An �exact� transfer function should then be a 

function of a cyclical function.  The development of the distributed parameter model 

will show that the cyclical functions used to produce this model are hyperbolic sine and 

hyperbolic cosine functions.  The only problem with distributed parameter models is 

that they are nonlinear and cannot be inverse Laplace transformed to produce a time 

domain response. 

2.3  Distributed Parameter Line Models 

The actual governing equations of a fluid transmission line are nonlinear partial 

differential equations (PDEs) that model the distributed nature of the three parameters 

of resistance, inertance, and capacitance.  The governing equations used are the Navier-

Stokes equations and the equation of state.   The equation of state is used because the 

compressibility of both liquid and gas is taken into account.  This results in a more 

accurate model of the line. 
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Figure 2.5  Distributed parameter model 

 

The governing equations are as follows: 
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Continuity Equation 

0
0

=
∂
∂+

∂
∂+



 +

∂
∂+

∂
∂+

∂
∂

x
u

r
v

r
v

r
v

x
u

t
ρρρρ  (2.11)

Energy Equation 

( ) 





∂
∂+

∂
∂=

∂
∂−+

∂
∂

r
T

rr
T

t
T

t
T 11 22

2

00
αργ  (2.12)

State Equation for Liquids 

βρ
ρ dPd =
0

 (2.13)

State Equation for Gases 

00 P
dPd
γρ

ρ =  (2.14)
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The Laplace Transforms of the governing PDEs are as follows: 

),()(),( 2
0 sxQ

sL
sZ

dx
sxdP Γ−=  (2.15)

),(),(

0

sxP
LZ

s
dx

sxdQ −=  (2.16)

where: 

C),0(),( ×∈ Lsx  (2.17)

2
0

00
0 r

cp
Z

π
=  (2.18)

ss ω=  (2.19)

0c
L=ω  (2.20)

 

Several models have been developed using these equations all of which have two 

functions in common:   

Propagation Operator   Γ(s) 

Characteristic Impedance Ζc(s)  

These functions are so named because of the following relationships: 











 −
Γ−

= l
22)(

1

2

),(
),(

xx
s

e
sxP
sxP

 (2.21)

)(
),(
),( sZ

sxQ
sxP

c=  (2.22)
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The propagation operator governs the propagation of the input pressure through 

the line.  The characteristic impedance governs the fluid flow.  Note that the 

characteristic impedance is not a function of the length of the line.  These two functions 

are sufficient to completely model a transmission line. 

2.3.1  Lossless Line Model 

The lossless fluid transmission line model uses the momentum, continuity, and 

state equations but excludes the heat transfer governed by the energy equation and the 

dissipation effects.   

Momentum Equation (excluding dissipation terms) 

0
0

=
∂
∂+

∂
∂

x
p

t
uρ  (2.23)

Continuity Equation (excluding dissipation terms) 

00 =∂
∂

+∂
∂

+∂
∂

txux
u ρρ

ρ  (2.24)

State Equation for Liquids 

βρ
ρ dPd =
0

 (2.25)

State Equation for Gases 

00 P
dPd
γρ

ρ =  (2.26)

These form the following wave equations: 
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2

2
0

2

2

t
p

x
P

∂
∂=

∂
∂

β
ρ

 (2.27)

2

2
0

2

2

t
Q

x
Q

∂
∂=

∂
∂

β
ρ

 (2.28)

The solution to the wave equation in matrix form is as follows: 



































ΓΓ
Γ

Γ
Γ−

Γ
















=

out

in

c

c

in

out

Q

P

Z

Z

Q

P

cosh
1

cosh
sinh

cosh
sinh

cosh
1

 (2.29)

This form is consistent in all of the distributed parameter models.  The only 

difference is in the calculation of the propagation operator and the characteristic 

impedance.  The propagation operator and the characteristic impedance functions are 

defined in the lossless fluid transmission line model as: 

0

)(
c
Lss =Γ  (2.30)

2
0

00)(
r
cp

sZ c π
=  (2.31)

 

2.3.2  Linear Friction Model 

The linear friction transmission line model uses the following equations: 

Momentum Equation  
(linear friction term resulting in pressure loss being proportional to average velocity) 

 

00 =
∂
∂+



 +

∂
∂

x
puF

t
uρ  (2.32)
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The linear friction term is defined by the following equation. 

x
PuF

∆
∆−=

0
ρ  (2.33)

The Hagen-Poiseuille theory for pressure drop in a pipe with laminar flow is given as: 

2
0

008
r

u
x
P ρν

−=
∆
∆  (2.34)

This simplifies F to: 

2
0

0
8
r

F
ν

=  (2.35)

The viscous frequency is defined as: 

2
0

0

rv

ν
ω =  (2.36)

Resulting in: 

 vF ω8=  (2.37)

Continuity Equation (excluding dissipation terms) 

00 =
∂
∂

+
∂
∂

x
u

t
ρρ

 (2.38)

State Equation for Liquids 

βρ
ρ dPd =
0

 (2.39)

State Equation for Gases 

00 P
dPd
γρ

ρ =  (2.40)
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The propagation operator and characteristic impedance functions are defined by 

the linear friction transmission line model as: 
 

s
F

c
Lss +=Γ 1)(

0

 (2.41)

s
F

r
cpsZc += 1)( 2
0

00

π
 (2.42)

 
2.3.3  Viscous Line Model 

The viscous transmission line model applies the Navier-Stokes equations with 

the exception of heat transfer terms. 

Momentum Equation 









∂
∂+

∂
∂+

∂
∂−=

∂
∂

r
u

rr
u

x
P

t
u 1

2

2

0 µρ  (2.43)

Continuity Equation 

00 =



 +

∂
∂+

∂
∂+

∂
∂

r
v

r
v

x
u

t
ρρ

 (2.44)

State Equation for Liquids 

βρ
ρ dPd =
0

 (2.45)

State Equation for Gases 

00 P
dPd
γρ

ρ =  (2.46)

 



                    

17 

The propagation operator and characteristic impedance functions are defined by 

the viscous transmission line model as: 

c

Bss
ω

=Γ )(  (2.47)

0
)( BZsZc =  (2.48)























−

=

vv

v

sjJsj

sjJ

B

ωω

ω

0

12
1

1  

(2.49)

J0 and J1 are zero and first order Bessel functions of the first kind respectively.  Zc and 

ωv are the characteristic and viscous frequency respectively. 

2.3.4  Dissipative Transmission Line Model 

The dissipative transmission line model is derived from all the original Navier-

Stokes equations and the equation of state to include all the effects of viscosity, heat 

transfer, and compressibility.  The characteristic impedance and the propagation 

operator are as follows: 

r

r

c B
Bss

−
−+=Γ

1
)1(1)( σγ

ω
 (2.50)

))1(1)(1(
)( 0

σγ rr

c BB
ZsZ

−+−
=  (2.51)
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where the two Bessel function ratios are as follows. 























=

vv

v
r

sjJsj

sjJ
B

ωω

ω

0

12
 

(2.52)























=

vv

v
r

sjJsj

sjJ
B

ω
σ

ω
σ

ω
σ

σ

0

12  
(2.53)

and the line impedance constant is defined as follows. 

2
00

0 r
cZ

π
ρ=  (2.54)

The specific heat ratio is given by the following equation. 

v

p

c
c

=γ  (2.55)

 

2.4  Normalized Parameters 

In practice, all of the distributed parameter models are normalized with respect 

to time for the purpose of frequency response comparison. 

Normalized Laplace Operator 

v

ssrs
ων

==
2

 (2.56)
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Viscous Frequency 

2rv

νω =  (2.57)

Replacing the Laplace operator with the normalized operator produces the following. 

vss ω=  (2.58)

gives the normalized propagation operator as: 

r

r

c

v

B
Bss

−
−+=Γ

1
)1(1)( σγ

ω
ω  (2.59)

Defining the dissipation number as: 

c

v
nD

ω
ω=  (2.60)

and simplifying the normalized propagation operator gives the following equation. 

r

r
n B

BsDs
−
−+=Γ

1
)1(1)( σγ

 (2.61)

The dissipation number is often a used as a reference point when comparing 

various frequency responses.  The dissipation number can also be written as:  

2
0rc
LDn

ν=  (2.62)

The pressure waves in a fluid transmission line propagate at the speed of sound 

in the line, c0, making the dissipative number a function of this value.  The speed of 

sound is a function of the fluid density and the compressibility (inverse of bulk 

modulus) of the system.   
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The characteristic frequency is represented by the following relationship.  

L
c

c
0=ω  (2.63)

The dissipative transmission line model approach is referred to as viscous theory 

and has been proven to be the most accurate model. 
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Figure 2.6 Frequency magnitude response of a blocked hydraulic line using the 
dissipative model 
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Figure 2.7  Frequency phase response of a blocked hydraulic line using the dissipative 

model 

 
2.5  Transmission Line Model Comparison   

This section applies each of the five models covered in the last section to a 
blocked fluid transmission line and compares the resulting frequency response plots. 
  

 

Figure 2.8  Blocked transmission line illustration 
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Fluid Properties 

Density  =  870 Kg/m3 

Kinematic Viscosity =  4.6e-5 m2/s 

Prandtl Number = 1 

Specific Heat Ratio = 1 

Bulk Modulus = 1.21e9 N/m2 

Line Properties 

Length = 2 m 

Diameter = 0.01 m 

Bulk Modulus = 1.73e7 N/m2 

2.5.1  Lumped Parameter Model 

The lumped parameter approach requires the computation of values for the line 

inertance and capacitance. 

  

inoutin QLsRPP )( +=−  (2.64)

outpin sPCQ =  (2.65)

outsPCLsRPP poutin )( +=−  (2.66)

outPRsCLsCP ppin )1( 2 ++=  (2.67)

inP
RsCLsC

P
pp

out )1(
1

2 ++
=  (2.68)
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4

128
d

R
π

νρl=  (2.69)

54

s-N 3.261e8
)01.0(

)2)(870)(56.4(128
m

eR =−=
π

 (2.70)

A
L lρ=  (2.71)

5

2s-N2.215e7
)2/01.0(
)2)(870(

2 m
L ==

π
 (2.72)

e
p

VC
β

=  (2.73)

The effective bulk modulus of the system takes into account the compressibility 

of both the hydraulic fluid and the hydraulic hose.  The tangent bulk modulus is 

measured at a specific point and pressure whereas the secant bulk modulus is average 

change in pressure and volume.  The secant bulk modulus is used in all computations. 

 

ETV
PVT

,
0 




∂
∂−=β  (2.74)

ETV
PVs

,





∆
∆−=β  (2.75)

ETP
V

Vs ,

11





∆
∆−=

β
 (2.76)

ETET
PV

V
V

V
PV

V
V

V

hose

hosehose

fluid

fluidfluid

s ,,

1








∆

∆+












∆
∆

−=
β  (2.77)



                    

24 

In this system the liquid is compressing and the hose is expanding which 

explains the assignment of the positive and negative signs in the equation.  The volume 

of the system is also the volume of the hose and the equation can be rewritten as 

follows.    

ET

hose

ETfluid

fluidfluid

s PV
V

PV
V

V
V

,,

1






∆
∆+













∆
∆

−=
β  (2.78)

EThoseETfluid

fluid

s V
V

,,

111











+












=

βββ
 (2.79)

Assuming that the volume of the fluid is equal to the total volume gives 

EThoseETfluids ,,

111











+












=

βββ  (2.80)

hosefluid

hosefluid
se ββ

ββ
ββ

+
==  (2.81)

2
 1.706e7

1.73e71.21e9

)(1.73e7)e9(1.21

m

N
e ==

+
β  (2.82)

( ) ( )
N
m VC

e
p

52

12-9.21e
e771.1

22/01.0 === π
β

 (2.83)

The transfer function for the lumped parameter model is: 

inout PP
ses )133003.0(

1
-3-0.20403e 2 ++

=  (2.84)
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2.5.2  Distributed Parameter Models 

The distributed parameter matrix transfer function for this causality reduces to  

Γ
=

cosh
in

out

P
P  (2.85)

This transfer function will be applied to the next four models.  The only 

difference is in the calculation of the propagation operator.  The impedance constant is 

not required in this causality since the solution is the pressure output and not fluid flow. 

2.5.2.1  Lossless Line Model 

0

)(
c
Lss =Γ  (2.86)

ρ
βec =

0
 (2.87)

m/s 140.2
870

e771.1
0

==c  (2.88)

ss .01428
140.2

2s)( ==Γ  (2.89)

2.5.2.2  Linear Friction Model 

2
0

08
1)(

0
src

Lss
ν

+=Γ  (2.90)

s
s

s
ess 72.1410143.0

)005.0(
)56.4(81

2.140
2)( 2 +=−+=Γ  (2.91)
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2.5.2.3  Viscous Model 





















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



−

=Γ
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ν

srjJsrj

srjJ
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sLs

2

0

2

2

12

1

)(

 

(2.92)

 

2.5.2.4  Dissipative Model 



















−

=Γ

vv

v

c

sjJsj

sjJ

ss

ωω

ω
ω

0

12
1

1)(

 

(2.93)

 

The viscous model and the dissipative model for the line have the same resulting 

propagation operator as well as the same transfer function due to the fact that the 

specific heat ratio of liquid is unity. 
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Figure 2.9  Frequency magnitude response of common fluid transmission line models 
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CHAPTER 3 

MODAL APPROXIMATION APPROACH 
3.1  Model Overview 

As a result of being derived from partial differential equations the dissipative 

model transfer function is not in the rational polynomial form familiar in system 

modeling and control theory.  
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

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 (3.1)

Fluid line systems actually contain several components in addition to the fluid line or 

lines.     

 

Figure 3.1  Hydraulic log splitter 
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In order to integrate this model with other lumped parameters in a total system it 

is necessary to approximate the resulting transfer function as a rational polynomial 

transfer function.  This effort has been the focus of much of the latest research in this 

field. 

There are four possible causalities to a fluid line problem as follows: 
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 (3.2)
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In these four equations are seven unique transfer functions that will be defined as 

follows: 



                    

30 

Γ
Γ=

sinh
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1
cZ

C  (3.6)

Γ
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C  (3.7)
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3.2  Model Derivation 

∏
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Where: 

 σ is the Prandtl number 

α0,i is the ith zero of the zero-order Bessel function 

α1,i is the ith zero of the first-order Bessel function 

The infinite product representation of the propagation operator is  
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Multiply both the numerator and denominator terms by ∏
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This can be reduced to:  
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The polynomial coefficients ai and bi are functions of the Prandtl number and m only. 

3.2.1  Modal Approximation of 1/cosh Γ 

This result is applied to the series equation for cosh Γ. 
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A new variable called the dimensionless root index for cosh Γ is introduced: 
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The goal is to simplify the equation as a rational polynomial first by combining the 

unity term and series term as follows. 
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Then divide both the numerator and denominator by s to get: 
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Combining terms in the numerator results in: 
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The polynomial coefficients bi are functions of the Prandtl number and m only 

whereas the polynomial coefficients ci are functions of the Prandtl number, m, the 

specific heat ratio, and the dimensionless root index. 

Factoring the numerator and denominator results in the following equation: 
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The real root terms in both the numerator and the denominator virtually cancel each 

other out for lines with low damping and cosh Γ can be approximated as: 
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The transfer function 1/cosh Γ is: 
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n = number of second order modes 

The values for the coefficients have been tabulated. 

3.2.2 Modal Approximation of Ζc sinh Γ/cosh Γ 

Substitute the infinite product series form for sinh Γ and cosh Γ.  
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Substitute in the equation for the propagation operator. 
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(3.30)

Substitute the equation for the characteristic impedance. 
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(3.31)

The matrix transfer function when modal approximation method is applied is in 

the following form to remove the Z0 term in the development of the modal 

approximation model of the individual terms. 
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Reducing Bessel function terms gives 
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Substitute the infinite product series form of the Bessel functions produces: 
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Multiply both the numerator and denominator terms by ∏
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appropriately to get the following equation: 
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Another dimensionless root index for the sinh Γ polynomial is introduced.  

n
s D

i=λ  (3.37)

Substitute the dimensionless root indices of both cosh Γ and sinh Γ into the equation.  
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This equation can be simplified into the following form. 
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The real root terms in both the numerator and the denominator do not 

necessarily cancel each other out for lines with low damping as in the case of cosh Γ.   

If 
Γ
Γ
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sinh

0Z
Zc  is divided by the first real root )( 1us + , the residues of the resulting real 

roots approach zero. 
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n = number of second order modes 

The values for the coefficients have been tabulated. 

3.2.3  Modal Approximation of sinh Γ / Ζc cosh Γ 

As stated earlier, the form of the transfer function when the Modal 

Approximation method is applied is in the following form to remove the Z0 term in the 

development of the modal approximation model of the individual terms. 

Γ
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sinh0

cZ
Z  (3.41)

Substitute the infinite product series form for sinh Γ and cosh Γ.  
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Substitute in the equation for the propagation operator. 
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Substitute in the equation for the characteristic impedance. 
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(3.44)

Reducing Bessel function terms and canceling out the impedance constant gives 
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Substitute the infinite product series form of the Bessel functions produces 
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(3.46)

Combine the following term as one quotient. 
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To get the following: 
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Substitute into the equation to get 
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(3.49)

Combine the following term as one quotient 
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To get the following 
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Substitute into the equation to get 
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Factor out the following term. 
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The result is the following equation. 
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Introduce the dimensionless root indices to get the following equation. 
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This equation can be simplified into the following form. 
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The real root terms in both the numerator and the denominator do not 

necessarily cancel each other out for lines with low damping as in the case of cosh Γ.   

If 
Γ
Γ

cosh
sinh

0Z
Zc  is divided by the Laplace operator, the residues of the resulting real roots 

approach zero. 
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The inclusion of one real pole gives a very accurate approximation. 
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3.3  Modal Approximation Residue Coefficient Tables 

Table 3.1  Residue Coefficients for Air (Pneumatic Transmission Lines) 
Zc/sinh Γ 1/Zc sinh Γ 1/cosh Γ 

(-1)iDnai/Z0 (-1)iDnbbi/Z0 (-1)iZ0Dnai (-1)iZ0Dnbi

Zc cosh Γ/sinh Γ 
Zc sinh Γ/cosh Γ 

cosh Γ/Zc sinh Γ 
sinh Γ/Zc cosh Γ 

λc       

 

 

                       

lc        λs  

ωn ζ 
(-1)i+1(1-2i)ai (-1)i+1(1-2i)bi

Dnai/Z0 Dnbi/Z0 Z0Dnai Z0Dnbi 
0.02 0.0451 64.163 -0.000159 -0.002586 1.4286 8.2617 1.3797 -2.14E-5
0.04 0.0901 32.083 -0.000635 -0.010345 1.4287 8.2618 1.3798 -8.54E-5
0.06 0.1352 21.390 -0.001428 -0.023279 1.4288 8.2618 1.3800 -1.92E-4
0.08 0.1803 16.045 -0.002539 -0.041390 1.4289 8.2619 1.3802 -3.40E-4
0.10 0.2254 12.838 -0.003966 -0.064685 1.4291 8.2621 1.3805 -5.31E-4
0.20 0.4509 6.4266 -0.015830 -0.25915 1.4306 8.2631 1.3829 -0.00208
0.30 0.6768 4.2930 -0.035494 -0.58462 1.4332 8.2650 1.3869 -0.00451
0.40 0.9032 3.2288 -0.062787 -1.0431 1.4369 8.2677 1.3925 -0.00759
0.50 1.1304 2.5922 -0.097464 -1.6375 1.4416 8.2714 1.3996 -0.01101
0.60 1.3584 2.1695 -0.13919 -2.3713 1.4473 8.2762 1.4083 -0.01436
0.70 1.5875 1.8688 -0.18755 -3.2489 1.4542 8.2822 1.4185 -0.01713
0.80 1.8177 1.6444 -0.24200 -4.2751 1.4620 8.2898 1.4301 -0.01873
0.90 2.0493 1.4708 -0.30192 -5.4556 1.4710 8.2991 1.4431 -0.01848
1.00 2.2824 1.3327 -0.36653 -6.7962 1.4809 8.3105 1.4573 -0.01563
1.20 2.7535 1.1272 -0.50624 -9.9828 1.5038 8.3406 1.4887 0.001035
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Table 3.1 � Continued 
1.30 2.9917 1.0488 -0.57924 -11.841 1.5166 8.3600 1.5055 0.01646
1.35 3.1115 1.0142 -0.61602 -12.839 1.5233 8.3709 1.5140 0.02626
1.38 3.1836 0.99459 -0.6381 -13.460 1.5274 8.3779 1.5192 0.03286
1.40 3.2317 0.98202 -0.6528 -13.884 1.5302 8.3827 1.5227 0.03757
1.50 3.4737 0.92437 -0.7257 -16.116 1.5444 8.4091 1.5400 0.06496
2.00 4.7114 0.72401 -1.0434 -30.217 1.6199 8.5995 1.6170 0.30086
3.00 7.2868 0.52103 -1.3385 -72.731 1.7364 9.1569 1.6597 0.95333
4.00 9.9163 0.41536 -1.5376 -133.45 1.7917 9.6372 1.6268 1.2416
5.00 12.571 0.35102 -1.8441 -213.52 1.8236 10.007 1.6052 1.2040

10.00 26.286 0.22229 -3.4749 -940.55 1.9113 12.073 1.6641 0.57002
15.00 40.539 0.17476 -4.2906 -2230.3 1.9395 14.396 1.7273 0.83770
20.00 55.034 0.14745 -4.8375 -4084.1 1.9494 16.347 1.7617 1.2725
25.00 69.661 0.12923 -5.2970 -6508.5 1.9547 18.016 1.7838 1.6704
30.00 84.376 0.11602 -5.6900 -9508.2 1.9581 19.506 1.7997 2.0472
35.00 99.157 0.10588 -6.0263 -13086 1.9605 20.868 1.8119 2.4182
40.00 113.99 0.09778 -6.3149 -17243 1.9622 22.131 1.8215 2.7879
45.00 128.86 0.09112 -6.5633 -21982 1.9635 23.331 1.8294 3.1576
50.00 143.76 0.08551 -6.7775 -27302 1.9644 24.427 1.8358 3.5271
55.00 158.69 0.08071 -6.9623 -33204 1.9652 25.482 1.8413 3.8964
60.00 173.64 0.07653 -7.1213 -39690 1.9657 26.486 1.8459 4.2654
70.00 203.59 0.06958 -7.3734 -54410 1.9665 28.364 1.8534 5.0024
80.00 233.60 0.06400 -7.5525 -71464 1.9669 30.095 1.8591 5.7372
90.00 263.66 0.05937 -7.6720 -90851 1.9671 31.703 1.8536 6.4684

100.00 293.74 0.05547 -7.7425 -112572 1.9672 33.205 1.8774 7.1946
150.00 444.46 0.04220 -7.6011 -256130 1.9663 39.516 1.8814 10.698
200.00 595.39 0.03429 -7.0233 -457800 1.9647 44.366 1.8714 13.883
300.00 897.35 0.02500 -5.5689 -1034823 1.9617 51.192 1.8836 19.052
400.00 1199.2 0.01964 -4.2872 -1842813 1.9595 55.539 1.8835 22.734
500.00 1500.8 0.01614 -3.3103 -2881478 1.9579 58.387 1.8830 25.300
600.00 1802.3 0.01367 -2.5920 -4150748 1.9568 60.313 1.8825 27.099
700.00 2103.8 0.01185 -2.0646 -5650623 1.9560 61.655 1.8820 28.384
800.00 2405.1 0.01044 -1.6728 -7381119 1.9554 62.619 1.8816 29.321
900.00 2706.4 0.00933 -1.3771 -9342256 1.9550 63.330 1.8814 30.019

1000.00 3007.5 0.00843 -1.1501 -11534000 1.9547 63.866 1.8811 30.550
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Table 3.2  Residue Coefficients for Liquid (Hydraulic Transmission Lines) 
Zc/sinh Γ 1/Zc sinh Γ 

1/cosh Γ 
(-1)iDnai/Z0 (-1)iDnbbi/Z0 (-1)iZ0Dnai (-1)iZ0Dnbi

Zc cosh Γ/sinh Γ 
Zc sinh Γ/cosh Γ 

cosh Γ/Zc sinh Γ 
sinh Γ/Zc cosh Γ 

 
λc       

                   

lc    λs   

 
                

ωn ζ 
(-1)i+1(1-2i)ai (-1)i+1(1-2i)bi 

Dnai/Z0 Dnbi/Z0 Z0Dnai Z0Dnbi 
0.01 0.0267 108.31 -6.7412E-6 -9.0755E-4 2.0000 11.566 1.3824 -7.6476E-6
0.02 0.0534 54.154 -2.6965E-5 -3.6302E-3 2.0000 11.566 1.3824 -3.0590E-5
0.03 0.0801 36.103 -6.0670E-5 -8.1680E-3 2.0000 11.566 1.3824 -6.8828E-5
0.04 0.1068 27.077 -1.0786E-4 -1.4521E-2 2.0000 11.566 1.3824 -1.2236E-4
0.05 0.1335 21.662 -1.6852E-4 -2.2689E-2 2.0000 11.566 1.3824 -1.9118E-4
0.06 0.1602 18.052 -2.4267E-4 -3.2672E-2 2.0000 11.566 1.3824 -2.7530E-4
0.07 0.1869 15.473 -3.3030E-4 -4.4471E-2 2.0000 11.566 1.3824 -3.7471E-4
0.08 0.2136 13.339 -4.3141E-4 -5.8084E-2 2.0000 11.566 1.3824 -4.8941E-4
0.09 0.2403 12.035 -5.4599E-4 -7.3513E-2 2.0000 11.567 1.3824 -6.1940E-4
0.10 0.2670 10.832 -6.7404E-4 -9.0758E-2 2.0000 11.567 1.3824 -7.6467E-4
0.20 0.5340 5.4172 -2.6952E-3 -3.6306E-1 2.0001 11.567 1.3825 -3.0577E-3
0.30 0.8010 3.6130 -6.0607E-3 -8.702E-1 2.0003 11.568 1.3828 -6.8764E-3
0.40 1.0681 2.7113 -1.0765E-2 -1.4528 2.0005 11.569 1.3831 -1.2216E-2
0.50 1.3352 2.1707 -1.6803E-2 -2.2706 2.0007 11.571 1.3835 -1.9069E-2
0.60 1.6023 1.8106 -2.4165E-2 -3.2707 2.0011 11.573 1.3840 -2.7428E-2
0.70 1.8696 1.5536 -3.2840E-2 -4.4535 2.0015 11.575 1.3846 -3.7283E-2
0.80 2.1369 1.3611 -4.2817E-2 -5.8194 2.0019 11.578 1.3852 -4.8619E-2
0.90 2.4043 1.2116 -5.4081E-2 -7.3689 2.0024 11.581 1.3860 -6.1425E-2
1.00 2.6718 1.0921 -6.6615E-2 -9.1026 2.0030 11.584 1.3868 -7.5681E-2
1.05 2.8056 1.0410 -7.3354E-2 -10.039 2.0033 11.586 1.3873 -8.3351E-2
1.10 2.9394 0.9945 -8.0403E-2 -11.021 2.0036 11.588 1.3878 -9.1376E-2
1.20 3.2072 0.9134 -9.5425E-2 -13.125 2.0043 11.593 1.3888 -1.0849E-1
1.30 3.4751 0.8448 -1.1166E-1 -15.414 2.0050 11.597 1.3899 -1.2698E-1
1.40 3.7432 0.7862 -1.2908E-1 -17.891 2.0058 11.603 1.3911 -1.4686E-1
1.60 4.2796 0.6912 -1.6739E-1 -23.408 2.0075 11.615 1.3937 -1.9062E-1
1.80 4.8171 0.6177 -2.1015E-1 -29.684 2.0094 11.629 1.3967 -2.3954E-1
2.00 5.3553 0.5593 -2.5710E-1 -36.725 2.0114 11.645 1.4000 -2.9338E-1
3.00 8.0609 0.3868 -5.4497E-1 -83.734 2.0242 11.765 1.4206 -6.2620E-1
4.00 10.796 0.3036 -8.9161E-1 -151.34 2.0394 11.967 1.4472 -1.0338
5.00 13.566 0.2554 -1.2545 -240.78 2.0550 12.267 1.4775 -1.4699
10.0 27.867 0.1613 -2.4968 -1037.6 2.0957 14.935 1.6156 -3.0903
15.0 42.640 0.1262 -3.0243 -2419.6 2.0904 17.737 1.6885 -3.8995
20.0 57.558 0.1061 -3.4562 -4388.6 2.0808 19.996 1.7294 -4.5559
25.0 72.570 0.0930 -3.8498 -6952.0 2.0736 21.941 1.7571 -5.1628
30.0 87.647 0.0836 -4.2000 -10113 2.0680 23.698 1.7776 -5.7056
35.0 102.77 0.0764 -4.5144 -13875 2.0634 25.313 1.7934 -6.1952
40.0 117.94 0.0707 -4.8011 -18238 2.0596 26.815 1.8062 -6.6428
45.0 133.14 0.0661 -5.0651 -23204 2.0564 28.223 1.8167 -7.0562
50.0 148.36 0.0622 -5.3101 -28774 2.0536 29.552 1.8256 -7.4404
55.0 163.60 0.0589 -5.5387 -34950 2.0511 30.813 1.8332 -7.7995
60.0 178.86 0.0560 -5.7528 -41731 2.0490 32.017 1.8398 -8.1363
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Table 3.2 - Continued 
70.0 209.43 0.0513 -6.1438 -57113 2.0454 34.275 1.8508 -8.7528
80.0 240.05 0.0475 -6.4932 -74925 2.0424 36.369 1.8596 -9.3049
90.0 270.71 0.0444 -6.8079 -95171 2.0399 38.327 1.8668 -9.8032
100 301.41 0.0418 -7.0929 -1.1785E5 2.0377 40.172 1.8728 -1.0255E1
150 455.23 0.0330 -8.1857 -2.6786E5 2.0303 48.150 1.8930 -1.1999E1
200 609.32 0.0278 -8.8940 -4.7895E5 2.0257 54.724 1.9045 -1.3143E1
250 763.82 0.0243 -9.3460 -7.5117E5 2.0224 60.376 1.9120 -1.3885E1
300 918.36 0.0217 -9.6132 -1.0846E6 2.0200 65.354 1.9172 -1.4337E1
350 1073.0 0.0197 -9.7418 -1.4791E6 2.0180 69.807 1.9211 -1.4572E1
400 1227.7 0.0180 -9.7642 -1.9348E6 2.0164 73.831 1.9241 -1.4639E1
450 1382.4 0.0166 -9.7046 -2.4515E6 2.0150 77.496 1.9264 -1.4576E1
500 1537.2 0.0155 -9.5817 -3.0294E6 2.0138 80.850 1.9283 -1.4414E1
550 1692.0 0.0145 -9.4101 -3.6683E6 2.0128 83.933 1.9298 -1.4174E1
600 1846.8 0.0136 -9.2018 -4.3683E6 2.0119 86.776 1.9310 -1.3875E1
650 2001.6 0.0129 -8.9662 -5.1293E6 2.0111 89.402 1.9320 -1.3532E1
700 2156.4 0.0122 -8.7111 -5.9513E6 2.0103 91.834 1.9329 -1.3157E1
800 2466.1 0.0110 -8.1668 -7.7783E6 2.0090 96.182 1.9342 -1.2351E1
900 2775.7 0.0100 -7.6061 -9.8490E6 2.0080 99.937 1.9351 -1.1515E1

1000 3085.4 0.0092 -70529 -1.2164E7 2.0071 103.19 1.9358 -1.0686E1
 
 
 
 
 
 
 
 

Table 3.3  Residue Coefficients for the Real Poles of Z0 / sinh Γ and Z0 cosh Γ / sinh Γ 

j Pole 
Residue Coefficients for Z0 / sinh Γ and 

Z0 cosh Γ / sinh Γ 
Kj Dn / Z0 

1 -10.1400 0.169386 
2 -45.1979 0.046074 
3 -107.923 0.019571 
4 -198.487 0.010568 
5 -316.905 0.006128 
6 -462.886 0.004161 
7 -638.069 0.003323 
8 -837.815 0.000873 
9 -1069.95 0.001907 
10 -1326.08 0.000560 
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Table 3.4  Residue Coefficients for the Real Poles of  1/Z0 sinh Γ and cosh Γ/Z0 sinh Γ 

j Pole 
Residue Coefficients for 1 / Z0 sinh Γ and  

cosh Γ / Z0 sinh Γ 
Kj Dn / Z0 

0 -5.78319 0.689837 
1 -30.4713 0.129436 
2 -74.8862 0.51558 
3 -139.043 0.26872 
4 -222.939 0.016075 
5 -326.461 0.009828 
6 -450.314 0.007266 
7 -592.386 0.004908 
8 -756.437 0.003949 
9 -938.303 0.001649 

 
 

 

3.4  Modal Approximation of a Blocked Hydraulic Line 

The tabulated values for residue coefficients are a function of the dimensionless 

root Indices cλ  and sλ  which are functions of the dissipative number, nD .   

0.02628
22 )0.01/2(140.0)(

5)(2)-(4.6e ===
cr

LDn

ν  (3.59)

For a four mode approximation (i=1,2,3,4): 







 −=

2
1

02628.0
1 i

C
λ  (3.60)

][ 133.17    95.12    57.07    19.02 =
C

λ  (3.61)
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Figure 3.2  Log-log plot of natural frequency of a hydraulic line as a function of the 
dimensionless root index 

 

Interpolation gives the following values for the natural frequencies for each mode. 

403.45]    286.43    169.92    54.65[=
C

ω  (3.62)
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Figure 3.3  Log-log plot of natural frequency of a hydraulic line as a function of the 
dimensionless root index 

 

Interpolation gives the following values for the damping ratios for each mode. 

0.0360]    0.0431    0.0577    1100.0[=ς  (3.63)
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Figure 3.4  Log-log plot of residue coefficient, (-1)i+1(1-2i)ai of a hydraulic line as a 
function of the dimensionless root index 

 

Interpolation gives the following values for the residue coefficient, ai for each mode. 

( ) ( ) 7.8178]-    6.9538-     5.6274-    -3.3719[211 1 =−− +
i

i ai  (3.64)

1.1168]-    1.3908     1.8758-    3.3719[=
i

a  (3.65)
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Figure 3.5  Log-log plot of residue coefficient, (-1)i+1(1-2i)bi of a hydraulic line as a 
function of the dimensionless root index 

 

Interpolation gives the following values for the residue coefficient, bi for each mode. 

( ) ( ) ][211 2.1736e5-   1.0678e5-   37,760-   -40041 =−− +
i

i bi  (3.66)

][ 3,1052-   2,1357   12,587-   4004=
i

b  (3.67)
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Figure 3.6  Frequency response of modal approximations 
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CHAPTER 4 

FREQUENCY RESPONSE CURVE FITTING   
4.1  Least Squares Method for Linear Curve Fitting 

The modal method of Hullender and Healey [14] approximates each modal 

response by appropriately truncating the Taylor series form of the exact solution. 

Another approach is to apply a curve fit algorithm to the frequency response of the 

exact solution.  Linear regression is the use of algorithms to model data points with a 

linear equation.   The least squares method developed by Gauss and Legendre [19] is 

the most common technique used to model linear data in the form of a line or a 

polynomial.  

The following are experimental data points. 

nn fxffxffxf === )(,)(,)(
2211
L  (4.1)

The goal is to obtain the best approximation of this data by a linear equation 

representation. 

baxxf +≈)(  (4.2)

The least squares method obtains an equation in which the total squared error is 

minimized. 

 

∑
=
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j
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4.2  Nonlinear Least Squares Overview 

System models derived from partial differential equations are nonlinear and 

cannot be approximated with the simple least squares method described in the previous 

section.   

4.2.1  Newton�s Iterative Method 

Newton�s method [20] is an iterative process to approximate a real zero of a 

differentiable function.  As in all iterate processes, a first approximation of the zero r is 

made.  The first approximation is chosen as the x-intercept of a tangent line l.   

 
Figure 4.1  First approximation using tangent line x-intercept 
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The equation of the tangent line can be written as: 

))(()(
111

xxxfxfy −′=−  (4.6)

Solve for (x2): 

)(
)(

1

1
12 xf

xf
xx

′
−=  (4.7)

In general the process is repeated until the desired convergence is reached. 

0)(
)(
)(

1

≠′
′

−=
+

n

n

n
nn

xf
xf
xfxx  (4.8)

It is important that the first approximation is sufficiently close to r that successive 

approximations converge. 

4.2.2  Newton�s Method in Optimization 

Newton�s method for determining the real roots of a function can be modified to 

approximate local the maxima and minima of a function.  Local maxima and minima 

points are stationary points and the slope of the derivative at these points is zero.  

0)(
)(
)(

1

≠′′
′′
′

−=
+

n

n

n
nn

xf
xf
xfxx  (4.9)

4.2.3  The Gauss-Newton Method 

The Gauss-Newton Method [21] is an iterative approach to solve nonlinear least 

squares problems.  Since nonlinear functions are multivariable, the Jacobian is used in 

the same fashion (with some modification) as the derivative in the single variable 
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Newton�s method of Optimization.  The Jacobian is the matrix of all first order partial 

derivatives and is analogous to the derivative of a multivariable function.   
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 (4.11)

In the iterative process an initial guess p0 is made and subsequent 

approximations for p are made using equation 4.10.  The inverse matrix of equation 

4.10 is not computed directly.  Instead the following equation is solved 

kkk pp δ+=+1  (4.12)

Where δk is solved by the following linear equation 

)()()()( kk
f

kTk
f

k
f pfpJpJpJ −=δ  (4.13)

 

4.3  Approximation of the Dissipative Model Using Gauss-Newton Method 

The following rational polynomial transfer function is to be obtained by 

applying the Gauss-Newton method to the frequency response data points of the exact 

solution of a fluid line system. 
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Levi [22] was the first to document the application of the linear least-squares 

technique to approximate a transfer function with a rational polynomial.  Levi�s 
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technique was limited to systems with no poles on the imaginary axis.  Sanathanan and 

Koerner [23] applied an iterative search method to solve for any system (SK iteration).  

 The Matlab® command �invfreqs� program applies two algorithms to obtain the 

solution in the form of equation 4.13.  The non-iterative algorithm is based on Levi�s 

work and the iterative algorithm is based on the damped Gauss-Newton method. 

4.3.1  Levi�s Algorithm 

The exact transfer function provided by the dissipative model is sampled for ωk 

frequencies (k=1,2,�m).  The transfer function H(s) can be represented in the 

following form. 
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The error in this algorithm is 

)(
)()()(

sA
sBsHse −=  (4.17)

This equation is multiplied on both sides to remove the denominator term. 

)()()()()( sBsHsAsesA −=  (4.18)

A(s)e(s) is defined as the new error function E. 

)()()( sBsHsAE −=  (4.19)
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The goal is to minimize the Frobenius or Euclean norm of E.  This is the square root of 

the sum of the absolute squares of its elements. 

∑
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m

kba
E

1
2,

min  (4.21)

The Matlab® �invfreqs� program is based on Levi�s work, but does not use the 

method directly.  The program uses the following equations to define the numerator 

A(s) and the denominator B(s) of the transfer function H(s). 

[ ][ ] n
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[ ][ ].~~)( bjB kk ωω =  (4.23)
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The error function E,  is then represented in the following form. 
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This is then represented as follows. 
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(4.32)

The following is the vector containing the polynomial coefficients that are to be 

approximated using this method. 
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[ ][ ] [ ] [ ]cAAA TT ~~~~
=θ  (4.35)

The parameter vector θ is solved using orthogonal matrix triangularization. 

4.3.2  Iterative Algorithm to Estimate θ 

As in section  4.2.3 the Jacobian is used as a multivariable derivative. 

θ
θθ

∂
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)()())(()( θθθθθθ RJJJ TT −=−+  (4.40)

 

)()())()(( 1 θθθθθθ RJJJ TT −+ −=  (4.41)
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The following equation is equation 4.41 with the damping term λ added.  This is the 

Damped Gauss-Newton method. 

)()())()(( 1 θθθθλθθ RJJJ TT −+ −=  (4.44)

)()()()( θθθθ RRRR TT ≤++  (4.45)

01.0)()())()(( 1 ≤− θθθθ RJJJ TT  (4.46)
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CHAPTER 5 

APPLICATION OF MATLAB® FUNCTIONS TO OBTAIN A FINITE 
 ORDER TRANSFER FUNCTION OF A TOTAL FLUID 

 TRANSMISSION LINE SYSTEM  
5.1  Total Fluid Transmission Line System 

The hyperbolic transfer function matrix defines the input/output relationship of a 

single fluid line.  Typical hydraulic and pneumatic systems contain a number of fluid 

lines and other resistive, inductive, and capacitive components.  

 

Figure 5.1  Hydraulic brake valve schematic (Mico) 

5.2  Application of Matlab® Symbolic Toolbox Commands to Model a Fluid 
Transmission Line 

 

 The following section provides example applications of Matlab® commands to  

model a fluid transmission line system.  Both a lumped and a distrubuted parameter 
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model are presented to illustrate the need to approximate the distributed parameter 

model after the frequency domain transfer function is obtained.   

5.2.1  Frequency and Time Response of Lumped Model 

The Matlab® Symbolic Toolbox provides the �solve.m� program that will solve 

an �n� number of symbolic equations for an �n� number of unknowns.  For example, the 

simple lumped parameter model for the blocked hydraulic transmission line discussed 

earlier can be solved using the following command: 

)Qin'Pout,',s'*Pout*CPQin',Qin'*s)*LI(RLPout-Pinsolve('Sol =+==  (5.1)

Matlab® responds with the following output. 

sym] [1x1 :Qin     
sym] [1x1 :Pout    

  Sol=
 (5.2)

To view the individual solution of Pout type: 

Sol.PoutPout =  (5.3)

Matlab® responds with the following output: 

LI)*s^2*CPRL*s*CPPin/(1

Pout 

++

=
 (5.4)

The input pressure value, Pin, needs to expressed as unity in order to obtain the 

transfer function of the line rather than the particular solution.   This can be 

accomplished using the �subs� command to replace a symbolic term with a real value. 

,1)Pin''subs(Pout,TF =  (5.5)
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LI)*s^2*CPRL*s*CP1/(1

 TF

++

=
 (5.6)

An optional command can be used to make the solution in a typeset form.  

.TF)pretty(Sol  (5.7)

LI  s CP  RL s CP  1            
----------------------------------

1                         

2++

 (5.8)

The present form of the solution is symbolic and needs to be converted in a form 

that Matlab® can process.  The �subs� command is used to replace all the symbolic 

elements with actual values.  Before the �subs� command can be run the values for each 

symbolic parameter must already be in the Matlab® workspace.   

;1Pin
d^4);*L)/(pi*p*Vis*(128RL

V/Be;CP
r^2);*L)/(pi*(pLI

r^2;*pi*LV
d/2;r
0.01;d
2;L

 Bl);  Bl)/(Bf * (Bf  Be
 1.73e7;Bl

1.21e9;Bf
 5;-4.6eVis

870;p

=
=
=

=
=

=
=
=

+=
=
=
=

=

 

(5.9)

Note: all parameters are derived from metric units (m, Kg, and s). 
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RL),RL''subs(TF, TF
CP),CP''subs(TF, TF

LI),LI''subs(TF, TF

=
=
=

 (5.10)

Matlab®  will return the solution in whole number form. 

s^2)*043072297588253573114484111661534994
15/...917437929122743915163390064782

...+s*40192060992658470696552571038459371
27/...742001426964924424753118859599+1/(1= TF         

 (5.11)

This can be cleaned up using the �vpa� command to convert the rational whole 

number expressions to decimal form and the symbolic propagation operator can be 

replaced with this result using the �subs� command. 

vpa(TF,5)TF =  (5.12)

s^2)*3-.20403e+s*2-.30034e+1/(1.
= TF  (5.13)

This result cannot be processed by Matlab® commands designed for transfer 

functions such as the �step� and �bode� commands.  One reason for this is that the 

Laplace operator in this result is symbolic.  This can be converted to a Matlab® transfer 

function by performing the following operations. 

Den)tf(Num,TF
1]    3-0.20403e   2-0.30034e[Den

1][Num

=
=
=

 (5.14)

This produces the following output in the Matlab® workspace command line. 
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1 + s 0.003003 + s^2 0.000204
-----------------------------

1              
:functionTransfer 

 (5.15)

This result can be processed by the commands �bode� and �step� to produce the 

frequency response and time domain response respectively. 

bode(TF) (5.16)

step(TF)  (5.17)

The natural frequency can be obtained from the characteristic equation of the second 

order RLC model as follows:  

22 2 nnn ss ωως ++  (5.18)

LC
s

L
Rs 12 ++  (5.19)

701 ==
LCnω  (5.20)
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Figure 5.2  Frequency response plot of lumped parameter model 
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Figure 5.3  Time domain step input response plot of lumped parameter model 
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5.2.2  Frequency and Time Response of the Dissipative Model 

This approach can also be applied to the more complex dissipative model.  One 

major advantage of this approach is that the causality does not need to be considered as 

in the modal approximation method.  The following symbolic equations can always be 

used to define the line dynamics. 

Distributed Parameter Line Equations 

Pout*C21-Pin*C11=Qin  (5.21)

Pout*C11-Pin*C21=Qout  (5.22)

Distributed Parameter Transfer Functions, C1 and C2 

sinh(G))*cosh(G)/(Z=C1  (5.23)

sinh(G))*1/(Z=C2  (5.24)

Impedance Constant, Z0  

Bsigma))*1)-(v+sqrt(1*B)-Z0/(sqrt(1=Z  (5.25)

Normalized Propagation Operator, Γ  

B))-Bsigma)/(1*1)-(v+sqrt((1*s*Dn=G  (5.26)

Unnormalized Propagation Operator, Γ 

B))-Bsigma)/(1*1)-(v+sqrt((1*(r^2)/Vis)*(s*Dn=G  (5.27)

Normalized Bessel Function Ratio with Prandtl Number, Brσ 

s)))*sqrt(sigma*jbesselj(0,*s)*sqrt(sigma*(j              
s))/...*sqrt(sigma*jbesselj(1,*2=Bsigma  (5.28)

Unnormalized Bessel Function Ratio with Prandtl Number, Brσ 
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)))(r^2)/Vis)*(s*sqrt(sigma*jbesselj(0,              
...*)(r^2)/Vis)*(s*sqrt(sigma*(j              

))/...(r^2)/Vis)*(s*sqrt(sigma*jbesselj(1,*2=Bsigma
 (5.29)

Normalized and Unnormalized Bessel Function Ratio, Br 

sqrt(s)))*jbesselj(0,*sqrt(s)*jsqrt(s))/(*jbesselj(1,*2=B  (5.30)

)))(r^2)/Vis)*sqrt((s*jbesselj(0,*)(r^2)/Vis)*sqrt((s*(j
))/...(r^2)/Vis)*sqrt((s*jbesselj(1,*2=B  (5.31)

The two dissipative line equations can be solved as follows using the �solve� command 

to obtain a symbolic solution for the transfer function.   

)Pout'Qin,',Pout'*C11-C21='0,Pout'*C21-C11=Qinsolve('=Sol  (5.32)

As in the lumped parameter model, the input pressure value, Pin, is expressed as unity in 

order to obtain the transfer function of the line rather than the particular solution.  

The solve command provides the following symbolic solution for the transfer function. 

C21/C11
= TF  (5.33)

The next step is to replace the symbolic terms by actual numeric values using the �subs� 

command.  This requires that the numeric values for C11 and C21 already exist in the 

Matlab® workspace. 

C21),C21''subs(TF,=TF  (5.34)

C11),C11''subs(TF,=TF  (5.35)

If the propagation operator, Γ, is treated as a symbol, the result is the familiar 

distributed parameter transfer function for a blocked line, 1/cosh Γ.  The computation of 

the propagation operator produces a rather complex result. 
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(1/2)(1/2))))^s^*(1/2)8250230^1357680363
...*478127875/1697100451073741824besseli(0,

(1/2)/...(1/2)/s^8250230^1357680363*(1/2))s^*
(1/2)...8250230^1357680363*781278751697100454
/...1073741824besseli(1,*82425/1073741-(1/(1*
s...*319687542751136956040832/426060337502

G =

 
(5.36)

This can be cleaned up using the �vpa� command and the symbolic propagation operator 

can be replaced with this result using the �subs� command. 

(1/2)(1/2))))^s^*,.73721/besseli(0
(1/2)...(1/2))/s^s^*,.73721besseli(1.*2.7129-(1/(1.*s*1-.14284e

=G 
 (5.37)

(1/2))(1/2))))^s^*.73721besseli(0,
(1/2)/...(1/2))/s^s^*,.73721besseli(1.*2.7129-(1/(1.*s*1-284e1/cosh(.14

= TF

 

(5.38)

It is important to mention that not only is this result not a convenient rational 

polynomial form but also that this form is not recognized as a transfer function by 

Matlab®.  This result cannot be processed by Matlab® commands designed for transfer 

functions such as the �step� and �bode� commands.  The Laplace operator in this result 

is symbolic and needs to be replaced by jω which must be an array of a specified 

frequency range. A range of 1:10,000 is usually sufficient to cover all significant modes 

of the response.  

0000]1:[1w =  (5.39)

w)*j,s''subs(TF,TFfreqs =  (5.40)
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The result is 10,000 data points that can now be graphed using the following 

commands. 

TFfreqs))log10(abs(*20TFmag =  (5.41)

180/pi*eqs)angle(TFfrTFphase =  (5.42)

);Decibels'ylabel('
);rad/sec'Frequency xlabel('

);Plot' Magnitudetitle('
TFmag),semilogx(w

);Plot'Magnitude',Name'figure('  g =

 
(5.43)

);Degrees'ylabel(');rad/sec'Frequency xlabel('
);Plot' Phasetitle('

TFphase),semilogx(w
);Plot' Phase',Name'figure(' h =

 (5.44)
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Figure 5.4  Frequency magnitude response of dissipative model 
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Figure 5.5  Frequency response phase plot of dissipative model 

The complex transfer function needs to be processed by the �invfreqs� command 

to produce a rational polynomial transfer function.  By inspection of the frequency 

response graph, the appropriate order can be determined for the desired frequency 

range. 
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Figure 5.6  Determination of required number of modes 

In this example the frequency range to be analyzed is 1000 rad/sec.  This 

requires the rational polynomial approximation to contain five 2nd order modes. 

1000]:[1wa =  (5.45)

Here the exact solution needs to be scaled back from 10,000 rad/sec to 1,000 rad/sec in 

order to be processed by the �invfreqs� command. 

wa)*j,s''subs(TF,=TFfreqswa  (5.46)
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Since there are five 2nd order modes, a 10th order characteristic equation needs to 

used.  The numerator should be one order less than the denominator to produce a stable 

transfer function.    

wa,9,10)Ffreqswa,invfreqs(T=Den][Num,  (5.47)

Den)tf(Num,=TFA  (5.48)

1.814e026 s7.076e023s^21.696e022s^3 1.904e019  s^4 2.511e017 

 1.444e014  s^6 1.141e012  s^7 3.435e008  s^8 1.891e006  s^9 241.2  s^10

----------------------------------------------------------------------------------------

 2.952e026  s 1.346e024 - s^2 6.89e021  s^3 2.792e019 - s^4 6.554e016

...  s^5 1.437e014 - s^6 1.592e011  s^7 2.618e008 - s^8 1.354e005  s^9 160.3 

:functionTransfer 

++++

+++++

++

+++

 

(5.49)

The following commands are used to obtain the frequency response of the 

approximate rational polynomial transfer function and plot a comparison graph with the 

frequency response of the exact solution. 

w)Den,freqs(Num,=TFAfreqs  (5.50)

TFAfreqs))log10(abs(*20=TFAmag  (5.51)

TFfreqs))log10(abs(*20=TFmag  (5.52)

);Decibels'ylabel('
);rad/sec'Frequency xlabel('

);Plot' Magnitudetitle('
);r''TFAmag,w,,b''TFmag,,semilogx(w

);Plot'Magnitude',Name'figure(' = g

 
(5.53)
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Figure 5.7  Frequency magnitude response of approximation without fit-error weighting 

 
This result accurately models the exact response at the high frequencies but fails 

at the low end of the frequency range.  The gain of the approximation is also very 

inaccurate.  The �invfreqs� command can be modified to allow fit-errors to be weighted 

verses frequency. 

wt,100);wa,9,10,Ffreqs,invfreqs(T=Den][Num,  (5.54)
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Figure 5.8  Frequency magnitude response of approximation with fit-error weighting 

 
This result almost exactly models the exact solution out to 1000 rad/sec.  The 

steady state gain of the approximation should be unity.  The frequency magnitude 

response curve shows a small error.  The gain can be calculated with the following 

command. 

)dcgain(TFA=Gain  (5.55)

0267231.04894105   
=Gain  (5.56)

The approximated transfer function can be divided by this amount to achieve a steady 

state gain of unity. 
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Figure 5.9  Frequency magnitude response of approximation with normalized gain 

 
Setting the steady state gain to unity resulted in a small increase in error of the 

response at higher frequencies.  Figure 5.10 shows the comparison magnitude and phase 

plots of modal approximations using �invfreqs� where the maximum frequency for each 

mode is the resonant frequency of the respective mode. 
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Figure 5.10  Frequency response of approximation with normalized gain for the first 
five modes 
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These approximations more accurately model the exact solution than the modal 

approached covered in Chapter 3.  A more accurate approximation can be achieved by 

increasing the order of each mode by a factor of one.  The drawback is that the transfer 

function is of higher order, which is contrary to the objective of order reduction. 
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Figure 5.11  Frequency magnitude response of approximation using additional order for 
each mode 
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Figure 5.12  Frequency phase response of approximation using additional order for each 
mode 
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Figure 5.13  Step input response of modal approximations using �invfreqs� 
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As expected, a step input to each model does not result in much variation in the 

time domain response, but an impulse input results in significant variation in the.  This 

illustrates the importance of having a model that is accurate in the frequency range that 

the system operates. 

 

Figure 5.14  Impulse input response of modal approximations using �invfreqs� 

 
The goal of obtaining a finite order rational polynomial transfer function that 

accurately models that exact solution has been accomplished.  Now the result can be 

implemented with other block elements to model a total system using classical control 

theory methods.  An even better approach is to use the �solve� command and �invfreqs� 

to obtain an approximated transfer function for the total system. 
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5.3  Application of Matlab® Symbolic Toolbox Commands to Model a Total Fluid 
Transmission Line System 

 

The �solve� command can provide symbolic solutions for problems with any 

number of unknowns.  In the following hydraulic brake system, there are seven 

transmission lines, four capacitive elements, and one resistive element.  

 

Figure 5.15  Multiple line system with capacitive and resistive elements 

Each line is modeled with two equations for a total of 14 dissipative equations.  

There is three summation equations where lines are joined.  Resistive and Capacitive 

Elements are modeled as lumped elements in the total system.  This system is defined 

by a total of 22 equations.  The �solve� command is as follows: 
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)P27'P26,P25,P24,Ps3,Ps2,Ps1,P11,
Q27...Q17,Q26,Q16,Q25,Q15,Q24,Q14,Q23,Q13,Q22,Q12,Q21,Q11,'

,...Q17'+Q16=Q23',Q15'+Q14=Q22',Q13'+Q12=Q21'
,...s'*P27*Cp7=Q27',s'*P26*Cp6=Q26'
,...s'*P25*Cp5=Q25',s'*P24*Cp4=Q24'

,...P27'*C17-Ps3*C27=Q27',P27'*C27-Ps3*C17=Q17'
,...P26'*C16-Ps3*C26=Q26',P26'*C26-Ps3*C16=Q16'
,...P25'*C15-Ps2*C25=Q25',P25'*C25-Ps2*C15=Q15'
,...P24'*C14-Ps2*C24=Q24',P24'*C24-Ps2*C14=Q14'

,...Ps3'*C13-Ps1*C23=Q23',Ps3'*C23-Ps1*C13=Q13'
,...Ps2'*C12-Ps1*C22=Q22',Ps2'*C22-Ps1*C12=Q12'
,...Ps1'*C11-P11*C21=Q21',Ps1'*C21-P11*C11=Q11'

,...Q11'*Rin=P11-solve('1=Sol

 

(5.57)

 

The individual solutions (symbolic and numeric) contain too many terms to 

attempt to document.  The following figures are the magnitude and phase plots for the 

pressure output of line number 7.  
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Figure 5.16  Frequency response plots for seven line brake system 
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Figure 5.17  Frequency response modal approximation plots for seven line brake system 
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Figure 5.18  Step response modal approximation plot for seven line brake system 
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Figure 5.19  Impulse response modal approximation plot for seven line brake system 
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The advantage of combining the total system in �solve� is that the order of the 

system transfer function for a given frequency range will be reduced.  If this is not 

possible then the resulting transfer function must be combined in the classical method 

with transfer functions of the remaining system components. 

5.4  Application of Matlab
® Matrix Commands to Model a Total Fluid Transmission 

Line System 
 

Another method of solving the system equations is to use a matrix.  In this 

approach, the only symbolic term is the Laplace operator. 










= XAB  (5.58)

 









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

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



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




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
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













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





















=

P27

P26

P25

P24

Ps3

Ps2

Ps1

P11

Q27

Q17

Q26

Q16

Q25

Q15

Q24

Q14

Q23

Q13

Q22

Q12

Q21

Q11

0000000001-01-0000100000

00000000000001-01-001000

000000000000000001-01-10

s*Cp-000000010000000000000

0s*Cp-00000000100000000000

00s*Cp-0000000001000000000

000s*Cp-000000000010000000

C1(7)C2(7)-00000010000000000000

C2(7)C1(7)-00000001000000000000

0C1(6)C2(6)-0000000100000000000

0C2(6)C1(6)-0000000010000000000

00C1(5)C2(5)-000000001000000000

00C2(5)C1(5)-000000000100000000

000C1(4)C2(4)-00000000010000000

000C2(4)C1(4)-00000000001000000

0000C1(3)C2(3)-0000000000100000

0000C2(3)C1(3)-0000000000010000

00000C1(2)C2(2)-000000000001000

00000C2(2)C1(2)-000000000000100

000000C1(1)C2(1)-00000000000010

000000C2(1)C1(1)-00000000000001

000000010000000000000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1 Rin

 

(5.59)
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The following Matlab® command solves this equation using Gaussian Elimination. 

BAX \=  (5.60)

 
5.5  Application of Matlab® Graphical User Interface to Produce the Fluid 

Transmission System Analyzer 
 

The Matlab® tools previously covered have been incorporated into a Graphical 

User Interface program that simplifies the process of obtaining a transfer function of a 

fluid transmission line system.  This program is prompted by inputting �FLRAR1� in the 

Matlab® command line.  The Graphical User Interface initially appears as follows: 

 

Figure 5.20  GUI opening screen shot 

The first thing required is to input the material constants of the fluid and the line 

in the upper left corner as in the following example. 
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Note: all parameters are derived from metric units (m, kg, and s). 

 

 

Figure 5.21  GUI material constants section 

 

Figure 5.22  GUI model properties section 

After completing the Model Properties section, the Model Diagram section will 

automatically illustrate the model with a line diagram as shown here. 

 

 



       

 91 

 

Figure 5.23  GUI model diagram section 

The individual line lengths are specified in the Line Lengths section. 

 

Figure 5.24  GUI line lengths section 

The program will place the word �OUTPUT� above the lines that are output 

lines.  The input valve resistance, the output valve resistance and output capacitance 

values are then placed in the following fields. 

 

Figure 5.25  GUI line lengths section 
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Rout and CPout is restricted to the same values for all outputs.  The program is 

now ready to calculate the frequency response of the system using the Dissipative line 

model.  Click on the Frequency Response Analysis button to calculate the frequency 

response. 

 

Figure 5.26  GUI system solution section before analysis 

The program uses the following algorithm to determine the modal frequencies. 

a=0 
for m=1 
for k=1:9990 
if TFmag(k+1) >= TFmag(k) 
if TFmag(k+1) >= TFmag(k+2) 
MF(m)= w(k+1) 
m=m+1 
end 
end 
a=a+1 
end 
end 

(5.61)
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Figure 5.27  GUI system solution section after analysis 

Occasionally the algorithm fails to match mode to frequency, and a manual 

override is necessary.  The algorithm fails when modes do not have a local maximum 

point.  The manual frequency input can be determined by inspecting the frequency 

magnitude response plot.  The Upper Frequency value automatically shows after 

selecting the number of modes.  Finally, the Run Configuration button is pushed to 

calculate the modal approximation and plot the approximated response against the exact 

response. 
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Figure 5.28  GUI frequency response comparison output 

The transfer function is displayed in the Matlab® command line.  
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(5.62)

The file can also be saved and loaded as needed.   This command only saves the 

solution parameters.  The Frequency Response Analysis button needs to be pushed after 

opening the file. 

 

Figure 5.29  GUI complete screen shot 
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Figure 5.30  GUI layout editor screen shot 

 

 

 

Figure 5.31  GUI files 
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5.6  Fluid Transmission System Analyzer Frequency Selection Application 

A frequency response may be obtained that does not have modal frequencies 

defined by a local maxima.   The following figure is the result of a five mode 

approximation of the same seven line system covered in the previous section.  The 

program fails to produce a perfect curve fit because the incorrect modal frequency is 

selected by the program.   

 

Figure 5.32  Failure of frequency determination algorithm 

The frequency selected for the fifth mode is 566 rad/sec.  By inspection of the 

plot this is the frequency of the sixth mode.  The problem in this example is the fourth 

mode does not have a local maxima.  In cases like this the Frequency Override feature 



       

 98 

must be used.  A frequency of 425 rad/sec is determined by visual inspection and 

entered into the Frequency Override field and the configuration is rerun to produce the 

following approximation. 

 

Figure 5.33  Accurate approximation using frequency override 
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CHAPTER 6 

SUMMARY OF RESEARCH AND RECOMMENDATION FOR FUTURE STUDY  

6.1  Summary of Research 

This research presents a method of solving for a total fluid transmission line 

system using the dissipative model and then applying the Matlab® �invfreqs� algorithm 

to the frequency response of the total system rather than individual lines.  This can be 

accomplished using the symbolic �solve� command or by matrix operations using a 

symbolic Laplace operator.  The advantage of this is apparent when there are several 

lines in the system.  Previously each line would be approximated in the Laplace domain 

and the linear transfer functions lumped together.  In this research, one approximation is 

made on the total system rather than combining several approximations eliminating 

combined error.   

In addition to efficiently combining multiple fluid lines all the elements can be 

combined before performing a modal approximation.  Lumped resistive and capacitive 

components as well as higher order elements can be combined with the lines and solved 

for the frequency response of a particular output.  Any element in the system can be 

nonlinear.  The only requirement is that the element is represented in the Laplace 

domain. 

An algorithm for matching mode to frequency is also introduced and all the tools 

presented in this work are combined into a single user friendly program using the 
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Matlab® Graphical User Interface.  This program provides an efficient method to 

analyze a fluid transmission line system.  To obtain a copy of the program send an 

email request to: johnduaneking@hotmail.com.      

6.2  Recommendation for Future Study 

The modifications made to the modal solution provided by �invfreqs� was to 

normalize the transfer function to produce a steady state gain of unity and to increase 

the order of the total number of modes by one.  Improving the accuracy of the 

approximation process so that the additional order can be reduced would be a major 

improvement.  The algorithm to determine modal frequency is based on the local 

maxima of the frequency magnitude response.  Occasionally, the modal frequency is not 

defined by a local maxima and a manual determination of the frequency needs to be 

made.  Perhaps and algorithm based on inflection points would perform better.  The 

phase plot appears to have distinct inflection points.    

The Matlab® features applied in this work are only a few of the tools available to 

compute and analyze system models.   One suggestion would be to produce a graphical 

user interface that permits the inclusion of all system components.  The program 

introduced in this work is limited to multiple connected lines, an input resistive element 

and output resistive and capacitive elements.  A more comprehensive program should 

be more flexible to allow for the input of all components of the system.  Another 

approach would be to find a method to automatically input a transfer function into 

Matlab® Simulink  and integrate this feature into an analysis program. 
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MODEL COMPARISON PROGRAM 
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The following Matlab® program plots a comparative frequency response of each of the 

five models. 

 
function system = MODELCOMP 
syms s 
 
%%%%%%%%%%%%%%%Model Properties%%%%%%%%%%%%%%%%%%%% 
p=870; 
Vis=4.6e-5; 
sigma=1; 
v=1; 
Bf=1.21e9; 
Bl=1.73e7;  
L=2; 
d=0.01; 
r=d/2; 
V=L*pi*r^2; 
w=[1:1000]; 
Pin=5e6; 
Be = (Bf * Bl)/(Bf + Bl)  
c=sqrt(Be/p) 
Dn=(Vis*L/(c*r^2)) 
wc=c/L; 
wv=Vis/r^2; 
 
%%%%%%%%Model 1: Lumped Parameter Model Calculation%%%%%%%%%%% 
 
LI=(p*L)/(pi*r^2) 
CP=V/Be 
RL=(128*Vis*p*L)/(pi*d^4) 
Sol=solve('Pin-Pout=(RL+LI*s)*Qin','Qin=CP*Pout*s','Pout,Qin') 
Pout=Sol.Pout 
TFM1=Pout 
TFM1=subs(TFM1,'LI',LI); 
TFM1=subs(TFM1,'CP',CP); 
TFM1=subs(TFM1,'RL',RL); 
TFM1=subs(TFM1,'wv',wv); 
TFM1=subs(TFM1,'Pin',Pin); 
TFM1=subs(TFM1,'s',j*w); 
TFM1MAG=20*log10(abs(TFM1)); 
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%%%%%%%%%%%%%Model 2: Lossless Line Model Calculation%%%%%%%%%% 
 
G2=L*s/c; 
TFM2=Pin/cosh(G2); 
TFM2=subs(TFM2,'s',j*w); 
TFM2MAG=20*log10(abs(TFM2)); 
TFM2PHASE=angle(TFM2)*180/pi; 
 
%%%%%%%%%%%Model 3: Linear Friction Model Calculation%%%%%%%%%%% 
 
G3=((s/wc))*sqrt(1+(8*wv/(s))); 
TFM3=Pin/cosh(G3); 
TFM3=subs(TFM3,'s',j*w); 
TFM3MAG=20*log10(abs(TFM3)); 
TFM3PHASE=angle(TFM3)*180/pi; 
 
%%%%%%%%%%Model 4: Viscous Model Calculation%%%%%%%%%%%%%%%% 
 
B=1/sqrt(1-(2*besselj(1,j*sqrt((s/wv)))/(j*sqrt((s/wv))*besselj(0,j*sqrt((s/wv)))))); 
G4=B*s/wc; 
TFM4=Pin/cosh(G4); 
TFM4=subs(TFM4,'s',j*w); 
TFM4MAG=20*log10(abs(TFM4)); 
TFM4PHASE=angle(TFM4)*180/pi; 
 
%%%%%%%%%%%Model 5: Dissipative Model Calculation%%%%%%%%%%%%%%%%%%%% 
 
Bsigma=2*besselj(1,j*sqrt(sigma*(s/wv)))/(j*sqrt(sigma*(s/wv))*besselj(0,j*sqrt(sigma*(s/wv)))); 
B=2*besselj(1,j*sqrt((s/wv)))/(j*sqrt((s/wv))*besselj(0,j*sqrt((s/wv)))); 
G5=Dn*(s/wv)*sqrt((1+(v-1)*Bsigma)/(1-B)); 
TFM5=Pin/cosh(G5); 
TFM5=subs(TFM5,'s',j*w); 
TFM5MAG=20*log10(abs(TFM5)); 
TFM5PHASE=angle(TFM5)*180/pi; 
 
%%%%%%%%%%%Comparison Plot%%%%%%%%%%%%%%%%%%%%%% 
 
g = figure('Name','Magnitude Plot'); 
semilogx(w,TFM1MAG,w,TFM2MAG,w,TFM3MAG,w,TFM4MAG,w,TFM5MAG) 
title('Magnitude Plot'); 
xlabel('Frequency rad/sec'); 
ylabel('Decibels'); 
 
end 

 



   

 104   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 
 

TRUNCATED PRODUCT SERIES MODAL 
 APPROXIMATION PROGRAM 
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The following Matlab® program calculates the modal approximation transfer function for 

1/cosh Γ and compares the resulting frequency response with 1/cosh Γ.  Note that you 

must have the tables imported.  

function system = MODAL(sigma,v,p,Vis,Bf,Bl,L,d,i) 
 
%%%%%%%%%%%%%%LOAD TABLES%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
syms H P; 
form = input('Hydraulic or Pneumatic (H/P):') 
if form == H 
data = xlsread('data-liquid.xls'); 
else 
data = xlsread('data-air.xls');     
end 
 
%%%%%%%%%%%CALCULATE DISSIPATION NUMBER%%%%%%%%%%%%%%%%%%% 
r=d/2; 
Be = (Bf * Bl)/(Bf + Bl)  
c=sqrt(Be/p) 
Dn=(Vis*L/(c*r^2)) 
 
%%%%%%%%%%%CALCULATE COSH ROOT INDICES%%%%%%%%%%%%%%%%%%%% 
if i==1 
i=[1]; 
else if i==2 
i=[1 2];         
else if i==3 
i=[1 2 3];                 
else if i==4 
i=[1 2 3 4];         
else if i==5 
i=[1 2 3 4 5];         
end 
end 
end 
end 
end 
Lambda_c=(1/Dn)*(i-1/2) 
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%%%%%%%%%%%CALCULATE RESIDUE COEFFICIENTS%%%%%%%%%%%%%%%%%% 
DI = data(:,1); 
NF = data(:,2); 
DR = data(:,3); 
CA1 = data(:,4); 
CB1 = data(:,5); 
w = interp1(DI,NF,Lambda_c) 
d = interp1(DI,DR,Lambda_c) 
cosh_residue_a = interp1(DI,CA1,Lambda_c) 
cosh_residue_b = interp1(DI,CB1,Lambda_c) 
 
a = cosh_residue_a./(((-1).^(i+1)).*(1-2.*i)) 
b = cosh_residue_b./(((-1).^(i+1)).*(1-2.*i)) 
 
 
%%%%%%%%%% CALCULATE RATIONAL POLYNOMIAL APPROXIMATION %%%%%%%% 
 
Li=length(i); 
for k=1:Li 
num=[a(k) b(k)] 
den=[1 2*d(k)*w(k) w(k)^2] 
APPROXTF(k)=tf(num,den) 
k=k+1; 
end    
 
%%%%%%%%%%% EXACT MODEL CALCULATION %%%%%%%%%%%%%%%%%%%% 
 
w=[0.01:1000]; 
syms s 
Z0=(p*c)/(pi*r^2); 
Bsigma=2*besselj(1,j*sqrt(sigma*(s)))/(j*sqrt(sigma*(s))*besselj(0,j*sqrt(sigma*(s)))); 
B=2*besselj(1,j*sqrt((s)))/(j*sqrt((s))*besselj(0,j*sqrt((s)))); 
Z=Z0/(sqrt(1-B)*sqrt(1+(v-1)*Bsigma)); 
G=Dn*(s)*sqrt((1+(v-1)*Bsigma)/(1-B)); 
EXACT=1/cosh(G); 
EXACT=vpa(EXACT,5) 
EXACT=subs(EXACT,'s',j*w); 
EXACTMAG=20*log10(abs(EXACT)); 
EXACTPHASE=angle(EXACT)*180/pi; 
 
%%%%%%%%%%% MODAL COMPARISON TO EXACT %%%%%%%%%%%%%%%%%%% 
 
if length(i)==1 
Gainsum1=dcgain(APPROXTF(1)); 
TFsum1=APPROXTF(1)/Gainsum1 
 
[n1,d1] = tfdata(TFsum1,'v'); 
 
APPROX1=freqs(n1,d1,w); 
APPROXMAG1=20*log10(abs(APPROX1)); 
APPROXPHASE1=angle(APPROX1)*180/pi; 
 
g = figure('Name','Magnitude Plot'); 
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semilogx(w,EXACTMAG,w,APPROXMAG1) 
title('Magnitude Plot'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Decibels'); 
 
h = figure('Name','Phase Plot'); 
semilogx(w,EXACTPHASE,w,APPROXPHASE1) 
title('Phase Comparison Plots'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Degrees'); 
 
elseif length(i)==2     
Gainsum1=dcgain(APPROXTF(1)); 
TFsum1=APPROXTF(1)/Gainsum1; 
TFsum2=(APPROXTF(1)+APPROXTF(2)); 
Gainsum2=dcgain(TFsum2); 
TFsum2=TFsum2/Gainsum2; 
 
[n1,d1] = tfdata(TFsum1,'v'); 
[n2,d2] = tfdata(TFsum2,'v'); 
 
APPROX1=freqs(n1,d1,w); 
APPROX2=freqs(n2,d2,w); 
 
APPROXMAG1=20*log10(abs(APPROX1)); 
APPROXMAG2=20*log10(abs(APPROX2)); 
 
APPROXPHASE1=angle(APPROX1)*180/pi; 
APPROXPHASE2=angle(APPROX2)*180/pi; 
 
g = figure('Name','Magnitude Plot'); 
semilogx(w,EXACTMAG,w,APPROXMAG1,w,APPROXMAG2) 
title('Magnitude Plot'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Decibels'); 
 
h = figure('Name','Phase Plot'); 
semilogx(w,EXACTPHASE,w,APPROXPHASE1,w,APPROXPHASE2) 
title('Phase Comparison Plots'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Degrees'); 
 
elseif length(i)==3 
Gainsum1=dcgain(APPROXTF(1)); 
TFsum1=APPROXTF(1)/Gainsum1 
TFsum2=(APPROXTF(1)+APPROXTF(2)) 
Gainsum2=dcgain(TFsum2); 
TFsum2=TFsum2/Gainsum2 
TFsum3=(APPROXTF(1)+APPROXTF(2)+APPROXTF(3)) 
Gainsum3=dcgain(TFsum3); 
TFsum3=TFsum3/Gainsum3 
 
[n1,d1] = tfdata(TFsum1,'v'); 
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[n2,d2] = tfdata(TFsum2,'v'); 
[n3,d3] = tfdata(TFsum3,'v'); 
 
APPROX1=freqs(n1,d1,w); 
APPROX2=freqs(n2,d2,w); 
APPROX3=freqs(n3,d3,w); 
 
APPROXMAG1=20*log10(abs(APPROX1)); 
APPROXMAG2=20*log10(abs(APPROX2)); 
APPROXMAG3=20*log10(abs(APPROX3)); 
 
APPROXPHASE1=angle(APPROX1)*180/pi; 
APPROXPHASE2=angle(APPROX2)*180/pi; 
APPROXPHASE3=angle(APPROX3)*180/pi; 
 
g = figure('Name','Magnitude Plot'); 
semilogx(w,EXACTMAG,w,APPROXMAG1,w,APPROXMAG2,w,APPROXMAG3) 
title('Magnitude Plot'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Decibels'); 
 
h = figure('Name','Phase Plot'); 
semilogx(w,EXACTPHASE,w,APPROXPHASE1,w,APPROXPHASE2) 
title('Phase Comparison Plots'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Degrees'); 
 
elseif length(i)==4 
Gainsum1=dcgain(APPROXTF(1)); 
TFsum1=APPROXTF(1)/Gainsum1 
TFsum2=(APPROXTF(1)+APPROXTF(2)); 
Gainsum2=dcgain(TFsum2); 
TFsum2=TFsum2/Gainsum2 
TFsum3=(APPROXTF(1)+APPROXTF(2)+APPROXTF(3)); 
Gainsum3=dcgain(TFsum3); 
TFsum3=TFsum3/Gainsum3 
TFsum4=(APPROXTF(1)+APPROXTF(2)+APPROXTF(3)+APPROXTF(4)); 
Gainsum4=dcgain(TFsum4);     
TFsum4=TFsum4/Gainsum4     
 
[n1,d1] = tfdata(TFsum1,'v'); 
[n2,d2] = tfdata(TFsum2,'v'); 
[n3,d3] = tfdata(TFsum3,'v'); 
[n4,d4] = tfdata(TFsum4,'v'); 
 
APPROX1=freqs(n1,d1,w); 
APPROX2=freqs(n2,d2,w); 
APPROX3=freqs(n3,d3,w); 
APPROX4=freqs(n4,d4,w); 
APPROXMAG1=20*log10(abs(APPROX1)); 
APPROXMAG2=20*log10(abs(APPROX2)); 
APPROXMAG3=20*log10(abs(APPROX3)); 
APPROXMAG4=20*log10(abs(APPROX4)); 
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APPROXPHASE1=angle(APPROX1)*180/pi; 
APPROXPHASE2=angle(APPROX2)*180/pi; 
APPROXPHASE3=angle(APPROX3)*180/pi; 
APPROXPHASE4=angle(APPROX4)*180/pi; 
g = figure('Name','Magnitude Plot'); 
semilogx(w,EXACTMAG,w,APPROXMAG1,w,APPROXMAG2,w,APPROXMAG3,w,APPROXMAG
4) 
title('Magnitude Plot'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Decibels'); 
 
h = figure('Name','Phase Plot'); 
semilogx(w,EXACTPHASE,w,APPROXPHASE1,w,APPROXPHASE2,w,APPROXPHASE3,w,APPRO
XPHASE4) 
title('Phase Comparison Plots'); 
xlabel('Normalized Frequency rad/sec'); 
ylabel('Degrees'); 
end 
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�INVFREQS� MODAL  APPROXIMATION 
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The following Matlab® program plots the frequency response of several modal 

approximations of a given fluid line using the �invfreqs� command.   

 
function system = MODALDISS 
warning off 
syms s 
 
%%%%%%%%%%%%%%%%%%%% Model Properties %%%%%%%%%%%%%%%%%%%% 
p=870; 
Vis=4.6e-5; 
Bf=1.21e9; 
Bl=1.73e7;  
L=2; 
d=0.01; 
r=d/2; 
V=L*pi*r^2; 
Be = (Bf * Bl)/(Bf + Bl);  
c=sqrt(Be/p); 
Dn=(Vis*L/(c*r^2)); 
sigma=1; 
v=1; 
 
%%%%%%%%%% Number of Modal Approximations to Plot %%%%%%%%%%%%%%%%%%% 
ModeNum=5 
 
%%%%%%%%%%%%%%%%%%%%%%%% Exact %%%%%%%%%%%%%%%%%%%%%%% 
 
B=2*besselj(1,j*sqrt((s*(r^2)/Vis)))/(j*sqrt((s*(r^2)/Vis))*besselj(0,j*sqrt((s*(r^2)/Vis)))); 
Bsigma=2*besselj(1,j*sqrt(sigma*(s*(r^2)/Vis)))/(j*sqrt(sigma*(s*(r^2)/Vis))*besselj(0,j*sqrt(sigma*(s*
(r^2)/Vis)))); 
Z0=(p*c)/(pi*r^2); 
Z=Z0/(sqrt(1-B)*sqrt(1+(v-1)*Bsigma)); 
G=Dn*(s*(r^2)/Vis)*sqrt((1+(v-1)*Bsigma)/(1-B)); 
w=[1:10000]; 
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C11=cosh(G)/(Z*sinh(G)); 
C21=1/(Z*sinh(G)); 
Sol=solve('QIN=C11-C21*POUT','0=C21-C11*POUT','QIN,POUT'); 
TF=Sol.POUT; 
TF=subs(TF,'C11',C11); 
TF=subs(TF,'C21',C21); 
TFfreqs=subs(TF,'s',j*w); 
TFmag=20*log10(abs(TFfreqs)); 
TFphase=angle(TFfreqs)*180/pi; 
 
%%%%%%%%%%%%%%%%%%%Modal Frequency Range%%%%%%%%%%%%%%%%%%%% 
a=0; 
for m=1; 
for k=1:9990; 
if TFmag(k+1) >= TFmag(k); 
if TFmag(k+1) >= TFmag(k+2); 
Modefreqs(m)= w(k+1); 
m=m+1; 
end; 
end; 
a=a+1; 
end 
end 
 
%%%%%%%%%%%%%%%%%%%% Approximation Plots %%%%%%%%%%%%%%%%%%%% 
 
g = figure('Name','Magnitude Plot'); 
for m=1:ModeNum; 
Modefreqs(m);     
wa=[1:Modefreqs(m)]; 
TFfreqs=subs(TF,'s',j*wa); 
wt=ones(size(wa));    
[Num,Den]=invfreqs(TFfreqs,wa,(2*m-1),(2*m),wt,100); 
TFA=tf(Num,Den); 
Gain=dcgain(TFA); 
TFA=TFA/Gain; 
[Num,Den] = tfdata(TFA,'v'); 
TFAfreqs=freqs(Num,Den,w); 
TFAmag=20*log10(abs(TFAfreqs)); 
semilogx(w,TFmag,'b',w,TFAmag,'r'); 
hold on 
title('Magnitude Plot'); 
xlabel('Frequency rad/sec'); 
ylabel('Decibels'); 
end 
 
hold off 
 
h = figure('Name','Phase Plot'); 
for m=1:5; 
Modefreqs(m);     
wa=[1:Modefreqs(m)]; 
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TFfreqs=subs(TF,'s',j*wa); 
wt=ones(size(wa));    
[Num,Den]=invfreqs(TFfreqs,wa,(2*m-1),(2*m),wt,100); 
TFA=tf(Num,Den); 
Gain=dcgain(TFA); 
TFA=TFA/Gain; 
[Num,Den] = tfdata(TFA,'v'); 
TFAfreqs=freqs(Num,Den,w); 
TFAphase=angle(TFAfreqs)*180/pi; 
semilogx(w,TFphase,'b',w,TFAphase,'r'); 
hold on 
title('Phase Plot'); 
xlabel('Frequency rad/sec'); 
ylabel('Degrees'); 
end 
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