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ABSTRACT

CHARACTERIZATION OF CEMENTED AND FIBER-REINFORCED RAP

AGGREGATE MATERIALS FOR BASE/ SUB-BASE APPLICATIONS

Publication No. ______

Carlos Ordonez, M.S.

The University of Texas at Arlington, 2006

Supervising Professor:  Laureano R. Hoyos

The engineering product known as RAP is a bonded base and sub-base material

produced by the process of blending crushed recycled construction and demolition

waste and debris to specified gradation requirements, and by bonding these with a fine

silica Portland cement matrix at optimum moisture for compaction density. RAP has a

great potential as an economically, environmentally, and structurally sound alternative

to non-bonded materials conventionally used for base/sub-base applications in

pavement engineering.

The present work is aimed at thoroughly testing the engineering properties of

RAP product in order to assess its suitability as a structurally sound and
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environmentally safe material, as well as to maintain high standards in its

production process and field applications. In order to accomplish this goal, a

comprehensive series of basic and engineering tests were conducted on compacted RAP

specimens at the UTA geotechnical and geo-environmental laboratories. RAP

specimens with no fibers (control specimens) were tested at 0, 2, and 4% dosage levels

of Portland cement. RAP specimens with fibers (fiber-reinforced) were tested at 2, 4,

and 6% dosage levels of Portland cement.

Basic testing included gradation, specific gravity, Atterberg limits, and standard

Proctor compaction tests. Engineering testing included permeability, leaching,

unconfined compression, and small-strain shear modulus tests. The latter was

accomplished via fixed-free resonant column testing for a purely qualitative analysis of

RAP stiffness response. Leaching tests included pH, total and volatile dissolved solids,

total and volatile suspended solids, and turbidity. Most tests were conducted as per

current Texas Department of Transportation’s (TxDOT) standard test methods.

Engineering test results on control and fiber-reinforced RAP materials were then

compared to those reported in the literature for similar reclaimed asphalt pavement

(RAP) materials. Results confirmed the potential of RAP material as an

environmentally and structurally sound alternative to non-bonded materials for

base/sub-base construction purposes.
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CHAPTER 1

INTRODUCTION

1.1 Background and Importance

The ever increasing generation of waste materials as a result of pavement and

infrastructure rehabilitation projects, along with the concurrent gradual decline in

landfill spacing, has made it imperative to find innovative ways for reusing recycled

aggregates as an alternative base course material in the pavement industry. At the same

time, pavement researchers are currently challenged by the need for developing high

performance materials for constructing longer lasting pavement layers.

The use of recycled materials has increasingly become more popular in recent

years given their potential for conserving resources, preserving the environment, as well

as reducing the costs of pavement construction and maintenance. Potential savings in

construction costs and time have made the use of recycled materials, such as RAP

(reclaimed asphalt pavement) and crushed concrete, very attractive to highway material

engineers.

Most recycled materials are used to replace coarse aggregates. Reclaimed or

recycled asphalt pavement (RAP) and crushed concrete have been routinely used in

construction of pavement granular bases. RAP consists of removed and processed

asphalt pavement materials containing both aged asphalt and aggregates. The asphalt

coated on the surface of the aggregates typically forms a film with a thickness between
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six to nine microns. Every year, the US highway industry generates over 100 million

tons of RAP through the rehabilitation and reconstruction of existing highways (Huang

et al., 2005). Recycled crush concrete comes from demolition of existing infrastructure,

such as concrete pavements, bridge structures, and curb and gutter sections (Griffiths,

2002). Recycled concrete aggregates may also be generated from concrete over-runs or

haul-backs associated with new constructions (Hansen, 1992).

In an attempt to improve the bearing capacity of the base and sub-base layers of

the pavement structure made of Recycled materials, as well as to increase the stability

of questionable soil conditions, various forms of chemical and mechanical stabilization

techniques are currently performed in practice (Sobhan, 2003). Chemically stabilized

foundation systems consist of such materials as soil-cement, aggregate-cement, lime-fly

ash-aggregate, lean concrete, or roller compacted concrete. With measured dosages of

cement and water, the treated materials gain in strength after compaction and curing,

yielding more durable paving materials.

As a structural layer in pavements, stabilized materials behave as a slab when

responding to loads, and its performance is influenced by the strength and modulus of

the material; however, it is worthy to take into account the following statement: “It is

not possible to assign values that will adequately characterize the range of strength and

of stiffness likely to be encountered. Indeed, it must be accepted that the range is so

wide that one cannot know ‘typical’ properties for raw materials, unless one confines

the data to the end product of processing a particular and well defined raw material with
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a stated amount of cement” (Williams, 1986). This statement specially applies to

recycled materials.

Moreover, pavement systems are subject to dynamic wheel loading from

moving vehicles, and repeatable applications of such traffic loads can cause fatigue

failure in the pavement. In the case of base courses containing recycled materials

stabilized with cement, fatigue failure often occurs due to the growth and propagation of

tensile cracks caused by repeated flexural stresses. Ideally, the inclusion of fibers will

enhance the energy absorption capacity or toughness of the material and will serve to

retard the crack propagation process (Balaguru and Shah, 1992).

Fibers reinforcement is considered to be a mechanical stabilization method,

which mainly consists in the inclusion of discrete, randomly oriented fibers that act as

micro reinforcements in the material, As the fracture process initiates and cracks start to

develop within the base or sub-base material, the fibers serve the purpose of the

bridging of cracks, providing additional resistance to crack propagation and crack

opening, considerably retarding the complete pull-out or rupture of the structure.

The engineering product known as RAP is a bonded base/sub-base material

produced by the process of blending crushed recycled construction and demolition

waste and debris to specified gradation requirements, and by bonding these with a fine

silica Portland cement matrix at optimum moisture for compaction density.

RAP has great potential as an economically, environmentally, and structurally

sound alternative to non-bonded materials conventionally used for base/sub-base

applications in pavement engineering. However, additional testing is still needed to
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fully assess the engineering properties of the product, to monitor its suitability as a

structurally sound and environmentally safe material, and to maintain high standards in

its production process and field applications. The present work was motivated by these

research needs.

1.2 Objective and Scope

The present thesis work is aimed at thoroughly testing the engineering properties

of RAP product in order to assess its suitability as a structurally sound and

environmentally safe material, as well as to maintain high standards in its production

process and field applications.

In order to accomplish this goal, a comprehensive series of basic and

engineering tests were conducted on compacted RAP specimens at the UTA

geotechnical and geo-environmental laboratories. RAP specimens with no fibers

(control specimens) were tested at 0, 2, and 4% dosage levels of Portland cement. RAP

specimens with fibers (fiber-reinforced) were tested at 2, 4, and 6% dosage levels of

Portland cement.

Basic testing included gradation, specific gravity, Atterberg limits, and TxDOT

moisture-density compaction tests. Engineering testing included permeability, leaching

(COD, pH, TSS, TDS, Turbidity), unconfined compression, and small-strain shear

modulus tests. The latter was accomplished via fixed-free resonant column testing for a

purely qualitative analysis of RAP stiffness response. Leaching tests included pH, total

and volatile dissolved solids, total and volatile suspended solids, and turbidity. Most
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tests were conducted as per current Texas Department of Transportation’s (TxDOT)

standard test methods.

Engineering test results on control and fiber-reinforced RAP materials were then

compared to those reported in the literature for similar reclaimed asphalt pavement

(RAP) materials. Results confirmed the potential of RAP material as an

environmentally and structurally sound alternative to non-bonded materials for

base/sub-base construction purposes.

1.3 Organization

A brief summary of the chapters included in this thesis document is presented in

the following paragraphs.

Chapter 2 presents a brief literature review on base/sub-base pavement design

concepts, types of recycled cemented materials previously investigated, and previously

reported correlations between unconfined strength and modulus of elasticity.

Chapter 3 describes all the experimental variables and procedures, including the

fundamentals of permeability, leaching, unconfined compression, and resonant column

testing techniques, as well as the corresponding components, step-by-step assembling

processes, and typical parameters obtained from these tests.

Chapter 4 presents all the experimental results obtained from the series of basic

and engineering tests conducted on control and fiber-reinforced RAP materials, as well

as a comprehensive analysis of all these test results. Engineering test results were also
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compared to those reported in the literature for similar reclaimed asphalt pavement

(RAP) materials.

Chapter 5 summarizes the main conclusions from this thesis work and some key

recommendations for future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature reviewed in this chapter is a compilation obtained from journals,

books, conference proceedings and electronic sources. This literature review was

focused on pavement design and materials used for its construction. First, a brief

description of the structural sections of a pavement will be presented and is going to be

focused especially in the base and sub-base course structure materials. Design methods

and failure criteria are going to be included in more detail. Next, a review about

cement-treated materials characteristics and properties. This is going to be followed by

a discussion of the use of recycled materials, as RAP and recycled concrete, in base

sub-base of pavements. The literature survey presented in this chapter includes some

UCS correlations and also typical recycled materials UCS values, K values, and

estimations of Young’s modulus (E).

The use of recycled materials nowadays play an important roll on projects of

construction of pavement structures, by treating recycled materials with cement and

reinforced them with fibers, its engineering properties are improved and the life of such

materials is prolonged, improving this way cost effective effects of a project. But a

comprehensive characterization of such materials is important because of its anisotropic
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composition. This literature review is to be used as the theoretical support to the

experimental program explained in chapter three.

2.2 Pavement Structure

The pavement as a whole is a structure which main function is to limit stresses

in the sub-grade to acceptable levels. Pavement structures undergo tensile and

compressive stresses induced by heavy wheel loads, these stresses decrease with depth,

allowing the use, particularly in flexible pavements, of relative strong and expensive

materials for the surfacing and less strong and cheaper as we go deep. Previous

statement is the base philosophy for the structural design of a pavement. Pavements can

be rigid or flexible; flexible pavements generally consist of a prepared road base, sub-

base and base courses and the surface course in which asphalt is usually used as a

binder material whereas rigid pavements generally consists of a prepared road base

underlying a layer of sub-base and a pavement slab. Pavement design is the process of

find the most economical combination of pavement layers taking in to account both;

thickness and type of materials to suit the soil foundation and the traffic to be carrying

during the design life.

Pavement structure is generally conformed for three layers: sub-base base and

surface course, next is a brief definition of them:

Roadbed course is defined as soil which is a layer of compacted roadbed soil to

a specified density.

Sub-base course is defined as the portion of the pavement structure between the

roadbed soil and the base course. It usually consists of a compacted layer of granular
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material, either treated or untreated or of a layer of soil treated with a suitable

admixture.  It is usually distinguished from the base portion for its lower requirements

in strength properties, plasticity and gradation. For reasons of economy this portion of

the structure is sometimes ignored when the roadbed soil has high engineering

properties.

Base course is defined as the base is the pavement portion immediately below

the surface course; this one is constructed on the sub-base course or if there is not sub-

base, directly on the roadbed soil. Its major function on the pavement is structural

support. It usually consists of materials as crushed stone, crushed slag, crush gravel and

sand or combination of these materials. Specifications for base materials are more

stringent than sub-base materials in strength, plasticity and gradation. But other treated

materials can be used, and by treated, Portland cement, fly ash, lime and other materials

can be used for. Consideration should be given to the use of such treated materials for

base courses whenever they are economically feasible. Economic advantages may result

not only form the use of low-cost aggregates but also from possible in the reduction of

total thickness of the pavement structure that may result from the use of treatment given

to the materials. Careful study is required to select the appropriate amount of cement to

be added in order to get the optimum performance and economy.

Surface course it is usually constructed on a base course. In addition to its major

function as a structural portion of the pavement, it must also be designed to resist

abrasive forces of traffic, to reduce amount of surface water penetrating the pavement,

to provide skid resistance surface, and to provide a smooth and uniform riding surface.
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These three layer described above, interact distributing all tensile and

compressive stresses, drainage is other important issue to take into account when

designing pavement structures, water can generate stresses that can be reflected in the

surface, gradation and drainage systems can take care of this aspect. Economic aspect

influence a lot in the design of pavements, choose of materials and thick of layers goes

on intimate relation with it, however when alternative materials or design method is

very important to remark the follow of lab testing to ensure further performance of the

pavement.

Figure 2.1 represents a typical cross section of a conventional pavement

Structure.

Figure 2.1 Typical pavement structure.

2.3 Design method classification

2.3.1 Empirical Methods

The use of empirical method without a strength test dates back to the

development of public roads soil classification system (Hogentogler and Terzaghi,
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1929), in which the sub-grade was classified as uniform from A-1 to   A-7 and a group

index was added to differentiate the soil within each group. The empirical method with

a strength test was first used by the California highway department in 1929 (Porter,

1950). The thickness of layers was related to the California Bearing Ratio (CBR),

defined as the penetration resistant of a sub-grade soil relative to a standard crushed

rock.

The disadvantage of empirical method is that it can be applied only to a given

set of environmental, material, and loading conditions. If these conditions are changed,

the design is no longer valid and a new method must be developed through trial and

error to be commensurate with the new conditions (Huang, 1993).

2.3.2 Limiting Shear Failure Methods

The limiting shear failure method is used to determine the thickness of

pavements so that the shear failures will not occur. The major properties of pavements

components and sub-grade soils to be considered are their cohesion and angle of

internal friction. Barber (1946) applied Terzaghi’s bearing capacity formula to

determine the pavement thickness. McLeod (1953) advocated the use of logarithmic

spirals to determine bearing capacity of pavements. These methods were reviewed by

Yoder (1959) in his book Principles of Pavement Design but were not even mentioned

in the second edition (Yoder and Witczak, 1975). This is not surprising because, with

the ever increasing speed and volume of traffic, pavements should be designed for

riding comfort rather than barely preventing shear failures (Huang, 1993).
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2.3.3 Limiting Deflection Methods

The limiting shear failure method is used to determine the thickness of pavement

so that vertical deflection will not exceed the allowable limit. The Kansas State

Highway Commission (1947) modified Boussinesq’s equation (Boussinesq, 1885) and

limited the deflection of sub-grade to 0.1 in. The U.S. Navy (1953) applied Burmister’s

two-layer theory (Burmister, 1943) and limited the surface deflection to 0.25 in. The use

of deflection as a design criterion has the apparent advantage that it can be easily

measured in the field. Unfortunately, pavements failures are caused by excessive

stresses and strains instead of deflections.

2.3.4 Regression Methods Based on Performance of Road Tests

A good example of the use of regression equations for pavement design is the

AASHTO method based on the results of road tests. The disadvantage of the method is

that the design equations can be applied only to the condition at the road test site. For

conditions other than those under which the equations were developed, extensive

modifications based on theory of experience are needed. Regression equations can also

be developed from the performance of existing pavements such as those used in the

pavement evaluation systems COPES (Darter et. al., 1985) and EXPEAR (Hall et al.,

1989). Unlike road tests, the materials and construction of these pavements were not

well controlled, so a wide scatter of data and a large standard error are expected.

Although these equations can illustrate the effect of various factors on pavement

performance, their usefulness in pavement design is limited because of the many

uncertainties involved (Huang, 1993).
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2.3.5 Mechanistic-Empirical Methods

The mechanistic-empirical method of design is based on the mechanistic of

materials that relates an input, such as a wheel load, to an output or pavement response,

such as stress or strain. The response values are used to predict distress based on

laboratory test and field performance data. Dependence on observed performance is

necessary because theory alone has not proven sufficient to design pavements

realistically.

Kerkhoven and Dormon (1953) first suggested the use of vertical compressive

strain on the surface of sub-grade as a failure criterion to reduce permanent

deformation, while Saal and Pell (1960) recommended the use of horizontal tensile

strain at the bottom of asphalt layer to minimize fatigue cracking, as shown in Fig 2.2

the use of the above concepts for pavement design was first presented in the United

States by Dormon and Metcalf (1965).

The use of vertical compressive strain to control permanent deformation is based

on the fact that plastic strains are proportional to elastic strains in paving materials.

Thus, by limiting the elastic strains on the sub-grade, the elastic strains in the other

components above the sub-grade will also be controlled; hence, the magnitude of

permanent deformation on the pavement surface will be controlled as well. These two

criteria have since been adopted by Shell Petroleum international (Claussen et al., 1977)

and the Asphalt institute (Shook et al., 1982) in their mechanistic-empirical methods of

design. The advantages of mechanistic-empirical methods are the improvement in the
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reliability of a design, the ability to predict the types of distress, and the feasibility to

extrapolate from limited field and laboratory data (Huang, 1993).

Figure 2.2 Tensile and Compressive strains in flexible pavements (Croney, 1997).

2.4 Failure Criteria in Flexible Pavements

It is generally agreed that fatigue cracking, rutting, and low temperature

cracking are the three principal types of distress to be considered for flexible pavement

design.

2.4.1 Fatigue Cracking

The fatigue cracking of flexible pavements is based on the horizontal tensile

strain at the bottom of the structure element. The failure criterion relates the allowable

number of loads repetitions to the tensile strain based on the laboratory fatigue test on

small specimens. Due to the difference in geometric and loading conditions, the

allowable number of repetitions for actual pavements is much greater than that obtained
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from laboratory tests. Therefore, the failure criterion must incorporate a shift factor to

account for the difference.

2.4.2 Rutting

Rutting occurs only on flexible pavements, as indicate by the permanent

deformation or rut depth along the wheel paths. Pavement may uplift along the sides of

the rut. Rutting stems from permanent deformation in any of the pavement layers or the

sub-grade, usually caused by the consolidation or lateral movement of the materials due

to traffic loads.

2.4.3 Thermal Cracking

This type of distress includes both low-temperature cracking and thermal fatigue

cracking. Low-temperature cracking is usually associated with flexible pavements in

northern regions of the United States and much of Canada. Thermal fatigue cracking

can occur in much milder regions if and excessively hard asphalt is used or the asphalt

becomes hardened due to aging.

Thermal fatigue cracking is similar to fatigue cracking caused by repeated loads.

It is caused by the tensile stress in the asphalt layer due to daily temperature cycle

(Huang, 1993).

2.5 Failure Criteria in Rigid pavements

Fatigue cracking has long been considered the major or only criteria for rigid

pavement design. Only recently has pumping or erosion been considered. Other criteria

in consideration include faulting and join deterioration of JPCP and JRCP and edge

punch-out of CRCP.
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2.5.1 Fatigue Cracking

Fatigue cracking is most likely cause by the edge stresses at the mid slab. The

allowable number of load repetitions to cause fatigue cracking depends on the stress

ratio between flexural tensile stresses and the concrete modulus of rupture.

2.5.2 Pumping or Erosion

Although permanent deformations are not considered in rigid pavement design,

the resilient deformation under repeated wheel loads will cause pumping of the slabs.

Consequently, corner deflections have been used in the latest version of the PCA

method (PCA, 1984) as an erosion criterion in addition to the fatigue criterion. Since

pumping is caused by many other factors, such as types of sub-base and sub-grade,

precipitation, and drainage, a more rational method for analyzing pumping is needed.

2.6 Cement-treated Sub-bases and Bases

Cement treated aggregate base (CTAB) is defined as a mixture of aggregate

material and measured amount of Portland cement and water that hardens after

compaction and cures to form a durable paving material (Sokie, 1979). It is widely used

as a base course for either flexible or rigid pavements. Compared with other cement-

treated or cement stabilized materials, CTAB generally involves higher contents of

cement and, therefore, higher strength and stiffness. As a structural layer in pavement,

CTAB behaves as a slab against loading, and its performance is influenced by the

strength and modulus of the material. These properties are crucial for design purposes

especially in those which stress strain relationship and fatigue characteristics are

considered as parameters.
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When the aggregates-cement process is used for improving the characteristics of

a base or sub-base. The field operation must be preceded for a program of laboratory

testing. This will be aimed at determining the cement and water contents to be used to

obtain the required strength (Croney and Croney, 1997). This required strength can be

evaluated with several tests but commonly, for its simplicity, unconfined compressive

strength as mix design criteria for the construction of CTAB. Many previous studies

have proposed empirical relationships between the compressive strength and flexural or

tensile strength of cemented treated materials that are useful for the structural design of

the layer, there are several correlations to get the shear modulus (G), resilient modulus

(Mr), and in this study those empirical relations are going to be evaluated.

2.6.1 Design considerations

Most problems with cement-stabilized base layers in pavements stem from the

fact that current design practices are based only on strength, without consideration of

long-term durability or performance. For example, many state departments of

transportation require sufficient cement to achieve high unconfined compressive

strength values. While this level of cement results in a very stiff aggregate layer

characterized by a high resilient modulus, it does not necessarily guarantee acceptable

long-term pavement performance (Guthrie, 2002). In many roadways, especially in

those stabilized with cement, shrinkage cracks, fatigue cracks and rutting within base

layers reflect into the surface treatments and appear as transverse cracks with a spacing

of between 3 ft and 60 ft. Although the cracks themselves may not present a structural

problem, they often accelerate degradation of the pavement by allowing water to enter
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lower pavement layers. Is because of these types of failures in which no strength but

durability characteristics plays the main role in the design considerations.

Several studies have been conducted in order to mitigate rutting and fatigue type

of failure, one of them is by reinforcing the mixture with fibers, which is precisely what

RAP material is reinforced with. This reinforcement can develop tensile properties that

help to reduce crack propagation and sometimes can even mitigate this type of problems

in the pavement.

2.6.2 Cement-treated RAP and RCA

Recycled asphalt pavement (RAP) is defined as a reprocessed pavement material

containing asphalt and aggregate, and Recycled Concrete Aggregates (RCA) is the

material produced by crushing demolished concrete elements. RCA differ from fresh

aggregates due to the cement paste attached to the surface of the original natural

aggregates after the process of recycling.

Since RAP and RCA were considered to be used as replacements for virgin

aggregate products in pavement structures, researches have become very interested in

the topic because of the potential savings in cost and time the use of such materials can

implied. To use these types of material, minimum ASSHTO and state requirements has

to be accomplish, that is why the inclusion of cement as an improving agent of the

compressive strength properties of the materials. It has to be taking into account that

stiff properties are not the only characteristics to improve in order to have a pavement

structure with a good long-term performance, having high stiff material with high

resilient modulus does not mean the pavement is going to behave properly to problems
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like cracking and rutting, being cracking the pavement a phenomenon caused by tensile

stresses at the bottom of the asphalt layers, while rutting may be a result of

accumulative pavement deformation throughout pavement system, to decrease Cracking

effect RAP material has included glass fiber as a reinforcement of the base slab.

2.6.3 Unconfined Compressive Strength of Cement Treated Recycled Aggregates

When researching the performance of cement treated recycled materials it is

known that addition of cement in the materials enhances the material’s rigidity or

stiffness properties. In order to evaluate such increases in the stiff properties of the

material, UCS is one of the most used tests.

The increase in compressive strength with age of cemented materials with a

wide range of compressive strengths has been studied over periods up to 10 years in the

United Kingdom (Croney and Croney, 1997). From these data it can be deduced that 7

days is a time enough to reach around 70% of the 28 days strength Fig 2.3.

By virtue of the simplicity of the test method, the unconfined compressive

strength is most commonly used as mix design criteria, however there are methods to

determine the appropriate elastic modulus of cemented-treated recycled aggregates but

they are complicated because of the difficulties associated with testing and interpreting

the test results. A review of literature found that, in most cemented-treated aggregates,

UCS values are used in empirical correlations to predict resilient modulus values and to

find the structural number on the design of the pavement structure.   That is why, for

design purposes, a relationship between the strength and modulus of elasticity of the

material was recommended. Many previous studies have proposed relationships
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between the unconfined compressive strength and modulus of elasticity of cemented

materials, in the literature review, both the initial tangent of the unconfined compressive

curve relationships are going to be evaluated.
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Figure 2.3 Variation of compressive strength with age

(Croney and Croney, 1997)

This investigation, which evaluated the correlation of modules to compressive

strength, was conducted by Lim and Zollinger 2003 and from their study we can

observe in table 2.1 measured compressive strengths of the test mixtures at different

ages. The types of materials used in this research were two different aggregate bases.

One is a conventional crushed limestone base material and the other is recycled

concrete material. Both materials contain particles sized from 2 in. to – No 200 (75µm)
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in accordance with the grading requirements of the Texas Department of Transportation

(TxDOT) Specification Item 276, Portland Cement-Treated base.

Table 2.1 Compressive strength of the CTAB Test Mixtures at Different Curing Times

(Lim and Zollinger 2003)

Compressive strength (psi)

Aggregate Mix ID

1 day 3 days 7 days 28 days

1.0 257.8 243.8 397.4 603.7e

2.0 195.0 282.2 455.0 646.6e

3.0 257.7 286.3 454.5 550.8e

4.0 208.2 400.2b 398.8 527.4f

5.0 290.3 534.6 759.8d 1070.3

6.0 345.1 647.3 886.6 1220.5

7.0 289.1 -- 797.0 963.0

Recycled Concrete

(RC)

8.0 395.9 676.5c 819.6 908.6

1.0 378.9 524.3 630.6 1012.1

2.0 318.1 490.0 519.7 556.9

3.0 472.2a 598.7 508.3 908.5a

4.0 278.7 543.8c 461.4 734.2h

5.0 630.7 1083.8 1221.1 1709.5

6.0 606.8 988.0 1224.0 1319.3

7.0 648.0 1224.3 1501.7d 1556.5

Crushed Limestone

(CL)

8.0 550.5 921.7c 1190.4 1292.8

a tested at 2 days
b tested at 5 days
c tested at 4 days
d tested at 8 days
e tested at 34 days
f  tested at 33 days
g tested at 29 days
h tested at 20 days
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The test program of this research consisted of 64 different test conditions

stiffness of CTAB mixture. Selected test variables were: content of coarse aggregates,

content of fines and cement content. Two different application levels were selected for

the respective mixture variables, as shown in Table 2.2 this two level, three variable

factorial (2
3
) design result in 16 different test mixtures in total; 8 for each aggregate

type, that is recycled concrete and crushed limestone.

Table 2.3 shows the complete factorial of the test mixtures for each aggregate

type. The symbols (-) and (+) in the table indicate the low and high application levels of

cement the mixing variables, respectively (Lim, Zollinger, 2003).

Table 2.2 Test Variables and Application Levels for the CTAB test mix design

 (Lim, Zollinger 2003)

Application

LevelsTest Variables Designation

Low(-) High(+)

Content of Coarse Aggregates A 48% 58%

Content of Fines F 5% 10%

Cement Content C 4% 8%
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Table 2.3 Complete Factorial of Test Mixtures for Each Aggregate Type

(Lim and Zollinger, 2003)

Test Variables and

Application Levels

Mix ID A F C

1 -- -- --

2 + -- --

3 -- + --

4 + + --

5 -- -- +

6 + -- +

7 -- + +

8 + + +

It was observed that recycled material (crush concrete) developed about 30%

less strength than crushed limestone material. This effect is though to be caused by the

higher water demand of the recycled concrete material and subsequent higher water-

cement ratio of the RC mixtures (Lim and Zollinger, 2003).

Most specifications require the minimum design strength of cemented treated

aggregate base (CTAB) in the range of 350 to 500 psi at 7 days cure period (Lim and

Zollinger, 2003).

Some weak correlations has been developed between dry density and

unconfined compressive strength, Fig 2.4 shows an example of this, and presumably,

because of the compounded effects of many factors on the strength development, it is

very unlikely that any single factor becomes a decisive strength indicator. For the

estimation of strength development of CTAB with time, the experimental ACI provide
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the model in the form of equation 1 with the coefficients a = 0.4 and b = 0.85 for normal

concrete

tba

t
fctf c ×+

⋅= )28()(                                                                                              (2.1)

Where

=)(tfc  Compressive strength at time t

=)28(fc Reference 28-day compressive strength

=ba,  Experimental coefficients.

Figure 2.4 Scatter plot of the 28 day compressive strength and maximum dry density of

the test mixtures (Croney and Croney, 1997)
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Figure 2.5 Prediction of the compressive strength development of CTAB mixtures: (a)

recycled concrete (RC) mixtures and (b) crushed limestone mixtures (CL).

 (Croney and Croney, 1997)
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Calibration of the ACI model to the CTAB test data resulted in a new set of

coefficients of a = 2.5 and b = 0.9. This new set of coefficients is expected to be

applicable for any CTAB mixtures regardless of aggregate type and mixture

proportioning (Lim and Zollinger, 2003); Figure 2.3 shows some predictions of the

compressive strength development of CTAB of some specimens failed in Lim and

Zollinger’s work.

The development of elastic modulus of CTAB materials was investigated using

the stress-strain relationships of the mixtures identified from the test. Young modulus is

determined as the initial secant at 25% of the ultimate stress.

Table 2.4 shows the Elastic Modulus for the different mixtures at different ages.

Like the results of the strength, the modulus of elasticity showed to be 20 to 30% less

on recycled materials. It was also observed that the ratio of modulus of elasticity of high

cement (8%) to that of low cement (4%) exceeds a value of 2 at the early ages, although

it generally ranges from 1.3 to 1.7 for the mixtures aged more than 7 days.

Equation 2 represents ACI model, has been generally accepted for the estimation

of modulus of elasticity of cemented treated base materials. However, ACI model was

proposed for concrete materials, and it may not be relevant to CTAB materials.

( ) ( ) 5.0
5.1

33 tfwtE c××=                                                                                               (2.2)

( ) ( ) 75.0
5.1

38.4 tfwtE c××=                                                                                           (2.3)

Where E  is in psi, and w  is the density of the sample in pcf.
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Table 2.4 Modulus of elasticity of CTAB mixtures (Lim, Zollinger 2003)

Modulus of elasticity (X10
6
psi)

Aggregate Mix ID
1 day 3 days 7 days 28 days

1 0.464 0.377 0.628 0.847
a

2 0.289 0.391 0.807 0.858
a

3 0.38 0.515 0.864 0.996
a

4 0.322 0.727
b

0.804 0.944
c

5 0.475 0.861 1.057
d

1.426

6 0.584 0.945 1.298 1.312

7 0.551 -- 1.111 1.243

Recycled Concrete

(RC)

8 0.727 1.110
e

1.2 1.276

9 0.561 0.657 0.872 1.05

10 0.76 0.823 0.842 0.878

11 0.764
f

0.837 0.843 1.198
g

12 0.516 0.905
e

0.917 1.200
h

13 1.039 1.466 1.744 1.78

14 1.038 1.454 1.614 1.545

15 0.84 1.405 1.786
d

1.91

Crushed Limestone

(CL)

16 1.08 1.463
e

1190.4 1.678

In this regard, the relationship between the measured compressive strength and

modulus of elasticity of CTAB text mixtures was investigated. The empirical

coefficients and exponents in equation 2 were adjusted again for the CTAB data

obtained in this study. The result is shown in Equation 3. The time dependent strength,

fc(t), can be estimated by Equation 1, and then the modulus of elasticity can be found
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with Equation 3 where E(t) is the modulus of elasticity (psi) and w is the mixture

density (Lim, Zollinger 2003).

Figure 2.6 shows the relationships between compressive strength and the elastic

modulus of cemented aggregates projected over the scatter plot of test data obtained in

this study (Lim and Zollinger, 2003). It can be seen here that the proposed model for

base materials treated with cement, matches properly with the data collected from the

experimental program.

Figure 2.6 Relationship between the compressive strength and modulus of elasticity of

cemented treated base materials (Lim and Zollinger, 2003)

Because of the comparison are reasonable, the proposed model, in Lim and

Zollinger study, is expected to be applicable for estimation of modulus of elasticity

regardless of aggregate type and mixture proportioning.
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2.6.4 Fiber Reinforcement in cemented aggregates

From a mechanistic consideration, since a pavement layer undergoes repeated

flexural stresses due to traffic loading, the tensile behavior of the material is critical to

its performance. It is generally known that the inclusion of fibers in a cementitious

composite such as concrete enhances its energy absorption capacity or toughness and

serves to retard the growth and propagation of tensile cracks, thus increasing its

resistance to fatigue failure (Balaguru and Shah, 1992). It is however, uncertain if such

conclusions of fibers would be beneficial in a mix, which is not only lean in cement

content, but composed mostly by recycled materials (Sobhan and Ahmad, 2003).

Only a few studies could be identified in the literature dealing with the

laboratory and field performance of fiber reinforced, stabilized soils, and aggregate as

applied to pavement. These studies involved various commercially available steel,

polypropylene, and glass fibers, and in general reported improved performance of

reinforced pavement layer in terms of bearing capacity, toughness, and resistance to

permanent deformation (Sobhan et al, 1999).

When adding fiber to cement based composites is to increase its energy

absorbing capacity, a more ductile post-peak behavior is expected. Although the area

under the stress-train curve is a measure of the toughness of the material, the relevance

of toughness in practice depends on the application. For earthquake or explosive load

conditions, which may involve the total collapse of a structural element, it is appropriate

to consider the total area under the stress-strain curve as the total energy absorption

capacity. For highway pavements, however, it is more appropriate to consider a given
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level of serviceability, beyond which rehabilitation has to be undertaken. In such cases

only a portion of the total area under the stress-strain curve is important.

Since a standard method for toughness calculations under splitting tensile

loading conditions is not available, the following approach for quantifying the fiber

toughening characteristics in the post peak region is presented (Sobhan, Ahmad, 2003).

This approach uses the load deformation curves of Fig 2.7 And normalized them by

their respective peak load along the Y axis, and by the specimen diameter along the X

axis as shown in Fig 2.8 It has to be taking into account that the previous plots come

from Splitting tensile tests Fig 2.9 Following with the toughness measurement, after

normalized the curves a dimensionless splitting tensile toughness index, TI, is obtained.

This TI is focused only on the post peak behavior of the test specimens, and is

calculated as: ( ) ( )ρρε εε −−= AATI , where, εA is the area under the normalized

curve up to any strain ε, Ap is the area under the normalized curve up to the peak, and εp

is the strain corresponding to the peak load. For a reference elastic-perfectly-plastic

material, the TI is equal to unity for any value of ε.

 Is also important to note that one of the limitations of this TI is that a material

with relatively low strength can still show a high value of TI (Sobhan, Ahmad, 2003).

Studies revealed us statements like when stabilizing Recycled crushed concrete with

cement, a 4% of dosage is enough to get a high quality base course material also that by

getting the toughness index TI, as defined previously, the performance of fibers in
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stabilized materials can be evaluated. It was observed an increase of the order of 0 to

127% percent in the toughness behavior of the material when adding fibers.

Figure 2.7 Load deformation curves for different mixes (Sobhan, Ahmad, 2003)
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Figure 2.8 Normalized load-strain curves for different mixtures (Sobhan and Ahmad,

2003)
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Figure 2.9 Schematic of splitting tensile test setup. (Sobhan and Ahmad, 2003)

Finally it can be concluded that the suitability of a stabilized pavement base

course material depends largely on its performance under repeated loads. The studies

reported herein evaluated the fatigue resistance of a stabilized recycled aggregate base

course material, compared its behavior with other commonly used stabilized base

course materials, and determine the beneficial effect of including 4% by weight of
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fibers in the cemented composite. The results showed that the proposed base course

material manifests good resistance to fatigue failure and that fibers do improve the

mechanical performance of a composite. Although the use of commercial steel fiber in

pavement base course may not be economical in terms of initial material cost, the

improved fatigue life due to fiber inclusions may ultimately bring about economic

savings in life cycle costs resulting from the less frequent need for rehabilitation. In

addition, these results open a motivation to investigate the use of alternate inexpensive

fibers as they become available (Sobhan, 2003).

Next chapter summarizes all the experimental variables and procedures

followed in this thesis work.
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CHAPTER 3

EXPERIMENTAL VARIABLES AND PROCEDURES

3.1 Introduction

An experimental program was designed in order to asses the fundamental

engineering properties of RAP material. The experimental program focused on strength

properties, permeability analysis and leachate characteristics. The tests were carried out

at The University of Texas at Arlington laboratories and basically consisted of two set

of tests the first set comprised the basic characterization of the material where sieve

analysis, specific gravity and optimum moisture content on samples at 0, 2, 4 and 6% of

cement content were conducted. The second set consisted of engineering

characterization, including permeability tests, unconfined compressive strength (UCS)

and resonant column. Also leachate analysis test were conducted in order to analyze

how the cement affects the holding of the aggregates in the presence of water.

The following sections describe the types of laboratory tests performed.

3.2 Primary Characterization of Material

The tests in this section are sieve analysis, specific gravity and optimum

moisture content using TxDOT procedures.

3.2.1 Sieve Analysis

This method covers the quantitative determination of the distribution of particle

sizes in soils. The distribution of particle sizes larger than 75 mm (No200) is determined
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by sieving, while the distribution of particle sizes smaller than 75 mm is determined by

a sedimentation process, using a hydrometer to secure the necessary data.

If less than 1% by weight of the material is passing sieve No200, hydrometer

analysis is not required. The sieve analysis tests conducted were in accordance with

TEX 110 E Standard test method for particle size analysis of soils of TxDOT.

After collecting all weights retained on each sieve, the percentage of material

passing through each sieve is calculated. This calculation basically consists of dividing

each weight of the material retained on each sieve by the weight of the total sample,

obtaining from this the percentage of material retained on each sieve. After having all

percentages of material retained on each sieve by basic calculations the next step is to

find the percentage of material passing through each sieve. When finishing the

calculation phase, all the data is plotted on semi log paper. Table 3.1 resumes data

obtained in the test and the grain size curve of RAP material is shown on Figure 3.1.

Table 3.1 Data from sieve analysis test of RAP material

Sieve

No

Material

Pass, %

3/4" 98.1

3/8" 65.4

No4 55.1

No40 19.2

No50 11.2

No100 1.8

No200 1.1
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Figure 3.1 Grain size distribution of RAP material

3.2.2 Specific Gravity

Specific gravity is defined as the ratio of the mass of a given volume of solid or

liquid to the mass of an equal volume of water at a specified temperature. Specific

gravity test was performed in accordance to TxDOT procedure TEX 108 E, and it was

performed on the material passing No 40 sieve.

 First, the volumetric flask, used on the test, was calibrated. Specific gravity

found in this test performed on RAP material gave us a result of  2.43.

3.2.3 Laboratory Compaction Characteristics and Moisture-Density Relationships

In order to determine the optimum moisture content for compaction of the

specimens, TxDOT Tex-113-E Laboratory Compaction Characteristics and Moisture-

Density Relationship test procedure was followed. This test procedure is similar than

the followed for standard and modified proctor compaction tests, the difference is on the
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compaction effort applied to the specimens, which for TxDOT requirements is higher

than for proctor standard but lower than for proctor modified. Table 3.2 shows the

energy used in each compaction test procedure.

Table 3.2 Compaction energy on different laboratory compaction procedures

Compaction Energy Reference

Standard 7.18 ft-lb/in
3

ASTM D-698 A

Modified 32.41 ft-lb/in
3

ASTM D-1557

TxDOT 13.25 ft-lb/in
3

TEX-113-E

The compaction test was performed by using moulds with 4 inches diameter, in

order to achieve the energy required by TxDOT a hammer of 10 pounds was used

applying 17 blows falling from a height of 1.5 feet on three layers. The compaction test

has to be done for at least 4 different moisture contents, calculating the density reached

in each moisture content trial. After the calculation of the dry density, all the points are

plotted in a moisture-dry density curve, then a trend curve is sketched and from this one

the peak curve is analyzed estimating the optimum moisture content which is the

moisture content that corresponds to the maximum dry density in the curve.

Figure 3.2 shows compaction curves for 0, 2, 4, 6 % cement dosage to RAP

material.
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Figure 3.2 TxDOT compaction test curve results of RAP material

After having the compaction curves, from the peak of each curve the optimum

moisture content for each cement dosage RAP material was obtained. Table 3.2

summarizes all the optimum moisture content and dry density for all cement dosages.

Table 3.3 Optimum moisture content and dry densities for 0, 2, 4 and 6 % cement

content RAP material

Cement dosage

%

Optimun moisture

content, %

Maximum dry

density, pcf

0 4.95 132.6

2 5.1 131.5

4 4.95 135.7

6 5.1 135.5
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In reviewing all the compaction data, we have found an average +/- 0.5-pcf

difference in density and +/- 0.75% difference in optimum moisture content between 4-

in and 6-in specimens for all cement contents. This is more than acceptable to proceed

with engineering testing (permeability, leaching, unconfined compression, and resilient

modulus) on samples compacted with the 4-in mold.

Specimens were compacted at TXI company site using a mechanical compactor.

Figure 3.3 shows the mechanical compactor used to compact the specimens.

Figure 3.3 Mechanical compactor
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3.3 Specimen Preparation

RAP specimens were prepared by mixing the material at 0, 2 and 4 % cement

content without fibers and at 2, 4 and 6 % cement content with fibers. All specimens

were mixed at optimum moisture content in order to obtain maximum dry unit weight

levels, found on basic test of material. Figure 3.4 shows a typical RAP material mixture.

After mixed, specimens were compacted. In the compaction process of the specimens,

two different 10 and 5 pound hammers and three types of moulds of 2.8, 4 and 6 inches

diameter were used. To achieve the energy required by TxDOT; for the specimens

compacted on the 4 inch mould, 17 blows and three layers were applied; for the

specimens compacted using the 6 inch mould, 50 blows and 4 layers were applied; and

finally for the specimens on the 2.8 inch mould, 10 blows on three layers were applied.

By using this variation of number of blows and number of layers, the required energy

was obtained following Equation 4.1.

V

NlNbHWr
CE

×××
=  (3.1)

Where:

CE = Compactive effort

Wr = Weight of hammer

H = Height of drop

Nb = Number of blows

Nl = Number of layers

V = Volume of the specimen
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The compacted samples were: 4 inch specimens for UCS and leacheate tests, 2.8

inches specimens for resonant column and 6 inches specimens for permeability test. The

Samples were carefully extruded, wrapped and the placed on moisture room for 7 days

period for curing.

 Figure 3.4 Material mixture

From previous data it was observed that for the samples to be used in UCS and

Leachate tests, the densities achieved were in the range of +/- 5% maximum dry density

from laboratory compaction test. Samples compacted in the 6 inch mould for

permeability test showed higher densities than the maximum dry density obtained from

compaction laboratory tests, this can be explained by the change in grain size

distribution of the material when some of the coarse aggregates got crushed because of

the impact of the hammer, impact that is higher than in others because the thickness of

layers is smaller and therefore the higher exposure. On the other hand, samples for
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resonant column showed values around 85% the value of maximum dry density

obtained in the compaction test in the laboratory, this can be explained because of the

size of the coarse particles in RAP material were too large for the 2.8 inch diameter

mould therefore the low degree of accommodation of the particles inside the mould

resulted in high void ratio.

Table 3.4 shows the actual unit weight and moisture content obtained on each

sample and the values the samples were suppose to achieve.

Table 3.4 RAP specimens densities achieved on compaction process

CEMENT

CONTENT

MOIST

UNIT

WEIGHT

MOISTURE

CONTENT,

%

DRY

UNIT

WEIGHT
0% 142.0 5 135.2

2% 144.9 5 138.0RAP WITHOUT FIBERS

4% 146.8 5 139.8

2% 140.7 5 134.0

4% 143.7 5 136.9

PERMEABILITY

RAP WITH FIBERS

6% 143.0 5 136.2

0% 131.5 5 125.2

2% 132.4 5 126.1RAP WITHOUT FIBERS

4% 131.5 5 125.2

2% 135.7 5 129.2

4% 135.7 5 129.2

LEACHATE

RAP WITH FIBERS

6% 135.5 5 129.1

0% 135.3 5 128.8

2% 135.5 5 129.1RAP WITHOUT FIBERS

4% 136.3 5 129.9

2% 138.7 5 132.1

4% 139.6 5 133.0

UNCONFINED

COMPRESSIVE

STRENGTH

RAP WITH FIBERS

6% 140.1 5 133.4

0% 117.9 5 112.3

2% 121.0 5 115.2RAP WITHOUT FIBERS

4% 119.3 5 113.6

2% 114.7 5 109.2

4% 117.1 5 111.6

RESONANT

COLUMN

RAP WITH FIBERS

6% 118.9 5 113.3
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3.4 Engineering Tests

3.4.1 Permeability

The permeability tests were performed on accordance with Standard test method

for permeability of granular soils constant head, ASTM D 24. It is known that hydraulic

conductivity is a function of pore-size distribution, pore continuity and pore shape.

These are affected by grain-size distribution, particle shape and relative density

(Richardson, 1998).

Figure 3.5 represents a sketch of the constant head permeability set up used for

test the hydraulic conductivity of RAP materials, this can be assembled with a acrylic

cylinder with an inside diameter of 6 inches, two porous stones, a large funnel, a stand,

clamps, and some plastic.  The permeability setup as used for testing of RAP can be

observed in figure 3.6.

Figure 3.5 Constant head sketch
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Figure 3.6 Permeability test setup

 After the passing trough the specimen, water is collected and also the flow in

unit time of water is measured.  When having this data calculation process with

following equations:

1. Calculate void ratio of compacted specimen.

1−=
d

wsGe
ρ
ρ

                                                                                       (3.2)

Where:

=sG Specific gravity of soil solids.

=wρ Density of water.

=dρ Dry density of specimen.

2. Calculate coefficient of permeability ( k ) :
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thA

LQ
k

⋅⋅
⋅

=                                                                                            (3.3)

Where:

=Q Amount of collected.

=t Collection time.

=h Head pressure.

=A Area of specimen.

=L Length of specimen.

After having the hydraulic conductivity coefficient a correction factor has to be

applied because of the change in viscosity of water due to temperature variations.

3.4.2 Leaching Tests

Leaching tests will be conducted on selected RAP specimens for each cement

dosage level, for a total of 6 specimens to be tested for leaching (i.e., 3 tests on RAP

without fibers, and 3 tests on RAP with fibers). Leaching tests included pH

measurement, total and volatile dissolved solids, total and volatile suspended solids,

turbidity, and a few other chemical identification tests.

1. pH Test: pH test was conducted according to ASTM D1287. pH is a measure of the

water acidity. The scale goes from 0 to 14. A pH of 7.0 is neutral. Values less than 7.0

indicate acid conditions while readings over 7.0 indicate alkaline conditions. In order to

measure pH a dual channel pH conductivity meter device was used. Figure 3.7 shows

the mentioned device.
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Figure 3.7 Dual channel pH/ion/conductivity meter

1. Chemical Oxygen Demand: This test method cover the determination of the

quantity of oxygen that certain impurities in water will consume, based on the reduction

of a dichromate solution under specified conditions ASTM D 1252. First a

Transmittance vs concentration of COD was calibrated. After having the calibration

curve samples were poured in COD vials and heated for two hours as digester period in

the COD reactor (Figure3.8).
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Figure 3.8 COD reactor and samples heated for digestion

2. Total suspended and Total dissolved solids: These tests were conducted according

to Standard Test Method for Filterable and Non-filterable Matter in water, ASTM D

5907-03. Total suspended dissolved solids consider all suspended solids in the sample

and by passing the water sample through a filter paper suspended solids are going to be

retained on it. Total dissolved solids are the ones which enter in intimate contact with

the sample changing its chemical properties like alkalinity, acidity, salinity, etc.

3. Turbidity: Turbidity is a way to measure particles in water by using the shine of a

light passing through the sample. Turbidity was measured by introducing the samples in

2100P turbidimeter (Figure 3.9).
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Figure 3.9 Turbidimeter

3.4.3 Unconfined compressive strength (UCS) Test

The UCS tests were conducted in accordance to ASTM D-2166 standards.

Samples were prepared as explained in earlier section. After 7 days, cured samples were

placed on the compressive test platform and loaded at a constant rate which was

controlled by a loading device control. Axial load and deformation data were

simultaneously collected by a computer attached to the test setup. The maximum axial

compressive load at which the sample failed was used to determine the unconfined

compressive strength of the samples. This strength usually depends on cohesion and
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particle interlocking of the soil particles. Figure 3.10 shows the machine used in the

test.

Three samples at 0, 2 and 4% cement dosage of RAP material without fibers

and three samples at 2, 4 and 6% cement dosage of RAP material with fiber

reinforcement were tested in order to ensure repeatability of results.

Unconfined compressive strength is one of the most important tests for the

present study in the way that, its results are going to be used as an attempt to find out

the modulus of elasticity of RAP material, from which it will be determined how the

stiffness properties of RAP materials change with the addition of cement. Even though

UCS is not the best test to evaluate the performance of any material under tensile

stresses, this study is going to try to observe in UCS test results if inclusion of fibers has

any influence on the stiffness properties of the test.

Figure 3.10 Compressive machine used for UCS test of RAP material
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3.4.4 Resonant Column Test: A Qualitative Assessment of Stiffness Response

The resonant column (RC) testing technique was first used to study dynamic

properties of rock materials in the early 1930s, and has been continuously evolving

since then for the dynamic characterization of a wide variety of geologic materials

(Huoo-Ni, 1987).

RC testing covers the determination of the shear modulus and shear damping of

cylindrical specimens of soil by vibration. The vibration of the specimen is performed

under a controlled ambient state of stress in the specimen. The vibration apparatus is

enclosed in a chamber so confinement can be applied. The resonant column test is

considered as non-destructive test.

The shear modulus of a given soil, as measured by the resonant column, depend

upon the strain amplitude of vibration as well as the state of effective stress and void

ratio of the specimen, given for the same material higher shear modulus when the void

ratio is lower. The applicability of these results depend on how accurate is the

duplication of field conditions when preparing samples in the lab.

The Stokoe torsional shear/resonant column (TS/RC) testing (ASTM D 4015-

92) apparatus can be idealized as the fixed-free system shown in Figure 3.11 The

sample stays fixed at bottom and is allowed to rotate on the top end where vibration is

induced through a drive plate. The vibration consist on a cyclic torque of constant

amplitude applied on top from which its frequency change is recorded by an

accelerometer attached to the driven plate which sketch is on Figure 3.12   After having

curve of frequency response, resonant frequency can be determined from the peak of the
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curve and shear modulus G can be calculated. Figure 3.13 represents a typical

frequency response curve.

Figure 3.11 Idealization of fixed- free Rc device (Huoo-Ni, 1987)

Figure 3.12 sketch of driven plate
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Figure 3.13 typical frequency response curve from a RC test on RAP material

3.4.4.1 Shear Modulus G

Shear modulus is defined as elastic modulus of an uniform, linearly viscoelastic

specimen, necessary to produce a resonant column having the measured system

resonant frequency. The stress-strain relation for a steady-state vibration in the resonant

column is a hysteresis loop. The modulus will correspond to the slope of a line through

the end points of hysteresis loop (Drnevich, 1978).
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After having the resonant frequency Richart (1975) suggested a simplified

method for calculating the shear modulus (G) using the resonant frequency (fr),

obtained from the frequency response curve (figure 3.10), and the geometric

characteristics of the soil column and the top cap-driver system. The method can be

summarized as follows:

                                                       

2

2 r

r

f
G = (2πL)

F
  

 
 
 

ρ
                                    (3.3)

Where:

=L the length of the specimen

 =rF is a dimensionless constant known as the frequency factor, and

defined as,

                                                              

s
r

o

I
F  = 

I
                                                         (3.4)

Where:

=sI Is the polar moment of inertia of soil.

=oI Is polar moment of inertia of the driver.

 Equations (3.2) and (3.3) were used in the present study for calculating

linear (low-amplitude) shear modulus (G).
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3.4.2.2  Apparatus Assembly

In this section is a step by step description of the assembly process of RC testing

device interacting with the frequency response measurement system, is presented in the

following paragraphs:

1. Specimen placement: After cured period of 7 days the specimens are ready to

test. The sample is carefully placed on bottom pedestal of RC device, then the

top cap is placed and a latex membrane with 2 o rings at the extremes is rolled

downward to protect the sample from contact with the water which is used to

apply confinement isotropically. In figure 3.14 it can be observed the specimen

placed as described.

Figure 3.14 Specimen placed on pedestal of RC testing device
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2. Water bath application: in order to minimize extrusion of the latex membrane

and/or air migration through the specimen upon application of confining

pressure, the specimen is submerged on water bath (Figure 3.15).

Figure 3.15 bath water applied in between the acrylic cylinder and soil specimen

3. Torsional Driver Setup: after the water bath was applied, a cylindrical cage is

attached securely to the base plate and on top of it the torsional driver is placed

and attached eventually. It is important when attaching the torsional driver that

the coils and magnets don’t touch in between each other. Figure 3.11.
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Figure 3.16 Torsional Driver of RC testing machine

4.  Confining pressure application: after installation of torsional driver. The

electrical wiring is then connected to the corresponding microdot connectors on

the inner side of the thin-wall cylinder, that is, the input signal current wire and

the accelerometer output wire. The cover plate is placed over the top of the

vessel and bolted tightly with the four guide rods. Then, the soil specimen, along

with the remaining components of the RC device, is pressurized with air at the

desired isotropic confining pressure (σ’o). Air pressure is supplied by a HM-

4150-model pressure control panel (Humboldt Manufacturing Co.) via an inlet

air-pressure port located at the base plate of the confining chamber (figure 3.17).

This step concludes the assembly of the RC device prior to RC testing.
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Figure 3.17 Application of confinement

5. Frequency response data capturing and storage: Once the swept-sine mode RC

test has been completed, the frequency response curve and captured test data are

transferred to the CPU of the PC-based computer terminal for future data

processing using application software like Excel. A photograph of the dynamic

analyzer interacting with the computer terminal is shown in figure 3.18.
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Figure 3.18 Frequency response analyzer of RC testing setup

Next chapter presents all the experimental results from the series of basic and

engineering tests and the analyses of these results.
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CHAPTER 4

ANALYSIS OF TEST RESULTS

4.1. Introduction

Results from permeability, leaching, unconfined compression, and resilient

modulus tests, all together, will provide valuable insight on potential improvements of

the structural support of flexible pavements resting on RAP base/sub-base layers, as per

recent AASHTO design method.

 Table 4.1 summarizes the entire engineering test program accomplished during

this research work along with, the number of specimens tested for each proposed test

for repeatability purposes. All tests were performed at UTA geotechnical laboratories,

which are fully equipped with unconfined compression, permeability setup, and

resonant column test devices.

Table 4.1 Engineering Test Program and Number of Specimens
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4.2 RAP Aggregate Basic Properties

RAP aggregates have a uniform grain-size distribution, as obtained at TXI

location, and by sieve analysis test performed at UTA, described in previous chapter.

Atterberg limits were not necessary because the material did not have enough

percentage if fines (less than 1%). The optimum moisture content was 5% +/- 0.05% for

RAP aggregates at all cement dosages.

In most of the specimens the required density was achieved. The specimens

prepared using the 2.8 inch mould (resonant column samples) had approximately 80-

88% density compared to the maximum dry density from moisture-dry density curves

obtained in the lab.

RAP specimen densities achieved in the compaction process can affect the

results obtained in the different tests performed (UCS, Permeability, Resonant Column).

The influence on each on the tests is analyzed in each section of this chapter.

4.3 Permeability

Permeability test was performed at UTA geotechnical laboratories on RAP

samples after 7 days of cure period. Samples used for this test had a diameter of 6

inches and densities close to the maximum dry density obtained from Laboratory

Compaction Characteristics and Moisture-Density Relationship of RAP Materials.

Table 4.2 summarizes all data collected from permeability tests of RAP

aggregates and other RAP hydraulic conductivity values reported in other papers, a

decrease in the hydraulic conductivity when the cement dosage is increased was

observed. The values shown in this report are slightly higher than those values reported
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in other papers. Samples from other reports are recycled asphalt pavement (RAP), and

were collected from three stockpiles in southern Wisconsin referred to herein as PDF,

PDV, and WSP (Trzebiatowski, 2005).

Table 4.2 Saturated hydraulic conductivity of RAP and RAP aggregates at

different cement dosages results from permeability test

Material
Compactive

Effort

Dry Unit

Weight

(pcf)

Hydraulic

Conductivity

(m/s)

RAP without fibers 0% cement dosage. TxDOT 135.24 2.10E-06

RAP without fibers 2% cement dosage. TxDOT 138.01 1.45E-06

RAP without fibers 4% cement dosage. TxDOT 139.79 1.31E-06

RAP without fibers 2% cement dosage. TxDOT 133.97 1.38E-06

RAP without fibers 4% cement dosage. TxDOT 136.89 1.29E-06

RAP without fibers 6% cement dosage. TxDOT 136.19 1.19E-06

PDV RAP Standard 120.05 3.80E-05

PDV RAP Modified 129.48 1.70E-06

PDF RAP Standard 120.05 9.00E-05

PDF RAP Modified 130.11 4.90E-07

WSP RAP Standard 125.71 2.40E-05

WSP RAP Modified 137.02 4.50E-08
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The higher values can be explained due to the differences in densities of the

samples because of the compaction effort, also the grain size distribution take a roll

here, because while RAP material has less than 1% of fines, RAP materials form other

reports have fines in between a range of 2.1 and 8.4% of fines and it is known that the

fines help to fill the voids, giving this way, less communication in between voids

resulting with a smaller value of hydraulic conductivity.

Figure 4.1 represents the variation of hydraulic conductivity with

addition of cement for RAP material without and with fibers and compacted RAP

materials (Trzebiatowski and Benson, 2005). The author believed that there is not any

influence of the fiber inclusion on the hydraulic conductivity behavior of the material.
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Figure 4.1 Variation of the hydraulic conductivity with the addition of cement on RAP

materials without fibers



65

0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

2.5E-06

2% 4% 6%

Cement Dosage

H
y
d
ra
u
li
c
 C
o
n
d
u
c
ti
v
it
y
, 
m
/s

RAP with fibers

Figure 4.2 Variation of the hydraulic conductivity with the addition of cement on RAP

materials with fibers
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4.4 Leaching Tests

Leaching tests were conducted on selected RAP specimens for each cement

dosage level, for a total of 6 specimens tested for leaching (i.e., 3 tests on RAP without

fibers, and 3 tests on RAP with fibers). Leaching tests included pH, total and volatile

dissolved solids, total and volatile suspended solids, turbidity, and a few other chemical

identification tests.

Leaching tests were conducted on water samples in which RAP specimens were

soaked for 24 hours (figure 4.4).

Figure 4.4 RAP specimens soaked for 24 hours
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4.4.1 pH Test

This test was performed according to ASTM D1287 test procedure. Results

showed an increase in pH when the cement dosage was increased. Table 4.3 shows all

of the results from the 6 specimens tested for leaching and figure 4.3 and 4.4 presents

the variation of pH at different levels of cement content on RAP aggregate without

fibers and with fibers.

Table 4.3 pH test results for RAP aggregates

CEMENT DOSAGE PH READING

0% 6.58

2% 10.88
RAP WITHOUT

FIBERS

4% 11.2

2% 11.18

4% 11.34RAP WITH FIBERS

6% 11.44

According to US EPA benchmarks for stormwater sampling pH should be in the

range of 6-9. As it can be observed, cement-treated RAP leachate samples have a pH

higher than the maximum specified.
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pH test showed an increment in samples as the cement dosage was increasing, it

can be concluded that some components of cement were diluting on the presence of

water. It is also observed that the increase in pH, once cement was added to RAP

specimen, did not vary significantly.

4.4.2 Chemical Oxygen Demand COD test

This test was performed according to Chemical Oxygen Demand of water

(COD) ASTM D1252-00 test procedure at geo-environmental laboratories of UTA.

This test method covers the determination of the quantity of oxygen that certain

impurities in water will consume, based on the reduction of a dichromate solution under

specified conditions. It was observed a decrease in COD when the cement dosage was

increasing. Table 4.4 resumes all results from the 6 specimens tested for leaching.

Figure 4.5 and 4.6 represent the variation of pH at different levels of cement content on

RAP aggregate without and with fiber inclusion.

Table 4.4 Chemical Oxygen Demand Results of RAP Leaching Tests

Cement

Dosage,%

Chemical Oxygen Demand

(mg/l)

0 59.3

2 42.3RAP Without Fibers

4 40

2 58.3

4 49.6RAP With Fibers

6 37

According to US EPA benchmarks for stormwater sampling COD should be in

less than 120 mg/l. As it can be observed, cement-treated RAP leachate samples have a

COD concentration lower than the maximum specified.
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4.4.3 Total Dissolved Solids

Total dissolved solids results are not of significance in water quality or potential

pollutional characteristics; however, the associated adverse effect of high dissolved

constituents has result in the establishment of upper limits for various beneficial uses.

Dissolved materials are of potential importance as a result of their chemical makeup and

effect. Materials in the soluble state may represent alkalinity, acidity, salinity etc.

Table 4.5 shows all of the collected data from leaching test and their variation is

showed in figure 4.7 and 4.8.

Table 4.5 Results of Total dissolved solids on RAP Leaching specimens

Cement Dosage

%
Total Dissolved Solids (mg/l)

0 410.2

2 479.3
RAP Aggregates Without

Fibers

4 505.3

2 465.3

4 495.3RAP Aggregates With Fibers

6 508.4
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Figure 4.9 Variation of the TDS with the addition of cement on RAP materials without
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4.4.4 Total Suspended Solid

The suspended soil determination is valuable in the analysis of pollute waters.

All suspended solids are considered to be settable solids as by bacterial decomposition

and chemical flocculation deposition of these solids eventually does take place.

Table 4.6 resumes all collected data from leaching test and their variation

at different levels of cement dosage is showed in figure 4.9 and 4.10.

Table 4.6 Results of Total Suspended solids on RAP Leaching specimens

Cement

Dosage %

Total Suspended

Solids (mg/l)

0 1357.3

2 505.3RAP Without Fibers

4 477.3

2 616

4 458.6RAP With Fibers

6 466

According to US EPA benchmarks values for stormwater sampling TSS should

be less than 100 mg/l. As it can be observed, cement-treated RAP leachate samples have

higher concentration than the maximum specified. Because of TSS concentration was

inversely proportional to cement dosage addition of cement could be considered as a

potential solution to this issue.
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4.4.5 Turbidity

Turbidity a measure of the amount of solid particles suspended in water that

causes light rays shining through the water to scatter. Turbidity is measured accurately

with a nephelometer (turbidimeter) in units called nephelometric turbidity units, or

NTUs.

Table 4.7 shows all collected data from leaching test and their variation at

different levels of cement dosage is showed in figure 4.11 and 4.12.

Table 4.7 Results of Turbidity on RAP Leaching specimens

Cement

Dosage, %
Turbidity NTU

0% 1.4

2% 1.05RAP Without Fibers

4% 0.72

2% 0.95

4% 0.68RAP With Fibers

6% 0.74
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 Figure 4.14 Variation of the Turbidity with the addition of cement on RAP materials

with fibers
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4.5 Unconfined Compressive Strength Test

After seven days of curing, specimens were tested in the compressive machine

located at UTA structures lab. The results are shown in table 4.8 and the variation of

UCS with RAP material at different cement contents are shown in Figure 4.13, 4.14 and

4.15  in which are included other values of UCS of RAP material reported in other

studies and mentioned in chapter 2.

Table 4.8 UCS at 7 days cured period of RAP aggregates

CEMENT

DOSAGE, %
UCS (psi)

0 50.7

2 229.6RAP WITHOUT FIBERS

4 363.9

2 241.1

4 350.1RAP WITH FIBERS

6 531.6
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fibers
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Figure 4.16 Variation of UCS  with the addition of cement on RAP materials with fibers
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The development of Elastic modulus of RAP materials with and without fibers

was estimated using the stress strain relationships of the material at different levels of

cement dosage. Modulus of elasticity was determined as initial secant modulus at 25%

of the ultimate stress. Figure 4.9 shows a typical stress-strain relationships obtained in

this study and the modulus of elasticity is basically the slope of that secant.

Table 4.9 shows the modulus of elasticity found for RAP specimens with and

without fibers at different cement dosages.   

Typica Stress Strain Curve of Rebase Aggregates from UCS Test.
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Figure 4.18 Typical Stress Strain Curve from UCS test of RAP aggregates
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Table 4.9 Result of Modulus of Elasticity of RAP Materials

CEMENT

DOSAGE,

%

UCS

(psi)

DENSITY

(pcf)

E(7days)

(ksi)

0% 59.7 128.8 4.9

2% 229.6 129.0 21.9RAP WITHOUT FIBERS

4% 363.9 129.8 19.9

2% 241.1 132.1 20.7

4% 350.1 132.9 23.7RAP WITH FIBERS

6% 531.6 133.3 37.9

Equation 4.1 was adjusted empirically and is a good estimate of modulus of

elasticity having the UCS for RAP materials. Figure 4.16 and 4.17 show the

relationships between the compressive strength and elastic modulus of RAP aggregates.

As it can be observed, the proposed model (Equation 4.1) provides a good agreement

with the test data.

2701.30617.0 )7()7( +⋅= daysdays UCSE                                                                           (4.1)

Where the modulus of elasticity is in ksi and the UCS in psi. It is important to

take into account that this relationship should be reviewed with more sampling.
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Relationship between UCS and Modulus of Elasticity for Rebase Materials
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Figure 4.16 Relationship between the UCS and modulus of elasticity of RAP materials
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Figure 4.20 Variation of secant modulus of elasticity with the addition of cement on

RAP materials without fibers
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Figure 4.21 Variation of secant modulus of elasticity with the addition of cement on

RAP materials with fibers
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4.6 Resonant Column Test Results: A Purely Qualitative Assessment

After the 7 days cured period, RC test were performed on the samples. RC tests

was used as a purely qualitative assessment. Differing from the samples used in other

tests of the experimental program, RC samples din not achieve the densities obtained

from Laboratory Compaction Characteristics and Moisture-Density Relationship of

RAP Materials. The densities achieved for these samples, prepared using 2.8 inch

mould, were around 85% of the maximum achieved in the lab test. This can explain the

influence of confinement in the shear modulus of the material observed in RAP

aggregates. Because of that and because of Resonant Column test is a test not suitable

for materials as RAP aggregates, the results of this are going to be analyzed in a

qualitative rather than a quantitative way.

In addition to the specimens mentioned in the experimental program, two more

couple of “core" samples, 2.8-in diameter, directly from the already existing test plots at

TXI were tested. These core samples were tested for the sake of analysis of the

consistence of the results obtained from samples prepared at lab.

Table 4.10 resumes shear modulus results of all samples tested including the

core samples toke at TXI Company.



93

Table 4.10 Results from RC test on RAP Aggregates

RAP WITH NO

FIBERS

RAP WITH

FIBERS

CORE

SAMPLES

Cement dosage, % Cement dosage, %
Cement

dosage,%

0 2 4 2 4 6 6

Σ3=0psi 6.39 25.1 55.7 18.3 38.0 68.0 116.1

Σ3=3psi 10.64 35.5 68.0 28.1 85.6 97.2 124.2

SHEAR

MODULUS

(Gmax), ksi.

Σ3=6psi 18.33 53.6 82.3 37.4 105.7 115.0 126.0

Figures 4.13, 4.14 and 4.15 represent the variation at different cement dosages

of shear modulus obtained from RC test for RAP material without fibers, with fibers

and core samples.
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As it can be observed, the influence of the confinement on the specimens

prepared at lab is much higher than the one on the core samples. This can be explained

due to the difference in cured period and compaction process. As it can be read in

chapter 2, strength developed in first 7 days is just about 25% of the total strength

developed for the material, thus the rigidity of core samples is much higher than

samples in lab and that can be the influence of confinement in the results. Other

explanation could be that the size of the particles is too large to be compacted with the

2.8 inch mould used, therefore a relatively high percentage of voids can be created even

though the density is similar to the density of the core samples.

The next chapter summarizes the main conclusions and some recommendations

for future work.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMENDATIONS

5.1 Summary and Conclusions

The present work is aimed at thoroughly testing the engineering properties of

RAP product in order to assess its suitability as a structurally sound and

environmentally safe material, as well as to maintain high standards in its production

process and field applications. In order to accomplish this goal, a comprehensive series

of basic and engineering tests were conducted on compacted RAP specimens at the

UTA geotechnical and geo-environmental laboratories. RAP specimens with no fibers

(control specimens) were tested at 0, 2, and 4% dosage levels of Portland cement. RAP

specimens with fibers (fiber-reinforced) were tested at 2, 4, and 6% dosage levels of

Portland cement. The following summarizes the main concluding remarks from this

thesis work.

Basic Testing:

1. Saturated hydraulic conductivity decreased as cement dosage in RAP

aggregate material increased. This can be directly attributed to the inclusion of

cement (bonding material), which, upon reacting with water, decreases the void

ratio of the treated specimens.

2. Results from pH tests performed on RAP aggregate materials show an

increase in the amount of cementitious components diluted in water. However, it
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is worth noting that all samples were tested after 7-day curing, in which period

the samples may have not achieved full strength and chemical stabilization;

therefore, increases in pH values might considerably decrease for RAP material

treated with cement for longer curing periods.

3. Chemical Oxygen Demand (COD) shows a decrease in COD units as the

cement dosage increases. On the contrary, Total Dissolved Solids (TDS) tests

show an increase in TDS units as the cement dosage increases. Both tests

corroborated the pH test results. TDS units represent the amount of flushed-out

cementious components that have reacted chemically with free water.

4. Consequently, Total Suspended Solids (TSS) tests also show a decrease

in TSS units as the cement dosage increases. TSS units represent the amount of

filterable fine materials that came off the core RAP specimen.

5. Turbidity tests further substantiated the TDS and TSS test results. As the

total amount of soils is calculated as the amount of TDS solids plus the amount

of TSS solids, it is hence inferred that an increase in cement dosage yielded a

lower value of turbidity.

6. According to US EPA, pH and total suspended solids were out of the

specified values opposite to chemical oxygen demand concentration which is

within the benchmarks values.

7. The inclusion of fibers apparently did not have any significant effect on

the pH, COD, TDS, and TSS response of tested materials.
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Engineering Testing:

8. In general, results from the series of engineering tests performed on

control and fiber-reinforced specimens show a considerable increase in

unconfined compressive strength (UCS), modulus of elasticity (E), and small-

strain stiffness (Gmax) as the cement dosage is increased.

9. A reasonable, empirical correlation between unconfined compressive

strength (UCS) and modulus of elasticity (E) was devised based on control and

fiber-reinforced data. However, further testing is required corroborate the

empirical trends and the analytical correlation derived herein.

10. The resonant column testing program undertaken in this work was

primarily aimed at completing a purely qualitative assessment of small-strain

stiffness response of control and fiber-reinforced materials, given the well

known limitations of this technique for extremely rigid

11.  materials. Results show a considerable increase in material stiffness

with an increase in cement dosage.

12. Engineering test results on control and fiber-reinforced RAP materials

were compared to those reported in the literature for similar reclaimed asphalt

pavement (RAP) materials. Results confirmed the potential of the tested material

as an environmentally and structurally sound alternative to non-bonded

materials for base/sub-base construction purposes.
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5.2 Recommendations for Future Work

From the results obtained in the course of this research, the following

recommendations should be considered for future works:

More number of samples should be tested to address the corroboration of the

equation given in this study.

In order to analyze the influence of fiber inclusion on RAP aggregate material a

special experimental program varying percentage of fibers, performing tensile tests and

in-situ test should be developed. One of the potential tests of this experimental program

could be Flexural tests.
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