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ABSTRACT 

 

NUMERICAL STUDY ON CAPILLARITY- DOMINANT  

FREE SURFACE AND INTERFACIAL FLOWS 

 

 

 

Publication No. ______ 

 

Zhaoyuan Wang, PhD. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor:  Albert Y. Tong 

The continuum surface force (CSF) method has been extensively employed in 

the volume-of-fluid (VOF), level set (LS) and front tracking methods to model surface 

tension forces. Its ability is limited for the surface tension dominant free surface and 

interfacial flows due to the existence of spurious currents. These currents may lead to 

disastrous interface instabilities and failure of grid convergence, which are present in all 

the previous versions of the CSF algorithm. In this study, a coupled level set and 

volume-of-fluid method (CLSVOF) is employed for interface tracking, which offers 

more accurate computations of the curvature and the normal vector and excellent mass 
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conservation properties. The surface tension is modeled by a new surface tension 

implementation algorithm, referred to as the pressure boundary method (PBM). The 

surface tension effect is incorporated into the Navier-Stokes equation via a capillary 

pressure gradient term in the first step of a two-step projection method. 

The accuracy and capability of the present algorithms are tested and validated 

by a series of numerical experiments carried out for both free surface and two-phase 

interfacial flows. The CLSVOF method demonstrates superiority over the VOF method 

in surface tension modeling. It has been shown that the PBM method drastically 

suppresses the spurious currents with the sharp pressure jump condition preserved. The 

robustness of the PBM method on interfacial flows with large density ratios has also 

been exhibited. The CLSVOF and PBM methods have been applied to study the pinch-

off mechanism of a pendant droplet, the relaxation of an elongated liquid ligament and 

the dynamics of a gas bubble rising in a vertical tube. The results of the simulations are 

compared with data from the experimental and theoretical measurements available in 

the literature, and good agreement has been achieved. The accuracy, robustness and 

capability of the current numerical methods are further validated through these 

applications.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Interfacial and free surface flows are common phenomena in fluid dynamics, 

which appear in various natural and engineering processes. An enormous number of 

engineering applications can be found in a wide range of areas such as rocket engines, 

chemical reactors, contamination spreading, multiphase mixture transport, cavitation, 

ink-jet printing, particle transport in blood, crystallization, multiphase cooling, fluidized 

beds, drying of gases and air entrainment in oceans and rivers. Surface tension 

dominant flows with large flow distortions, such as deformation and breakup of liquid 

particles and bursting and coalescence of gas bubbles, attract much attention of 

researchers [1-9]. Due to the fact that these phenomena often occur on scales of space 

and time for which experimental methods, such as visualization techniques, are difficult 

and sometime impossible to perform, numerical simulation serves as a useful alternative 

to better understand such flows. 

The challenge arising in the numerical simulation of interfacial and free surface 

flows is the moving surface between two immiscible fluids with distinct physical 

properties, the shape, location and movement of which need to be identified and 

determined. The interface and flow field interact dynamically in the sense that the 



 

 2 

interface moves under the action of the flow field, and the flow field is affected by the 

position of the interface. When the surface tension force is dominant, the flow field is 

greatly dependent on the geometric properties of the surface such as the curvature and 

normal at the interface. In that case, accurate modeling of the surface tension force and 

representation of the interface are critical. The numerical methods currently available 

for surface tension modeling often cause instabilities and exhibit a poor convergence 

property due to the singular nature of the surface tension at the interface [10], which is 

especially serious for interface modeling methods on fixed grids. When the surface 

tension force is dominant and the density jump is large, catastrophic numerical 

instabilities may occur in the computations. 

The objective of this thesis is to investigate and develop numerical methods for 

surface tension dominant interfacial and free surface flows, in order to increase the 

accuracy of the interface representation and improve on the modeling of the surface 

tension force. A surface tension implementation algorithm, referred to as the pressure 

boundary method (PBM), has been developed, which is used in conjunction with a 

coupled level set and volume-of-fluid method (CLSVOF) [11-14] for the tracking of the 

interface. The integrated algorithm is incorporated into a finite-volume single-phase 

flow solver [15, 16], where a two-step projection method on a fixed grid is employed. It 

is subsequently extended to two-phase interfacial flows for which different physical 

properties across the interface are considered. 

It should be mentioned that, for convenience, the term free surface flow refers to 

flows with single phase, and two-phase flow refers to interfacial flow. Free surface flow 
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is a limiting case of flows with an interface, where the dynamic effect of one phase 

(usually gas) is neglected and the jump condition at the interface becomes a boundary 

condition. This simplifies the problems for the cases for which one of the two phases 

has insignificant influence on the dynamics of the system considered. 

1.2 Organization of  Thesis 

In Chapter 2, a literature review on interface simulation methods and surface 

tension modeling algorithms is presented. Mathematical formulations are presented in 

Chapter 3, which include governing equations, interface tracking and surface tension 

force modeling methods. The coupled level set and volume-of-fluid (CLSVOF) scheme 

is discussed in Chapter 4 along with the results of numerical tests. In Chapter 5, the 

PBM surface tension implementation algorithm is described. Comparisons of the 

numerical results with different methods are made and the accuracy and superiority of 

the present scheme are demonstrated.  

Several applications of the CLSVOF method and the new surface tension model 

are presented in Chapter 6. They serve as further evidence for the accuracy and 

capability of the numerical algorithms developed in this thesis. Finally, conclusions and 

future work are given in Chapter 7.       



 

 4 

 

 
CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Interface Simulation Methods 

Over the past few decades, a number of numerical methods have been 

developed for interface simulation [10, 17]. Generally, these methods can be divided 

into two categories depending on the way the interface is represented and followed, and 

the type of grids used. They are classified as either Lagrangian or Eulerian methods 

[17]. In the Lagrangian methods, the interface is usually defined as a series of discrete 

points which are tracked explicitly, and the interface is maintained as a discontinuity. 

Lagrangian methods allow precise representation of the interface, and are more accurate 

for problems with small interfacial deformations. In the Eulerian methods, the interface 

is represented by appropriate field functions, such as fluid fractions, on a fixed grid, and 

the interface is captured implicitly. Specific advection schemes are required in order to 

preserve the sharpness of the interfacial front. Eulerian methods are preferred for flows 

with complex topological changes and interface deformations. Under the categories of 

Lagrangian and Eulerian methods, the numerical techniques popularly used for interface 

simulation are briefly reviewed in the following.  
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2.1.1 Lagrangian Methods 

Lagrangian based methods track the interface explicitly and the exact location 

of the interface is obtained directly by solving the equations of motion: 

 i
i V

dt
xd 

=  (2-1) 

where ix  is the position vector and iV


 the velocity vector of the interface. Moving grid, 

front tracking, boundary integral and particle-based methods belong to this category. A 

brief discussion is given in the following. 

2.1.1.1 Moving Grid Method 

Moving grid methods have been particularly successful for studies of small 

amplitude waves and weakly deformed bubbles [18-20]. In the moving grid methods, a 

Lagrangian grid is constructed where the interface is a boundary between two sub-

domains. When the grid moves with the fluid, the interface is automatically tracked by 

the grid. Many finite-element methods use this approach. Generally, for interfacial 

flows undergoing small deformation with regular topologies, the moving grid method 

can yield very accurate solutions. When the interface undergoes large deformations, the 

solution accuracy will deteriorate and may lead to the termination of the simulation if 

the element connectivity rules are violated. In this case, the computational domain 

needs to be re-meshed either by keeping the original mesh connectivity constant or 

allowing it to change. Applications of the moving grid method can be found in [21-23]. 
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2.1.1.2 Front Tracking Method 

The front tracking method originates from the marker-and-cell (MAC) method 

[24] and the subsequent extension made by Daly [25]. Its applications can be found in a 

variety of interfacial flow problems [26-30]. In the front tracking method, the interface 

is represented by Lagrangian markers connected to form a front that moves through a 

stationary Eulerian grid. The front tracking method, which tracks the exact location of 

the interface explicitly, achieves a high degree of accuracy by representing the interface 

with high-order interpolation polynomials. However, the handling of topological 

changes is often artificial rather than physical. Mass conservation is another weakness 

that the front tracking method fails to address. 

2.1.1.3 Boundary Integral Method 

For some special cases, such as inviscid or creeping flows, boundary integral 

methods can be used. For inviscid flows, the Navier-Stokes equation is reduced to the 

Euler equation where the interface is both a free boundary between phases and a vortex 

sheet [31]. The flow solution in the entire domain is deduced from the discrete points 

along the interface. For creeping flows, Stone and Leal [6, 7] have applied a boundary 

integral method to study the deformation, relaxation and breakup processes of a viscous 

drop. In their method, it is assumed that the inertia of the fluid flow can be neglected.  

The major advantage of the boundary integral method is the reduction of the 

flow problem by one dimension. In addition, highly accurate solutions can be obtained 

if the flow has a regular topology. However, its extension to 3-D problems is very 
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difficult, and artificial manipulation is necessary for local interface transformation when 

dealing with severe topological changes.  

2.1.1.4 Particle-Based Method 

In the particle-based methods, the macroscopic fluid in the domain is 

represented by a number of discrete particles, which carry mass, momentum and 

energy. The interface is automatically tracked by identifying the position of each 

individual particle. Particle-based methods eliminate the grid partially, such as the 

particle-in-cell (PIC) method [32], or completely, such as the smoothed particle 

hydrodynamics (SPH) method [33, 34]. 

Particle-based methods are able to handle topological changes easily due to the 

fact that each individual particle can move freely. The numerical diffusion across 

interfaces can be completely eliminated by using particle motion to approximate the 

advection terms. Moreover, it is relatively simple and straightforward to extend the 

implementation from 2-D to 3-D. However, the fatal drawback of the particle-based 

method is that it is extremely expensive in terms of CPU time and memory 

requirements, which prohibits its use in practical applications. 

2.1.2 Eulerian Methods 

In the Eulerian methods, the interface is represented by an appropriate field 

function C, which is advanced by solving an advection equation: 

 ( ) 0=∇•+
∂
∂

= CV
t
C

Dt
DC 

 (2-2) 

The interface is implicitly captured and can be reconstructed from the updated field 

functions according to their properties. This category includes continuum advection, 
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volume tracking, level set, and phase field methods, which will be discussed briefly in 

the following. 

2.1.2.1 Continuum Advection Method 

The continuum advection method refers to traditional difference methods for 

solving the advection Equation (2-2). The equation is a simple hyperbolic type that can 

be solved with various techniques such as first-order upwind, high-order monotonic van 

Leer [35], PPM [36], and TVD [37] schemes. Continuum advection schemes have been 

employed as interface tracking methods in mold filling simulations [38]. This kind of 

scheme is designed upon the premise that C in Equation (2-2) is smoothly varying. 

However, when C is discontinuous, such schemes will have interface diffusion 

problems if the convection term is approximated by standard spatial differences of C 

directly across the interface. Even with higher-order approximations, the numerical 

diffusion will broaden the interface to an unacceptable width of as many as four to eight 

cells. One approach to fix the interface diffusion problem is to transform the 

discontinuous C function into another smooth and continuous functionφ , then solve 

Equation (2-2) withφ , and finally transform φ  back to C. This idea, proposed in [39], is 

the basic premise of the level set method.  

2.1.2.2 Volume Tracking Method 

Volume tracking methods originated in the early 1970s [40-42] are the most 

widely used Eulerian approaches for interface tracking. In the volume tracking method, 

the interface is captured by the VOF function which represents the volume fraction 

occupied by the liquid phase in each computational cell. Interface locations are 
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reconstructed from the VOF function, and usually non-diffusive and geometric 

techniques are used to advect the VOF function in order to keep the interface sharp.  

Various improvements and developments have been made over the last three 

decades [43]. Recently, a more accurate interface reconstruction scheme, the piecewise 

linear interface construction (PLIC) method, has been employed [44-45]. One of the 

most important advantages of the VOF method is that mass can be conserved exactly; 

however, the interface normal and curvature can not be estimated accurately from the 

VOF function whose spatial derivatives are not continuous near the interface. 

2.1.2.3 Level Set Method 

The level set method was first introduced by Osher and Sethian [46]. Its 

application has expanded from modeling interfacial phenomena in fluid dynamics to 

image enhancement, computer recognition, grid generation, and so on [47, 48].  

In the level set method, the interface is described by the level set function ( )tx,φ  

which is defined as a signed distance function. Its magnitude equals the shortest 

distance from the interface to the cell center with its sign being negative inside the 

interface and positive outside of the interface. At the interface, the level set function is 

zero. 

The LS function is advanced by the following advection equation: 

 ( )V
t
φ

φ
∂

= − •∇
∂


   (2-3) 

The discretization of the above equation is straightforward, because the LS function is 

smooth and continuous. However, it has been found that the LS function will fail to be a 
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distance function after being advanced by Eq. (2-3) and a re-initialization process [49] 

is needed for its return to a distance function. The reinitialization process generally is 

not mass conservative, which is the major drawback of the level set method.  

2.1.2.4 Phase Field Method 

Although phase field methods have been successfully used in the simulation of 

solidification microstructures [50], their applications to Navier-Stokes flows are fewer 

[51]. In this method, a phase field variable ψ  is defined on a fixed grid, which is 

assumed to be discrete values of 1 in one phase and 0 in the other. 

Phase field methods are based on the model of fluid free energy where the 

interfacial energy density depends upon both ψ  and gradients of ψ .  The phase field 

variableψ  can be updated by solving the Cahn-Hilliard equation [51]: 

 ϕαψ
ψ 2)( ∇=∇•+
∂

∂ V
t


 (2-4) 

whereα  is the diffusion parameter, called the mobility, and ϕ  is the chemical potential, 

defined as the rate of change of the free energy with respect to ψ . The advantage of this 

method is that simple standard schemes for the advection terms can be used. The main 

drawback of the phase field methods is that a wide numerical interfacial layer is usually 

needed which might cause problems. Nevertheless, phase field formulations for 

interfacial flows are still new and deserve further attention and exploration. 

It should be noted that this review of interface simulation methods remains at an 

introductory level. Some methods are emphasized; some are omitted and not mentioned. 
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Comprehensive and detailed discussions on each particular method can be found in the 

relevant references given in this thesis.  

2.2 Surface Tension Modeling 

Within a fluid, the intermolecular forces of attraction are balanced in all 

directions. However, for the fluid molecules at or near the surface, the cohesive forces 

are unbalanced due to the discontinuity of fluid properties at the interface (see Figure 

2.1). The unbalanced forces of intermolecular attraction at the surface result in the 

surface tension effect, which causes the interface to behave like an elastic membrane.   

The surface tension force plays a significant role in some important interfacial 

flow problems such as droplet deformation, bubble motion, liquid ligament breakup, 

etc. The accurate computation of surface tension is one of the most critical elements of 

numerical methods devised for free surface and interfacial flows. The accuracy and 

choice of surface tension modeling methods are closely related to the interface tracking 

approaches. In the following, a brief review on surface tension modeling techniques 

associated with different interface tracking methods is given.  

2.2.1 Surface Tensile Force Method 

In the conventional front tracking methods, the surface tension force is 

calculated directly on the Lagrangian interface grid [52-54], and then distributed to the 

fixed Eulerian grid. Provided the precise location of the interface is known, it is 

probably the most straightforward way to treat the surface tension as a surface tensile 

force that is pulling along the interface. In the two-dimensional case, with reference to 

Figure 2.2, the surface tension force on an element of the interface can be written as: 
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 )()( 12

2

1

tttdxF ss


−== ∫ σσ  (2-5) 

where σ  is the surface tension coefficient and 1t


 and 2t


 are unit tangent vectors at the 

ends of an interface element. In this method, only the tangents at the end points of an 

interface element need be found; curvature is not necessary.  The advantage of this form 

is that it exactly preserves the conservation property that the sum of the surface tension 

forces around a closed surface identically equals zero. 

This method is commonly used in the front tracking approaches [53, 55] where 

the interface can be explicitly represented with discrete points and elements. For the 

Eulerian based capture methods, in which the precise locations of the interface are not 

offered, this model may fail.  

2.2.2 Continuum Surface Force Model 

The continuum surface force (CSF) model has been extensively used in the 

VOF and level set methods to model surface tension force since it was first introduced 

by Brackbill et al. [56]. In the CSF method, the surface tension effect is treated as a 

body force distributed within a transition region of finite thickness at the interface 

across which the fluid properties are assumed to change continuously from one fluid to 

another. The body force is located at the grid points acting on the fluid elements 

everywhere in the transition region. Since the surface tension force is no longer applied 

exactly at the interface, the precise interface location is not required. 
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The basic idea of this method is that the volume integral of the body force is 

equal to the surface integral of the surface tensile force in the limit of infinitesimally 

small transition region thickness h: 

 dSxFdVxF sS saV bh
)()(lim

0


∫∫ =

→ δδ
 (2-6) 

where sx  is a position vector at the interface, and saF


 the surface force per unit 

interfacial area, given by: 

 )()(
)(

ss
ss

sa xnx
ds

xtd
ds
FdF 




σκσ ===  (2-7) 

The body force is given by: 

 )()()( xxnxFb


δσκ=  (2-8) 

whereσ is the coefficient of surface tension, κ  the mean curvature, n  the normal to the 

surface, and )(xδ  a delta function concentrated at the interface. It can be proved that 

the expression on the right hand side of Equation (2-8) satisfies the identity in the 

integral equation (2-6). Detailed derivation and proof can be found in reference [56]. 

This body force is included in the momentum equations as a source term. The 

continuum treatment of the discontinuous change at the interface eases the 

implementation of the surface tension effect where only the VOF function or the LS 

function is needed. In problems with complex topological changes, the CSF model 

shows robustness and versatility over the conventional method. However, the CSF 

model has been found to generate so-called spurious currents in the neighborhood of the 

interface [45, 57, 58]. When the surface tension forces are dominant, these vortex-like 

currents may destroy the interface and lead to disastrous instabilities at the interface 
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(see Figure 2.3). This often leads to failure of convergence upon grid refinement as 

well. 

2.2.3 Boundary and Jump Condition Method 

At the interface between two immiscible fluids, the surface stress condition in 

the normal direction is given by 

 
n
unppv ∂

∂
−=+− µσκ 2   (2-9) 

where κ is the local free surface curvature,  σ  the surface tension coefficient, µ the 

dynamic viscosity, vp  the vapor (gas) pressure, n  the free surface normal and u  the 

velocity. For two-phase flows, the surface tension effect serves as an internal jump 

condition for the pressure at the interface. Direct application of this jump condition is 

difficult, and requires the solution of a more complicated elliptic problem [59].  

For free surface flows, viscous effects are negligible and Eq. (2-9) is reduced to 

the Laplace’s formula: 

 σκ=− vpp  (2-10)  

The gas side pressure, vp , is taken as constant, and then the surface tension effect 

becomes a Dirichlet pressure boundary condition, which can be easily applied at the 

free surface. This method is well suited for moving and adaptive grid methods [10]; its 

application can be found in the VOF [60] and MAC [61] methods for free surface flows.  
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Figure 2.1 Molecular forces and surface tension. 
 
 

 

 
 

 

 
Figure 2.2 Illustration of the surface tensile force exerted at a point sx  on an interface 

element sδ . 
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(a) 

 
(b) 

 
Figure 2.3 Spurious currents at the interface in the CSF method: (a) spurious currents 
arising around a droplet [Rudman, 1998]; (b) a typical deformed shape of a droplet at 

the end of the simulation [Meier et al., 2002]. 
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CHAPTER 3 

MATHEMATICAL FORMULATIONS 

 

3.1 Governing Equations 

For two incompressible, immiscible fluids that are separated by a moving 

surface, the motion of both fluids can be described by the Navier-Stokes equations. The 

discontinuities in physical properties such as density, viscosity and surface tension at 

the interface can be treated in different ways; accordingly, the governing equations are 

reformulated into two types: whole-domain (one-field) and jump-condition (multi-field) 

formulations [10].  

3.1.1 Whole-Domain Formulation 

The whole flow domain considered can be divided into some sub-domains 

which are occupied by different fluids. At the interface, the discontinuous physical 

properties, such as density, viscosity and surface tension can be smoothed over a 

transition region of finite thickness. Thus, the whole flow domain can be described by a 

single set of momentum and continuity equations within the “one-field” formulation 

approach, where different fluid properties are considered in each individual phase. 

Proper stress conditions at the interface between different phases are enforced 

implicitly. With the assumption that the fluid properties are constant in both phases, the 

governing equations are written as: 
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 0=•∇ V

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 bFgpVV
t
V 


ρ
τ

ρρ
111)( ++•∇+∇−=•∇+

∂
∂  (3-2) 

where V


is the velocity, ρ  the density, p the pressure, τ  the viscous stress tensor, g  

the gravitational acceleration and bF


 the body force. For Newtonian fluids, the stress 

tensor,τ , can be written as 

 Sµτ 2=   (3-3) 

where µ is the dynamic viscosity and S is the strain rate tensor given by: 

 ( ) ( )[ ]T
VVS


∇+∇=
2
1  (3-4) 

The effective density and viscosity at each grid point are evaluated as: 

 HH lg ρρρ +−= )1(  (3-5) 

 HH lg µµµ +−= )1(  (3-6) 

where subscripts g and l denote gas and liquid respectively; H is a step function 

smoothed over three grid spacings to prevent numerical instability arising from steep 

density gradients [49], defined as: 
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where φ  is the level set function, and h is the grid spacing. 

Equation (3-2) is discretized as  
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where the superscripts n and n+1 represent the value of the variable at consecutive time 

steps. The only implicit term in the above equation is the pressure. Gravity, advection, 

surface tension and viscosity are approximated with old time nt  values.  

A two-step projection method [16] is used where Equation (3-7) is decomposed 

into two equations:  

 ( ) n
bn

nn
n

n
n

FgVV
t
VV 


ρ
τ

ρδ
11~

++⋅∇+⋅−∇=
−  (3-8) 

and 

 1
1 1~

+
+

∇−=
− n

n

n

p
t

VV
ρδ



  (3-9) 

where V
~ is the intermediate value of velocity. In the first step, the intermediate velocity 

field,V
~ , is obtained from the previous time step after accounting for the effects of 

advection, viscosity, gravity, and body forces. In the second step, the velocity field, 

1+nV


, is projected onto a zero-divergence vector field resulting in a pressure Poisson 

equation given by 

 
t
Vpn

n δρ

~1 1 ⋅∇
=








∇⋅∇ +   (3-10) 

which can be solved by using an incomplete Cholesky conjugate gradient (ICCG) 

solution technique [62]. 
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3.1.2 Jump-Condition Formulation 

In contrast to the “one-field” model, where the discontinuous properties, such as 

density, viscosity and surface tension, at the interface are treated in a continuum 

fashion, an alternative method treats the discontinuities as jump conditions. The entire 

flow domain is decomposed into a number of bulk-phase domains within which the 

usual nonsingular Navier-Stokes equation holds. Across the interface between different 

domains, some quantities, such as velocities, should be continuous, whereas others, 

such as pressure, should have specific jumps. 

The jump conditions at the interface include the pressure boundary condition 

written in tensor form as: 

 
n

unpp k
kv ∂

∂
−=+− µσκ 2    (3-11) 

for the normal direction, and the velocity boundary condition:  

 
ss
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n
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k
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∂
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µ )(    (3-12) 

for the tangential direction, where  
n

 and 
∂
∂

∂
∂
s

 are the surface and normal derivatives 

respectively. With a constant surface tension coefficient, the term on the right hand side 

of Equation (3-12) will be zero. 

Away from the interface, the Navier-Stokes equation is written as: 

 gpVV
t
V 
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and the continuity equation remains the same as Equation (3-1). Equation (3-13) is then 

discretized as: 

 nn
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+

τ
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  (3-14) 

Equation (3-14) can be solved by the same two-step projection method as 

discussed in the previous section with proper jump conditions applied at the interface. 

In this study, the surface tension effect is treated as a pressure jump condition; the 

implementation algorithm for this will be detailed in Chapter 5. 

3.2 Interface Tracking 

The choice of the interface tracking approach is dependent on the physical 

problem under consideration. As mentioned in Chapter 1, the problems of interest in the 

present study are capillarity-dominant free surface and interfacial flows with large flow 

distortions and topological changes, for which the Eulerian based methods are better 

suited. The volume-of-fluid (VOF) method [15-17, 42, 44, 45] and the level set (LS) 

method [49], as two Eulerian-based methods, have been extensively used. They both 

use phase functions to track the interface implicitly: volume fraction for the VOF 

method and distance function for the LS method.  

One of the advantages of these methods is that they can easily handle flow 

problems with large topological changes and interface deformations such as liquid 

ligament breakup, bubble merging and bursting, and droplet elongation and breakup. As 

discussed in Chapter 2, however, each method has its own strengths and weaknesses. 

The VOF method has the desirable property of mass conservation, but lacks accuracy 
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on the normal and curvature calculations due to discontinuous spatial derivatives of the 

VOF function near the interface. On the other hand, the normal and curvature can be 

calculated accurately from the continuous and smooth distance functions in the LS 

method. One serious drawback of this method is that mass conservation is often 

violated. To overcome such weaknesses of the LS method and the VOF method, the 

coupled level set and volume-of-fluid (CLSVOF) method has recently been explored 

[11-14]. The implementation algorithm of the CLSVOF method in this study will be 

discussed in detail in the next chapter. 

3.3 Surface Tension Force Modeling 

The continuum surface force (CSF) model is commonly used in the volume-of-

fluid (VOF) and level set (LS) methods to model the surface tension force. As 

mentioned in Chapter 2, the CSF model interprets the surface tension force as a body 

force, bF


, distributed within a transition region of finite thickness at the interface. It has 

shown its robustness and versatility over the conventional methods.  

In the continuum method, the surface tension force is smoothed out over a finite 

thickness involving several layers of computational cells. This smoothing of a 

discontinuity is actually detrimental and results in numerical errors that worsen with 

increasing width of the smoothing region. On a fixed orthogonal grid, the mass 

contained in a given cell is to be accelerated by the body force. In the transition region, 

the body force and the mass often do not vary at the same rate. While the mass 

approaches a small value near the free surface, the body force may still maintain a 

relatively large value. This will lead to an increase in flow acceleration and 
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consequently the formation of spurious currents. This severely limits its ability to model 

capillarity-dominant flows. 

In the present study, a new surface tension implementation algorithm, referred 

to as the pressure boundary method (PBM), is introduced. The surface tension force is 

incorporated into the Navier-Stokes equation via a capillary pressure gradient term in 

the first step of a two-step projection method. The details of this implementation 

algorithm will be given in Chapter 5. 
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CHAPTER 4 

CLSVOF METHOD 

 

4.1 Introduction 

The basic idea for the CLSVOF method is to combine the strengths of the LS 

method with the VOF method in order to represent and capture the interface more 

accurately. In general, the interface is reconstructed via a piecewise linear interface 

construction (PLIC) scheme from the VOF function and the interface normal vector 

computed from the LS function. Based on the reconstructed interface, the level set 

functions are re-distanced via a geometric procedure for achieving mass conservation. 

By taking advantage of both the VOF and LS methods, the CLSVOF method is able to 

compute the normal and curvature more accurately while mass conservation is well 

satisfied. A flow chart for the CLSVOF algorithm is shown in Figure 4.1. The coupling 

of the LS and VOF methods occurs at the interface reconstruction and the re-distancing 

of the level set function. 

It should be noted that the implementation of the PLIC scheme is not unique; 

various implementation algorithms have been reported. The same is true with the 

CLSVOF method where different re-distance implementation schemes have been 

attempted. In the present study, the PLIC scheme presented by Rudman [44, 45] is used 

and the LS re-distance algorithm proposed by Son and Hur [13] is followed. A brief 
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introduction of the VOF and LS methods is given next, followed by the CLSVOF 

algorithm.  

4.2 Volume-of-Fluid Method 

In the volume-of-fluid method, the interface is tracked by the VOF function 

which is defined as the liquid volume fraction in a cell with its value between zero and 

one in a surface cell and at zero and one in air and liquid respectively, i.e., 

 

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



<<=

fluid.  toexternal               0,
surface, freeat    1,F0
fluid, in the               1,

),( txF 
      (4-1) 

An example for the VOF functions representing a circle is shown in Figure 4.2. The 

number in each cell denotes the volume fraction occupied by the liquid. The VOF 

functions are advanced by the following propagating equation: 
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In order to preserve mass, Equation (4-2) is rewritten in the conservative form: 
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It is discretized temporally and decomposed into two fractional steps, for the two-

dimensional case, given by:  
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where F~  is the intermediate VOF function. On the staggered grid, the VOF function, F, 

is located at the cell center and velocities, u and v, are stored at the cell edges, as shown 

in Figure 4.3. Discretizing the above equations spatially and integrating over a 

computational cell (i, j) yields: 
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where ji
n

ji uFflux ,2/1,2/1 )( ±± =  and 2/1,2/1, )~( ±± = jiji Fvflux . They denote VOF fluxes 

across the edges of the computational cell. However, 2/1,,2/1  and ±± jiji FF  are the VOF 

functions at the cell edges which are not defined. Direct arithmetic interpolation from 

the neighboring cell-centered values results in serious numerical errors because F is not 

continuously distributed across the interface. A geometric calculation procedure, 

referred to as interface reconstruction, is necessarily adopted.      

4.3 Level Set Method 

The LS function,φ , is defined as a signed distance function whose magnitude 

equals the shortest distance from the interface. Its sign is determined as:  



 

 27 

 








<
=
>

interface.  theinside 0,
interface, at the 0,

interface,  theof outside ,0
),( txφ  (4-8) 

The zero level set contours are used to represent the interface. The LS function 

data corresponding to a circle are shown in Figure 4.4. All the LS values are located at 

the cell center and assigned as the shortest distance to the interface. The LS function is 

initialized as a distance function because of its important property, namely, 1=∇φ , 

which can be used to make a number of simplifications.  

After initialization, the LS function is moved with the flow field, according to 

the following advection equation: 

  0)( =∇•+
∂
∂

φ
φ V
t


 (4-9) 

Since the LS function is smooth and continuous, the discretization of Equation (4-9) is 

much more straightforward and some simple advection schemes can be used.  

It should be noted that the LS function will fail to be a distance function 

(i.e., 1≠∇φ ) after being advanced by Eq. (4-9). After some period of time, the LS 

functions become irregular as shown in Figure 4.5. In some regions, the level sets pile 

up on each other, increasing the local gradient, while in other regions, the level sets 

separate from each other, flattening out the gradient. In order to reduce numerical 

errors, the level set function must be reinitialized, which can be achieved by obtaining a 

steady-state solution of the following equation: 
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where 0φ  is the LS function of the previous time step, t the artificial time, and h the grid 

spacing. Equation (4-10) can be re-written in the form: 
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where w  is the propagating velocity normal to the interface with unity magnitude, 

given by: 
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The zero level set is propagated both inwards and outwards in the normal direction. The 

level set function will return to a distance function after the reinitialization process. 

It is well known that the advection and reinitialization processes do not 

guarantee mass conservation. The LS functions must be re-distanced prior to being 

used. This is achieved by calculating the distance geometrically from the cell center to 

the reconstructed interface.  

4.4 Interface Reconstruction 

The purpose of the interface reconstruction is to locate the interface from the 

discrete VOF and LS functions by a specific scheme. As previously discussed, the 

interface reconstruction serves two purposes: one is to calculate the VOF fluxes across 

each computational cell with an interface, and the other is to re-distance the LS function 

for achieving mass conservation. The interface configuration is not unique, and 

different approximations of the interface have been used [44]. In this study, a piecewise 

linear interface construction (PLIC) algorithm presented by Rudman [44, 45] is 
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adopted. The interface within each cell is approximated by a straight line segment the 

orientation of which is given by the normal vector. The properly oriented interface is 

then located in the cell such that the area (volume) is determined from the VOF 

function.   

In the CLSVOF method, the normal vector to the interface is estimated from the 

smooth LS function as: 

 φ
φ
φ

∇=
∇
∇

=n  (4-13) 

This is different from the usually “pure” VOF method where discontinuous VOF 

functions in the neighboring cells are used [16]. The orientation angle of the interface is 

then defined as: 
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where α  is the angle that the outward pointing unit surface normal makes with the 

positive x-axis. By rotating each interfacial cell such that α  lies in the range of 

2/0 πα ≤≤ , the multitude of possible interface configurations are reduced. As shown 

in Figure 4.6, only four cases need to be considered. The line segment is moved along 

the normal direction to fit the shadow area (volume) with the VOF value in the cell. The 

shadow area (volume) can be calculated by the following n-sided area (volume) 

formula: 
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for the two-dimensional case, and 
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for the axisymmetric case. Once the calculated area (volume) matches the VOF value at 

the cell, the coordinates of endpoints ( 21, ss xx  ) of the line segment are determined, and 

the reconstruction of the interface is completed. Then, the fluxes for the VOF advection 

can be evaluated based on the reconstructed interface. Details of this procedure can be 

found in [15, 45] and are not discussed here.  

4.5 Re-distancing of the Level Set Function 

After the reconstruction of the interface, the LS functions must be re-distanced 

in order to achieve mass conservation. The re-distancing of the LS function includes 

initial determination of the sign of the LS function and the subsequent calculation of the 

shortest distance from the cell centers to the reconstructed interface through a geometric 

process.  

The sign of the LS function, φS , is given by:  

 )5.0( CsignS −=φ  (4-17) 

where sign denotes a function that returns the sign of the numeric argument. C is the 

VOF function for the two-dimensional case. It is obvious that when C>0.5, the cell 

center will fall inside the liquid where the LS function takes the negative sign, and vice 

versa. For the axisymmetric case, however, C will be the fractional area of the 

shadowed region as shown in Figure 4.6 rather than the VOF function. Since the VOF 

function denotes the volume fraction for the axisymmetric case, a value greater than 0.5 

does not guarantee that the cell center lies inside the liquid.  



 

 31 

Next, the magnitude of the LS function is determined, which is the key step of 

the re-distancing process. The basic idea is to find the closest point on an interfacial cell 

to the neighboring cell centers. Although various configurations of the reconstructed 

interface exist, generally, all the interfacial cells can be simply divided into two cases: 

single-phase cells (i.e., F=0 or 1) and interfacial cells (i.e., 0<F<1). For two adjoining 

cells ( ji, ) and ( ',' ji ), the closest point on cell ( ',' ji ) to the center of cell ( ji, ) will 

always either be at the corner or the centroid of the cell edges. As a result, these points 

should always be considered first when calculating the shortest distance associated with 

two adjoining cells. When cell ( ',' ji ) contains a line segment, the closest point on the 

segment will be either the endpoint or the projection point of the center of cell ( ji, ). 

Thus, the possible closest points on cell ( ',' ji ) to cell ( ji, ) can be the corners and edge 

centers on the cell faces, or the endpoints and projection points on the line segment 

contained in the cell. As shown in Figure 4.7a, when the cell ( ',' ji ) is a full liquid cell, 

the shortest distances are calculated simply by connecting the centers of the neighboring 

cells to the corners or face centroids of cell ( ',' ji ). In Figure 4.7b, the nearest point on 

the shadowed area to point A is its projection point onto the line segment within cell 

( ',' ji ) rather than the top right corner at all. For a more general case, as shown in 

Figure 4.7c, for point A and B, the shortest distance is from the cell center to the 

projection point; for point C and D, the nearest point is the endpoint of the segment, and 

for the other cells, the closest points on cell ( ',' ji ) are either corners or face centroids.  
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The LS function is re-distanced following the algorithm presented by Son and 

Hur [13]. The logic procedure is given as: 

1. Set the magnitude of the LS function, φ = large value, and discard all the old 

values.  

2. For each computational cell ( ',' ji ), apply the following procedures: 

(a) If the cell ( ',' ji ) is a single-phase cell (i.e., 0',' =jiF  or 1) and has an 

adjoining cell ( "," ji ), where 1'" ≤−ii  and 1'" ≤− jj , satisfying φφ
','"," jiji SS ≠  

(refer to Figure 4.7a): 

For each neighbor cell (i, j), where 4' ≤−ii  and 4' ≤− jj , satisfying 

φφ
',', jiji SS ≠ , ji,φ  is assigned to be the shortest distance between cell center jix ,

  

and the points 2/',2/' njmix ++
  on the cell ( ',' ji ) faces and vertexes, where 

)]',1min(,1max[ iim −−=  and )]',1min(,1max[ jjn −−= , as shown in Figure 

4.7a. 

(b) If 10 ',' << jiF  (refer to Figures 4.7b, c): 

(1)Determine the distance from any neighboring cell center to the segment 

which is evaluated as )()( 1sxxnxd 
−•=  or )()( 2sxxnxd 

−•= , where 1sx  

and 2sx are the end points of the interface obtained in the interface reconstruction 

procedure. 
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(2) Then, for each neighbor cell (i,j), ji,φ  is assigned to be the shortest distance 

between the cell center jix ,
  and the interface segment or the points 2/',2/' njmix ++

  

on the cell ( ',' ji ) faces: 

If )]([ 2/',2/', njmiji xdsignS ++≠
φ , (refer to point E of Figure 4.7c), 

( )2/',2/',, ,min njmijiji xx ++−=


φφ  

Else if the point )( ,, jiji xdnx 
− , which is projected from jix ,

  onto the interface, 

is inside the cell ( ',' ji ) (point A and B in Figure 4.7c), 

( ))(,min ,,, jijiji xd 
φφ =  

Otherwise (point C and D of Figure 4.7c), 

( )2,1,,, ,,min sjisjijiji xxxx 
−−= φφ  

It should be noted that only the LS functions within the interface neighboring 

cells are re-distanced; cells several layers away from the interface are not considered, 

since the LS information is needed only at the vicinity of the interfacial cells for the 

computations of the normal vector and curvature. 

4.6 Advection Tests 

In this section, the CLSVOF scheme, along with the LS and VOF methods, is 

tested with prescribed velocity fields. This allows direct comparison of the advection 

schemes alone without the involvement of a flow solver. 
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4.6.1 Rotation of a Slotted Disc 

A slotted disc with a radius of 0.6 and slot width of 0.16 is initially located at 

(2.0, 3.0) on a 4×4 computational domain, as shown in Figure 4.8. A uniform grid of 

100×100 is used. This problem, referred to as the Zalesak’s problem, is often used for 

the advection scheme test [63]. The prescribed velocity field is given as: 

0.2),(      ,0.2),( −=−= xyxvyyxu  

with the axis of rotation centered at (2.0, 2.0).  

The results are shown in Figure 4.8 after one, two and three rotations for the LS, 

VOF and CLSVOF methods. In the case of the LS method, the slot has completely 

vanished after one rotation; as for the VOF and CLSVOF methods, the slot remains 

even after three rotations although the sharp edges of the slot have been smoothed out. 

The slotted disc shapes obtained from the VOF and CLSVOF methods are in very close 

agreement. The improvement of the CLSVOF method over the VOF scheme is not 

significant. 

4.6.2 A Circle in Shearing Flow 

A circle evolving in a shearing flow is another challenging test for advection 

schemes, which involves severe topological changes.  A prescribed shearing flow has 

been proposed by Rudman [44], which is given by: 

),cos()sin(),( yxyxu =  )sin()cos(),( yxyxv −= , π≤≤ yx,0 .  

A circle with a radius of 5/π  is prescribed at ( 4/,2/ ππ ) on a domain of ππ × . 

The computational grid chosen is 80×80. The initial configuration and velocity profile 

are shown at the top row of Figure 4.9. The circle is advanced under the shearing flow 
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for 800 and 1600 time steps, and then returns back by reversing the flow.  In the LS 

method, serious mass loss can be seen in the figure. Mass conservation is well preserved 

for the VOF and CLSVOF methods as expected. Again, the results obtained from VOF 

and CLSVOF methods are very close, and the superiority of the CLSVOF method over 

the VOF method is not shown.   

In the two advection tests, the weakness of the LS method in maintaining the 

interface sharpness and mass conservation is clearly demonstrated. The improvement of 

the CLSVOF method over the VOF method is not obvious in the above two tests, which 

has been confirmed by private discussion with other researchers [64]. This might be 

explained by the reason that the flow fields in the advection tests are prescribed 

analytically without variations with time. The shape and topological changes of the 

interface have no effects on the flow field. However, the superiority of the CLSVOF 

will be demonstrated when combined with the flow solver for surface tension 

calculation, which will be discussed in later chapters.   
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Figure 4.1 Flow chart for the CLSVOF scheme: coupling process in the dashed box.  

 
 

Figure 4.2 A sample VOF data on the mesh representing a circle interface. 
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Figure 4.3 The location of variables on a computational cell. The x- and y-velocities are 
located at the vertical and horizontal cell faces, respectively, and the pressure, the VOF 

function and the level set function are stored at the cell centers. 
 
 

 
 

Figure 4.4 Level set function values corresponding to a circle over a square grid. 
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Figure 4.5 Level sets of a falling droplet and a rising bubble. Top: without re-

initialization; Bottom: with re-initialization.  Contours shown from -0.5 to 0.5 by 0.25, 
dashed line is the zero contour. [Sussman et al., 1994] 
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Figure 4.6 Possible configurations for the interface reconstruction. 
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Figure 4.7 Possible configurations of the interface for the level set function re-

distancing. 
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Initial Configuration 
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Figure 4.8 Slotted disc rotation test for the LS, VOF-PLIC and CLSVOF methods 
respectively. 
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Figure 4.9 A circle in shearing flow test. 
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CHAPTER 5 

SURFACE TENSION IMPLEMENTATION ALGORITHM 

 

5.1 Overview 

A major difficulty with many interface simulation methods is the accuracy of 

modeling the surface tension force, which often deteriorates due to the existence of 

spurious or parasite currents. These currents are found in most surface tension models 

[10] and are especially serious when using a fixed Eulerian grid. 

In recent studies [45, 54-55, 57-58], much research work has been devoted to 

suppressing spurious currents and increasing the accuracy of surface tension modeling. 

Generally, those efforts are focused on two aspects: the accuracy of the curvature 

estimation and the coupling of the surface tension effect with the flow solver. As for the 

first aspect, various methods have been devised to represent the interface more 

accurately. Based on the VOF method, Meier et al. [58] have developed a new 

technique using empirical formulas and data bases which have been generated and 

stored in a data bank to determine interface curvature. In their algorithm, a third-degree 

polynomial is used to fit the data. The surface tension force is only applied on the 

interfacial cells rather than over several computational layers. It is found that the choice 

of density at the interfacial cells significantly affects the spurious currents. Renardy and 

Renardy [57] developed a parabolic reconstruction of surface tension (PROST) method 
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by using a quadratic representation of the surface with a least-squares fit to the VOF 

functions along with a new body force algorithm. The key idea of their method is that 

the discrete pressure gradient should be exactly balanced by the body force term at the 

discrete level. The same idea is adopted by a more recent study carried out by Shin et 

al. [54] in the context of a front tracking method. Popinet and Zaleski [55] use cubic 

splines to construct the interface but track the interface using marker particles with the 

volume fractions estimated from the constructed interface. The pressure gradient 

calculation is improved by a pressure gradient correction procedure. All the studies 

discussed above greatly contribute to improving the accuracy of surface tension 

modeling and offer deep insight on the origin of the spurious currents. However, the 

surface tension effect is still treated as a body force [45, 54, 57-58], or as a source term 

[55] in the momentum equation, and the surface discontinuity is still numerically 

smoothed. This numerical smoothing of the discontinuity at the interface is found to be 

the cause of errors in numerical simulations [65].  

Some schemes [59, 65-66] have appeared recently which treat the boundary 

effects at the interface in a sharp fashion. In [66], the Ghost Fluid Method (GFM) was 

developed for two-phase compressible inviscid flow, which allows sharp resolution of 

the contact discontinuities. Kang et al. [59] extended this idea to three-dimensional 

multiphase incompressible flows including the physical effects of viscosity and surface 

tension. The method proposed in [65] can maintain discontinuous properties at the 

interface without any artificial smoothing; however, it cannot be applied to viscous 

flows. The level set method is commonly used in the above studies. Although it offers 
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the exact sub-cell interface locations, the inherent mass conservation problem in the 

level set formula remains. Moreover, the sharp treatment of boundary effects sometimes 

introduces disturbances at the interface which may cause convergence problems, 

particularly for calculations with less resolved grid spacing. 

In the present study, a different surface tension implementation algorithm, 

referred to as the pressure boundary method (PBM), is introduced.  The surface tension 

effect is treated as a jump condition at the interface rather than being smoothed out over 

a transition region. The surface tension force is incorporated into the Navier-Stokes 

equation via a pressure gradient.  

5.2 Continuum Surface Force Model 

In the CSF model, the surface tension effect is treated as a body force, bF


, which 

is distributed within a transition region of finite thickness at the interface, given by: 

  )(xnFb


δσκ=  (5-1) 

whereσ is the coefficient of surface tension, κ  the mean curvature, n  the normal to the 

surface, and )(xδ  a delta function concentrated at the interface defined by: 

 
otherwise

hifhh
x

5.1 
         

0
3/))3/2cos(1(

)(
≤



 +

≡
φπφ

δ
  (5-2) 

whereφ  is the level set function, and h is the grid spacing. In the context of the VOF 

method, the delta function )(xδ  is replaced by: 

 ]/[)( FFx ∇=


δ  (5-3)  
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where F is the VOF function, and [F] is the jump of the VOF function [56]. A sketch of 

a sample CSF distribution is shown in Figure 5.1. Non-zero body forces are only 

located in the transition regions outside of which no body forces exist.  Along an 

interface normal, the magnitude of the body force exhibits a bell-shaped profile as 

shown in Figure 5.1b.   

The CSF formulation makes use of the fact that numerical models of 

discontinuities in finite volume schemes are really continuous transitions within which 

the fluid properties vary smoothly. The surface tension force acts on every fluid element 

in the transition region.  

5.3 Pressure Boundary Method 

In the PBM method, the surface tension effect is treated as a sharp boundary 

condition at the interface for a capillary pressure field. Other discontinuous properties at 

the interface, such as density and viscosity, however, are treated in a continuous way 

and weighted by the VOF function: 

 FF lg ρρρ +−= )1(         (5-4) 

 FF lg µµµ +−= )1(       (5-5) 

For free surface flows, both gg µρ  and  are zero. 

It is worthy noting that both the density and viscosity are weighed by the VOF 

function rather than the Heaviside function as expressed in Equations (3-5) and (3-6). 

This gives more accurate estimation of the density and viscosity at the interfacial cells, 

and allows mass conservation to be well preserved. On the other hand, the smearing of 
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the density and viscosity can prevent disturbances resulting from the otherwise sharp 

treatment [59]. 

5.3.1 PBM Algorithm 

Basically, the pressure term in Equation (3-14) is separated into two 

components: one accounting for the surface tension and the other for achieving mass 

conservation. This enables the surface tension induced sharp pressure conditions at the 

free surface to be preserved. 

The two-step projection method [16] is used where the momentum equation 

given by Eq. (3-14) is decomposed into the following two equations: 

 1
11)(

~
pgVV

t
VV

n
nn

n
n

n

∇−+•∇+•−∇=
−

ρ
τ

ρδ




  (5-6) 

and 

 2

1 1~
p

t
VV

n

n

∇−=
−+

ρδ



  (5-7) 

where V
~ represents an intermediate velocity and  

 21
1 pppn +=+  (5-8) 

Prior to the execution of the two-step projection procedure, p1 is first computed 

from the following equation: 

 01
1 =







∇•∇ pnρ

 (5-9) 
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along with the jump condition induced solely by surface tension at the interface. The 

discretization of the above equation and the jump conditions applied at the interface will 

be discussed in a later section. 

In the first step of the projection method, an intermediate velocity field V
~ is 

computed from Eq. (5-6). The second step involves taking the divergence of Eq. (5-7) 

while imposing the incompressibility condition on the velocity field 1+nV


with: 

                            01 =•∇ +nV


 (5-10) 

This results in a single Poisson equation for p2 given by: 

 
t
Vpn δρ

~1
2

•∇
=








∇•∇  (5-11) 

This equation can be readily solved by using an incomplete Cholesky conjugate 

gradient solution technique. The velocity field 1+nV


 is then updated via Eq. (5-7) and 

the pressure 1+np  from Eq. (5-8). A flow chart for the overall computational cycle is 

given in Figure 5.2. 

5.3.2 Capillary Pressure Field Calculation 

The capillary pressure field is obtained by solving Eq. (5-9) associated with the 

internal jump boundary conditions induced by the surface tension effect at the interface. 

Discretization of Equation (5-9) gives: 

   0
)/()/()/()/( 2/1,12/1,1,2/11,2/11 =

∆

∇−∇
+

∆

∇−∇ −+−+

y
pp

x
pp jijijiji ρρρρ  (5-12) 

The complete pressure jump condition at the interface is given by Equation (3-

11), which can be rewritten as: 
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n

unpp k
kv ∂

∂
+=− µσκ 2   (5-13) 

The above equation implies that both the surface tension and viscous stress at 

the interface contribute to the pressure jump. Since 1p  is extracted to handle the surface 

tension effect only, the pressure jump condition for solving Equation (5-12) is reduced 

to Laplace’s formula: 

 σκ=− vpp  (5-14) 

The viscous contribution to the pressure jump at the interface will be enforced 

implicitly as in a “one-field” formulation. 

 In order to obtain the pressure gradient in Equation (5-12), special 

discretization techniques need to be adopted for the computational cell at the interface 

where pressure is not continuous, but rather has sharp variations. The discretization of 

the pressure gradient will be discussed separately for free surface flow and two-phase 

interfacial flow in the following. 

For free surface flows, the dynamic effect of one phase (e.g., gas) is neglected, 

where the pressure is treated as constant. Thus, the jump pressure condition becomes a 

Dirichlet boundary condition at the interface given by: 

 σκ+= vI pp  (5-15) 

where Ip  is the liquid side interface pressure which is used as the boundary value for 

1p  in the solution of Eq. (5-12). 

The finite difference scheme employed by Gibou et al. [67] is adopted here to 

discretize Eq. (5-12) in the interface regime. With reference to Figure 5.3 and the 
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pressure subscript 1 dropped, the pressure gradients in Eq. (5-12) at the faces of cell (i, 

j) are given by: 
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where pIr and pIt are pressures at the interface given by Eq. (5-15). θ  is the fraction of 

the distance from the interface to the center of cell (i, j) given by (refer to Figure 5.3): 
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with the LS function, φ , serving as the distance function.  

The level set function is used to locate the free surface where its value changes 

sign and the discretizations given in Eq. (5-16a) and Eq. (5-16c) are applied. Otherwise, 

standard discretizations given in Eq. (5-16b) and Eq. (5-16d) are used. 

For two-phase interfacial flows, the standard discretization method can be used 

to approximate the pressure gradient at the cell face where there is no interface between 
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two adjacent cells. For example, refer to Figure 5.4, at the left face of cell (i,j), the 

derivative is discretized as   

 
x
pp

p jiji
ji ∆

−
=∇ −

−
,1,

,2/1)(  (5-18) 

On the other hand, if there is an interface between two adjacent cells, special 

attention must be paid to the discretization of the derivative at the cell face. Because 

pressure is not continuous across the interface due to the jump conditions induced by 

the surface tension effect, the standard discretization method described above cannot be 

applied; otherwise, the pressure profile will be numerically smeared as in the continuum 

method. A first-order-accurate discretization method was developed in [68] for the 

variable coefficient Poisson equation with jump conditions. In this method, the pressure 

gradient at the cell face between two adjacent cells where an interface is located is given 

by 
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whereσ is the coefficient of surface tension, and κ  is the mean curvature. Then, the 

pressure equation can be discretized as 
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where BTRL FFFF  and ,,  are source terms. For example, with reference to Figure 5.4a, 

an interface lies between cell (i, j) and (i+1,j),  
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These source terms are zero where no interface exists between two cells.  

The basic idea of the above method is to apply the jump conditions, namely, 

 σκ=− + jiji pp ,1,  (5-22) 

near the interface rather than at the exact interface location.  

Considering the sub-cell location enclosed by the interface and the cell faces, in 

fact, the jump condition is exactly as follows at the interface, refer to Figure 5.4, 

 σκ=− IgIl pp  (5-23) 

where Ilp is the liquid side interface pressure, and Igp is the gas side interface pressure. 

As shown in Figures 5.4a, b, if an interface is crossing two adjacent cells, two possible 

cases exist.  In case a, the right face of the cell (i, j) is within the liquid phase; whereas 

in case b the right face is in the gas phase.  

Refering to Figure 5.4a, the pressure gradient at the right face of cell (i, j) is 

given by 
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pp
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=∇ + θ
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,2/1)(  (5-24)  

where rθ  is the distance fraction which can be obtained from the level set functions. 

Substitution of Equation (5-23) into the above equation yields,                                                                                                                                   
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In the above equation, a new unknown, the gas side pressure Igp , is introduced. 

Next, attention will be turned to the determination of this unknown. For free surface 

flow, the gas side pressure can be taken as constant, then a second-order-accurate 
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symmetric discretization with Dirichlet boundary conditions, as discussed in the 

preceding section, may be used. However, for some two-phase flow problems, in which 

the gas side pressure cannot be taken as constant, then Igp  can be extrapolated by using 

a high-order polynomial among the points adjacent to the interface. However, this will 

lead to a non-symmetric discretization which cannot be solved by efficient linear system 

solvers. To rectify this shortcoming, refer to Figure 5.4a, notice that on the gas side, the 

interface is much closer to the center of cell (i+1,j); therefore, the variation from Igp to 

jip ,1+  can be neglected, which means, 

 jiIg pp ,1+≈  (5-26) 

Substitution of the above equation into Eq. (5-25) gives, 
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Likewise, in case b, the derivative at the right face will be 
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Plugging the jump condition into the above equation, one obtains 
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Using pressure jip ,  to replace the liquid side interface pressure Ilp , and 

substituting into the above equation gives, 

 
x

pp
p

r

jiji
ji ∆−

−−
=∇ +

+ )1(
)(

)( ,,1
,2/1 θ

σκ  (5-28) 



 

 54 

In the y direction, a similar discretization method will be used.   

Finally, substituting the pressure gradients into Equation (5-12), a symmetric 

discretization of the pressure equation is obtained, which can be solved readily by using 

an incomplete Cholesky conjugate gradient  (ICCG) method [62]. 

5.4 Numerical Tests and Discussion 

In this section, a number of numerical experiments have been carried out to 

validate the accuracy of the PBM algorithm for free surface and two-phase interfacial 

flows. For free surface flows, first, a stationary droplet is employed to test the static 

performance, and then the impingement of a falling droplet onto a substrate is modeled. 

Finally, the relaxation process of an elongated liquid droplet is studied which serves as 

an example for capillarity-dominant flows. For two-phase interfacial flows, spurious 

currents at the interface of a stationary circular droplet are investigated first, and then a 

falling droplet in air and different regimes of gas bubbles rising in water are simulated.  

5.4.1 Free Surface Flows 

5.4.1.1 A Stationary Droplet in Air 

A stationary spherical droplet in the absence of gravity is often used as a 

benchmark test in the literature on surface tension algorithms for spurious currents [57-

58]. Theoretically, in the absence of external forces and initial velocities, the velocity 

field should remain zero throughout. However, some vortex-like flows in the 

neighborhood of the interface, referred to as spurious currents in the literature, have 

been found in many surface tension simulation methods [10]. 
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In the present study, calculations are performed on an axisymmetric 

computational domain of 1.0 mm×2.0 mm. Water at room temperature and standard 

atmospheric conditions is used. For comparison purposes, the CSF method is also 

included in the computations. The CSF method is used in conjunction with both the 

CLSVOF and the VOF algorithms. The maximum and mean magnitudes of the velocity 

at 0.5 ms for the different methods are given in Table 5.1. 

Table 5.1 Maximum and Mean Velocity Magnitude after 0.5 ms, time 
step, t∆ =1.0e-4, 1.0e-5, 1.0e-6 for three grids respectively. 

Method yx ∆×∆  
(mm×mm) 

Max. Magnitude 
(mm/ms) 

Mean Magnitude 
(mm/ms) 

VOF-CSF 0.04×0.04 
0.02×0.02 
0.01×0.01 

0.3641080 
0.4120642 
0.5095969 

0.00899505 
0.00558990 
0.00564543 

CLSVOF-
CSF 

0.04×0.04 
0.02×0.02 
0.01×0.01 

0.2005396 
0.2829645 
0.2539782 

0.00398587 
0.00207592 
0.00108487 

CLSVOF-
PBM 

0.04×0.04 
0.02×0.02 
0.01×0.01 

0.0067001 
0.0037879 
0.0000000 

6.3110e-005    
1.1087e-005 
0.0000e-005 

 

As shown in Table 5.1, with the CSF model, the CLSVOF method produces less 

spurious currents than the VOF method and is hence a better method. This is perhaps 

not surprising since the estimation of the curvature in the CLSVOF method is more 

accurate than that in the VOF method. With the CLSVOF method, it is obvious that the 

PBM method introduced in the present study gives better results than the CSF method 

with significantly reduced spurious currents. 

Figure 5.5 shows the maximum and mean velocity magnitudes versus time plot 

for the three different methods with various grid sizes. It can be seen that for both CSF 
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models, i.e. VOF-CSF and CLSVOF-CSF, the magnitude of the velocity increases with 

time initially and starts fluctuating afterward. On the other hand, the magnitudes of the 

spurious currents in the CLSVOF-PBM method are under control throughout. 

Figure 5.6 shows the velocity profiles for the three different cases. Strong 

spurious currents can be seen in the vicinity of the free surface for both the VOF-CSF 

and CLSVOF-CSF methods but are drastically suppressed for the CLSVOF-PBM 

method. The pressure distributions are shown in Figure 5.7. For the CSF method, it can 

be seen that the pressure is smeared over 3 to 4 computational cells in the transition 

region across the interface where it changes gradually from the ambient pressure (taken 

as zero) to the jump pressure ( ).P σκ∆ =  As for the CLSVOF-PBM method, the 

pressure changes sharply across the interface and remains rather uniformly distributed 

inside the drop. 

In the CSF model, non-zero pressure gradients are generated in the transition 

region across the interface due to the smearing nature of the pressure. Consequently, 

unphysical currents will inevitably be present in the region. This modeling of the 

surface tension effect is not consistent with the associated sharp pressure jump 

condition at the interface. As for the PBM method, a relatively uniform pressure field is 

obtained with very small pressure gradients throughout the droplet. The sharp pressure 

jump condition at the free surface is preserved and the undesirable spurious currents are 

significantly reduced. 
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5. 4.1.2 Impact of a Droplet onto a Substrate 

To serve as a test on the dynamic performance of the present algorithm, a falling 

droplet impinging onto a substrate is simulated. Water droplets of 0.125 mm radius with 

the same physical properties as in the previous test are used. Droplet surface contours at 

several time instants are shown in Figure 5.8 with the flow fields given at one of the 

time instants prior to impingement. The deformations of the droplet after impact are 

indicated by the free surfaces shown at the bottom. 

For droplets with small radius, surface tension will be significant, which tend to 

maintain a spherical shape. As shown in Figure 5.8, the results obtained with the CSF 

and PBM methods are in close agreement. The droplet is only slightly flattened at the 

bottom prior to striking the substrate in the CSF method while it remains spherical with 

the PBM method throughout. Spurious currents are not visible in either case. This is 

perhaps due to the fact that the flows are highly dynamic within the droplet and 

spurious current is relatively insignificant. Nevertheless, the results demonstrate the 

capability of the PBM scheme in dynamic simulations.   

5.4.1.3 Relaxation of a Moderately Elongated Liquid Ligament 

Finally, the relaxation process of a moderately elongated liquid ligament is 

simulated. This is a good example of capillarity-driven free surface flows where the 

fluid motion is driven by surface tension forces associated with curvature variations 

along the ligament free surface. The initial configuration of the elongated ligament is 

shown in Figure 5.9. It is 13.6 mm in length with a radius of 0.3 mm at the cylindrical 

portion. The bulbous elliptical end shape is based on the experimental findings of Stone 
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et al. [6]. In order to conserve computational resources, only half of the ligament is 

considered and the computations are conducted on an axisymmetric domain with 

dimensions of 7.0 mm×1.0 mm. The liquid used has water properties as in the previous 

test except for the value of the surface tension, which is 1000 times that of water. 

Again, VOF-CSF, CLSVOF-CSF and CLSVOF-PBM are used for comparison. 

The relaxation sequence leading to the break-up is shown in Figure 5.10. It 

consists of a relatively rapid bulging of the end followed by break-off of the bulbous 

end from the central portion of the drop. The numerical results are in excellent 

agreement with the “end-pinching” mechanism outlined by Stone et al. [6, 7]. More 

details will be presented in Chapter 6. 

Calculations have been made with four different meshes for grid convergence 

studies. As shown in Figure 5.10, grid convergence fails in the VOF-CSF method, while 

it appears to have been achieved in the CLSVOF-CSF and CLSVOF-PBM methods. 

Figure 5.11 shows the velocity fields at two time instants. In the CSF method, the 

spurious currents are pronounced at the earlier stage of the relaxation when the flow is 

weak and surface tension is dominant, and these currents become invisible prior to the 

breakup of the ligament when the inertial force is dominant. In the PBM method, the 

spurious currents are not visible in both stages.  

In Table 5.2, the relative differences in the position of the interface (ligament 

volume is chosen here) between different grid sizes are shown. The relative differences 

of the interface position between succeeding grid sizes are measured since the exact 

solution for this problem is not known. In the VOF-CSF method, the relative 
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differences increase with mesh refinement, which indicates the failure of the grid 

convergence. The relative differences decrease in both the CLSVOF-CSF and 

CLSVOF-PBM methods, and the PBM differences appear to decrease faster. 

Table 5.2 Relative Differences of Ligament Volume between Consecutively  
Reduced Grid Sizes at One Time Instant   

yx ∆×∆  
(mm×mm) 

VOF-CSF 
 

CLSVOF-CSF 
 

CLSVOF-PBM 
 

0.06×0.06 N/A N/A N/A 
0.03×0.03 0.1175 0.0841 0.1069 

0.015×0.015 0.2048 0.0826 0.0716 
0.0075×0.0075 0.2552 0.0741 0.0355 
 

5.4.2 Tests for Two-Phase Interfacial Flows 

In free surface flows, only a single phase is considered. The effect caused by the 

sharp variations of the physical properties is not taken into account. In the following 

tests both gas and liquid phases are considered. Constant properties of air and water are 

chosen unless otherwise specified: g=-9.8 m/s2, σ =0.0728 kg/s2, lρ =1000 kg/m3, 

gρ =1.226 kg/m3, lµ =1.137×10-3 kg/ms and gµ =1.78×10-5 kg/ms. 

5.4.2.1 Spurious Currents Test 

Consider a two-dimensional computational domain of 2.0 mm×2.0 mm, a 

circular liquid droplet centered at (1.0 mm, 1.0 mm) with a radius of 0.5 mm. In the 

absence of gravity and initial velocity, the relevant dimensionless parameters are the 

Ohnesorge number 2/1)/( DOh σρµ= , density ratio gl ρρ /  and viscosity ratio gl µµ / . It 

has been found in the literature that the spurious currents increase with density ratio and 

decrease with the Ohnesorge number. However, in the reported spurious current tests 
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[55, 57], uniform density and viscosity are often used.  The effect of these physical 

property jumps on the generation of the spurious currents is overlooked. In [57], the 

tests are performed only for the cases with a relatively large Ohnesorge number of 2.37, 

which is a relative stable situation. In this study, much more demanding cases with 

much smaller Ohnesorge number ( 31071.3 −× ) and larger density ratios (up to 1000) are 

considered. For comparison purposes, the CSF method is included again in the 

computation with the interface tracked both by the CLSVOF method. 

Figure 5.12 shows the velocity vector field at 0.95 ms for various cases with 

different density ratios obtained by the CSF and PBM methods. As expected, strong 

spurious currents are apparent at the interface for the CSF method. As for the PBM 

method, velocity vectors are almost invisible even in the case with a large density ratio, 

indicating the absence of the fluid flow. Moreover, as shown in the figure, the density 

ratio remarkably affects the magnitude of the spurious currents in the CSF method but 

has little effect on the PBM method. This is dearly evident in Figure 5.13 which shows 

the maximum velocity magnitude versus time. Obviously, the increase of the density 

ratio significantly strengthens the spurious currents in the CSF method. This is because 

of the continuum treatment of the surface tension force. On a fixed orthogonal grid, the 

mass contained in a given cell, which is proportional to the density, is to be accelerated 

by the body force. In the transition region, the body force does not vary at the same rate 

as the density. While the density approaches a small value (e.g., on the gas side) near 

the interface, the body force may still maintain a relatively large value. This leads to an 

increase in flow acceleration and consequently the formation of strong spurious currents 
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in the lower density phase. This problem is eliminated in the PBM method, where the 

surface tension effect is treated as a pressure jump condition which is located exactly at 

the interface without smoothing.  

Pressure distributions for cases with a density ratio of 1 are shown in Figure 

5.14. For the CSF method, the pressure profile has been smeared out with an obvious 

transition region across the interface. The non-zero pressure gradients in the transition 

region will consequently drive flows even with uniform density. As for the PBM 

method, the sharp pressure jump is preserved. The pressure is uniformly distributed in 

each individual phase where pressure gradients are approximately zero, and the surface 

tension forces are exactly balanced by the pressure differences across the interface. As a 

result, spurious currents are greatly suppressed.  

The spatial resolution effect is investigated by performing the computations on 

three consecutively reduced grids. Maximum velocity magnitude versus time plot for 

different mesh sizes is shown in Figure 5.15. The magnitudes of the spurious currents 

increase with time in the CSF method, and mesh refinement enhances rather than 

reduces the spurious currents. As for the cases with the PBM method, it can be seen that 

the magnitude does not increase with time but tends to fluctuate or reach to zero after a 

period of time. At the earlier stage of the computations, the magnitudes of the spurious 

currents vary with mesh refinement randomly, and eventually the finer the mesh size is, 

the sooner the magnitude approaches zero.  
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5.4.2.2 A Falling Drop in Air 

In this section, a water droplet falling in air is simulated to test the dynamic 

performance of the PBM algorithm for two-phase interfacial flows. The same initial 

configuration and computational domain as in the free surface flow test are used. 

Although the results obtained from the CSF and PBM methods are in close agreement 

when treated as a free surface flow problem (refer to Figure 5.8), the accuracy of the 

CSF method in the two-phase flow model deteriorates seriously as shown in Figure 

5.16. It can be seen from the figure that the droplet does not maintain a spherical shape 

during its fall, and the interface is not smooth but appears to be slightly wavy 

throughout due to the existence of spurious currents. Figure 5.17 shows the velocity 

fields for the two different methods. It is clear that the CSF method produces strong 

irregular and chaotic flows in the gas phase near the interface, whereas the PBM 

method generates a smooth and continuous flow field in the whole domain. 

In the free surface flow mode, where the velocity and pressure vanish as the 

density approaches zero, the dynamic effect of the gas phase is neglected. In the two-

phase interfacial flow mode, both gas and liquid phases are considered. The spurious 

currents are particularly severe on the gas side of the transition region, which further 

propagate into the adjacent gas region. Under these currents, the interface may be 

distorted and the computation fails especially when the surface tension force is 

dominant.  

The superiority of the PBM method over the CSF model is apparent in this 

dynamic test. To further investigate the accuracy and applicability of the PBM method 
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for two-phase interfacial problems, the motion of a series of air bubbles with different 

diameters is tested. 

5.4.2.3 Rising Bubbles in Water 

Air bubbles rising in water are good examples for two-phase flow problems, 

where surface tension and viscosity are coupled with buoyancy. Six tests were 

performed with the bubble diameters ranging from 1.5 mm to 48 mm. For all cases, a 

computational grid of 35×175 is used on an axisymmetric domain with the initial 

bubble radius of eight cells; therefore, the larger the bubble size the coarser the grid. 

Solid wall boundary conditions are applied at the side and bottom, and an open 

boundary condition is imposed at the top with a constant atmospheric pressure.  

The simulation results are shown in Figure 5.18. In the Eo-Mo-diagram of Clift 

et al. [1], these cases are aligned on a line of constant Morton number 37.1010−=Mo  

where the bubble shapes change from “spherical” to “elliptical” and “spherical-cap”. 

The shapes are reasonably predicted in the present numerical simulations, except for the 

last case where bubble collapse occurred due to the large bubble size. 

The terminal velocity versus bubble diameter plot (without the last case) is 

given in Figure 5.19. Comparison is made with the experimental correlation obtained in 

[1], which is given by: 

 eelT gddu 505.0/14.2 += ρσ  (5-29) 

It can be seen from the figure that the rise velocities for most cases are 

comparable to the experimental data. However, in the first case with the diameter of 1.5 

mm, the rise velocity is much lower than the experimental result. This problem has 
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always troubled CFD researchers when simulating small size bubbles [69]. A possible 

explanation is that initial shape deformation is inevitable after the bubble is released in 

the experimental measurement, which may cause an initial velocity of a certain non-

zero magnitude. In the numerical simulation, no initial shape deformation occurs for 

small size bubbles when the bubble is prescribed a spherical initial shape.  
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Figure 5.1 (a) Distribution of surface tension forces in the CSF model. (b)Variation of 
the magnitude of the body force across the transition region. 
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Figure 5.2 Flow chart for one computational cycle. 

 

 
Figure 5.3 Discretization of pressure gradient at the interface and determination of the 

distance fraction θ. 
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(a) 

 
(b) 

Figure 5.4 Gradient discretization across the interface: (a) 5.0>rθ ; (b) 5.0<rθ . 
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(Maximum velocity)                                        (Mean velocity) 

 
Figure 5.5 Maximum and mean velocity magnitudes versus time. Grid spacing at top: 

0.04×0.04; middle: 0.02×0.02; bottom: 0.01×0.01. 
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(a)  

 
(b)  

 
(c)  

Figure 5.6 Velocity profiles for a stationary droplet at 0.5ms: (a) VOF-CSF; (b) 
CLSVOF-CSF; (c) CLSVOF-PBM. Grid: 0.02×0.02. 
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(a) 

 
(b) 

 
(c) 

Figure 5.7 Pressure distribution for a static droplet at time 0.5ms: (a) VOF-CSF; (b) 
CLSVOF-CSF; (c) CLSVOF-PBM. 
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(a) CSF                                                     (b) PBM 
 

Figure 5.8 Time sequence and velocity profiles of a falling droplet in air, CLSVOF 
used in both cases. 

 
 

 
 
 

Figure 5.9 Schematic representation of an elongated liquid ligament. 
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(a) 

   
 

    
(b) 

   

    
(c) 

   

 
Figure 5.10 Breakup sequence of an elongated liquid ligament: (a)VOF-CSF; (b) 

CLSVOF-CSF; (c) CLSVOF-PBM.  Dash: 0.06×0.06; dash-dot: 0.03×0.03; solid: 
0.015×0.015; dot: 0.0075×0.0075. 
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VOF-CSF                          CLSVOF-CSF                       CLSVOF-PBM 
 

Figure 5.11 Velocity profiles of an elongated ligament for different methods. Top row: 
earlier stage of the relaxation process; bottom row: immediately prior to the pinch-off 

occurrence. 
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          (a)       

             (b)    

              (c)   
Figure 5.12 Velocity vector field for cases with different density ratios (PBM on the 

left, CSF on the right): (a) gl ρρ / =1; (b) gl ρρ / =100; (c) gl ρρ / =1000. 
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Figure 5.13 Maximum velocity magnitude versus time for different density ratios. 
 
 

  

 
 

(a) 
 

Figure 5.14 Pressure distribution: (a) PBM method; (b) CSF method. 
 



 

 76 

 
(b) 

 
Figure 5.14 (continued) 

 
 

 

 
Figure 5.15 Maximum velocity magnitudes versus time for different mesh sizes. 
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(a)                                                                  (b) 
 
 
 

Figure 5.16 Time evolution of drop shapes for different methods: (a) CSF; (b) PBM. 
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(a)                                                                           (b) 

 
 

Figure 5.17 Velocity profiles of a falling drop at one time instant: (a) CSF; (b) PBM. 
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Figure 5.18 Air bubbles rising in water with different diameters. 
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Figure 5.19 Numerical and experimental rise velocities versus bubble diameter. 
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CHAPTER 6 

APPLICATIONS 

 

In this chapter, the CLSVOF and PBM algorithms are applied to three different 

studies of free surface and two-phase interfacial flows. The accuracy of these 

algorithms is further confirmed. The versatility and robustness of the computer code are 

verified.  

First, the pinch-off mechanism of a pendant droplet is investigated using the 

CLSVOF scheme for free surface tracking, and the CSF method for surface tension 

modeling. The VOF method, in conjunction with the CSF model, is also adopted for 

comparison purposes. The superiority of the CLSVOF scheme over the VOF method is 

demonstrated. As a capillarity-driven flow problem, the relaxation process of an 

elongated liquid ligament is also studied. Finally, the behavior of a single gas bubble 

rising in a narrow vertical tube is simulated. This serves as an example for two-phase 

interfacial flow problems. The interface of the bubble is tracked using the CLSVOF 

scheme and surface tension is modeled by the PBM method. 

The numerical results are in good agreement with the experimental and 

theoretical studies reported in the literature.  
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6.1 Pinch-off Mechanism of a Pendant Droplet 

6.1.1 Introduction 

Deformation and breakup of a pendant droplet has been an intensive research 

topic for more than one hundred years. There are many industrial applications involving 

a fluid flow with free surfaces that cause a pinch-off phenomenon. Ink jet printing and 

gas spraying of an engine are such examples. Many studies have been experimentally 

and numerically carried out on the deformation and breakup of a pendant droplet. A 

detailed literature review can be found in [70].  

Although there have been many studies on liquid pendant droplets, sufficient 

explanation of the breakup mechanism is lacking in the literature. Most studies do not 

give information on the flows such as velocity profiles and the pressure distribution that 

are of importance in the evolution of a pendant droplet in the neighborhood of the 

breakup point. The main objective of this work is to examine the breakup mechanism of 

a pendant droplet. Comprehensive study of the breakup mechanism of the pendant 

droplet is conducted in [70]. The focus of the present study is on the evaluation of the 

accuracy of the CLSVOF and VOF methods. 

6.1.2 Initial Configuration and Boundary Conditions 

The schematic of the pendant drop forming from a vertical capillary tube is 

shown in Figure 6.1. A capillary tube with an inner radius of 1.0 mm and outer radius of 

1.6 mm is placed at the top of the domain, and the length is set to two times the outer 

radius. Water with constant physical properties evaluated at 20 oC is used as the 

working fluid. The computation is carried out on an axisymmetric domain, and the 
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initial configuration of the free surface is flat across the whole front tube surface as 

shown in Figure 6.2.   

At the inner tube wall, a non-slip boundary condition is applied, and a “wet” 

boundary condition is imposed at the front of the tube surface: 

 ,0.1),,( =tzrF  at 0  ,1 ==
R
z

R
r  (6-1) 

The flow is initially at rest and a fully developed parabolic flow enters the tube: 
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where Q  is the liquid flow rate and 2/ iRQ π  is the average velocity. The boundary 

conditions are set according to the experimental and numerical studies [71, 72] in order 

to make a comparison of the results.   

Three non-dimensional characteristic values are defined [72] to compare with 

the results of the present study: the relative limiting lengths of the primary droplet to the 

outer radius of the capillary tube, Rld / , RLd / , and the volume of the drop, 3/ RV  

(refer to Figure 6.1). 

6.1.3 Results and Discussion 

In order to make a comparison, the simulation is performed using both the 

CLSVOF and VOF methods for the free surface tracking, and the CSF method for 

surface tension modeling.  

Figures 6.3 and 6.4 show the time sequence of the evolution of a pendant 

droplet using the VOF-PLIC and the CLSVOF schemes, respectively. Experimental 
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measurement [71] shows that the primary droplet is spherical shape (see Figure 6.5), but 

Figure 6.3 (l) shows that the droplet is elongated in z-direction and is more like an 

ellipse than a sphere. The shape of the droplet reported in [72] is also elliptical. As for 

the CLSVOF scheme, a more spherical-shaped droplet is produced as shown in Figure 

6.4(l). Moreover, after the primary droplet is detached, the top of the droplet is 

immediately flattened due to the high local pressure associated with the large curvature 

as shown in Figure 6.5 (k-m). The CLSVOF method apparently predicts the shape 

flattening as shown in Figure 6.4 (m-o), while in the VOF-PLIC scheme, the flattening 

cannot be found. When the grid spacing is reduced by half for the grid refinement test, a 

water jet rather than a droplet is produced with the VOF method, which implies that 

grid convergence fails. As for the CLSVOF scheme, results obtained on different grid 

sizes are in very close agreement and no spatial convergence problem is encountered 

[70]. This indicates that the CLSVOF method is more accurate than the VOF-PLIC 

method, and hence the superiority of the CLSVOF method is demonstrated. 

The characteristic values of the water droplet with the CLSVOF scheme are 

compared with Zhang's VOF and experimental measurement over wide range of liquid 

flow rate in Figure 6.6. For the CLSVOF case, the uniform inlet velocity profile is also 

simulated at liquid flow rate of 10 mL/min. It is found that the numerical results of the 

CLSVOF scheme are in good agreement with the experimental measurements 

especially at liquid flow rates over 15 mL/min. This is further validation of the accuracy 

of the CLSVOF method. 
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The breakup mechanism is detailed in [70] and will not be repeated here. 

Parametric studies have also been done on the effect of inlet velocity profile, viscosity, 

gravity, and surface tension coefficient. The inlet velocity profile has little effect on the 

breakup mechanism. Viscosity is found to have negligible impact on the breakup 

mechanism. Gravitational acceleration and surface tension coefficient control the time 

of breakup. Formation of successive droplets has been studied to see the effects of the 

initial conditions on the droplets. The pinch-off time is affected by the initial conditions 

adopted in the present study but effects on the geometric properties are negligible. 

6.2 Relaxation of an Elongated Liquid Ligament 

6.2.1 Introduction 

The deformation and breakup of a liquid drop has been of considerable interest 

in fluid dynamics. It occurs in processes such as raindrop formation, inkjet printing and 

various engineering applications involving sprays. The objective of the present study is 

to examine, via numerical simulations, the breakup mechanism of a moderately 

elongated liquid ligament in air. It is motivated by several recently published studies [4, 

6, 7, 73]. The first one by Stone and coworkers [6, 7] involves both experimental and 

computational studies on the breakup behavior of highly elongated droplets in a 

neutrally buoyant quiescent suspending fluid. A computer-controlled four-roll mill is 

used to elongate a liquid drop in another immiscible suspending liquid. The elongated 

liquid drop undergoes a complicated, time-dependent relaxation process after the flow is 

abruptly stopped. It either returns to a single sphere or breaks into smaller drops. It was 

observed that breakup occurs due to deterministic flows established by capillary forces 
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associated with curvature variations along the interface, rather than by the classical 

capillary-wave instability. The observed motion consists of a relatively rapid bulging of 

the end of the drop followed by break-off of the bulbous end from the central portion of 

the drop. Detailed numerical calculations using the boundary-integral method are 

presented which elucidate the end-pinching mechanism. It is noted that the relaxation 

and breakup dynamics are completely determined by the viscosity ratio and the initial 

droplet shape. A critical elongation ratio exists beyond which ligament break up will 

eventually occur. 

The next study, by Qian and Law [4], is an experimental investigation of binary 

droplet collision dynamics with emphasis on the transition between different collision 

outcomes. A long stretched ligament is produced as the two main droplet masses move 

away from each other after their collision. The ligament will either contract to form a 

single droplet or further break up into satellite droplets. It has been demonstrated that 

satellite droplet production for high-inertia collisions is the consequence of ligament 

pinching as observed in the study by Stone and coworkers [6,7]. 

Recently, the work of Stone and coworkers [6,7] was extended by Ha and Leal 

[73], whose main focus is on the effect of the strain rate that characterizes the drop 

stretching process. Existence of the critical elongation ratio for drop breakup is 

confirmed. However, it is shown that the relaxation process, for the same elongation 

ratio, depends on the strain rate at which the drop elongates. Even more surprisingly, 

‘re-stabilization’ occurs where further increase of the elongation ratio beyond the 

critical value would lead to cessation of pinch-off breakup.  
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A key difference between the above two groups of studies is in the suspending 

fluid, which has a significant effect on the dynamics of the flow. The neutrally buoyant 

environment provided by the suspending liquid in Leal et al.’s study justifies the use of 

a quasi-steady Stokes flow model. However, the model is not applicable in the case of a 

gas phase suspending fluid with relatively higher Reynolds number and stronger surface 

tension force, and consequently the boundary integral method cannot be used. There 

have been very few experimental studies reported in the literature on the breakup 

behavior of a free liquid ligament in air. This perhaps is a reflection on the technical 

difficulties due to the presence of gravity whose effect cannot be eliminated as in the 

case of a neutrally buoyant suspending fluid in the liquid-in-liquid studies such as the 

experiment performed by the Leal et al.. 

The focus of the present study is on the relaxation dynamics of a liquid ligament 

in air. A numerical study that takes into consideration the inertia and the transient 

effects of the flow is performed. The unsteady Navier-Stokes equations are solved along 

with the free surface tracked by the CLSVOF method and the surface tension force 

simulated by the CSF model. 

6.2.2 Results and Discussion 

A schematic of the initial configuration of an elongated ligament used in the 

numerical simulation is shown in Figure 6.7. The choice of the initial end shape is based 

on the findings of Stone et al. [6,7].  Water with physical properties evaluated at 

standard conditions is used and the initial length and radius of the ligament are 13.6 mm 

and 0.3 mm respectively. In order to conserve computational resources, only half of the 
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ligament is modeled with computations conducted on an axisymmetric domain of 

dimensions 7.0 mm×1.0 mm.  

The following characteristic dimensional quantities are used to convert the 

governing equations, Eqs. (3-1), (3-2), into dimensionless form: 
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Equations (3-1) and (3-2), in nondimensionalized form with the effect of gravity 

neglected, become:  
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where 
12 2

0( )Oh Rρν σ=  is the Ohnesorge number which is defined as the 

dimensionless group obtained by dividing the square root of the Weber number by the 

Reynolds number. The Ohnesorge number describes the relative importance of inertial, 

surface tension and viscous forces in the ligament breakup process. The term 

nxR κδ )(2
0  in Equation (6-4) relates to the geometry of the ligament. Thus, as 

demonstrated in the non-dimensional formulation, the parameters that control the 

relaxation dynamics of the ligament are the Ohnesorge number and the initial shape of 

the ligament. 
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The relaxation sequence leading to the break-up of an elongated liquid ligament 

is shown in Figure 6.8. The pressure distributions along the centerline are plotted in part 

(a) and the flow fields in the vicinity of the pinch off are presented in part (b). The 

ligament break-up shown in the figure appears to follow the “end-pinching” mechanism 

outlined in the studies [4,6,7,73] previously mentioned. The additional curvature at the 

rounded ends of the ligament, as compared to the central portion, generates a higher 

pressure because of surface tension. The pressure gradient drives the fluid away from 

the ends towards the midsection, resulting in the formation of a bulbous region at the 

tips. The presence of the bulb, leads to a negative curvature and consequently a 

minimum pressure somewhere between the bulbous end and the midsection, and sets up 

a local flow towards this minimum pressure point from both sides. The local flow on the 

midsection side creates a neck as a result of local mass reduction accompanying the 

flow. The formation of this neck leads to an increase in pressure due to the increase in 

curvature by the reduction of local ligament radius. This local peak in pressure causes 

further reduction of mass, leading to a further reduction in the radius of the neck. This 

generates an unstable situation resulting in further development of the neck and an 

eventual “end pinch off” of the bulbous region.  

In general, the numerical results obtained in the present study are in agreement 

with the “end-pinching” mechanism with the exception of one notable difference, which 

perhaps holds the key as to why end pinching does not always occur. Upon closer 

examination of the flow field and the pressure distribution, it is found that a sharp 

pressure variation exists slightly upstream (away from the end) from the neck. This can 
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be clearly seen in the magnified view shown in Figure 6.9. Contrary to the end-pinching 

mechanism where the maximum pressure point is supposed to be located at the neck 

where the radius is minimum, the pressure is minimum there instead. The sharp 

pressure variation is due to the severe change in the geometry of the free surface where 

the lateral (longitudinal) curvature undergoes drastic changes from slightly convex to 

overly concave. Note that the surface tension force is proportional to the sum of the 

radial and lateral curvatures. The lateral curvature, which plays a minor role in most of 

the ligament regime, becomes a dominant component at the neck and consequently 

generates a sharp pressure variation there. 

It is of interest to point out the appearance of a flow recirculation zone inside of 

the bulbous end. Again, contrary to the end-pinching mechanism, the flow does not 

originate from the neck, but instead, slightly upstream from the neck where the pressure 

is at a maximum. It penetrates the neck and collides with the reverse flow, resulting in 

the formation of the recirculation zone. This, as will be demonstrated in the later part of 

this study, plays a key role in controlling the fate of the ligament in the relaxation 

process. 

In Stone et al’s numerical study [7], it is mentioned that the flow and the 

subsequent breakup of ligaments are determined by the viscosity ratio and the 

elongation ratio. It is also concluded that the initial shape at the end of the ligament 

does not affect the end-pinching mechanism and it is the overall global geometry and 

the viscosity ratio that control end pinching. However, in the recent study by Ha and 

Leal [73], it was reported that with the same elongation and viscosity ratio, the 
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ligaments behave differently with different strain rates, which resulted in different 

initial ligament end shapes. The latter result appears to be in agreement with the 

findings of the present study. As shown in Figure 6-10, a more circular bulbous end 

enhances the likelihood of pinch off and at an accelerated pace. On the other hand, a 

more elliptical end shape tends to hinder the breakup process. With a ‘pencil-head’ end 

shape, it eventually contracts back to a single drop. This is in contradiction to the end-

pinching theory. This is a flaw in the theory where the lateral curvature in the neck is 

not properly taken into account. 

The relaxation sequence of a pencil-head ligament is shown in Figure 6.11. Note 

that, for illustration purposes, only the flow fields in the region enclosed by the dashed 

line are shown and the sequence is split into two columns. The reopening of the neck is 

clearly shown. Basically, the outcome of a relaxation process is controlled by the 

relative strength of the inward reverse flow from the bulb to the center and the outward 

flow towards the neck from the main body. A stronger outward flow would enhance 

end-pinching breakups by pushing away and consequently detaching the bulb. This is 

shown in Figure 6.8 where the overwhelming pressure gradient on the immediate left of 

the neck pushes away the bulb resulting in end-pinching breakup. On the other hand, a 

stronger reverse flow would push the fluid in the bulb inward through the neck, 

preventing pinch off at the neck. This is indeed the case with the pencil-head ligament 

shown in Figure 6.11. With a pointed end shape, the curvature at the end is larger, 

which results in a higher pressure and a stronger reverse flow to impinge on the 

outbound opposing flow. 
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The dimensionless form of the governing equations, i.e. Eqs. (6-3) and (6-4), 

indicates that the relaxation dynamics of the ligament are governed by the initial 

geometrical shape and the Ohnesorge number. This has been confirmed by a parametric 

study performed with varying fluid properties. It is found that, for a given initial 

ligament shape, variations of surface tension coefficient, viscosity and density will not 

affect the breakup process if the Ohnesorge number, Oh, is kept constant. However, the 

time scale, σµτ 0R= , will not be preserved.  

The results for four cases with the Ohnesorge number ranging from 0.01 to 0.2 

are shown in Figure 6.12. There exists a critical Oh value beyond which no pinch-off 

breakup is observed. In the current study, it is between 0.067~0.08. The critical Oh 

number is dependent on the initial ligament shape.  

6.2.3 Conclusions 

The time-dependent relaxation dynamics of a moderately elongated liquid 

ligament has been studied numerically using a CLSVOF method for tracking the free 

surface in conjunction with the CSF model for the surface tension calculation. The 

breakup mechanism has been examined and a flaw in the published “end-pinching” 

mechanism has been identified that enables an explanation of the “re-open” process of 

the neck. The relaxation dynamics of the ligament are governed by the initial shape and 

the Ohnesorge number. The end shape in particular plays a key role in the breakup 

process. A more circular bulbous end enhances the likelihood of pinch off and at an 

increased pace. The numerical simulations are in agreement with the experimental 

findings in the literature. 
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6.3 Motion of a Large-Sized Gas Bubble in a Narrow Vertical Tube 

6.3.1 Introduction 

Bubble-driven flows appear in various natural and industrial processes with a 

wide range of applications such as oil transportation, steam generation, cooling systems 

of nuclear power plants, propagation of sound in the ocean, cloud cavitations, etc. 

Numerous experimental and theoretical studies have been carried out during the past 

fifty years [1]. Due to the complex two-phase flow patterns associated with bubble 

behavior, some issues are still unresolved. Among these, bubble oscillations have 

attracted much attention in recent years due to the development of advanced 

measurement techniques and tools that provide more detailed information about the 

dynamics of bubble motion. Bubble oscillations are complicated phenomena that 

include the bubble-rising trajectory and shape instabilities as well as the associated 

velocity and pressure fluctuations. These oscillations further complicate bubble flow 

problems and cast doubt on the accuracy of the terminal velocity and the existence of a 

“steady state”. 

Much research work has been devoted to the study of bubble trajectory and 

shape oscillations with experimental methods [74-77]. For example, it has been found 

that large bubbles in an unbounded liquid do not move rectilinearly but follow a zigzag 

or spiral path instead. It is also generally believed that the vortex shedding at the wake 

of the bubble is responsible for these oscillations. Ellingsen and Risso [78] investigated 

the rise of a 2.5 mm diameter air bubble in water with high-speed video and LDA (laser 

Doppler anemometer). It was revealed that steady path oscillations, with the major axis 



 

 94 

of the ellipsoidal shaped bubble in the direction of its velocity, developed in the absence 

of any shape oscillations. Di Marco et al. [79] studied a nitrogen bubble rising in a 

fluoroinert liquid (FC-72) and reported that the oscillations of the ascending velocity 

were well correlated with shape oscillations. Behavior of a single bubble in a surface 

tension dominant regime was investigated by Tomiyama et al. [80] both theoretically 

and experimentally with the focus on the terminal velocity. It was discovered that the 

initial shape deformation of a bubble has remarkable effects on the bubble trajectory, 

shape and velocity.  

Most of the bubble oscillation studies were conducted in an infinite fluid 

environment where the wall effects of containers are negligible. Although bubble 

oscillations in a confined tube or pipe have practical significance, studies on the subject 

are relatively scarce. If a large bubble is confined in a narrow tube with a comparable 

cross-sectional diameter, the bubble will rise along the tube centerline, and path 

instabilities will not occur. The problem seems to become somewhat simpler without 

trajectory oscillations and is often neglected by researchers. Typically, for a large 

bubble in a narrow tube, a ‘slug flow’ will develop which is characterized by a rounded 

cap front, followed by a long main body surrounded by a falling annular liquid film 

[81]. Much of the work on slug flows has focused on the terminal velocity, steady shape 

and drag force. In a recent study [82], a universal correlation for the rise velocity of a 

long gas bubble in stagnant fluids contained in a vertical tube was obtained based on the 

data collected from published literature. The velocity field in the liquid around the 

bubble has been investigated using Particle Image Velocimetry (PIV) by some 
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researchers [83-85]. However, due to experimental difficulties, velocity profiles in the 

gas phase are seldom available. In the case of numerical simulations, because of the 

large density ratio between liquid and gas, the momentum equations and hence flow 

calculations are often ignored [86] in the gas phase. Polonsky et al. [87] observed the 

oscillatory motion of the bubble bottom for a long gas bubble rising in a vertical tube 

while the nose of the bubble retains its shape. The amplitude of oscillations increases 

with the bubble length, whereas the frequency remains constant. van Hout et al. [83] 

investigated the velocity field induced by a Taylor bubble rising in stagnant liquid. 

Velocity fluctuations were noticeable fifty tube diameters away from the wake of the 

bubble. It should be noted that the experimental measurements were performed at 

steady state while the transient effect is not accounted for in the last two studies. 

In the present study, the motion of a large single gas bubble, with diameter 

comparable to that of the tube, rising through a stagnant liquid is investigated. The 

transient governing equations are solved by a finite volume scheme with a two-step 

projection method. The interface between the liquid and gas phase is tracked by a 

coupled level set and volume-of-fluid (CLSVOF) method. The PBM is employed for 

surface tension modeling in this study. The focus of the present work is to investigate 

the bubble oscillations during the initial acceleration stage by analyzing the deformation 

shape and the associated velocity fluctuations. The velocity field and pressure 

distribution in the bubble and the surrounding liquid are thoroughly examined as well. 
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6.3.2 Results and Discussion 

As shown in Figure 6.13, a spherical air bubble with a diameter of 20 mm is 

located near the bottom of a vertical tube (diameter D=25 mm and height L=150 mm) 

containing quiescent water. Non-slip boundary conditions are imposed at the solid 

walls, and an open boundary condition is applied at the top of the tube. The calculations 

are carried out on an axisymmetric computational domain. Constant properties are used 

for air and water unless stated otherwise. They are given by: lρ = 1000 kg/m3, gρ = 1.226 

kg/m3, lµ = 1.137x10-3 kg/ms, gµ = 1.78x10-5 kg/ms with g = 9.8 m/s2, and σ = 0.0728 

kg/s2. The key dimensionless parameters used in this study include: Morton number 

,/ 334 σρν lgMo =  Eötvös number ,/2 σρ gDEo l=  density ratio gl ρρ /  and viscosity 

ratio gl µµ / . 

6.3.2.1. Dynamics of Bubble Motion and Deformation 

The time evolution of bubble shapes is given in Figure 6.14. The bubble, 

exerted by buoyancy force, rises rapidly after its release. This acceleration process is 

simultaneously accompanied by bubble shape deformation from the initially spherical 

shape to the final bullet-like shape. The bottom of the bubble rapidly moves upwards, 

and thus a concave shape is formed at the bottom. This cupped bottom immediately 

rebounds downwards into a convex shape. This up-and-down oscillatory movement of 

the bubble bottom continues as the bubble rises but with decreasing amplitude. The top 

of the bubble, on the contrary, retains a spherical cap shape with very little deformation 

while rising.  
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The velocity field at one time instant is presented in Figure 6.15 with the 

corresponding streamline plot shown on the left. The magnified views of several 

regions around the bubble are given in Figures 6.16a, b, and c. For example, the axial 

velocity along the center axis of the tube decreases rapidly upward away from the nose 

tip, and the effect of the bubble motion becomes negligible 0.5D beyond the bubble 

nose (Figure 6.16a). In the radial direction, the radial velocity increases away from the 

tip of the bubble nose and the fluid enters into the falling liquid film near the tube wall. 

Along the bubble interface, the flow reverses from upward inside the bubble to 

downward in the liquid (Figure 6.16b). In the wake region of the bubble, the falling 

flow in the liquid film near the tube wall mixes with the liquid slug induced by the gas 

bubble at approximately 2.0D away from the bottom of the bubble (Figure 6.16c). As a 

result, a toroidal vortex is generated, which is immediately followed by another much 

weaker one that circulates in the opposite direction (see Figure 6.15). It should be 

mentioned that the observations of the flow structure in the present numerical study are 

in good agreement with the findings reported in previous experimental studies on slug 

flows [83-85]. 

Figure 6.17 shows the axial velocity versus time plot at the nose and bottom of 

the bubble. The velocity at the bottom undergoes significant oscillations at the initial 

acceleration stage where the oscillation amplitude decreases gradually with time. 

However, these oscillations at the bottom have no influence on the behavior of the 

bubble nose, where the velocity rapidly accelerates and immediately reaches a constant 
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value of around 0.1735 mm/ms. This is in excellent agreement with the terminal 

velocity correlation given by gDUT 35.0=  reported in the literature [81, 84]. 

The pressure contours and the pressure distribution along the axial direction are 

shown in Figures 6.18a and 6.18b respectively. The top of the tube is open to the 

atmosphere, and thus an open boundary condition is applied there with the atmospheric 

pressure taken as zero. As shown in Figure 6.18a, the pressure increases gradually with 

depth from top to bottom, while in the gas phase the pressure is constant. Figure 6.18b 

shows the axial pressure distribution at three radial positions. The fluid motion is 

relatively weak in the region from the opening of the tube to the nose of the bubble with 

an almost linear increase in pressure. In the region from the top to bottom of the bubble, 

the pressure maintains a constant value inside the bubble and changes non-linearly in 

the liquid film. In the wake region of the bubble, the pressure changes non-linearly in 

the first recirculation zone beyond which the pressure varies approximately linearly 

again when the flow diminishes. It is also shown that the pressure variation in the radial 

direction is very small except near the bubble interface where a pressure jump induced 

by the surface tension exists. 

6.3.2.2 Bubble Oscillations  

As discussed previously, during the acceleration process, significant bubble 

deformation occurs, which is characterized by oscillatory motions at the bottom with a 

relatively stable spherical cap shape maintained at the nose (see Figure 6.14). This is 

also manifested by the velocity fluctuations at the bottom as shown in Figure 6.17. The 

velocity at the nose quickly reaches the terminal velocity and remains constant, while 
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the velocity at the bottom undergoes severe oscillations. The variation of the bubble 

length (distance from the nose to the bottom) with time is given in Figure 6.19, where 

bubble shape oscillations can be inferred. The Fourier transforms of the bubble length 

and the bottom velocity are obtained to correlate and analyze the oscillation 

characteristics. Power spectra of bubble lengths and bottom velocity oscillations are 

given in Figure 6.20. Note that both the bubble length oscillations and the bottom 

velocity oscillations have an almost identical dominant frequency at approximately 12.7 

Hz. 

It is of interest to compare the numerical results of the present study with 

theoretical calculations in order to validate the accuracy of the numerical simulation. In 

a recent study [87] of the time-dependent characteristics of the motion of an elongated 

bubble in a vertical pipe, the bubble bottom is treated as a circular liquid membrane 

modeled by potential flow theory. The velocity potential, Φ , is governed by the 

Laplace equation: 

 02 =Φ∇  (6-5) 

with a solution given by:  

 )()cos()(),,,( εωθθ ++=Φ tikz
ss eskrJAtzr  (6-6) 

where sA  is the arbitrary amplitude, sJ  the Bessel function of the first kind of order s, k  

the wave number, ω  the angular frequency, and ε  the arbitrary phase angle. The 

derivation follows that of Lamb [88] where a more detailed discussion of the solution 

can be found. The wave number k is determined by the condition that the radial velocity 

at the rim of the bubble bottom is zero, i.e., 
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 0=
∂
Φ∂

=Rrr
 (6-7) 

Due to the symmetrical oscillation character of the bubble bottom imposed in 

the present numerical simulation, s is taken as zero, and Eq. (6-7) becomes:    

 0)('0 =
=Rr

krJ   (6-8) 

The oscillation frequency, ( )
2

f ω
π

= , can then be obtained by substituting k into 

the gravity-capillary wave dispersion relation below: 

 3kgk
ρ
σ

ω +=  (6-9) 

For a bubble bottom radius of 10.6 mm, the oscillation frequency corresponding 

to the lowest mode is 13.3 Hz. This is in good agreement with the value of 12.7 Hz 

obtained in the present numerical simulation.  

6.3.2.3 Effects of Fluid Parameters on the Oscillations 

A number of cases for different fluid parameters are investigated to identify the 

factors controlling the oscillatory behaviors of bubble velocity and shape. Figures 6.21a 

and 6.21b show the velocity versus time plot for cases with different liquid viscosities. 

The liquid viscosity values used are 10.0 times that of water in case a, and 0.1 times in 

case b. It can be seen that an increase in liquid viscosity leads to a decrease in 

oscillation amplitude and overall duration with larger amplitude and longer overall 

duration attained by reduction in liquid viscosity. This implies that liquid viscosity has a 

damping effect on the oscillations, as expected. However, as shown in Figure 6.22a, the 

oscillation frequency is relatively unaffected by the variation in liquid viscosity. The 
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dominant frequencies for all three cases with different viscosities are almost identical. 

The gas viscosity plays a negligible role in the bubble motion and is therefore ignored.    

Figures 6.21c and 6.21d show rise velocity versus time plots for cases with 

different surface tension coefficients. The surface tension coefficient values considered 

are twice and half that of water. With larger surface tension force, the oscillations 

become stronger in the sense that both the amplitude and the frequency are increased. 

With decreased surface tension force, both the amplitude and frequency are decreased. 

Power spectra of bottom velocity oscillations with different surface tension coefficients 

are shown in Figure 6.22b. It is clear that the dominant frequency increases with 

increase in surface tension.   

It should be noted that for all the cases discussed above, Mo is less than 

71056.2 −×  and Eo is greater than 0.42 . According to the Eo-Re-Diagram (Figure 2.5 in 

[1]), the bubble will take on a “spherical-cap” shape in an unbounded liquid under these 

conditions. However, the bubble considered in the current study is confined in a narrow 

tube. As shown in Figure 6.23, the bubble nose takes on a slightly prolate spheroid 

shape due to the effect of the tube wall. Meanwhile, the bubble nose shape does not 

vary much between the different cases, although the bottom shape changes 

significantly. Moreover, velocity oscillations occur only at the bottom of the bubble, 

while the velocity at the nose maintains a nearly constant value during bubble rise 

(Figures 6.21a, b, c, and d). It appears that the behavior of the bubble nose is 

independent of the parameters studied. However, a close examination of Figure 6.21c 

reveals that the nose velocity curve is slightly wavy, which suggests that nose 
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oscillations might occur if the surface tension force is sufficiently large. This 

speculation is confirmed by further increasing the surface tension coefficient by a factor 

of 10 resulting in 141056.2 −×=Mo  and 4.8=Eo .  As shown in Figure 6.24a, the 

velocities at both the nose and the bottom exhibit severe oscillations. In this case, the 

surface tension force is dominant, and the bubble will take on an “ellipsoidal or 

wobbling” shape which is outside the Taylor bubble regime. The time sequence of 

bubble shapes is shown in Figure 6.24b where apparent shape oscillations can be seen. 

In this regime, non-axisymmetric oscillations, such as trajectory instabilities, will 

certainly occur in an infinite liquid. In the present study, such trajectory oscillation has 

been eliminated due to the constraints at the tube wall.  

6.3.3 Conclusions 

The dynamics of a single gas bubble rising in a narrow vertical tube have been 

studied via a numerical method. The velocity field as well as the pressure distribution 

have been investigated and analyzed. The results obtained in the present study are in 

very good agreement with experimental results reported in the literature. Special 

attention is paid to bubble oscillations at 71056.2 −×<Mo  and 0.42>Eo .  It has been 

found that the bubble nose retains a relative stable shape while significant oscillations 

occur at the bubble bottom as it rises through the liquid from the static state. The 

parametric study shows that the liquid viscosity plays an important role in damping the 

oscillations without altering the oscillation frequency; while the surface tension 

significantly changes both the oscillation frequency and the amplitudes.    
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Figure 6.1 The schematic of pendant drop forming from a vertical capillary tube. 
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Figure 6.2 The initial flow field of water droplet computation. 
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Figure 6.3 (a)-(o) The evolution of a pendant drop from a tube of inner radius iR  = 1.0 
mm and outer radius R  = 1.6 mm at the liquid flow rate Q = 10 mL/min with a 

parabolic inlet velocity profile. The numerical scheme is the VOF-PLIC. 



 

 106 

 
 

 
 

 
 

Figure 6.4 (a)-(o) The evolution of a pendant drop from a tube of inner radius iR  = 1.0 
mm and outer radius R  = 1.6 mm at the liquid flow rate Q  = 10 mL/min with a 

parabolic inlet velocity profile. The numerical scheme is the CLSVOF. 



 

 107 

 
 
 
 
 
 

 

 
 

Figure 6.5 (a)-(m) Time sequence of a pendant water droplet from a tube in air. [Zhang 
and Basaran, 1995] 
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*1: Data from Zhang [1995] 
 

Figure 6.6 Comparison of characteristic values of water droplets as a function of the 
liquid flow rate. 

 
 

 
 

(a) 
 

 
 

(b) 
 
Figure 6.7 Schematic representation of an elongated ligament: (a) a full ligament with 

elliptic ends; (b) computational domain configuration. 
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(a)   (b) 
Figure 6.8 Pressure and velocity distribution during relaxation process: (a) pressure 

distribution along the axis of the ligament; (b) velocity profile. 
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(a) 

 
(b) 

 
Figure 6.9 Flow field and pressure distribution immediately prior to breakup 

(magnified view): (a) flow field; (b) pressure distribution. 
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(a) (b) 

 

 
(c)                                                       (d) 

Figure 6.10 Ligament relaxation process with different end shapes: (a) circular shape; 
(b) reference case (elliptic shape); (c) more elliptic shape; (d) pencil-head shape. 
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(a)   (b) 
Figure 6.11 Relaxation process of an elongated ligament with pencil-head end shape: 
(a) pressure distribution along the axis of the ligament; (b) velocity profile, magnified 

the dashed region of (a). 
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(a)                                                              (b) 

                            
(c) (d) 

Figure 6.12 Relaxation processes of a ligament with different Oh numbers: (a) 
Oh=0.2018; (b) Oh=0.1009; (c) Oh=0.0678; d) Oh=0.0101.  
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Figure 6.13 Initial configuration of the computational domain. 

 

 
 

Figure 6.14 Time dependent deformation sequence of a single air bubble in a narrow 
tube. 
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Figure 6.15 Velocity vector field and streamline plot at one time instant. 
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(a)

(b)

(c) 
Figure 6.16 Velocity field (magnified views): (a) top region; (b) side region; (c) wake 

region. 
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Figure 6.17 The axial velocity versus time at the nose and bottom of the bubble. 
 
 

 
 

 
 

Figure 6.18 (a) Pressure contour plot. (b) Pressure distribution along the centerline of 
the tube at various radial positions. 

 

(a) (b) 
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Figure 6.19 The variation of bubble length versus time. 
 
 
 

 
 

Figure 6.20 Power spectra for the oscillations of the bottom velocity and bubble length. 
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(a)                                                                   (b) 
 

 
 

(c)                                                                  (d) 
 

Figure 6.21 Bubble rise velocity at the nose and bottom for different cases: (a) high 
viscosity (10ν ); (b) low viscosity (0.1ν ); (c) high surface tension (2.0σ ); (d) low 

surface tension (0.5σ ). 
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(a) 

 
(b) 

Figure 6.22 Spectra of bubble bottom velocity oscillations: (a) viscosity effect; (b) 
surface tension effect. 
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                                            (a)               (b)                (c)               (d) 
 
Figure 6.23 Time evolution of the bubble shapes for different cases: (a) high viscosity; 

(b) low viscosity; (c) high surface tension; (d) low surface tension. 
 

 
(a) (b) 

 
Figure 6.24 (a) Bubble rise velocity at the nose and bottom of the bubble with a higher 

surface tension (10σ ). (b) Time evolution of bubble shapes. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

Numerical methods for interface simulation and surface tension modeling have 

been investigated with the focus on surface tension dominant free surface and interfacial 

flows. A coupled level set and volume-of-fluid (CLSVOF) scheme has been employed 

and successfully implemented for the interface tracking. A surface tension modeling 

algorithm, referred to as the pressure boundary method (PBM), has been developed and 

applied in both free surface and two-phase interfacial flows.  

 The CLSVOF method combines both the strengths of the LS and the VOF 

methods with the advantages that the computation of the curvature and the normal is 

more accurate, and the mass conservation is preserved as well. In free surface flows, the 

CLSVOF method in conjunction with the CSF model shows superiority over the VOF 

method for surface tension modeling. The spurious currents originating from the CSF 

model are greatly reduced in the CLSVOF method. Although the combination of the 

CLSVOF and the CSF succeeds in some free surface flow problems, its capability is 

limited for two-phase interfacial flows. For two-phase interfacial flow with a high 

surface tension and a large density ratio, the accuracy of the CLSVOF-CSF method 

deteriorates seriously and leads to the failure of the computation due to the existence of 

spurious currents. This problem is eliminated with the PBM method used for surface 
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tension force modeling. The CLSVOF-PBM method drastically suppresses the spurious 

currents not only in free surface flows but also in two-phase interfacial flow. The sharp 

pressure jump is preserved in the PBM method without numerically smoothing of the 

pressure profile, which is more consistent with the nature of the surface tension effect. 

The accuracy and capability of the various algorithms are summarized in Table 7.1, 

Table 7.1 Comparison of the Accuracy and Capability of Different  
Methods for Free Surface and Two-Phase Interfacial Flows 

 
Free Surface flow 

 
Two-phase interfacial flow 

 
 

Numerical 
Methods 

High surface 
tension 

Low surface 
tension 

Large density 
ratio 

Small density 
ratio 

VOF-CSF 

 

Low Moderate N/A N/A 

CLSVOF-CSF 

 

Moderate High N/A Low 

CLSVOF-PBM High High High High 

 

The CLSVOF and PBM algorithms have been applied to several practical 

problems, through which the robustness and versatility are further validated. In the first 

application, the breakup mechanism of a pendant droplet is studied. In this study, both 

the CLSVOF method and the VOF method combined with the CSF model are used for 

comparison purposes. The numerical results are compared with experimental and 

numerical data available in the literature, with the CLSVOF method yielding better 

agreement than the VOF method. Furthermore, while grid convergence is achieved by 
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the CLSVOF method, the VOF scheme fails to converge in the grid refinement test. The 

superiority of the CLSVOF method over the VOF method is apparent. 

In the study of the relaxation of an elongated liquid ligament, the CLSVOF 

method is used for the free surface tracking in conjunction with the CSF model for the 

surface tension. The breakup mechanism has been examined and a flaw in the published 

“end-pinching” mechanism has been identified that enables an explanation of the “re-

open” process of the neck of the ligament. The relaxation dynamics of the ligament 

have been found to be governed by the initial shape and the Ohnesorge number. The 

end shape has been found to play an important role in the breakup process. A more 

circular bulbous end enhances the likelihood of pinch off. The results of the numerical 

simulations are in agreement with the experimental findings in the literature. 

As an example of  two-phase interfacial flow problems, the dynamics of a single 

gas bubble rising in a narrow vertical tube are investigated,  with the interface tracked 

by the CLSVOF method and the surface tension modeled by the PBM method. The 

velocity field as well as the pressure distribution have been investigated and analyzed. 

The results obtained in the present study are in very good agreement with experimental 

results reported in the literature. Special attention is paid to bubble oscillations at 

71056.2 −×<Mo  and 0.42>Eo . It has been found that the bubble nose retains a 

relatively stable shape while significant oscillations occur at the bubble bottom as it 

rises through the liquid from the initial static state. A parametric study has been 

performed which shows that the liquid viscosity plays an important role in damping the 
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oscillations without altering the oscillation frequency, while the surface tension 

significantly changes both the oscillation frequency and the amplitudes.  

The above applications provide evidence for the accuracy, robustness and 

versatility of the numerical algorithms developed in this study. With this numerical tool, 

various free surface and interfacial flow problems, such as bubble formation, bubble 

coalescence and breakup, droplet impingement, etc., can be studied.  

It should be noted that the current methods are limited to the two dimensional 

axisymmetric case. Extension to three-dimensional problems is desirable which 

involves more challenges and difficulties (e.g., a more complex interface reconstruction 

scheme is needed). Due to the explicit treatment of the viscous term in the Navier-

Stokes equation, the current code is unable to solve low Reynolds number flow 

problems. An implicit treatment of the viscous term will allow the code to model more 

viscous flows and to eliminate the time step constraints due to the viscosity. In this 

code, only the momentum and the continuity equations are solved; adding an energy 

equation model with phase-change will allow the code to simulate two-phase interfacial 

flows with heat transfer and evaporation. With these further enhancements, the range 

and variety of free surface and interfacial flow problems that are able to be modeled can 

be extended. This might be attempted in future work.   
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COMPUTER PROGRAM EXECUTION
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A1. OVERVIEW 

The computer program used in this thesis includes three different versions, 

which were developed based on a single-phase flow solver [16]. These codes were 

written in the computer language FORTRAN under the UNIX/LINUX operating 

system. All the calculations in this thesis are performed on the High Performance 

Computing (HPC) system of the University of Texas at Arlington. These three program 

packages are devised for different purposes: two for free surface flows and one for two-

phase interfacial flows. Some comments regarding the codes and numerical algorithms 

used are given below. 

1. Free Surface Flow Code 

Two different versions of the code featuring different surface tension modeling 

methods, CSF or PBM, are available for free surface flows.  

1). For the code with the CSF model, there are two options for the free surface 

tracking methods. The free surface can be tracked either by the “pure” VOF method or 

the “CLSVOF” scheme.  

2). If the PBM method is used, the free surface can only be tracked by the 

CLSVOF scheme. This is because the level set functions are needed in the PBM 

algorithm.   

2. Two-Phase Interfacial Flow Code 

For two-phase interfacial flow problems, only one version of the code is 

available. In this package, the surface tension force is modeled by the PBM method 

with the interface tracked by the CLSVOF scheme. 
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A2. PROBLEM SET-UP AND SAMPLE INPUT 

 1. Problem Set-Up 

A physical problem can be treated either in free surface flow mode or two-phase 

interfacial flow mode, the choice of which depends on the problem to be simulated. 

Generally, if the “dispersed phase” is liquid and the “continuous phase” is gas, such as a 

water droplet falling in air, the free surface mode is suitable. On the other hand, if the 

“dispersed phase” is air or liquid and the “continuous phase” is liquid, such as an air 

bubble rising in water, or an oil droplet moving in water, the two-phase mode is 

desirable. Once the appropriate mode is chosen, necessary information, such as 

geometry, fluid properties, boundary conditions and initial conditions, needs to be 

gathered, which can be specified and incorporated into the code via an input file. 

Detailed information and explanation of the input variables can be found in [15, 16, 70]. 

A sample input file for a water droplet falling in air is given in the following; 

modifications made to the input file suited for the new programs are described.  

2. Sample INPUT 

Droplet_impact  [mm,ms,mg,K] 
 $numparam 
   alpha=2.0, 
   autot=1.0, 
   conserve=.true., 
   delt=1.0e-3,  
   dtmax=1.0e-2, 
   twfin=200000.0, 
   con = 0.3 
   fcvlim=0.5, 
   idiv=1,  
   dmpdt=3000000.0,  
   prtdt=1000000.0,  
   pltdt=4.0e-2, 
   sym=.true., 
   kt=2, 
   kb=2, 
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   kl=1, 
   kr=1, 
 $end 
 $fldparam 
   gy=-9.81e-3, 
   icyl=0, 
   isurf10=1, 
   psat = 0.0, 
   xnul=1.08e-3,------Liquid viscosity,  
   xnug=1.78e-5,------Gas viscosity, 
   rhofl=1.0,---------Liquid density, 
   rhofg=1.0e-3,------Gas density, 
   sigma=7.28e-2, 
   vi=1.0, 
   canglet=45.0, 
 $end 
 $mesh 
   nkx=1,   
   xl=0.0,0.625,  
   xc=0.625,  
   nxl=50,   
   nxr=0,  
   dxmn=0.0125, 
   nky=1,   
   yl=0.0,1.25,  
   yc=1.25  
   nyl=100,   
   nyr=0,  
   dymn=0.0125, 
 $end 
 $obstcl 
   nobs=0, 
 $end 
 $freesurf 
   nfrsrf=2,iequib=0, 
   fc1(1)=-1.0, ifh(1)=1,  
   fa1(2)=-0.625, fa2(2)=1.0, 
   fb1(2)=-2.0, fb2(2)=1.0, fc1(2)=1.08203125, ifh(2)=0, 
 $end 
 $graphics 
   plots=.true., dump=.false., 
   iout = 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
          0, 0, 0, 0, 0, 0, 0, 1, 0, 0,-1, 0, 1, 
   iysymplt=1, 
 $end 
 $heateq 
   heat = .false., 
   ischeme = 3, 
   tid = 525.0, 
   tip = 300.0, 
   tia = 100.0, 
   cpp = 227.0, 
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   cpd = 227.0, 
   cpa = 50.0, 
   tkp = 432.2, 
   tkd = 67.0, 
   lhpc = 58900.0, 
   hmr = 5.0, 
   tl = 510.0, 
   ts = 505.0, 
   teps = 1.0e-8, 
 $end 
 $coupled 
   lsvof=.true.,-----------Using CLSVOF method, 
   ls=.false.,-------------Not using LS method, 
 $end 

 
Note: 
In the “fldparam” section, for the free surface code, the variables 
“xnul” and “xnug” are replaced by “xnu”,  “rhofl” and “rhofg” by 
“rhof”. 
 
 In the “coupled” section, if “lsvof” is true, then CLSVOF will be 
used. If “lsvof” is false, the pure VOF method will be used. If both 
“lsvof” and “ls” are set to be true, then the pure level set method 
will be used.  

 

A3. SAMPLE OUTPUT AND DATA POST-PROCESSING 

1. Sample OUTPUT 

 3.60034E-001 <----time 
  2, 50       <----1st real cell, last real cell in x-direction  
  2,100       <----1st real cell, last real cell in y-direction 
 0.00000E+000 <----location of the left side of each  
 1.25000E-002      computational cell in x-direction 
 2.50000E-002 
 3.75000E-002 
 5.00000E-002 
 6.25000E-002 
 7.50000E-002 
 8.75000E-002 

. 

. 

. 
 0.00000E+000 <----location of the lower side of each 
 1.25000E-002      computational cell in y-direction 
 2.50000E-002 
 3.75000E-002 
 5.00000E-002 
 6.25000E-002 
 7.50000E-002 
 8.75000E-002 
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. 

. 

. 
0.00000E+0, 0.00000E+0, 0.00000E+0, 1.80971E-1, 0.00000E+0, 5.21999E-4 
7.64340E-4, 0.00000E+0, 0.00000E+0, 1.80971E-1, 0.00000E+0, 5.21999E-4 
1.51660E-3, 0.00000E+0, 0.00000E+0, 1.80971E-1, 0.00000E+0, 5.22089E-4 
2.24484E-3, 0.00000E+0, 0.00000E+0, 1.80971E-1, 0.00000E+0, 5.22268E-4 
2.93749E-3, 0.00000E+0, 0.00000E+0, 1.80971E-1, 0.00000E+0, 5.22534E-4 
^            ^            ^           ^           ^           ^    
|            |            |           |           |           |     
|            |            |           |           |           |       
|            |            |           |           |           |      
x-velocity  y-velocity   VOF         level set    enthalpy    pressure 
component   component    function    function  
 

2. Data Post-Processing 

In this thesis, all the data files generated from the simulations were post-

processed by using MATLAB under the Microsoft Windows system.  
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