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ABSTRACT 

 

A FIRST-PRINCIPLES STUDY ON 

THE ENHANCEMENT OF BERYLLIUM DOPING 

IN GALLIUM NITRIDE 

 

Publication No. ______ 
 

Xiao Wang, M. S. 
 

The University of Texas at Arlington, 2005 
 
Supervising Professor:  Qiming Zhang 

The excellent physical and electrical properties of Gallium Nitride (GaN) have 

made it a good candidate in light-emitting diodes and UV detecting semiconductor 

materials. However, GaN’s p-type doping has long been a difficulty. Although 

beryllium (Be) substitutials arise as shallow acceptors in GaN, the concentration of Be 

substitutials, and hence the population of holes, is not high enough. In the present work, 

formation energies of Be point defects and complex defects are calculated and 

compared by first-principles density functional theory (DFT) method. We find self-

compensation is easily formed when Be substitutials and Be interstitials co-exist in 

GaN, which is responsible for the low solubility of Be p-type doping. We have 

examined the idea using oxygen as a co-doping element to overcome the self-
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compensation. The formation of oxygen involved complex in GaN has been studied 

energetically. The charge states have also been considered. The results are compared 

with the formation of Be-only complexes. 
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CHAPTER 1 

INTRODUCTION 

Materials fall into three categories: conductors, insulators and semiconductors. 

A useful way to visualize the difference between conductors, insulators and 

semiconductors is to plot the allowed energy for electrons in the materials. Instead of 

having discrete energy levels for electrons in the case of free atoms, the allowed energy 

states form energy bands. Crucial to the conduction process is whether or not there are 

electrons in the conduction band. In insulators, electrons fully fill in the valence band 

and are separated by a large gap from the conduction band. In conductors, such as 

metals, the valence band overlaps with the conductor band, and both bands are partially 

filled. A semiconductor is basically an insulator except that there is a small enough gap 

between the valence and conduction bands that thermal or other excitations can bridge 

the gaps. With such a small gap, the presence of a small percentage of a shallow-level 

doping material can increase conductivity dramatically.  

An important physical quantity in the band theory is the Fermi level, the top of 

the available electron energy level at low temperatures. The position of the Fermi level 

with the relation to the conduction band is a crucial factor in determining electrical 

properties.  

The properties of materials are often controlled by defects and impurities. This 

is particularly true in the case of semiconductors, where the incorporation of impurities 
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in different concentrations determines the electrical properties. There are two types of 

impurity doping in semiconductors. One is called n-type doping if the addition of an 

impurity element results in a large number of free electrons available for conduction. A 

semiconductor can be also made p-type by doping it with a different element so that 

there are a large number of positive charge carriers, called holes, available for 

conduction. The holes actually correspond to vacancies or deficiencies of electrons in 

the bonds holding the atoms in the crystal lattice. Imagine that a p-type block of 

semiconductor can be placed in perfect contact with an n-type block. Free electrons 

from n-type region will diffuse across the junction to the p-type side where they will 

combine with some of the many holes in the p-type material. Similarly, holes will 

diffuse across the junction in the opposite direction and recombine. In practice, a p-n 

junction is formed within a single crystal rather than simply joining two pieces together. 

Electrical contacts on either side of the crystal enable a connection to an external circuit. 

The resulting device is called a junction diode. In a transistor, a basic element in 

integrated circuits, two p-n junctions exist. So it is crucial for a semiconductor material 

to have both p-type and n-type dopants.  

Semiconductors can be divided into two different types: elemental 

semiconductors and compound semiconductors. Elemental semiconductors are mainly 

from group IV, such as silicon (Si), germanium (Ge), carbon (C), etc. Si and Ge are the 

most frequently used elemental semiconductors. They have been widely used for 

various integrated circuits in everyday life. In addition to the pure elemental 

semiconductors, many alloys and compounds are semiconductors. These may be formed 
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from group III and group V elements (III-V semiconductor), such as GaN, GaAs, and 

from group II and group VI (II-VI semiconductor), such as ZnSe. The particular 

advantage of compounds is that they provide the device engineer with a wide range of 

energy gaps and mobilities, so that materials are available with properties which match 

exactly specific requirements.  

As mentioned above, GaN is one of the III-V compound semiconductors. 

Structurally, GaN has two polytypes: wurtzite 2H polytype, where the molecules follow 

the hcp ABABAB… stacking sequence, and the zinc-blende 3C polytype, where the 

molecules follow the fcc ABCABC…stacking sequence. GaN is a direct and wide band 

gap (Eg =3.4eV) semiconductor. In the past decade the excellent physical and electrical 

properties of GaN have made it a good candidate in high-temperature, high-power and 

high-frequency applications. GaN-based semiconductors have emerged as a very 

important materials system in light emission in the green, blue, and UV regions of the 

spectrum, which were previously not accessible with solid-state light emitters. Some 

high-quality heterostructures are also applied in heterojunction field-effect transistors 

(HFETs), heterojunction bipolar transistors and light emitting diodes.1

GaN-based LEDs (light-emitting diodes) are semiconductor device that emit 

visible light when electricity is passed through them. The GaN LEDs typically comprise 

two thin layers of gallium nitride grown on sapphire or silicon carbide (SiC) substrates. 

The emitted light is monochromatic and the main benefits of this technology include: 

low power requirement, high efficiency and long life. They are mainly used in 
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manufacturing of displays, signs and traffic signals, automotive lightning, domestic 

lightning and medical sensors. 

For UV detection and imaging, GaN photocathods are stable of period over 1 

year and are robust enough to be re-activated many times. It’s reported that it is a 

simple, quick, sensing and promising method to measure oil concentration in water in 

accordance with different UV light absorption between oil and water using GaN UV 

detector.2

It is mentioned earlier that the fabrication of p-type and n-type doped layers 

underlies the design of electronic and optoelectronic devices. GaN’s n-type doping has 

never been a difficulty, and electron concentrations exceeding 1019 cm-3 can easily be 

achieved. P-type doing, however, has long been a difficulty. In 1989 Amano et al.3

observed that Mg-doped GaN grown by MOCVD (metal-organic chemical vapor 

deposition) was highly resistive after growth, but could be activated by low-energy 

electron beam irradiation. Nakamura et al. subsequently showed that the Mg activation 

can also be achieved by thermal annealing at 700 under N2 ambient.4 Nakamura 

further observed that the process was reversible, with p-type GaN reverting to semi-

insulating when annealed in a NH3 ambient. Since then, hole concentrations on the 

order of 1018 cm-3 have been achieved and used in devices. However, the limited 

conductivity of p-type doped layers constitutes an impediment for progress in device 

applications. 

Beryllium (Be) is one of the more promising acceptor impurities for GaN, 

exhibiting higher solubility and lower ionization energy than Mg, the most commonly 
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used p-type dopant.5,6 The ionization energy for Be reported is 170 meV. However, the 

solubility of Be p-type doping is even lower than Mg in GaN, which is only 1017 cm-3 

under N-rich condition .7 The cause of the low Be p-type doping is most likely the self-

compensation. It will be investigated in this thesis. Meanwhile, oxygen arises as a stable 

donor in GaN. A recent experiment studying Be and O coimplantation showed the 

improvement of p-type doping characteristics. It motivates us to study theoretically the 

co-dope oxygen together with beryllium to enhance the solubility of Be p-type dopants.  

First-principles calculations based on density-function-theory reaching high 

level of accuracy in treating increasingly larger systems at the microscopic level will be 

used. It obtains detailed information about atomic structure (including atomic 

relaxations), wave functions, charge densities, formation energies, etc. All of these data 

can be used to elucidate the properties of Be-related defects including Be point defects 

and Be complex defects. The formation energy of defects will play a key role in the 

doping study. The energetics of charge states will be also addressed. The comparison of 

formation energies of those defects will explain the low solubility of Be p-type doping 

in GaN. Then formation energy of defect complexes arisen from oxygen co-doping will 

be calculated to compare with Be-only complexes.  

The rest of the thesis is organized as follows. In chapter 2, theoretical 

background will be introduced. Chapter 3 will be devoted to computational details and 

supercell of GaN. Chapter 4 and 5 will discuss Be point defects and Be complexes. 

Then oxygen co-doping is involved in chapter 6, and it is found not work well as we 

speculated. At last conclusion will be presented in chapter 7. 
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CHAPTER 2 

THEORY 

2.1 Density Function Theory and Local Density Approximation

Density-function theory (DFT)8 calculations based on peudopotentials, a plane-

wave basis set and a supercell geometry are now one of the major methods for 

performing first-principles studies of defects in semiconductors. DFT in the local density 

approximation (LDA)8 allows a description of the many-body electronic ground state in 

terms of single-particle equations and an effective potential. The effective potential 

consists of the ionic potential due to the atomic cores, the Hartree potential describing the 

electrostatic electron-electron interaction, and the exchange-correlation potential that 

takes into account the many-body effects. This approach has proven to describe with high 

accuracy such quantities as atomic geometry, electronic structures, formation energies, 

etc. For an isolated N-electron atomic or molecular system under the Born-Oppenheimer 

nonrelativistic approximation, this is given by 

 Ψ=Ψ EĤ (2.1.1) 

where E is the electronic energy, ( )nrrr ,......, 21Ψ=Ψ is the electronic wave function and 

Ĥ is the Hamiltonian operator in atomic unit 

 ( ) ∑∑∑
≠==

++


 ∇−=
N

ji ij

N

i
i

N

i
i rrvH 1

2
1ˆ

11

2 (2.1.2) 
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where          ( ) ∑
= −−=

M

I Ii

I
i Rr

Zrv
1

(2.1.3) 

is the “external” potential due to M nuclei of charges sZ I ' .  

Thus, for an N-electron system, N and )(rv determine all properties for the 

ground state.  

In place of N and )(rv , the first Hohenberg-Kohn theorem legitimizes the use of 

electron density )(rρ as the basic variable.9 It states that, the external potential )(rv is 

determined, with a trivial additive constant, by the electron density )(rρ . Since ρ
determines the number of electrons by Ndrr =∫ )(ρ , it follows that )(rρ also 

determines the ground-state wave function Ψ and all other electronic properties of the 

system, for example the kinetic energy [ ]ρT , the potential energy [ ]ρV and the total 

energy [ ]ρE . Then we have, for the total energy 

[ ] [ ] [ ] [ ] [ ]ρρρρρρ HKeene FdrrvrVVTE +=++= ∫ )()( (2.1.4) 

where ][][][ ρρρ eeHK VTF += is a universal functional of )(rρ in a sense that [ ]ρHKF is 

defined independently of the external potential )(rv . Note that )(rv is not restricted to 

Coulomb potentials. 

The second Hohenberg-Kohn theorem provides the energy variational principle.9

It states that for a trial density )(~ rρ , such that ( ) 0~ ≥rρ and ∫ = Ndrr)(~ρ ,

[ ]ρ~0 EE ≤ (2.1.5) 
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where [ ]ρ~E is the energy functional of (2.1.4). This means the ground-state electron 

density is the density that minimizes [ ]ρE .

Assuming differentiability of [ ]ρE , the variational principle (2.1.5) plus the 

normalization constraint requires that the ground-state density satisfies the stationary 

principle 

[ ] [ ]{ } 0)( =−− ∫ NdrrE ρµρδ (2.1.6) 

which gives the Euler-Lagrange equation 

 [ ] [ ]
)()()( r

Frvr
E HK

δρ
ρδ

δρ
ρδµ +== . (2.1.7) 

The quantity µ is the chemical potential. 

Eq. (2.1.7) is the basic working equation of density-functional theory.10 If we 

know the exact [ ]ρHKF , eq. (2.1.6) would be an exact equation for the ground-state 

electron density. Once given an explicit form (approximate or accurate) of [ ]ρHKF , we 

can apply this method to any system. However, accurate calculational implementations of 

the density-functional theory are far from easy to achieve, because of the unfortunate (but 

challenging) fact that the functional [ ]ρHKF is hard to come by in explicit forms. 

In a trade of simplicity for accuracy, Kohn and Sham (1965) invented an 

ingenious indirect approach to calculate the kinetic-energy functional [ ]ρT , the Kohn-

Sham (KS) equation.9 They thereby turned density-functional theory into a practical tool 

for rigorous calculations. 
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In analogy with the Hohenberg-Kohn’s definition of the universal functional 

[ ]ρHKF , Kohn and Sham invoked a corresponding noninteracting reference system, with 

the Hamiltonian 

)(2
1ˆ 2

i
N

i
S

N

i
iS rvH ∑∑ +


 ∇−= (2.1.8) 

in which there are no electron-electron repulsion terms. Instead, the noninteracting 

electrons are moving in an effective external potential )(rveff , and the ground-state 

electron density is exactly ρ . In this system there will be an exact determinantal ground-

state N-electron wave function 

[ ]Ns N ψψψ .......det!
1

21=Ψ (2.1.9) 

where the si 'ψ are the N lowest eigenstates of the one-electron Hamiltonian sĥ :

iiisiS rvh ψεψψ =


 +∇−= )(2
1ˆ 2 (2.1.10) 

and setting 

 ∑
=

=
N

i
i rr

1

2)()( ψρ (2.1.11) 

The kinetic energy is [ ]ρsT , given by 

[ ] ∑ ∇−=
N

i
iisT ψψρ 2

2
1 (2.1.12) 

The quantity [ ]ρsT in eq. (2.1.12), though uniquely defined for any density, is still 

not the exact kinetic energy functional [ ]ρT specified in eq. (2.1.4). The sparkling idea of 
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Kohn and Sham is to set up a problem of interest in such a way that [ ]ρsT is its kinetic-

energy component, exactly. Then the universal functional [ ]ρHKF can be rewritten as:   
[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ] [ ]ρρρ

ρρρρρρ
ρρρ

xcs

eess

eeHK

EJT
JVTTJT

VTF

++=
−+−++=

+=

(2.1.13) 
where [ ]ρJ is the classical Coulomb interaction energy, 

[ ] ''
)'()(

2
1 drdrrr

rrJ ∫ −= ρρρ (2.1.14) 

and the defined quantity [ ] [ ] [ ] [ ] [ ]ρρρρρ JVTTE eesxc −+−≡ is called the exchange-

correlation energy, which contains the difference between T and sT , presumably fairly 

small, and the nonclassical part of [ ]ρeeV .

The Euler equation now turns to 

[ ]
)()( r

Trv s
eff δρ

ρδµ += (2.1.15) 

where the KS effective potential is defined by 

[ ] [ ]

)(''
)'()(

)()()()(

rvdrrr
rrv

r
E

r
Jrvrv

xc

xc
eff

+−+=

++=

∫ ρ
δρ

ρδ
δρ

ρδ
(2.1.16) 

with the exchange-correlation potential 

[ ]
)()( r

Erv xc
xc δρ

ρδ= . (2.1.17) 
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The Kohn-Sham treatment runs as follows. Eq. (2.1.15) with the constraint 

Ndrr =∫ )(ρ is precisely the same equation as one obtains from conventional density-

functional theory when one applies it to a system of noninteracting electrons moving in 

the external potential )()( rvrv effs = . Therefore, for a given )(rveff , one obtains the )(rρ

that satisfies eq. (2.1.15) simply by solving the N one-electron equations 

iiieff rv ψεψ =


 +∇− )(2
1 2 (2.1.18) 

and setting (2.1.11). Here, effv depends on )(rρ through eq. (2.1.17); hence eqs. (2.1.16), 

(2.1.18) and (2.1.11) must be solved self-consistently. One begins with a guessed )(rρ
such as a superposition of atomic charge densities, constructs )(rveff  from eq. (2.1.16), 

and then finds a new )(rρ from eqs. (2.1.18) and (2.1.11). The total energy can be 

computed directly from eq. (2.1.4) with eq. (2.1.13). 

Eqs. (2.1.16) through (2.1.18) plus (2.1.11) are the celebrated Kohn-Sham 

equations. Figure 2.1 shows the self-consistent calculation procedure. 

In practice, the exact functional [ ])(rvxc ρ is unknown, which makes it difficult to 

solve Kohn-Sham equations. Approximations are needed to be considered at this time. 

The simple, yet remarkably successful one is local density approximation (LDA).9 The 

local density approximation states that, for regions of a material where the charge density 

is slowly varying, the exchange correlation energy at that point can be considered the 
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same as that for a locally uniform electron gas of the same charge density )(rρ . In this 

case 

 ∫= drrrE xc
LDA
xc ))(()( ρερ (2.1.19) 

where the function ))(( rxc ρε is the exchange and correlation energy per electron of a 

uniform electron gas of density ρ and depends locally on the density at the position r

(see Figure 2.2).  

The spin polarized variation (local spin density approximation, or LSDA) replaces 

the spin averaged energy in the above equation with the energy density of a polarized 

homogenous electron gas.  

Although this approximation is extremely simple, it is surprisingly accurate, and 

forms the core of the most modern DFT codes. It even works reasonably well in systems 

where the charge density is rapidly varying. However it tends to underpredict atomic 

ground state energies and ionization energies, while overpredicting binding energies. It is 

also known to overly favor high spin state structures. For these reasons there have been 

attempts to move beyond the LDA, notably through the addition of gradient corrections 

to incorporate longer range gradient effects.  
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Figure 2.2 Schematic diagram showing the principle of the local density approximation, 
namely that for a given radial slab, dr, the local charge density can be considered to be 
n(r), the density of an equivalent uniform homogeneous electron gas. 

Guess )(0 rρ

Construct )(rveff from 
eq. (2.1.16) 

Solve K-S eqs. and 
construct new )(rρ

*
0 )()( rrr ερρ ≤−

Calculate Total Energy

)()(0 rr ρρ =

Yes No

* rε is the required accuracy and can be determined from experience. 

Figure 2.1 Self-consistent Calculation Flow Chart.  
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2.2 Generalized Gradient Approximation

The local density approximation, while the only moderate accuracy, has proven 

extremely reliable over three decades of use. However, LDA is not accurate enough for 

most chemical applications, which require the determination of energy differences with 

considerable precision. New, gradient-corrected functionals, of the form 

∫ ∇= drrrfE GGA
xc ))(),(( ρρ (2.2.1) 

have reduced LDA atomization energy errors by a factor of 5.11 Unfortunately a plethora 

of functions f are in use, each yielding different energies for the same system. These 

functionals may be divided into two broad classes: “locally based” fucntionals, whose 

construction starts from the uniform electron gas, 12-16 and semiempirical functionals,17,18 

which contain one or more parameters fitted to a particular finite system (or class of 

system). Such functionals are called generalized gradient approximation (GGA). The 

culmination of many years of theoretical work has produced the most modern locally 

based functional, Perdew-Wang 1991(PW91),15 which contains no empirical input, while 

Becke exchange17 and Lee-Yang-Parr (LYP) correlation18 (BLYP) are perhaps the most 

popular semiempirical formulas. 

From the preceding section, it should be clear that the reliability of LDA depends 

on more than just the particular choice of local energy per particle, ))(( rxc ρε . Any GGA 

that hopes to emulate this reliability should retain the good features of LDA. The simplest 

form, already suggested by Kohn and Sham, is to expand the energy in a gradient 
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expansion and include the 2))(( rρ∇ terms. However, this gradient expansion 

approximation (GEA) often does worse than LDA because the associated hole is not the 

hole of any physical system, and so violates some exact conditions. 

Perdew devised a simple procedure to overcome this difficulty, by removing all 

obviously unphysical contributions to the GEA hole. This defines a numerical GGA 

which retains the good features of LDA, while improving the description of the average 

hole (and therefore the energy) by using the gradient. PW91 is an analytic 

parameterization of this numerical functional, which incorporates several further exact 

conditions.  

Clearly, functionals that have not been constructed in this way should not be 

expected to be as reliable. However, at the exchange (or λ =0) level, the Becke 88 

functional is quantitatively very similar to numerical GGA, and so should be reasonably 

reliable. Such agreement can be ascribed to the universal nature of the functional, to 

Becke’s use of the correct ))(( rxc ρε , and to the relatively simple nature of exchange. 

However, LYP underestimates the correction energy of the uniform electron gas and so 

cannot be close to the results of numerical GGA. 

While retaining many of the best features of LDA, PW91 still incorporates some 

inhomogeneous effects. The problems include: (1) The derivation is long, and depends on 

a mass of detail; (2) The analytic function f, fitted to the numerical results of the real-

space cutoff, is complicated and nontransparent; (3) f is overparameterized; (4) The 
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parameters are not seamlessly joined19, leading to spurious wiggles in the exchange-

correlation potential )(rEXC δρδ for small20 and large21 dimensionless density gradient, 

which can bedevil the construction of GGA-based electron-ion pseudopotentials22-24; (5) 

Although the numerical GGA correlation energy functional behaves properly25 under 

Levy’s uniform scaling to the high-density limit26, its analytic parameterization (PW91) 

does not27; (6) Because PW91 reduces to the second-order gradient expansion for density 

variations that are either slowly varying or small, it describes the linear response of the 

density of a uniform electron gas less satisfactory than LDA28.

Anyway, in most of the cases for atoms, molecules, solids and surface, it has been 

found that Perdew-Wang generalized gradient approximation (PW91) works well. 

2.3 Pseudopotential Theory

2.3.1 The choice of a Basis set-Plane waves 

The Kohn-Sham orbitals iψ may be represented in terms of any complete basis 

set. Many choices are possible including atomic orbitals, Gaussians, Linearized 

Augmented Plane Wave Method (LAPW) and plane waves, the basis set we use in 

practice. The use of a plane wave (PW) basis set offers a number of advantages, including 

the simplicity of the basis functions, which makes no preconceptions regarding the form 

of solution, the absence of basis set superposition error, and the ability to efficiently 

calculate the forces of atoms. 
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In principle, the representation of an arbitrary orbital in terms of a PW basis set 

would require a continuous, and hence infinite, basis set. However, the imposition of 

periodic boundary conditions allows the use of Bloch’s Theorem whereby the iψ may be 

written 

e rGki
kiGki Gcr

rrrrr ⋅+Σ= )(
,, )()(ψ (2.3.1) 

where the sum is over reciprocal lattice vectors Gr , kr is a wave vector which lies within 

the first Brillion Zone, and )(, Gc ki
r is the expansion coefficient. Thus the basis set for a 

given kr will be discrete, although in principle it will still be infinite. In practice, due to 

the usual lack of high-frequency PW in a wavefunction, the set of plane waves is 

restricted to a sphere in reciprocal space most conveniently represented in terms of a cut-

off energy, Ecut, such that for all values of G used in the expansion  

cut
e

Em
Gk ≤+

2

22 rr
h

(2.3.2) 

Thus, the convergence of the calculation with respect to basis set may be ensured by 

variation of a single parameter, Ecut. This is the significant advantage over many other 

basis set choices, with which calculated properties often show extreme sensitivity to 

small change in basis set and no systematic scheme for convergence is available. 

The principle disadvantage of the use of a PW basis set is the number of basis 

functions required to accurately represent Kohn-Sham orbitals. This problem may be 

reduced by the use of pseudopotentials as described in the next section. 
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2.3.2 Pseudopotentials 

If all the electrons in a system were explicitly included when performing a 

calculation and Vext constructed from the full Coulombic potential of the nuclei, the 

computational cost would still be prohibitive using a plane wave basis set. The rapid 

oscillations of the wavefunctions near the nucleus, due to the very strong potential in the 

region and the orthogonality condition between different states, mean that a very large 

cut-off energy, and hence basis set, would be necessary. It is well known that most 

physical properties are dependent on the valence electrons to a much greater degree than 

that of the tightly bound core electrons. It is for the reason that the pseudopotential 

approximation is introduced. This approximation uses this fact to remove the core 

electrons and the strong nuclear potential and replace them with a weaker pseudopotential 

which acts on a set of pseudowavefunctions rather than the true valence wavefunctions. 

Thus, the core electron states may be assumed to be fixed and a pseudopotential may be 

constructed for each atomic species which takes into account the effects of the nucleus 

and core electrons. The pseudowavefunctions corresponding to this modified potential do 

not exhibit the rapid oscillations of the true wavefunctions, dramatically reducing the 

number of plane waves needed for their representation. The calculations then need only 

explicitly consider the valence electrons, offering a further saving in effort. 
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A pseudopotential is constructed such that it matches the true potential outside a 

given radius, designated the core radius. Similarly, each pseudowavefunction must match 

the true wavefunction beyond this distance. In addition, the charge densities obtained 

outside the core region must be identical to the true density. Thus, the integral of the 

squared amplitudes of the real and pseudowavefunctions over the core region must be 

identical. This condition is known as norm-conservation. 

The most general form for a non local pseudopotential is 

∑=
lm

lNL lmVlmV (2.3.3)   

where lm  are the spherical harmonics and lV is the pseudopotential for angular 

momentum l . Acting on the electronic wave function with this operator decomposes the 

wave function into spherical harmonics, each of which is then multiplied by the relevant 

pseudopotential lV .

Figure 2.3 Schematic illustration of all-electron (solid line) and pseudoelectron 
(dashed lines) potentials and their corresponding wave functions.  
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Pseudopotentials are usually constructed using an ab initio procedure. The ‘true’ 

wavefunctions are calculated for an isolated atom using an all-electron DFT approach. 

The resulting valence wavefunctions are then modified in the core region to remove the 

oscillations while obeying the norm-conservation constraint. The Schrodinger equation is 

then inverted to find the pesudopotenail which will reproduce the pseudowavefunctions. 

This procedure produces a pseudopotenial which may be transferred between widely 

varying systems. This contrasts with semi-empirical potentials which are constructed to 

describe a particular atomic environment and may not be simply transferred to different 

environment.  

2.3.3 Vanderbilt ultra soft pseudopotentials  

The utility of that approach by norm-conserving pseudopotentials to systems 

containing highly localized valence orbitals (e.g., for first-row and transition-metal 

atoms) has been limited, because of the difficulty of representing the pseudo-wave-

functions in a plane-wave basis. Moreover, the norm-conserving condition requires that 

the total pseudocharge inside the core match that of the all-electron (AE) wave function. 

Thus for many important cases, e.g., O 2p or Ni 3d orbitals, it has been proven impossible 

to construct a pseudo-wave-function which is much smoother than the AE one. 

Vanderbilt (1990) suggested a rather more radical approach to modifying 

pseudopotentials for use in plane-wave calculations29, in which a fully non-local 

pseudopotential is generated directly, as shown in Figure 2.3. It has the following 
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desirable properties: (1) It takes the form of a sum of a few separable terms. (2) It 

becomes local and vanishes outside the core. (3) The scattering properties and their 

energy derivatives are, by construction, correct at several energies spanning the range of 

occupied states, and the transferability can be systematically improved by increasing the 

number of such energies. (4) The norm-conserving constraint is removed so that the 

pseudo-wave-function can be constructed in such a way as to optimize smoothness. (5) 

The pseudopotential itself becomes involved in the self-consistent screening process, 

thereby improving transferability with respect to changes in charge configuration. 

 

Figure 2.4 Illustration of a pseudo wave function that is strongly peaked 
inside the core and the modified wave function in Vanderbilt’s scheme.
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2.4 Computational Method

2.4.1 Steepest Descent Method and Conjugate Gradient Method 

In the absence of any information about a function )(xF , the optimum direction 

to move from the point 1x in a multidimentional space to minimize the function is just 

the steepest-descent direction 1g given by 

1

1

xxx
Fg

=∂
∂−= . (2.4.1) 

It will be assumed that direction of steepest descent at the point 1x can be obtained 

from a negative of a gradient operator G acting on the vector 1x so that  
11 Gxg −= (2.4.2) 

To reduce the value of the function )(xF one should move from the point 1x in the 

steepest-descent direction 1g to the point 111 gbx + , where the function is a minimum. 

This can be done by sampling the function )(xF at a number of points along the line 
111 gbx + in order to determine the value of b at which )( 11 bgxF + is a minimum. It 

should be noted that this process minimizes only the value of the function along a 

particular line in the multidimentional space. To find the absolute minimum of the 

function )(xF , one must perform a series of such line minimizations. This process is 

illustrated schematically in the top panel of Figure 2.5.  

Although each iteration of the steepest-descents algorithm moves the trial vector 

towards the minimum of the function, there is no guarantee that the minimum will be 

reached in a finite number of iterations. In many cases a very large number of steepest-
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descents iterations are needed to get close to the minimum of the function. The method 

of steepest descents performs particularly poorly when the minimum of the function 

)(xF lies in a ling narrow valley such as the one illustrated in Figure 2.5. The reason 

for the poor performance in this case is that each steepest-descent vector is orthogonal 

to the steepest-descent vector of the last iteration and hence many steps of movement 

are usually required. If the initial steepest-descent vector does not lie at right angles to 

the axis of the valley, successive vectors will point across rather than along the valley, 

so that a large number of interations will be needed to move along the valley to the 

minimum of the function. This problem is overcome by using the conjugate-gradient 

(CG) technique. 

Assume we perform minimization along directions 1d and 2d . In order for 1d

and 2d to be independent of each other, one must require that 

01221 =⋅⋅=⋅⋅ dGddGd (2.4.3) 

where G is a gradient operator defined in eq. (2.4.2). This is the condition that the 

directions 1d and 2d be conjugate to each other and can be immediately generalized to 

0=⋅⋅ mn dGd for    mn ≠ (2.4.4) 

The conjugate-gradients technique provides a simple and effective procedure for 

implementation of such a minimization approach. In a two-dimensional problem, it is 

clear that one would need only two conjugate directions, and this would be sufficient to 

span the space and arrive at the minimum in just two steps, as shown at the bottom of 

Figure 2.5. It can be proven30 that, in a multidimentional space, directions generated in 

this manner are indeed conjugate. 
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Since conjugate-gradients technique provides an efficient method for locating 

the minimum of a general function, it should be a good technique for locating the 

minimum of the Kohn-Sham energy functional in the space spanned by plane waves. It 

is important, however, to implement the conjugate-gradients technique in such a way as 

to maximize computational speed, so that each iteration of the method is not 

significantly more expensive than alternative techniques, and to minimize the memory 

requirement so that calculations are not limited by the available memory. 

2.4.2 VASP Software Package

VASP (Vienna Ab-initio Simulation Package) is a package for performing ab-

initio quantum-mechanical molecular dynamics using pseudopotentials and a plane 

wave basis set. The approach implemented in VASP utilizes density-functional theory 

under the generalized gradient approximation for the exchange-correlation functional 

Figure 2.5 Schematic illustration of two methods of convergence to the 
center of an anisotropic harmonic potential. Top: steepest-descent (SD) 
method requires many steps to converge. Bottom: conjugate-gradient
(CG) method allows convergence in two steps. 
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and an exact evaluation of the instantaneous electronic ground state at a given atomic 

configuration using preconditioned band-by-band CG scheme. The interaction between 

ions and electrons is described using Vanderbilt ultra soft pseudopotentials. This 

technique allows a considerable reduction of the necessary number of plane-waves per 

atom for transition metals and first-row elements. Forces and stress can be easily 

calculated with VASP and used to relax atoms into their local minimum. For GGA 

functional, we use PW91 scheme, and we neglect the spin degree of freedom, as we are 

interested here in the general trend of formation energies. 
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CHAPTER 3 

COMPUTATIONAL DETAILS 

Modern first-principle calculations have had a major impact on the 

understanding of defects and impurities in semiconductors. With the capability to 

calculate total energies, it is possible to investigate the atomic structure of the defect, 

i.e., the stable position in the host lattice, the relaxation of the surrounding atoms, as 

well as the energy along a migration path. 31-33 

3.1 Periodic supercells

The most common approach for performing calculations for impurities and 

defects is supercell geometry. The defect is surrounded by a finite number of 

semiconductor atoms, and that whole structure is periodically repeated.34-36 This 

geometry allows the use of various techniques, such as fast Fourier Transformation 

(FFT) which require translational periodicity of the system. Within the supercell, 

relaxation of several shells of host atoms around the impurities or defect is always 

included. 

Density Function Theory (DFT) transforms a many-body problem into a single-

particle problem. In solids, a periodic condition requires that the single particle wave 

function be Bloch’s wave function )(rkψ , as kr is a good quantum number. Each 

electronic wave function can be expanded by a complete basis functions. Plane waves 

are a natural choice for the basis: 
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)(exp)(ψ (3.1) 

where Gr is the wave vector in reciprocal space satisfying periodic boundary conditions, 

and the sum, in principle, is over the whole Gr vectors. 

3.2 The k-point sampling

The first Brillouin zone can be mapped out by a continuous set of points, {k= 

(kx, ky, kz)}, throughout the region of reciprocal space (k-space). The occupied states at 

each k-point contribute to the electronic potential of bulk solid. Since the set {k} is 

dense, there are an infinite number of k-points in the Brillouin zone at which the 

wavefunctions must be calculated. Therefore if a continuum of wave basis sets were 

required, the basis set for any calculation would still be infinite, no matter how small 

the plane wave energy cut-off was chosen. 

While studying crystal properties, one often encounters Brillouin-zone integrals 

such as  

fkdkfI
BZ
∫ Ω==

3
3 )2()( πr , (3.1) 

where the integrand )(kf r is a periodic function of wave vector and Ω is the primitive 

cell volume. As shown in eq. 3.1, this integral can be expressed as the Brillouin-zone 

volume times the average value of )(kf r .37 One or a set of k points can be used to 

evaluate eq. (3.1). 
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3.2.1 Γ-point 

In practice, selecting only a primary cell can not provide enough information 

about the object we are focusing on, such as defects. Therefore, we need to choose a 

larger unit cell called supercell, which contains more atoms. Since the size of the cell is 

inversely proportional to the first Brillouin zone, enlarging the cell means shrinking the 

size of the first Brillouin zone. In practice, when the size of the cell approaches 

infinitely large, all k points will shrink into one special point, the Γ point ( kr =0). The Γ
point is significant from the computational point of view. Generally, the Bloch wave 

function )()( ruer i
rik

i
⋅=ψ is a complex function, but in the case of 0=kr (Γ point), it 

could be a real wave function, which can decrease the computation load greatly, which 

refers to computer memory and CPU time. Regarding how large a supercell is enough 

to adopt Γ- point sampling, a test is usually needed. 

3.2.2 Multiple k-point sampling 

For more accurate sampling, Brillouin-zone integrations (see eq. 3.1) are carried 

out in the present work using the Monkhorst-Pack scheme38 with a regular spaced mesh 

of l×m×n points in the reciprocal unit cell shifted from the origin ( to avoid picking up 

the Γ point as one of the sampling points). Symmetry reduces this set of pints in the 

irreducible part of the Brillouin zone. 

When we describe a defect in a supercell approach, defect-defect interactions 

between defects in neighboring supercells lead to dispersion of the defect-induced 

levels in the band gap. A truly isolated defect (corresponding to the limit of an infinitely 

large supercell) would lead to a flat, dispersionless level. The use of special points 
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actually provides a way of averaging over the defect band that leads to a result which 

should be very close to the level of the isolated defect. 

Γ-point sampling and multiple k-points sampling are both carried out in our 

calculation. We use Γ-point sampling to relax atoms since the interatomic forces are 

less sensitive to k-point. Then we use multi-k-point sampling to calculate the total 

energy of the relaxed systems. Details will be discussed in the following chapters. 

3.3 Structure and basic properties of GaN

Structurally, GaN has two polytypes39: wurtzite 2H polytype, where the 

molecules follow the hcp ABABAB…stacking sequence, and the zinc-blende 3C 

polytype, where the molecules follow the fcc ABCABC…stacking sequence, as shown 

respectively in fig. 3.1. Since the wurtzite structure is the equilibrium state of GaN, and 

most of the developed devices such as light-emitting diode (LED) and laser diode (LD) 

are fabricated from this polytype, the following study hereby concentrates on wurtzite 

GaN. The physical parameters of GaN can be found in many review papers and 

books.39-41 Some important parameters are listed in Table 3.1. 

Figure 3.1 Crystal Structure of Wurtzite GaN. The big black 
balls are Ga atoms, and the small balls are N atoms. 
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Table 3.1 The fundamental properties and parameters of GaN 

Crystal structure Wurtzite GaN 

Band-gap energy Eg(200K)=3.39eV Eg(1.6K)=3.50eV 

Temperature coefficient dEg/dT=-6.0 10-4eV/K 

Pressure coefficient dEg/dP=4.2 10-3eV/kbar 

Lattice constants a=3.189 c=5.185

Thermal expansion ∆a/a=2.59 10-6K ∆c/c=3.17 10-6K

Thermal conductivity Κ =1.3W/cm K 

Index of refraction n(1eV)=2.33 N(3.38eV)=2.67 

Melting temperature >1700

Breakdown field 3.3 106V/cm 

From the table, one can find that the most attractive feature is the wide energy 

band gap, which makes it suitable for visible light applications and high-temperature 

high-power electronics. 

3.4 Chemical potential

The chemical potentials of atoms in the bulk material GaN depend on the 

experimental growth conditions, which can be Ga-rich or N-rich (or anything in 

between). They should therefore be explicitly regarded as variable in our formalism. 

However, it is possible to place firm bounds on the chemical potentials, and these 

bounds will prove very useful in interpreting the results. 
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3.4.1 Chemical potential of Ga 

The Ga chemical potential, µGa, is subject to an upper bound: under extreme Ga-

rich conditions, µGa=µGa[bulk]. Indeed, in thermodynamic equilibrium the Ga chemical 

potential cannot be higher than the energy of bulk Ga metal. If we tried to push it 

higher, then we would no longer be growing GaN, but instead precipitating bulk Ga. 

This is indeed what is experimentally observed: MBE growth of GaN is often carried 

out under Ga-rich conditions, and precipitation of Ga on the growing surface can be 

explicitly observed.42,43 

The ordinary gallium crystal is orthorhombic with two axes of its 

pseudotetragonal unit almost identical in length. The assigned structure, containing 

eight atoms per cell, makes these atoms equivalent and places them in special positions 

of the space group Vh18 (Bmab): 

(8f) ± ( 0 , u, v;
2
1 , u+

2
1 , v ;

2
1 ,u, v+

2
1 ;0,u+

2
1 ,

2
1 -v) 

These coordinates apply to a unit prism with axes in the sequence: 

a0= 4.5107Å; b0= 4.5167Å; c0= 7.6448Å. 

The established parameters, u= 0.0785, v=0.1525, give an arrangement in which 

a gallium atom has seven neighbors. One of these is especially near, at 2.44Å, while the 

others are in three sets of two each, at distances between 2.71Å and 2.80Å. 

Our calculated cohesive energy of the 8-atom cell with 8×8×8 k-point sampling 

is -23.310eV. So µGa= -23.310/8= -2.914eV. 
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3.4.2 Chemical potential of N 

Similarly, extreme N-rich conditions place an upper limit on µN= µN [N2], i.e. the 

energy of N in a N2 molecule.  

If we assume Ga-rich condition, the chemical potential of N is calculated from 

the following expression at equilibium: 

 µGa +µN = Etot[GaN],          (3.2) 

where Etot[GaN] is the total energy of a two-atom unit of bulk GaN. The upper limit on 

µGa then results in a lower limit on µN

µNmin = Etot[GaN]- µGa[bulk] (3.3) 

Etot[GaN] is calculated from a 72-atom supercell divided by 36. Details will be shown in 

the following section. 

3.5 Total energy of a two-atom unit of bulk GaN

3.5.1 3d-electrons in Ga 

An analysis of GaN defect and bulk calculations showed that the Ga 3d 

electrons are not chemically inert but play an important role for the chemical 

bonding.32,33,44 3d electrons are located close to the Fermi level, p-d repulsion then 

cause the Fermi level to be pushed up. Thus, in general the Ga 3d electrons can not be 

simply treated as core electrons although they form a closed subshell in Gas tom. They 

have to be explicitly treated as valence electrons. The localized nature of the Ga 3d 

states significantly increases the computational demand, requiring an energy cutoff of at 

26 Ry in the plane-wave expansions. Our calculations showed that the cohesive energy 

of GaN was decreased nearly 5% when Ga 3d electrons are included. 
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3.5.2 Lattice constants 

Defects and impurity calculations should be carried out at the theoretical lattice 

constant, in order to avoid a spurious elastic interaction with defects or impurities in 

neighboring supercells. Well-converged calculations with good-quality 

pseudopotentials should produce lattice parameters within a few percent of the 

experimental value. We tried to vary both lattice constants a0 and c0 in order to optimize 

the crystal energy. Since the ratio of c0/a0 is fixed at 1.633, we only need to change a0.

Nine points are chosen with a0 changing in the range of 3.162Å to 3.220Å. 

 

Table 3.2 Total energy of 4-atom unit-cell of GaN with lattice constant changing 

a0( Å) c0( Å) Total energy(4 atoms) (eV) 

3.162 5.164 -24.483 

3.180 5.193 -24.507 

3.192 5.213 -24.517 

3.196 5.219 -24.521 

3.200 5.226 -24.523 

3.206 5.236 -24.521 

3.212 5.245 -24.520 

3.220 5.258 -24.517 

If we make a plot of all the 8 points, the lowest energy rises clearly. 
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The lowest energy corresponds to the point where a0 = 3.20Å. Compared with 

the experimental value 3.189 Å (from Table 3.1), the agreement is excellent. For the 

later calculations, we use this lattice constant. 

3.5.3 72-atom supercell 

To reduce the artificial interaction of defects due to the period boundary 

condition, we use a large supercell. To calculate the total energy of bulk GaN with more 

accuracy, we should use a large supercell. The 72-atom supercell is made up of 36 

molecules, i.e. 36 Ga atoms and 36 N atoms, in a hexagonal packing (wurtzite structure) 

GaN. The whole picture of the 72-atom GaN in the supercell is shown in Figure 3.3. 

 

Figure 3.2 Total energy of 4-atom unit-cell vs. a0
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Figure 3.3 72-atom supercell of GaN. The brown 
balls are Ga atoms, and the blue balls are N atoms. 

The bond length of Ga-N is 1.96Å. The total energy of 72-atom GaN is -

442.394eV with 4×4×4 k-point sampling. Thus Etot[GaN] mentioned in the previous 

section is -442.394/36= -12.289eV, and µNmin = Etot[GaN]- µGa[bulk]= -12.289-(-2.914)= 

-9.375eV under Ga-rich condition. 
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CHAPTER 4 

POINT DEFECTS IN GALLIUM NITRIDE 

Point defects are very common in crystals at finite temperature. There are three 

basic mechanisms for introducing a point defect in crystals, as shown in Figure 4.1. 

When a particle is missing at one or more lattice sites we get a vacancy. When a particle 

forces its way into a hole between lattice sites, we get an interstitial impurity. 

Substitutional impurities result from replacing the particle that should occupy a lattice 

site with a different particle. In our calculation, we only consider two types: 

substitutional impurities and interstitial impurities. 

The concentration (D) of a defect at thermal equilibrium temperature T, is 

approximately determined by 

 ],/exp[]/exp[ kTEkSgND ffs −= (4.0) 

Figure 4.1 Schematic representation of 
three mechanisms for point defects. 
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where g is the degeneracy factor representing the number of possible configurations for 

a defect on the same site, sN is the number of available sites that the defect can be 

incorporated on, k is the Boltzmann constant, and fS is the formation entropy. An ab 

initio calculation of the formation entropy is currently prohibitively expensive. In low 

temperature, or in case entropy contributions tend to cancel to some extentwhen 

comparing relatively free energies, the entropic contributions are small enough to be 

neglected. Hence D is approximately proportional to ]/exp[ kTE f− , and the lower the 

Ef, the easier the defect can be formed. 

4.1 Formation energies

4.1.1 Definition of formation energy 

The formation energy of a defect or impurity X in charge state q is defined as 

Ef[Xq]= Etot[Xq]-Etot[GaN, bulk]- niµi +q[µe+Ev],             (4.1) 

where Etot[X] is the total energy derived from a supercell calculation with one impurity 

or defect X in the cell, Etot[GaN, bulk] is the total energy for the equivalent supercell 

containing only perfect bulk GaN, ni indicates the number of atoms of type i (host atoms 

or impurity atoms) that have been added to (ni > 0) or removed from (ni < 0) the 

supercell when the defect or impurity is created, the µi are the corresponding chemical 

potentials of these species, and q represents the charge state. Chemical potentials are 

discussed in detail in Sec. 3.4. For now, it suffices to know that these chemical potentials 

represent the energy of the reservoirs with which atoms are being exchanged. µe is the 

Fermi level, referenced to the valence-band maximum (VBM) in the bulk. Due to the not 
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well defined zero point in the method, we need to explicitly put in the energy of the bulk 

VBM, Ev, in our expressions for formation energies of charged states. So our Fermi level 

zero is measured from VBM. 

4.1.2 Charge State 

In Sec 4.1.1, charge state is already mentioned. Most point defects and 

impurities can occur in multiple charge states by losing or acquiring extra electrons. The 

Fermi level works as a reservoir of electrons. Depending on the Fermi level position in 

the energy band, electrons will be transferred to (from) the defect to lower the Ef.

Formation energies have to be calculated for each relevant charge state. The stable 

charge state is the one which has the lowest formation energy for a given Fermi level. 

Equation (4.1) shows that the formation energy of charged defects takes into account 

that electrons are exchanged with the Fermi level. The Fermi level µe is referenced with 

respect to the VBM in the bulk, i.e., µe =0 at the top of the valence band (Ev) in bulk 

GaN. 

4.2 Neutral point defects in GaN

Gallium nitride, together with other wide gap nitrides, holds substantial promise 

for electronic applications.45 As grown undoped samples of GaN are almost always n 

type, with the concentration of conduction electrons ranging typically from 1017 to 1020 

cm-3. These values are much higher than concentrations of detected impurities.46,47 This 

strongly suggests that the doping is due to native defects. The residual donor was 

tentatively identified with the nitrogen vacancy.46-50 When Be is doped in GaN, it can 

act as an acceptor or a donor. In this chapter, we present the results of formation energy 
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calculations for a number of Be-related centers in GaN. Firstly, all the neutral Be-

dopings are studied and evaluated. 

4.2.1 Be substitutials on Ga-site (BeGa)

Be is a IIA element, and Ga is a IIIA element. When Be substitutes Ga, it acts as 

an acceptor, thus it’s a p-type doping. The consensus is that BeGa is shallower than 

MgGa. For example, depending on the choice of parameters and approximations used, a 

previous calculation predicts the difference is about 10-15 meV.51 Another model that 

depends on the difference in electronegativity between a dopant and the atom it replaces 

predicts an even lower ionization energy for BeGa.52 

When a defect is introduced, the atoms in the supercell need to be relaxed 

according to their Hellmann-Feynman forces. We use Γ-point sampling in our 

calculation to relax atoms. The structure of BeGa is shown in Figure 4.2. 

With the 3-d graphical tool Viewerpro, we cannot see any appreciable difference 

between the two structures before relaxation and after relaxation because the 

substituting Be still stays at Ga-site. Before relaxation, the distance between 

Figure 4.2 Configuration of BeGa. The brown 
balls are Ga atoms, the blue balls are N atoms, 
and the green ball is Be atom. 
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neighboring Ga atom and N atom is 1.96 Å, while after relaxation the distance between 

substituting Be atom and N atom decreases to 1.85 Å. The decrease of the distance is 

due to the attraction between the positive hole BeGa and the orbiting electrons of N 

atom. The Ga-N distance at other positions remains almost the same at 1.96 Å. The 

formation energy is calculated according to eq. (4.1) as 0.70eV. The low formation 

energy makes Be a stable substitution. 

4.2.2 Be substitutials on N-site (BeN)

N is a VA element. When Be substitutes N, it obviously emerges as an acceptor 

as it does in BeGa, but not necessarily a shallow level. 

The structure of BeN is shown in Figure 4.3. 

This time the distance between neighboring Be and Ga is increased by 4%. That 

can be easily expected because Be and Ga are both metallic elements between which a 

metallic bond is weaker than a covalent bond of Ga-N. Thus the energy cost of 

relaxation can also be expected to be high. The formation energy is calculated as 

4.96eV. The formation energy is so high that BeN looks very unlikely to form. 

Figure 4.3 Configuration of BeN. The brown 
balls are Ga atoms, the blue balls are N atoms, 
and the green ball is Be atom. 
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4.2.3 Be interstitials on T-site (BeIt)

In the wurtzite structure, there are two distinct types of interstitial open spaces 

with high symmetry. T is the tetrahedral interstitial site (or cage site), as shown in 

Figure 4.4. This site is equidistant from four Ga and four N atoms. 

 

The configuration of Be interstitials at T-site before and after atomic relaxations 

are also shown with ViewerPro in Figure 4.5. 

[-1100] 

[0001]
Figure 4.4 Schematic representation of atomic interstitial positions 
in wurtzite GaN. The large circles represent Ga atoms, medium 
circles represent N atoms, and the red circle represents the 
interstitial T-site. 

Figure 4.5 Configuration of BeIt. The one before relaxation is on the 
left, and after relaxation is on the right. The brown balls are Ga 
atoms, the blue balls are N atoms, and the grassy ball is Be atom.
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Different from the BeGa and BeN configurations, there is a clear distortion of Ga-N bond 

near interstitial Be. The interstitial Be atom is also a little away from its original 

tetrahedral interstitial position. The two symmetrically distorted N atoms move toward 

the interstitial Be atom, and oppositely move away from neighboring Ga atoms. The 

distance measurement shows Ga-N distance increases from 1.96 Å to 2.08 Å, 2.09 Å 

and 2.12 Å. Be-Ga distance increases from 1.63 Å to 2.12 Å, while Be-N distance 

increases a little from 1.63 Å to 1.69 Å. The formation energy is calculated as 2.87eV. 

But T-site interstitial is just one possible configuration, and we need to compare 

it with the other interstitial at O-site. 

4.2.4 Be interstitials on O-site (BeIo)

O-site is the octahedral interstitial site. Figure 4.6 shows a O-ring in wurtzite 

GaN. The interstitial Be lies in the center of the ring, i.e., in the center of the line 

connecting any two diagonal Ga-N atoms. The O-site is equidistant from six Ga and six 

N atoms. Both of the T-site and O-site are obvious candidates for local minima of an 

interstitial defect. The calculations reported in Refs. J. Neugebauer (1994)53 and J. 

Neugebauer (1996)54 found the octahedral site to be most stable for Ga interstitial, while 

Figure 4.6 Schematic representation of atomic interstitial 
positions in wurtzite GaN. The large circles represent Ga 
atoms, the medium circles represent N atoms. The circle in 
the center is on O-site.
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it was argued in Ref. P. Boguslawski (1995)55 that the tetrahedral site was slightly more 

stable than the O site. Our calculations show that it is octahedral site which is more 

stable. 

There is no distinct difference between structures before relaxation and after 

relaxation for this configuration, so we only show the picture before relaxation in Figure 

4.7. With the measurements of distances of Ga-N, Be-Ga and Be-N pairs, we find the 

distortion also exists as in T-site. However, the interstitial Be atom still remains in the 

O-ring. The formation energy is calculated as 2.06eV. 

.

Compared with the result calculated on T-site, the formation energy on O-site is 

substantially lowered. Obviously we are going to take O-site for later more complicate 

doping complexes. 

4.3 Charge state of point defects in GaN

Defect states usually lie in the band gap. Depending on the Fermi level, which 

serves as an electron reservoir, a defect may gain or lose electron(s) to lower the 

formation energy. Therefore, in the defects we discussed earlier, charge states are 

introduced to make the structures more stable. One more electron is added in BeGa-

Figure 4.7 Configuration of BeIo. The brown balls are Ga atoms, the 
blue balls are N atoms, and the grassy ball is Be atom. 
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substitutial system, and two electrons are removed from Be-interstitial system. We 

didn’t consider BeN-substitutial system for charge states because its formation energy in 

neutral state is much higher than other doping configurations. 

The formation energies are calculated and listed in Table 4.1: 

Combined with neutral states, we plot all the formation energies as a function of 

µe as in eq. (4.1). Since the interstitial-O-site is more representative, only O-site is taken 

for plotting. 

 

BeGa

Figure 4.8 Formation energy Ef(q) plotted as a function of 
µe for BeGa, BeGa-, BeIo, BeIo+ and BeIo2+ in GaN under Ga-
rich condition. 

BeIo
2+

BeIo+

BeIo 

BeGa-
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4.4 Γ-point vs. multiple-k-point calculations

In the first-principles calculation, the atomic force is usually less sensitive to k-

point sampling. But energy may be sensitive, depending on the system. In our GaN 

supercell, this is true. To make the formation energy more accurate, we did the 

calculations in Sec. 4.2 again with 2×2×2 k-point sampling. Since the interatomic forces 

are less sensitive to k-point, we use the Γ-relaxed atomic positions for multi-k 

calculation. Table 4.1 shows the change of the two with different k point set. 

Table 4.1 Comparison of formation energy Ef (q) under Ga-rich condition 
 

system  Γ-point 2×2×2 k-point 

BeGa 0.70    0.92 

BeGa- 0.78-µe 0.80-µe

BeIt 2.87    5.03 

BeIt+ 1.10+µe 2.08+µe

BeIt++ -0.60+2µe -0.53+2µe

BeIo 2.61    5.05 

BeIo+ 0.82+µe 1.86+µe

BeIo++ -0.87+2µe -0.78+2µe

More accurate multiple-k-point calculation indicates clearly that the BeGa- and 

BeIo2+ are the most preferred Be configurations at p-type GaN (µe =0). 2×2×2 sampling 

changed Ef’s significantly in some configurations. Further test on 4×4×4 shows only a 

few percentage change from 2×2×2’s results, so 2×2×2 sampling will be good enough. 
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4.5 Nitrogen-rich condition

As mentioned in chapter 3, the chemical potentials depend on the experimental 

growth conditions, which can be Ga-rich or N-rich. Ga-rich condition is discussed in 

previous sections, and N-rich condition is needed to be evaluated equally. 

Extreme N-rich conditions place an upper limit on µN given by µN=µN[N2]= -

8.246eV, i.e. the energy of N in a N2 molecule. µGamin= Etot[GaN]- µN[N2]= -4.049eV. 

All the formation energies have to be recalculated when the chemical potentials are 

changed.  

Table 4.2 Comparison of formation energy Ef (q) under N-rich condition 

system  Γ-point 2×2×2 k-point 

BeGa -0.44      -0.02 

BeGa- -0.36-µe -0.13-µe

BeIt 2.88       5.23 

BeIt+ 1.10+µe 2.28+µe

BeIt++ -0.60+2µe -0.33+2µe

BeIo 2.06        4.78 

BeIo+ 0.29+µe 1.62+µe

BeIo++ -1.39+2µe -1.01+2µe

The formation energy order under N-rich condition is almost consistent with that 

in Ga-rich condition. BeGa- and BeIo2+ configurations are more stable than under Ga-rich 

condition. The complex doping of BeGa and BeIo are evaluated in the next chapter. 
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CHAPTER 5 

BERYLLIUM PAIR DOPING AND TRIPLET DOPING 

BeGa acts as a shallow acceptor impurity in GaN and the theoretical value of its 

ionization energy is as low as 0.06eV in wurtzite GaN7, so that it is a major p-type 

impurity in GaN. Experiments reported that light Be+ ions can be implanted deeper into 

GaN for a given implantation energy, and they cause less damage in the lattice than 

Mg+ ions.5 However, it was also reported that high concentration of BeGa- were difficult 

to achieve in GaN. To understand the cause of the low concentration of Be in GaN, we 

have focused on the self-compensation of BeGa-and BeIo2+. If the formation energies of 

pair doping and triplet doping are lower than that of BeGa-, the self-compensation should 

be in charge of low solubility of BeGa-.

5.1 Beryllium pair doping

It has been proposed that an interstitial BeI migrate to BeGa and form (Be-Be)Ga 

donors.56 In chapter 4, BeGa- performs as a stable acceptor. Meanwhile, BeI performs as 

a donor matching with BeGa-. They can compensate each other to form pairs in GaN. 

Since Be interstitial T-site provides slightly higher formation energy, it is dropped for 

later calculations and only O-site is taken for consideration of high concentration 

doping. Considering the valence electrons, the favorable charge state should be (BeIo-

BeGa+). To find the most stable positions of the two Be atoms, three kinds of 
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configurations for (BeGa-BeIo+ )are taken into account, i.e., far, middle and near, which 

are defined by their interatomic distance as listed in Table 5.1. 

5.1.1 Comparison of formation energies 

Table 5.1 Formation energies for pair doping (BeIo-BeGa+) with different seperations 

 system Be-Be distance 2×2×2 points (eV) 
BeGa-BeIo+ (far) 6.85 Å     0.56+µe

BeGa-BeIo+ (middle) 4.91 Å     0.23+µe

BeGa-BeIo+ (near) 1.90 Å     -0.51+µe

As we described in chapter 4, to make the calculation more accurate, we use the 

Γ-point sampling to relax the original atomic positions and the 2×2×2 k-point sampling 

to calculate the formation energy. Table 5.1 shows the formation energies of a 

positively charged Be-pair at three different separations. Each configuration is stable. 

Obviously the formation energy of the configuration with the nearest separation is the 

lowest, and hence this configuration is the most stable one.  

After measuring the Ga-N, Be-Be, and Be-N distances after relaxing, we find the 

interstitial Be atom almost stays at the same position as in the point defect BeIo 

Figure 5.1 Configuration of pair (BeGa-BeIo+) of the nearest 
atomic distance of Be-Be. The largest circles are Ga atoms, 
medium circles are N atoms, and the red circles are Be atoms.
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configuration, and the substitutional Be atom almost stays at the same position as the 

substituted Ga-site in the point defect BeGa configuration. It demonstrates the 

proposition mentioned at the beginning of this chapter that BeI compensate with BeGa 

and form (Be-Be)Ga donors. Compared with substitutial BeGa-, the formation energy of 

pair is lowered for 1.31eV with 2×2×2 k-point sampling, which means the pair is much 

more stable than BeGa-. The presence of self-compensation explains the failure to 

achieve p-type electrical activity in GaN doped with Be. 

5.2 Beryllium triplet doping

We further assume increasing Be’s concentration in GaN. A configuration with 

high Be concentration is a triplet, i.e., BeGa-BeIo-BeGa. It is like the combination of two 

configurations, BeGa- and (BeIo-BeGa+). The interstitial Be atom provides two valence 

electrons to the two acceptors BeGa-, and hence it’s a self-compensation system as well. 

The whole complex is electrically neutral. 

 

The structure of the triplet Be configuration looks similar as the pair Be. The 

distances between the interstitial Be atom and neighboring N atoms are increased a little 

bit than in pair doping. As the same reason in an isolated BeGa-, the positively charged 

Figure 5.2 Configuration of triplet BeGa-BeIo-BeGa. The 
largest circle represents Ga atom, the medium circles 
represent N atoms, and the red circles represent Be atoms. 



50

Be tends to attract neighboring N atoms because of Coulomb forces. The formation 

energies of Be pair and triplet are listed in Table 5.2. 

Table 5.2 Formation energies for Be pair and triplet doping under  
Ga-rich condition, in comparison with Be substitutional.  
 

system Ef (eV) 

[BeGa-] 0.80-µe

[BeIo-BeGa+] -0.51+µe

[BeGa-BeIo-BeGa] -0.35 

Obviously, the formation energy of Be complexes are much lower than Be 

isolated defect, which indicates self-compensation is likely to form. Neither of (BeIo-

BeGa+) or (BeGa-BeIo-BeGa) works as an acceptor, so high concentration of Be p-type 

doping is difficult to achieve. 

5.3 Nitrogen-rich condition

As we discussed in Chapter 4, the formation energies depend on the chemical 

potentials of atoms, namely environment. Formation energies are calculated when Ga-

rich condition is changed to N-rich condition. The chemical potential of N (µN) is 

derived from a N2 molecule,i.e., µN = Etot[N2]/2. The chemical potential of Ga is then 

calculated from µGa = µGaN- µN at equilibrium. Our calculated µN = -8.25 eV. Hence µGa 

= -4.05eV. The formation energies of Be pair and triplet under N-rich condition are 

listed in Table 5.3. 
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Table 5.3 Formation energies for Be pair and triplet doping under  
N-rich condition, compared with Be substitutional 

 
system 2×2×2 points (eV) 

[BeGa-] -0.13-µe

[BeIo-BeGa]+ -2.56+µe

[BeGa-BeIo-BeGa] -3.62 

The formation energies are much lower than under Ga-rich condition. This is 

understandable. Under N-rich conditions, we should expect a high concentration of Ga 

vacancy. That will provide more room for substitutional BeGa, leading to an easier 

formation of the triplet. 
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CHAPTER 6 

OXYGEN CO-DOPING IN GALLIUM NITRIDE 

6.1 Introduction of oxygen doping

6.1.1 Oxygen in semiconductors 

Oxygen is a common impurity in many semiconductor materials and has 

provided a longstanding challenge for investigators in trying to capture the relevant 

details of its versatile role. The extent of the oxygen incorporation depends strongly on 

the growth method and the materials involved. To our concern, oxygen can exist in 

kinds of nitride semiconductors.57 Czhochralski-grown GaAs is generally known to 

contain 1015 cm-3 oxygen.58 The degree of oxygen content in GaN is not yet well 

documented, but secondary ion-mass spectroscopy (SIMS) measurements indicate that 

GaN can contain oxygen at least in the range 1016 -1017 cm-3.59 AlN seems to present an 

extreme case in this respect, because of the possibility of several percent of oxygen 

incorporation.60 

6.1.2 Oxygen in GaN 

As introduced in the previous chapters, GaN tends to exhibit excessive 

concentration of electrons, so it’s difficult to make p-type doping. A team at the 

Lawrence Berkely National Laboratory (LBNL), Materials Science Division, recently 

pinpointed p-type doping for nitride-type alloys. By placing gallium nitride under very 

large hydrostatic pressure and studying it with Raman Spectroscopy the LBNL team 
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monitored the change in the free electron concentration as a function of pressure. Films 

containing residual oxygen impurities showed a rapid decrease in the free electron 

concentration above a certain pressure. Films doped with the shallow donor silicon did 

not show a decrease in electron concentration. The team determined that the residual 

oxygen in the gallium nitride is the source of the high concentration of electrons in p-

type regions. 

Some experimental physicist reported that the activation energy level of Be 

acceptor level was found to decrease from ~240 to ~163 meV by the implantation of 

additional O atom.5 The implantation of additional O atoms into GaN were expected to 

increase the probability that Be atoms will occupy a Ga-lattice site, which results in 

improvement of the p-type doping characteristics. 

6.1.3 Comparison with other donors in GaN 

Calculations for extrinsic donors have been performed for silicon, germanium, 

and oxygen.61-64 Silicon is the most widely used intentional n-type dopant, while oxygen 

is the most likely candidate for unintentional doping.  

Figure 6.1 summarizes the first-principles results for native defects and 

impurities relevant for n-type doping. The figure incorporates information from Refs. J. 

Neugebauer, 199654 and S. Limpijumnong, 200465. We can see that nitrogen vacancies 

(VN) have high energies in n-type GaN, and are thus unlikely to occur in significant 

concentrations. This finding allows us to conclude that nitrogen vacancies are not 

responsible for n-type conductivity in GaN. In contrast, Fig. 6.1 shows that oxygen and 

silicon have relatively low formation energies in n-type GaN, and can thus be readily 
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incorporated. Both oxygen and silicon form shallow donors in GaN. The slope of the 

lines in Fig 6.1 indicates the charge state of the defect or impurity: SiGa, ON, and VN all 

appear with slope +1, indicating they are single donors. Since Gallium-site is reserved 

for BeGa p-type doping, SiGa donor is out of our consideration for p-n junction diode.  

 

The suggestion that oxygen can be responsible for n-type conductivity in GaN 

was made by Seifert et al.66 and by Chung and Gershenzon67. Still, the prevailing 

conventional wisdom, attributing the n-type behavior to nitrogen vacancies, proved hard 

to overcome. After first-principles calculations showed that nitrogen vacancies could 

not explain the observed n-type conductivity,53 more detailed experiments were 

performed, which confirmed that unintentionally doped n-type GaN samples contained 

concentrations of extrinsic donors (particularly oxygen ) high enough to explain the 

µe (eV) 
Figure 6.1 Formation energy vs. Fermi energy for native defects (nitrogen 
and gallium vacancies, VN and VGa) and donors (substitutional oxygen and 
silicon) in GaN. The zero of Fermi energy is located at the top of the valence 
band. Ga-rich condition and equilibrium with Ga2O3 and Si3N4 are assumed.
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electron concentrations. The n-type conductivity of bulk GaN can therefore be 

attributed to unintentional oxygen. 

6.2 Oxygen substitutials nitrogen (ON) point defect

6.2.1 Chemical potential of oxygen 

In principle, µO could be associated with the elemental value (O2 dimer), as the 

chemical potential of N from N2 molecule,  

µO = Etot[O2]/2.      (6.1) 

O2 is a diatomic molecule with a total spin of 1. So the ground state is a triplet since 

2s+1=3. Our calculations show that the chemical potential of oxygen is decreased by 

10% from a singlet state, leading to µO = -4.91eV. 

However, in our 72-atom GaN supercell, when oxygen is introduced, under Ga-

rich condition, a stricter criterion for the oxygen chemical potential is set by the 

formation of the oxides with the group-III elements. That’s because the O and Ga 

reservoirs are coexistent in the system, so the upper limit of the chemical potential of 

O is determined by the formation of gallium oxide, i.e., Ga2O3. The most stringent 

condition may arise from the formation of Ga2O3. The structure of Ga2O3 is shown in 

figure 6.2. The beta-Ga2O3 is monoclinic with a tetramolecular cell having the 

dimensions: a0= 12.23 Å, b0 = 3.04 Å, c0 = 5.80 Å; ß =103. Etot[Ga2O3] is calculated as -

30.22 eV with 2×8×4 k-point sampling. Therefore µO, for the maximum oxygen 

concentration, has to be determined from the relation 

3µGa + 2µO = Etot[Ga2O3],      (6.2) 
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i.e., µO= (Etot[Ga2O3] - 3×µGa)/2= -8.13eV from this structure. It is greatly decreased 

from O2 gas. And this should be taken for later calculations of formation energies of the 

complexes with O atom involved. 

Under the Nitrogen-rich condition, Ga2O3 no longer exists since there is no 

excess Ga and µO is directly from O2 dimer.  

6.2.2 ON and ON+ point defect in GaN under Ga-rich condition 

Figure 6.1 shows that ON exists as a stable donor in GaN. ON and ON+ are 

associated with our calculations. The change of the structures of ON configuration is 

minor. O atom doesn’t move away from its original position. The only change is the O-

Ga distance. It increased from 1.96Å to 2.05Å. It can be easily understood that the ionic 

radius of O is a little bit larger than N. Another parameter Ga-O-Ga bond angle almost 

remains the same at 109 degrees. The configuration of ON before relaxation is shown in 

Figure 6.3. 

Figure 6.3 Configuration of ON before relaxation. The brown balls are Ga 
atoms, the blue balls are N atoms, and the red ball is O atom. 

Figure 6.2 Structure of Ga2O3 unit-cell. The red balls 
are O atoms, and the brown balls are Ga atoms. 
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By using the same definition of the symbols as in Chapter 3, the formation 

energy for ON is calculated from Ga-rich condition. 

 Ef[ON]= Etot[ON]-Etot[GaN, bulk]- µO+ µN (6.3) 

The result is -3.48 eV. It’s quite low and hence stable. The more favorable charge state 

ON+ for a wide range of Fermi level is also calculated from 

 Ef[ON+]= Etot[ON+]-Etot[GaN, bulk]- µO+ µN + q[µe+Ev] (6.4) 

as -5.24eV +µe. The total energy of the defect configuration is calculated with 2×2×2 k-

point sampling, using the optimized geometry from Γ- point sampling. 

Our calculation confirms that ON acts as a stable donor in GaN. It suggests that 

large oxygen concentrations are likely to occur in GaN, which is in agreement with the 

SIMS measurements revealing large O contamination.59 Our results therefore support 

ON+

ON

Figure 6.4 Formation energies vs. Fermi energy for the studied 
defects ON and ON+ in GaN. The band-gap value 3.4 eV is used to 
give the upper limit for the electron chemical potential. 
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the suggestion by Neugenauer and Van de Walle53 that ON is likely to act as one of the 

dominant donors in GaN, causing the unintentional n-type conductivity in as-grown 

samples, which is in agreement with the experimental observations.59, 67, 68 

6.3 Oxygen co-doping with Be under Ga-rich condition

Although our results show the high concentration of Be atoms due to the much 

lower formation energies of Be complexes in GaN, p-type doping is not achieved by 

them. The triplet is electrically neutral. And the pair acts as a donor.  To increase the p-

type doping, or the population of BeGa-, oxygen co-doping is worth to be investigated, 

since ON has high solubility in GaN. We expect oxygen would help to enhance the hole 

population of Be-doped GaN when O and Be are simultaneously incorporated. If only 

one BeGa- to combine with ON+, it forms a neutral complex and compensate each other.

But if two BeGa-’s combine with a ON+ to form a complex, it is still an acceptor in the 

configuration of (BeGa-- ON+- BeGa-). If the formation energy of this complex is lower 

than Be pair and triplet, co-doping should provide a solution to the self-compensation of 

Be in GaN. 

 

The formation energy of this configuration is calculated as  

Figure 6.5 Configuration of (BeGa-- ON+- BeGa-). The black 
circles are Ga atoms, the green circles are Be atoms lying on 
Ga-site, and the red ball is O atom lying on N-site. 
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 Ef[BeGa-- ON+- BeGa-] = Etot[BeGa-- ON+- BeGa-]- Etot[GaN, bulk]- 2µBe+ 2µGa- µO + µN-

q(Ev+µe),                                     (6.5) 

where Ef is 3.66eV -µe. At Ga-rich condition, assuming the formation of Ga2O3 at the 

surface, we obtain Ef[BeGa-- ON+- BeGa-] = 4.81eV –µe.

The formation energies are high at p-type doping (µe= 0), and are against to our 

speculation. To have a complete picture we have also looked into the nitrogen-rich 

condition in the next section. 

6.4 Oxygen co-doping with Be under N-rich condition

Under N-rich condition, when oxygen and Be are co-doped, both BeO and 

Be3N2 can exist. The chemical potential of Be and O are therefore adjusted from the 

equilibrium of those two chemicals. 

6.4.1 Structure of Be3N2

The atoms of beta-Be3N2 are in the bimolecular hexagonal unit with edge 

lengths a0 = 2.8413Å and c0 = 9.693 Å. Atoms are in the following positions of D6h4:

N(1):  0,0,0; 0,0,1/2 

N(2): ± (1/3, 2/3, 1/4) 

Figure 6.6 Structure of Be3N2 unit cell. The blue balls 
are N atoms and the grassy balls are Be atoms. 
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Be(1): ± (0,0,1/4) 

Be(2): ± (1/3, 2/3, u; 2/3, 1/3, u+1/2)   

with u=0.075. 

With 2×2×4 k-point sampling, the formation energy of Be3N2 is calculated as -

32.08eV. Then µN = Etot[N2]/2 = -8.25 eV, µBe = (Etot[Be3N2]-2×µN)/3= -5.19 eV. 

6.4.2 Structure of BeO 

The atoms of BeO are in the two-molecule hexagonal unit of the zincite, 

arranged in the positions of C6v4:

Be: 0,0,0; 1/3, 2/3, 1/2, 

 O: 0,0,u; 1/3, 2/3, u+1/2. 

With 2×2×2 k-point sampling, the formation energy of BeO is calculated as -

13.99eV. So µO = Etot[BeO]- µBe= -8.80 eV. 

6.4.3 The formation energy of BeGa-- ON+- BeGa-

The formation energy of configuration (BeGa-- ON+- BeGa-) is listed in Table 6.1. 

 

Figure 6.7 Structure of BeO unit cell. The grassy 
balls are Be atoms and the red balls are O atoms.
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Table 6.1 Comparison of formation energies 

system Ga-rich (eV) N-rich (eV) 

[BeGa-- ON+- BeGa-] 4.81-µe 1.92-µe

[BeGa-BeIo-BeGa] -0.35 -3.62 

[BeGa-BeIo+] -0.51+µe -2.56+µe

[BeGa-] 0.80-µe -0.13-µe

Generally, the formation energies under N-rich are lower than those under Ga-

rich condition. However, neither of the two conditions shows that oxygen co-doping 

could enhance BeGa p-type doping in GaN as speculated before.  

BeGa-- ON+- BeGa-

BeGa- BeGa-BeIo+

BeGa-BeIo-BeGa

Figure 6.8 Formation energy vs. µe under Ga-rich condition with µe
changing from 0 to 3.4 eV. 
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Figures 6.8 and 6.9 are two plots with formation energies changing as a function 

of µe, the Fermi level, under Ga-rich and N-rich conditions. The left side (µe=0) is the p-

type, and the right side (µe=3.4eV) is the n-type. The formation energy of configuration 

(BeGa-- ON+- BeGa-) is lower than that of (BeGa-BeIo+) only when µe is greater than 2.3 

eV under N-rich condition (or 2.7 eV under Ga-rich condition) above the valence band. 

And it can never be lower than the formation energy of (BeGa-BeIo-BeGa), which shows 

that oxygen co-doping cannot overcome the self-compensation problem in GaN. 

 

BeGa-- ON+- BeGa-

BeGa-BeIo+

BeGa-

BeGa-BeIo-BeGa

Figure 6.9 Formation energy vs. µe under N-rich condition with µe
changing from 0 to 3.4 eV. 
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CHAPTER 7 

CONCLUSION 

In conclusion, we have studied the whole problem of p-type doping in Gallium 

Nitride semiconductor. GaN is a base material for green-to-UV opto-electronics, and 

piezoelectric and high-power devices. For these applications, controllable doping is an 

obvious necessity. P-type doping has long been a problem.  

By means of density-functional-theory (DFT) calculations of total energies and 

forces, we show that BeGa- configuration is thermally stable in GaN compared with 

other point defect configurations like BeIo2+ and BeIt2+. However, self-compensation due 

to the formation of complexes with interstitial atoms is responsible for the poor 

solubility of Be as a p-type dopant. Our calculations show that the formation energies 

for pair doping (BeIo-BeGa+) and triplet doping (BeGa-BeIo-BeGa) are both lower than an 

isolated Be substitutial.  

Meanwhile, ON arises as a good donor in GaN. It motivates us to combine 

oxygen and beryllium doping together to enhance the solubility of the p-type dopants. 

Under Ga-rich condition, due to the presence of sufficient oxygen, a film of Ga2O3 can 

be formed on the surface of GaN, and the chemical potential of O is no longer 

determined by O2 but by Ga2O3. As a result, the formation energy of p-type (BeGa-- ON+-

BeGa-) is higher than those of Be complexes, which is against our original speculation. 

Similarly, under N-rich condition, Be incorporation is limited by the formations of 
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Be3N2 and BeO. The chemical potentials of Be and O are from the equilibrium of Be3N2

and BeO. They lead to higher formation energy of (BeGa-- ON+- BeGa-) as well, though a 

little bit lower than under Ga-rich condition. In summery, our finding of Be+O co-

doping in GaN is not working in the enhancement of p-type doping.  

For future works, we think this idea may be applied to other impurity than 

oxygen to co-doping with beryllium in searching the enhancement of p-type doping in 

GaN. Alternatively, finding another IIA element like magnesium (Mg) to replace Be as 

a shallow acceptor could also be taken into account for p-type doping in GaN. 
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